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Abstract 
A model to calculate the locally resolved tangential contact forces of the wheel rail contact with 
respect to contact kinematics, material and surface properties as well as temperature is introduced. 
The elasticity of wheel and rail is modeled as an elastic layer consisting of point contact elements 
connected by springs to each other and to the wheel. Each element has two degrees of freedom in 
tangential directions. The resulting total stiffness matrix is reduced to calculate only the position of 
the elements in contact. Friction forces as well as contact stiffnesses are incorporated by a nonlinear 
force-displacement characteristic, which originates from a detailed contact model. The contact 
elements are transported through the contact zone in discrete time steps. After each time step an 
equilibrium is calculated. For all elements, their temperature and its influence on local friction are 
regarded by calculating friction power and temperature each time step.  
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Introduction 

To calculate the tangential contact forces in wheel rail systems for e.g. vehicle dynamics, a 
profound knowledge of the creep force characteristic is necessary. To achieve this, the creep 
dependent distribution of tangential forces inside the contact zone is necessary. Especially at higher 
slip the temperature in the contact zone becomes high enough to effect significantly on the 
tangential forces. 
Many approaches have been made to calculate the tangential force distribution. Kalker [Kalker 
(1967); Kalker (1990)] developed the program CONTACT to calculate contact forces. This 
program assumes Hertzian contact and halfspace assumption to calculate the traction forces. Due to 
halfspace assumption the computation times are very high. Approaches have been made to reduce 
computation time compared to CONTACT [Kalker (1982); Polach (2000)], however these do not 
include temperature effects. 
In [Sextro (2007)] a numerical model for the wheel rail contact is developed. The contact zone is 
discretized and each partial area is described by a point contact element. A single point contact 
element includes differential contact stiffness as well as a nonlinear partial friction force. By 
applying deformations on the point contact elements, which are deduced from the kinematics of 
wheel and rail, the tangential force distribution in the contact zone can be calculated. Also 
temperature and its influence on the friction coefficient are regarded in this approach. 
In [Tomberger et. al (2011)] a model for the wheel rail contact comprising roughness interfacial 
fluids and temperature is shown. The tangential contact is discretized using independent contact 
stiffnesses as suggested in [Sextro (2007)]. The modeling method is based on FASTSIM, but allows 
varying coefficients of friction. In a micro contact model the effects of interfacial fluids and 
temperature on the friction coefficient are calculated with respect to roughness, contact kinematics 
and material properties.  
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Also, the Finite Element Method has been used to calculate forces in the rolling contact. 
Nackenhorst [Nackenhorst (2004)] used an arbitrarian lagrangian eulerian formulation for 
calculating contact forces using the Finite Element Method for stationary rolling contact. By 
splitting the motion into rigid body motion and elastic deformation and solving the transportation 
problem of wheel and rail elements through the contact zone similar to transport problems in fluid 
dynamics. The contact forces can be calculated by this method retaining a fine mesh in the contact 
zone and a large mesh outside of it. 
In [Wen et al. 2011] and [Zhao and Li 2011] the tangential forces in wheel rail contact where 
calculated using Finite Elements models. However, temperature effects were not taken into account 
and the computation time for these models is very high. 
The model presented here is based on the approach by Sextro [Sextro (2007)]. Instead of using 
independent point contact elements, the elasticity of wheel and rail is modeled by an elastic layer, to 
better model the elastic deformation inside the contact zone. The algorithm used in this model 
computes the tangential contact forces at stationary rolling by computing equilibrium of the forces 
caused by the elastic layer and the tangential contact forces. Additionally, the influence of 
roughness and temperature can be investigated with this model. 

Contact Kinematics 

The kinematics of a rigid wheel rolling over a rigid rail under slip angle α and angular velocity ω 
are depicted in Fig. 1. 
 

a) 

A
Ax

Ay
Az

I
Ix

Iy
Iz

W W0

WxWy
Wz

v0

ω

α

   b)

Wx

Ax

Wy Ay

αv0

 
Figure 1, Wheel and Rail Schematic  

 
The wheel shown in Fig. 1 a) is moving relative to the inertia frame I in Ix-direction with constant 
velocity v0. The contact patch shown in Fig. 1b) is described by the reference system A, which is 
also moving with the wheel center in Ix-direction with velocity v0. A point on the wheel’s surface in 
contact is described by the wheel fixed coordinate system W, which is rotated relative to the inertia 
system around the Iz-axis by a constant angle α. The angular velocity of the wheel is defined 
relative to the wheel fixed coordinate system W with 
 
 [ ]TIW

W 0ω0ω = . (1) 
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The inertia system I is fixed on the rail. The tangential velocity of the point W0 on the wheel in the 
contact is dependent on the angular velocity and the slip angle α and can be calculated by 
 
 [ ]TW

I
I RRvv 0αsinωαcosω00

−−= . (2) 

 
The longitudinal slippage s can be calculated with 
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In the following, all vectors will be given in coordinates of the W-system, unless noted otherwise. 

