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PREFACE 
 
Dear Colleagues 
 
On behalf of the organising committees, we are delighted to welcome you to the 6th 
International Conference on Computational Methods (ICCM2015) at Auckland, New Zealand. 

The ICCM2015 is an international conference that provides an international forum for the 
exchange of ideas on recent advances in areas related to computational methods, numerical 
modelling & simulation, as well as their applications in engineering and science. It will 
accommodate presentations on a wide range of topics to facilitate inter-disciplinary exchange 
of ideas in science, engineering and related disciplines, and foster various types of academic 
collaborations internationally. All papers accepted for publication in the proceedings have 
been peer reviewed. Papers may also be selected and invited to be developed into a full 
journal paper for publication in special issues of the journals. 

The conference series originated in Singapore in 2004 by Professor GR Liu, followed by 
ICCM2007 in Hiroshima, Japan; ICCM2010 in Zhangjiajie, China; ICCM2012 in Golden 
Coast, Australia; and ICCM2014 in Cambridge, UK. This year, the ICCM2015 conference 
programme covers over 319 oral presentations in 59 technical sessions, including 2 Plenary 
talks, 9 Thematic Plenary talks, and a number of Keynote talks in technical sessions. These 
presentations cover a broad range of topics related to computational mechanics, including 
formulation theory, computational methods and techniques, modelling techniques and 
procedures, materials, deformation processing, materials removal processes, bio-system, bio-
mechanics, processing of new and advanced materials, welding and joining, surface 
engineering and other related processes. 

We would like to express my gratitude to all the members of the Local Organizing Committee, 
International Scientific and Organization Committee, Honorary Chairmen and Co-Chairmen, 
who have provided advices and guidance timely in planning and executing this conference. 
We also would like to use this opportunity to express our gratitude to the Faculty of 
Engineering of the University of Auckland, and to colleagues for their strong support and 
encouragement. Sincere thanks and appreciation go to some 100 international reviewers for 
their prompt review reports on the submitted papers. Our appreciation goes also to all the 
Mini-Symposium Organizers for their efforts and contributions in the organization. 

  

 

G.R. Liu, University of Cincinnati, USA 
Raj Das, University of Auckland, New Zealand 
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Quick modal reanalysis for large modification of structural  

topology based on multiple condensation model 
He Jian-jun, Chen Xiang-zi 

(School of Automobile and Mechanical Engineering, Changsha University of Science and Technology, 

Changsha 410004, China) 

Abstract: The paper focuses on the modal reanalysis for large topological modified structure 

based on the multiple dynamic condensation model. Firstly，basing on multiple dynamic 

condensation model of original structure and topological modified structures, with combining the 

independent mass orthogonalization and Rayleigh-Ritz analysis, the proposed method was 

generated. Finally, two numerical examples were used to show that the presented method can 

provide quite efficient and high quality approximation result for modal reanalysis even when large 

modifications of the structural topology are made.  

Key words: modal reanalysis; large topological modified structure; multiple dynamic 

condensation; independent mass orthogonalization  

1. Introduction 
  In many large-scale and complex structural systems, linear eigenvalue analysis is  
very important and useful for predicting modal response. However, in order to grasp 
the dynamic characteristic of huge structure, we usually directly calculate the 
Eigen-problem by LQ algorithm or subspace method. Therefore, the computational 
cost may be too time consuming. Modal reanalysis [1] provides efficient and quick 
numerical procedures for calculating the eigenvalues and eigenvectors due to 
modifying the multiple properties of the original structure, without having to repeat 
the dynamic equation problem several times. Thus, the aim of reanalysis is to reduce 
lots of computational cost in optimization design. For example, in structural topology 
optimization design with lots of iterations, the direct FEA analysis must be repeated 
for each modification of the design variables. Therefore, the computational cost may 
be too time consuming especially for large structure. 
  However, the modal reanalysis based on multiple dynamic condensation model are 
rarely studied in the corresponding reanalysis literature [2-8]. so in the paper, we focus 
on the structural modal reanalysis for large modifications by using multiple 
condensation model. The aim is to further reduce the global CPU time than the 
general modal reanalysis with the non-condensation model. Thus the proposed 
reanalysis method could be an high-efficiency method for large modifications in 
optimization design.  

As for the large modifications, the computational effort is significantly reduced by 
the proposed approach. The reanalysis procedure is easy to implement and realize. 
Moreover, the approximate eigensolution of modified structure still has high accuracy 
even if the original structure and modified structure are reduced model. Section 2 
briefly introduces the Eigen-equations for modal reanalysis problem based on reduced 
model. Section 3 describes the proposed method and its steps. Section 4 discusses the 
efficiency of the precision and the CPU time of the proposed method by two 
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numerical examples. Section 5 summarizes our conclusions.  

2. modal reanalysis formulations for multiple condensation model 

2.1 Eigenproblem of original structure based on multiple condensation model 
In finite element analysis, the natural vibration of undamped original structures 

with DOF leads to a general algebraic eigenproblem m

                                                   (1) 00000
mimimim ΨMΨK 

where ,  ,  and  are the stiffness matrix, the mass matrix, the ith 

eigenvalue and ith normalized eigenvector of the original structure, respectively.  

0
mK

0
mM

0
i

0
miΨ

By using the dynamic condensation method in literature [9], the three times 
condensation model for the original structure is obtained. Due to the limit of space, 
the reduced process is omitted here. The full iterative process is expressed as the 
literature [9]. 

Through the three time dynamic condensation process, finally, the eigenprobelm of 
reduced model for original structure can be expressed as 

                                  (2) )1(0
11

)1(0
11

)1()1(0
11

)1( )()()(
00

  iii
R

ii
R ΛΨMΨK

2.2 Eigenproblem of reduced model for topologically modified structure with added 
DOF 
Similarly, the vibration eigenproblem of the complete model for topologically 

modified structure with added  DOF is expressed as n

                       inmiinm ΨMΨK                               (3) 

where and  are the stiffness and mass matrix of the topologically  

modified structure, respectively; and the ith corresponding eigenpair are denoted as 

nmK nmM

i and .     iΨ

  Basing the dynamic condensation method and its implementation for topologically 

modified structure, similarly, the stiffness matrix and mass matrix of 

topologically modified structure could be obtained as the original structure. 
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    (4) 

3. Modal reanalysis of the multiple condensation model 

The proposed modal reanalysis method is similar to the method in the reference 
[10]. Due to the limit of space, the complete modal reanalysis process is omitted here. 

4. Numerical examples 
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For the purpose of validation verifications, the eigenvalues of the large 
topologically modified structure are computed using the direct method (LQ algorithm) 
and the proposed approximate reanalysis method, respectively. Define the relative 
error of the eigenvalues by using the criterion: 

                            %100)/|(|  eieiairee                     (5) 

where the exact eigenvalue ei is directly calculated by using equation (3); basing on 

the multiple condensation model in equation (4), and the approximate eigenvalue ai is 

computed by using the approximate modal reanalysis method from the literature [10].  
Example 1 Considering a square spatial prismatic truss structure as shown in Fig.1, 
with its parameters given by: elasticity modulus is E=1.0×1011Pa, cross-section area 

of each rod is A=0.0025m2, mass density is  =8.90×103 kg/m3. Considering large 

topological modification by adding 20 new nodes and 65 members as shown in Fig.2. 
The four lower-order eigenvalues, which resulted from those three methods, are 
shown in the Table 1.  

                                 

 Figure.1. Initial design of spatial truss structure   Figure. 2.  Topologically modified structure 

Table 1.  The comparisons of the four lower-order eigenvalues for large modified structure 

 
Mode The direct method Literature 

[11]'s method

Ree 

(%) 

The proposed method Ree (%) 

1 1.15E+4 1.41E+4 22.82 1.15E+4 3.27E-3 

2 2.27E+4 3.95E+4 73.86 2.27E+4 1.04E-1 

3 9.57E+4 9.73E+4 1.72 9.64E+4 7.39E-1 

4 1.28E+6 9.31E+5 625.70 1.29E+6 6.49E-1 

  Here, the comparisons of computational cost are as follow: the average 
computational time of exact computation by using the direct method is 0.1508 second; 
and the average computational time by using the proposed reanalysis method is 
0.009514 second. So the saving of computational time is nearly 93.7 percentages.  
Example 2: Considering an original rectangle bending plate structure, shown in Fig.3, 
with its material and structural parameters given by: elasticity modulus is 

E=2.1×1011Pa, the thickness of plate is t=0.01m, mass density is  =7.80×103 kg/m3, 
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the Poisson’s ratio is equal to 0.3, the length and width of plate are 1m and 0.3m, 
respectively. The original plate is fixed at left, right boundary and discretized into 44 
nodes and 30 square plate elements. Considering large topological modifications as 
shown in Fig.4. The modified plate structure has 76 nodes and 54 elements, with its 
material parameters given as follow: elasticity modulus is E=1.0×1011Pa, mass density 

is  =8.90×103 kg/m3, the Poisson’s ratio is 0.3   . The sizes of the modified 

structure are transformed to 1.2m×0.84m.  

        
Figure.3. The original bending plate structure              Figure.4. The modified structure 

  The six lower-order eigenvalues, which resulted from those three methods, are 
shown in the Table 2.  

Table 2.  The comparisons of the six lower-order eigenvalues for large modified structure 

Mode The direct method Literature 

[11]'s method

Ree 

(%) 

The proposed method Ree (%) 

1 2.86E+4 3.23E+4 12.8 2.86E+4 4.86E-2 

2 8.35E+4 8.49E+4 1.64 8.40E+4 4.70E-1 

3 1.20E+5 1.52E+5 25.89 1.23E+5 1.83 

4 1.61E+5 2.05E+5 27.22 1.66E+5 3.33 

5 3.00E+5 4.76E+5 59.21 3.10E+5 3.87 

6 4.63E+5 9.08E+5 96.11 4.81E+5 3.94 

 Here, the comparisons of computational cost are as follow: the average 
computational time of exact computation by using the direct method is 0.1630 second; 
and the average computational time by using the proposed reanalysis method is 
0.01357 second. So the saving of computational time is nearly 91.7 percentages.  

5. Conclusion 

  For large changes in structural topological and parameter modifications with added 
DOF, an improved modal reanalysis method for the finite element system based on 
multiple condensation model of the original structure and the modified structure is 
proposed. By comparing to the method from literature [9], the presented method has 
higher accuracy and efficiency. From the approximate results of numerical examples 
and the comparisons of average computational cost, the proposed method not only has 
high approximation, but also can reduce vast amount of computational efforts than the 
direct calculation method, so it is much efficient than the direct method. In spite of the 
complete model or reduced model, the proposed modal method can be used with a 
general reanalysis for multiple condensation model when large changes of structure 
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topology and parameters are made, and it may be one of the highest efficient and 
exact modal reanalysis methods for large topologically modified structure so far. 
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Abstract 
Based on in-situ observed deformation data in underground powerhouse constructions and the 
response surface approach, back analysis procedure for estimating geotechnical parameters of rock 
mass is proposed. The relationship between unknown geotechnical parameters of rock mass and 
deformations of some observing point is approached by the response surface procedure. The 
excavation process is divided into 13 operation steps for simulation of the stress redistribution due 
to excavation. The variations of the stress sate and deformation field in the rock mass due to the 
excavation is simulated through a finite element analysis. By defining objective function for back 
analysis procedure to make the difference between computed deformations and observed ones 
minimize, the inverse problem of parameter identification is changed into optimization problem. By 
using optimization algorithm, the stress ratio and elastic modulus are determined. The practical 
application results show that the forecasted deformations by finite element method agree well with 
observed ones in-situ. The effectiveness of proposed back analysis procedure for estimating 
geotechnical parameters of rock mass is validated.  
Keywords: back analysis procedure, geotechnical parameters of rock mass, response surface 
approach, in-situ observed deformation data, underground powerhouse construction, stress ratio, 
elastic modulus. 

Introduction 

Rock layer is composed of rock block, joint, fracture, fault and porosity. In ideal condition, rock at 
depth is only subjected to stress resulting from the weight of the overlying strata, and the stress ratio, 
ratio between horizontal and vertical stresses, is only related to Poisson ratio. Because of the 
influence of structural movement of the earth's crust, there exists drape, fracture and dislocation in 
rock mass, and the initial stress field in rock mass is changed. The stress ratio is not satisfied to 
classical elastic theory. In some sites, the horizontal stress is larger than vertical stress. So, how to 
estimate stress field in rock mass has increase intensive interests both from the point of engineering 
application and from scientific investigation. Cai developed a novel method to back-calculate rock 
mass strength parameters from acoustic emission monitoring data in combination with FEM stress 
analysis[Cai M., Morioka H., Kaiser P.K., 2007]. Loui examined the existing roadway support 
systems in seven underground manganese mines through numerical modelling employing 
theoretically derived in situ stresses to see whether such an approach is reasonable in a practical 
mining situation[Loui J.P., Jhanwar J.C., Sheorey P.R., 2007]. Kruschwitz evaluated the successful 
and reliable application of the complex resistivity method for the detection, specification and 
monitoring of the excavation damaged zone[Kruschwitz S., Yaramanci U., 2004]. Martino 
conducted extensive rock mechanics research, including work to understand the character and 
extent of excavation damage. Martino pointed out that damage exists around underground openings 
and that the damage develops from the energy imparted to the rock by the excavation method and 
by redistribution of the in situ stress field around the excavated openings[Martino J.B., Chandler 
N.A.,2004]. Kontogianni thought this induced deformation is not due to effects such as nearby 
excavations, changes in the hydrological conditions, etc., and to tertiary creep; its distribution along 
the tunnel axis seems to depend on the potential of host sections to accommodate additional stresses 
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from neighboring deformation source sections, and it may lead to a progressive, domino-type 
failure[Kontogianni V.A., Stiros S.C.,2004]. Ishida pointed out that a conventional elastic theory 
predicts that the maximum compression occurs just behind a stress relaxed region, and gradually 
decreases as a function of the distance from the chamber wall; thus, this theory cannot be applied to 
the stress redistribution of a heterogeneous jointed rock mass [Ishida T., Uchita Y., 2000].Hatzor 
performed some numerical stress analysis and revealed that in the case of very large span openings, 
tensile fracture of intact rock may be responsible for instabilities, which may lead to global failure 
[Hatzor Y.H., Talesnick M., Tsesarsky M., 2002]. Farias used numerical analyses with the finite 
element method to simulate the full 3-D stages that characterize an NATM tunnel excavation. Some 
relevant techniques for settlement control were investigated and their relative importance was state 
based on the numerical results [Farias M. M.de,  Moraes Junior A.H., Assis A.P. de, 2004].Based 
on field investigations, Sapigni used two numerical models (FEM and DEM codes) to investigate 
the overall stability of the excavation and to predict the expected deformation caused by each 
excavation phase. The measurements of actual deformations, by multi-base extensometer data, are 
reasonably close to those predicted through the numerical approaches[Sapigni M., Barbera G.La, 
Ghirotti M., 2003].Cai used a coupled numerical method to study AE at the Kannagawa 
underground powerhouse cavern in Japan. Two codes, Fast Lagrangian Analysis of Continua, a 
finite difference code and Particle Flow Code, a distinct element code, are coupled[Cai M., Kaiser 
P.K., Morioka H., Minami M., 2007]. The aim of the paper is to propose a back analysis procedure 
for estimating geotechnical parameters of rock mass, and validate the effectiveness of proposed 
parameter estimation procedure through comparing field observed deformations with those 
predicted by numerical approaches.  

Numerical simulations for excavation process of underground powerhouse 

The Baishan hydropower station was constructed on the second Songhua River in the Jilin Province, 
northeast China, between 1975 and 1983. The concrete gravity arch dam is 149.5m high, and 676.5 
m long, as shown in Figure 1. The power plant has an installed capacity of 1700MW. In order to 
increase the generating ability of the Baishan hydropower station, the pumped storage power station 
with an output of 300MW was constructed. The underground powerhouse of the pumped storage 
power station is located in the left bank of river. The underground powerhouses of the first and the 
second periods of power stations are located in the right and left banks of river, respectively, as 
shown in Figure 1. 
 

 
 

Figure 1. Baishan Hydropower station. 
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The powerhouse cavern is located approximately 120m below ground surface, as shown in Figure 2. 
The underground cavern’s dimensions are 24.5m wide, 50m high and 69m long, as shown in Figure 
3. It was excavated by dividing 6 operation layers. In order to monitor the rock displacement and 
rock stress during excavation period, the rock displacement and the stress of rock anchor were 
measured.  Continuous displacement monitoring on the cavern support helped designers to evaluate 
the support appropriateness. The finite element method is well suited to solving problems involving 
heterogeneous or non-linear material properties, since each element explicitly models the response 
of its contained material. However, finite elements are not well suited to modelling infinite 
boundaries, such as occur in underground excavation problems. One technique for handling infinite 
boundaries is to discretize beyond the zone of influence of the excavation and to apply appropriate 
boundary conditions to the outer edges. Another approach has been to develop elements for which 
one edge extends to infinity i.e. so-called 'infinity' finite elements. In practice, efficient pre- and 
post-processors allow the user to perform parametric analyses and assess the influence of 
approximated far-field boundary conditions. 

 
Figure 2. FEM model of underground powerhouse and rock mass 

 
Based on elastic theory, classical formula for calculating initial ground stresses in underground rock 
mass can be expressed as follows: 

v ghσ ρ=                                                         (1) 

h vkσ σ=                                                          (2) 

1
k

µ
µ

=
−

                                                         (3) 

Where σv is vertical stress, σh is horizontal stress, µ Poisson ratio, h is depth, k is stress ratio. Most 
in-situ observation results reveal that the horizontal stress calculated by above equations is not 
reasonable.  

During the construction of the underground powerhouse of the first period (on the right bank of 
river ) of power station, geotechnical parameters in underground powerhouse on right bank of river 
were measured in-situ, and listed in Table 1. These data supply references for estimating 
geotechnical parameters of rock mass in underground powerhouse on left bank of river. 
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Table 1: Geotechnical parameters measured in-situ in underground powerhouse on right 
bank of river 

Parameters E/GPa µ σv/MPa σh/MPa k 
No.1 54.1 0.19 14.60 14.06 0.96 
No.2 57.0 0.13 7.47 9.45 1.26 
No.3 62.0 0.13 7.52 11.35 1.50 

 
In order to simulate the excavation process of cavern, the initial horizontal stress in rock mass is 
supposed to linear distribution with depth, as shown in Figure2. On the left boundary of FEM model, 
the horizontal load is defined as: 

hl e lk gzσ ρ=                                                      (4) 
Where zl is the depth from ground surface corresponding to left boundary of FEM model. ke is the 
identified stress ratio and will be determined by back analysis procedure. On the right boundary of 
FEM model, the horizontal load is defined as: 

hr e rk gzσ ρ=                                                    (5) 
Where zr is the depth from ground surface corresponding to right boundary of FEM model. 
 

 
 

Figure 3. Displacement measuring profile. 
 
The excavation process is divided into six operation steps for simulation of the stress and 
deformation redistributions due to excavation, as shown in Figure 5. The variations due to the 
excavation of the stress sate and deformation field in the rock mass can be evaluated through a 
finite element analysis.  
In-situ monitoring during the excavation and at longer intervals after the underground cavern is 
completed should be regarded as an integral part of the design not only for checking the structural 
safety and the applied design model but also for verifying the basic conception of the response of 
the rock mass to tunnelling and the effectiveness of the structural support. In order to monitor the 
displacements of powerhouse caver during excavation process, the three sliding micrometers were 
installed as shown in Figure 3. Figure 4 shows sequences for cavern excavation. Table 2 lists 
scheduling for cavern excavation operation. ST denotes starting time. ET denotes ending time. 
Subareas of cavern excavation for FEM simulation is depicted in Figure 5.  
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Figure 4. Sequences for cavern excavation 

 
Table 2. Scheduling for cavern excavation operation 

No. I II III IV V VI 
ST 
ET 

03-04-01 
03-08-16 

13-08-17 
13-11-26 

03-11-27
03-12-23

03-12-28
04-01-13

04-01-14
04-02-11

04-02-14 
04-03-11 

 
 

 
 

Figure 5. Subareas of cavern excavation for FEM simulation 
According to Figure 4 and Table 2, subregions of cavern excavation for FEM simulation are divided 
into 13 parts, as shown in Figure5. 

Response surface procedures for back analysis of geotechnical parameters 

Based on the response surface method, the relationship between unknown geotechnical parameters 
of rock mass and displacement of some observing point is approached as:   

III 
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Where sk( x ) is displacement of some observing point k, a, bi ,and ci are unknown coefficients, x is 
unknown geotechnical parameter vector after dimensionless procedure. 

1 2{ , } { , }T Tx x x E k= =                                      （7） 

I

E
E

E
=

                                                      （8） 

I

k
k

k
=

                                                       （9） 
Where EI and kI denote initial evaluating values of geotechnical parameter according to prior to 
information induced from observed data in-situ in underground powerhouse of right bank of dam, 
EI=40MPa, kI=1.0.  

Taking the first observing point as an example, the right items of following equations can be 
calculated using finite element method under the given parameter combinations . 

1
1 ( ) ( , )s x s E k=                                            （10） 
2
1 ( ) ( , )s x s E E k= + ∆                                   （11） 
3
1 ( ) ( , )s x s E E k= −∆                                   （12） 
4
1 ( ) ( , )s x s E k k= + ∆                                    （13） 
5
1 ( ) ( , )s x s E k k= −∆                                    （14） 

Where ∆E is increment of elastic modulus after dimensionless, ∆E=0.2. ∆k is increment of stress 
ratio, ∆k =0.2. 1

is denotes computed displacement of the first observing point under i-the parameter 
combination, which is computed by using finite element method. There exist 5 unknown 
coefficients and 5 equations. So, the 5 unknown coefficients in response surface functions about 
first observing point are determined by solving linear equation set with Excel software. The 
unknown coefficients in response surface functions for other observing point may be deduced by 
analogy. There are 3 observing points located on the surface of the cavern, as shown in Figure 3. 
The 8 excavation steps for every observing point are simulated using FEM. So, total 24 series of 
response surface functions will be determined. And 120 coefficients of response surface function 
are calculated. 

Estimating Geotechnical parameters of rock mass using optimization algorithm 

The objective function of estimating geotechnical parameters of rock mass is defined as Root Mean 
Square（RMS）: 

*
2

1

1min ( ( ) )
*

k N M
m

k k
k

J s x s
N M

=

=

= −∑
                             （15） 

Where J is objective function, m
ks is the observed displacement for the-k observing point, N is the 

number of observing point, k=3, M is the observing time for every point, M=8. In order to estimate 
geotechnical parameter vector x, some methods based on the gradient present convergence rates of 
first order are commonly used. Newton’s methods guarantee convergence rates of second order; 
however, they present the inconvenience of calculating the Hessian and its inverse. The Gauss-
Newton method is used as a way to achieve convergence rates closed to second order with lower 
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computation efforts when compared to Newton’s methods. According to observed deformations 
induced from cavern excavation and response surface functions, the geotechnical parameters of 
rock mass are identified, as listed in Table 3.  
 

Table 3. Identified geotechnical parameters of rock mass 
Geotechnical parameters  E/GPa k 
Initial estimated value  40.0 1.0 
Estimated value by back analysis 56.0 1.2 

 
The deformations of different observing point induced from cavern excavation are further simulated 
by using identified geotechnical parameters of rock mass. Comparisons between observed and 
forecasted deformations in different excavation step for 3 observing point are shown in Figure 6, 7 
and 8.  
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Figure 6. Comparison between observed and forecasted deformations in different excavation 
step for CBX-1 
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Figure 7. Comparison between observed deformations and forecasted ones in different 
excavation step for CBX-3 
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Figure 8. Comparison between observed and forecasted deformations in different excavation 
step for CBX-5 

Conclusions 

The back analysis procedure for estimating geotechnical parameters in rock mass is presented to 
demonstrate how the response surface method, finite element method and optimization algorithm 
should be used as the tools to understand ground stress field and mechanical parameters in rock 
mass. The observed deformation data of cavern during excavation process supply foundations for 
solving inverse problem of parameter identification. The effectiveness of proposed inversion 
procedure is validated by comparing the difference between predicted deformations and observed 
values in situ. 
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Abstract 

In this work, a local kernel based numerical scheme is constructed for numerical 
solution of sine-Gordon equation in circular domain. The global kernel method resulted 
the dense differentiation matrices and hence difficult to apply for problem with large 
amount of data points. The present numerical scheme is local with sparse 
differentiation matrices, consequently capable of removing the deficiency of ill-
conditioning in the global kernel method.  

  
Keywords: Local kernel based scheme; two-dimensional sine-Gordon equation 

1. Introduction 

The kernels (RBFs) was first used for solving partial differential equations by Kansa in 
the year 1990 [Kansa (1990), fluid dynamics-I; Kansa (1990), fluid dynamics-II]. In 
this original work the fluid mechanics problems were solved by approximating the 
derivatives by the derivative of MQ kernel functions directly. The differentiation 
matrices obtained in this method are unsymmetric as well as dense. The dense linear 
system in the global kernel method solved by Gaussian elimination methods needed 

)( 3NO  floating point operations. Due to the high resolution for large amount of data 
points it becomes difficult to solve the problem with global kernel based method. Many 
robust numerical approximation methods have been developed to overcome this 
difficulty some of them are the transforms based methods and the multi-pole 
approaches [Greengard  and Strain  (1991); Cherrie et al. (2002); Gumerov and 
Duraiswami (2007)], the domain decomposition methods [Beatson et al. (2001); Kansa 
and Hon (2000); Li,  and Hon (2004)], the partition of unity methods [Wendland 
(2002)], the greedy algorithms [Hon  et al. (2003); Schaback and Wendland (2000); 
Ling and Schaback (2008)], the multilevel methods [Fasshauer  (1999)], and the use of 
locally supported kernel functions [Wendland  (1995); Floater  and Iske (1996)]. An 
other alternative approach to overcome this difficulty was developed by Tolstykh 
[Tolstykh  (2000)], here local kernel interpolants in small domains centered around 
each node is used to form differentiation weights. This idea has been used to construct 
various types of local kernel based approximate methods and has been applied 
successfully to a wide range of problems. These include convection-diffusion 
[Chandhini and Sanyasiraju (2007); Stevens et al (2009); Sarler and Vertnik (2006); 
Sarra (2012)], incompressible NavierStokes [Chinchapatnam et al (2009); Shan et al 
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(2008); Shu et al (2003)], elliptic equations [Tolstykh and Shirobokov (2003); Wright 
and Fornberg (2006)] and [Wong et al (1999); Xiao and McCarthy (2003); Brown et al 
(2005)]. In the present work we used the same idea to construct local kernel based 
numerical scheme for simulating two-dimensional sine-Gordon equation. 
 
 The sine-Gordon equation in two space dimension is 
 

,),(and0where,sin),(   ssss                                            (1)    

  
with associated initial conditions  
 

),,()0,,(),,()0,,( 21   hshs                                                                        (2)                                          
 
and with boundary condition 
 

),,,(  s                                                                                                                  (3) 
 
In science and engineering we always need some robust numerical scheme to solve 
soliton type equations for large scaled data points in irregular domain for example the 
sine-Gordon type solitons. Many robust numerical scheme have been developed by 
many researchers over the years to approximate the sine-Gordon equation. For example 
the finite difference scheme [Guo et al (1986)], The leapfrog scheme [Christiansen and 
Lomdahl (1981)], the finite-elements approach [Argyris et al (1991)]. A predictor-
corrector scheme [Khaliq, A. Q. M. et al. (2000)], and a split cosine scheme [Sheng, Q. 
et al. (2005)]. Bratsos [Bratsos (2007)] used a three-time level fourth-order explicit 
finite-difference scheme for solving sine-Gordon equation. In this work we used local 
kernel based numerical scheme to approximate the solution of 2d sine-Gordon 
equation. 
 
2. Description of the method 

 

In multivariate scattered data interpolation, we always need to recover an unknown 
function RRs d :  from a given set of N function values 
  .)(),...,(),( 21 Rsss N  Where the scattered centers N ,...,, 21  and dR is 
arbitrary shaped domain and the centers can be chosen anywhere in the domain. In the 
local kernel based approximation method, at each center i , the local interpolant 
takes the form 

      ,, 



ij

jiji as


                                                                 (4)             
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where ],...,[ 1 n

i aaa  is a vector of expansion coefficients, R:  is a radial 

kernel defined by    
jj r ,  with jjr    and  j  is a local domain 

corresponding to center i  contains Nn   centers. The corresponding N  number of  
nn linear systems are given as, 

 
,,...,2,1, Nias iii                                                                                                 (5)                                                                                                            

 
Where the entries of the matrix i  are    ,,, i

i

jk jk  the matrix i   is 

called the interpolation matrix, and each system have to be solved for the expansion 
coefficients. Now to approximate the differential operator  ,),( Ls  we have 

 ,)(),( 



ij

jiji LaLs


                                                                                  (6)                       

The expression in (6) may be given in matrix form, 

,),( ii

i aLs                            (7)
     

Where ia  is the 1n vector of expansion coefficients, and i  is the  n1  vector with 
entries 
 

 ji

i L   , ij  .                       (8)

              
To eliminate the expansion coefficients, we have from equation (5) 
 

,)(
1 iii sa


                                                                                            (9)
                       
we substitute the values of  ia  from (9) in (7) to get,  
 

,)(),(
1 iiiii

i ssLs  


                    (10)  
where, 

,)(
1

 iii                         (11)                            

is the weight corresponding to center i  . Hence for all centers locations, we have 

 sLs ,                                                                                                                (12)
                      

where,    is NN   sparse differentiation matrix, each row of the matrix   

contains n  non-zeros elements. After spatial local RBF approximation, we obtained the 
following system of ODEs 
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                                   (13)

            

Time integration can be carried out using any ODE solver like ode15s, ode113, ode45 
etc from Matlab. In general, ode45 is the best function to apply as a first try for most 
problems. A good ODE solver will automatically select a reasonable time step δτ and 
detect stiffness of the ODE system. For this ODE computation we have used Runge-
Kutta method of order four. 

3. Stability of the local meshless numerical scheme: 

In the present local meshless method of lines our numerical scheme is given by 
 

, ss                                   (14)                            
 
here the time-dependent PDE is transformed into a system of ODEs in time. The 
method of lines refers to the idea of solving the coupled system of ODEs by a finite 
difference method in   (e.g. Runge-Kutta, etc.) The numerical stability of the method 
of lines is investigated by a rule of thumb. The method of lines is stable if the 

eigenvalues of the (linearized) spatial discretization operator, scaled by   , lie in the 

stability region of the time-discretization operator [Trefethen and Bau (1997)]. The 
stability region is a part of a complex plane consisting of those eigenvalues for which 
the technique produces a bounded solution. In the present meshless method of lines our 
numerical scheme is given in (13). We can investigate the stable and unstable 
eigenvalue spectrum for the given model by computing the eigenvalues of the matrix 

,  scaled by . 
 
4. Choosing a good value of shape parameter: 

 

A variety of kernel functions are available in the literature. In our computation we used 

the multiquadrics kernel fuctions, 221)( rr   . As usual these RBFs contain a 
shape parameter and the solution accuracy greatly depends on this parameter. There 
exist some strategies for the optimization of the shape parameter [Hardy  (1971); 
Franke  (1982); Carlson and Foley (1991); Foley  (1994); Rippa (1999); Trahan and 
Wyatt (2003); Fasshauer  and Zhang (2007); Scheuerer  (2011)]. A condition number 
may be used to quantify the sensitivity to perturbations of a linear system, and to 
estimate the accuracy of a computed solution. The conditioning results require that in 
order for the system matrix to be well conditioned that the shape parameter and 
minimum separation distance be large. Obviously, both situations cannot occur at the 
same time. This observation has been referred to as the uncertainty principle [Schaback 
(1995)]. Incorporating this idea the smallest errors occur when the condition number v  

of the system matrix is approximately kept in the range 1513 1010  v in our 
computations. The system matrix is decomposed as A, E, B = )( isvd  . Here svd is the 
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singular value decomposition of the interpolation matrix i . A, B are nn orthogonal 
matrices and E is nn  diagonal matrix contains the n  singular values of i , and  

  )min()max(1
EEv ii 

  is the condition number of the matrix i . When an 

acceptable value of shape parameter is returned by the above algorithm, then the svd is 

used to compute   TTi ABEAEB 111 )( 
 (see [Trefethen and Bau (1997)]). Note 

that for orthogonal matrices the inverse of the matrix is equal to its transpose. 
Consequently, we can compute the weights i  in (11). 

5. Application of the method 

In this section we apply the method described above to solve the two-dimensional sine-
Gordon equation. We considered various types of initial solutions in the form of 
circular, ring solitons, interaction of two and four circular ring solitons. The two-
dimensional sine-Gordon equation has been transformed into a system of two partial 
differential equations given by 
 

,ps  ,0,sin),(   sssp  

 
with the boundary condition as ,0 qs  and ,0 qp and with the initial 
conditions 

),,()0,,(),,()0,,( 21  hphs  respectively and where q  is a unit normal 
vector. 
 

5.1. Circular solitons 

We apply the proposed method for the case when 1),(  , the initial solution is 
taken as circular solitons [Argyris et al (1991)] given by 
 

],3exp[tan4),( 221
1   h                                                      (16)

           
,0),(2 h                            (17)                      

 
the problem is solved in the circular domain of radius r = 8 with N = 3000 uniformly 
distributed interpolation nodes. We select 200n  points in each local domain i  

corresponding to each node  Ni ,...,3,2,1 .The time integration is carried out with 
Runge-Kutta method of order 4 with time step 005.0t . The results are obtained 
by the present numerical method in terms of sin(s/2), where s is the approximate 
solution of the given model obtained with present local method. The obtained results at 
different times are shown in Figure 1. 
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Figure 1: Circular soliton: approximate solution in the form of sin(s/2) at τ = 0, 

5.6, 8.5, and 11.2, in the domain Ω with radius r = 8, N = 3000. 

 
 5.2. Two solitons collision 
Here we consider the interaction of two expanding solitons for the choice 1),(   
and with the initial solutions 





2

1
1 ),(),(

i
ifh  , 




2

1
2 ),(),(

i
igh                    (18) 

],436.0))7()3(4(exp[tan4),( 221   if                                              (19)                    
and 

].436.0))7()3(4([sec13.4),( 22   hg i                                             (20)                    
 
We select 5000N  number of uniformly distributed interpolation points in the 
circular domain   of radius 25r . We solved the problem without using the 
symmetry features that was used in the earlier work [Argyris et al (1991), Sheng, Q.et 
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al. (2005); Dehghan, M. and Shokri, Ali. (2008)] for simulating the collision of two 
circular solitons. We take the interpolation points in the whole computation domain to 
demonstrate the robustness of local radial kernel method. This demonstrates the 
capability and efficiency of the present method for solving large scale problem in 
circular domain. The results of the present method are shown in Figure 2. 
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Figure 2: Two solitons collision: the function sin(s/2), at t = 0, 4, 8 and 10, in the 

domain Ω with radius r = 25, N = 5000. 
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5.3. Four expanding solitons collision 

The collision of four expanding circular solitons are considered for the choice 
1),(  , and with the initial solutions 





4

1
1 ),(),(

i
ifh  , 
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2 ),(),(

i
igh                                                        (21)                                  

 

],436.0))7()7(4(exp[tan4),( 221   if                                           (22)                     
and 

].436.0))7()7(4([cosh13.4),( 22  ig                                            (23)                    
 
This problem is solved in the circular domain of radius 25r  with 5000N  
uniformly distributed interpolation points. Again we are not using the symmetry 
features used in the earlier work [Argyris et al (1991), Sheng, Q. et al. (2005); 
Dehghan, M. and Shokri, Ali. (2008)]. The evolution of the four expanding solitons in 
times are shown in Figure 3.  
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Figure 3: Four expanding solitons collision: the function sin(s/2), at t = 0, 4, 8 and 

10, in the domain Ω with radius r = 25, and N = 5000. 
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6. Conclusions 

In this work we have constructed local kernel based numerical scheme for simulating 
the two dimensional sine-Gordon equation. As contrary to the global based kernel 
based methods [Dehghan, M. and Shokri, Ali. (2008)], the present local scheme 
performed efficiently for large data points in complex shaped domain. The present local 
method may be used to similar types of time-dependent partial differential equations in 
irregular shaped domain. 
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Abstract 
Staking plastic is a new technology that used infrared light as the energy sources in order to 
assembly the heated plastic parts. In this work, the proposed method coupling between Finite 
Element Method (FEM), Response Surface Method, and Genetic Algorithm (GA) is employed to 
simulate and optimize the staking plastic process. An automotive part, namely Door Trim with 
polypropylene (PP) material is implemented by using the developed technology. The effects of 
three key process parameters, such as heating time, cooling time, and air flow rate on the 
mechanical behavior of the joint has been investigated. The simulation procedure based on 
DEFORM-3D Multi-operation is conducted to integrate sub-process and obtain the numerical 
results. The optimum values, including heating time, cooling time, and air flow rate are 14 second, 
14 second, and 60 (ft3/h), respectively. The optimizing results indicated that heating time is more 
contributed to the tensile force, following by cooling time and air flow rate. The correlation 
between simulation and experimental results indicates the effectiveness of the proposed method. 

Keywords: Staking plastic, Door Trim, DEFORM-3D-based Multi-operation, Tensile strength, 
Genetic algorithm 

Introduction 

 
The infrared staking process was developed by EXTOL by using halogen lighting in order to 

procedure the joint between different plastic part [Extolinc]. In comparison with the conventional 
staking technology using heat, hot air, and ultrasonic source, this process provides some 
advantages, such as higher energy efficiency, product quality, productivity, and better mechanical 
properties. The process takes place in four basic phases that can be listed as follows (Fig.1): 

 

Clamping: The infrared staking 
module is positioned over the 
molded stud or boss to ensure 
perfect contact with the plastic part. 
The concentrator directly makes 
contact with the upper part, 
clamping it to the lower part and 
holding them in the proper position. 
As an added benefit, due to the ideal 
clamping at the stake points, 
secondary part clamps are not 
necessary.  Fig.1 Infrared staking process [Extolinc] 

Heating: The energy source used in the infrared staking process is a 12-Volt, 100-Watt, 
technical-grade of a halogen lamp. The reflector directly transfers the infrared energy from the lamp 
into a stud around the punch. This column of energy travels downward until it is focused on the full 
perimeter of the boss, heating it from top to bottom. To make this possible, the surface geometry of 
both the reflector and the concentrator creates a focal area that is centered on the boss. Ideally, the 
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stud can be heated as quickly and as evenly as possible. 
Staking & Cooling: At the end of the heating cycle, the lamp is switched off and the low-impact 

air cylinder with integrated staking punch is employed which forms over the semi-molten stud. The 
gold plating and the perfect contact area between the punch and formed part can reduce the 
temperature of the molten plastic quickly. The cooling air will be flowing into the chamber in order 
to assist in regulating the punch temperature which prevents the plastic from sticking to it. 

Punch Retracts: At the end of the punch time, the punch retracts. The module is retracted from the 
components, and the cycle is completed. The sub-assembly can be immediately handled. At this point, it 
is important that the plastic has re-solidified to the point where it can maintain its shape and structure. 

   

 
Fig.2 Machine and completed product; a-

Developed machine and dies, b-assembled door 
trim and completed joint 

In this project, we attempt to develop new 
machine, which used to assemble the different 
plastic components of Door Trim. The joint is 
generated based on PP material and an infrared 
staking process. The machine, dies, assembled 
Door Trim, and completed product are shown in 
Fig.2. Recently, this technology is still a lack of 
the publications. In addition, identification of 
optimal values and understanding the effects of 
process parameters on the mechanical behavior 
after process are necessary. To solve this problem, 
this paper proposed an approach to simulate and 
optimize whole staking process. The key sub-
process, including heating, forming, and cooling is 
integrated into one simulation model. The 
developed finite element (FE) model considering 
the data history based on DEFORM-3D Multi 
operation [Fluhrer, J (2005)] was adopted to 
conduct the serial numerical experiments. The 
coupling RSM using Box-Behnken experimental 
designs [C.F. Jeff et al. (200)] and GA is used to 
obtain the optimal values. Finally, the numerical 
results are compared with physical experiment to 
validate the effectiveness of the proposed method. 

 
The proposed approach 
 

The effected parameters on the tensile strength are listed in Fig. 3. In this work, we only 
consider process parameters due to the fixed of forming tool, machine, and material properties. 

 
Fig.3 The effected parameters on the tensile strength 
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To investigate the material behavior, the sub-process has to integrate into one simulation model, in 
which the elements have the connection (Fig.4). In other words, the results of preceding process are 
inputs for the next step. The material state is changed by every step in the production process. The 
behavior of the final part will depend on the results of each step. After sub-process, the material 
properties and the stress, and the strain state have changed. Therefore the properties of the joints have to 
be included in a parameterized way. Transferring data between the simulation processes includes 
geometric, stress, and strain history [M. Oudjene et al. (2009)], [F. Lambiase et al. (2013)]. 

Multi-operation in DEFORM-3D was employed to simulate process chains. In the first stage, the 
simulation model is developed with material model, friction, and heat transfer conditions. After that, the 
forming process is conducted using boundary conditions. Consequently, these results are transferred to a 
cooling process considering two kinds of heat transfer, including conduction and convection. Finally, 
the tensile testing is conducted with the results of the previous stage. 

 
Fig.4 The approach for simulations of the whole process 

 
Governing equations of forming simulation 
Material model 

 

A material model includes physical and 
thermal properties of the work piece and 
tool. Due to the fact that metal cutting and 
forming operations perform in high 
temperature and high strain rates, 
mechanical properties of work piece 
material are exactly known. Material 
properties of plastic-PP and die-S45C are 
shown in Table 1 Fig.5 Geometric dimensions of die 

 
Table 1 Material property of PP and S45C [Matweb] 

Parameters PP S45C 
Density (g/mm

3
) 0.892 x10

-3
 7.85 x10

-3
 

Young modulus (MPa)  1300 250x103 

Poison ratio 0.45 0.29 
Thermal conductivity(W/mm °C) 0.16x10

-3
 49.8 

Specific heat (J/g °C) 2 0.486 
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To save the simulation time and increase the accuracy, the tooling was modeled as perfectly 
rigid, while the work piece was considered as Elasto-plastic properties with isotropic hardening law 
and following Vonmises Stress yield criterion. FE model of die and PP work piece are consist of 
tetrahedral elements with four nodes. Flow stress curves of work piece materials must be used 
especially in the forming analysis. Flow stress curves of PP material change as a function strain, 
strain rate, and temperature is shown in Fig.6 at the strain 5min-1, 0.5min-1, and 0.05min-1. This law 
was selected due to its ability to follow the true behavior of a material [YUANXIN ZHOU et al 
(2002)]: 

                                              ( , , )Tσ ε ε= 

                                                                     (1)  

According to above Eq, σ is flow stress, ε and
.
ε , and T are effective plastic strain, effective strain 

rate, and temperature, respectively. 
 

 
Fig.6 Stress-strain curves of polypropylene; (a) at the 0.05 min-1, (b)at the 5 min-1; (c) at the 

0.5 min-1 
 
Friction model 
The friction types allowed are shear and coulomb friction. Shear (sticking); constant shear 

friction is used mostly for bulk-forming simulations. The frictional force in the constant shear 
model is defined by: 

                                                              sf mk=                                                          (2)                                                       
Where fs is the frictional stress, k is the shear yield stress and m is the friction factor. Coulomb 

friction is used when contact occurs between two elastically deforming objects (could include an 
elastic-plastic object, if it is deforming elastically) or an elastic object and a rigid object, generally 
to model sheet-forming processes. The frictional force in the Coulomb law model is defined by: 

                                                                  sf pµ=                                                             (3)                                                        
Where fs is the frictional stress, p is the interface pressure between two bodies and μ is the 

friction factor. There must be interfacial pressure between two bodies for frictional force to be 
present. Due to the complexity of the process, the hybrid friction model was used together both of 
Coulomb and shear friction models. To obtain the best simulation results, the preliminary 
simulations were carried out and μ =0. 3 was selected.   

 
Heat transfer 
The initial temperature of the ambient was assumed as 20 °C. The plastic temperature reaches 29 °C 

(after 8 second), 38 °C (after 14 second) and 43 °C ( after 20 second), respectively. The heat losses to 
the environment from the free surface of the work piece material are determined by the heat flux:                                      

                                                               0( )Q h T T= −                                                     (4)                                                   
Where h = 4.5 W/m2K is the heat transfer coefficient of the work material. T and T0 are the 
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temperature of the work material and ambient temperature, respectively. 
 
Governing equations of heat transfer simulation 

 
Two kinds of heat transfer are parallel conducted: convection and radiation. The plastic temperature 

is reduced due to conductive heat exchange with the die that decreases the temperature by forced 
convective heat transfer (Fig.7). According to the heat transfer theory and thermal equilibrium 
relationship by referring to the Fourer Role, the governing equation is established and given as 
follows:

  

 
Fig.7 Heat transfer in the cooling 

process 

     

2 2 2

2 2 2( )T T T Tk C Q
x y z t

ρ∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂        
(5)

      
 
Where k is the thermal conductivity, ρ is density, C is 
the specific heat, Q is the latent heat of phase 
transformation, x, y, z are the coordinates, and it is the 
time respectively. For the thermal boundary conditions, 
the adiabatic condition was employed for the others. The 
heat flow by conduction between the polymer and die 
[Carlaw, H et al (1959)] can be described as bellow:

  
 

                                                                                 0( )fkA
Q

t
θ θ

πα

−
= −                             (6)                                      

Where, θ0 is considered at the initial time and the final temperature after cooling is assumed to be at 
θf, α is the thermal diffusivity of the polymer, A denotes the cross sectional area, and t is the cooling 
time, respectively. 
 
Optimization process 
 

Response surface methodology (RSM) is adopted to establish a relationship between process 
parameters and the performance of objective functions. RSM is a well-known method with higher 
accuracy and better ease-of use than other popular meta-models, such as radial basis function and 
kriging model. The second-order RSM model is suitable for modeling the moderate non-linear 
behavior with few design variables. Prior to the optimization process, relationships between process 
parameters and objective functions should be created. In this research, the experimental plans are 
generated using the stipulated conditions using the Box-Behnken experimental designs with 17 
runs. Box-Behnken experimental method is one of the effective designs based on multi-dimensional 
sphere and all the design points lie on a same sphere with at least three or six runs at the center 
point. The optimization process was resolved based on explicit equations in regression that were 
obtained through the previous approximation.  

The process parameters, including heating 
time, cooling time, and air flow rate with three 
levels are listed in Table 2. The sequential 
simulations are conducted by using boundary 
conditions to obtain the simulation results that 
can be used to generate the mathematic model of 
tensile force (Eq.7). 

Table 2 The level of parameters 
Code Parameters Value 

A Heating time (s) 8-14-20 
B Cooling time (s) 8-14-20 
C Air flow rate (ft

3
/h) 20-40-60 

 

 
F=630.38+47.65*A+63.32*B+5.53*C+0.2286*A*B-0.0536*B*C-1.6*A2-2.2*B2-0.041*C2 (7) 
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Fig.8 shows the response surfaces, which show the effect of three key process parameters at the 
center point in the design space of the tensile force. It can be easily seen from the picture that 
heating time and cooling time have a large effect on the tensile strength, while volume air flow rate 
has a little effect on the objective function. The main reasons can be explained as follows. Too low 
heating time results in poor heat transfer and poor mixing material, thus causing of weak joint. 
Increasing the heating time increases the heat input to the material, resulting in better fusion, 
consequently, joint strength increases. However, a further heating time combining with forming 
pressure decreases the joint strength due to material decomposed and a weak joint is formed. 
Increasing the cooling time results in reducing more temperature that increases the joint strength. 
The input energy can be loss due to the diffusion at the contact area. Thus, higher cooling time may 
lead to decrease the tensile strength. Air flow rate has a significant effect to the tensile force. 
Increasing the air flow rate leads to reduce temperature and to improve the rigidity of workpiece. 
 

 
Fig.8 The effects of process parameters on the tensile forces   

 
Process parameters such as heating time, cooling time, 

and air flow rate have significant and complex effects on 
objective function. These process parameters also have 
contradictory effects on responses. To solve the 
optimization problem, the evolution algorithm, namely 
Multi-Island GA is adopted. Specific parameters were 
population size, number of generations, crossover 
probability, crossover distribution index, and mutation 
distribution index, with values of 10, 20, 0.9, 20, and 
100, respectively. Figure 9 describes the history of the 
NSGA II-based optimization process. 

 

 
Fig.9 History of GA solving process 

 
Fig.10 Tensile testing at the company 

The optimal parameters, including heating 
time, cooling time, and air flow rat are 14, 14 
second, 60, respectively. To validate the 
proposed method, the physical staking 
process was conducted in HANIL EHWA-
Door Trim Manufacturer in South Korea. The 
error between simulation and experimental 
results is lower 10% that indicates the 
effectiveness of the proposed method. 
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Table 3 Optimization values 
Design variables  Tensile Force (N)   

A (s)  B (s)  C (ft
3
/h) Simulation Experiment 

14  14  60  348.81  362.8 
 
Conclusion 

 
This paper presents a new approach to simulate and optimize infrared staking process. The FE 

model considering the interaction between sub-process has been developed using DEFORM-3D in 
order to investigate the effects of process parameters on the mechanical behavior. The maximizing 
tensile force can be achieved at optimal parameters in 14, 14 second, and 60 (ft3/h) of heating time, 
cooling time, and air flow rate, respectively. The optimal results also indicated that heating time is 
more contribution to tensile strength compared to the others. The proposed method can be used as 
the effective approach to simulate and optimize the process chains. The effects of forming tool 
geometry on the mechanical behavior of the joint will be analyzed in future work. 
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Abstract

An unsteady double-diffusive natural convection flow in an inclined rectangular enclosure

subject to an applied magnetic field and heat generation parameter is studied. The enclosure

is heated and concentrated from one side and cooled from the adjacent side. The other two

sides are adiabatic. The governing equations are solved numerically using a staggered grid finite-

difference method to determine the streamline, isotherm and iso-concentration contours. We have

further obtained the average Nusselt numbers and average Sherwood numbers for various values of

buoyancy ratio and different angles of the magnetic field by considering three different inclination

angles of the enclosure while keeping the aspect ratio fixed. The results indicate that the flow

pattern, temperature and concentration fields are significantly dependent on the buoyancy ratio

and the magnetic field angles. It is found that different angles of the magnetic field suppress the

convection flow and its direction influences the flow patterns. This leads to the appearance of

inner loop and multiple eddies.

Keywords: Double- diffusive natural convection; Inclined rectangular cavity; Magnetic field an-

gles; Buoyancy ratio.

1 Introduction

The study of magnetic field effect and buoyancy ratio on double diffusive natural convection in a

fluid-saturated cavity has received considerable attention in recent years due to its wide variety of

applications in engineering and technology processes such as solar energy collection, nuclear reactor

insulation, cooling of electronic devices, furnaces, drying technologies and crystal growth in liquids,

etc. As the Lorentz force suppresses the convection currents by reducing the velocities when the

fluid is electrically conducting and exposed to a magnetic field, an external magnetic field is used

as a flow control mechanism in manufacturing industries. Rudraiah et al. (1995) studied the effect

∗Email id: sabya.mondal.2007@gmail.com
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of a magnetic field on free convection inside a rectangular enclosure. They found that a circular

flow was formed with a relatively weak magnetic field, the convection was suppressed and the rate of

convective heat transfer decreased when the magnetic field strength was increased. Garandet et al.

(1992) analyzed the effect of magnetic field on buoyancy driven convection in a rectangular enclosure.

Sarris et al. (2005) examined two-dimensional unsteady simulations of MHD natural convection of a

liquid-metal in a laterally and volumetrically heated square cavity. Mansour et al. (2010) studied the

effects of an inclined magnetic field on the unsteady natural convection in an inclined cavity filled with

a fluid saturated porous medium considering heat source in the solid phase. Al-Najem et al. (1998)

showed that an increase in the Hartmann number causes reduction in the heat transfer rate from

cavity sidewalls. Ece and Büyük (2006) found solutions for the velocity and temperature fields inside

the rectangular enclosure and determined the effect of the strength and direction of the magnetic

field, the aspect ratio and the inclination of the enclosure on the transport phenomena. Later, Ece

and Büyük (2007) investigated the steady natural convection flow in an inclined square enclosure

with differentially heated adjacent walls under the influence of magnetic field. Jordan (2007) studied

the effects of thermal radiation and viscous dissipation on MHD unsteady free-convection flow over a

semi-infinite vertical porous plate. He examined the velocity, temperature, local skin-friction and local

Nusselt number for various physical parameters like the Eckert number, magnetic number and suction

(or injection). The effect of heat-generation/absorbtion in an enclosure in the presence of magnetic

field also plays an important role in convective flows. Grosan et al. (2009) discussed the effects of

magnetic field and internal heat generation on the free convection in a rectangular cavity filled with a

porous medium. Thereafter, Mahapatra et al. (2013a) numerically examined the effects of buoyancy

ratio and thermal Rayleigh number on double diffusive natural convection in a cavity when boundaries

are uniformly and non-uniformly heated and concentrated. Rahman and Sharif (2003) investigated

the laminar natural convection in differentially heated inclined rectangular enclosures of various aspect

ratios. Chamkha and Al-Naser (2001) considered laminar double-diffusive convective flow of a binary

gas mixture in an inclined rectangular enclosure filled with a uniform porous medium. A numerical

investigation of double-diffusive laminar mixed convection in an inclined cavity has been studied by

Teamah et al. (2011). Wang et al. (2008) studied the natural convection heat transfer in an inclined

porous cavity with time-periodic boundary conditions numerically. Teamah et al. (2013) studied

double- diffusive convective flow in an inclined rectangular enclosure with the shortest sides being

insulated and impermeable. On the other hand, studies on the combination of radiative heat transfer

and heat generation with convection or conduction were intensified because the effect of the radiation

heat transfer and heat generation is more important, particularly in the presence of a participating

medium and/ or radiative surfaces with large emissivities [Mahapatra et al. (2012; 2011)]. Recent

developments in hypersonic flights, missile reentry rocket combustion chambers and gas cooled nuclear

reactors have focused attention of researchers on thermal radiation, heat generation and emphasize

the need for inclusion of heat transfer in these processes. Moufekkir et al. (2013) investigated double-

diffusive natural convection and radiation in an inclined cavity using lattice Boltzmann method.

After that, Mahapatra et al. (2013b) studied mixed convection flow in an inclined enclosure under

magnetic field with thermal radiation and heat generation. They had studied the radiation and heat

generation effects in an inclined cavity with different magnetic field angles. Recently, Mondal and
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Sibanda (2015a) studied the effects of buoyancy ratio on unsteady double-diffusive natural convection

in a cavity filled with a porous medium with non-uniform boundary conditions. Again, Mondal and

Sibanda (2015b) examined the effects of buoyancy ratio on an unsteady double diffusive convection

in an inclined rectangular lid-driven enclosure with different magnetic field angles and non-uniform

boundary conditions.

Not much attention has been given to the study of the effects of the buoyancy ratio on double diffusive

natural convection flow when the magnetic field acts at different angles in an inclined rectangular

enclosure with heat generation and uniform boundary conditions (i.e. the rectangular enclosure is

heated and concentrated from the left vertical wall and cooled from the top wall by keeping other

walls in adiabatic state). The present study deals with the effects of the buoyancy ratio on unsteady

double-diffusive natural convection in an inclined rectangular enclosure with different angles of the

magnetic field in the presence of a heat generation parameter. The streamline pattern, isotherms,

iso-concentrations, average Nusselt and Sherwood numbers are presented graphically and in tabular

forms.

2 Governing equations and boundary conditions

An unsteady-state flow in two-dimensional rectangular cavity of height H and length L as shown in

Fig.1 is considered. The thermophysical properties of the fluid are assumed to be constant except the

density variation in the buoyancy force, which is approximated according to the Boussinesq approx-

imation. This variation, due to both temperature and concentration gradients, can be described by

the following equation:

ρ = ρ0[1− βT (T − Tc)− βC(C − Cc)], (1)

where βT and βC are the thermal and concentration expansion coefficients, respectively. The angle of

inclination of the enclosure with the horizontal line in the counter-clockwise direction is denoted by φ.

The magnetic field strength B0 is applied at an angle ϕ with respect to the coordinate system. The

right and the bottom walls are insulated and the fluid is isothermally heated and cooled at the left

and top walls with uniform temperature of Th and Tc, respectively. The magnetic Reynolds number is

assumed to be small and the induced magnetic field due to the motion of the electrically conducting

fluid is neglected Shercliff (1965). The Joule heating of the fluid and the effect of viscous dissipation

are also negligible.

The governing equations under the Boussinesq approximation are written as:

∂U

∂X
+
∂V

∂Y
= 0, (2)

ρ0
∂U

∂t′
+ ρ0

(
U
∂U

∂X
+ V

∂U

∂Y

)
= −ρ0[1− βT (T − TC)− βS(C − Cc)]g sinφ

− ∂P
∂X

+ µ

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+ σB2(V sinϕ cosϕ− U sin2 ϕ), (3)
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Figure 1: Geometry and the coordinate system

ρ0
∂V

∂t′
+ ρ0

(
U
∂V

∂X
+ V

∂V

∂Y

)
= −ρ0[1− βT (T − Tc)− βS(C − Cc)]g cosφ

−∂P
∂Y

+ µ

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+ σB2(U cosϕ sinϕ− V cos2 ϕ), (4)

∂T

∂t′
+ U

∂T

∂X
+ V

∂T

∂Y
= α

(
∂2T

∂X2
+
∂2T

∂Y 2

)
+

Q

ρ0Cp
(T − Tc), (5)

∂C

∂t′
+ U

∂C

∂X
+ V

∂C

∂Y
= D

(
∂2C

∂X2
+
∂2C

∂Y 2

)
. (6)

The associated boundary conditions are

U(X, 0) = U(X,H) = U(0, Y ) = U(L, Y ) = 0, (7)

V (X, 0) = V (X,H) = V (0, Y ) = V (L, Y ) = 0, (8)

T (0, Y ) = Th, T (X,H) = Tc,
∂T

∂X
(L, Y ) =

∂T

∂Y
(X, 0) = 0, (9)
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C(0, Y ) = Ch, C(X,H) = Cc,
∂C

∂X
(L, Y ) =

∂C

∂Y
(X, 0) = 0. (10)

Dimensionless variables used in the analysis are defined as,

t =
αt′

LH
, x =

X

L
, y =

Y

H
, δ =

H

L
, u =

HU

α
, v =

LV

α
, (11)

θ =
T − Tc
Th − Tc

, S =
C − Cc
Ch − Cc

, p =
[P + ρ0g(Xsinφ+ Y cosφ)]L2

ρ0α2
. (12)

where, X and Y are the distances measured along the horizontal and vertical directions respectively;

U and V are velocity components in the X- and Y - directions respectively; T and C denote the

temperature and concentration respectively; ν, α and D are kinematic viscosity, thermal diffusivity

and mass diffusivity respectively; µ is viscosity; P is the pressure and ρ is the density; Th and Tc

are the temperatures at the hot and cold walls respectively; Ch and Cc are the concentrations at the

hot and cold walls respectively; Cp and Q are the specific heat at constant pressure and the heat

generation parameter respectively.

The dimensionless governing equations are as follows:

∂u

∂x
+
∂v

∂y
= 0, (13)

∂u

∂t
= −∂p

∂x
+ Pr

(
1

δ

∂2u

∂x2
+

1

δ3
∂2u

∂y2

)
− 1

δ2

(
∂u2

∂x
+
∂uv

∂y

)
+GrTP

2
r (θ +NS) sinφ

+Ha2Pr(v sinϕ cosϕ− 1

δ
u sin2 ϕ), (14)

∂v

∂t
= −∂p

∂y
+ Pr

(
δ
∂2u

∂x2
+

1

δ

∂2u

∂y2

)
−
(
∂v2

∂y
+
∂uv

∂x

)
+ δGrTP

2
r (θ +NS) cosφ

+Ha2Pr(u cosϕ sinϕ− δv cos2 ϕ), (15)

∂θ

∂t
=

(
δ
∂2θ

∂x2
+

1

δ

∂2θ

∂y2

)
−
(
∂uθ

∂x
+
∂vθ

∂y

)
+ δHe θ. (16)

∂S

∂t
=

1

Le

(
δ
∂2S

∂x2
+

1

δ

∂2S

∂y2

)
−
(
∂uS

∂x
+
∂vS

∂y

)
. (17)

Here, dimensionless parameters are

GrT = gβT (Th − Tc)L3/ν2, GrC = gβS(Ch − Cc)L3/ν2, Ha = LB0

√
σ∗

µ
(18)

Pr =
µ

ρ0α
,N =

GrC
GrT

, Ra = GrTPr,He =
QL2

k
. (19)

The dimensionless boundary conditions are

u = 0, v = 0 on x = 0, 1 and y = 0, 1. (20)

θ = 1 on x = 0 and θ = 0 on y = 1. (21)

(∂θ/∂x)

x=1

= 0 and (∂θ/∂y)

y=0

= 0. (22)

S = 1 on x = 0 and S = 0 on y = 1. (23)

(∂S/∂x)

x=1

= 0 and (∂S/∂y)

y=0

= 0. (24)
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Here, δ, N , Le, Pr, GrC , GrT , σ∗ and He are the aspect ratio of the enclosure, the buoyancy ratio,

Lewis number, Prandtl number, solutal Grashof number, thermal Grashof number, Stefan-Boltzmann

constant and the heat generation parameter respectively. We define Nu and NuH by,

Nu = −δ ∂θ
∂x


x=0

and NuH = δ

∫ 1

0

Nu dy.

2.1 Solution procedure and numerical stability criteria

A control-volume based finite-difference discretization of the continuity, momentum, tempera-

ture and concentration equations was carried out using a staggered grid, popularly known as MAC

cell method. In this approach, the velocity components u and v are evaluated at different locations

in the control volume whereas the pressure, temperature and concentration are evaluated at the same

location of the control volume as shown in Fig.2. We note from Fig.2 that the velocity components

u, v are stored at the mid point of the vertical and horizontal faces respectively whereas the pressure,

temperature and concentration values are stored at the centre of the cells. In the MAC method we

use different cells to discretize different equations. For discretizing the continuity, temperature and

concentration equations, we used the cell ABCD in Fig. 2.

In the derivation of pressure-Poisson equation, the divergence term at the n-th time level, (Dn
i j)

is retained and evaluated in the pressure-Poisson iteration. This is done because the discretized form

of the divergence of the velocity field, i.e, Dn
ij is not guaranteed to be zero initially. The solution

procedure begins with the initialization of the velocity field. This is done either from the results of a

previous cycle or from the prescribed initial and boundary conditions. Using this velocity field, the

pressure-Poisson equation is solved using the Bi-CG-Stab method. Having determined the pressure

field, the u- and the v- momentum, the temperature and concentration equations are updated to find

u, v, θ and S at the (n+1)th time level. Then using the values of u and v at the (n+1)th time level, the

divergence of the velocity field is obtained and the limit determined. If the absolute value is less than

0.5 × 10−5 and a steady state is reached, the iteration process stops, otherwise the pressure-Poisson

equation is solved again for pressure.

The linear stability of the fluid flow gives δt1 ≤ Min
[
δx
|u| ,

δy
|v|

]
, (Courant, Friedrichs and Lewy

condition). Here, temporal discretization is used in the explicit finite difference scheme. From Hirt’s

stability analysis, we have δt2 ≤Min
[

1
2Pr .

δx2.δy2

(δx2+δy2)

]
. This condition roughly states that momentum

cannot diffuse more than one cell width per time step. The time step is determined from δt =

FCT ×
[
Min(δt1, δt2)

]
, where the factor FCT varies from 0.2 to 0.4. The upwinding parameter β is

governed by the inequality condition 1 ≥ β ≥Max
[
|uδtδx |, |

vδt
δy |
]
. As a rule of thumb, β is taken to be

approximately 1.2 times larger than the result found from the above inequality condition.
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Figure 2: Control volume for u-momentum, v-momentum, temperature and concentration equations.

3 Results and discussions

The working fluid in this study is chosen to be air with Prandtl number Pr = 0.7, the heat generation

parameter He = 1.0, Hartmann number Ha = 102, Lewis number Le = 1.0, Grashof number GrT =
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104 and aspect ratio δ = 2. The enclosure inclination angle φ, magnetic field angle ϕ in the enclosure

and the buoyancy ratio are such that 45◦ ≤ φ ≤ 135◦, 45◦ ≤ ϕ ≤ 135◦ and −20 ≤ N ≤ 20,

respectively.

Numerical results for the streamline, isotherm and iso-concentration contours inside the inclined

rectangular cavity, average Nusselt and Sherwood numbers distribution at the uniformly heated and

concentrated surface of the inclined cavity for various values of the angle of magnetic field (ϕ), buoy-

ancy ratio (N), inclination angle (φ) and dimensionless time parameter t are presented in Figures 3 -

9 and Tables 1 - 3.

In order to obtain a grid independent solution to the problem, a grid refinement study was per-

formed and the results are presented in Table 1 for Pr = 0.7, GrT = 104, Ha = 102, δ = 2, Le = 1.0,

N = 1.0, He = 1.0, ϕ = 45◦, φ = 45◦ and N = 1. It is important to note that as the number of

grid points are increased the value of | ψmax | increases. However, when the number of grid points

increases from 80× 80 to 160× 160, no significant change is found in the value of | ψmax |. Hence, all

the results were computed using 80× 80 grid points.

A comparison of the average Nusselt number at the hot wall is made with Mahapatra et al. (2013b);

Ece and Büyük (2006) for various values of φ and ϕ in Table 2. It is noted that a very good agreement

has been obtained with the previously published results.

Table 3 shows the average Nusselt and Sherwood numbers for different magnetic field angles ϕ,

cavity inclination angles φ and buoyancy ratio N when the other parameters are fixed. It is seen that

when ϕ is fixed and N = 20, NuH increases with φ. However, ShH decreases between φ = 45◦ and

φ = 90◦. Beyond this interval, the opposite trend is observed. When ϕ is fixed and N = 1, both NuH

and ShH increase with φ. Again, when ϕ is fixed and N = −20, both NuH and ShH decrease from

φ = 45◦ to φ = 90◦. For any value of N both NuH and ShH increase between φ = 45◦ and φ = 90◦.

If ϕ and φ are fixed then NuH and ShH decrease as N varies from N = 20 to N = 1. However, from

N = 1 to N = −20, the opposite trend are observed.

The numerical results for the streamline, isotherm, iso-concentration contours are presented in Fis.

3 - 9 for uniformly heated and concentrated walls for different values of ϕ, φ, t and N . The relative

importance of thermal and solutal buoyancy forces is denoted by the buoyancy ratio (N) and is

defined as the ratio of the solutal buoyancy force to thermal buoyancy force. This parameter is varied

through a wide range −20 < N < 20; covering the concentration-dominated opposing flow (N = −20),

pure thermal convection dominated flow (N = 0), and concentration-dominated aiding flow (N = 20).

WhenN is sufficiently small i.e, the mass buoyancy is greater than the thermal buoyancy, the buoyancy

forces that drive the fluid motion are mainly due to the gradients of temperature. Negative values of

N are due to the negative coefficient of concentration expansion.

When N = 1, the flow is steady; this is because in this case, the two buoyancy forces are equal

to and oppose each other. When N > 1, the flow is driven by buoyancy due to solutal gradients.

Clockwise and anticlockwise flows are shown using negative and positive signs of stream functions,

respectively.

Fig. 3 shows the effect of N on the streamlines, isotherms and as well as on the iso-concentrations

for a uniformly heated and concentrated wall when ϕ = 90◦ and φ = 45◦ for GrT = 104, Ha = 102,

δ = 2, Le = 1.0 and He = 1.0. When N = 20 the streamlines are concentrated near the hot wall.
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When N = 1, due to the cold fluid rising up from the middle portion of the bottom wall and the

flow downward along the two vertical walls, we observe two symmetric rolls with clockwise and anti-

clockwise rotations inside the cavity. However, when N = −20 the streamlines fill the whole cavity

forming two eddies at the centre of the cavity in an anticlockwise direction. The value of the stream

function increases due to the strong circulation of the fluid. The isotherms are dispersed in the whole

cavity when N = 20 but as N decreases the isotherms become concentrated near the cold wall. The

stronger circulation causes the temperature contours to be concentrated near the cold wall which may

result in greater heat transfer rate due to convection. The iso-concentration contours are concentrated

near the edge of the hot wall and cold wall on one side and the edge of hot wall and adiabatic wall on

the other. However, as N decreases from 20 to −20 the iso-concentration contours on the one side of

the cavity are dispersed towards the adiabatic wall due to a higher mass transfer rate.

The streamline, isotherm and iso-concentration contours for different values of N when Pr = 0.7,

GrT = 104, Ha = 102, δ = 2, Le = 1.0,He = 1.0, ϕ = 90◦ and φ = 90◦ with uniformly heated and

concentrated wall are displayed in Fig. 4. As the inclination angle increases the streamlines form a

single eddy near the uniformly heated and concentration wall with anticlockwise circulation when N =

20. The center of the single eddy is slightly shifted away from the heated wall towards the adiabatic

wall as N decreases from 20 to 1. It is interesting to note that for N = −20, the effect of solutal

buoyancy force is in the opposite direction to the thermal buoyancy force. Therefore, the magnitude

of the thermal buoyancy force is small compared to the solutal buoyancy force. Consequently, the

streamlines are in a clockwise direction. As N decreases the isotherms are dispersed towards the

adiabatic walls from the cold wall by dividing into two parts due to stronger heat transfer rate from

the heated wall. However, as N decreases, the iso-concentrations become more concentrated towards

the hot wall.

Fig. 5 shows the effect of N on the streamlines, isotherms and as well as on the iso-concentrations

for a uniformly heated and concentrated wall when ϕ = 90◦ and φ = 135◦ for Pr = 0.7, GrT = 104,

Ha = 102, δ = 2, Le = 1.0 and He = 1.0. As the buoyancy ratio decreases, the stream function values

become concentrated near the hot wall due convection. When N = 20 the isotherms are concentrated

near the cold wall. As buoyancy ratio decreases the isotherms are dispersed in the whole cavity. The

iso-concentrations are mainly concentrated towards the hot wall due to increased mass transfer rate

at the heated wall.

The streamline, isotherm and iso-concentration contours for different values of N when Pr = 0.7,

Gr = 104, Ha = 102, δ = 2, Le = 1.0, He = 1.0, ϕ = 135◦ and φ = 45◦ with uniformly heated and

concentrated walls are displayed in Fig. 6. A comparison of Figs. 3 and 6, shows that the pattern of

streamlines, isotherms and iso-concentrations is similar for uniformly heated and concentrated cases

except when N = −20. When N = −20, the streamlines form a single anticlockwise eddy in the

centre of the cavity. Fig. 7 shows the effect of N on the streamlines, isotherms and as well as on the

iso-concentrations for near a uniformly heated and concentrated wall when ϕ = 135◦ and φ = 90◦ for

Pr = 0.7, GrT = 104, Ha = 102, δ = 2, Le = 1.0, N = 1.0 and He = 1.0. A comparison of Figs. 4

and 7, again shows that the pattern of streamlines, isotherms and iso-concentrations is almost similar

for uniformly heated and concentrated cases.

Fig. 8 shows the effect of N on the streamlines, isotherms and as well as on the iso-concentrations
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when ϕ = 135◦ and φ = 135◦ for Pr = 0.7, GrT = 104, Ha = 102, δ = 2, Le = 1.0 and He = 1.0. As

the buoyancy ratio increases, the boundary layer thickness becomes thinner. The change in the flow

structure for high buoyancy ratio numbers has a significant influence on the concentration field, which

builds up a vertical stratification in the enclosure. The streamlines circulate clockwise in the cavity

in although mainly concentrated at edge of hot and cold walls when N = −20. These streamlines

circulate in an anticlockwise direction as N increases to 1 and are mainly at the edge of the hot

and cold walls because the fluid motions mainly due to temperature gradients. When N = 20, the

streamlines are spread in the whole cavity in an anti-clockwise rotation. In, this case the stream

function value is very high compared to others in the core of the cavity. Again, when N = −20, the

isotherms spread from the edge of hot and cold wall to the insulated wall due to the opposition of

concentration expansion coefficient to the thermal expansion coefficient. However, isotherms become

concentrated near the cold wall as the value of N increases from 1 to 20. Also, when N = −20 the

iso-concentration contours are concentrated near the hot wall but these are dispersed from the hot

wall as N increases from −20 to 1 and 1 to 20.

Fig. 9 shows the effect of the non-dimensional time parameter t on the streamlines, isotherms and

iso-concentrations when ϕ = 90◦ and φ = 45◦, Pr = 0.7, GrT = 104, Ha = 102, δ = 2, Le = 1.0,

He = 1.0 and N = 1.0. The streamlines are mainly concentrated near the uniformly heated and

concentrated wall with clockwise direction when t = 0.279. We can see another eddy with anti-

clockwise rotation near the corner of the cold and adiabatic wall as t increases to t = 0.558. When

t = 0.837, the anti-clockwise rotating eddies become large and suppress the clockwise rotating eddies.

In the steady state i.e., when t = 3.170, the cavity is divided into two parts with clockwise and

anticlockwise rotating streamlines forming multiply eddies. Again, when t = 0.279, the isotherms are

spread to the whole cavity from the edge of hot and cold to the adiabatic walls. But, the isotherms

are dispersed form that edge to the edge of adiabatic walls forming two different branches of isotherms

as t increases it’s value. But, minimum changes can be found for the iso-concentration contours with

the change of non-dimensional time parameter t.

4 Conclusion

The main objective of the current investigation was to study the effects of buoyancy ratio on an

unsteady double diffusive natural convection in an inclined rectangular enclosure with different angles

of magnetic field. As, the buoyancy ratio increases the boundary layer thickness becomes thinner. The

change in the flow structure for high buoyancy ratio has a significant influence on the concentration

field. Formation of multiple eddies of counter-clockwise rotations greatly influences the fluid flow.

WhenN is sufficiently small i.e, the mass buoyancy is greater than the thermal buoyancy, the buoyancy

forces that drive the fluid motion are mainly due to the gradients of temperature. Negative values of N

represent the opposing nature of two buoyancy forces, due to the negative coefficient of concentration

expansion. In this limit, the so-called heat transfer driven flows, the distribution of constituent does

not influence the flow pattern and the heat transfer rate. When N = 1, the flow is steady; this is

because in this case, the two buoyancy forces are equal to and oppose each other. When N > 1, the

flows driven by buoyancy due to solutal gradients where the flow are mainly due to gradients of solute
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concentration. The change of patterns with respect to time is described here.
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Table 1: Grid independence test when Pr = 0.7, Gr = 104, Ha = 102, δ = 2, Le = 1.0, He = 1.0, ϕ = 45◦, φ = 45◦

and N = 1.

Grid points Iter |ψmax|

20× 20 34368 5.95110× 10−2

40× 40 131880 6.00418× 10−2

80× 80 530782 6.01884× 10−2

160× 160 1162672 6.01887× 10−2

Table 2: Comparison of average Nusselt number NuH |x=0 in absence of concentration equation, thermal radiation

parameter and heat generation parameter with same boundary conditions and same values of all other parameters.

NuH

ϕ = 0◦ ϕ = 45◦ ϕ = 90◦

φ Mahapatra et al.,Ece and Büyük,PresentMahapatra et al.,Ece and Büyük,PresentMahapatra et al.,Ece and Büyük,Present

(2013b) (2006) Results (2013b) (2006) Results (2013b) (2006) Results

0◦ 3.5350 3.6831 3.5350 3.5354 3.6819 3.5354 3.5356 3.6813 3.5356

−45◦ 3.5363 3.6806 3.5363 3.5366 3.6846 3.5366 3.5363 3.6843 3.5363

45◦ 3.5340 3.6780 3.5340 3.5339 3.6820 3.5339 3.5341 3.6806 3.5341

Table 3: Computed values of NuH and ShH when Pr = 0.7, Gr = 104, Ha = 102, δ = 2, Le = 1.0 and He = 1.0 for

various values of ϕ, φ and N .

Buoyancy ratio Buoyancy ratio Buoyancy ratio

N = 20 N = 1 N = -20

ϕ φ NuH ShH NuH ShH NuH ShH

45◦

45◦ 1.94699 8.93750 1.67498 7.50946 1.88540 7.85743

90◦ 2.11064 7.93526 1.68330 7.5132655 1.76858 7.57010

135◦ 2.42024 8.52446 1.68626 7.51558 2.44834 8.40416

90◦

45◦ 2.65610 10.73437 1.67736 7.51126 2.19201 8.56903

90◦ 2.66738 9.10950 1.70193 7.52637 1.88740 7.73783

135◦ 3.00922 11.00129 1.71378 7.54384 3.00949 10.23665

135◦

45◦ 1.931679 8.37004 1.67510 7.50954 1.86995 7.96886

90◦ 2.12979 7.80844 1.68421 7.51211 1.84856 7.613725

135◦ 2.46780 8.76437 1.68908 7.51589 2.42373 8.37702
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Figure 3: Contour plots for Pr = 0.7, Gr = 104, Ha = 102, δ = 2, Le = 1.0, He = 1.0, ϕ = 90◦, φ = 45◦ for different

values of N .

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

55



3.06

2.62

2.18

1.31
0.87

3.06

2.62

2.18

1.31
0.87

3.06

2.62

2.18

1.31
0.87

3.06

2.62

2.18

1.31
0.87

3.06

2.62

2.18

1.31
0.87

3.06

2.62

2.18

1.31
0.87

3.06

2.62

2.18

1.31
0.87

3.06

2.62

2.18

1.31
0.87

0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.32

0.48

0.64
0.81

0.97

1.13
0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.88

0.13

0.75

0.25

0.63

0.38

0.50

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.04

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.04

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.04

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.04

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.04

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.04

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.04

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.04

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.19

0.38

0.560.75

1.31

0.94
1.13

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

0.88
0.75
0.630.13

0.50

0.25 0.38

-1.12

-0.96-0.80

-0.64
-0.48

-0.32

-1.12

-0.96-0.80

-0.64
-0.48

-0.32

-1.12

-0.96-0.80

-0.64
-0.48

-0.32

-1.12

-0.96-0.80

-0.64
-0.48

-0.32

-1.12

-0.96-0.80

-0.64
-0.48

-0.32

-1.12

-0.96-0.80

-0.64
-0.48

-0.32

-1.12

-0.96-0.80

-0.64
-0.48

-0.32

-1.12

-0.96-0.80

-0.64
-0.48

-0.32

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.16

0.32

0.48

1.12

0.64

0.80

0.96

0.88
0.75

0.63
0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25
0.88

0.75
0.63

0.50
0.38

0.13

0.25

-2.0 -1.6 -1.2 -0.8 -0.4 0.0

0.2

0.4

0.6

0.8

1.0

N
 =

 2
0

Streamlines

-2.0 -1.6 -1.2 -0.8 -0.4 0.0
0.0

0.2

0.4

0.6

0.8

1.0
Isotherms

-2.0 -1.6 -1.2 -0.8 -0.4 0.0
0.0

0.2

0.4

0.6

0.8

1.0

Iso-concentrations

-2.0 -1.6 -1.2 -0.8 -0.4 0.0

0.2

0.4

0.6

0.8

1.0

N
 =

 1

-2.0 -1.6 -1.2 -0.8 -0.4 0.0
0.0

0.2

0.4

0.6

0.8

1.0

-2.0 -1.6 -1.2 -0.8 -0.4 0.0
0.0

0.2

0.4

0.6

0.8

1.0

-2.0 -1.6 -1.2 -0.8 -0.4 0.0

0.2

0.4

0.6

0.8

1.0

N
 =

 -2
0

-2.0 -1.6 -1.2 -0.8 -0.4 0.0
0.0

0.2

0.4

0.6

0.8

1.0

-2.0 -1.6 -1.2 -0.8 -0.4 0.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Contour plots for Pr = 0.7, Gr = 104, Ha = 102, δ = 2, Le = 1.0, He = 1.0, ϕ = 90◦, φ = 90◦ for different

values of N .

ICCM2015, 14-17 July, 2015, Auckland, New Zealand
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Figure 5: Contour plots for Pr = 0.7, Gr = 104, Ha = 102, δ = 2, Le = 1.0, He = 1.0, ϕ = 90◦, φ = 135◦ for different

values of N .
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Figure 6: Contour plots for Pr = 0.7, Gr = 104, Ha = 102, δ = 2, Le = 1.0, He = 1.0, ϕ = 135◦, φ = 45◦ for different

values of N .
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Figure 7: Contour plots for Pr = 0.7, Gr = 104, Ha = 102, δ = 2, Le = 1.0, He = 1.0, ϕ = 135◦, φ = 90◦ for different

values of N .

ICCM2015, 14-17 July, 2015, Auckland, New Zealand
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Figure 8: Contour plots for Pr = 0.7, Gr = 104, Ha = 102, δ = 2, Le = 1.0, He = 1.0, ϕ = 135◦, φ = 135◦ for different

values of N .
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Figure 9: Contour plots for Pr = 0.7, Gr = 104, Ha = 102, δ = 2, Le = 1.0, He = 1.0, ϕ = 90◦, φ = 45◦ and N = 1.0

for different values of dimensionless time parameter (t).
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Abstract 
Processes at fundamental length scales contribute collectively, in a statistical manner, 
to the macro-scale effects observed at length scales several orders of magnitude 
higher. To derive useful quantities pertaining to real material properties from atomic 
scale simulations, it is critical to evaluate the cumulative effect of multiple atomic-
scale defects at the ‘meso’- and ‘micro’- scales. This study aims to develop a 
phenomenological model for atomic scale effects, which is a critical step towards the 
development of a comprehensive meso-scale simulation framework. In moderate 
loading conditions, dislocations in FCC metals are dictated by thermally activated 
processes that become energetically favourable as the stress approaches a threshold 
value. The nudged elastic band technique is ideal for evaluating the energetic 
activation parameters from atomic simulations, in order to evaluate the stress, 
temperature and rate dependence of a process. On this basis, a constitutive 
mathematical model is developed for simulations at the meso-scale with respect to the 
atomic activation parameters, to evaluate the critical (local) shear stress threshold. 
Once models are established for multiple effects, such as dislocation junction 
formation, cross-slip, and nucleation, the threshold temperature and stress for a 
transition between different effects can be evaluated. For example, the threshold 
temperature can be evaluated during heating, beyond which an immobilised 
dislocation in a junction will be activated for cross-slip and will shift into an adjacent 
mobile slip system. This is useful to predict the rate-limiting dislocation process at 
each simulation timestep, by evaluating the simulation condition-dependent criteria. 
Additional criteria variables for the constitutive models include properties of the 
dislocation, the grain boundary and the material’s chemical and elastic properties. 
Multi-scale modelling from a lower-scale basis is inherently limited by a reduction in 
the degrees of freedom required to enable large scale simulations, constrained by 
computational limits. To address this, we intend to use hierarchical multi-scale 
linking by iteratively updating the constitutive model parameters until the meso-scale 
method is capable of reproducing atomic scale dislocation effects. The resultant 
meso-scale method will be useful to study multi-dislocation interactions, which are 
capable of driving high-stress effects such as dislocation nucleation under low applied 
stresses, due to stress-concentration in dislocation pile-ups at interfaces. This study 
contributes to the development of a ‘fundamental basis’ to inform macro-scale 
models that can provide significant insights about the effect of dislocation 
microstructure evolution during plastic deformation. 
 

 

 

 

Keywords: Multi-scale computer simulations, dislocation dynamics, FCC metals, 
polycrystalline plasticity, activation parameters   
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1.0 Introduction 

Dislocations act as a “weak point”, defining the elastic limit and subsequent ductility 
of crystalline materials, such as FCC metals [Zbib and Khraishi (2005); Po, Mohamed 
et al. (2014)]. Due to their high mobility at low stress and temperature, once 
dislocations are activated they act as the primary crystal defects for mediating plastic 
deformation. Dislocations are atomic bond defects with a core region that is 
fundamentally defined by the sub-nano scale burgers vector. However, dislocations 
contribute to mechanical properties via multi-dislocation interactions in a cumulative 
statistical manner up to ~100 μm [Po, Mohamed et al. (2014)]. Hence, to fully 
understand the characteristics of dislocations for modelling and prediction, it is 
critical to utilise a multi-scale approach to evaluate the inter-atomic mechanisms and 
the inter-dislocation effects [Ghoniem†, Busso et al. (2003)]. Molecular dynamics (or 
MD) simulations are an ideal tool for developing a conceptual and constitutive 
modelling framework for the atomic processes which are fundamental to the 
macroscopic properties seen in real materials. MD is inherently limited to very small 
size and time simulations by computational requirements, so constitutive models need 
to be applied in micro-meso scale methods such as dislocation dynamics (DD) to 
evaluate cumulative effects [Po, Lazar et al. (2014)]. 

Dislocation-mediated deformation is strongly influenced by thermally activated 
nucleation, especially when confined within a nano-crystalline material with a grain 
size less than ~0.1 μm [Zhu, Li et al. (2008)]. Recent developments in computational 
methods have been developed to simulate the minimum energy path (MEP) for an 
atomic transition, which indicates the activation energy (Ea). The nudged elastic band 
method (NEB) is a popular method which obtains the MEP by minimizing the 
potential energy of transition states interpolated between input initial and end states 
[Henkelman, Uberuaga et al. (2000)]. The stress dependence of the activation energy 
(Ea) is known as the activation volume (Ω). Ω can be evaluated by calculating the 
MEP between identical initial and final atomic configurations, but with various 
externally applied loads [McPhie, Berbenni et al. (2012)]. The fundamental activation 
properties (Ea and Ω) are time-stress and temperature independent [Voter, Montalenti 
et al. (2002)]. Assuming the atomic mechanism is independent of simulation scale, 
the activation parameters are hence ideal for linking multi-scale simulation methods. 
On this basis, the thermal activation parameters can be used to establish a constitutive 
model for predicting the threshold for nucleation, as a function of two known 
parameters (from stress, temperature and/or strain rate) [Zhu, Li et al. (2008)]. This 
study establishes a constitutive model using transition state theory to provide a critical 
contribution for atomic-informed meso-scale computer simulations. 