 
Contact Model 
 
Modelling approach 
 
The creep force characteristic of wheel and rail is highly dependent on the elastic deformations 
inside the contact area. The elasticity of wheel and rail is modeled as an elastic layer consisting of 
discrete elements having an elasticity equivalent to the combined elasticity of wheel and rail. A 
detail of the elastic layer is shown in Fig. 2 a). The layer consists of coupled massless point contacts 
P connected by springs with spring stiffnesses ∆ck,x and ∆ck,y in tangential direction to each other. 
The layer is also coupled by springs with stiffnesses ∆cx and ∆cy to the rigid wheel in Wx- and Wy- 
direction respectively.  
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Figure 2, Elastic Layer and Contact Area 

 
If the point P is inside the contact area, a nonlinear tangential force ),,( ´,PPNT rFF





∆µ applies, which is 
described in detail later in this paper. P´ is a point which is fixed on the rail, so ´,PPr

  is the sliding 
distance of P, which is also the displacement of P relative to the rail. The tangential forces cause 
deformations which influence the neighborhood around the contact area and vice versa. Therefore, 
not only the contact area but also the surrounding area Atotal is modeled with the elastic layer. The 
size of the total area Atotal is not as large as the total wheel’s surface but large enough, that 
deformations at the edge of the total area are diminishing small compared to the deformations inside 
the contact area. The discretised elliptical contact area with the surrounding total area is shown in 

a) b) 
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Fig. 2 b). The total area is discretised in rectangular partial areas with the dimensions ∆x and ∆y. 
The position of the contact area border in drive direction is referred in the following as leading 
edge. The elastic layer can be described by a set of linear coupled equations. The relation between 
force and displacement with respect to the wheel coordinate system W is: 
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The force and displacement vectors in this equation have been sorted for point elements inside the 
contact area with index i and outside the contact area with index o. The displacement vectors can be 
written as 
 
 [ ]TiyPixPiyPixPiP rrrrr ,,2,,2,,1,,1, =  and [ ]ToyPoxPoyPoxPoP rrrrr ,,2,,2,,1,,1, = . (5) 
 

xPr ,  and yPr ,  are the displacements of the point P in x- and y-direction respectively. 
In order to reduce computational effort, the equation system is reduced to calculate only the forces 
and displacements inside the contact area. The displacements of the points outside the contact area 
can be calculated by the second row of the block matrix equation Eq. (4): 
 
 

iPoooioP rCCr ,
1

,
−−= . (6) 

 
Inserting Eq. (6) in the first row of Eq. (4) leads to 
 
 ( )

iP
C

oooiiiT rCCCF

red

,
1

  

−−= . (7) 

 
So, the relation between tangential forces and tangential displacements in contact can be described 
by a linear equation system with reduced stiffness matrix Cred. 
 
Nonlinear Tangential Force 
 
The elasticity of wheel and rail is modeled as described above. Due to the roughness of surfaces in 
contact a normal pressure dependent contact stiffness develops. Furthermore, the tangential force 
for sticking and sliding conditions has to be applied at point P. This is regarded by a nonlinear force 
displacement characteristic, derived from a detailed micro contact model [Neuhaus and Sextro 
(2013)]. Using this model, the tangential force including the transition from sticking to sliding can 
be computed using measured rough surfaces for different nominal normal pressures. The curves 
achieved from this simulation can be approximated by adequate analytical functions for efficient 
use in the rolling contact model. Figure 3 shows a result using this micro contact model. The 
development of the normalized force while moving two surfaces tangentially against each other is 
shown. The slope at normalized tangential displacement of zero can be interpreted as contact 
stiffness while sticking. Full sliding is indicated by a gradient of zero of the force displacement 
curve. 
Pure sticking only exists when no tangential force applies; afterwards the curve rises nonlinear and 
continuously goes over to sliding. This curve can be approximated well by an exponential function. 
In case of monotone relative movement in constant direction this force displacement characteristic 
can be used to model sticking and sliding, because the displacement vector always points in the 
same direction as the velocity vector. 
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Figure 3, Tangential Force 

 
The tangential force on a single point contact P is dependent on the sliding distance of P and thus of 
the magnitude of ´,PPr

  and its direction. As mentioned above, it can be calculated by an exponential 
law which approximates the force displacement characteristic seen in Fig. 3 with 
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where 
´,

´,

PP

PPW

r

r
 is the unit vector pointing opposite to the sliding direction.  

The corresponding differential normal force is calculated according to a given normal pressure 
distribution. The normal pressure distribution can be achieved for example by using the Hertzian 
Theory, Finite element calculations or measurement results. 
 