2.0 Methods 
Single crystals of pure FCC aluminium were simulated using molecular static 
simulations, with an embedded atom method (EAM) inter-atomic potential provided 
by [Mishin, Farkas et al. (1999)]. This EAM potential was chosen because it 
efficiently simulates the stacking fault energies and elastic properties of pure FCC Al. 
Single crystals are initialised without defects and with periodic boundaries in all 
dimensions, to represent an ‘infinite single crystal’. The length in the ‘y-axis’ was 
defined to be greater than 30nm, and the ‘x-‘ and ‘y-‘ axes were 10 lattice units each, 
in agreement with prior simulations of dislocation nucleation [Tschopp and 
McDowell (2007; Sangid, Ezaz et al. (2011; Tucker and McDowell (2011)]. Loading 
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was applied along the [110] close-packed slip direction via constant applied uniaxial 
strain in the y-direction, so the single crystal was oriented as shown in Figure 1. A  
fully-dense, minimum energy state was obtained using the conjugate gradient 
minimization method [Štich, Car et al. (1989)]. The crystal was temperature-rescaled 
to 50K and temperature-pressure equilibrated by Nose-Hoover thermo-barostat and 0 
Bar pressure [Nosé (1984; Hoover (1986)]. The crystal orientations and exact 
dimensions can be most easily understood schematically, by referring to Figure 1. 
Note that atomistic “imaging” of simulation states is performed using AtomEye 
visualisation tool [Li (2003)], and atoms are coloured by either: (a) potential energy 
or (b) centro-symmetry bond parameter (Pcsym) [Kelchner, Plimpton et al. (1998)]. 

 
Figure 1: Dimensions and crystal orientations of pure FCC aluminium: A) at 0K; B) 

at 50K (Note: atoms coloured according to potential energy) 

 A dislocation was generated in the simulation volume at 50K, by applying a constant 
rate tensile strain in the [11�0] direction at a rate of 5.0e8 s-1, with outputs provided 
every 0.1ps for restarting and visualisation. By selectively filtering atoms according 
to the Pcsym, the first interval was identified containing atoms with high Pcsym, to 
indicate the initiation of crystal slip. From the associated restart file at this point, an 
instantaneous reverse strain was applied by rescaling the simulation y-dimension in a 
fashion, followed by immediate rapid quenching to 1K. The atomic velocity and 
kinetic energy was then reduced to 0 (i.e., 0K) and the simulation energy was 
minimized by the conjugate-gradient method [Štich, Car et al. (1989)], with an energy 
tolerance of 1.0e-6 eV. This energy tolerance matches that used by a similar prior 
study, which retains a “metastable” dislocation loop at 0K [McPhie, Berbenni et al. 
(2012)]. By iteratively testing multiple the reverse strain magnitudes, the exact final 
simulation stress-strain state was identified which would establish a stable dislocation 
loop after minimization at 0K. This elaborate process of heating, stressing and 
quenching was necessary to form a single stable “loop”, as multiple dislocations will 
simultaneously nucleate above the yield stress at 0K. This method was used to 
establish the end-state atomic configuration for NEB simulations. The initial state was 
created by following an identical heat – stress - quench minimization protocol, 
however the initial strain is much lower. Specifically, the initial state was chosen so 
that it relaxes to 0 GPa, after the reverse strain is applied. 

NEB simulations were performed using the “replica” library available within the 
LAMMPs code [Plimpton (1995)] to an energy tolerance of 1e-6 eV (to match the 
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previously utilised tolerance). To obtain a useful result, it is critical that the 
simulation volumes of the initial and final states are identical. To achieve this, the 
initial state dimensions were re-scaled to match the final state dimensions. To study 
the stress-dependence of the energy threshold required for dislocation nucleation, it 
was necessary to repeat NEB simulations at various stresses. This was achieved by 
utilising an additional stage of incrementally increasing strain in the y-dimension 
immediately following the first stage of quench-minimization. An additional stage of 
minimization was also applied. Finally, NEB simulations were performed between 
the identically dimensioned initial defect-free state and the end state containing a 
dislocation loop. Ea for dislocation nucleation was evaluated for each stress state. To 
evaluate whether there was any relationship between the Ea, activation volume, 
temperature, yield strength and strain rate, dynamic simulations were performed at 
various temperatures from 0K – 1200K, and at strain rates between 5.0e7 – 5.0e9 s-1. 
Hence, the temperature and rate dependent stress-strain curves were obtained. For 
constitutive modelling, data analysis, regression modelling and mathematical 
validation were performed with Microsoft Excel. 

3.0 Results and discussion 
3.1 Key thermal and mechanical properties for predictive modelling 

It is critical to evaluate the threshold disorder temperature (Tdisorder) which is accurate 
for the inter-atomic potential used to represent the material properties in atomic 
simulations.  Tdisorder can be described as the threshold beyond which the yield stress 
for dislocation nucleation deviates pronouncedly from a linear relationship. The 
characteristic Tdisorder properties of single crystal aluminium, using EAM potential 
from [Mishin, Farkas et al. (1999)] with the crystal orientation shown in Figure 1 is  
derived from a plot of yield stress as a function of temperature in Figure 2. 

 
Figure 2: Temperature-dependent strength of single crystal Al in uniaxial tension 
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Figure 2 demonstrates that the Al atomic potential [Mishin, Farkas et al. (1999)] 
exhibits approximately linear temperature-strength relationships under strain rates 
accessible within atomic simulations. Note that the square data points representing 
yield strain correspond with the y-axis on the right of the figure. The results also 
provide a valuable analogue for the energy-based constitutive models, derived in later 
sections from NEB simulations. 

Previous detailed analysis of the thermal decomposition temperature, identified that 
pure FCC aluminium will begin to destabilize at approximately 867.7 K [Nguyen, Ho 
et al. (1991)]. Referring to Figure 2, there are clearly two linear stress-temperature 
regimes. The intersection point between the extrapolated curves obtained by simple 
linear regression indicates the transition temperature, which lies directly between 
800K and 900K. Analytical evaluation of the temperature at which the regression 
curves intersects, results in an exact decomposition temperature of 844.54K, which is 
in very close agreement with the results obtained in [Nguyen, Ho et al. (1991)]. The 
critical strain also appears to deviate from a linear trend above 800, with a significant 
reduction at 900K. Beyond this temperature, the critical strain increases sharply 
despite a reduction in the yield stress, confirming that the material has distinctly 
altered elastic properties above 800K. 

3.2 Characteristics of homogeneous dislocation nucleation  

This section will demonstrate the transitional atomic mechanism for dislocation 
nucleation from a homogeneous, defect free single crystal at 0K and will evaluate the 
critical athermal activation parameters (i.e., 0 GPa stress and 0K). These parameters 
are key constant parameters, which form the fundamental basis of constitutive 
modelling based on thermal activation parameters [Zhu, Li et al. (2008)]. This is most 
clearly shown by visualising the generation of defect atoms in transitional atomic 
states, which are identified by the centro-symmetry bond coefficient [Kelchner, 
Plimpton et al. (1998)]. The transition states and energy barrier are seen in Figure 3. 

 
Figure 3a.: Generation of defect atoms during dislocation nucleation transition  

Saddle Point
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Figure 3b.: Minimum energy barrier for near-athermal dislocation nucleation  

Figure 3: transition for dislocation nucleation from Nudged elastic band 
simulation at 0K and at 2.22 GPa (near athermal yield stress)  

Figure 3 shows the results of an NEB simulation between the initial defect free state 
and final state containing a single full dislocation loop at approximately 2.22 GPa. 
The process begins with the generation of a Shockley Partial dislocation with a 
Burgers vector of [1�12�] , and magnitude of 1.672Å. Close inspection shows that 
nucleation is initiated as fundamental atomic-scale vibration in 2 or 3 atoms, resulting 
in the minor bond disruption of 9 atoms in 2 adjacent (1�11� ) planes. There is a 
substantial reduction in potential energy, which likely corresponds with the relaxation 
of the elastic strain energy in all non-defect atoms in the volume. Note that this also 
corresponds with a very minor reduction in shear stress of ~0.06GPa, however this 
change is considered negligible. The forward energy barrier approaches zero as the 
stress increases above 2.2 GPa, which is why nucleation can proceed without thermal 
input above the athermal stress-strain limit. 

It is interesting to note that the dislocation loop is not at a maximum size at the saddle 
point. However, this is probably explained because the saddle point involves the 
energy jump required to nucleate the trailing partial dislocation. For this reason, the 
potential energy of the defected atoms is at the highest in this replica. This also 
indicates that the elastic strain and stacking fault energies decrease beyond this point.  

3.3 Ea for homogeneous nucleation as a function of stress 

The Ea for dislocation nucleation was calculated for single crystals with a residual 
shear stress of between -0.04 GPa to 2.19 GPa. The stress-dependence is most clearly 
shown graphically according to Figure 6. 

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
ha

ng
e 

in
 p

ot
en

tia
l e

ne
rg

y 
 (e

V)
 

Transitional atomic replica 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

67



 
Figure 4: Ea for dislocation nucleation as a function of resolved shear stress 

Figure 6 shows a nearly linear relationship exists between stress and Ea until 
approximately 1.4GPa. Beyond this point, the relationship is non-linear and 
approaches a more ‘exponential shape’. The critical stress with an Ea of 0.0eV was 
extrapolated from the data using a 4th order polynomial regression curve, fitted to the 
simulation data with an R2 value of 0.9998. Note that only 1 SF is shown in figure 
due to space limitations. Accordingly, the critical athermal resolved shear stress for 
spontaneous dislocation nucleation is exactly 2.26 GPa. This is another critical 
parameter that will be used for the constitutive modelling in the next section. 

These results are also ideal for an explicit evaluation of the activation volume Ω, 
according to the standard thermodynamic relationship shown in Equation 1: 

,

A

T P

E
σ

∂∆ Ω =  ∂ 
        (1) 

According to Equation 1, the activation volume can be very simply evaluated from 
the stress dependent Ea at constant temperature and hydrostatic pressure. Temperature 
is, by definition of the NEB procedure, exactly 0K. The hydrostatic pressure is 0 Bar, 
due to the algorithms used to define the uniaxial loading and with damping to reduce 
fluctuations from the Hoover barostat [Hoover (1986)]. If evaluated from total data 
range, the Ω is 4.9e-28 J/Pa. For stresses greater than 2.1 GPa, the Ω is 2.5e-28 J/Pa and 
for stresses less than 2.1 GPa and greater than 0.8 GPa, the Ω is 5.66e-28 J/Pa. The 
activation volume is a critical fundamental parameter that can has been correlated 
with the strain rate dependence of nucleation with simulations [Deng and Sansoz 
(2010)] and experiments [Asaro and Suresh (2005)]. 

3.4 Constitutive model for temperature – strain rate dependent yield stress 

The activation energy, Ea,  is typically used to directly evaluate the thermal effect on 
mechanical properties, and is directly correlated with the temperature according to 
Equation 2: 
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= − 
 

[Zhu and Li (2010)] 
(2) 

In combination with the activation volume, Ω, the stress can be evaluated according 
the simplified, modified version of the relationship derived by Zhu et al. [Zhu and Li 
(2010)]: 

0ln b
athermal

k TN
E

νσ σ
ε

 = − Ω 

[Zhu and Li (2010)] (3) 

where athermalσ is the critical shear stress at 0K, bk is the Boltzmann constant, 0Nν is 
the number of transitions attempted per second, E  is the Young’s modulus and ε is 
the strain rate. Unfortunately, although this method is based on fundamental 
theoretical physics, it is dependent on an accurate evaluation of the exact context – 
dependent value of Ω and is typically flawed by a biased “prediction” of 0Nν [Zhu, Li 
et al. (2009)]. As the strain rate decreases and the temperature decreases, the stress is 
influenced in a multiplicative manner. Hence, the cumulative effects should be 
significant when comparing 0K atomic simulations at 5.0e8 s-1 with experiments 
which are typically at strain rate <1s-1 and at 298K. Thermally activated dislocation 
nucleation exhibits a physics-based correlation the yield stress and the strain rate 
according to: 

bk T
mσ

Ω =  [Asaro and Suresh (2005)] (4) 

where m is the strain-rate sensitivity exponent. If Ω is assumed stress-independent 
(i.e., Figure 6 is linear), it is possible to evaluate the temperature dependence by re-
arranging Equation 4 and solving for m at athermalε and athermalσ . The critical resolved 
shear stress at a given ε  and T is then predicted with the well-established formula: 

m

Athermal Athermal

σ ε
σ ε

 
=  
 





 
(5) 

Using Equation 5, the yield stress is predicted as a function of temperature at a variety 
of strain rates between 85.0 10× s-1 - 500  s-1. The results are then compared with 
dynamic simulation results at strain rates of 85.0 10× , 81.0 10× , and 71.0 10×  s-1. 
Unfortunately, it was impossible to go to lower strain rates, due to inherent 
computational limitations of atomic simulations. Refer to Figure 7. 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

69



 
Figure 5: Comparison of yield stress-T curves at different strain rates between MD 

simulations and model predictions: (A) Yield stress in Pa, (B) Logarithmic scale yield 
stress 

Figure 7 shows solid lines interpolated from the yield stress obtained with simulations 
at constant strain rate, corresponding with the peak stress value obtained prior to the 
first dislocation nucleation event. The data points without corresponding solid lines 
are values calculated directly using Equation 5. Figure 7B is identical to Figure 7A, 
however with a logarithmic scale on the y-axis. Figure 7B provides a clear 
demonstration that the temperature dependence does not reach an asymptote at 

600KT >  and 
45.0 10ε > ×  s-1. 

The results in Figure 7 demonstrate remarkable consistency between the simulated 
and analytically predicted yield stress, as a function of strain rate and temperature 
between 

7 81.0 10 5.0 10ε× ≤ ≤ × and up to 800K. This is not coincidental, as the 
temperature dependence is significantly strain-rate dependent, as demonstrated by the 
significant difference between 

85.0 10ε = × and 
75.0 10ε = ×  by 1 order of magnitude 

at 800K. This provides an extremely significant timescale link between atomic 
simulation (<100μs) and experiments (>1ms), and a valuable constitutive model. 

3.5 Effectiveness of model at low strain rate and significance 

This section will discuss the suitability of the model derived from an energy-based 
criterion to effectively predict the rate-dependence of yield stress and the significance 
of this for atomic simulation studies.  

The primary challenge of simulation-based studies, is establishing an effective link 
between the idealised, theoretical model and the real-world properties. Fundamentally, 
energy criteria are ideal, as they are pure thermodynamic values that are time-size-
temperature independent, and can also be used to explain complex “real-world” non-
ideal material properties by accounting for defect energies. However, this requires a 
consistent mechanism when effects of strain rate and material defects are included. 
For example, due to time-dependent effects, “slow” processes such as mechanical 
creep may not be observed in atomic simulations, because they require longer 
timeframes (> 1s). However, it can be assumed to be a very good approximation of 
homogenous dislocation nucleation processes, such as is consistently observed in 
nano-indentation experiments [Lorenz, Zeckzer et al. (2003; Zhao, Ma et al. (2012)]. 
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The model obtained corresponds very well with previous studies [Asaro and Suresh 
(2005; Zhu, Li et al. (2008; Deng and Sansoz (2010; Zhang, Liu et al. (2013)], and 
there is evidence that the energy-based criterion is effective for atomic-experimental 
timescale linking [Zhu, Li et al. (2008)]. 

6  
Figure 6a: Small temperature range comparison of experiment and predicted results  

 
Figure 7b: Extrapolation of polynomial regression models showing results may diverge 

Figure 8: Comparison of predicted and experimental flow stress at 21.54 10ε −= × s-1 

Although the accuracy of the model derived in this paper is very good for all the 
testable strain rates, it cannot be validated at low strain rates (i.e., 

65.0 10ε < × ) by the 
same atomic simulation approach, as explained in the introduction. The flow stress 
provides an analogue for the experimental nucleation yield stress [Deng and Sansoz 
(2010)]. Hence, Figure 8 validates the model by comparing the flow stress as a 
function of temperature from an experimental study with pure FCC Al [Rosen and 
Bodner (1967)] with the predicted yield stress at a strain rate of 

21.54 10ε −= × s-1. 
This provides an indication of the validity of the model for low strain rate regimes by 
comparing with results in the literature. Note: this is limited due to the small data set 
available experimentally [Rosen and Bodner (1967)]. The results are very consistent 
around the temperature of 300K. However, the results appear to diverge slightly as 
the experimental temperature decreases below 0°C. To test the divergence, the results 
are backwards extrapolated with regression models, showing that a 2nd order model 
will exhibit fairly significant divergence as 0T K→ . However, the result is 
remarkably consistent considering that the simulation results at 

85.0 10ε = × s-1 and 
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300K is 28 times greater than the experimental result. The result is a very promising 
time and size link from atomistic to experimental results. 

4.0 Conclusions 
This study demonstrates that the non-elastic mechanical properties of crystalline 
materials can be defined by the atomic-scale crystal defect processes, which are 
driven by the thermal and mechanical limits. This paper shows that the yield stress 
(mechanical limit) in a defect-free single crystal can be correlated with the activation 
energy for dislocation nucleation. The activation energy is hence used as a 
fundamental-basis to model the temperature-dependence (thermal limits). More 
significantly, this paper demonstrates that the stress-dependence of the activation 
energy (i.e., the activation volume) can be used to accurately predict the effect of 
strain rate on the temperature-dependence of mechanical strength. In other words, this 
paper shows that a fundamental energy criterion from atomistic simulations can be 
used to derive an effective constitutive model for temperature- and rate- dependent 
thermo mechanical properties! This is a critical insight, because it enables a timescale 
link between atomistic simulations at very high strain rates ( 65.0 10ε > × s-1), and 
macro-scale simulations and/or experiments.  
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Abstract: This paper investigates the flow of a nanofluid past a stretching permeable sheet under the 

influence of transverse magnetic field. The space and temperature dependent heat source/sink effect is 

considered. The governing partial differential equations are transformed into ordinary differential 

equations with the help suitable similarity transformation. The transformed ordinary differential equations 

are solved using Spectral Relaxation Method. To validate the accuracy of the method, a comparison of 

Nusselt and Sherwood number with the data of previous work is presented, which shows an excellent 

agreement. The effects of magnetic field, suction, space and temperature dependent heat sourcr/sink, 

Lewis number, thermophoresis and Brownian motion on the flow field, temperature and nanofluid particle 

concentration are studied with the help of graphs and tables. 

Keyword: Magnetic field, Nanofluid, Non uniform heat source/sink, Spectral Relaxation Method, similar 

solution. 

1. Inroduction 

Nanofluids are suspensions of nanoparticles (nominally 1-100nm in size) in conventional base fluids 

such as water, oils or ethylene glycols. The nanoparticles used in nanofluids are typically made of metals, 

carbides, oxides or carbon nanotubes. Nanofluids have interesting properties that make them potentially 

useful in many applications in heat transfer [1]  including microelectronics, fuel cells, pharmaceutical 

processes, and hybrid-powered engines, engine cooling, vehicle thermal management, domestic 

refrigerator,chiller, heat exchanger, nuclear reactor coolant, in grinding, in space technology, defense and 

ships, and in boiler flue gas temperature reduction. They exhibit enhanced thermal conductivity and the 

convective heat transfer coefficient compared to the base fluid [2]. Choi [3] is the first who used the term 

nanofluids to refer to the fluid with suspended nano particles. Choi et al. [4] reported that addition of 

small amount (less than 1\% by volume) of nanoparticles to conventional heat transfer liquids increased 

the thermal conductivity of the fluid upto approximately two times. 

Magnetohydrodynamic boundary layer flow of nanofluid and heat transfer over a linear stretching sheet 

has diverse applications in industrial, scientific and engineering problems such as boundary layer flow 

control, MHD power generators, micro MHD pumps,  the cooling of nuclear reactors, plasma studies, 

geothermal energy extraction, cooling of large metallic plates in bathes, micro mixing of physiological 

samples, biological transportation and drug delivery [5-8]. Crane [8] was the first to analyze boundary 

layer flow of a Newtonian fluid induced by a stretching of elastic sheet moving in its own plane linearly. 

Several researchers [9 -13] studied analytically \ numerically the various aspects of problem of nanofluid 

flow over a stretching surface under different conditions. Salari et al. [14] analyzed numerically the heat 

transfer of nanofluid over a flat stretching sheet considering two sets of boundary conditions viz (i) a 
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constant and (ii) a linear streamwise variation of nanoparticle volume fraction and wall temperature. The 

boundary layer flow and heat transfer over a permeable stretching sheet due to a nanofluid under the 

influence of external magnetic field, slip boundary condition and thermal radiation was investigated by 

Ibrahim and Shankar [15]. Ibrahim et al. [16] studied theoretically the effect of magnetic field on 

stagnation point flow and heat transfer of nanofluid flow over a stretching sheet. It was reported that the 

heat transfer rate at the surface increases with the magnetic parameter when the free stream velocity 

exceeds the stretching sheet velocity. Makinde et al. [17] analyzed the combined effects of buoyancy 

force, convective heating, Brownianmotion and thermophoresis on the stagnation point flow and heat 

transfer of an electrically conducting nanofluid towards a stretching sheet under the influence of magnetic 

field. Qasim et al. [18]  investigated the problem of magnetohydrodynamic flow of ferrofluid along a 

stretching cylinder with velocity slip and prescribed surface heat flux. Bhattacharyya and Layek [19] 

considered the boundary layer flow of a nanofluid due to an exponentially permeable stretching sheet with 

external magnetic field. 

The study of temperature dependent heat source/sink on the heat transfer characteristics is 

interesting owing to significant temperature differences between the surface and ambient-fluid in various 

engineering applications. The effect of space- and temperature dependent internal heat 

generation/absorption on the heat transfer characteristics of the flow have been studied by several 

researchers [20 – 25] under different conditions and configurations. Abel and Mahantesh [26] presented 

an analytical solution of the viscoelastic fluid flow and heat transfer over a stretching sheet under the 

influence of non uniform heat source/sink and uniform magnetic field. Ramesh et al. [27]  investigated 

numerically the steady MHD flow of a dusty fluid near the stagnation point past a permeable stretching 

sheet with the effect of non-uniform heat source/sink. In view of the above referred works we consider the 

flow of nanofluid past a permeable stretching sheet under the influence of an external magnetic field 

taking into account the effect of the space and temperature dependent heat source/sink. The nonlinear 

governing partial differential equations for the flow, energy and nanoparticle concentration are 

transformed into ordinary differential equations using similarity transformation and are then solved 

numerically by Spectral Relaxation Method. 

2. Mathematical Formulation 

Consider two dimensional steady boundary layer flow of a viscous, incompressible, electrically 

conducting, heat generating/ absorbing nanofluid past a stretching sheet in a quiescent fluid. The velocity 

of stretching sheet is 
w

U ax=  (where 0a >  is the constant acceleration parameter). The x − axis is taken 

along the sheet in vertically upward direction and y − axis is taken normal to the sheet. The surface of the 

sheet is maintained at uniform temperature and concentration, 
w

T  and 
w

C , respectively, and these values 

are assumed to be greater than the ambient temperature and concentration, T∞  and C∞ , respectively. The 

whole system is permeated by a uniform transverse magnetic field 0B  which is applied parallel to y −

axis. The induced magnetic field is neglected in comparison to applied one. It is assumed that both the 

fluid and nanoparticles are in thermal equilibrium state. The thermo physical properties of the nanofluid 

are assumed to be constant. The pressure gradient and external forces are neglected. In addition, the fluid 

suction is imposed at the sheet surface in the y −  direction.  
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Under the above assumptions and usual boundary layer approximation, the magnetohydrodynamic 

steady nanofluid flow, heat and mass transfer with internal heat generation/absorption are governed by the 

following equations: 

The continuity equation 

                                                        0
u v

x y

∂ ∂
+ =

∂ ∂
,                                                            ….(1) 

The momentum equation equation 

                                                    
22

0

2

f

Bu u u
u v u

x y y

σ
υ

ρ

∂ ∂ ∂
+ = −

∂ ∂ ∂
,                                        ….(2) 

The energy equation 

                         
( )

22

2

'''
T

B

f

DT T T C T T q
u v D

x y y y y T y c
α τ

ρ∞

  ∂ ∂ ∂ ∂ ∂ ∂
+ = + + +  

∂ ∂ ∂ ∂ ∂ ∂   

,                  ….(3) 

The nanoparticle concentration equation 

                                             
2 2

2 2

T
B

DC C C T
u v D

x y y T y∞

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
,                                     ….(4)  

where u  and v  are velocity components along x −  and y −  directions, respectively. 

( ) ( ),  ,  ,  ,  ,  ,  ,  B Tp f
c c c D Dα υ ρ ρ ρ  and τ  are, respectively, thermal diffusivity, kinematic viscosity, 

mass density, specific heat, effective heat capacity of the nanoparticle material, heat capacity of the fluid, 

Brownian diffusion  coefficient, thermophoresis diffusion coefficient and a parameter defined by 

( ) ( ) .
p f

c cρ ρ   

The associated boundary conditions are  

                                 
( ) 0at 0 :  ,  ;  ;  

as :  0;  ;  

w w wy u U x ax v V T T C C

y u T T C C∞ ∞

= = = = − = = 


→ ∞ → → → 
,                                  ….(5) 

In order for similarity condition to exist, the non uniform heat source/sink '''q   is modeled as [28] 

                                 
( )

( ) ( )* *''' '
w

w

kU x
q A T T f B T T

xυ ∞ ∞

 
 = − + −   

 
,                                             ….(6) 

where k  is thermal conductivity, *A  and *B   are parameters of space-dependent and temperature-

dependent heat generation/absorption. Both *A  and *B  positive corresponds to internal heat source and 

negative to internal heat sink. 

To transform the governing equations into a set of similarity equations, the following transformations are 

introduced 

                   ( ) ( ),  , ,  ,  .
w w

T T C Ca
y x y a xf

T T C C
η ψ υ η θ φ

υ
∞ ∞

∞ ∞

− −
= = = =

− −
                                     ….(7) 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

76



where ψ  is the stream function, ( )f η  is a dimensionless stream function, θ   is dimensionless 

temperature, φ   is dimensionless concentration function and η  is similarity variable. Continuity equation 

is satisfied if the velocity components are taken as 

                                                    ,    u v
y x

ψ ψ∂ ∂
= = −

∂ ∂
                                                                   ….(8) 

Eqns. (1) – (4), after similarity transformation, are  

                                                   2''' '' ' ' 0f ff f Mf+ − − = ,                                                            ….(9) 

                                                  ( )* * 21
'' ' ' ' ' ' 0

Pr
b tA f B f N Nθ θ θ φ θ θ + + + + + =  ,                    ….(10)     

                                                   '' ' '' 0t

b

N
Lef

N
φ φ θ+ + = ,                                                             ….(11)   and 

the associated boundary conditions become 

                 ( ) ( )' 0 1,  (0) ,  (0) 1,  (0) 1,     ' 0,  ( ) 0,  ( ) 0f f S fθ φ θ φ= = = = ∞ → ∞ → ∞ → ,        ….(12)  
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where ,  Pr,  ,  ,  
b t

M N N Le   and S are, respectively, magnetic parameter, Prandtl number, Brownian 

motion parameter, thermophoresis parameter, Lewis number and suction parameter. 

The physical quantities of interest, the local skin friction coefficient 
x

Cf , the local Nusselt number 

x
Nu  and the local Sherwood number 

x
Sh , are defined as: 

                                              ( )1 2
Re '' 0 ,x xCf f=                                                                   ….(13) 

                                              ( )1 2
Re ' 0 ,x xNu θ− = −                                                                ….(14) 

                                              ( )1 2
Re ' 0 ,x xSh φ− = −                                                                …. (15) 

where Re w
x

U x

υ
=  is the local Reynolds number. 

3. Solution Technique 

To solve the non linear boundary value problem described by eqns. (9) – (12), We adopted the 

spectral relaxation method (SRM) [29]. To apply SRM on eqns. (9) – (12), we set ( ) ( )'f gη η=   

Then the eqns. (9) – (11) reduce to the following system of equations: 

                                                ' ,f g=                                                                              ….(16) 

                                               2'' ' 0,g fg g Mg+ − − =                                                        ….(17) 

                                               ( )* * 21
'' ' ' ' ' ' 0,

Pr
b tA f B f N Nθ θ θ φ θ θ + + + + + =              ….(18) 
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                                                '' ' '' 0,t

b

N
Lef

N
φ φ θ+ + =                                                       ….(19) 

And the boundary conditions (12) become 

        ( ) ( )0 1,  (0) ,  (0) 1,  (0) 1,     g 0,  ( ) 0,  ( ) 0g f S θ φ θ φ= = = = ∞ → ∞ → ∞ → ,                  ….(20) 

In frame work of SRM, writing the iteration scheme as 

'

1 1,   (0) ,r r rf g f S+ += =                                                                                                            ….(21) 

( ) ( )2

1 1 1 1 1 1'' ' ,   0 1,   0,r r r r r r rg f g Mg g g g+ + + + + ++ − = = ∞ =       ….(22) 

( ) ( ) ( )* 2 *

1 1 1 1 1 1 1
'' Pr ' Pr ' ' Pr ' ,   0 1, 0,

r r r r b r r t r r r r
f B N N A gθ θ θ φ θ θ θ θ+ + + + + + ++ + = − + + = ∞ =    ….(23) 

( ) ( )1 1 1 1 1 1
'' ' '' ,   0 1, 0.t

r r r r r r

b

N
Lef

N
φ φ θ φ φ+ + + + + ++ = − = ∞ =       ….(24) 

The domain is 0 η η∞≤ ≤  and η∞  is the edge of the boundary layer. Using the mapping 
2

1
η

ξ
η∞

= −   

the domain [0, ]η∞  is mapped into the computational domain [ ]1,1− . Defining the grid points 

cos ,
j

j

N

π
ξ

 
=  

 
 where N is the number of grid points, 0,1, 2,... .j N=  . Applying the Chebyshev pseudo-

spectral method on eqns. (21) – (24), we obtain 

            ( )1 1 1 1,    ,r r NA F B f Sξ+ += =          ….(25) 

( ) ( )2 1 2 1 1 0,    1, 0,r r N rA G B g gξ ξ+ + += = =        ….(26) 

( ) ( )3 1 3 1 1 0,    1, 0,r r N rA B θ ξ θ ξ+ + +Θ = = =       ….(27) 

( ) ( )4 1 4 1 1 0,    1, 0,r r N rA B φ ξ φ ξ+ + +Φ = = =        ….(28) 

where  

1 1
,   

r
A D B g= =  , 2 2

2 1 2( ) ,    ,r rA D diag f D MI B g+= + − =   

2 * 2 *

3 1 3 1
(Pr ) ,    Pr ' ' Pr ' ,

r b r r t r r
A D diag f D B I B N N A gφ θ θ+ +

 = + + = − + +   

( )2

4 1 4 1
,   '' ,t

r r

b

N
A D diag Lef D B

N
θ+ += + = −   

with I and D are being an ( ) ( )1 1N N+ × +  identity and differentiation matrix, respectively. 

,  ,   and F G Θ Φ , are the values of functions ,  ,  f g θ  and φ , respectively, computed at the grid points. 

The initial approximations satisfying the boundary conditions, used to start the iteration process, are 

( )0 0 0 01,  ( ) ,  ( )  and ( ) .f S e g e e e
η η η ηη η θ η φ η− − − −= − + = = =   
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4. Results and Discussion 

To demonstrate the accuracy of our numerical results, Tables 1 and 2 are the values of ( )' 0θ−  and 

( )' 0φ−  for the case when * *0, 0, 0 and 0M A B S= = = =  between our calculations and the data presented 

by Khan and Pop [9]. These tables show good agreement. Figs. 1 and 2 demonstrate the distribution of 

dimensionless velocity ( )'f η  and temperature ( )θ η  for different values of magnetic parameter M when 

* *Pr 6.7850, 0.3, 0.2, 2, 0.2, 0.2 and 0.5t bN N Le A B S= = = = = = = . The velocity reduces with the 

increase in Magnetic parameter. The presence of magnetic field in an electrically conducting fluid tends to 

produce a body force against the flow. This type of resistive force tends to slow down the motion of the 

fluid in the boundary layer region which, in turn, increases the temperature, this is exactly what we 

observe in Figs. 1 and 2. Consequently, the thermal boundary layer thickness becomes thicker for stronger 

magnetic field. 

 

 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

79



 

 

Figs. 3 and 4 depict the influence of suction parameter S on the velocity and temperature profiles in the 

boundary layer respectively. Due to imposition of wall suction, the fluid is brought closer to the sheet and 

it reduces momentum boundary layer thickness as well as the thermal boundary layer thicknesses. This 

causes reduction in the velocity and temperature profiles. 

The temperature profiles for different space-dependent and temperature-dependent heat source/sink 

parameters are presented in Figs. 5 and 6 when * *Pr 6.7850, 0.3, 0.2, 2, 0.2, 0.2,t bN N Le A B= = = = = =

3 and 0.5M S= = . On increasing values of *A   and/ or *B  produce increase in the temperature 

distributions of the nanofluid. This is expected since the presence of heat source * 0A >  and/ or * 0B >  in 

the boundary layer generates energy which causes the temperature of the fluid to increase.  Heat sink 
* 0A <  and/ or * 0B <  has the opposite effect, namely cooling of the fluid. The thermal field exerts forces 

on all molecules and nano particles in the nanofluid forcing them to move, in the direction of the heat 

flow, i.e., from the hot side to the cold side. 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

80



 

 

Fig. 7 presents the effects of the Bownian motion and thermophoresis effect on the temperature 

distribution. The figure reveals that the temperature of the fluid increases with increasing values of 
t

N  

and 
b

N . The Brownian motion takes place due to the presence of nanoparticles and for the increase in 
b

N  

the Brownian motion is affected and consequently the heat transfer characteristics of the fluid changes. 

Increase in 
t

N  causes increment in the thermophoresis force which tends to move nanoparticles from hot 

to cold side and consequently increases the temperature of the fluid. 

The variation of nanoparticle concentration for various values of Lewis number is shown in Fig. 8. It is 

observed that Lewis number significantly affects the concentration distribution. There is decrease in 

volume fraction on increasing Lewis number, since higher Lewis number implies a lower Brownian 
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diffusion coefficient 
b

N  which result in a shorter penetration depth for the concentration boundary layer. 

It is also noticed that the volume fraction initially increases near the sheet and after attaining a peak it 

decreases away from the sheet for smaller values of Le. 

Table 3: Variations of skin friction, Nusselt number and Sherwood number for various values of 
* *, , ,M S A B   with Pr 6.7850, 2, 0.3  and  0.2.

t b
Le N N= = = =  

 

Table 3 represents the variations in local skin friction coefficient ''(0),f−  local Nusselt number '(0)θ−  

and local sherwood number '(0)φ−  for various values of  * *, ,  and M S A B .  For stronger magnetic field 

the values of ''(0)f−  and '(0)φ−  increases. A very minor increase in '(0)θ−  is observed with the 

increase in M. Negative values of '(0)φ−  indicate that nanoparticle is transferred from the fluid to 

movingsurface as discussed before. ''(0),f−  '(0)θ−  and '(0)φ−  are the increasing function of suction 

parameter S. '(0)θ−  and '(0)φ−  are decreasing functions of heat source that is, * 0A >  and * 0B >  while 

increasing with heat sink * 0A <  and * 0B < . 
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Table 4: Variations of  Nusselt number and Sherwood number for various values of , ,
t b

Le N N   with 

                     
* *Pr 6.7850, 3, 0.5, =0.2 and  B 0.3.M S A= = = =  

 

The numerical values of '(0)θ−  and '(0)φ−  for different values of ,  and 
b t

Le N N  are displayed in Table  

4. It is evident from table 4 that Le  has decreasing influence on both '(0)θ−  and '(0)φ− . '(0)θ−   

decreases with thermophoresis and Brownian motion. As thermophoresis increases, '(0)φ−  decreases, 

attains a minimum value and again increases in the direction from fluid to the wall. Brownian motion 

decreases '(0)φ− , approaches a minimum value and again increases in opposite direction, that is, from the 

wall to the fluid. 

5. Conclusion 

The steady laminar, hydromagnetic nano fluid flow, heat and mass transfer adjacent to a permeable, 

continuously stretching sheet with linear surface velocity in the presence of magnetic, heat  generation/ 

absorption which is a function of both space and temperature is investigated. The nonlinear governing 

equations for the flow are solved numerically using spectral relaxation method. 

Numerical results for the velocity, temperature and concentration are presented graphically for various 

values of parameters. In addition, Numerical data for the local skin-friction coefficient, the local Nusselt 

number and the local Sherwood number are tabulated for various values of magnetic field parameter, 

coefficients of space-dependent and time-dependent internal heat generation/absorption, suction, Lewis 

number, thermophoresis and the Brownian motion parameters. It is found that: The momentum boundary 

layer become thinner and the thermal boundary layer thickness and nanoparticle volume fraction 

boundary layer thickness become thicker for stronger magnetic field. The local Nusselt number and local 

Sherwood number decreases as both space-dependent and temperature-dependent internal heat generation 

coefficients increase. The opposite impact is observed as both space-dependent and temperature-
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dependent internal heat absorption coefficients increase. Wall fluid suction have increasing influence on 

the local skin friction coefficient, local Nusselt number and local Sherwood number. 
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Abstract 
The use of fibre reinforced polymer (FRP) as a strengthening material for reinforced concrete 
structures to resist blast loads has attracted great interests in recently years. The structural responses 
of FRP-strengthened reinforced concrete panels under blast loads are investigated intensively in this 
paper by employing a finite element model recently developed by the authors. The effects of the 
thickness of the strengthening FRP sheet, the retrofitted surface, the standoff distance and the mass 
of the charge on the structural behavior of the reinforced concrete panels under blast loads are 
studied. The results of the parametric study are analyzed and presented in this paper.  

Keywords: FRP, Reinforced concrete panel, Blast loading, Finite element model 

Introduction 

In recent years, fibre reinforced polymers (FRPs) have been increasingly used for retrofitting 
reinforced concrete (RC) structural components to against blast accidents which could produce an 
overload pressure much greater than the design load of a structure in a very short period of time and 
result in severe damage to the RC structure. The FRP  attachments can significantly improve the 
blast resistance of structures without forfeiting usable space [Nam et al. (2010)]. FRP is also 
considered to be one of the most suitable materials for retrofitting concrete structures under blast 
loads, as it can be easily installed and naturally blended to the structures [Nam et al. (2009)].  
 
A few experimental studies on the FRP-strengthened RC panels subjected to blast loads have been 
reported. However, full scale experimental tests are usually costly and time consuming. By contrast, 
finite element analysis is a much more economical and efficient method for predicting the behaviors 
of RC structures and structural components especially for the investigation of the parametric effects. 
Several numerical studies for the analysis of FRP-strengthened RC panels under blast loads [Nam et 
al. (2010); Nam et al. (2009); Mosalam and Mosallam (2001)] were conducted. However, the finite 
element models employed in these researches were either not very well validated or didn’t consider 
the strain rate effect on the material properties of FRP appropriately. A finite element model, which 
considered the strain rate effect on FRP materials, was established by Tanapornraweekit et al. 
[Tanapornraweekit et al. (2010)] for modelling the structural behavior of GFRP and CFRP-
strengthened reinforced concrete slabs under air blasts. Although progress has been made in the 
numerical modelling of FRP-strengthened RC structures under blast loading, the numerical models 
developed are still far from ideal due to the complexity of dynamic response of reinforced concrete 
structures and the lack of information on the dynamic material properties of FRPs. Moreover, a 
comprehensive study on the structural responses of FRP-strengthened RC panels under blast loads 
affected by various parameters has rarely been reported.  
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Recently, a 3D finite element model was developed by the authors for the analysis of the structural 
behavior of FRP strengthened RC panels under blast loading [Lin et al. (2015)]. In this model, 
strain rate effects on the material models of concrete under tension and compression were 
considered separately, and strain rate effects on the material models of steel reinforcements and 
FRP laminates were also taken into account. The proposed finite element model was demonstrated 
to be effective and accurate for the prediction of the structural behavior of FRP-strengthened RC 
panels under blast loads. In this paper, the 3D finite element model is firstly introduced, and then it 
is employed to investigate the effects of a series of parameters on the structural behaviors of FRP-
strengthened RC panels under blast loads, including the effects of the thickness of FRP sheet, the 
retrofitted surface, the standoff distance and the mass of the charge. The research findings are 
reported in this paper, which are expected to be able to provide reliable and useful references for 
structural design.     

A 3D Finite Element Model 

The 3D nonlinear finite element model was established using the commercial software package LS-
DYNA. Concrete was modelled using the Solid 164 element, which is an 8-node constant stress 
hexahedron brick element, and the Lagrangian formulation was applied in the analysis. Steel 
reinforcing bars were modelled using the Link 160 truss element, and FRP laminates were modelled 
using the Shell 163 element, which is a 4-noded element with both bending and membrane 
capabilities. A perfect bond was assumed both between concrete and steel reinforcements and 
between FRP laminates and concrete panel. 

Material Model for Concrete 

The MAT72 R3 was employed for modelling the concrete. In the study conducted by Lin et al. [Lin 
et al. (2014)], various material models available for the analysis of concrete structures under 
dynamic loading were compared, and that the CONCRETE_DAMAGE_REL3 (MAT72 R3) in LS-
DYNA was found to be relatively simple and numerically robust. It can reproduce the key concrete 
behaviors which are critical to blast and impact analyses, and it is also easy to be calibrated using 
laboratory data [Magallanes et al. (2010)].  
 
In addition, concrete dynamic behavior is strain rate dependent. Both tensile and compressive 
strengths of concrete can be increased significantly under dynamic loading. In MAT72 R3, the 
strain rate effect is accounted for by using a dynamic increase factor (DIF), which is the ratio of the 
dynamic-to-static material strength. In the developed finite element model, the values of DIF 
suggested by CEB-FIP Model Code 1990 [CEB-FIP (1993)] were employed for concrete in 
compression, while the modified formulations proposed by Malvar and Crawford [Malvar and 
Crawford (1998)] were used for concrete in tension. The formulas of DIF for concrete in 
compression and tension are given in the following equations. 
 
For concrete in compression: 

 
for  (1a) 

 
for  (1b) 

where  is the dynamic compressive strength of concrete,  the static compressive strength of 
concrete,  the strain rate in compression, and  the quasi-static strain rate in 
compression.  is the coefficient given by , and  is expressed as 

. 
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For concrete in tension: 

 
for  (2a) 

 
for  (2b) 

where  is the dynamic tensile strength of concrete,  the static tensile strength of concrete,  
the strain rate in tension, and  the quasi-static strain rate in tension.  is the 
coefficient given by , and  is expressed as . 
 
Due to the presence of strain-softening phenomenon in concrete, non-converged or incorrect 
converged solutions are usually obtained from finite element analysis, and the results are not 
objective with regard to mesh refinement [de Borst (1987)]. Therefore, a localization limiter must 
be introduced in concrete material model to remedy this situation. In the MAT72 R3, a crack band 
model is employed for this spurious mesh sensitivity caused by the strain-softening. In the single 
element tests carried out by Lin et al. [Lin et al. (2014)], the softening of small elements was found  
to be relatively slow. With the increase in element size, the softening was accelerated to maintain 
constant fracture energy. The stress-strain relationships for the elements with size between 1 mm 
and 25 mm were found to coincide very well. Therefore, the size of finite element mesh in the 
present model was chosen to be 15 mm. 

Material Model for Steel 

In the proposed finite element model, steel reinforcing bars were modelled using the 
PLASTIC_KINEMATIC Model (MAT3). The isotropic and kinematic hardening can be specified 
by varying the hardening parameter between 0 and 1. The Cowper-Symonds model [Hallquist 
(2006)] was used to take into account the strain rate effect under blast loading, which scaled the 
yield stress by a strain-rate dependent factor of , where  is the strain rate, and  and  
are the strain rate parameters for Cowper-Symonds model, which were 255.4 and 7.59 respectively 
in the proposed model. 

Material Model for FRPs 

The material properties of FRPs are also strain rate sensitive, and their modulus and strength 
increase with the increasing of the loading rate. So far, very few constitutive relationships of FRPs 
considering dynamic loading effect have been reported in the literature, and the use of an improper 
material model for FRPs under high strain rate might lead to inaccuracy in modelling the structural 
performance of FRP-strengthened RC structures subjected to blast loading. In the proposed finite 
element model, FRP laminates were modelled using the PLASTICITY_POLYMER Model 
(MAT89), and the strain rate effect on FRP material properties were taken into account by 
employing the formulas used by Tanapornraweekit et al. [Tanapornraweekit et al. (2010)] for glass 
fibre reinforced polymer (GFRP) and carbon fibre reinforced polymer (CFRP) laminates. The 
formulas for GFRP laminates are given as follows. 
 
Elastic modulus of GFRP (unit: GPa): 

 for  (3a) 
 for  (3b) 

 for  (3c) 
 

Tensile strength of GFRP (unit: GPa): 
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 for  (4a) 
 for  (4b) 
 for  (4c) 

 
Failure strain of GFRP: 

 for  (5a) 
 for  (5b) 

 
where ,  and  are the dynamic elastic modulus, tensile strength and failure strain of GFRP 
respectively, ,  and  the static elastic modulus, tensile strength and failure strain of GFRP 
respectively, and  is the strain rate.  

Numerical Analysis 

The developed finite element model has been validated by the authors [Lin et al. (2015)] by 
modelling two RC concrete panels strengthened with GFRP laminates. The two reinforced concrete 
panels (Panel b was the repeat test specimen of Panel a) had the same design and were supported on 
two short edges by a steel frame. They were reinforced on both top and bottom with 6 mm 
longitudinal steel bars spaced at 225 mm centre to centre, and 6 mm transverse steel bars at 300 mm 
centre to centre. In addition, 6 mm steel reinforcing bars were placed on both sides of the support 
zone at 65 mm centre to centre space. The yield strength, ultimate strength, ultimate strain and 
elastic modulus of steel reinforcing bars were 356 MPa, 412 MPa, 22.2% and 194 GPa, respectively. 
The compressive strength of concrete was 32 MPa. A 0.353 mm thick single layer GFRP sheet was 
attached to the top and bottom faces of the reinforced concrete panels. The Young’s modulus and 
tensile strength of the GFRP were 75.6 GPa and 1331 MPa, respectively. The GFRP-strengthened 
RC panels were subjected to a blast load caused by a charge with an equivalent TNT mass of 0.45 
kg, which was placed at 0.5 m above the centre of the concrete panel. The central displacement-
time histories obtained from the developed finite element model, the tests and Tanapornraweekit et 
al.’s numerical analysis [Tanapornraweekit et al. (2010); Tanapornraweekit et al. (2011)] are shown 
in Fig. 1. 
 

 
Figure 1. Central displacement-time histories of Panel a and Panel b 

 
It can be seen that the computed results agree very well with the test data, and they are closer to the 
test results than Tanapornraweekit et al.’s prediction [Tanapornraweekit et al. (2010)], especially 
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for the residual deflection. The maximum and residual deflections of the GFRP-strengthened 
reinforced concrete panel obtained from the present model are 27.2 mm and 5.3 mm respectively.  
 
In this study, the developed finite element model is employed to further investigate the structural 
responses of FRP-strengthened RC panels affected by various parameters, including the effects of 
the thickness of the FRP sheet, the retrofitted surface, the standoff distance and the mass of the 
charge. The GFRP-strengthened RC panels (Panel a and Panel b) are used herein as a basic model, 
and the material properties of concrete, steel and GFRP sheet retain the same. In the parametric 
study, the TNT charge mass varies from 0.30 kg to 0.75 kg, and the standoff distance from 0.3 m to 
1.0 m. In the basic model, the RC panel is strengthened by the GFRP sheets of the same thickness 
on both top and bottom surfaces of the panel. In order to investigate the FRP strengthening effect, 
the thickness of the FRP sheets on the top and bottom surfaces are changing from 0 to 1.0 mm and 
from 0.353 mm to 1.0 mm respectively, thus the modelled RC panels either have thicker GFRP 
sheet strengthened on the bottom surface or have GFRP sheet of the same thickness on both top and 
bottom surfaces. The details of various parameters and the predicted maximum and residual 
deflections of the concrete panels are listed in Tabel 1. Figs. 2 to 4 show the central displacement-
time histories of GFRP-strengthened RC panels with various parameters. 
 
As can be seen, with the increase of TNT charge mass, both the maximum and residual deflections 
of the GFRP-strengthened RC panels increase significantly. The maximum deflection of the panel 
under the blast of a charge mass of 0.30 kg TNT is 53.3%, 35.4% and 15.1% of that of the 0.45 kg, 
0.60 kg and 0.75 kg TNT respectively. The residual deflection of the panel subjected to 0.30 kg 
TNT is 2.2 mm, which is 41.5%, 31.9% and 13.7% of that under 0.45 kg, 0.60 kg and 0.75 kg TNT 
blast loads respectively. For the same TNT charge mass, the maximum and residual deflections of 
GFRP-strengthened RC panels decrease with the increase of the standoff distance. The maximum 
and residual deflections for the panel with a standoff distance of 1.0 m are 9.5 mm and 2.7 mm 
respectively, which are only 34.9% and 50.9% respectively of those obtained for the panel with a 
standoff distance of 0.5 m. Both the maximum and residual deflections increase when the standoff 
distance reduces from 0.5 m to 0.4 m, but not by much. Whereas, when the standoff distance is 
further reduced from 0.4 m to 0.3 m, the maximum and residual deflections of panel suddenly jump 
to 126.8 mm and 48.5 mm respectively, which are about 4 times and 10 times of those for the panel 
at 0.4 m away from the charge.  
 
In addition, the thickness of the FRP strengthening sheet also affects the blast resistance of RC 
panels. In general, the maximum and residual deflections of the RC panels are reduced with the 
increase of the thicknesses of the FRP strengthening sheets. The maximum deflection of the RC 
panel with 1.0 mm GFRP sheets strengthened on both surfaces is 19.7 mm, which is 72.4% of that 
for the basic model with 0.353 mm GFRP sheet. The residual deflection is reduced from 5.3 mm to 
1.8 mm which is only 34.0% of the deflection in the basic model. Also, the RC panels strengthened 
with GFRP sheets of different thicknesses on the top and bottom surfaces are modelled in this study. 
By comparing the basic model with the panel without GFRP sheet strengthened on the top surface, 
it is found that the maximum deflection of the basic model is reduced by 4.2%, whereas the residual 
deflection is increased from 0 to 5.3 mm. When the thickness of the GFRP sheet on the top surface 
is kept constant as 0.353 mm, and that on the bottom surface is increased, the computed maximum 
and residual deflections are always a bit less than those obtained for the panel which has the same 
GFRP thickness on the top and bottom surfaces. However, it should be noted that the deflection 
when the panel bounces back is obviously reduced by strengthening the GFRP sheets with the same 
thicknesses on both surfaces, as can be seen in Fig. 4. Therefore, the damage on the top surface of 
the RC panels could be reduced by increasing the thickness of GFRP sheets on the top surface. 
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Table 1. Maximum and residual deflections affected by various parameters 

TNT Charge 
mass (kg) 

Standoff 
distance (m) 

GFRP thickness (mm) Maximum 
deflection 

(mm) 

Residual 
deflection 

(mm) Bottom (B)  Top (T)  
0.30 0.5 0.353 0.353 14.5 2.2 
0.45 0.5 0.353 0.353 27.2 5.3 
0.60 0.5 0.353 0.353 41.0 6.9 
0.75 0.5 0.353 0.353 96.3 16.1 

      
0.45 0.3 0.353 0.353 126.8 48.5 
0.45 0.4 0.353 0.353 33.6 5.0 
0.45 0.5 0.353 0.353 27.2 5.3 
0.45 0.75 0.353 0.353 16.8 3.4 
0.45 1.0 0.353 0.353 9.5 2.7 

      
0.45 0.5 0.353 0 28.4 0 
0.45 0.5 0.353 0.353 27.2 5.3 
0.45 0.5 0.5 0.353 23.0 1.8 
0.45 0.5 0.5 0.5 25.8 4.3 
0.45 0.5 1.0 0.353 18.4 -0.7 
0.45 0.5 1.0 1.0 19.7 1.8 

                            

 
 

Figure 2. Displacement-time histories of GFRP-strengthened RC panels under various TNT 
charge masses 

 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

91



 
Figure 3. Displacement-time histories of GFRP-strengthened RC panels at various standoff 

distances 
 

 
Figure 4. Displacement-time histories of RC panels with various strengthening laminates 

under blast loads 

Conclusions 

In this paper, a finite element model recently developed for modelling structural behavior of FRP-
strengthened RC panels under blast loads is firstly introduced, and then employed to investigate the 
responses of FRP-strengthened RC panels with various parameters under blast loads. It is found that 
the structural behavior of FRP-strengthened RC panel is very sensitive to the charge mass and the 
standoff distance. Care must be taken in the structural design, especially when increasing the charge 
mass or reducing the standoff distance. In addition, the effect of thickness of GFRP sheet on 
different retrofitting surface is studied. In general, with the increase in the thickness of the GFRP 
sheet, both the maximum and residual deflections of RC panel are decreased. Although no 
improvement in reducing the maximum and residual deflections could be observed by using thicker 
GFRP sheet on the top surface, the deflection when the RC panel bounces back could be reduced 
greatly.   
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Abstract 

The paper introduces a coupling FEM-BEM procedure for solving elastodynamic frequency domain 
problems. Emphasis is given to infinite domain analyses, including discrete complex heterogeneous 
regions, rendering a configuration in which neither the Finite Element Method (FEM) nor the 
Boundary Element Method (BEM), isolated, is ideally suited for the complete numerical analysis. 
In this case, the coupling of these methodologies is recommended, allowing for the exploration of 
their respective intrinsic advantages. The elastodynamic multi domain interaction is carried out here 
by an optimized iterative coupling procedure. This coupling technique allows for independent 
discretization strategies, not even needing to include matching interface nodes between methods, 
leading to a best of both worlds approach. In addition, optimal relaxation parameters are computed, 
in order to improve convergence of the iterative procedure, properly dealing with possible 
frequency domain  ill-posed problems. 

Keywords: Elastodynamics; frequency domain; iterative coupling; relaxation parameter  

Introduction 

The numerical simulation of arbitrarily shaped continuous bodies subjected to harmonic or transient 
loads remains, despite much effort and progress over the last decades, a challenging area of 
research. In most cases, discrete techniques, such as the finite element method (FEM) and the 
boundary element method (BEM) have been employed and continuously further developed with 
respect to accuracy and efficiency. Both methodologies can be formulated in the time domain or in 
the frequency domain, and each approach has relative benefits and limitations. The finite element 
method, for instance, is well suited for inhomogeneous and anisotropic materials as well as for 
dealing with the nonlinear behaviour of a body. For systems with infinite extension and regions of 
high stress concentration, however, the use of the boundary element method is by far more 
advantageous.  
In fact, it did not take long until some researchers started to combine the FEM and the BEM in 
order to profit from their respective advantages, trying to evade their disadvantages, and nowadays 
several works dealing with FEM-BEM coupling are available (an overview is provided by [Beskos 
(2003)], taking into account dynamic analyses). However, Standard coupling procedures of 
FEM/BEM can lead to several problems with respect to efficiency, accuracy and flexibility. First, 
the coupled system of equations has a banded symmetric structure only in the FEM part, while in 
the BEM part it is non-symmetric and fully populated. Consequently, for its solution, the optimized 
solvers usually used by the FEM cannot be employed anymore, which leads to rather expensive 
calculations with respect to computer time. Second, quite different physical properties may be 
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involved in the coupled model, resulting in bad-conditioned matrices when standard coupling 
procedures are considered. This may affect the accuracy of the methodology, providing misleading 
results. Third, the standard coupling methodology does not allow independent discretization for 
each sub-domain of the model, requiring matching nodes at common interfaces, which drastically 
affects the flexibility and versatility of the technique.  
In order to evade these drawbacks, iterative coupling procedures have been developed. Initially, 
static problems were studied considering iterative coupling approaches, and linear and nonlinear 
behaviour have been simulated [Lin et al (1996)], [Elleithy et al (2001; 2009; 2012)], [Jahromi et al 
(2009)], [Boumaiza and Aour (2014)]. Later on, dynamic problems were focused, and time domain 
analyses were initially implemented [Soares et al (2004)], [Soares (2008; 2012)]. Recently, 
frequency domain iterative analyses have also been considered; but, in this case, most works are 
related to fluid-fluid or fluid-structure coupled models [Bendali et al (2007)], [Soares and Godinho 
(2012)], [Godinho and Soares (2013)]. For an overview of recent advances in the iterative analysis 
of coupled models considering time and frequency domain approaches, the work of [Soares and 
Godinho (2014)] is recommended. 
Iterative coupling approaches allow BEM and FEM sub-domains to be analyzed separately, leading 
to smaller and better-conditioned systems of equations (different solvers, suitable for each sub-
domain, may be employed). Moreover, a small number of iterations is required for the algorithm to 
converge and the matrices related to the smaller governing systems of equations do not need to be 
treated (inverted, triangularized etc.) at each iterative step, providing an efficient methodology. This 
coupling technique allows independent discretizations to be efficiently employed for the boundary 
and finite element sub-domains, without any requirement of matching nodes at the common 
interfaces. As a matter of fact, in the present work, constant boundary elements and linear finite 
elements are considered, and matching functional nodes are never provided in the common 
interfaces. It is important to observe, however, that frequency domain analyses usually give rise to 
ill-posed problems and, in these cases, the convergence of the iterative coupling algorithm can be 
either too slow or unachievable if no special procedure is taken into account. In order to deal with 
this ill-posed problem and ensure convergence of the iterative coupling algorithm, an optimal 
iterative procedure is adopted here, with optimal relaxation parameters being computed at each 
iterative step. Thus, an expression to compute optimal relaxation parameters, which is quite 
efficient and easy to implement, is provided and discussed, being its effectiveness illustrated at the 
end of the paper, where numerical examples are analyzed. In the numerical examples, soil-structure 
interacting models are discussed, being the results of the proposed iterative coupling formulation 
compared to those of the standard coupling technique. As one will observe, the proposed technique 
is flexible, robust and efficient, allowing a quite effective coupling of the finite element and 
boundary element methods for frequency domain elastodynamic analyses. 

Governing Equations 

The frequency domain elastic wave equation for homogenous media is given by: 

         (1) 

where  and  stand for the displacement and the body force distribution components, 
respectively. In Eq. (1),  is the dilatational wave velocity and  is the shear wave velocity, they 
are given by:  and , where   is the mass density and   and  are the 
Lamé’s constants.  stands for viscous damping related parameters. Eq. (1) can be obtained from 
the combination of the following basic mechanical equations (proper to model heterogeneous 
media): 

         (2a)  
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         (2b) 

         (2c) 

where  and  are, respectively, stress and strain tensor components, and  is the 
Kronecker delta . Eq. (2a) is the momentum equilibrium 
equation; Eq. (2b) represents the constitutive law of the linear elastic model and Eq. (2c) stands for 
kinematical relations. The boundary conditions of the elastodynamic problem are given by:  

         (3a)  

         (3b) 

where the prescribed values are indicated by over bars,  denotes the traction vector along the 
boundary and  stands for the components of the unit outward normal vector. 

Boundary Element Modelling 

The BEM integral equation related to the elastodynamic model is given by:  

         (4)  

where  depends on geometric aspects,  stands for possible domain integral 
contributions (such as body sources) and the terms  and  represent the 
fundamental displacement and traction, respectively (X is the field point and ξ is the source point). 
For a two-dimensional approach, the fundamental solutions can be found at [Dominguez (1993)].  
By introducing spatial approximations for the variables of the model into the integral Eq. (4), the 
following system of equations can be obtained, once proper numerical treatment is considered 
[Dominguez (1993)]:  

         (5)  

where ,   and   are influence matrices,   is a vector related to domain integrals and  and  are 
displacement and traction vectors, respectively, at frequency . After considering the boundary 
conditions of the problem (translating all the known variables to the right-hand-side of Eq. (5), and 
the unknown fields to the left-hand-side), the BEM responses for the elastic model can be computed 
for the given frequency . 

Finite Element Modelling 

The integral weak-form of the governing equations at section 2 can be written as:  

         (6) 

       

where  stands for a weight function, which is assumed to have null values in the essential 
boundary (i.e., ).  
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By introducing spatial approximations for the variables of the model into the integral Eq. (6), and 
by adopting these approximations to define the specified weight functions (Galerkin Method), the 
following system of equations can be obtained, once proper numerical treatment is considered 
[Bathe (1996)], [Hughes (2000)]:  

         (7)  

where ,  and  stand for the mass, damping and stiffness matrix of the model, respectively, and 
 and  stand for the nodal displacement and force vector, respectively. Matrices ,  and  are 

computed taking into account the first, second and third terms in Eq. (6), respectively, whereas 
vector  is computed taking into account the last two terms in the l.h.s. of Eq. (6) (for the stiffness 
matrix computation, Eqs. (2b)-(2c) are employed to relate the stress tensor with the displacement 
vector). After considering the boundary conditions of the problem, the FEM responses for the 
elastodynamic model can be computed for the given frequency , taking into account Eq. (7). 

Coupling Procedures 

In order to enable the coupling between the BEM and the FEM sub-domains of the model, an 
iterative procedure is employed here, which performs a successive renewal of the relevant variables 
at the common interfaces. The proposed approach is based on the imposition of prescribed 
displacement at the BEM sub-domain and of prescribed nodal forces at the FEM sub-domain. Since 
the two sub-domains are analysed separately, the relevant systems of equations are formed 
independently, before the iterative process starts, and are kept constant for each frequency along the 
iterative process. The separate treatment of the two sub-domains allows independent discretizations 
to be used on both parts, without any special requirement of matching nodes along the common 
interfaces. Thus, the coupling algorithm can be presented for a generic case, in which the interface 
nodes may not match, allowing exploiting this benefit of the iterative coupling formulation. 
To ensure and/or to speed up convergence, a relaxation parameter λ is introduced in the iterative 
coupling algorithm. The effectiveness of the iterative process is strongly related to the selection of 
this relaxation parameter, since an inappropriate selection for λ can significantly increase the 
number of iterations in the analysis or, even worse, make convergence unfeasible. At the end of the 
section, an optimal relaxation parameter is calculated, taking into account the coupled BEM-FEM 
frequency-domain formulation. 

Iterative coupling procedures 

Initially, in the  iterative step of the FEM-BEM coupling, the FEM sub-domain is analysed and 
the structure displacements at the common interfaces  (subscript  indicates the common 
interface, whereas f and b indicates finite and boundary element sub-domains, respectively) are 

computed, as described in section 4. In this case,  is evaluated taking into account 
prescribed nodal forces at the common interfaces , which are provided from the previous 

iterative step (in the first iterative step, null prescribed nodal forces are considered). Once  
is computed, it is applied to evaluate the essential boundary conditions that are prescribed at the 

common interfaces of the BEM sub-domains. More precisely,  is used to compute BEM 
displacements, as indicated below:  

         (8)  
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where  stands for a matrix representation of the Dirac's Delta function, employed here just to 
properly indicate the computation of the variables at the BEM nodes , and  stands for the 
BEM or FEM interpolation functions, according to the subscript  or , respectively. 
To better describe the proposed FEM-BEM coupling methodology, Figure 1 illustrates its 
application for the case of constant boundary elements and linear triangular finite elements.  
As previously discussed, in this work, relaxation parameters are considered in order to ensure 
and/or to speed up the convergence of the iterative process. Thus, the displacements that 
are calculated by Eq. (8) are actualized as follow:  

         (9)  

where λ stands for the relaxation parameter.  

BEM 
model

FEM 
model

Common interface

i

i+1

j

j-1

j+1

 
 

Figure 1. Detail of a portion of the FEM-BEM interface when linear triangular finite elements 

and constant boundary are used. In the figure, ,  and  are FEM interface nodes, 

while and  are BEM nodes. Displacements at BEM node  can be computed by 

interpolation of FEM displacements at nodes  and  (Eq. (8)); FEM nodal force in j can 

be calculated by integration of the traction along boundaries  and , using Eq. (10) 

and considering FEM linear and BEM piecewise constant shape functions along these 

boundaries. 

  
Once the BEM displacements at the common interfaces are computed, the BEM sub-domains can 
be analyzed, as described in section 3. As a consequence, the BEM tractions at the common 
interfaces are evaluated , allowing the computation of the natural boundary conditions that 
are prescribed at the FEM sub-domains at the next iterative step. This is carried out as indicated 
below:  

         (10)  

Once  is computed, the algorithm goes on to the next iterative step, repeating all the 
above described procedures, until convergence is achieved.  
As it is illustrated in section 6, a proper selection for λ at each iterative step is extremely important 
for the effectiveness of the iterative coupling procedure. In order to obtain an easy to implement, 
efficient and effective expression for the relaxation parameter computation, in the next sub-section 
optimal λ values are deduced.   
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Optimal relaxation parameter  

In order to evaluate an optimal relaxation parameter, the following square error functional is 
minimized here:  

         (11)  

where  stands for the BEM prescribed values at the common interfaces. 
Taking into account the relaxation of the prescribed values for the (k+1) and (k) iterations, Eq. (12a) 
and Eq. (12b) may be written, based on the definition in Eq. (9):  

         (12a)   

         (12b)  

Substituting Eqs. (12) into Eq. (11) yields:  

         (13)   

          

where the inner product definition is employed (e.g., ) and new variables, as defined 
in Eq. (14),  are considered.  

         (14) 

To find the optimal  that minimizes the functional , Eq. (13) is differentiated with respect to  
and the result is set to zero, as described below:  

         (15)  

Re-arranging the terms in Eq. (15), yields:  

         (16)  

which is an easy to implement expression that provides an optimal value for the relaxation 
parameter , at each iterative step. This expression requires a low computational cost, when 
compared to other alternatives that can be found in the literature (see, for instance, [Elleithy et al 
(2001)]). 
Additionally, one should keep in mind that the computed relaxation parameter is a complex number, 
since the problem is formulated in the frequency domain. This complex number computation could 
be ranged (e.g., imposing ), but the authors have observed that faster convergence is usually 
achieved in the iterative process if a non-restricted relaxation parameter selection, provided by Eq. 
(16), is considered. Moreover, although the authors found that the iterative process is relatively 
insensitive to the value of the relaxation parameter used for the first step, in all the cases discussed 
here, a real value of  is considered. 

Numerical Analysis 

In order to illustrate the performance and potentialities of the discussed techniques, two application 
examples are considered here, corresponding to a circular ring-shaped structure involved by an 
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infinite soil domain. Different material properties, as well as prescribed load/displacement 
configurations, are considered in the analyses. 

Ring-shaped structure inside an infinite elastic domain  

Consider a circular homogeneous ring-shaped elastic inclusion, inside a homogeneous and infinite 
elastic environment (see Fig. 2a). The external environment has a density of , 
Young's modulus of  and Poisson's ratio of  (no damping is considered). This 
elastic material allows dilatational and shear waves to travel at  and , 
respectively. The circular inclusion has an external radius of 3.0 m and an internal radius of 2.0 m 
and is made of the same elastic material of the external domain.  

 

 
  

(a) Sketch of the model (b) FEM discretization (c) BEM discretization 

 

Figure 2. Model’s sketch and discretization 

 
The external environment is discretized by boundary elements distributed uniformly along the 
common interface (straight boundary elements with constant interpolation functions are adopted); 
the ring structure is modelled by using linear triangular finite elements. Fundamental harmonic 
displacements are prescribed at the internal cavity of the ring structure, which are acquired by 
considering a horizontal Dirac’s delta force acting at the centre of the cavity. Thus, the analytical 
solution for the problem is known and it is provided by the model's fundamental solutions. 
First, the external environment is modelled using 40 boundary elements, while a total of 210 
elements (40 nodes at the interface) are considered at the finite element mesh. The corresponding 
FEM and BEM discretizations are illustrated in Fig. 2b and Fig. 2c, respectively.  
Fig. 3 illustrates the displacements computed at point A (see Fig. 2a), taking into account the 
proposed iterative coupling procedure, considering a frequency range from  to . 
Analytical answers and results computed taking into account a standard FEM-BEM direct coupling 
methodology are also depicted in Fig. 3, for comparison. As one can observe, the results provided 
by these different approaches are in good agreement. It is important to highlight that the coupled 
FEM-BEM results get closer to the analytical answers as the discretization of the model is refined.  
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(a) Real part (b) Imaginary part 

 
Figure 3. Vertical displacements at point A 

 
As a matter of fact, the convergence of the proposed technique is analyzed next, taking into account 
independent discretizations (and, as a consequence, no matching nodes at the common interface) for 
the FEM and the BEM. In order to do so, 4 discretizations for the BEM sub-domain and 4 
discretizations for the FEM sub-domain are focused, as described in Table 1 (as one may observe, 
meshes 2 are those depicted in Fig. 2). These different discretizations are combined among each 
other and the errors that arise (taking into account the analytical answer of the model) are depicted 
in Fig. 4. Three combinations are considered here, the first one considers the FEM mesh 4 (i.e., 160 
nodes on the FEM common interface) combined with all the focused BEM meshes. This 
combination is referred here as "FEM 160 - BEM". The second combination considers the BEM 
mesh 4 (i.e., 160 nodes on the BEM common interface) combined with all the focused FEM 
meshes. This combination is referred here as "BEM 160 - FEM".  Finally, standard node-to-node 
combinations (i.e., considering matching geometrical nodes at the common interface) of the BEM 
and FEM meshes are also considered, and this combination is referred here as "node - node". 
 

Table 1: Discretizations for the BEM and FEM sub-domains. 

 

BEM 
straight constant elements 

FEM 
triangular linear elements 

Mesh 1: 20 elements Mesh 1: 162 elements (20 elements at the interface) 
Mesh 2: 40 elements Mesh 2: 210 elements (40 elements at the interface) 
Mesh 3: 80 elements Mesh 3: 726 elements (80 elements at the interface) 

Mesh 4: 160 elements Mesh 4: 3436 elements (160 elements at the interface) 
 
 
The relative errors depicted in Fig. 4 are computed as follows:  

         (17)  

where  stands for the computed numerical displacement at point A and frequency ,  stands 
for the analytical answer at the same point and frequency, and  is the total number of frequencies 
considered in the analysis. 
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(a) Convergence analysis (error x 

discretization) 
(b) Efficiency analysis (error x CPU time) 

 
Figure 4. Error analysis 

 
As one can observe in Fig. 4a, convergence is achieved, even considering non-matching nodes at 
the common interface. As it can be further observed in Fig. 4a, the "BEM 160 / FEM" and the "node 
/ node" curves are very close, indicating that, in this case, a small amount of boundary elements are 
sufficient to properly discretize the model. On the other hand, better results are obtained considering 
the "FEM 160 / BEM" combination, which was expected, since refined FEM discretizations can 
better represent the prescribed boundary conditions of the model, providing more accurate analyses.   
In Fig. 4b, the computed errors are plotted against the CPU times of the analyses. As one can 
observe, considering matching nodes at the common interface, the iterative coupling procedure is 
usually more efficient than the standard direct coupling procedure (i.e., for a given CPU time of 
analysis, more accurate results can be obtained by the iterative procedure; or, for a given accuracy 
level, faster analyses can be provided by the iterative procedure). Moreover, as described in Fig. 4a, 
once proper discretizations are considered for each sub-domain of the model, even more efficient 
analyses may be achieved, highlighting the importance of a coupling procedure that allows flexible 
and independent discretizations of the involved sub-domains, taking into account non-matching 
nodes at the common interfaces.  
In order to further analyze the performance of the iterative coupling algorithm, the evolution of the 
optimal relaxation parameter and the convergence of the iterative process are briefly illustrated in 
Fig. 5. In Fig. 5a, the total amounts of iterative steps necessary for convergence are depicted, for 
each frequency, considering the spatial discretizations illustrated in Fig. 2. For comparison, results 
are also depicted considering a constant relaxation parameter value of 0.5. As one can observe, for 
higher frequencies (above 2500 Hz), convergence is not achieved if λ = 0.5 is adopted, highlighting 
the importance of Eq (16) for the effectiveness of the iterative coupling analysis. Moreover, for a 
constant value λ = 1.0, convergence is never achieved considering the entire adopted frequency 
range, further illustrating the importance of relaxation parameters in the iterative coupling 
technique. In Fig. 5b, the evolution of the optimally computed relaxation parameters (eq. 16) are 
illustrated, taking into account . As one can observe, its evolution is quite complex 
since it is based on residuals computed at consecutive iterative steps. 
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(a) Convergence of the iterative procedure (b) Evolution of the optimal relaxation 

parameter 

 

Figure 5. Convergence and optimal relaxation parameter evolution 
 

 

Ring-shaped structure inside an infinite elastic domain  

Consider, once again, a circular homogeneous ring-shaped elastic structure, inside a homogeneous 
and infinite soil environment. The external environment has a density of , Lamé 
constant  and Poisson's ratio of  (no damping). The tunnel structure is 
made of concrete and has an external radius of 3.0 m and an internal radius of 2.0 m. It has a density 
of , Young's modulus of  and Poisson's ratio of  (no damping). The 
structure is loaded as indicated in Figure 6a, i.e., the load is applied at the bottom of the concrete 
ring internal cavity, with constant amplitude of 850 kN/m. The corresponding FEM and BEM 
discretizations are illustrated in Figure 2b and 2c, respectively. In Fig. 6b and Fig. 6c, the computed 
deformation of the tunnel is illustrated, considering . 

 

 

  

(a) Sketch of the model 

 

(b) real part (c) imaginary part 

Figure 6. model’s sketch and scaled deformation of the tunnel for ω=500Hz 
 

Fig. 7 illustrates the displacements computed at point A (see Fig. 6a), taking into account the 
proposed iterative and a standard direct FEM-BEM coupling procedure, considering a frequency 
range from  to . As one can observe, the results provided by these different approaches are 
once again in good agreement, indicating that the iterative solution is converging to the right 
solution.  
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In Fig. 8a, the total amounts of iterative steps necessary for convergence are depicted, taking into 
account the selected frequency range. As one can note, for all tested frequencies, convergence 
occurred with a relatively small amount of iterations, with no more than 25 iterations being 
necessary at any of the tested frequencies. It is important to highlight that, for the present 
application, for λ = 0.5 and λ = 1.0, convergence is never achieved considering the entire adopted 
frequency range, further illustrating the importance of optimal relaxation parameters in the iterative 
coupling technique. In Fig. 8b, the evolution of the optimally computed relaxation parameters (Eq. 
16) are illustrated, taking into account . 
 
 

  

(a) Real part (b)  Imaginary part 

 

Figure 7. Vertical displacements at point A 
 
 

 

 

 

(a) Convergence of the iterative procedure (b) Evolution of the optimal relaxation 

parameter 

 

Figure 8. Convergence and optimal relaxation parameter evolution 

 

Conclusions 

A FEM-BEM iterative coupling algorithm was discussed here to analyze elastodynamic models, 
taking into account frequency domain formulations. In order to deal with this ill-posed problem, 
optimal relaxation parameters were introduced into the iterative coupling analyses, enabling 
convergence at a relative low number of iterative steps. An efficient and easy to implement 
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expression to compute the optimal relaxation parameters was discussed and tested, providing an 
effective and robust iterative coupling procedure.  
The use of iterative coupling approaches enables the separated analysis of different sub-domains, 
leading to better conditioned, smaller and easier to deal with systems of equations, as well as 
independent definitions of nodal points along distinct sub-domains, allowing non-matching nodes 
on common interfaces to be easily considered. In section 6 several results were presented, 
illustrating the versatility and effectiveness of the proposed procedure.  
As a matter of fact, the present methodology represents an important step forward in the analyses of 
wave propagation in frequency domain problems considering iterative coupling procedures, which 
are well-known ill-posed problems, specially taking into account sub-domains governed by 
different physical properties and discretized by different numerical techniques. 
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Abstract:  

 

A low energy electron beam (EB) can let the self-interstitial atoms (SIA) cause the 

self-assembly (DSA), i.e., {311}SIA platelet in c-Si is discussed. We have studied how 

an SIA migrates toward metastable sites that form the platelet. We used a molecular 

dynamic (MD) simulation to trace all the atoms and crystallographic analysis method 

(PM) method to analyse crystalline defects. In MD, we skipped the EB irradiation 

stage that produces SIAs. Instead, before MD some Frenkel pairs (FP) or SIA 

coupled with a vacancy were randomly distributed in bulk. Then we monitored how 

contributed the surrounding target atoms to the DSA process. When the FP 

concentration is higher than 3 atomic percent (3 %), the number of atoms to be stayed 

at metastable sites looked to be saturated. However, it increased significantly at lower 

FP’s concentration, e.g., at 1 %. At the same time, somewhat cooperative and 

oscillatory movement of target atoms in bulk was found in terms of the long-range- 

order (LRO) parameter. The oscillatory change of LRO continued for a few tens of ps, 

which is much slower than the so-called lattice vibration. Therefore, we suppose the 

cooperative motion like slow phonon might promote the migration of SIA and 

increase the number of atoms on {311}SIA planes, whereas no such global wavy 

motion was observed in cases including much higher FPs, as if somewhat pinning 

effect had occurred therein. (230 words) 

 

Keywords; electron beam, MD simulation, directed self-assembly, crystallography 

 

 

1. Introduction 

 

The {311} platelet in a c-Si is known to be composed of the self-interstitial atom 

(SIA)s, which was found by the in-situ measurement using High Resolution 

Transmission Electron Microscopy by Takeda at an annealing temperature (TA) of 723 

K [Takeda (1991)]. This is a kind of directed self-assembly (DSA). Hereafter we call 
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(311)SIA formation in c-Si DSA. The energy of the electron beam (EB) adopted was 

300 keV, which was much higher than the threshold value of 145 keV to eject a target 

atom from a lattice site in c-Si. However, it was much lower than 1 MeV above which 

the electronic stopping is dominant [Yasuda et al. (2007)]. The very significant 

experimental condition to produce {311}SIA platelet was the TA. The rate of fluence 

was Φ = 5×10
24

 electrons/ sec/m
2
 and it was continued for t = 1080 sec or longer. The 

procedure of DSA had two steps [Takeda and Kamino (1995)]; the first one was to 

form atomic rows along 110  direction, then the second one was to align those 

rows parallel along the direction of 332 , which formed (311) platelet. It was a 

notable experiment, because the geometry of this lattice structure was exactly the 

same with that predicted by the pixel mapping (PM) method; a (311)SIA plane is made 

of metastable {H} or {T} sites [Nakagawa (2007a)]. 

 

Firstly, we had reproduced the DSA at TA = 723 K using an ion beam (IB) (1keV Si 

ion into c-Si), making use of a molecular dynamic (MD) simulation [Nakagawa et al. 

(2007b)]. The two-step process of DSA that we found was exactly same with that 

proven by EB [Takeda and Kamino (1995)], and the areal density of the SIAs on 

(311)SIA agreed with that experiment due to EB irradiation. The <110> alignment on 

(311)SIA was clearly observed. The assignment of Miller index of an atomic plane or 

crystallographic orientation of an atomic row was possible using PM [Nakagawa et al. 

(2002; 2007a; 2009)]. This calculation proved that when SIAs are produced by 

whatever external disturbance, they migrate into the wide space between two sets of 

{311} double-layers and reallocated by the help of local field surrounding the SIA. 

 

Secondly, assuming the Frenkel pair (FP) production due to EB irradiation, we had 

obtained quite similar result of DSA at TA = 723 K, making use of a MD [Nakagawa 

(2014)]. Because the recoil cross-section of an electron against target atom is very 

small and it occurs so sparsely in a wide region. Then, we skipped the EB irradiation 

stage in MD. Instead we scattered FPs uniformly in bulk and then started MD to 

monitor the movement of all atoms. After heating started, SIAs migrated and formed 

a platelet, where <110> alignment was again observed.  

 

A recent finding was the FP’s concentration dependence on DSA. Target atoms in 

bulk showed somewhat cooperative and oscillatory behaviour of entire atoms, when 

the FP’s concentration was lower than 3 atomic percent (3 %). The phonon-like 

motion was identified by the long-range-order (LRO) parameter that defined the 

degree of perfectness of crystallinity. In cases of higher FP’s concentration, however, 
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no peculiar behaviour occurred, as if somewhat pinning-effect supressed the 

migration of SIAs. Present aim is to study how significantly the pinning-effect exerts 

on the DSA.  

 

 

2. Method 

2.1 Invisible but metastable sites for SIA 

In the PM method, the location of an atom (x, y, z) in a cubic crystal is presented by a 

set of integer (l, m, n) using Gauss symbol [Nakagawa (2002)]. Namely, (l, m, n) = 

([x/(d/4)], [y/(d/4)], [z/(d/4)]), where the “d” is the lattice constant of a unit cubic of a 

crystal. This means to adopt marginal space for each lattice site, and we call that 

small cube one pixel. The PM method is available for 24 cubic-type crystals 

belonging to the space group #195-#230.  

 

The c-Si is one of the zincblende (ZnS)-type crystals, which is made of two fcc-(1) 

and fcc-(2) lattices. We regard a lattice point where one atom is occupies in a perfect 

crystal “stable site”. These lattice points satisfy the following condition: In the fcc- 

(1) lattice, the address (l, m, n) of a stable site satisfies an algebraic rule of “l + m + n 

= 4k, and (l, m, n) are all even”. Similarly, in the fcc-(2) lattice, the corresponding 

rule is “l + m + n = 4k+3, and (l, m, n) are all odd”. Both lattices are visible.  

 

Table 1 The identification table for an atom located at (l, m, n) in a ZnS-type crystal, 

i.e., a compound AB. The last two planes are made of metastable {T} and {H}, both 

form the invisible double-layer structure. “Meta.” is the abbreviation of metastable.

“(311)A’ or (31)B’ means {311}SIA. The “k” and “J” are arbitrary integers. 

 Which site?  Which crystal? Which plane? 

Site l+m+n l, m, n On which fcc lattice D =3l+m+n Double-layer Plane 

(1) 

Stable 

4k all even real fcc-(1) D = 4J Visible   

 

Atoms at 

lattice site 

{311}A 

(2) 

Stable 

4k+3 all odd real fcc-(2) D = 4J + 1 {311}B 

{H} 

Meta. 

4k+2 all even virtual fcc-(1’) from fcc-(1) 
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The PM makes it possible to identify various types of crystalline defects from micro 

to macroscopic scale. Another merit of the PM is to evaluate the LRO parameter 

[Nakagawa (2002, 2007a; 2009)], which is defined as the ratio of number of atoms 

allocated at stable sites to that of total atoms in the MD box. Note LRO = 1 means the 

state of a perfect crystal while LRO = 0 means amorphous state. 

 

In Table 1, “metastable sites, {H} or {T}” are listed. They are closely related to the 

stable sites (1) and (2), respectively, although those lattices are invisible in a perfect 

crystal. The condition for {H} site is “l + m + n = 4k+2, and (l, m, n) are all even”. 

The similar condition for {T} site is “l + m + n = 4k+1, and (l, m, n) are all odd”. If 

the address of one atom does not satisfy any of those four conditions, the atom in a 

pixel for unstable site [Nakagawa (2002)].  

 

Because of the translational symmetry between (1) and {H}, which are shifted by the 

constant vector of (0, 0, d/2) to each other, they individually form mathematically 

equivalent lattices with the same space group. The visible (1) and invisible {H} are 

like twin lattices, although the former is stable and the latter is metastable. The 

situation is the same for (2) and {T} [Nakagawa (2002)]. If some SIAs stay at such 

metastable sites, they look like a part of ZnS-type crystal and crystalline alignment as 

atomic row or atomic plane can be observed. Therefore, we have supposed, that 

invisible lattice can work as a hidden and secret chart for DSA. In this article, we 

examine the effect of the concentration of FPs on the DSA process, because the 

presence of embedded FPs should deform the potential field in bulk.  

 

2.2 How to identify {311} defects; 

A crystal has periodic array in a set of {HKL} planes labelled by the fixed Miller 

index. When an atom has address (l, m, n) defined by PM, the sequential number of 

the (HKL) plane on which that atom stays is known as follows [Nakagawa (2009)],  

 

LnKmHlD                                          (1). 

When substituted the conditions for addresses of (1), (2), {T}, {H}, into Eq.(1) for a 

case of (HKL) = (311); we get an interesting correspondence. That is, stable site (1) 

and (2) are located on the planes termed D = 4J and D = 4J + 1, respectively. These 

two layers can form the visible paired double-layer. On the other hand, metastable 

{T} and {H} sites are on the planes termed D = 4J + 2 and 4J + 3, respectively. 

These two layers can form the invisible paired double-layer. This alignment is 

repeated every four layers as is tabulated in Table 1.  
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Making use of Table 1, we count how many SIAs are trapped at metastable sites, {H} 

or {T}, on the invisible {311}SIA planes as will be plotted later in Fig. 2. The 

interplanar distance (ΔD) of adjacent plane in a series of {HKL} planes is 

d/{H
2
+K

2
+L

2
}

1/2
. It is ΔD = d/√11 for the case of {311} planes, thus the invisible 

paired double-layers yield wide gap of 3d/√11 for an SIA between two sets of visible 

double-layers. A sheet of (311)SIA plane has two dimensional diagonal grids made of 

110  and 121  axes. The area of one oblique unit cell of 11d
2
 is allocated to one 

metastable site on (311)SIA plane. Since the shape of {311} planes inside the MD box 

are all polygons, because of truncation due to the surface of MD box adopted. When 

the MD box is composed of p×p×p unit cubes, the address of the lattice point at the 

body-diagonal corner is (4p, 4p, 4p). Then as we look over the specific sites of (l, m, 

n) = (0, 0, 0)  (2p, 2p, 2p)  (4p, 4p, 4p), the D number of (311) plane including 

those sites changes from D = 0  10p  20p. With increasing D-value, the number 

of metastable sites on those planes changes from zero  maximum  zero, 

respectively. Namely the number of metastable sites can show an upheaval profile as 

a function of D. 

 

2.3 MD Simulation model 

Generally speaking, the defect density in the collision cascade caused by an EB is 

much sparse if compared with the case due to an IB. With a low-energy EB below 1 

MeV, the dominant energy loss is due to the nuclear stopping. The nuclear stopping 

power of 300 keV EB for silicon material is 2 eV/10 nm [Yasuda et al. (2007)]. Thus, 

one electron in an EB loses 1 eV when it penetrates a MD box whose depth is 5 nm. 

Namely, the depth doze of EB is very low. On the other hand with respect to the 

mean free path, the inelastic one is 240 nm while the elastic one is 12 nm. The 

formation energy of one FP is 3.61 eV. These facts make it possible to assume that 

the FPs would be distribution uniformly. 