Simulation procedure 

The rolling contact is simulated by transporting the elastic layer as described above through the 
contact area in discrete time steps ∆t. The transporting velocity relative to the contact coordinate 
system A given in coordinates of the wheel system W is 

 [ ]Tt
A Rv 00ω−= . (9) 

 
In order to maintain a constant grid, the value of ∆t is chosen in a way that an element is transported 
the distance ∆x in one time step. So, the position 

0Wr
 of point W0 is equal to the position of its 

successor in negative x  -direction after one time step if 
 
 

R
xt

ω
∆

=∆ . (10) 

 
Because P’ is fixed to the rail a relative differential displacement PWr ,0



∆ between W0 and P´ applies 
after each time step ∆t. It is the displacement between a point on the rigid wheel and a point on the 
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rigid rail after one time step and can be expressed relative to the contact coordinate system A 
assuming small angles α by 
 
 [ ] tRRvr T

PWA ∆−−=∆ 0αωω0´,0
 (11) 

 
or with respect to the wheel coordinate system W by 
 
 [ ] tvRvr T

PW ∆−−=∆ 0αω 00´,0
. (12) 

 
This differential relative displacement PWr ,0



∆  is added to the position vector of P´, ´Pr
 , after each 

time step.  
For new elements entering the contact area at the leading edge, the position vector ´Pr

 is set to their 
position vector Pr

 immediately before entering the contact, such that 0´,





=PPr . After applying the 
relative differential deformation for one time step, an equilibrium between the nonlinear tangential 
force defined in Eq. 8 and the forces from the elastic layer is found according to Eq. 7 by 
 
 0, =− TWiPWred FrC  (13) 
 
with  
 
 [ ]TT

nkR
T
R

T
RR FFFF ,1,1, ∆∆∆=   (14) 

 
where nk is the number of elements in contact. 
The equilibrium for Eq. 13 is found by using the Newton Raphson method. Firstly, the gradient of 

the tangential force 
iP

T

r
F

,∂
∂ has to be calculated, which can be done due to the analytical description of 

the force displacement characteristic. Secondly, the Jacobian J is calculated by adding the force 
gradient of the nonlinear tangential force to the constant gradient emerging from the reduced 
stiffness matrix shown in Eq. 15: 
 
 

T
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red
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+=  (15) 

 
Using the Jacobian from Eq. 15, a differential displacement can be calculated and added to the 
displacement vector iPW r , iteratively until the equilibrium condition of Eq. 13 is fulfilled within an 
relative error εrel. 
  
 

NrelTiPred FFrC με, <−  (16) 

 
After finding the equilibrium for a defined tolerable error ε a new time step is calculated until a 
steady state is reached in the contact area. This is usually the case, when an element entering the 
contact area at simulation start has crossed and left it at the trailing edge. 
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Temperature Model 
 
Caused by high contact pressure in the wheel rail contact and consequently high friction power, the 
temperature in the contact zone plays an important role to describe the friction behavior correctly. 
Therefore, this effect is considered in this model. The model used here is adapted from the 
temperature model described in [Sextro (2006)]. The friction power for a single element can be 
calculated by 
 
   =∆ RP  PR vF∆ . (17) 
 
The heat source Hq can be calculated relating the friction power to a partial area 
 
 yxA

A
P

q R
H ∆∆=∆

∆
∆

= , . (18) 

 
Assuming a high Peclet number, Knothe and Liebelt [Knothe and Liebelt (1990)] showed, that the 
three dimensional heat transfer problem can be reduced to a two dimensional problem for a strip in 
x-direction using the approximated heat transfer equation 
 
 

2

2

0 z
T
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∂

∂
=

∂
∂ κ  (19) 

 
with the thermal diffusivity defined as 
 
 

WW

W
W cρ

λ
κ = , (20) 

 
where Wλ denotes the heat conductivity, Wρ the density and Wc the specific heat capacity of the 
wheel [Sextro (2006)]. Assuming a constant heat source, the temperature distribution in x-direction, 
the temperature at time step j can then be calculated using the temperature at the element at time 
step j-1 by 
 
 22

1
2 TTT jj ∆+= − . (21) 

 
The temperature difference T∆ is computed as 
 
 

xq
v

T
W

HWW ∆=∆
λ

ακ
π 0

2  (22) 

 
with Wα as the heat partitioning factor between wheel and rail. For low slippage the factor can be 
assumed to be 0.5, this means heat is equally distributed between wheel and rail. Otherwise it can 
be calculated from the velocities of the contact relative to wheel and rail. For details see [Sextro 
(2006)]. Using this approach, the maximum temperature occurs at the trailing edge due to the 
assumption of constant heat distribution, but in fact the temperature reaches its maximum shortly 
before the trailing edge due to the not-constant heat distribution. However this procedure can be 
used to regard temperature influence because the temperature distribution in the main contact area 
where most of the forces are transmitted is approximated well. 
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In principle, due to the mutual interaction between friction power, temperature and friction 
coefficient, an iterative loop inside the computation of a single time step is necessary. This can be 
skipped, because the temperature and thus the temperature dependent friction coefficient converge 
within the time step simulation. The temperature dependent friction coefficient at time step j+1 is 
assumed to be approximate equal to the temperature dependent friction coefficient at time step j. 
Using this procedure usually a steady state is reached after an element is transported through the 
complete contact area. 
 