 

We embed FPs into c-Si prior to MD simulation. Here MD box is composed of 16 × 

16 ×16 unit cubes, thus 32768 silicon atoms are enclosed. With this box, Dmax is 320. 

The range of FP’s concentration is from 1 % to 10 %. We adopted the so-called NVT 

frame for our MD, where three quantities are kept constant; they are the number (N) 

of target atoms, the volumn (V) of the MD box, and the bulk temperature (T). After 

distributing FPs, we started MD simulation in the following order: (i) Thermalization 

to keep T constant at room temperature (T = 300K; RT). When the deviation of (T- 

RT)/T is stabilized within the fluctuation less than 1.0 % in average, next step started. 

(ii) Heating up to TA. At MD box walls, particle’s velocity was regulated to yield the 
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heating rate of 0.5 K/femtosecond. When the deviation (T- TA)/T becomes less than 

1.0 %, further heating was quitted. (iii) Annealing to keep T = TA for 200 picoseconds 

(ps) at longest.  

 

 

3. Result 

 

3.1 How SIA migrates towards metastable site? 

Figure 1 shows the change in the fractions of atoms staying different sites, after 

starting heating (time t = 0) for a case of 3 % of FP’s concentration, where TA = 1000 

K. Symbols indicate the ratios of atoms located at stable (-), metastable (○), unstable 

(--) sites to the number of total atoms.  

 

 

Figure 1 Time series of the site distribution of target atoms, since starting 

heating from RT to TA = 1000 K, for a case with 3 % of FP concentration. 

Symbols indicate the ratios of atoms located at stable (-), metastable (○), 

unstable (--) sites.  

Res2R20Jn14) 

From this figure, it is known that many atoms left the original stable site within 10 ps 

after heating started, which was crystal to amorphous (CA) transition. Since then, it 

looks no significant change in those fractions of three kinds of states after CA 

transition. In the case of of higher concentration, 5 % and 10 %, such situation was 

quite similar, there was no significant concentration dependence. In the mean time, 
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the number of atoms at metastable sites, {T} or {H}, increased significantly and 

reached at the same level with that at stable sites here. 

  

Figure 2  The time dependence of the SIA accumulation toward metastable sites 

on (311)SIA, where T = TA = 1000K is kept. Each symbol indicates the sum of 

atoms lcated at metastable sites on one paired invisible double-layers.  

 

Figure 2 shows the significant accuumulation of atoms toward metastable sites due to 

heating up to TA = 1000 K when FP’s concentration is 3 %. The migration was 

promoted evidently until 100 ps. However, since then any further migration toward 

metastable sites looked supressed. Even increasing FP’s concentration, up to 10 %, 

migration looks less easy as if somewhat pinning-effect might have appeared.   

 

3.2 The pinning-effect on the DSA 

Figure 3 shows the FP’s concentration dependence on the number of atoms trapped at 

metastable sites. The number of atoms located at metastable sites did not increase 

with the initial FP’s concentration but showed rather saturation when the initial 

concentration was higher than 3 %. The migration of SIAs can be assisted by atoms 

nearby. Therefore, we will examine why such concentration dependence happened. 

The movement of target atoms can be monitored in terms of the LRO parameter. Note 

LRO is equal to the ratio of occupied number of atoms at stable sites to that of the 

total atoms as was plotted in Fig. 1 
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Figure 3   The FP’s concentration dependence on the SIA migration toward the 

metastable sites within 100 ps at TA = 1000 K. Symbols for different concentrations 

are (○; 1 %), (●; 3%), (△; 5%), and (□; 10%).  

 

3.3 The cooperative motion of target atoms vs. the pinning effect: 

 

 

  Figure 4   Time series of the site distribution when the initial concentration of  

FP was 1 % with keeping TA= 1000 K. Notations are same to Fig. 1. 

 

If compared this Fig.4 with Fig.1, the presence of somewhat global and synagistic 

movemnet of target atoms is evident when FP concentrqation is low. Moreover the 
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trend of restoration of LRO looked, at around 50 ps and after 80 ps, although there 

was once disappeared by the slower CA transition if compared with Fig.1. This 

oscillatory and cooperative motion of atoms located at metastable sites inversely 

corresponds to that at unstable ones, which implies the simultaneous migration of 

many SIAs. This result could explain the profile of Fig. 3; more atoms were located at 

metastable sites when less FPs were scattered before MD. The increasing ratios of 

stable and metastable after 80 ps indicate the sign of further restoration by the assist 

of deformed potential field. In other words, the presence of much FPs may cause like 

pinning-effect that may suppress such a cooperative motion of target atoms as was 

shown in Fig.1 

 

 

4. Conclusion 

 

We have studied why the SIA is apt to form the {311} planar defect (= (311)SIA 

platelet) in c-Si when it was irradiated by a low-energy (sub-MeV) EB or a low 

energy (a few keV or less) IB. We traced all the atoms by an empirical MD 

simulation, and analysed the crystalline defects by the PM method.  

 

Based on the PM, we have supposed the DSA is directed by the hidden chart for 

migrating SIAs. Because the measured DSA had shown exactly same geometrical 

lattice structure with that described by the PM method. That is, metastable sites are 

forming hidden fcc lattices in the wide gap between two sets of {311} double-layers. 

Therefore, when an SIA would migrate, it is apt to enter such wide space and would 

be trapped at metastable sites, where the hidden lattice would provide a chart for 

migrating SIA.  

 

The EB irradiation first produces many FPs in c-Si. Then we embedded FPs and 

started MD simulation to monitor how target atoms assist SIAs to migrate and form 

the {311}SIA platelet, in terms of the long-range-order parameter. We have confirmed 

that a global and synergistic movement of target atoms promoted the migration of 

SIAs, when the FPs concentration is lower than three atomic percent. Beyond the 

critical value of 3 %, however, pinning effect emerged, i.e., no significant cooperative 

wavy-motions occurred, and the defect formation is suppressed.  
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Abstract

The new concept to place the vertical airfoil device as control sur-
face has been discovered so as to improve the aerodynamic performance
of aircraft. The concept was predicated on not only the several devices
as vortex generator and winglet but also the wing-mounted engine sys-
tem of the HondaJet. Thereupon, the wind tunnel experiment has
been implemented in order to investigate the influence of the verti-
cal control device with the symmetrical airfoil shape. Furthermore, a
self-organizing map as data mining has been performed for the experi-
mental data in order to qualitatively elucidate the correlations among
the aerodynamic performances as design requirements and the design
parameters to place the vertical control device. Consequently, it has
been revealed the design information regarding the intimate correla-
tions. Moreover, there is the sweet spot in the design space to improve
the aerodynamic performances.

Keyword: Vertical device; Control surface; Aerodynamics of aircraft;
Data mining; Self-organizing map.
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1 Introduction

Although the surface of the main wing of aircraft, especially upper wing
surface, is generally desirable to be smooth in ordinary design of an aircraft,
there are several exceptions to this universal tacit knowledge[6, 9], such as
small devices for flow control. Honda Aircraft Company has designed and
developed a business jet aircraft named as the HondaJet[3]. Despite the fact
that the devices are generally designed small on general knowledge even when
devices will be on the wing surface, the HondaJet mounts its engine over
the upper surface of the wing with the pylon. The design of the HondaJet
astonishingly reveals that the optimum location of the nacelle and the cross
section of the pylon exists to accomplish lower drag coefficient compared
with the clean wing[4]. This fact indicates that the devices on the wing
surface, whose size is independent on the convention of aircraft design, can
uncommonsensiblly improve the aerodynamic performance of aircraft.

Thereupon, in the present study, a new basic idea regarding a vertical
control device on the upper surface of the main wing will be proposed in
order to improve the aerodynamic performance of aircraft due to the flow
control on the wing surface. The devices are expected to be also installed
on the trailing edge of the pylon in order to improve the aerodynamic per-
formance. Therefore, the objective of the present study is to elucidate the
effectiveness on the aerodynamic performance regarding the control surface
which is vertically mounted on the wing. As a first step, the wind tunnel ex-
periment is implemented in order to quantitatively reveal its effectiveness[7].
As a second step, data mining is performed by using a self-organizing map
for the experimental data so that the global design information for the design
space will be also efficiently revealed. Especially, the keystone of the present
treatise corresponds to the second step. The objectives of the present data
mining are that significant experimental conditions are efficiently addressed
from 103-order conditions. Furthermore, the obtained design knowledge will
be utilized in order to generate a wind tunnel model for the next-step experi-
ments so that a vertical control device is efficiently installed and its optimum
geometry will be designed.

2 Problem definition

The simple symmetrical aircraft model constructed by the main and tail
wings with rectangular planform and vertical control device is developed
in order to utilize in the wind tunnel experiment. The specification of an
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Table 1: Specification of aircraft model for wind tunnel experiment.
component content data

length 370 [mm]
fuselage width 44 [mm]

height 55 [mm]
span length 404 [mm]
chord length 80 [mm]

main wing airfoil NACA2410
aspect ratio; AR 5.05 [-]

taper ratio 1.0 [-]
chord length 40 [mm]

vertical control device span height 40 [mm]
airfoil NACA0010

Table 2: Design parameters and their discretized design space.
description symbol design space

spanwise distance µ [mm] 10 ≤ µ ≤ 170 for every 10
deflection angle δ [deg] −10 ≤ δ ≤ 10 for every 2

angle of attack of body α [deg] −6 ≤ α ≤ 20 for every 2

aircraft model is shown in Table 1. The fuselage and tail wings constructed
by the plane surfaces are fixed. The main wing itself is fixed, however, the
vertical control device is shifted on the upper surface of the main wing[7].
Thereupon, the model geometry is defined by the following three design
parameters. The first is the spanwise distance from the root of the main wing
to the installed position of the vertical control device µ [mm]. The second is
the deflection angle of the vertical control device onto the upper surface of the
main wing δ [deg]. The illustrated description of these two design parameters
is shown in Fig. 1. The third is the angle of attack of the body α [deg]. The
design space of the each design parameter is summarized in Table 2. Since
the experiment cannot strictly set the values of the design parameters, the
three design parameters have not continuous but discretized values. µ is the
distance between the root of the main wing (that is, body wall) and the
25% position of the mean aerodynamic chord for the vertical control device.
µ moves from 10 to 170 [mm] for every 10 [mm]. The two vertical control
devices are symmetrically set on the main wing. δ is the deflection angle of
the vertical control device onto the main wing. The revolutionary center is
set on the 25% mean aerodynamic chord of the vertical control device. δ is
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Figure 1: Bird’s-eye illustration of overall geometry. The dotted lines on the
main wing describe the 17 installation positions (the length from the body
wall denotes µ) of the vertical control device colored by orange. The 25%
position of the mean aerodynamic chord for the vertical control device is
described by the white point in the orange color.

Figure 2: The wind tunnel model constructed by the separated wing blocks.

defined to be the positive value when the trailing edge of the vertical control
device is installed on the outboard side shown in Fig. 1. δ changes from −10
to +10 [deg] for every 2 [deg]. Note that there are no experimental data in
the case of µ of 10 [mm] and δ of -10 [deg] because the vertical control device
interferes in the fuselage. α changes from −6 to +20 [deg] for every 2 [deg].
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Figure 3: Schematic illustration of the system for the wind tunnel experi-
ment.

The total number of experimental conditions is 2,604. Geometry is designed
by using a computer-aided design software and it is outputted as the stereo
lithography data to generate the wind tunnel model.

The wind tunnel model is made from wood. It is constructed by several
elements in order to simply alter the geometry for all conditions of the wind
tunnel experiments. The appearance of the wind tunnel model and the
elements of the main wing are shown in Fig. 2. µ can be moved by inserting
blocks in the different order along the spar. Each wing block is made by
using 3-dimensional printer. The vertical control device is also separately
constructed and it is attached onto the main wing with a screw so that δ can
be simply changed. There are gaps between the leading and trailing edges of
the vertical control device and the upper surface of the main wing, however,
they are negligible small.

3 Experimental result

The experiment was performed by using the blow-down wind tunnel at the
department of aeronautics and astronautics, the University of Tokyo. Its
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Figure 4: Polar curves. (a) clean configuration, (b) installed configuration at
µ = 50 [mm], (c) installed configuration at µ = 130 [mm], and (d) installed
configuration at µ = 170 [mm],

outward form has 600 [mm] height and width. The flow velocity was set
to be 10 [m/sec] for all experimental conditions. The Reynolds number
based on the chord length as the reference one was approximately 5.0 ×
104. All of the experiments were carried out for 10 [sec] with the sampling
frequency of 1,000 [Hz]. Therefore, all of the data regarding the aerodynamic
performance obtained from the experiments are the time-averaged value of
10,000 points for 10 [sec]. Figure 3 shows the conceptual illustration of
the present measurement system for the present wind tunnel experiment. α
was controlled by the microcomputer using a proportional-integral-derivative
controller. Three aerodynamic performances of the body as a whole, the lift
L, the drag D, and the pitching moment Mp, are gauged by using the wind
tunnel balance. These performances are respectively transformed into the lift
coefficient CL, the drag coefficient CD, and the pitching moment coefficient
CMp, which describe the following equation divided by the dynamic pressure
using the air density ρ, the velocity v, and the planform area of the main
wing S as the reference one.

C□ =
□

1

2
ρv2 · S

, (1)

where, □ denotes L, D, and Mp.
The Oswald efficiency factor e is selected as an indicator to preliminary

evaluate the aerodynamic performance of the aircraft[8]. The factor e is
calculated by using the following equation.

e =
1

K
· 1

πAR
, (2)

where, the drag-due-to-lift factor K is defined as a leading coefficient of the
quadratic approximation function due to CL under the consideration of CD
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as function of CL.
CD = CD0 +K · (CL − CL0)

2. (3)

CD0 denotes CD caused by the other drag mechanisms. CL0 is physically
caused by the vertical asymmetry such as a cambered wing and a finite angle
of incidence. When the lift of a wing is elliptically distributed along the span,
K is defined to be 1. AR denotes the aspect ratio of the main wing, whose
value is summarized in Table 1.

Figure 4 shows the polar curves under the several conditions. Figure
4(a) shows the repeatability of the polar curve for the clean configuration
implemented three times on different days. Since the three lines precisely
correspond each other, the reproducibility of the present experiment can be
elucidated. When the K is calculated by using eq. (3) for the average of
three data shown in Fig. 4(a), the wind tunnel model without the vertical
control device found to be e = 0.6505. Note that the correlation between
the dotted line and the other three lines in Fig. 4 shows the accuracy of K.
Figure 4(a) shows that the curve generated by the quadratic approximation
function exactly describes the polar curves by the experiment.

Figures 4(b), (c), and (d) respectively show the polar curves by changing
δ from −10 to +10 [deg] under the conditions of µ of 50 [mm], 130 [mm],
and 170 [mm]. The dotted curve is quadratic approximation as eq. (2) with
the points of −4 ≤ α ≤ 12 [deg]. Figure 4 reveals that the shape of polar
curve becomes similar to that for the clean configuration as µ is larger.
The curvature of polar curve becomes larger as µ is smaller. Although CD

is moved to right direction due to CD by the vertical control device, the
geometry of the polar curve is similar in the case of µ of 170 [mm]. Although
CD at δ = 0 is found to be low around low angle of attack, there are δ that
gives larger CL/CD than that of δ = 0, when α is higher than 6 [deg]. When
optimum δ is selected according to the angle of attack, the data is on the
envelope curve and e will be improved. The results based on this procedure
are summarized in Table 3. In both cases of µ = 130 and 170 [mm], e is
improved. Especially, it is almost the identical as the clean configuration for
the case of µ = 170 [mm].

On the other hand, in the cases of µ = 50 and 90 [mm], there is not
as much improvement as cases of µ = 130 and 170 [mm]. In Fig. 4(d), the
case of δ = 0 gives the best CL/CD except the cases of high angle of attack.
In Fig. 5, there is considerably the interference between δ and CMp, and
also between δ and CL. When δ is positive value, CL tends to be lower
and CMp tends to be higher. In contrast, the negative δ oppositely affects
on CL and CMp. The reason of these effects is that the vortex generated
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Table 3: Comparison of e for several experimental conditions.
µ [mm] max e [-]

δ = 0 (fixed) δ (variable)
clean 0.6505
50 0.4531 0.4273
90 0.4535 0.4718
130 0.4875 0.5633
170 0.5471 0.6513
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Figure 5: Comparison of the aerodynamic performance of the installed con-
figuration at µ = 50 [mm]. (a) CL-α and (b) CMp-α.

from the tip of the vertical control device passes in the vicinity of the tail
wings, when µ is small value such as µ = 50 [mm]. Changing the value of δ
from positive to negative reverses the rotational direction of the tip vortex
by the vertical control device so that the interference for CL and CMp is also
opposite. There was little improvement on e under the condition of µ = 50
[mm] configuration because the positive effect of δ ≥ 0 and negative effect
of the tip vortex on the vertical control device shown in Fig. 5(a) cancelled
each other.

4 Data-mining technique

In the present study, a self-organizing map (SOM)[5] is selected as a data-
mining technique because the primary objective of data mining is the ac-
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quisition of global design information in order to implement the structuring
of design space. The previous study[1] indicated that SOM extracted the
global design information for whole design space. The distinguishing feature
of SOM is the generation of a qualitative description. The advantage of this
method contains the intuitive visualization of two-dimensional colored maps
of design space using bird’s-eye-views. As a result, SOM reveals the tradeoffs
among objective functions. Moreover, SOM addresses the effective design
parameters and also reveals how a specific design parameter gives effects on
objective functions and other design characteristics. One SOM is colored for
one variable of objective function, design parameter, and other characteristic
value so that the coloration pattern is compared with each other. Therefore,
data mining using SOM might have a disadvantage to overlook important
correlation in the problem with a large number of objective functions and
design parameters. Since the present study has a total number of 9 at most
among the design requirements, design parameters, and other variables that
the influence will be observed, SOM is sufficient for the data mining manner.

In the present study, SOMs are generated by using commercial software
Viscovery R⃝ SOMine 4.0 plus produced by Eudaptics, GmbH[2]. The unique-
ness of the map generated by SOMine is assured due to Kohonen’s Batch
SOM algorithm and search of the best-matching unit for all input data and

Figure 6: Comparison example of colored SOMs for minimization problem
with three objective functions as f1, f2, and f3. Red describes high value
and blue is low one.
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the adjustment of weight vector near the best-matching unit. The decoding
manner of SOM is briefly explained by using Fig. 6. This figure is assumed to
be SOMs colored by three objective functions on the minimization problem
of three objective functions. The generated SOM is made from hexagonal
grid, which has the values of objective functions and design parameters as
a vector quantity. Grids are distributed on a two-dimensional rectangular
surface by the affinity of each objective-function value. Thereupon, grids
with high affinity of each objective-function value clusters around a grid.
There is no physical import on the vertical and horizontal lines of SOM.
The comparison among SOMs to be colored by each vector quantity in each
grid intuitively reveals the correlations among each vector quantity. There
is similar coloration pattern between SOMs for f1 and f2 shown in Fig. 6.
This comparison shows that one objective function absolutely has a low
value, when another objective function has low value. Moreover, one ob-
jective function absolutely has high value, when another objective function
has high value. That is, this comparison indicates that there is no tradeoff
between f1 and f2. On the other hand, f3 absolutely becomes large, when
f1 becomes small, and vice versa. This comparison proves to be a severe
tradeoff between f1 and f3.

5 Data-mining result

The coloration pattern of SOM depends on indicator. Multiobjective op-
timization problems generally use objective functions as the indicator to
generate SOM. However, both of the design requirements, i.e., CL, CD, and
CMp and the design parameters have a major role in the present problem.
Thereupon, as the first step, the SOM which the design requirements take
charge of the indicator will be observed. As the second step, the SOM which
the design parameters take charge of the indicator will be observed in this
chapter. The especial design parameters to improve the aerodynamic per-
formances will be specified so as to address the experimental condition and
to efficiently reveal the flow mechanism.

5.1 Case to generate using design requirements

Figure 7 shows the SOM generated by the values of the three design require-
ments. As this SOM learning is implicated based on the values of the design
requirements as the indicator for the similarity on the neural network, the
SOMs colored by the design requirements have absolutely gradation shown
in Fig. 7(a). The SOM colored by design requirement can generally indicate
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CL CD CMp

(a) design requirements

µ δ α
(b) design parameters

σCL σCD
σCMp

(c) standard deviation σ as other indicator

Figure 7: SOM generated by design-requirements values.

not only tradeoff information but also optimum and pessimum direction on
SOM due to the gradation. In addition, the directions of the influence of
design parameters for design requirements can be observed by comparison
between the SOMs colored by the design requirements and those by the
design parameters.

The SOMs colored by CL and CD in Fig. 7(a) reveal that there is a
tradeoff between them. However, coloration patterns of CL and CD for
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CL CD CMp

(a) design requirements

µ δ α
(b) design parameters

σCL σCD
σCMp

(c) standard deviation σ as other indicator

Figure 8: SOM generated by design-parameters values.

both the maximum and minimum directions are different. The compromise
design region can be relatively found out on the SOM. The SOM colored by
CMp in Fig. 7(a) reveals that the SOM’s region to be the low value of CMp

corresponds to that to be the high value of CD. On the other hand, although
the SOM’s region to be the high value of CMp exists the bottom right on
the SOM, the coloration pattern of it is unique. Note that CMp should be
generally zero for the trim of the aircraft. The trim is practically gained by
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controlling the elevators. Since the elevators of the present body are fixed,
the present CMp cannot indicate the optimum and pessimum directions.
Correlations between CMp and the other two aerodynamic characteristics as
CL and CD are merely observed.

The SOMs colored by the three design parameters as µ [mm], δ [deg],
and α [deg] are shown in Fig. 7(b). The SOM colored by µ reveals that µ
does not have direct influence on the three design requirements. Although
there is a possibility that the combination between µ and δ gives the effects
on the design requirements, Figs. 7(a) and (b) does not indicate it. The
SOM colored by δ reveals that the low value of δ gives an effect on the low
value of CD. The high value of δ does not directly give effects on the three
design requirements. The SOM colored by α reveals that the high value of α
directly affects on the high value of CD and also the low value of α directly
gives an effect on the low value of CL. Since α generally has the effects on
the aerodynamic performance, these results make sense. Since the coloration
pattern shown in Figs. 7(a) and (b) depends on α, α should be omitted so
that the influences of µ and δ are observed.

Figure 7(c) shows the SOMs colored by the standard deviation σ for the
three design requirements as CL, CD, and CMp. The present σ is defined
as the standard deviation for the data of 10,000 points for 10 [sec] in an ex-
perimental condition. These figures reveal that these have similar coloration
pattern, and σ has high value when α becomes high. This fact suggests that
σ increases after the stall. The SOM generated by the three design param-
eters as µ, δ, and α is prepared in Fig. 8 in order to directly observe the
influence of them on the three design requirements. The coloration patterns
of CL and CD reveal that there is no regularity for those of µ and δ. That is,
the coloration patterns of the design requirements indicate that the design
requirements strictly depend on α. Thereupon, the influence of α on the
three design requirements should be erased in order to directly observe the
influence of µ and δ.

5.2 Case to generate using two design parameters as µ and
δ

The SOM generated by µ and δ is shown in Fig. 9. Figure 9(a) shows
the SOMs colored by µ and δ themselves, which are the straightforward
coloration patterns. The coloration pattern for µ is from upper to bottom
and the upper region has high value of µ and the bottom region has low
value of µ. On the other hand, the coloration pattern for δ is from left to
right. The left region has high value of δ and the right region has low value
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of δ. Figures 9(b) to (o) show the SOMs colored by CL, CD, and CMp for
each α from −6 [deg] to 20 [deg] with 2 [deg] interval. The influence of the
combination between µ and δ on each design requirement will be observed
step by step. Note that the results of the latest calibration experiment of
the wind tunnel balance show to ensure the sufficient accuracy of CD for the
narrow range of CD in Fig. 9. Therefore, discussion which Fig. 9 is employed
can be implemented because Fig. 9 has the significant difference of the design
requirements.

5.2.1 Effectiveness on CL

In the first place, influence on CL will be observed. The effectiveness of the
design parameters on CL is roughly clustered for three α regions as α ≤ 0,
2 ≤ α ≤ 12, and α ≥ 14 [deg].

In the case of α ≤ 0 [deg], specific combinations of µ and δ give effects
on CL. The combinations of µ ≥ 140 [mm] and δ ≥ 8 [deg], and the µ ≤ 90
[mm] and δ ≤ 0 [deg] give the effect on increasing CL. Effectiveness on CL is
stronger as α is greater in the case of the former combination. On the other
hand, the combinations of µ ≥ 150 [mm] and δ ≤ −8 [deg], and µ ≤ 40 [mm]
and δ ≥ 6 [deg] give the adverse effect on decreasing CL. The magnitude of
the latter adverse effectiveness is stronger than that of the former one. The
adverse effectiveness on CL is weaker as α increases in the former case. That
is, the effectiveness on the increase of CL in the case of high µ is stronger as
α increases. Since the separation near the tip of the main wing is restrained
when the vertical control device is in the vicinity of there, CL increases. In
addition, the main wing generates the positive CL at greater than αCL0

. The
clean configuration does not have this effectiveness. On the other hand, the
latter adverse effectiveness is independent on α. When the vertical control
device with +δ installs in the vicinity of the fuselage, the fuselage and the

µ δ
(a)
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CL CD CMp

(b) α = −6 [deg]
CL CD CMp

(i) α = 8 [deg]

CL CD CMp

(c) α = −4 [deg]
CL CD CMp

(j) α = 10 [deg]

CL CD CMp

(d) α = −2 [deg]
CL CD CMp

(k) α = 12 [deg]

CL CD CMp

(e) α = 0 [deg]
CL CD CMp

(l) α = 14 [deg]

CL CD CMp

(f) α = 2 [deg]
CL CD CMp

(m) α = 16 [deg]

CL CD CMp

(g) α = 4 [deg]
CL CD CMp

(n) α = 18 [deg]

CL CD CMp

(h) α = 6 [deg]
CL CD CMp

(o) α = 20 [deg]

Figure 9: SOMs, (a) colored by each value of the two design parameters as
µ and δ, (b) to (o) colored by the design requirements at each α.
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device generate quasi-throat flow. Since it is difficult to flow on the main-
wing region where the fuselage and the device sandwich, this region is not
functioning as a wing. Therefore, CL is reduced as much.

In the case of 2 ≤ α ≤ 12 [deg], the combinations between µ ≥ 160 [mm]
and δ ≥ 0 [deg] at 2 ≤ α ≤ 6 [deg], and between µ ≥ 160 [mm] and all δ
at α ≥ 8 [deg] give the effect on increasing CL. When the vertical control
device installs near the wing tip, the device functions as winglet. Therefore,
CL increases under the condition. The effectiveness under the condition that
the vertical control device is near the tip disappears in the case of over α
of 14 [deg] because of the stall. The combination between µ ≤ 100 [mm]
and δ ≥ 6 [deg] affects on decreasing CL. This effectiveness is weaker as α
increases. The combination between µ ≤ 90 [mm] and δ ≤ −2 [deg] also
affects on decreasing CL. This effectiveness is stronger as α increases. When
the vertical control device installs around the middle of the wing, the device
discourages the wing function. Since the wetted area of the vertical control
device for the uniform flow is especially larger as |δ| becomes larger, the
adverse effectiveness on CL is strong.

In the case of α ≥ 14 [deg], µ ≥ 140 [mm] affects on decreasing CL.
Especially, δ ≥ 0 [deg] at α of 14 [deg], δ ≥ 0 [deg] and δ ≤ −6 [deg] at
α of 16 [deg], and δ of roughly 0 [deg] at α of 18 and 20 [deg] have this
effectiveness. Since the vertical control device with +δ in the vicinity of the
wing tip amplifies the tip stall, CL sharply decreases. On the other hand,
the combination between µ ≤ 40 [mm] and δ ≥ 4 [deg] gives the effect on
increasing CL. The upper limit of µ to increase CL grows as α increases.
In addition, the combinations between µ ≤ 70 [mm] and δ ≥ 0 [deg] at α
of 16 [deg], between 30 ≤ µ ≤ 110 [mm] and δ ≥ −2 [deg] at α of 18 [deg],
and between 50 ≤ µ ≤ 130 [mm] and δ ≥ −4 [deg] also give the effect on
increasing CL. Since the vertical control device at the middle of the wing
exists the inside of separation due to the stall, the device reduces the pressure
of its wake. As a result, CL increases. The combination between µ ≤ 50
[mm] and δ ≤ −2 [deg] at α ≥ 16 [deg] gives the effect on increasing CL.
Since the vertical control device with −δ maintains the wing tip vortex, CL

increases. CL is easily increased by µ and δ in the case of high α.

5.2.2 Effectiveness on CD

In the second place, influence on CD will be observed. The effectiveness
of the design parameters on CD is clustered for three α region as α ≤ 12
[deg], α of 14 [deg], and α ≥ 16 [deg]. However, since µ primarily has the
effectiveness on CD, the results will be summarized by using µ.
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µ of 150 [mm] always gives the effect on decreasing CD. The effectiveness
is not dependent on α. The combination between µ of 150 [mm] and −6 ≤
δ ≤ 4 [deg] especially gives more powerful effect on decreasing CD. The
magnitude of this effectiveness is similar among the cases at α ≤ 4 [deg]
and α ≥ 16 [deg]. The magnitude of this effectiveness of 0 < δ ≤ 4 [deg] is
stronger at α ≤ 2 [deg]. In contrast, that of −6 ≤ δ ≤ 0 [deg] is stronger
at 4 ≤ α ≤ 12 [deg]. The magnitude of this effectiveness at α of 14 [deg]
is the weakest due to the existence of another combination between µ and
δ to reduce CD more. The separation in the vicinity of the tip of the main
wing will be restrained in the case at 150 [mm]. The flow visualization of the
three-dimensional space should be additionally performed in order to reveal
the physical mechanism that µ of 150 [mm] has the effectiveness on reducing
CD.

µ ≤ 20 and 70 [mm] also give the effect on decreasing CD. The effec-
tiveness does not depend on α. The separation which occurs due to the
interference with the fuselage will be restrained in the case at µ ≤ 20 [mm]
position. On the other hand, the wake of the vertical control device interferes
in the tip of the horizontal tail wing in the case at µ of 70 [mm] position.
Both of these cases should not have a large |δ| because of the larger wetted
area of the vertical control device for the uniform flow.

In contrast, µ of 40 [mm] affects on increasing CD. The influence does
not depend on α. Since the wake of the vertical control device interferes the
horizontal tail wing, the CD of it increases. The flow visualization of the wake
of the device should be implemented. In addition, CD of each component
should be elucidated by using computational fluid dynamics analysis.

δ ≥ 8 [deg] and δ ≤ −8 [deg] affects on increasing CD although µ of 70
and 150 [mm] restricts the influence because the wetted area of the vertical
control device for the uniform flow becomes large. Thereupon, a large num-
ber of |δ| such as δ ≥ 8 [deg] and δ ≤ −8 [deg] should not be set in order to
reduce CD.

The case of α of 14 [deg] has unique effectiveness on CD. The combination
between µ around 60 [mm] and δ of −4 [deg] gives the effect on decreasing
CD. Since the wake of the vertical control device interferes the tip of the
horizontal tail wing, the flow around the horizontal tail wing will be changed.
On the other hand, the combination between µ of 10 [mm] and δ ≥ 8 [deg]
and δ ≤ −6 [deg] affects on increasing CD in the case of α ≥ 16 [deg]. The
wing tip vortex is broke down because the vertical control device interferes it.
The circumstantial physical mechanism to give the influence on CD should
be elucidated by using the flow visualization.
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5.2.3 Effectiveness on CMp

In the third place, influence on CMp will be observed. The effectiveness of
the design parameters on CMp is clustered for three α regions as α ≤ 2,
4 ≤ α ≤ 12, and α ≥ 14 [deg], whose clustering is similar to that for CL.
The influence on CMp is easily understood because it depends on α.

In the case of α ≤ 2 [deg], the combination between µ around 50 [mm] and
δ ≥ 4 [deg] affects on increasing CMp. On the other hand, the combination
between µ around 60 [mm] and δ ≤ −8 [deg] affects on decreasing CMp.
This change of CMp is explained by the function on the main-wing region
where the fuselage and the vertical control device sandwich, that is similar
mechanism of CL.

In the case of 4 ≤ α ≤ 12 [deg], the effectiveness is clustered by using
µ. The case of µ ≥ 150 [mm] affects on increasing CMp. It is independent
of δ. Since this area on SOM has large CL and small CD, CMp naturally
increases. The combination between µ around 50 [mm] and δ ≥ 4 [deg]
affects on decreasing CMp. The result is occurred by the similar mechanism
in the above case of α ≤ 2 [deg]. The combination between µ ≤ 90 [mm] and
δ ≤ −4 [deg] also affects on decreasing CMp. Since the wake of the vertical
control device interferes the tip of the horizontal tail wing, the tip vortex of
the horizontal tail wing is induced. Therefore, the total CMp is reduced.

In the case of α ≥ 14 [deg], the combination between 50 ≤ µ ≤ 80
[mm] and δ ≤ −4 [deg] affects on increasing CMp. This is caused by the
interference of the wake of the device with the tip of the horizontal tail
wing. On the other hand, the combination between 40 ≤ µ ≤ 70 [mm] and
δ ≥ 4 [deg] affects on decreasing CMp. The result is occurred by the similar
mechanism in the above case of α ≤ 2 [deg]. Moreover, µ ≥ 140 [mm] also
affects on decreasing CMp except for the case of α of 20 [deg]. This does not
depend on δ. The result is induced by decreasing CL.

CMp directly depends on CL, CD, and α. In addition, the trim of the
aircraft is practically gained to control elevators. Thereupon, it is consid-
erable that the design knowledge regarding CL and CD is primary and the
design knowledge regarding CMp is secondary.

6 Conclusions

The new concept to place the vertical airfoil device as control surface has
arrived in so as to improve the aerodynamic performance. The wind tunnel
experiment has been implemented in order to investigate the influence of the
vertical control device with symmetrical airfoil shape. Moreover, data min-
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ing has been performed by using a self-organizing map for the experimental
data in order to qualitatively reveal the correlations among the aerodynamic
performances and the design parameters to place the vertical control device.
Consequently, it has been revealed the correlations among them. Further-
more, there is a sweet spot, where is at µ around 150 [mm] and −4 ≤ δ ≤ 4
[deg], in the present design space. In addition, the especial design parame-
ters to improve the aerodynamic performance have been specified by using
the data mining so that the detailed flow condition is observed. The three-
dimensional geometry of vertical control device in the sweet spot will be
optimized as the subsequent design phase based on the extracted design
knowledge.

Acknowledgment

The present study was supported by Japan Society for the Promotion of Sci-
ence through a Grant-in-Aid for Challenging Exploratory Research 26630440.

References

[1] K. Chiba and S. Obayashi. Knowledge discovery in aerodynamic design
space for flyback-booster wing using data mining. Journal of Spacecraft
and Rockets, 45(5):975–987, 2008.

[2] G. Deboeck and T. Kohonen. Visual Explorations in Finance with Self-
Organizing Maps. London, Springer Finance, 1998.

[3] M. Fujino. Design and development of HondaJet. Journal of Aircraft,
42(3):755–764, 2005.

[4] M. Fujino and Y. Kawamura. Wave-drag characteristics of an over-the-
wing nacelle business-jet configuration. Journal of Aircraft, 40(6):1177–
1184, 2003.

[5] T. Kohonen. Self-Organizing Maps. Springer, Berlin, Heidelberg, 1995.

[6] J. C. Lin. Review of research on low-profile vortex generators to control
boundary-layer separation. Progress in Aerospace Sciences, 38(4):389–
420, 2002.

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

135



[7] T. Omori, Y. Sunada, and T. Imamura. Experimental and numerical
research on aerodynamic characteristics of rectangular fin mounted ver-
tically over the wing. AIAA Paper 2015-0774, 2015, 2015.

[8] O. Samoylovitch and D. Strelets. Determination of the Oswald effi-
ciency factor at the aeroplane design preliminary stage. Aircraft Design,
3(3):167–174, 2000.

[9] D. A. Solfelt and R. C. Maple. CFD analysis of a T-38 wing fence. AIAA
Paper 2008-0331, 2005.

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

136



Evidence-theory-based analysis for structural-acoustic field with 

epistemic uncertainties 
†Jian Liu¹, *Longxiang Xie2, Xianfeng Man3, and Yongchang Guo4 

1State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, 

Hunan University, Changsha, Hunan 410082, China. 
2State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, 

Hunan University, Changsha, Hunan 410082, China. 
3State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, 

Hunan University, Changsha, Hunan 410082, China. 
4State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, 

Hunan University, Changsha, Hunan 410082, China. 

*Presenting author: d_x20140920@126.com  
†Corresponding author: JianL2004@126.com 

Abstract 

Evidence theory has a strong capacity to deal with epistemic uncertainty, in view of 
the overestimation in interval analysis, the responses of structural-acoustic problem 
with epistemic uncertainty could be untreated. In this paper, a numerical method is 
proposed for structural-acoustic system response analysis under epistemic 
uncertainties based on evidence theory. To improve the calculation accuracy and 
reduce the computational cost, the interval analysis technique and radial point 
interpolation method are adopted to obtain the approximate frequency response 
characteristics for each focal element, and the corresponding formulations of 
structural-acoustic system for interval response analysis are deduced. Numerical 
examples are introduced to illustrate the efficiency of the proposed method. 

Key words: Structural-acoustic system response analysis; Evidence theory; Radial 
point interpolation method; Interval analysis; Finite element method; Epistemic 
uncertainty 

Introduction  

In the last two decades, with the increasing of people’s interest in the performance of 
NVH (noise, vibration and harshness), researches on the structural-acoustic field have 
been experienced a rapid development in engineering [1-3]. In most engineering cases, 
the structural-acoustic problems have been analysed by Probabilistic methods, in 
which the probability distribution, the boundary conditions and the external loads are 
defined unambiguously. However, due to the effects of manufacturing/assembling 
errors, original algorithm defect, imprecise environment factors and external 
excitations, uncertainties associated with geometric tolerances, material properties 
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and boundary conditions are unavoidable [4,5]. Generally, uncertainty can be divided 
into epistemic and aleatory categories based on the source of uncertainty. Epistemic 
uncertainty is related to the incomplete knowledge or imprecise information in any 
activity, which can be reduced by collecting more knowledge or experimental data. 
Aleatory uncertainty, on the other hand, derives from inherent variation in a physical 
system or environment, which is always regarded as random variables in probability 
theory [6]. Numerous mathematical theories or methods are developed to deal with 
the structural-acoustic problems under epistemic uncertainties, including possibility 
theory, D-S evidence theory, Bayesian theory, interval analysis, p-box method, 
Monte–Carlo method, spectral stochastic method, etc [7-9]. 

Among the approaches above, evidence theory seems to be more capable or more 
flexible to define epistemic uncertainty in the practical engineering problems. 
According to the D-S theory, it defines BPAs (basic probability assignment) to each 
focal element, which can provide corresponding formulations as possibility theory. 
Besides, the basic axioms in evidence theory can also deal with hybrid uncertainties 
in which aleatory and epistemic uncertainties combined in a very natural way. Thus, 
evidence theory has been widely used in artificial intelligence related fields and has 
been extended to conduct engineering structures and mechanical systems design, and 
reliability analysis, recently. The benefits and drawbacks of evidence theory in 
reliability analysis were summed by Oberkampf and Helton through a simple 
algebraic function [10]. An evidence-theory-based reliability analysis method was 
developed by Jiang et al., in which the concept of focal element was proposed firstly 
[11,12]. H. R. Bae proposed an efficient method based on evidence theory for 
reliability analysis using a multi-point approximation [13,14]. Helton et al. combined 
evidence theory with sampling-based sensitivity analysis when determining the 
epistemic uncertainty in model inputs [15]. A non-probability convex model was 
created by Elishakoff et al. to handle uncertain problems without sufficient 
information [16]. Qiu et al. proposed an interval perturbation method for narrow 
parameter intervals due to the unpredictable effect of neglecting the higher order 
terms of Taylor series or Neumann series [17]. An exploration of evidence theory has 
been conducted by J. C. Helton by using three uncertain quantification methods to 
address the challenge problems at model predictions [18]. An evidence-theory-based 
interval method was proposed by Rao et al. to analyse uncertain structural systems 
[19]. The application of fuzzy set theory in finite element method had developed the 
fuzzy finite element method (FFEM) for non-deterministic models [20–23]. Bae et al. 
applied an efficient method under a multi-point approximation to process 
evidence-theory-based reliability analysis [24,25]. The evidence theory and Bayesian 
theory were used for decision-making problems to compare the effectiveness of 
uncertainty quantification [26]. 

The response characteristics of structural-acoustic system is one of the hot points in 
noise prediction, which is important for NVH performance in engineering design and 
manufacturing [27]. From the works above, some inspiring progresses have been 
made for the response analysis of structure-acoustic coupling system with epistemic 
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uncertainties and evidence-theory-based reliability analysis. However, from an 
overall perspective, research on the hybrid uncertain analysis and response 
characteristics of complex system are still at the very beginning. Moreover, some 
crucial issues have not yet been solved [28]. Traditional numerical methods for the 
structural–acoustic problems are possibility theory or FEM (Finite Element method) 
in which the parameters are always regarded as random variables and the probability 
distributions are defined unambiguously. This assumption would ignore the influence 
of uncertainty and correlation in complex system [29].  

In this paper, an evidence-theory-based radial point interpolation method (DSRPIM) 
is proposed for structure-acoustic coupling system under epistemic uncertainties, 
which can acquire the frequency response characteristics of complex system. The 
remainder of this paper is organized as follows. In chapter 2, the fundamentals of 
evidence theory are introduced. The equilibrium equation for structure-acoustic 
coupling system is deduced in chapter 3. In chapter 4, DS-RPIM is proposed to 
predict the frequency response characteristics of structural-acoustic problems. Two 
numerical examples are investigated in chapter 5. In chapter 6, some conclusions are 
given. 

1. Evidence theory 
1.1. Fundamentals of evidence theory 

Evidence theory, also called as DS (Dempster-Shafer) theory, was firstly introduced 
by Dempster through studying statistical problems in 1976. And further developed by 
Shafer who defined probability to make it more suitable for general cases [30]. 
Compared with probability theory, evidence theory uses a prior probability 
distribution to get a posterior evidence interval, which quantifies the belief and 
plausibility of each proposition to handle the uncertainty in system response.  

As probability theory, evidence theory firstly defines FD (a frame of discernment) Θ, 
which contains a set of mutually exclusive propositions. 2Θ is a non-blank finite set 
that always denotes the power set of Θ, which means all possible various propositions. 
For example, if the frame of discernment Θ includes three mutually exclusive 
elementary propositions X1, X2 and X3, the power set of Θ can be illustrated as follows 

              2Θ = {Ø,{X1},{X2},{X3},{X1,X2},{X1,X3},{X2,X3},{X1,X2,X3}}            (1) 

In evidence theory, the probability is assigned not only to a single matter but also to 
any subset of possible propositions. m: 2Θ → [0, 1], called as the BPAF (basic 
probability assignment function) of Θ, defines the elementary belief of each 
proposition, which should satisfy the following three theorems 

Theorem 1: 0)( ≥Am  for any A∈2Θ 

Theorem 2:  m(Ø) = 0 
Theorem 3: ∑

Θ⊂

=
A

Am 1)(  
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where m(A) represents the corresponding BPAs of A. And every set A satisfying 
m(A) ≧0 can be defined as a focal element.  

It is hard to construct a precise PDF (probability density function) for proposition A 
because of the insufficient information or knowledge. Thus, it seems more reasonable 
to provide a confidence interval instead of a deterministic value to depict the total 
degree of belief in a proposition. In general, evidence theory uses the belief and 
plausibility to quantify the lower and upper bounds of an interval [Bel(A), Pl(A)], 
which is defined as 

                    )()()( Θ⊂∀= ∑
⊆

ABmABel
AB

                            (2) 

                    ∑
≠

=
φBA

BmAPl


)()(                                        (3) 

where Bel: 2Θ → [0, 1] is called as belief which is obtained by adding the evidence of 
propositions in A. Meanwhile, Pl: 2Θ → [0, 1] is the summation of BPAs that belong 
to the propositions of A totally or partially, which is defined as the Plausibility 
function of Θ. 

1.2. Characteristic function with interval variables based on DS theory  

Considering a general function with q-dimensional independent variables 

                  qiXXXfY i ...,,2,1,)( =∈=                       (4) 

Similar to the probability theory, the uncertain parameters are generally seen as 
relatively independent and the joint frame of discernment S is defined as 

         },...,2,1,],,...,,[{... 2121 qjXxxxxsXXXS jjqkq =∈==×××=      (5)  

where sk and xj represent the focal element of joint FD and the focal element of the jth 
evidence variable, respectively. The joint BPAs can be expressed as 

                     















= ∏

=

otherwise

xm
sm

q

j
j

ks

,0

)(
)( 1                          (6)                                           

In probability theory, the mean value E(X) and the evidence variable l
iX  are 

relatively independent. However, the evidence variable l
iX  is an interval rather than 

a deterministic value. Thus, E(X) and l
iX  are related rather than independent. Based 

on the concepts mentioned above, considering the overestimation phenomenon in 
interval analysis, the characteristic function of evidence variables are provided below 
[31]. 
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1.2.1. The relevant expectance E(X) 

Through the analysis above, the relevant expectance )( iXE is expressed as  

                     ∑
≠
=

=
n

ij
j

l
ji nXXE

1
/)(                                (7) 

where n is the amount of evidence variables. l
jX is the others except l

iX . 

1.2.2. The relevant variance )(, XD  

Similar to the expectance E(X), the overestimation characteristics is also exited in the 
variance D(X) calculation. To eliminate the phenomenon above, expanding the E(X), 
the variance formula is defined as 
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where l
iX is the ith evidence variable and )( l

iXm is the corresponding BPAs. 

Obviously, D(X) changes with the change of Xi in the interval [Bel(A), Pl(A)]. Thus, 

the relevant variance )(' XD can be defined as 
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where β is the interval correction coefficient and its range is from 0.01 to 0.30. The 
coefficient factor ∂  is introduced to the relevant variance, which is expressed as   

                       
)(
)1(2

β
β

−
+−

=∂
nn

nn                             (10) 

So, the relevant variance formula is rewritten as 

               )())(()(' 2

1

l
ii

n

i

l
i XmXEXXD −∂=∑
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                      (11) 

1.2.3. The relevant covariance ),( 21
' XXCov  

Similarly, the co-relevant expectance )(' iXE  is introduced for covariance Cov(X1, 

X2), which is defined as 
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By introducing the coefficient factor δ to covariance, the relevant covariance 

),( 21
' XXCov  can be expressed as 
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where )( 1
1

1
l
iXm

n
n

−
−

=
ε

δ , )( 2
2

2
l

jXm
m

m
−

−
=

ε
δ , ɛ1 and ɛ2 are the interval 

combined coefficients whose range is from 0.01 to 0.25.  

2. FEM/RPIM for structural-acoustic coupling system 

In this paper, the coupled FEM/RPIM method is proposed to solve the 
structural-acoustic field problem, in which the FEM/RPIM model is used to simulate 

the plate structure and the acoustic medium. Due to the 0c  continuity characteristic 

of fluid element, the Reissner-Mindlin plate is elected to the plate structure, in which 
the normals to the mid-plane of the plate remain straight during the deformation[32]. 
And the acoustic medium satisfies the linear constitutive equations which is assumed 
to be inviscid and incompressible. On the interface of the plate and the acoustic 
medium, only the acoustic medium exerts the normal loads on the plate and the 
normal displacement of the plate is just coupled with the acoustic medium[33]. 

2.1. FEM/RPIM model of the plate structure 

In the frequency domain, without considering structural damping, the steady-state 
dynamic equation Galerkin weak form of the plate structure can be defined as 

             
∫∫

∫∫ ∫

ΩΩ∂

ΩΩ Ω

=Ω−+

Ω+Ω+Ω

0

..
2

dbdSt

dtdDdD

s
T

s
T

T
s

T
b

T

δµδµ

µωρδµγδγκδκ
                (14) 

where μ is the displacement, 
..
µ is the acceleration, ρ is the material density, t is the 

thickness of plate element, ts is the surface loading plate structure and bs is volume 
force, respectively.  

γ  and κ  are the plate shear strain and bending strain, respectively, which can be 

expressed as: 
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Ds and Db are the transverse shear stiffness constitutive matrix and the bending plate 
stiffness constitutive matrix, respectively, which are written as: 
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where E is the Young’s modulus, v is the Poisson’s ratio and v=5/6 is the shear 
correction factor, respectively. 

From Eqs.(15-18), we can get that µ
ν
κ









=









s

b

B
B

, the steady-state dynamic equation 

of the plate structure is defined as 

                         bf FFuMKu +=−
..

                        (19) 

where K denotes the plate stiffness matrix which is given as  

             ( ) ( )T T
s s s sb b b bd d

Ω Ω
= + = Ω+ Ω∫ ∫K K K B D B B D B             (20) 

Kb denotes the the bending stiffness matrix, Ks denotes the shear stiffness matrix, M 
denotes the plate element mass matrix, M is defined as  

                    ∫Ω Ω= QdtttdiagQM T ]
1212

[
33

ρ                     (21) 

Ff  and Fb are the surface load matrix and a volume force array, which are expressed 
as 

                         dStQF s
T

f ∫ Ω∂=                            (22) 
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                         ∫Ω Ω= dbQF s
T

b                            (23) 

2.2. FEM/RPIM model for the acoustic medium 

In the engineering application, the fluid is generally regarded as compressible and 
inviscid which is seen to undergo small translational movement[34]. Considering an 

acoustic field problem with domain fΩ  and boundary bΓ , the speed of sound c  

and the field acoustic pressure p are provided, the acoustic wave equation is defined 
as 

                   
2

2 2

1 0,pp
c t

∂
∆ − =

∂
 in fΩ                          (24) 

where ∆  is the Laplace operator, p is the field acoustic pressure, c and t are the 
speed of sound traveling in the fluid medium and its time, respectively.  

The boundary condition of acoustic field is written as                                                      

                          0. =∇ np , on Fb                                         

(25) 

where n denotes the boundary surface normal to the acoustic fluid domain. 

On the interface between the plate structure and the acoustic medium, the momentum 
balance requires that 

                      funp
..

. ρ−=∇  on fΩ                          (26) 

where ρ is the density of acoustic medium, fu
.. is the normal acceleration component 

of acoustic fluid on the interface and fΩ  is the interface between the plate structure 

and acoustic fluid. 

If the acoustic pressure p is regarded as a time harmonic variable, the Eq.(24) can be 
re-written as  

                           2 2 0p k p∇ + =                           (27) 

where /k cω=  represents the wavenumber, ω is the angular frequency, c denotes the 
sound speed. 

The smoothed Galerkin weak form for acoustic problems can be expressed as 
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ρ
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where fq is the additional load of unit volume andψ expresses the shape function 

matrix of FE-RPIM. 

For numerical computation, the acoustic wave equation should be discretized by 
using the Radial Point Interpolation method[35]. This leads to the discreted equation 
of node sound pressure p which is re-written as  

                         
PNpNp f

m

i
ifi
==∑

=1

                       
(29) 

where p is the vector of nodal pressure, m expresses the number of nodal variables 

per element, and fN denotes the FE-RPIM shape function of fluid domain. 

By substituting Eq.(29) into Eq.(28), the matrix form equation of acoustic domain can 
be obtained as  

                       f f f+ =K p M p F                              (30) 

where fK  is the acoustic stiffness matrix and it can be expressed as  

                           T df f fΩ
= Ω∫K B B                         (31) 

fB  denotes the smoothed gradient matrix that is defined as 
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(32) 

fM is the acoustic mass matrix and it is written as 

                         T
2

1
f d

c Ω
= Ω∫M Ψ Ψ                           (33) 

p denotes the nodal pressure of the acoustic domain, which can be expressed as 

                        T
1 2{ , , , }np p p= p                            (34) 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

145



sF  and fF  are the vectors of nodal acoustic forces that are given as 

                       ∫
Ω∂

ΓΨΨ=
sf

dF T
s .ρ                             (35) 

                      
∫Ω Ω
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∂
Ψ= d

t
q

F fT
f

                            
(36)

 

2.3. Coupled FEM/RPIM for structural-acoustic problem 
Considering that the structural domain sΩ coupled with fluid domain fΩ on the 
interface sfΩ , the boundary conditions of structural-acoustic coupling system are  
denoted by bΓ , uΓ and tΓ which are illustrated in Fig.1. In this section, the coupled 
FEM/RPIM equation is proposed for structural-acoustic problem. 

 

Figure 1. Schematic illustrating of the structural-acoustic system 

The fluid particle and the structure move in the normal direction of the interface are  
written as 

 

                            
s s f fu u=n n                            (37) 

where n is the normal vector, us is the displacement of structure on the interface and 
uf is the displacement of fluid contacting the structure. 

On the interface, based on the continuity and equilibrium conditions, we obtain that 

n=nf=-ns[36]. The fluid force loading on the structure Fs can be expressed as   
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The structural force loading on the fluid Ff is also expressed as  
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The spatial coupling matrix H can be defined as  

                          sf
s f f dS

Ω
= ∫H N n N

                        
(40)

  

By substituting the Eq.(40) into Eq.(38) and Eq.(39), the equations are rewritten as 

                     s f s
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(41) 

Thus, the governing equation for coupled structure-acoustic system is expressed as  
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Assuming that the displacement and pressure are all time-harmonic[37], Eq.(42) can 
be rewritten as    
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To simplify the process of analyzing the FE/RPI equation of the structural-acoustic 
system[38,39], we rewrite Eq. (43) into the following form 

                            FZU =                               (44)  

where Z is the structural-acoustic dynamic stiffness matrix, U is the response vector 
and F is the external excitation vector which can be expressed as 
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3. DS-FE/RPIM for epistemic uncertainty structural-acoustic problem 

Discretizing the structural-acoustic coupling system, the discretization form of the 
structural-acoustic dynamic stiffness matrix Z and the external excitation vector F can 
be rewritten as  
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where N denotes the number of plate elements and NA denotes the number of 
acoustic field elements, respectively. 

According to D-S evidence theory, the FPD of the dynamic stiffness matrix and the 
external excitation vector in evidence focal element are expressed as 
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where m
ikX  is the interval variable which denotes the kth focal element of the ith 

evidence variable. 

Combined with the interval perturbation theory, ignoring the higher order 
perturbation[40], the approximate formula of node pressure response is defined as 
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where m
ikp  is the node pressure and ΔeI=[-1, 1]. 

According to Eq.(51), the estimated value of I
ikp∆  interval radius is expressed as 

           
m
ik

ik

m
ik

ik
m
ik

ik

m
ik

ik
m
ikik p

X
XZXZ

X
XFXZp

∂
∂

∆+
∂

∂
∆=∆ −− )()()()( 11

          
(52) 

 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

148



Based on the value range of evidence vector, under the effects of the evidence 

variable Xik, the upper and lower bounds of the node pressure response value m
ikp  

can be write as
  

                          ik
m
ik

U
ik ppp ∆+=                            (53) 

                         ik
m
ik

L
ik ppp ∆−=                             (54) 

By substituting Eq.(53) and Eq.(54) to Eq.(7), the expectance interval of the 
steady-state sound pressure response can be expressed as 
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where I is the number of the evidence variables and n denotes the number of focal 
elements, respectively. 

By substituting Eqs.(53-56) to Eq.(9), the deviation interval of the sound pressure 
response is expressed as 
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4. Numerical example       

 
In this section, a 3D structural-acoustic problem is provided to verify the approach 
mentioned above. A square flexible plate model coupled with the acoustic field of 
dimensions 500×500×500mm is depicted in Fig.2. The plate structure is discretized 
by 144 four-node quadrilateral elements and the acoustic field is discretized by 1152 
eight-node hexahedron elements. The acoustic field is surrounded by five rigid walls 
and a flexible plate. The plate is excited by a unit normal harmonic point force at the 
middle point and the boundary conditions for it are: w = 0, and θx and θy are free at 
the edges.  
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Figure 2. A cubic structural-acoustic coupling model
 The density ρs and the Poisson’s ratio v of the plate are 2.5×103 kg/m3 and 0.37, 

respectively. The sound speed of the air in the acoustic field c is 346m/s. The Young’s 
modulus and the thickness of the plate, the density of the air in the acoustic field are 
considered to be the independent uncertain parameters which are treated as evidence 
variables. To compare with the probability method, assumed that the evidence 
variables are the truncated normal distribution: μ(E)=21×104Mpa, σ(E)=0.84×104 

Mpa, μ(ρf)=1.30 kg/m3, σ(ρf)=0.03kg/m3 and μ(t)=1.25mm, σ(t)=0.05mm. The BPA 
of uncertain parameters with 4, 8 and 16 focal elements are given in Table 1. 
Simulations of the cubic structural-acoustic coupling model are carried out by 
MATLAB R2009a on a 3.30 GHz Xeon(R) CPU E3 1230 v3.  

Table 1. The BPA for uncertain parameters with 4, 8 and 16 focal elements 

focal 
elements 

E (104 MPa) fρ  (kg/m3) t (mm) 

focal element BPA focal element BPA focal element BPA 

4 

[18.50, 19.75] 6.69 [1.21, 1.26] 6.55 [1.10, 1.18] 6.55 
[19.75, 21.00] 43.16 [1.26, 1.30] 43.30 [1.18, 1.25] 43.30 
[21.00, 22.25] 43.16 [1.30, 1.34] 43.30 [1.25, 1.33] 43.30 
[22.25, 23.50] 6.69 [1.34, 1.39] 6.55 [1.33, 1.40] 6.55 

8 

[18.50, 19.13] 1.13 [1.21, 1.23] 1.08 [1.10, 1.14] 1.09 
[19.13, 19.75] 5.56 [1.23, 1.26] 5.45 [1.14, 1.18] 5.46 
[19.75, 20.38] 16.00 [1.26, 1.28] 15.98 [1.18, 1.21] 15.97 
[20.38, 21.00] 27.16 [1.28, 1.30] 27.34 [1.21, 1.25] 27.33 
[21.00, 21.63] 27.16 [1.30, 1.32] 27.34 [1.25, 1.29] 27.33 
[21.63, 22.25] 16.00 [1.32, 1.35] 15.98 [1.29, 1.33] 15.97 
[22.25, 22.88] 5.56 [1.35, 1.37] 5.45 [1.33, 1.36] 5.46 
[22.88, 23.50] 1.13 [1.37, 1.39] 1.08 [1.36, 1.40] 1.09 

16 

[18.50, 18.81] 0.31 [1.21, 1.22] 0.30 [1.10, 1.12] 0.29 
[18.81, 19.13] 0.82 [1.22, 1.23] 0.79 [1.12, 1.14] 0.78 
[19.13, 19.44] 1.86 [1.23, 1.24] 1.82 [1.14, 1.16] 1.82 
[19.44, 19.75] 3.69 [1.24, 1.26] 3.64 [1.16, 1.18] 3.64 
[19.75, 20.06] 6.38 [1.26, 1.27] 6.35 [1.18, 1.19] 6.35 
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[20.06, 20.38] 9.62 [1.27, 1.28] 9.63 [1.19, 1.21] 9.63 
[20.38, 20.69] 12.65 [1.28, 1.29] 12.71 [1.21, 1.23] 12.72 
[20.69, 21.00] 14.52 [1.29, 1.30] 14.61 [1.23, 1.25] 14.62 
[21.00, 21.31] 14.52 [1.30, 1.31] 14.61 [1.25, 1.27] 14.62 
[21.31, 21.63] 12.65 [1.31, 1.32] 12.71 [1.27, 1.29] 12.72 
[21.63, 21.94] 9.62 [1.32, 1.33] 9.63 [1.29, 1.31] 9.63 
[21.94, 22.25] 6.38 [1.33, 1.35] 6.35 [1.31, 1.33] 6.35 
[22.25, 22.56] 3.69 [1.35, 1.36] 3.64 [1.33, 1.34] 3.64 
[22.56, 22.88] 1.86 [1.36, 1.37] 1.82 [1.34, 1.36] 1.82 
[22.88, 23.19] 0.82 [1.37, 1.38] 0.79 [1.36, 1.38] 0.78 
[23.19, 23.50] 0.31 [1.38, 1.39] 0.30 [1.38, 1.40] 0.29 

The relevant expectance and standard deviation of the sound pressure response at the 
points with the distances of 50mm, 100mm, 150mm, 200mm, 250mm, 300mm, 
350mm, 400mm, 450mm and 500mm are calculated. In Fig. 3, the results of 
frequency 100 Hz are depicted. The lower and upper bounds of the relevant 
expectance and standard deviation of the sound pressure response at the Point 1 with 
the distance of 400mm in the frequency range of 20 to 200 Hz are plotted in Fig. 4. 
The results obtained by the Monte Carlo method with 100000 samples are used as the 
reference. From Fig. 3 and Fig. 4, when the uncertain parameters are treated as 
evidence variables, the relevant expectance and standard deviation of the sound 
pressure response are intervals. Besides, the lower and upper bounds of the relevant 
expectance and standard deviation contain the reference. With the number of focal 
elements increasing, the width of the expectance and standard deviation will be 
decreased. Because of each evidence variable follows the truncated normal 
distribution in which the BPA of focal element is the cumulative probability 
distribution in the corresponding interval. With the amount of information increasing, 
the evidence uncertainty could be reducible. Thus, the analysis results will more 
approach to the probability computational results with more BPAs in a certain interval 
range. In the numerical example, the precision and effectiveness of the proposed 
approach for structural-acoustic fields with epistemic uncertainty is validated by 
comparing the analysis results with evidence variables to the probability 
computational results.  

Figure 3. Bounds of the relevant 
expectance and standard deviation of the sound  

pressure response with 4, 8 and 16 focal elements (100Hz) 
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Figure 4. Bounds of the relevant expectance and standard deviation of the sound 
pressure response at the Point 1 under 4, 8 and 16 focal elements (20 - 200 Hz) 

Assuming that x is an evidence variable and X denotes the sound pressure response, 
the belief Bel (X ≤ x) and the plausibility Pl (X ≤ x) of the sound pressure response at 
the Point 2 for the frequency 100 Hz are depicted in Fig. 5. The probability density 
function (PDF) of probability computational results obtained by the Monte Carlo 
method with 100000 samples are also regarded as the reference. From Fig.5, the 
PDFs are surrounded by the Bels and the Pls. Furthermore, with the number of focal 
elements increasing, the width between Bel and Pl will be decreased which further 
indicates the precision and effectiveness of the proposed method. 

 

Figure 5. Cumulative probability distribution of the sound pressure response 
at the Point 2 (100Hz) 

Conclusions 

In this paper, an evidence-theory-based approach is proposed for structural-acoustic 
problem with epistemic uncertainty. The evidence theory is used to handle the 
epistemic uncertainty in which there is no enough information or sufficient 
knowledge to construct the precise probability distribution for uncertain parameters. 
The numerical example of a plate structure-acoustic coupling system is investigated. 
The conclusions are as follows:  
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(1) The overestimation phenomenon, which derives from the correlation between 
parameters, is widely existent in the analysis of complex systems. The proposed 
method is suggested to overcome the characteristic of overestimation. The results of 
the numerical example shows that the proposed approach is much more efficient than 
the original method as the focal elements increases. Therefore, we can control the 
form, size and quantity of focal element to improve the analytical accuracy in 
practical applications.  

(2)  The relevant expectance, standard deviation and probability density distribution 
of sound pressure response are intervals not deterministic values. As the amount of 
information and knowledge increasing, the epistemic uncertainty could be eliminated. 
In other words, the bandwidths of the relevant expectance, standard deviation and 
probability density distribution of sound pressure response will be narrower which 
means the analysis results will more approach to the probability computational 
results.  

It should be noted that this paper is focused on the epistemic uncertainty. In practical 
engineering problems, epistemic uncertainty and aleatory uncertainty may exist 
simultaneously. Thus, in further research, on the one hand, the hybrid evidence 
variables and random variables involved in structural-acoustic field will be 
investigated. On the other hand, the proposal method could be widely applied in  
engineering fields, such as dynamic thermal field analysis, thermal-coupling field 
analysis, heat-pressure field analysis and so on.   

Acknowledgments 

The paper is supported by the Independent Research Project of State Key 
Laboratory of Advanced Design and Manufacturing for Vehicle Body in Hunan 
University (Grant No. 71375004 and Grant No. 51375002) and the Hunan Provincial 
Innovation Foundation for Postgraduate (Grant No. CX2014B147). The authors 
would also like to thank reviewers for their valuable suggestions. 

REFERENCE 

[1] Du, J. B., Olhoff, N. (2010) Topological design of vibrating structures with respect to optimum 
sound pressure characteristics in a surrounding acoustic medium, Struct. Multi. Optim. 42 (1), 
43–54. 

[2] He, Z. C., Liu, G., R., Zhong, Z. H., Zhang, G. Y., Cheng, A. G. (2011) A coupled ES-FEM/BEM 
method for fluid–structure interaction problems, Eng. Anal. Bound Elem. 35, 140–7.  

[3] Chen, N., Yu, D., Xia, B. (2015) Evidence-theory-based analysis for the prediction of exterior 
acoustic field with epistemic uncertainties, Eng. Anal. Bound Elem. 50, 402-411. 

[4] Stefanou, G. (2009) The stochastic finite element method: past, present and future, Comput. 
Method Appl. M. 198 (9–12), 1031–1051. 

[5] Hoffman, F. O., Hammonds, J.S. (1994) Propagation of uncertainty in risk assessment: the need to 
distinguish between uncertainty due to lack of knowledge and uncertainty due to variability, Risk 
Anal. 14 (5), 707–12. 

[6] Zhan, K., Luo, Y. (2009) Non-probabilistic reliability-based topology optimization of 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

153



geometrically nonlinear structures using convex models, Comput. Methods Appl. Mech. Eng. 198 
(41), 3228–38. 

[7] Adhikari, S. (2011) Doubly spectral stochastic finite-element method for linear structural 
dynamics, J. Aerospace Eng. 24 (3), 264–276. 

[8] Feng, Y. T., Li, C. F., Owen, D. R. J. (2010) A directed Monte Carlo solution of linear stochastic 
algebraic system of equations, Finite Elem. Anal. Des. 46 (6), 462–473. 

[9] Hua, X. G., Ni, Y. Q., Chen, Z. Q., Ko, J. M. (2007) An improved perturbation method for 
stochastic finite element model updating, Int. J. Numer. Meth. Eng. 73 (13), 1845–1864. 

[10] Oberkampf, W. L., Helton, J. C. Investigation of evidence theory for engineering applications, 
AIAA2002-1569, Non-Deterministic Approaches Forum, Denver, CO; 2002. 

[11] Jiang, C., Zhang, Z., Han, X., Liu, J. (2013) A novel evidence-theory-based reliability analysis 
method for structures with epistemic uncertainty, Comput. Struct. 129, 1–12. 

[12] Bai, Y. C., Jiang, C., Han, X., Hu, D. A. (2013) Evidence-theory-Based structural static and 
dynamic response analysis under epistemic uncertainties, Finite Elem. Anal. Des. 68, 52-62. 

[13] Bae, H. R., Grandhi, R. V., Canfield, R. A. (2006) An approximation approach for uncertainty 
quantification using evidence theory, Reliab. Eng. Syst. Saf. 86, 215–225. 

[14] Bae, H. R., Grandhi, R. V., Canfield, R. A. (2004) Epistemic uncertainty quantification techniques 
including evidence theory for large-scale structures, Comput. Struct. 82, 1101–1112. 

[15] Helton, J. C., Johnson, J. D., Oberkampf, W. L., Sallaberry, C. J. (2006) Sensitivity analysis in 
conjunction with evidence theory representations of epistemic uncertainty, Reliab. Eng. Syst. Saf. 
91, 1414-1434. 

[16] Haim, Y. Ben, Elishakoff, I. Convex Models of Uncertainty in Applied Mechanics, Elsevier 
Science Publishers, Amsterdam, 1990. 

[17] Qiu, Z. P., Xia, Y. Y., Yang, J. L. (2007) The static displacement and the stress analysis of 
structures with bounded uncertainties using the vertex solution theorem, Comput. Methods Appl. 
Mech. Eng. 196 (49–52), 4965–84. 

[18] Helton, J. C., Johnson, J. D., Oberkampf, W. L. (2004) An exploration of alternative approaches to 
the representation of uncertainty in model predictions, Reliab. Eng. Syst. Saf. 85, 39-71. 

[19] Rao, S. S., Berke, L. (1997) Analysis of Uncertain Structural Systems Using Interval Analysis, 
AIAA 35 (4), 727-735. 

[20] Massa, F., Tison, T., Lallemand, B. (2006) A fuzzy procedure for the static design of imprecise 
structures, Comput. Methods Appl. Mech. Eng. 195 (9–12), 925–941. 

[21] Gersem, H. De, Moens, D., Desmet, W., Vandepitte, D. (2007) Interval and fuzzy dynamic 
analysis of finite element models with superelements, Comput. Struct. 85 (5–6), 304–319. 

[22] Balu, A.S., Rao, B.N. (2012) High dimensional model representation based formulations for fuzzy 
finite element analysis of structures, Finite Elem. Anal. Des. 50, 217–230. 

[23] Hanss, M., Turrin, S. (2010) A fuzzy-based approach to comprehensive modeling and analysis of 
systems with epistemic uncertainties, Struct. Saf. 32 (6), 433–441. 

[24] Bae, H. R., Grandhi, R. V., Canfield, R. A. (2006) An approximation approach for uncertainty 
quantification using evidence theory, Reliab. Eng. Syst. Saf. 86, 215-225. 

[25] Bae, H. R., Grandhi, R. V., Canfield, R. A. (2004) Epistemic uncertainty quantification techniques 
including evidence theory for large-scale structures, Comput. Struct. 82, 1101-1112. 

[26] Soundappan, P., Nikolaidis, E., Haftka, R. T., Grandhi, R., Canfield, R. (2004) Comparison of 
evidence theory and Bayesian theory for uncertainty modeling. Reliab. Eng. Syst. Saf. 85 (1), 
295–311. 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

154



[27] Xia, B., Yu, D., Liu, J. (2013) Interval and subinterval perturbation methods for a 
structural-acoustic system with interval parameters, J. Fluid. Struct. 38, 146-163. 

[28] Heaney, K. D., Cox, H. (2006) A tactical approach to environmental uncertainty and sensitivity, 
IEEE J. Oceanic Eng. 31, 356–367. 

[29] Xia, B., Yu, D., Liu, J. (2013) Hybrid uncertain analysis for structural–acoustic problem with 
random and interval parameters, J. Sound Vib. 332, 2701-2720. 

[30] Dehghan, M., Hashemi, B. (2006) Iterative solution of fuzzy linear systems, Appl. Math. Comput. 
175, 645–74. 

[31] Elishakoff, I., Thakkar, K. (2014) Overcoming Overestimation Characteristic to Classical Interval 
Analysis, AIAA Journal 52 (9), 2093-2097. 

[32] Xia, B., Yu, D. (2014) An interval random perturbation method for structural-acoustic system with 
hybrid uncertain parameters, Int. J. Numer. Meth. Engng. 97, 181-206. 

[33] Xia, B., Yu, D., Liu, J. (2013) Probabilistic Interval Perturbation Methods for Hybrid Uncertain 
Acoustic Field Prediction, J. Vib. Acoust. 135, 1-12. 

[34] Everstine, G. C., Henderson, F. M. (1990) Coupled finite element/boundary element approach for 
fluid structure interaction, J. Acoust. Soc. Am. 87, 1938-1947. 

[35] Wenterodt, C., Estorff, O. Von (2009) Dispersion analysis of the meshfree radial point 
interpolation method for the Helmholtz equation, Int. J. Numer. Meth. Engng. 77, 1670-1689. 

[36] Li, K., Huang, Q. B., Wang, J. L., Lin, L. G. (2011) An improved localized radial basis function 
meshless method for computational aeroacoustics, Eng. Anal. Bound Elem. 35, 47-55. 

[37] Zhang, Z., Jiang, C., Han, X., Hu, Dean, Yu, S. (2014) A response surface approach for structural 
reliability analysis using evidence theory, Adv. Eng. Softw. 69, 37-45. 

[38] He, Z. C., Liu, G. R., Zhong, Z. H., Cui, X. Y., Zhang, G. Y., Cheng, A. G. (2010) A coupled 
edge-/face-based smoothed finite element method for structural-acoustic problems, Appl. Acoust. 
71, 955-964. 

[39] Wang, C., Qiu, Z., Wang, X., Wu, D. (2014) Interval finite element analysis and reliability-based 
optimization of coupled structural-acoustic system with uncertain parameters, Finite Elem. Anal. 
Des. 91, 108-114. 

[40] Xia, B., Yu, D., Han, X., Jiang, C. (2014) Unified response probability distribution analysis of two 
hybrid uncertain acoustic fields, Comput. Methods Appl. Mech. Engrg. 276, 20-34.  

 
 
 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

155



 
 

Towards wideband mechanical metamaterials: Comparing nonlinear oscillator 
mechanisms  

†*A. Banerjee1,2, E.P. Calius2, and R. Das1 

1Department of Mechanical Engineering, University of Auckland, Auckland, New Zealand 

2Callaghan Innovation, Auckland, New Zealand 

*Presenting author: aban991@aucklanduni.ac.nz 
†Corresponding author: aban991@aucklanduni.ac.nz 

Abstract 

Metamaterial is a designed material, having some exotic phenomena in resonating frequency range, 
such as negative properties. This is often achieved through resonant electromagnetic, acoustic or 
mechanical structures inside the metamaterial. Mechanical metamaterials have a comprehensive 
range of applications in sound, vibration and seismic engineering. However, the effectiveness of 
metamaterials is limited to a relatively narrow frequency band as they are generally based on linear 
resonance mechanisms. These linear metamaterials do not perform well under the broadband 
excitation spectra that are common in real life applications. Towards the first step to widen the 
bandwidth of the metamaterial, different classes of nonlinear oscillations, namely Duffing type 
monostable and bistable, and piecewise linear, are studied in non-dimensional way and compared 
with each other, to identify the best one according to resonating bandwidth increment. A straight-
forward time history based iterative methodology FRSFTI is developed to get the frequency 
amplitude plot of a nonlinear system without employing any approximate perturbation method. The 
frequency-amplitude plot from this method shows a good agreement with the conventional 
perturbation method at the resonating frequency range; moreover, this method enables to compute 
the response away from the resonating range. From the analysis it can be concluded that the 
bandwidth increment of bistable Duffing type oscillator is largest compared to others.  
Keywords: Nonlinear metamaterial, Mechanical metamaterial, Nonlinear oscillation, Bandwidth 

comparison, Multi-stability, Steady state response, Non-dimensional analysis 

Introduction 

Metamaterials are generalized composites that can exhibit unconventional behaviors and responses 
that are not commonly encountered in natural materials [Banerjee, B. (2011)], such as negative 
properties. This is often achieved through resonant electromagnetic [Lei, Z. (2008); Willis, J. R. 
(2011)], acoustic [Lee, S. H. et al. (2009); Huang, H. H. and Sun, C. T. (2012); Pai, P. F. et al. 
(2014); Sun, H. et al. (2014)] or mechanical structures inside the metamaterial. Mechanical 
metamaterials extensively used in the field of sound, vibration and seismic engineering. However, 
as they are generally based on linear resonance mechanisms, their effectiveness tends to be limited 
to a relatively narrow frequency band. These linear metamaterials do not perform well under the 
broadband excitation spectra that are common in real life applications.  
Nonlinearity has a potential to widen the bandwidth of oscillator-based metamaterials by exploiting 
features, such as sub- and super-harmonic resonances, period multiplication, and chaotic response. 
Nonlinear metamaterials have already been studied in the context of electromagnetic wave 
propagation [Lapine, M. et al. (2014)], but to date the applicability of nonlinear metamaterials in 
other fields has received little attention. On the other hand, nonlinear oscillation and its effect on 
bandwidth have been well studied in the context of energy harvesting. Vibration of a ferromagnetic 
beam [Holmes, P. (1979); Moon, F. and Holmes, P. J. (1979); Erturk, A. and Inman, D. J. (2011)] 
or a beam with tip magnet [Stanton, S. C. et al. (2009); Zhou, S. et al. (2014)] in the presence of 
magnetic field can show monostable and bistable Duffing type oscillation depending on the position 
of magnets. Similarly, bistable and monostable oscillation can be found in the case of transverse 
[Sneller, A. J. et al. (2011); Cottone, F. et al. (2013); Andò, B. et al. (2014)] and axial [Masana, R. 
and Daqaq, M. F. (2011); Cottone, F. et al. (2012); Masana, R. and Daqaq, M. F. (2012)] vibration 
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of post and pre-buckled beams, respectively. Transverse vibration of Euler spring systems 
[Winterflood, J. et al. (2002); Zhang, G. et al. (2013)] or inclined springs systems can also result in 
bistable oscillations. Comparative studies between bistable and monostable harvesters show that the 
output power and the bandwidth exhibited a greater increase during bistable chaotic response 
[Masana, R. and Daqaq, M. F. (2011); Daqaq, M. F. et al. (2014)]. Ferrari et al [Stanton, S. C. et al. 
(2010); Ferrari, M. et al. (2011)] have shown that as the slope of the inner wall of the potential well 
becomes steeper, the system performs like a monostable system, and the response of the system is 
reduced.   
As a first step towards the development of a nonlinear mechanical metamaterial, the behaviors of 
three types of nonlinear oscillators are examined in non-dimensional form. The oscillators under 
consideration are characterized by the shape of their potential energy well, namely cubic 
monostable, cubic bistable, and piecewise linear, as shown in Figure 1. 
 

 
Figure 1 Potential well of typical bistable, monostable and linear system 

Figure 1 shows that in a monostable system the potential well has only one stable point; whereas, 
the bistable system has two stable points and one saddle node. Displacement range is the peak to 
peak deflection of the system, as shown in Figure 1. It can be seen that the displacement range of a 
monostable resonator is less than that of linear and bistable oscillators, although due to the presence 
of sub- and super-harmonic resonances the monostable resonator can also generate a wider resonant 
bandwidth. On the other hand, the displacement range of a bistable oscillator is higher compared to 
other oscillators at high potential energy, but for lower energy vibration (below the sepratix), the 
displacement range is considerably reduced. The main objective of this paper is to investigate the 
effect of the steepness of the inner wall of the potential well and the relative distance between the 
stable nodes on the bandwidth for bistable systems and also compare that with monostable and 
piecewise type systems. The amplitude of the non-dimensional velocity in response to 
monochromatic excitation is determined and used to infer the bandwidth over which its response is 
greater than that of an equivalent linear oscillator. Thus, in this paper a comparative study is carried 
out to determine the bandwidth of monostable, bistable, piecewise linear system with that of a linear 
system.  

Methodology 

Linear oscillator 

Equation of motion of linear oscillation can be written as  
 2 singu u u t      (1) 
where u and uare the displacement and acceleration of the system, gu is the base excitation,   and 
 are the natural frequency and excitation frequency of the system, respectively.  

0
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To non-dimensionalize Eq.(1), we set  u Ax  and t   . So, the modified Eq.(1) is  
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Now, introducing a nonlinear stiffness term  in Eq.(2) the nonlinear oscillation equation can be 
formulated.  

Duffing type monostable cubic nonlinear system 

Monostable Duffing oscillation is a common example of nonlinear oscillation. Vibration of a 
ferromagnetic beam under the influence of magnets [Ferrari, M. et al. (2010); Kang-Qi, F. et al. 
(2014)], axial and transverse vibration of a pre-buckled beam [Min, G.-B. and Eisley, J. G. (1972)] 
result in cubic monostable Duffing type nonlinearity. By introducing a nonlinear stiffness term  in 
Eq.(2), the equation of motion of a typical monostable Duffing oscillator can be written as: 
 2 2 3 singu u r u u t        (3) 
where r is ratio of the nonlinear spring constant to the linear spring constant. To non-dimensionalize 
Eq.(3),  u Ax  and t    substitutions are considered. So, the modified form of Eq.(3) is: 
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shows that the non-dimensional nonlinear spring constant   is directly 

proportional to the ratio of nonlinear to linear spring constant and the square of the amplitude of the 
acceleration input, and inversely proportional to the fourth power of the natural frequency of the 
system.  

 
Figure 2 Plot of non-dimensional nonlinear spring constant    with natural frequency    

and 

excitation amplitude  gu  for a constant value of ratio of spring coefficient (r) 

From Figure 2, it can be seen that the non-dimensional spring coefficient increases parabolically 
with the amplitude of vibration  gu , and is much higher at low natural frequencies.  
The restoring non-dimensional force (F) and potential energy (U) can be expressed as: 
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Duffing type bistable cubic nonlinear system 

Bistable Duffing oscillation is another common form of nonlinear oscillation. Vibration of 
ferromagnetic beam under the influence of magnets [Stanton, S. C., McGehee, C. C. et al. (2010); 
Ferrari, M., Baù, M. et al. (2011)], axial and transverse vibration of post-buckled beam [Virgin, L. 
and Davis, R. (2003); Ibrahim, R. A. (2008); Camescasse, B. et al. (2013)], vibration of Euler 
spring system [Winterflood, J., Barber, T. A. et al. (2002); Ibrahim, R. A. (2008); Huang, X. et al. 
(2014)], result in cubic bistable Duffing type nonlinearity. Unlike monostable oscillation, bistable 
Duffing equation has two stable nodes and one saddle node. The non-dimensional bistable Duffing 
equation can be written as: 
  3 sinx x x      (6) 
So the restoring force (F) and the potential energy (U) can be expressed as: 
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2 41
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F x x x
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Now at the stable nodes the restoring force must be 0. So, the location of the stable node can be 

calculated as 1
eqx


  . If the minimum value of potential well is assumed to be zero, then the 

value of c is: 

 2

1 1 1 1 10
2 4 4

U c c


   
 
         
 

 (8) 

The different shapes of the potential well are plotted for various values of  .  

Piecewise linear system 

In the piecewise linear system, the restoring force varies with the distance linearly up to a certain 
range. Thereafter due to impact with stopper, the slope of the restoring force curve changes 
significantly, but still remains linear. As the restoring force curve consists of different straight lines, 
this type of system is commonly known as a piecewise linear system. Vibro-impacting devices 
[Soliman, M. S. M. et al. (2008); Vandewater, L. and Moss, S. (2013)], where stoppers are placed at 
some distance from the stable point of the beam, are an example of this type of oscillator. The 
impact between the stopper and the beam creates the nonlinear term. The equation of motion of 
piecewise linear system can be written as: 
  2 sin ; 0gu u u u g         (9) 

The Eq.(9) can be written in non-dimensional form by considering,  u Ax  , t    and 

2
gu

g g





 . 

  sin ; 0x x x g      (10) 

The restoring force  F and the potential energy  U can be expressed as: 
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Identification of parameter 

To compare the bandwidth of these different systems, their frequency response must be computed 
for a range of oscillator parameters. In linear systems, the amplitude corresponding to a specific 
excitation frequency of motion is conventionally solved because this is sufficient to completely 
describe the vibration. On the other hand, as there may be no linear correlation among all the 
parameters in nonlinear systems, displacement amplitude does not fully describe the oscillator 
dynamics. In this paper, the non-dimensional velocity amplitude max( )x is used to describe the 
response, because it can represent not only the maximum velocity, but also the maximum 
momentum and the maximum kinetic energy of the system, which have greater significance in the 
context of metamaterials. The amplitude of the velocity of monochromatic excitation of frequency 

  is gu


 
 
 


, which results the input momentum of the system  sP  is gMu




. The non-

dimensional momentum  P of the system can be expressed as the ratio of the momentum 

 P Mu 
 
and the input momentum corresponding to system  sP , in Eq.(12).  

 
s g g

P Mu A x
P x

P Mu u

  
   
   

 
 (12) 

Solution 

The frequency content of a signal is generally a more important parameter than its time history, 
because the corresponding response to a particular frequency can be easily calculated by 
convolution. In linear systems Fourier transformation of the equation of motion produces its 
frequency response directly; whereas in nonlinear systems Fourier transformation is not applicable 
[Cameron, T. M. and Griffin, J. H. (1989)]. In order to determine the frequency response of a 
nonlinear system, several methods have been developed mainly based on perturbation techniques. 
The harmonic balance (HB) method [Nayfeh, A. H. and Mook, D. T. (2008)] is the most popular 
and widely used technique to determine the frequency response of a nonlinear system [Beléndez, A. 
et al. (2007); Beléndez, A. et al. (2009); Cochelin, B. and Vergez, C. (2009); Wang, X. et al. 
(2012); García-Saldaña, J. D. and Gasull, A. (2013); Karkar, S. et al. (2013)]. The HB method is 
adequate where only single harmonic description is sufficient, as it is in the case of weakly 
nonlinear systems. Among the techniques that can deal with strong nonlinearity, alternating 
frequency/time (AFT) method [Cameron, T. M. and Griffin, J. H. (1989)], homotopy method [Liao, 
S. (2004); Vyasarayani, C. P. et al. (2012)] and the max-min method [He, J.-H. (2008); Azami, R. et 
al. (2009); Ibsen, L. B. et al. (2010)] have gained popularity. 
In this paper a simple time domain based iterative method, an in house program (FRSFTI), is 
developed to compute the frequency response of a particular nonlinear system. To apply the 
method, a frequency domain of interest needs to be first defined. The program FRSFTI enables the 
user to control the number of steps and discretize the frequency domain into finite number of input 
excitation frequencies. Sinusoidal excitation of each frequency is applied to a specific system to 
calculate its response. To reduce the frequency leakage and the aliasing, a sine wave of fifty cycles 
is considered in the analysis [Lynch, S. (2011)]. The ODE45 solver of MATLAB version 8.4 
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[Mathworks, Natick, MA] is used to solve the equation of motion for a particular monochromatic 
excitation. An event identifier is amalgamated with the ODE in response to the case of a piece-wise 
linear system, to locate the occurrence of impact and restart integration with new initial values. 
Then, maximum of velocity (  max x )is plotted for the corresponding frequency to obtain the 
frequency response because according to Eq.(12) it can represent the non-dimensional momentum 
which is the most important parameter in metamaterial. As the method is based on time domain 
solutions, there are certain advantages of this method over existing methods, such as 

 No stabilization check is required and it results in a single output for a particular frequency; 
whereas the HB method results in a sixth order correlation between the amplitude and 
frequency. [Nayfeh, A. H. and Mook, D. T. (2008)].  