Thus the temperature dependent friction coefficient of time step j+1 is calculated using a linear 
relationship between the friction coefficient µ0 and temperature at time step j 
 
 









−=≈+

E

j
jj T

T
1μμμ 01  (23) 

 
where ET defines the slope of the temperature dependency. 
  
 
Results 

The equations above have been implemented in MATLAB to model the rolling contact. The results 
shown in the following are normalized and therefore have qualitative character. This will be done in 
future by comparing the deformations of the elastic layer with the deformation computed by a Finite 
Element model and adapting the spring stiffnesses to minimize the deformation difference. 
Nonetheless the results show that the effects in rolling contact can be modeled plausibly. For the 
simulations, the normal pressure has been calculated according to Hertzian theory. The normalized 
normal pressure distribution 

 
max

*

N

N

p
pp =  (24) 

is shown in Fig. 4. The x* and y* coordinates have been normalized to the ellipsis half axes. 

 
Figure 4 Normal Pressure Distribution 

 
Fig. 5 shows the tangential force in x-direction normalized to the maximal transmittable tangential 
force with 
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The simulation has been performed at pure longitudinal slip s of 0.008. The leading edge is seen 
front right. A zone with sticking friction, behind the leading edge can be identified with a linear 
rising tangential force towards the trailing edge shown in Fig. 5a)  where almost no sliding velocity 
exists, as shown in Fig. 5b). Also a region with sliding friction can be seen towards the trailing edge. 
Here, the shape of the tangential force distribution equals the normal pressure distribution and the 
sliding velocities rise towards the trailing edge. The step in the shown tangential force at the leading 
edge and at the transition from sticking to sliding is caused by the coupling stiffnesses. Qualitatively 
the shape of the tangential force distribution matches well with Kalker’s theory and Finite element 
calculations. 

a) b)  
Figure 5 Tangential Force Distribution and Sliding Velocity 

In Fig. 6 the tangential forces in x- and y-direction for a longitudinal slip s of 0.008 and slip angle α 
of 0.5 degrees are shown. 

a) b)  
Figure 6 Tangential Force Distribution in x- and y-Direction 

Compared to pure longitudinal slip, the total tangential force in x-direction is significantly lower, 
because lateral forces in y-direction occur at this slip angle, which is shown in Fig. 6b). Also the 
area with sliding friction is larger compared to the case with pure longitudinal slip in Fig. 5. 

The friction power for each partial area ∆PR and the temperature difference ∆T relative to the 
surrounding are shown in Fig. 7 a) and b) respectively for combined slip. The friction power 
reaches its maximum just before the trailing edge due to the tangential force and sliding velocity 
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distribution. In the sticking region, the friction power is zero. As described at the temperature model, 
temperature reaches its maximum at the trailing edge. 

a) b)  
Figure 7 Friction Power and Temperature 

 
The computing time for one simulation was 19 seconds on an Intel i7 processor using 2 of 4 cores. 
This is quite low compared to computationally intensive Finite Element models. 

Conclusions 

A model for calculating the tangential forces in the wheel rail contact comprising contact stiffness 
and temperature has been developed. The model is based on the rolling contact model of Sextro 
[Sextro (2006)]; however the point contacts are coupled with each other to model an elastic layer 
which represents the elasticity of wheel and rail. Also, a nonlinear tangential force is applied to the 
coupled massless points, to model contact stiffness as well as sticking and sliding friction. The set 
of equations for describing contact and surrounding area can be reduced to compute only forces and 
displacements inside the contact area which reduces computation time. The simulation is carried out 
in discrete time steps, in which the elastic layer is moved through the contact area and an 
equilibrium is calculated after each time step. Temperature and its influence on the friction 
coefficient are calculated as in the model of Sextro [Sextro (2006)] assuming a high Peclet number 
and constant heat source distribution. This is a satisfying approximation for the exact solution of 
elliptical heat source distribution. 
The simulation produces plausible results for tangential force distribution under pure longitudinal 
and combined slip. Friction power and temperature distribution match qualitatively well compared 
to other modeling methods.  
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