 It can solve any type of nonlinearity or discontinuity; whereas perturbation methods are 
approximate and sometimes cannot deal with high level of nonlinearity or discontinuity 
[Nayfeh, A. H. and Mook, D. T. (2008)]. 

 As every frequency excitation is applied to the system, the method can work in every 
frequency range; whereas, most of the perturbation methods can only work near the 
resonating frequency or some specific sub or super harmonics. 

 The method is programmable, so rigorous mathematical calculations are not needed. 
To compare the bandwidth increment of three different classes of nonlinear oscillators, in each case 
the initial condition is assumed to be the stable node to ensure the initial potential energy is zero. 
That is why, initial condition is assumed to be (0,0) for the linear, monostable and piecewise linear 
system; whereas for bistable condition the initial condition is  1 ,0 . Maximum non-

dimensional velocity  max x is considered as the comparing parameter. Figure 3 shows the flow 
chart of the full process.  
 

 
Figure 3 Steps for frequency-amplitude plot 
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Results and Discussions  

Monostable cubic nonlinear system 

The potential well and the restoring force profile of the monostable system for varying nonlinearity 
is plotted in Figure 4, based on Eq.(5).   

 
Figure 4 a) Potential energy well and b) restoring force of a linear and a monostable cubic 

nonlinear system for three level of nonlinearity 

Figure 4 shows the variation of potential energy and the restoring force of a linear and a monostable 
cubic nonlinear system for three different levels of nonlinearity. The potential well becomes steeper 
and the restoring force shows hardening behavior as the nonlinearity increases. The resulting 
frequency response is shown in Figure 5. 

 

Figure 5 Frequency response of the maximum non-dimensional velocity  x  that relates to the 

amplitude of non-dimensional momentum of linear and monostable systems of varying nonlinearity 

From Figure 5 it can be concluded that the resonance peak shifts to a higher side and its amplitude 
reduces as nonlinearity increases. Due to the presence of sub and super harmonic resonances, 
amplification is observed in the low frequency range.  The frequency response of monostable 
systems is generally less than the equivalent linear system.   

Bistable cubic nonlinear system 

The potential well and the restoring force profile of bistable system for varying nonlinearity is 
plotted in Figure 6, based on Eq.(7).  
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Figure 6 a) Potential energy well and b) restoring force of a linear and a monostable cubic 

nonlinear system for three levels of nonlinearity 

Figure 6 shows the variation of potential energy and the restoring force of a linear and a bistable 
cubic nonlinear system for three different levels of nonlinearity. It can be noted that the stable nodes 
approach closer with increasing level of nonlinearity. Negative stiffness resulted at the region 
between two stable nodes as shown in Figure 6. The distance between the outer walls of potential 
wells decreased with increment of nonlinearity, hence the motion confined between two walls. 
Simultaneously, the energy required to overcome the sepratix barrier decreases with nonlinearity, 
which enables the motion to overcome the sepratix barrier easily and results a bistable motion. 
Therefore, an optimum level of nonlinearity should exist where the maximum response can be 
obtained in the case of bistable systems.  

 
Figure 7 Frequency response of the maximum non-dimensional velocity  x  that relates to the 

amplitude of non-dimensional momentum of linear and bistable systems of varying nonlinearity 

Figure 7 shows that the nonlinear system’s response (maximum non-dimensional velocity) is above 
the equivalent linear response over a considerable range of frequencies. The increased response is 
particularly marked at low frequencies, which of significant practical interest, and upon 
examination this frequency range is found to be greatest for 0.5  among the three nonlinear 
systems. Bistable systems with high nonlinearity show much higher response in the low frequency 
range because the energy required to cross the sepratix barrier is less.  
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 Piecewise linear system 

The potential well and the restoring force profile of piecewise linear system for varying gap 
distance is plotted in Figure 8, based on Eq.(11). 

 
Figure 8 a) Potential energy well and b) restoring force of a linear and a piecewise linear system 

for three level of nonlinearity 

Figure 8 shows that the potential well and the restoring force of a piecewise linear system, such as a 
vibro-impacting device, are the same as those for a linear system until the point of impact, 
whereupon a large impacting force is suddenly applied.  

  
Figure 9 Frequency response of the maximum non-dimensional velocity  x  which represents the 

amplitude of non-dimensional momentum of linear and bistable systems of varying nonlinearity 

Figure 9 shows that the nonlinear system’s response (maximum non-dimensional velocity) is above 
the equivalent linear response over a considerable range of frequencies. Figure 9 shows a 
remarkable increase in the frequency response at low frequency range and at a frequency ratio  
around 2. Due to the impact, the motion path reduces which shifts the frequency towards   2. 
When the displacement of the system is more than the gap distance then impact happens, otherwise 
for non-impacting case the frequency response curve follows the linear response curve. That is why 
the systems having large gap yields very less bandwidth and almost follows the linear path.  

Bandwidth 

To compare the bandwidth of these three nonlinear systems considered with that of an equivalent 
linear system, the frequency range is divided into two main categories: the low range when the 
frequency ratio is below the linear resonant frequency (η < 1), and the high range when the 
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frequency ratio is above the linear resonant frequency (η > 1). The low and high ranges are further 
subdivided into two parts, the nonlinearity dominated range (NLD) and the linearity dominated 
range (LD). In the NLD range, the maximum momentum of the nonlinear system is greater than that 
of the linear one; whereas, in the LD range the linear response is higher than the nonlinear one. A 
bandwidth index (BWI) for each system at different ranges, such as low, high and overall, is 
calculated based on the ratio: 

 NLD
BWI

LD
  (13) 

The bandwidth comparison of all the proposed systems is given in Table 1. 

Table 1 Summary of nonlinearity-dominated frequency range (non-dimensional) and the associated 
bandwidth index (BWI) for three different types of nonlinear systems 

Type of 
nonlinearity 

Level of 
nonlinearity 

Frequency band increment  
Low range High range Overall 

  NLD (η) BWI NLD (η) BWI NLD (η) BWI 
Monostable   = 0.1 0.28 0.39 2.02 2.06 2.30 1.31 

  = 0.5 0.27 0.37 1.86 1.63 2.13 1.14 
  = 2.0 0.20 0.25 1.88 1.67 2.08 1.08 

Bistable   = 0.1 0.57 1.34 2.86 19.83 3.43 5.99 
  = 0.5 0.76 3.10 2.78 12.89 3.54 7.70 
  = 2.0 0.63 1.69 2.67 8.15 3.30 4.71 

Piecewise g  = 2.0 0.69 2.25 1.07 0.55 1.76 0.79 
g = 0.5 0.62 1.66 1.64 1.21 2.27 1.31 
g = 0.1 0.65 1.87 1.94 1.84 2.60 1.85 

Remarks 

From the above discussion the following remarks can be made: 
 The relative magnitude of the nonlinear term is proportional to the square of amplitude of 

excitation and the ratio of nonlinear to linear stiffness, and inversely proportional to the 
forth power of natural frequency of the system. The strength of the nonlinearity increases 
rapidly as the frequency of excitation decreases.  

 In a monostable system, the potential well becomes stiffer with increasing nonlinearity. The 
nonlinearity dominated bandwidth in the low frequency range is lower than that of the linear 
system and much lower than that of the other nonlinear systems, such as bistable and 
piecewise linear.   

 In a bistable system, the energy required to overcome the sepratix decreases and the stable 
nodes approach closer as nonlinearity increases. This lowers the threshold to achieve the 
bistable response that produces maximum displacement and velocity in the low frequency 
excitation. On the other hand, the potential well becomes narrower and steeper, which 
reduces the velocity peak. For this reason, the nonlinearity dominated bandwidth increases 
up to an optimum value and thereafter it decreases.  

 A piecewise linear system having large gap size results least nonlinear dominated 
bandwidth, but the bandwidth increases significantly as the gap reduces.  

Conclusion 

In this paper, a comparative study of three types of nonlinear systems, namely, cubic monostable 
and bistable, and piecewise linear, is carried out using non-dimensional variables. The equations of 
motion for these systems were non-dimensionalized and solved numerically for monochromatic 
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excitation over a range of frequencies. To examine the effect of nonlinearity on the response 
bandwidth, the non-dimensional velocity response of these systems is compared to that of a linear 
system. A new parameter, bandwidth index (BWI), is proposed and used to quantify the relative 
performance of these nonlinear systems. Of the three systems studied, the bistable system with 
intermediate nonlinearity has the largest nonlinear dominated bandwidth (NLD) and BWI, both for 
low range and overall.   
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Abstract 
Pathological tremor brings too much inconvenience to patients in life and work. For better tremor 
suppression, a suitable biomechanical model must be established. Based on the Hill skeleton-muscle 
model, quantitative relations between EMG and static torque of elbow joint can be identified with 
improved neural network. The weights of improved neural network are adjusted according to the 
need, and muscle activation grade is confirmed. Through this method, a biomechanical model is 
established. Using OpenSim software we can simulate the drive of skeleton model by EMG signals 
and the validity of the model is tested by experiment. 
 
Keywords: skeleton-muscle model, EMG(Electromyographic signal) , joint torque, improved neural 
network(NN) 

 

Introduction 

Pathological tremor is common in middle and old ages and gives patients too much 
inconvenience in life and work. Now there are no effective methods in medical field. 
FES(Functional electrical stimulation) method is good for physiological control of human body and 
is in deeper research now. Biomechanical model is helpful to solve questions such as the actions of 
a series of relevant muscles, control mode of FES and effectiveness. All these provide basis for 
tremor suppression. 

Biomechanical model is the hotspot now and many institutions are in deep work. Modeling 
methods mainly include model or non-model methods. Typical model methods are Hill model with 
phenomena presentation and Huxley model with physiological presentation. Pennestri E.et al 
established virtual skeleton muscle model of upper limb which is fit for the movement description 
of skeletons simply. Muscle activation grade is also calculated. Zhang D.G studied on the 
effectiveness of tremor suppression by wearable exo-skeleton and FES. They presented physical 
model aimed to muscle electrical stimulation first and creatively leaded in muscle damper character, 
electrical stimulation, and activation when muscles are in contraction. 

Non-model method mainly establish non-linear mapping by artificial neural network or 
polynomial fitting. There are many ways to establish the relations of muscle activation and joint 
dynamics using NN. Jer-JunnLuh estimated relation model between EMG and static moment of 
elbow joint using 3-layer feedforward adaptive NN. Sepulveda F. got the relations of force and 
EMG signals by extracting EMG eigenvalue using time domain. Freriks extracted EMG eigenvalue 
using RMS and meso-position MF to gain the amplitude and spectral characteristics of bicipital 
muscle of arm.  

*Corresponding author: Gao yongsheng. E-mail: gaoys@hit.edu.cn. 
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Muscle activation grade is the conceptual expression of muscle stimulation and skeleton-muscle 
model is driven by it. In this paper using non-linear system identification ability of NN to calculate 
muscle activation grade, proper activation grade is got to reflex muscle excitement status. Using 
activation grade as input, with the comparison of the realistic moment and calculated moment 
generated in joints, the activation grade is verified and the valid model is then obtained. 

Materials 

Control action of EMG and joint moment is expressed in figure 1, which includes multiple 
complex transmission. Usually NN algorithm is used to identify the non-linear relations. Thinking 
about Hill’s research in the expression of module 2 and 3 in mathematical formula, only muscle 
activation dynamics model(module 1) is not clear in math, so we think the module 1 as a blackbox 
and identify it using NN. For the activation grade is not measured directly and joint moment M can 
be measured, EMG and moment error training sets which are measured can train to setup NN 
(Fig.2). 
          

 
 Fig.1 Control relationship of EMG and joint torque 

 
Fig.2  activation dynamics of NN with the error training of joint torque 

When choosing BP NN to predict joint moment, the prediction error of joint moment can be 
used to prediction error of muscle activation grade(Fig.1). It is that when the prediction error of 
joint moment is , the muscle I is  

                                    (1) 
In which represents the activation grade of muscle I, s represents the number of muscles 

which participates contribution of torque, M represents output joint moment.  represents variable 
quantity of joint moment after the change of activation grade of muscle. 

In description of Hill muscle model, joint moment is the function of ai(the activation grade of 
muscle) and θ (joint angle). The function can be expressed in formula 2 

                                                                                 (2) 
Joint moment M has the partial derivative of the activation grade of muscle, which can 

expressed in the main part of the first order of Taylor expansion as formula 3: 
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∂
≈

∂                                                                                                    (3) 
In which  is a very small variable at point  ,  is a variable of joint moment M which is 

derived when a  increased in  while others parameters is fixed. Though joint moment prediction 
error  and  can be got during the course of prediction, it is not enough to equate 

 of the prediction error from equation 1. So we need to gain prediction error further 
by network weights management. 

According to the method of counter propagation algorithm, when a network layer has no direct 
error signals, the signals can be derived from the next network layer. It is similar to the course of 
using NN to identify EMG and the activation grade of muscle. So the output layer of NN can be 
seen as a hidden layer and the muscle-skeleton model as an output layer. The weights of the hidden 
layer are adjusted as:  

( ) ( ) ( )ji j i
ji

nw n y nξη ηδ
ϖ

∂
∆ = − =

∂                                                          (4) 

                         

( )( ) ( )( ) ( ( ))
( ) ( ) ( )

i
j j j

j j i

y nn nn v n
y n v n y n
ξ ξδ ψ∂∂ ∂ ′= − = −

∂ ∂ ∂                                      (5) 
The key point of weights adjustment is to calculate the  
The NN signals’ output is joint moment after muscle-skeleton model. The error of mean square 

of the sample is defined as:  

( ) ( ) ( ) ( )21 ;
2 measured output i jn M M y n a nξ = − =　

                             (6) 
In which Mmeasured is the measured joint moment, Moutput is the calculated joint moment 

using activation grade of muscle in NN. aj(n) is the activation grade of muscle j , which is also the 
output of the output layer of NN. So the calculation formula for the weights of output layer is as 
follows:  

output( ) ( )
( ) measure output

j j

Mn M M
y n a
ξ ∂∂

= − −
∂ ∂                                                              (7) 

 output( ) ( ) ( ( ))j measure output j j
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n M M v n

a
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                                        (8) 
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M
M M v n y n

a
η ϕ

∂
′= −

∂
                        (9) 

Up to now, the weight adjustment of the NN output is clear. Using traditional formula we can 
calculate the former layer weights.  

Experiment 

Experimental platform 

A single freedom experimental platform is designed. During the course of the test, motion of the 
joints of shoulder and upper arm of the testers is restrained. In the meantime the motion of the wrist 
is limited in the horizontal plant to avoid the effect of gravity torque. Device structure is as figure 3 
which includes rotated stick, fixed stick and a set of pulley. The pulley is to transmit vertical load to 
horizontal load. Joint angle is measured by subjacent fixed angle encoder and joint torque is 
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measured by 6-D force sensor which is installed between the rotated stick and fixed stick. The force 
sensor is SI-80-4 made by ATI Corp.. Data acquisition program of force sensor is compiled with 
VC++ and acquisition frequency is 256Hz. 

Using multiple channel EMG recorder and one-time Ag/AgCl electrode, main muscles 
including biceps, brachioradialis and triceps are measured from the muscle group of elbow joint. 
Electrodes are pasted on the tester’s arm, and the position of fossa cubitalia and olecranon is the 
reference to paste electrode (fig. 4). The use of electrodes refers to Freriks’s presentation . 

Experimental procedure 

4 male testers in average age of 25 are selected and they are all healthy with no nervous system 
or motion disorder. In the rotation course, rotation axis of elbow joint is coaxial with rotation axis 
of experiment table. So the measured angle of angle sensor is the direct position of elbow angle. 
Shoulder joint is fixed in 90 degree’s position and motion range of elbow’s joint is limited during 0 
and 130 degree in the level.  

              
Fig.3 Single freedom platform    Fig.4 Electrode position 

Main steps are as follows: 
1. Each tester will finish isometric contraction of elbow joint in 120°,90°,60°separately, and 

EMG signals and joint moments are measured. 
2. Each tester will finish stretching and curving motions during 3 cycles separately in each degree. 
3. Recording EMG signal values in the max isometric contraction to normalize processing of 

EMG. 
4. Choosing No.1 tester to simulate tremor for NN to predict tremor moment. 
 

Results and discussion 

Testers finished experiments in three joint degrees. Using established 0 output network as the 
original training network, first NN’s training is gained by joint angle 120°. With measured EMG 
signals and corresponding joint moment, after 16000 times training, joint moment after the output 
of muscle-skeleton model is in figure 5. 

 
Fig.5  Result of No.1 tester’s NN training in joint angle 120° 

During the training of NN, the change of all samples’ error sum of squares of output moment is 
in figure 6. The figure reflects the good study performance of NN. Figure 7 is the correspondence 
between real moment and prediction value. The muscle activation grade of NN calculation is in 
figure 8.  
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Fig.6 Error during the torque 

training 
Fig.7 Relationship between real and 

predict value of torque 

 
Fig.8 Activation grade of NN’s calculation result 

After the training network of 120°,the network is trained using experimental data of 90°and 
60°separately. The average error after training is in table 1. 

Table 1Average error of joint torque training 
Joint angle(°) 60 90 120 
Average error(Nm) 0.052 0.065 0.058 

We use the trained network to predict joint moment and the prediction data is the RMS values 
of EMG when No.1 tester did twice stretch and bend motions. The prediction result of joint moment 
is in figure 9(a). The average error of prediction value and real value is 0.102. The activation grade 
of NN output is in figure 9(b), in which the activation grade of bicipital muscle of arm is smaller 
than brachioradialis’. That means that the NN predicts the power of elbow bending from the action 
of brachioradialis. It results from the multiple solutions of NN. 

 
(a) Prediction result of elbow joint torque 

 
(b) Prediction result of the muscle activation grade 

Fig.9 NN identification for EMG and elbow joint torque 
The results above illustrate that the prediction accuracy of the NN meets requirements and then 

we can use the NN to predict the joint moment of tremor. A set of EMG signals of elbow tremor is 
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measured as figure 10 and the predicted joint moment through NN model calculation is in figure 11. 
The activation grade of NN calculation is in figure 12. 
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Fig.10 Normalized RMS value of EMG signal  
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Fig.11 Prediction value of joint torque of tremor 
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Fig.12 Activation grade of tremor motion 

The activation grade of NN calculation controls the muscle-skeleton model in OpenSim 
software environment (fig. 13).The variable curve of each muscle force is in figure 14 during the 
course of calculating elbow joint tremor. 

  
Fig.13 Model in OpenSim software Fig.14 Calculated muscle forces 

Conclusions 

An improved neural network is developed to solve the problem of a blackbox of muscle 
activation dynamics. With the proper weight adjustment in hidden layer, muscle activation grade 
can be identified. And then using Hill skeleton-muscle model parameters we can get the 
relationship between the input of EMG signals and the output of joint torque. The experiment 
verified the valid model. 
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Abstract 
Here, we report a high order, high resolution coupled compact difference scheme for solving 
computational acoustics problems. Proposed coupled compact difference scheme displays significant 
spectral resolution while estimating spatial derivatives and has a physical dispersion relation 
preserving (DRP) ability over a wide range of wave number when a fourth order four stage Runge-
Kutta scheme is used for time integration. Proposed scheme simultaneously computes the first, the 
second and the fourth derivative in a coupled manner at all the grid points in the domain. We have 
purposefully evaluated the fourth derivative term using coupled compact difference scheme to add 
numerical diffusion for the attenuation of unphysical spurious waves in the computed solution.   

Keywords: Computational Acoustics, Coupled Compact Difference Scheme, DRP Property, High 
resolution scheme 

Introduction 

Propagation of an acoustic wave over a small distance inside a homogeneous medium displays non-
dissipative, non-dispersive characteristics [Kinsler et al. (1999)]. Simulation of acoustic wave 
propagation problem involves computation of acoustic wave field either directly from the linearized 
compressible flow equations [Tam & Webb (1993)] or by solving hyperbolic partial differential 
equation for wave propagation [Sengupta (2013)]. The numerical scheme used for solving acoustic 
problems must have a significant spectral resolution to effectively resolve all the scales present in the 
acoustic field. Compact schemes provide higher spectral resolution as compared to the explicit 
difference schemes for same stencil size [Lele (1992), Fung et al. (1995), Chu & Fan (1998), Sengupta 
et al. (2003), Zhou et al. (2007), Bhumkar et al. (2014)] and are preferred for obtaining highly accurate 
solutions. As propagation of an acoustic wave displays non-dispersive, non-dissipative and isotropic 
nature, numerical schemes used for simulating computational acoustic problems must be neutrally 
stable and preserve the physical dispersion relation numerically [Tam & Webb (1993), Sengupta 
(2013)]. For an adopted numerical scheme, it is not only important to resolve all physical spatial and 
temporal scales but also display neutrally stable, DRP nature [Sengupta (2013)]. This has prompted 
researchers to search for a high resolution, dispersion relation preserving schemes which are useful 
for computing wave propagation problems [Chiu & Sheu (2009), Tam & Webb (1993), Hu et al. 
(1996)].  
 
Here, we are proposing a new high order, high resolution coupled compact difference scheme to 
compute the spatial derivative terms while a fourth order four stage Runge-Kutta scheme has been 
used for time integration. The derived coupled compact difference scheme evaluates the first 
derivative, the second derivative and the fourth derivative simultaneously at all the grid points in the 
domain.  
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Methodology 

Stencil for the coupled compact difference scheme: 

Almost all discrete difference computations involve implicit filtering and corresponding solution 
components in high wavenumber range show spurious nature which are often responsible for 
numerical instabilities [Sengupta (2013)]. Unphysical amplification of high wavenumber components 
can be controlled by either using upwind scheme or by using explicit filters [Yu et al. (2015), Visbal 
& Gaitonde (2002)]. A general stencil for the upwind scheme is given as [Sengupta (2013)],  
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In upwind schemes, one adds explicit numerical diffusion through the even order derivative term in 
Eq. 1. For adding controlled amount of numerical diffusion, diffusion coefficient   has been used. 
In Eq. 1, n is an integer and the subscript CD shows derivative has been obtained using a central 
difference scheme. Diffusion coefficient   can be either positive or negative based on the direction 
of propagation of information at a particular point in the domain. 
  
A high accuracy, spectrally optimized upwind CCD scheme has been proposed in [Chiu et al. (2009)], 
to evaluate the first and second derivative terms together. In the present work, we propose following 
coupled compact difference scheme with a central stencil to evaluate the first, the second and the 
fourth derivative terms together. Information associated with the fourth derivative term has been used 
here to attenuate unphysical spurious waves.   
 
Consider a domain discretized using equi-spaced grid points with a grid spacing h. The coupled 
compact difference scheme for simultaneous evaluation of the first, the second and the fourth 
derivative term is given as,     
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In order to obtain the first, the second and the fourth derivative terms, equations (2)-(4) are solved in 
an iterative and coupled manner. For iterative approach, we propose to evaluate the various derivative 
terms using explicit central difference schemes as an initial guess. This will reduce the computational 
cost required for iterative approach as the iterations are performed with reasonable initial guess which 
is more close to final solution as compared to some random initial guess.  Equations (2)-(4) are solved 
in an iterative manner till the maximum residue becomes less than the prescribed tolerance value 
which is chosen as 10-6 in present study. Here, a simple traditional Gauss-Seidel iterative algorithm 
has been used.  
 
One can use equations (2)-(4) at all the grid points for the periodic problem.  However for the non-
periodic problems, different stencils for the boundary and the near boundary nodes are required. In 
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this regard, we propose to use following stencils for the respective derivative terms at the inlet 
boundary [Sengupta (2013)]. The second and the fourth derivative terms are usually not required at 
the boundary nodes where one usually prescribe a Dirichlet boundary condition and hence are not 
evaluated at the boundary nodes while the fourth derivative term is not evaluated at the second and 
second last node. Same stencils can be used for the boundary and the near boundary points on the 
other end by reverting the stencils and adding a minus sign [Sengupta (2013)]. Thus, we have used 
explicit stencils for the boundary and the near boundary nodes as,  
  
uI

1 = (-1.5u1+2u2-0.5u3)/h; uII
1 = 0; uIV

1=0         (5) 

uI
2 = (u3-u1)/(2h);  uII

2 = (u1-2u2+u3)/h2;  uIV
2=0      (6) 

uI
3 = (-u5+u1+8(u4-u2))/(12h); uII

3 = (u1-2u2+u3)/h2; uIV
3=(u1+u5-4(u2+u4)+6u3)/h4  (7) 

 
Finite difference schemes depend on information available at the nearby points to estimate derivative 
values. Taylor series approximation is used to derive stencil for difference scheme in such a way that 
the lower order derivative terms are matched accurately while the higher order derivatives terms are 
truncated. Thus the numerically estimated derivative and the exact derivative values differ due to the 
truncation error. This is also known as implicit filtering associated with the difference schemes 
[Sengupta (2013)]. Different finite difference schemes can have same order of accuracy however 
different spectral resolution while evaluating derivative terms. In such case, the scheme having higher 
spectral resolution will produce more accurate results as compared to low resolution schemes. Thus, 
it is imperative to evaluate performance of numerical scheme based on its spectral resolution and not 
on its order of accuracy [Sengupta (2013)]. Here, we have estimated spectral resolution of the 
proposed scheme using the full domain matrix global spectral analysis (GSA) technique in [Sengupta 
(2013)]. Details about this technique are not provided here to avoid repetition.  
 
Following the work in [Sengupta (2013)], if one denotes K and Keq as the exact and the numerically 
obtained wavenumber in a difference computation then the discretization effectiveness for the first, 
the second and the fourth derivative can be obtained as shown in Figure 1(a)-(c), respectively. Figure 
1(a) compares the effectiveness of spectral resolution (Keq/K) for the proposed coupled compact 
difference scheme and a 12th order compact difference scheme. Figure shows proposed scheme has 
even better spectral resolution as compared to the 12th order compact difference scheme. 
Discretization effectiveness for the second and the fourth derivative terms show near spectral 
resolutions. Thus the proposed coupled compact difference scheme has significantly improved 
spectral resolution as compared to the existing difference schemes.  
 
Apart from estimation of effectiveness for spatial derivative terms, one needs to estimate combined 
effects of spatial and temporal discretization terms for solving unsteady problems. Consider a 1D 
wave equation which also serves as a model equation for computational acoustics problems as,      
 
డ௨

డ௧
 ܿ డ௨

డ௫
ൌ 0          (8) 

 
Simulation of the computational acoustics problems involves estimation of both space and time 
derivative terms. For such unsteady problems, one needs to first estimate important numerical 
properties such as the numerical amplification factor |G| and the numerical group velocity VgN/c. 
Variation of these important numerical properties with respect to non-dimensional wavenumber Kh 
and CFL number Nc has been discussed in [Sengupta (2013)] for the solution of 1D wave equation 
using different discretization schemes. Using the same methodology, we obtained the contours of the 
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4 
 

numerical amplification factor |G| and the numerical group velocity VgN/c for the solution of 1D wave 
equation when coupled compact difference scheme has been used for spatial discretization while RK4 
scheme is used for time integration. 
 

 
 

Figure 1: (a) Comparison of the effectiveness of spectral resolution (Keq/K) for different spatial 
discretization schemes to evaluate the first derivative term at the central node; Discretization 
effectiveness of the second and the fourth derivative terms is shown in (b) and (c) respectively; 
Contours for the variation of the numerical amplification factor |G| and the numerical group velocity 
VgN/c are shown in (d) and (e), respectively when the coupled compact difference scheme is used 
with the fourth order RK4 scheme for time integration to solve Eq. (8). 
 
Figure 1 (d) and (e) shows numerical properties corresponding to the central node. Numerical 
amplification factor contours in Fig. 1(d) show that for a small CFL number Nc, one observes a 
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5 
 

neutrally stable region across a complete wavenumber range. Non-dimensionalized numerical group 
velocity contours in Fig. 1(e) show that for a small CFL number, physical dispersion relation has been 
preserved accurately up to non-dimensional wavenumber Kh = 1.9. Thus present scheme has 
significant DRP ability. One observes presence of negative group velocity above Kh=2.6. This region 
has been identified as a q-wave region [Sengupta (2013)] in which solution components not only 
travel with wrong velocity but also in wrong direction. Such waves are often responsible for numerical 
instabilities. 
 
Spurious waves are often triggered due to presence of sharp discontinuities, irregularly spaced grid 
points, discontinuities in the initial and boundary conditions [Sengupta (2013)]. One needs to 
attenuate these spurious waves by addition of numerical diffusion to avoid numerical instabilities. 
One can add numerical diffusion using the information associated with the fourth derivative evaluated 
at each grid point as shown in Eq. (1). Amount of added numerical diffusion directly depends on 
diffusion coefficient α. Figure 2 (a)-(b) show variation of numerical amplification factor and 
numerical group velocity contours for the solution of 1D wave equation when the indicated diffusion 
coefficient is used to obtain the upwind coupled compact difference scheme. Figure 2 shows that with 
increase in α, scheme displays more and more stable behavior for a small CFL number across a 
complete wavenumber range Kh. Thus one can construct upwind coupled compact difference scheme 
to damp out unphysical, spurious components from the solution.    
   

 
 

Figure 2: Comparison of the numerical amplification factor |G| contours and the numerical group 
velocity VgN/c contours for the central node is shown for different diffusion coefficients. Contours 
are obtained for the solution of Eq. (8) when the coupled compact difference scheme has been used 
with the fourth order RK4 scheme for time integration following work in [Sengupta (2013)]. Note 
that with addition of numerical diffusion, stability is achieved (|G|<1) for a small CFL number. 
 

VgN /c Contours|G| Contours

1
0.999

0.99

0.99

0

-5 -10

Nc

K
h

0 1 2 3
0

1

2

3

Diffusion coefficient= 0.001

0.99

0.999

0.9999

1

1
10

30
60

100

0.8

Nc

K
h

0 1 2 3
0

1

2

3

Diffusion coefficient= 0.005(b)

1
0.999

0.99

0.99

0

-5 1

0.99

Nc

K
h

0 1 2 3
0

1

2

3

Diffusion coefficient= 0.005

0.99

0.999

0.9999
1

1
10

30
60

100

0.8

Nc

K
h

0 1 2 3
0

1

2

3

Diffusion coefficient= 0.001(a)

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

179



 
 

 
 
Figure 3: Initial condition of the wave packet along with its fourth derivative and FFT of the initial 
condition have been shown in (a), (b) and (c), respectively. Numerical group velocity contours for 
the solution of Eq. (8) have been shown in (d).   
 

Results and Discussion 

In this section, we use the coupled compact difference scheme to solve the model wave equation 
problems as well as for solving computational acoustics problems.  
 

1. Solution of 1-D wave equation for wave propagation problem. 
  

 We have chosen this problem to verify the efficacy as well as advantages of the proposed 
scheme while solving unsteady problems. Here, we have obtained solution of 1D wave equation Eq. 
(8) subjected to the initial condition as shown in Fig. 3(a). We have purposefully designed the initial 
condition as a combination of two different wave packets, packet A and packet B. Figure 3(b) shows 
the fourth derivative of the initial condition and it indicates large values corresponding to packet B 
due to rapid variation of amplitude associated with packet B. The FFT of the initial condition has 
been shown in Fig. 1(c). Central wavenumber of packet A is very small while that for packet B is 
close to the Nyquist limit. In figure 1(d), we have shown the numerical group velocity contours for 
the solution of Eq. (8) when the spatial discretization has been obtained using coupled compact 
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difference scheme while RK4 scheme has been applied for time integration. We have also marked 
the central wavenumbers corresponding to packet A and packet B.  
 

 
 
Figure 4: Solutions of 1D wave equation Eq. (8) without and with addition of numerical diffusion 
have been shown in (a)-(c) and (d)-(f), respectively. Note, in frames (d)-(f) addition of numerical 
diffusion attenuates spurious packet B which is present in frames (a)-(c) when no diffusion has been 
added.   
 
We have considered a domain 200  x  with 101 equi-spaced grid points. Phase speed c is kept as 
0.10. Computations are performed using the coupled compact difference scheme for the spatial 
discretization and RK4 scheme for the time integration by keeping CFL number as 0.01. 
Corresponding VgN/c contours show group velocity for the packet A as 1.0 while that for packet B as 
-2.63. Figures 4(a) –(c) show the solution of Eq. (8) subjected to the initial condition in Fig. 3(a). Due 
to positive group velocity packet A propagates towards right hand side while packet B displays 
spurious nature and propagates in completely opposite direction towards left. In order to attenuate 
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such spurious waves and prevent numerical instabilities, one can add numerical diffusion as shown 
in Eq. (1). Figures 4(d)-4(f) show propagation of wave packet when numerical diffusion has been 
added with a diffusion coefficient as 0.01. Due to addition of numerical diffusion, spurious packet B 
gets attenuated completely while packet A retain itself and travel towards correct direction with 
correct velocity. This shows the advantage of coupled contact difference scheme.   

 
 

 
 

Figure 5: Initial condition of a 2D wave packet and zoomed view of a grid are shown in (a) and (b), 
respectively. Solutions of 2D wave equation Eq. (9), without and with addition of numerical diffusion 
are shown in (c)-(d) and (e)-(f), respectively. Note, in frames (e)-(f) addition of numerical diffusion 
attenuates spurious packets present in frames (c)-(d) when no diffusion has been added.   
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2. Propagation of a wave packet on a discontinuous grid 
Next, we consider a propagation of a wave packet inside a 2D domain following the 2D wave equation 
given as, 
  
డ௨

డ௧
 ܿ௫

డ௨

డ௫
 ܿ௬

డ௨

డ௬
ൌ 0         (9) 

 
In Eq. (9), ܿ௫ and ܿ௬ are phase speeds in x- and y-direction. In order to check the performance and 
applicability of the present scheme, we have purposefully considered wave propagation on a 
discontinuous grid as the discontinuous distribution of grid points triggers spurious high wavenumber 
oscillations. Figures 5 (a) and (b) show the initial condition of a 2D wave packet and zoomed view 
of a grid, respectively. We have obtained solutions of 2D wave equation following Eq. (9) using 
coupled compact difference scheme for the spatial discretization terms and RK4 scheme for time 
integration. We have constructed a domain 0 < x, y < 1, with 101 points in either direction. We have 
purposefully assigned a random distribution to grid point spacing so as to test the efficacy of the 
coupled compact difference scheme. Figures 5(c) and (d) show propagation of 2D wave packet at the 
indicated instants.  Due to discontinuous distribution of grid points one observes large amount of 
spurious q-waves in the domain. However, when a fourth order numerical diffusion has been added 
to the solution, spurious waves are attenuated. This shows the advantage of proposed coupled 
compact difference scheme while working on a discontinuous grid. 
 
3. Propagation of the acoustic and the entropic disturbances. 
 
Next, we solve the computational acoustic wave propagation problem which consists of simultaneous 
propagation of acoustic and entropic disturbances. These disturbances propagate following the 
linearized compressible Navier-Stokes equations given by [Tam et al. (1995)],  
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Figure 6: Initial condition and propagation of acoustic and the entropic disturbances following Eq. 
(10) are shown in frames (a)-(d). Comparison of density variation on the line y=0 obtained from 
present simulation with that of [Tam et al. (1995)] is shown in (e). 
 
This case consists of an acoustic pulse generated by a Gaussian pressure distribution at the center of 
the computational domain as shown in the initial condition in Fig 6. The mean flow Mach number is 
0.5. We have constructed the domain using 501 X 501 grid points. Downstream of the pressure pulse, 
at x = 0.67 an entropy pulse has also been superimposed. Acoustic pulse travels faster than entropy 
disturbances in the downstream direction as observed in Figs. 6(b) to 6(d) which show development 
and propagation of acoustic as well as entropic disturbances with time. We have compared the density 
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variation on the line y=0 obtained from present simulation with that of [Tam et al. (1995)] in               
Fig. 6(e). Comparison shows a good match and justifies use coupled compact difference scheme for 
obtaining high accuracy solutions of computational acoustics problems.  
 

Conclusions 

Here, we have proposed a new coupled compact difference scheme to solve computational acoustics 
problems. Proposed scheme has significant resolution and physical dispersion relation preserving 
ability. In addition, one can add controlled amount of numerical diffusion to attenuate spurious waves 
in the solution. Solution of model wave propagation problems and computational acoustic problem 
highlights the advantages of the proposed coupled compact difference scheme. 
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Abstract 

 Protection of space vehicles from natural and man-made debris is a significant 
practical problem. Thin barriers, placed in front of the main body of the object, crush 
high- velocity particles into fragments and thereby reduce probable penetration. The 
replacement of the solid plate by a grid of high-strength material lightens the 
protective structure, with clear benefit for space vehicle applications. 
 

Keywords: Space Vehicles, Debris, Grid, High - velocity interaction, Lagrangian 
method, Probabilistic approach, Fragmentation 

 

 Introduction  

 

The process of high- velocity interaction between grid barriers and compact elements 
(aluminum balls) is considered in Lagrangian 3-D formulation. To solve this problem 
it is necessary to have a reliable and sufficiently universal method to enable adequate 
reproduction of the processes occurring in solids under high- velocity collision. The 
natural heterogeneity of the structures of barrier and projectile materials affects the 
distribution of physical-mechanical characteristics (PMC) of the material, and is one 
of the most important factors determining the fracture behavior of real materials. One 
can account for it in the equations of deformable solid mechanics using a random 
distribution of the initial deviations of the strength properties from a nominal value 
(simulating the initial heterogeneity of the material). The relations of deformable 
solid mechanics, used in major recent works on dynamic fracture of structures and 
materials, ignore this factor. It can distort a real pattern of impact and explosive 
fractures of the bodies under consideration. The latter is particularly evident  in  the  
solution  of  axisymmetric  problems,  where the properties at all points on the  
circumferential coordinate of a calculated element are initially equal due to the use of 
standard equations of continuum  mechanics   in  the  numerical  simulation.  
However  in  practice  there  are  many problems where fragmentation is mainly a 
probabilistic process, for example the explosive fracture of axisymmetric shells, 
where the fragmentation pattern is unknown beforehand, or penetration and fracture 
of thin barriers by a projectile along surface normal, etc. The introduction of a 
random distribution of the initial deviations of the strength properties from a nominal 
value in the PMC of the body leads to the fact that, in these cases, the process of 
fracture becomes probabilistic in nature, and  more consistent with the experimental 
data.  
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Basic relations and solution method  

 

To describe the processes of deformation and fracture of solids we used a model of a 
compressible and perfectly elastoplastic body. Basic relations describing the medium 
motion are based on the laws of conservations of mass, momentum and energy 
[Stanjukovich (1975); Wilkins M.L. (1964)], and are closed by Prandtl - Reuss 
relations under the von Mises flow condition. The equation of state was taken in the 
form of Tate and Mie - Gruneisen [Stanjukovich (1975)]. Plastic deformations, 
pressure and temperature are known to affect yield strength and shear modulus, 
therefore the model was supplemented by the relations recommended in [Steinberg et 
al. (1980)]. Reaching a limiting value for equivalent plastic deformation was used as 
a fracture criterion at intensive shear deformations [Stanjukovich (1975);  
Kreyenhagen et al. (1970)]. 
 
To calculate elastoplastic flows we used a procedure implemented on tetrahedral cells 
and based on the combined application of Wilkins method [Wilkins M.L.(1964; 
(1985)] intended to calculate the internal points of the body and Johnson method 
[Johnson et al. (1979); Johnson (1981)] to calculate contact interactions. The number 
of computational cells was about 800 000. To solve the problem, the authors used 
their own 3-D program [Gerasimov (2007)]. 
 
The initial heterogeneities of the structure were simulated by imposing a distribution 
of ultimate equivalent plastic strain in the cells of the calculated domain by means of 
a modified random number generator issuing a random variable obeying the selected 
distribution law. The probability densities of the random variables used were in the 
form of  a normal Gaussian distribution with arithmetical mean being equal to the 
tabulated value and variable dispersion. The ideology and methodology of a 
probabilistic approach to the problem of the fracture of solids is completely described 
in [Gerasimov (2007)]. 
 
The experimental results  

 

High - velocity collisions between projectiles and grid barriers were also 
experimentally investigated using two-stage light-gas installations modified to throw 
particles 0.5 mm in diameter at velocities (2.5 - 5) km/s [Gerasimov (2007)]. 
Projectile - aluminum particles (2 mm in diameter) and a barrier - two steel grids 
(wire diameter 0.32 mm and 0.2 mm, respectively). The first grid: steel, density = 7.9 
g/cm2, the shear modulus = 86 GPa, yield point = 0.28 GPA, cell size 0.5 × 0.5 mm, 
wire diameter = 0.32 mm. The second grid: steel, density = 7.9 g/cm2, the shear 
modulus = 86 GPa, yield point = 0.28 GPA, the cell size 0.356 × 0.356 mm, wire 
diameter = 0.2 mm. The tank: duralumin, density = 2.64 g/cm2, shear modulus = 26.9 
GPa, yield point = 0.12 GPA, thickness = 1.9 mm.  
 
 Figure 1 shows the investigated assembly, consisting of a tank element of a space 
vehicle and two grids, which were placed at some distance from each other and the 
tank. The numbers in Figure 1 indicate the results of separate experiments. The Table 
1 presents a brief description of two typical experiments on the interactions of 
aluminum projectiles, a grid barrier and the element of the protected tank, where V = 
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initial velocity of the projectile. As is seen from the results of the experiments there 
were no penetrations or damage to the tank wall, thus the grid barrier has successfully 
fulfilled its function. 

 
Figure 1. The face of assembly "grid - tank element" 

 

Table 1. Experimental data 

 

Test 
number  Projectile  Tested barrier and 

protection V, km / sec Experiment results 

5 Duralumin ball 2 mm 
in diameter   

"tank" + 0.32 mm 
grid  + 0.2 mm grid 2.0 

Through penetration both 
grids. The depth of craters 
from the fragments is 0.3-
0.5 mm 

23 Duralumin ball 2mm 
in diameter   

 "tank" + 0.32 mm 
grid + 0.2 mm grid   3.0 

Through penetration the 
both grids. The depth of 
craters from the fragments 
is 0.27-0.45 mm  

 

Numerical results  

 

The results of numerical calculations of the projectile interaction with the first grid 
are presented below. Figure 2 presents a top view of a spherical particle and of the 
first grid element, as well as a two-dimensional section of the configuration. 
 
 

                  
                       (a) 3D configuration              (b) 2D section 
 

Figure 2. The initial configuration of the grid and a spherical particle 
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The calculations proved the experimental data on the protective properties of grid 
barriers. Then numerical experiments were carried out for the velocities of the 
particle collision with the first grid barrier V = 2 km/s.  
 

   
         (a)  0.5000 s                             (b) 0.7500 s                         (c) 1.4000 s 
 

Figure 3. The configurations of the grid and the spherical particle in 3D image for 
V=2 km/s 

  
 

         
(a) time = 0.5000 s                 (b) time= 0.7500 s            (c) time= 1. 0000 s 
 
Figure 4. 2D Section of the grid and the spherical particle. Velocity distribution. V=2 

km/s 
 
 

 
 

Figure 5. Contact of cloud fragments with the second barrier (grid) 
t=8.7000s V=2 km/s 
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Figure 6. Particle fragment impact on the main body: distribution of current velocity, 
time = 40.2996 s, V=2 km/s 

 
Figure 6 demonstrates that the particle fragment did not penetrate the main body of 
the space vehicle and made only a small dent on the surface. The same result was 
obtained for the collision velocity of  V = 3 km/s. 
 
 

       
         (a) time=0,3330                    (b) time=   5000 s               (c)  time= 0.6700 s 
 
Figure 7. The configuration of the grid and the spherical particle in 3D image for V=3 

km/s 
 
 

            
(a) time = 0.3330 s                  (b)  time= 0. 5000 s        (c )  time= 0.6700 s 
 

Figure 8. 2D Section of the grid and the spherical particle. Velocity distribution.  
V=3 km/s 

 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

190



 
Figure 9. Contact of cloud fragments with the second barrier (grid) 

t=5.5000s V=3 km/s 
 

 
 

Fig. 10. Particle fragment impact on the main body: distribution of current velocity, 
time = 26.4579 s, V=3 km/s 

 

As seen in Figures 3-10, the fragmentation of the incident particle intensifies with 
increasing collision velocity, as evidenced by the  intense formation of material jets 
penetrating through the meshes (Fig. 7c). In figures number 6 and number 10 show a 
portion of the ball passing through the two grids, which does not penetrate the tank 
shell. The results for the initial velocity V = 2 km / s and V = 3 km / s, respectively. 
Dimensions calculated crater close to the size of the experimental craters (Table 1). 

 

Conclusion   

This paper presents numerical research into the interaction of high-velocity particles 
and barriers – grids which are used to protect space vehicles — and demonstrates the 
efficiency of grid shielding structures.  
  
The data obtained proved the possibility of the proposed approach and Lagrangian 
numerical techniques were used to reproduce completely, from the physical point of 
view, in three-dimensional formulation the interactions of the spaced grid barriers and 
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protected space vehicle elements with high- velocity particles from fractured 
structures and vehicles, as well as fragments of cosmic bodies, and to inform the 
selection of the most effective protection systems.  
 
In the course of numerical experiments the protection consisting of the two grids 
proved to be more effective as compared with an equivalent by mass solid barrier. 
The experimental results proved the adequacy of the numerical method and the 
simulations provide some qualitative support for the proposed protection mechanism.  
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Abstract 
A two dimensional discontinuous Galerkin finite element method for supersonic flow 
field simulation on hybrid meshes is proposed. The governing equations are Euler 
equations, and the 3rd order explicit Runge–Kutta method is used for temporal 
discretization. The Hermit WENO limiter is introduced to increase the stability of this 
scheme when it is applied to supersonic flow fields. Two dimensional hybrid 
unstructured meshes are used in spatial discretizations, which contain both triangle 
elements and quadrangle elements. This method is validated with supersonic test 
problems, the results show that this method can solve supersonic flow fields using 
hybrid unstructured meshes. 

Keywords: Supersonic, Euler Equations, Discontinuous Galerkin, Hybrid Mesh 

Introduction 

Supersonic flow field simulation plays an important role in flight aerodynamic 
predictions and space craft designs. There are many computational fluid dynamic 
methods for solving supersonic flow problems, these methods can be put into three 
categories: finite difference method (FDM), finite volume method (FVM) and finite 
element method (FEM). The FDM is suitable for constructing high order numerical 
schemes, and widely used in academic researching, but this method is mainly 
developed under Cartesian grids, it is difficult to extend this method to unstructured 
or hybrid meshes, which are common when dealing with real world complex 
geometries. The FVM, on the other hand, has no limitation on mesh types or 
geometry complexities, but it is difficult for FVM to achieve a scheme higher than 
second order on an unstructured mesh, mainly due to the difficulties to implement a 
compact reconstruction stencil for high order FVM. 
 
The discontinuous Galerkin method (DGM) is a special kind of FEM, this method 
was first proposed by Reed and Hill [Reed and Hill (1973)], in the 1990s, Cockburn 
and Shu proposed the Runge-Kutta Discontinuous Galerkin method [Cockburn and 
Shu (1998)]. After that, the DGM is widely used in many areas, such as aerodynamics, 
hydrodynamics, wave propagations and computational acoustics. The DGM has both 
the advantages of FDM and FVM, it is suitable for constructing high order numerical 
schemes by using high order basis functions, the computational mesh and element 
shape has no limitations. The stencil in DGM is compact with any order of basis 
functions, that means to get the solutions of unknown variables in one element, only 
the unknown variables in its neighbor elements are needed. All these characteristics 
of the DGM make it a promising method for solving real world engineering flow 
problems. 
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The present authors have developed a two dimensional discontinuous Galerkin 
method for compressible Euler equations on unstructured and hybrid meshes. In order 
to suppress the non-physical oscillation, a Hermit WENO limiter [Hong et al. (2007)] 
is introduced. The numerical tests show that this scheme provides an attractive way 
for solving supersonic flow problems with complex geometries. 

Governing equations 

The governing equations are two dimensional inviscid Euler equations, which can be 
expressed in the form as: 

 0U F G
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (1) 

The variable U is conservative state vector, F  and G are the inviscid flux vectors: 
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 (2) 

The equation of state for perfect gas is used: 

 p RTρ=  (3) 

These form the complete set of equations, ready to be solved with proper numerical 
methods. 

Discontinuous Galerkin method 

Spatial discretization 

Assuming that the computational domain is divided into a set of non-overlapping 
elements jK , the governing equations are solved in a weak form, we introduce test 
functions v , multiply test functions with the governing equations, then integrate over 
element jK , we have: 

 d d 0
j jK K

U F G
v V v V

t x y

⎛ ⎞∂ ∂ ∂
+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠

∫ ∫  (4) 

After integrating by parts, we obtain the final form: 

 ˆd d d 0
j K jj

K K

U
v V vf n v f V

t ∂

∂
+ Ω− ∇ =

∂∫ ∫ ∫i iv  (5) 

Where the f̂  is numerical flux between the two adjacent elements, any numerical 
flux calculation schemes can be used, here the Van Leer scheme [Toro (2009)] is 
chosen to calculate f̂ . 
 
The approximate solution is defined in each element as a polynomial: 

 
1

( , )
N

h i i
i

u u x tφ
=

=∑  (6) 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

194



 
 

Where ( , )i x tφ is the basis function, iu is the solution coefficient, the order of 
discontinuous Galerkin scheme is defined as the maximum order of the basis 
functions. 

Time discretization 

Replace the solution vectors and test functions in Eq.(5) by their approximation 
polynomials, a system of ordinary differential equations is obtained: 

 ( )dU
M R U

dt
=  (7) 

( )R U  is the residual vector, this ODE system can be solved step forward in time using 
explicit Runge-Kutta scheme, a third order scheme is used: 
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=

 (8) 

Where ( )nU U t=  and 1 ( )nU U t t+ = + Δ . 

Slope limiter 

When there are strong discontinuous in the flow field, the discontinuous Galerkin 
solving procedure may fail due to the severe oscillations near strong discontinuity 
regions, these oscillations will cause non-physical solutions such as negative pressure 
or negative density. When shock waves exist in flow fields, certain amount of 
numerical dissipation is crucial for the successful solving. The DGM with piecewise 
constant basis functions could offer enough dissipations by itself, but when the order 
of basis functions is equal or greater than unity, some additional dissipations is often 
needed, limiters are most commonly used tools to do this. 
 
There are many kinds of limiters proposed by researchers, the Hermit WENO limiter 
proposed by Luo and Shu is becoming popular among them. The Hermit WENO 
limiter is based on the idea of Hermit polynomial reconstruction and WENO 
reconstruction. The major advantage of this limiter is the compactness of its stencils, 
this makes it suitable for hybrid unstructured mesh, detailed implementations of 
Hermit WENO limiter on unstructured mesh can be found in [Hong et al. (2007; 
2010)]. 

Numerical tests 

The following numerical tests is obtained by the discontinuous Galerkin method 
using piecewise linear basis functions in two dimensional space. 

Riemann problem 

The two dimensional Riemann problem is designed to test the performance of 
numerical methods when there are shock waves and contact discontinuities in 
supersonic flow fields. The computational domain is [0,1]×[0,1], the domain is 
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divided into four parts, they are (a): [0,0.5]×[0,0.5], (b): [0.5,1]×[0,0.5], (c): 
[0,0.5]×[0.5,1] and (d): [0.5,1]×[0.5,1], each part has its own initial condition, the 
initial conditions are: 

(a): 
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⎝ ⎠ ⎝ ⎠

 

Two kinds of Meshes are used in this numerical test case, Fig.1 shows the elements 
distributions of these meshes, the first mesh is a Cartesian grid which contains only 
uniform distributed quadrangle elements, the second mesh is a hybrid mesh with two 
blocks of Cartesian grids and two blocks of unstructured grids, this mesh contains 
both quadrangle and triangle elements. The solutions of the flow field are calculated 
until the time t=0.23. 

 
Figure 1. Uniform cartesian grid (left) and hybrid mesh (right) used in the 

numerical simulation 

 
Figure 2.  Comparison of density distributions at t=0.23 obtained by 

cartesian grid (left) and hybrid mesh (right) 
Fig. 2 shows the flow field density distribution when t=0.23, the Cartesian grid and 
hybrid mesh give similar density profiles, which means that the discontinuous 
Galerkin method has the capable of solving Euler equations on unstructured hybrid 
meshes, this characteristic of DGM gives a lot flexibilities in modeling complex flow 
geometries. 

Supersonic cylinder 

Supersonic cylinder flow is a common test case in supersonic flow field simulations, 
the flow field contains a strong bow shock wave in front of the cylinder, the radius of 
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cylinder is chosen as 0.01, inflow Mach number M=3, and the non-dimensional 
inflow parameters are chosen as : 1ρ = , 1u = , 0v = , ( )21 /p Mγ= , Fig.3 shows the 
computational mesh, which contains both quadrangle elements and triangle elements. 
There is a quadrangle element block near the cylinder surface, and a quadrangle 
element block designed to capture the bow shock wave, between these two 
quadrangle element blocks are triangle elements. 

   
Figure 3.  Computational mesh (left) and its local details (right) 

   
Figure 4.  Solution of density distribution compared with mesh (left) and the 

density contour (right) 
Fig. 4 shows the solution of density distribution using this hybrid mesh, the shock 
wave is distributed in the quadrangle element region and has a sharp resolution with 
these quadrangle elements, The density profile in the flow field between shock wave 
and cylinder gets a smooth distribution with triangle elements. The result gives a 
demonstration of the advantage to use discontinuous Galerkin method combined with 
hybrid meshes in supersonic flow simulations, the parallel distributed quadrangle 
elements are suitable for capturing shock waves, mean while for smooth flow regions, 
the usage of triangle elements can offer more geometrical flexibilities. 

Conclusions 

A two dimensional discontinuous Galerkin finite element method for supersonic flow 
field simulations is proposed. The governing equations are Euler equations, and the 
computational mesh is unstructured hybrid mesh. Numerical tests show that the 
discontinuous Galerkin mehod provides an effective way of solving engineering 
supersonic problems on hybrid meshes. 
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Abstract 
For structures with non-classical damping or closely distributed modes, it is not easy to apply the 
traditional modal analysis method because the damping matrix is not diagonalized by the modal 
matrix obtained from the mass and stiffness matrices. In this paper, a new mode decomposition 
method for structures with non-classical damping ratio and structures with very closely distributed 
modes is proposed. This method defines the generalized modes in state space, and uses the 
differential state variables estimated from measured acceleration responses to decompose modal 
responses. A Kalman filtering is utilized to calculate the linear transformation matrix of governing 
modes, and the linear transformation matrix is updated in the optimization process to maximize the 
performance index cooperated with a power spectral density of a target mode. For the verification 
of the proposed method, a numerical simulation is performed using a single degree of freedom 
(SDOF) system coupled with a tuned mass damper (TMD) which represents a non-classically 
damped system with closely distributed modes. The results from the simulations show that the 
proposed method estimates the modal responses more precisely than conventional mode 
decomposition methods such as the independent component analysis (ICA) method and the proper 
orthogonal decomposition (POD) method.  
Keywords: Mode decomposition, Non-classical damping, Closely distributed mode, Linear 
transformation matrix, Differential state variable, Averaged power spectrum 

Introduction 
The response of a linear multi-degree-of-freedom (MDOF) structure is often estimated using a few 
governing mode responses after transforming the system into single-degree-of-freedom (SDOF) 
systems in the modal space. The transformation into the modal space in the modal analysis requires 
the modal matrix that is composed of mode shapes, and thereby it is necessary to obtain the mode 
shapes primarily. 
 
The mode shapes or modal matrix is generally obtained from the eigenvalue analysis using mass 
and stiffness matrices of the finite element analysis model. The mass and stiffness matrices of the 
actual structure, however, differ from those of the analysis model yielding the discrepancy in the 
dynamic characteristics and mode shapes. Further, it is not possible to separate modes using the 
mode shapes obtained from the mass and stiffness matrices if a structure has non-classical damping 
that is not proportional to mass and stiffness matrices or the structure has closely distributed modes. 
 
In order to estimate the actual mode shapes for accurate modal separation, the mode decomposition 
method using measured structural responses has been studied. In special, the mode separation 
methods using the measured responses from appropriately numbered sensors have been developed 
because the behavior of a building structure subjected to wind load is governed by a few lower 
mode responses.  
 
The proper orthogonal decomposition (POD) method is one of the mode decomposition methods 
using the linear transformation of measured responses [Feeny (2002); Han and Feeny (2003)]. The 
POD method, also called as the principal component analysis (PCA) method, Karhunen-Loeve 
method, or the singular value decomposition (SVD) method [Gramaand and Subramanian (2014); 
Khalil and Sarkar (2014)], transforms the higher order model into the lower order model with 
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orthogonal basis minimizing the loss of higher order model information.  The independent 
component analysis (ICA) method is another mode decomposition method using the linear 
transformation of measured responses based on the assumption that modes are independent each 
other [Roberts and Everson (2001); Kerschen and Poncelet (2007)]. It is also possible to perform 
the mode decomposition using the output-only method such as the stochastic subspace identification 
(SSI) and frequency domain decomposition (FDD) methods, which estimates the modal 
characteristics of a structure using the measured responses [Van Overschee and De Moor (1996); 
Brincker et al. (2001); Ku et al. (2007)]. 
 
These mode decomposition methods are applicable to structures with classical damping, which is 
proportional to mass and stiffness matrices. Further, they yield reliable results when buildings have 
very small damping ratio and thereby possess the characteristics of structures with classical 
damping. The ICA method, which is mostly close to the method proposed in this paper, assumes 
that modes are separated enough to be independent each other. However, the damping matrix is not 
proportional to mass and stiffness matrices of actual structures and it is not appropriate to assume 
that the closely distributed modes are independent each other. Therefore, there exists a limit when 
the previous mode decomposition methods are applied to structures with non-classical damping or 
with closely distributed modes. 
 
In this paper, the new mode decomposition method using only measured responses is presented for 
structures with non-classical damping or with closely distributed modes. This mode decomposition 
method applies the linear transformation to measured response for calculating the modal responses 
similarly to the ICA method. The linear transformation matrix differs from that of the ICA method 
such that it is obtained by optimizing the objective function. The objective function is given to 
maximize the energy at the certain mode and to minimize the difference between averaged modal 
response spectrum and the linear transformation matrix assuming that each mode possesses unique 
pole with one natural frequency and one damping ratio.  
 
For the verification of the proposed mode decomposition method, the numerical simulation of a two 
DOF system with a tuned mass damper (TMD) that is a representative system with non-classical 
damping and very closely distributed modes. It is assumed in the numerical simulation that the 
external load has wide spectral range like wind loads and the only responses of the main structure 
and TMD are measurable. The mode shapes and modal responses obtained from the measured 
responses are compared to the analytical ones to verify the proposed mode decomposition method.  

Mode decomposition in state-space domain 

Estimation of unmeasured state variables 
The mode decomposition of a structure with non-classical damping is not possible because the 
damping matrix cannot be diagonalized using the mass and stiffness matrix. This requires having 
linear combination of state-space variables to construct modal responses.  
 
The mode shapes of an MDOF system whose governing equation is given in Eq. (1) are defined as 
the linear combination as in Eq. (2). The mode separation is possible only when the damping matrix, 
C, is diagonlaized by the mode shape matrix, Φ, in Eq. (3), which is obtained from the eigenvalue 
analysis of mass matrix, M, and stiffness matrix, K. 

EfKxxCxM =++       (1) 

Φηx =      (2) 

EfΦΩηηCΦΦη TT =++       (3) 

where f is the external force, E is the force location matrix, Ω is the diagonal matrix with entries of 
squared natural frequencies, and x and η are the response vectors in time domain and modal space, 
respectively.  
 
If the structure has non-classical damping, the term ηCΦΦT

  in Eq. (3) is not a diagonal matrix, and 
thereby the mode decomposition is not attainable. Consequently, it is required to expand the modal 
responses into the state-space domain for the mode decomposition. Eq. (1) is transformed into Eq. 
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(4) in state-space domain, and the state variable, z, can be transformed into modal space using the 
newly defined modal responses in state-space domain, p, as in Eqs. (5) and (6). 

BfAzz +=      (4) 

Ψpz =      (5) 

BfΨAΨΨΨp 11 −− +=      (6) 

where  









−−

= −− CMKM
I

A 11

0
     (7) 









−

= − EM
B 1

0
     (8) 

and the mode shape in state-space domain, Ψ, satisfies  









−−

== −

ΖΩ
I

AΨΨA
0ˆ 1      (9) 

where Ζ = diag(2ξiωi), diag() is the diagonalization function, and ξi and ωi are the damping ratio and 
natural frequency of the i-th mode, respectively. 
 
All of state variable z of displacement and velocity or differential variable z of velocity and 
acceleration are necessary in order to obtain the modal responses in state-space domain of Eq. (5). 
However, it is not practical to measure every state and it is often to measure acceleration responses 
in practice. Therefore, it is assumed in this paper that the number of sensors is equal to the number 
of governing modes and velocity and displacement responses are obtainable from the measured 
acceleration using the Kalman filter. 
 
Given that the order of Kalman filter is twice the number of sensors, the initial estimate of the 
system matrix A is given as 

1
210

−= dvSSA      (10) 

where A0 is the initial estimate of the system matrix A, [ ]TzzES =21  and [ ]T
dv zzES = . 

Multiplying Eq. (4) by zT and averaging yields Eq. (10). The external force term is ignored since it 
is not known or measurable. 
 
Since the velocity and displacement are required in Eq. (10), the following simple integrating filter 
is introduced. 

mx
q
q

q
q















+
















=








1
0

00
10

     (11) 

where mx is the measured acceleration, and q  and q are displacement and velocity integrated from 
the measured acceleration, respectively.  
 
If the measured acceleration in Eq. (11) is biased, the integrated displacement and velocity have 
considerable amount of errors and often diverge during integration. In order to avoid the divergence 
and to minimize the errors, the control variable, u, is added to Eq. (11) as in Eq. (12) where the 
control gain, G, of size 1x2 is decided to minimize the squared displacement and squared control 
variable in Eq. (13). 
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where Q1 and R are weights. Note that the control variable u is equal to the difference between the 
actual measured acceleration and the estimated one. 
 
The control gain, G, can also be obtained by modifying weights Q1 and R such that the difference 
between the actual measured acceleration and the estimated one is in a certain range. The more 
detailed process for control gain calculation including the Kalman filter method is omitted here 
since it has been widely introduced in many references [Hwang et al. (2011)]. 

Objective function for mode decomposition 
Once the state variables are estimated from the measured acceleration responses using the Kalman 
filter, the relationship between the state variables and the modal responses can be defined using Eq. 
(5). Because the purpose is the mode decomposition using the measured responses, Eq. (5) is 
rewritten as  

zWp T=      (14) 

where 1−=ΨW T . Since it is assume that the number of the sensors, n, is equal to the number of 
governing modes, the transformation matrix, W, is a square matrix of 2n x 2n and its inverse matrix 
exists. 
 
It can be noted that the each column of the transformation matrix W is the combination of linear 
transformation coefficients that separate certain modes from the measured state variables. Since the 
measured acceleration and its integral value, velocity, are mostly used, Eq. (14) can be rewritten 
using differentiated state variables as 

zWp T
 =      (15) 

where the entries of the transformation matrix W are constant and are not affected by differentiation. 
 
From Eq. (15), it can be noted that the number of differentiated state variable, z , is 2n and the 
number of corresponding generalized modes is also 2n. The first n modes obtained from Eq. (15) 
have relationship with the rest of modes defined as in Eq. (6). If the effect of external force is 
negligible in Eq. (6), the relationship becomes velocity to acceleration. That is, the relationship 
between i-th mode and (i+n)-th mode is velocity to acceleration, if i ≤ n and the effect of external 
force is negligible. 
 
The i-th mode can be presented using the i-th column of W of Eq. (15) as 

( ) zWp T
ii  =      (16) 

In order for the i-th mode obtained from Eq. (16) to be decomposed into a true vibration mode with 
single pole that consists of natural frequency, ωi, and damping raito, ξi,  the modal power spectrum 
obtained from Eq. (16) needs to have only one peak near the natural frequency when there is no 
special poles in the external force. That is, the effect of other modes should not be appeared 
showing no peaks near other modes. 
 
In this paper, the following necessary conditions are defined for true mode decomposition described 
above. These conditions also are the preconditions to define the objective function for mode 
decomposition. Note that these conditions are not necessary and sufficient conditions for mode 
decomposition and that other necessary conditions based on other idea can also be adopted. 
 
Necessary condition 1: The total energy of decomposed modes is always constant. This condition is 
satisfies by setting the integral value of modal response spectrum, which is equal to the variance 
value, to be ‘1’. 
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Necessary condition 2: The modal energy is max near its natural frequency. The corresponding 
natural frequency can be obtained from the system matrix A0 in Eq. (10). 
 
Necessary condition 3: The effect by neighboring modes is minimized. This condition can be 
satisfied by minimizing the differences between the modal power spectrum and averaged power 
spectrum at neighboring modal frequencies. 
 
The objective function satisfying the above necessary conditions 1 and 2 can be defined as 






 −+= ∫∫

∞∆+

∆− 012 1)()( ωωλωω
ωω

ωω
dSdSJ iiii

i

i

    (17) 

where λ is a Lagrange multiplier for constraining the necessary condition 1, ∆ω is the infinitesimal 
change of frequency, and Sii(ω) is the power spectrum of the decomposed mode. Sii(ω) is one-sided 
spectrum given as 

iva
T

iii WSWS )()( ωω =      (18.a) 

)()()( ωωω zzSva =      (18.b) 

where z(ω) is the Fourier transformation of differential state variable, )(tz  and )(ωz  is the complex 
conjugate of z(ω). Substituting Eq. (18) into Eq. (17) simplifies the objective function of Eq. (17) as 

)1(12 −+= ivar
T

iipeak
T

i WSWWSWJ λ      (19.a) 
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dSS vapeak )(      (19.b) 

∫
∞

=
0

)( ωω dSS vavar      (19.c) 

Speak and Svar are readily obtainable from the differentiated state variables directly. Consequently, 
the transformation matrix, Wi, for the i-th mode that satisfies the condition 1 and 2 can be derived 
by differentiating J12 of Eq. (19.a) with respect to Wi and setting the resulting value to be ‘0’. The 
result of differentiation is given as 

0)( =+ ivarpeak WSS λ      (20.a) 

ivaripeak WSWS λ−=      (20.b) 

It can be noted from Eq. (20) that the value of )( λ−  is the eigenvalue of two matrices, Speak and Svar, 
while Wi is the corresponding eigenvector. This means that the largest eigenvalue becomes the 
maximum value of objective function and the corresponding eigenvector Wi becomes the linear 
transformation matrix. 
 
If modes are separated enough to affect each other marginally, it is possible to perform the mode 
decomposition accurately using the transformation matrix obtained from Eq. (20). When modes are 
closely distributed, the reciprocal effect between modes becomes significant. In that case, the 
objective function that satisfies the necessary conditions 1 and 2 only cannot yields the accurate 
mode decomposition. In order to minimize the effect of neighboring modes, the following objective 
function that satisfies the necessary conditions 3 as well as 1 and 2 is defined.  
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where SH is the averaged power spectrum given as 
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where s is the Laplace variable, H(s) is the transfer function of velocity response from the external 
force of a SDOF system, and So is the constant that represents the ratio of the i-th modal power 
spectrum to  the transfer function near the i-th mode frequency.  
 
The difference between Eqs. (17) and (21) is that the logarithmic ratio of the i-th modal spectrum to 
the averaged spectrum near the frequency of neighboring mode, ωk, is included in the denominator. 
Minimizing the ratio in the denominator maximizes the objective function, while the logarithmic 
ratio accentuates the difference between two spectrums. The objective function in Eq. (21) can be 
simplified using Wi as 
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where  
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ii S

Sq =      (24) 

The natural frequency, ωi, in Eq. (22.b) can be directly obtained from the system matrix of Eq. (10) 
while ehe damping ratio, ξi obtained from the system matrix has large error. Therefore, the damping 
ratio needs to be selected such that So of Eq. (22.c) satisfies the following relationship derived from 
the necessary condition 1.  

01)(1)()(
00

2 =−=− ∫∫
∞∞

ωωωξ dSdsHS iiio     (25) 

Once the values of all variables in Eq. (23) are calculated, the transformation matrix, Wi, can be 
obtained by differentiating the objective function with respect to Wi. However, the closed-form 
similar to one in Eq. (20) cannot be derived due to the nonlinearity. Therefore, the sensitivity of 
objective function is utilized in the optimization process to obtain the transformation matrix, Wi. 

Validation of the proposed method 

Example structure and its modal characteristics 
A numerical simulation using an example structure with non-classical damping and very closely 
distributed modes is carried out to verify the proposed mode decomposition method. The example 
structure is a two-DOF system with a TMD which is a representative system with non-classical 
damping and very closely distributed modes. The dynamic characteristics of the structure and 
external load are summarized in Table 1. It is assumed that the low-pass filtered white noise is 
applied to the main structure only. 
 
In Tables 2 and 3, the mass and stiffness matrices along with the corresponding mode shapes are 
presented in time and state-space domains, respectively. These mode shapes will be compared to 
ones obtained using the proposed mode decomposition method. It can be noted that the damping 
matrix is not diagonalized by the mode shape obtained from the eigenvalue analysis of mass and 
stiffness matrices in time domain from Table 2, while modes are apparently separated in state-space 
domain from Table 3.  
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Table 1. Dynamic characteristics of the example structure 
Description Value Remark 

Structure 

Main structure mass (ms) 100 kg Natural frequency of the main 
structure (f0) = 0.2 Hz 

TMD mass (mt) 1 kg Mass ratio of TMD mass to 
main structure mass = 0.01 

Main structure stiffness (Ks) 157.9137 N/m  
TMD stiffness (Kt) 1.5635 N/m  

Main structure damping 2.5133 N⋅s/m 
Main structure damping ratio 
(ξs) = 0.01 

TMD damping 0.1250 N⋅s/m TMD damping ratio (ξt) = 0.05 

External 
load 

Filter Low pass filter Zero to 4 Hz 
Sampling time 0.005 s. Sampling frequency = 200 Hz 

Duration 3600 s.  
 

Table 2. Analytically obtained modal properties in time domain 
Matrix Symbol Value 

Mass matrix M 







10
0100

 

Damping matrix C 







−

−
1250.01250.0
1250.06383.2

 

Stiffness matrix K 







−

−
5635.15635.1
5635.14772.159

 

Natural frequencies ω1 
ω2 

1st mode: 1.1925 (0.1898 Hz) 
2nd mode: 1.3177 (0.2097 Hz) 

Mode shapes Φ 







−

−−
6710.07415.0
0741.00671.0

 

Transformed damping matrix ΦTCΦ 







−

−
0832.00503.0
0503.00682.0

 

Damping ratio of diagonal terms = (0.0286 0.0316) 
 
It can be noted that even though the transformed damping matrix in Table 2 is not a diagonal matrix, 
the diagonal entries, (0.0682 0.0832), are very close to those of damping part of mode transformed 
system matrix, Â , in Table 3. It can be also noticed that the natural frequencies in time domain, 
0.1898 Hz and 0.2097 Hz, and those in state-space domain, 0.1910 Hz and 0.2095 Hz, are very 
close each other, while the difference between the first and second modes is only 0.02 Hz indicating 
the very closely distributed modes. 
 
In Table 3, the modal matrix, Ψ, in state-space domain is shown in the ascending order of natural 
frequencies, and its inverse matrix, i.e. the linear transformation matrix, W, is also provided. 
Considering that the first two rows of load participation matrix, B, are zeros, it can be noted that the 
first and second columns of modal responses in state-space domain are integral values of the third 
and fourth columns, respectively, indicating the displacement-velocity and velocity-acceleration 
relationships. 
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Table 3. Analytically obtained modal properties in state-space domain 
Matrix Symbol Value 

System matrix A 


















−−
−−

1250.01250.05635.15635.1
0013.00264.00156.05948.1
1000
0100

 

Load participation matrices BT [ ]001.000  

Modal matrix Ψ 


















−−
−−−

−−
−−−

6578.64725.73139.02934.0
6721.06204.03670.03431.0

1823.02046.06730.64864.7
2131.02392.06543.06367.0

 

Linear transformation matrix W 


















−
−−
−−−

−−

0676.00736.00243.00253.0
8164.07274.000
0380.00396.00707.00704.0

0380.00396.08195.07306.0

 

Mode transformed system 
matrix Â  



















−−
−−

0833.007217.10
00681.004340.1
1000
0100

 

Eigenvalues ωi and ξi 
Natural frequency    Damping ratio 

1st mode       1.20 (0.1910 Hz)          2.85e-02 
2nd mode      1.31 (0.2085 Hz)          3.17e-02 

 

Characteristics of mode decomposition depending on the objective function 
A numerical analysis of the coupled main structure-TMD is performed to obtain the acceleration 
responses. The external load presented in Table 1 is applied in the numerical analysis. 
 
The displacement and velocity responses are obtained using the integral filter given in Eq. (12), and 
the initial estimate of the system matrix is calculated using Eq. (10). Table 4 presents the covariance 
matrices used for calculating the initial estimate of the system matrix along with the modal 
characteristics.  
 
Table 4 indicates that the natural frequencies obtained from the initial estimate of the system matrix 
present insignificant error compared to the exact natural frequencies given in Table 2. The damping 
ratios are, however, negative values indicating significant error. The modal matrix and linear 
transformation matrices also differ from the exact ones while the correlationship of sign between 
matrices is very large. 
 
The linear transformation matrices obtained using the proposed mode decomposition method are 
compared to the exact one in Table 5. First, the first mode linear transformation matrix that 
maximizes the objective function J12 in Eq. (19) is obtained using Eq. (20). The vector with norm 
value of ‘1’ is also presented in Table 5 for easier comparison. It can be seen that the linear 
transformation matrix obtained from the initial estimate of the system matrix is closer to the exact 
one than one obtained using the objective function J12. The values in the first three rows show very 
close results to exact ones while the value of the last row is about 2.5 times to that of exact one.  
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Table 4. Covariance matrices and modal characteristics of initial estimate of system matrix 
Matrix Symbol Value 

Covariance matrix of state 
variable Sdv 



















−
−

47.133309.2018.039.105
09.2015.2730.10501.0

18.030.10502.86686.21
39.10501.086.2151.17

 

Cross covariance matrix S21 


















−−
−−−

−

27.054.16503.133398.19
63.16501.017.2017.27
47.133309.2018.039.105

09.2015.2730.10501.0

 

Initial estimate of system matrix Ao 


















−−
−−

1250.01250.05635.15635.1
0006.01260.00321.05883.1
1000
0100

 

Modal matrix Ψ 


















−−
−−−

−−
−−−

2780.72903.80046.19320.0
7675.08268.00098.19368.0

5812.06621.02777.72899.8
5842.06655.07677.08265.0

 

Linear transformation matrix W 


















−
−−
−−−

−−

0668.00620.00484.00521.0
6697.05879.000
0757.00815.00728.00555.0

0757.00815.06757.05944.0

 

Eigenvalues ωi and ξi 
Natural frequency    Damping ratio 

1st mode       1.19 (0.1894 Hz)          -2.08e-04 
2nd mode      1.31 (0.2085 Hz)          -1.74e-04 

 
Table 5. Comparison of the first mode linear transformation matrix: values in parenthesis are 

normalized vectors 
Method Symbol Value 

Exact solution TW1  
[ ]
( )0345.000959.09948.0

0059.000164.01705.0
−−
−−

 

Initial estimate of system matrix TW1  
[ ]
( )0870.000926.09919.0

0162.000172.01844.0
−−
−−

 

Objective function J12 in Eq. 
(19) 

TW1  
[ ]
( )0914.00006.01485.09847.0

0130.00001.00212.01405.0
−−
−−

 

Objective function J123 in Eq. 
(23) 

TW1  
[ ]
( )0316.00005.00900.09945.0

0055.00001.00157.01735.0
−−−
−−−

 

ICA TW1  
[ ]
( )0212.07365.02054.06442.0

0010.00337.00094.00295.0
−−−
−−−
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The first mode linear transformation matrix that maximizes the objective function J123 in Eq. (23) is 
also presented in Table 5. It can be seen that the values of the first three rows are almost identical to 
exact ones while the value of the last row has error of about 20%.  
 
The optimization process for maximizing the objective function J123 is presented in Fig. 1. The 
initial values used in the optimization iteration are the values that maximize the objective function 
J12. It can be seen from Fig.1 that the value of the objective function increases gradually as the 
iteration number increases, and it converges to a certain value as the iteration number is about 200. 
Among the various optimization methods, the simple gradient method is used in this paper. The 
linear transformation matrix is updated at the i-th iteration as 

WWW ii δ001.01 +=+      (26) 

where 

1

123

W
JW
∂
∂

=δ      (27) 

Figure 1 also presents the iteration results of the denominator and numerator of Eq. (23) along with 
the error between the estimated first mode linear transformation matrix and exact one. The error is 
calculated as 

( ) ( )
∑
=











−=

4

1 1

1

j exact

jexactj

W
W

W
W

e      (28) 

where Wexact is the exact first mode linear transformation matrix presented in Table 5. It can be seen 
that the error approaches to zero as the iteration numbers increases. 
 
Figure 2 shows the damping ratio estimation process for the averaged power spectrum of Eq. (22) 
used in the optimization of the objective function J123. It can be noticed that the area of the power 
spectral function becomes almost same to that of the averaged spectrum near the damping ratio of 
0.026. Using this damping ratio and the first mode frequency, the objective function J123 is 
optimized. 
 
The first modal spectrums obtained from the different mode decomposition method are compared to 
the exact one in Figure 3. It can be seen that the modal spectrums decomposed using the initial 
estimate of the system matrix and the objective function J12 are distorted considerably near the 
second mode frequency. In special, the decomposed modal spectrum obtained using the objective 
function J12 is continuously smaller above the second mode frequency. On the contrary, the 
decomposed modal spectrum obtained using the objective function J123 matches the exact one 
closely. 
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Figure 1. Iteration result                                   Figure 2. Damping ratio estimation 
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Figure 3. Modal spectrum comparison              Figure 4. Modal spectrum ratio to exact one 
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Figure 5. Modal spectrum comparison              Figure 6. Modal spectrum ratio to exact one 
 
In order to compare the decomposed modal spectrum more closely, the ratios of decomposed modal 
spectrums to exact one are presented in Figure 4. It can be noticed the more distinguished error in 
the decomposed modal spectrum obtained using the initial estimate of the system matrix and the 
objective function J12. The decomposed modal spectrum obtained using the objective function J123 
shows the ratio near one meaning almost identical result except near the second mode frequency. 
Therefore, it can be concluded that the objective function defined in this paper yields the 
decomposed mode with minimum effect from the neighboring modes even when the structure has 
very closely distributed modes. 
 
For the comparison of the proposed method to the previous mode decomposition methods, the 
decomposed first modal spectrum using the ICA method is compared in Figure 5. The modal 
spectrum ratios to exact one are also compared in Figure 6. The corresponding linear transformation 
matrix for the first mode is presented in Table 5.  
 
It can be noticed that the modal spectrum ratio obtained using the ICA method is close to unity only 
near the first mode frequency. However, the ratio abruptly decreases near the second mode 
frequency and increases continuously above that frequency. This is because the ICA method 
matches the spectral area in average sense trying to maximize the modal independency from the 
neighboring modes. This feature of the ICA method leads the decrease or increase of the ratio 
where the modal frequencies do not exist. The other decomposition methods such as the POD and 
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PCA methods are also examined, but their results are provided here because their decomposition 
resolutions are far less than the ICA method. 
 
In addition to the first mode decomposition, the second to fourth mode decompositions are also 
performed and their results are compared to exact ones. The results show that the mode 
decomposition using the objective function J123 also yields very close modal spectrums to exact 
ones for higher modes. Since the results are almost identical to that of the first mode, they are not 
presented here. 

Conclusions 
The new mode decomposition method is proposed and validated numerically. The proposed method 
can improve the decomposition resolution for structures with non-classical damping and closely 
distributed modes whose mode decomposition is difficult due to non-diagonalization of damping 
matrix and strong correlation between neighboring modes. 
 
The proposed method defines a generalized mode in state-space domain and performed the mode 
decomposition using the state variable estimated from the measured responses. The numerical 
simulation using a SDOF-TMD system indicates that the objective function using the averaged 
spectrum with single pole yields the best mode decomposition results. Further, it is shown that the 
proposed method yields the decomposed mode with minimum effect from the neighboring modes 
even when the structure has very closely distributed modes compared to results to those of the ICA 
and POD methods. 
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Abstract 
An effective second-order three-dimensional unstructured multimaterial arbitrary Lagrangian–
Eulerian (MMALE) method was presented for compressible fluid dynamics, which uses  Moment 
of Fluid (MOF) method to reconstruct material interface for immiscible fluids. It is of the explicit 
time-marching Lagrange plus remap type. Comparing with traditional ALE method, MMALE 
method permits multimaterials in a singel cell, thus has the extra advantage of accurately modeling 
problems involving severe mesh distortion as well as interface fragmentations and coalitions 
induced by strong shearing deformation. Because the stencil used in the staggered compatible 
discretization involves only the nearest neighbouring cells and the MOF algorithm does not need 
information from the neighboring cells, the MMALE method in this paper is suitable for parallel 
computation while keeps second-order accurate. Several numerical tests on three-dimensional 
structured and unstructured meshes have proved the accuracy and robustness of the present method.   
Keywords: MMALE method, MOF method, compatible Lagrangian method,  multimaterial fluid 
dynamics 

Introduction 
There are generally two kinds of numerical methods for the computation of fluid Dynamics 
according to the movement of the mesh during computation. The first one is Lagrangian method, in 
which the mesh is moving with material velocity. It has the advantage of capturing the material 
interface precisely and explicitly which is very important for moving boundary problems where 
material interfaces are of great concern, but with the limitation of severe grid distortion due to 
strong shear deformation which always stops the calculation. The second one is Eulerian method in 
which the mesh is fixed avoiding the problem of grid distortions but at the expense of precise 
material interface construction. In order to overcome the drawbacks of the two methods above, an 
arbitrary Lagrangian Eulerian (ALE) method was introduced to combine the advantages of both the 
Lagrangian and Eulerian approaches [Donea et al. (1982)]. In the ALE methodology, the mesh may 
be moved in some arbitrarily specified way to improve the resolution and enhance the robustness of 
the simulation. Most ALE algorithms consist of three phases, a Lagrangian phase in which the 
physical variables and mesh are updated, a rezoning phase for defining a new mesh with better 
quality, and a remapping phase wherein the physical variables are conservatively interpolated from 
the old Lagrangian mesh onto the new rezoned one. ALE algorithms have much more flexibilities to 
deal with multi-material problems such as strong fluid-structure interaction and inertial confinement 
fusion (ICF) problems.  
For the traditional ALE method, only one material is allowed to be contained in each mesh cell, so 
the material interface must be described explicitly by cell edges. When the mesh and the interface 
deform severely, it is very difficult to generate a new mesh with good quality. In some cases such as 
interface fragmentations and coalitions emerge due to strong shearing deformation, it is even 
impossible to perform rezoning successfully and the traditional ALE method often fails. Thus, a 
new approach called multimaterial ALE method (MMALE) was developed for these problems 
[Peery et al. (2000)]. The MMALE method is based on a flexible strategy. It allows for multiple 
materials in a single cell and therefore affords additional flexibility over the traditional ALE 
method. In other words, MMALE methods permit the interface to cut through cell edges and pass 
across the cells, and no material-interface-fitted mesh is required, thus the difficulty of mesh 
adjustment in the rezoning phase is decreased. With these flexibilities, the MMALE method can 
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accurately model problems involving severe mesh distortion as well as interface fragmentations and 
coalitions induced by strong shearing deformation.  
In this paper an effective second-order three dimensional unstructured grid MMALE method was 
developed for simulating multi-material compressible fluid flows involving strong shearing 
deformation [Jia et al. (2013)]. It combined the staggered compatible Lagrangian method and 
momentum of fluid (MOF) algorithm for interface reconstruction, which has the advantages of 
second-order accuracy and compact stencils. Numerical results of several test problems including 
Rayleigh-Taylor instability have shown the accuracy and robustness of the method.  

Numerical Method  
The flowchart of our MMALE method is displayed in Fig. 1. In the initialization stage, the 
distribution of all the physical variables over the initial mesh is defined. The volume fractions and 
positions of material centroids are initialized using the method which is an extension of [Aulisa et 
al. (2007)].  

 
Figure 1.  Flowchart of the multi-material ALE algorithm 

 
During the Lagrangian phase, the gas dynamics equations of the Lagrangian form are solved using 
the staggered compatible discretization, the velocity, density, internal energy, pressure and the 
Lagrangian mesh are updated. For mixed cells, Tipton’s pressure relaxation model is used to define 
a thermodynamic closure. The material centroids are updated using a method which can be seen as 
an extension from 2D to 3D of the method presented in [Kucharik et al. (2010)]. The interface 
reconstruction is performed using MOF algorithm [Ahn et al. (2007)]. In the rezoning phase, the 
quality of the Lagrangian mesh is improved by means of mesh smoothing using Winslow’s 
algorithm [Winslow (1997)]. Finally, in the remapping phase, all the physical variables are 
conservatively interpolated from the Lagrangian mesh onto the new rezoned mesh using a cell 
intersection based second-order remapping method. 
In the Lagrangian phase, it is assumed that the computational frame is following the material 
motion. For pure cells which contain just one material, staggered compatible discretization for 
Lagrangian gas dynamics is used to update the velocity and  position of the node for the movement 
of the  mesh [Caramana et al. (1998)]. For mixed cells containing more than one material, a 
thermodynamic closure model is needed to define how the volume fractions and the thermodynamic 
states of the individual materials evolve during the Lagrangian step. 
There are several closure models in the literature. The first one is the mean strain rate model 
[Benson (1992); (1997)] in which each material in the mixed cell takes the mean strain rate of the 
cell. Actually, it simply assumes that the volume fraction of each material remains unchanged 
during the Lagrangian step, which may produce nonphysical results in some cases. The second one 
is the pressure equilibration model [Benson et al. (2004)]. It imposes instantaneous equilibration of 
the pressure at the cell level. The equilibration problem is nonlinear and sophisticated iteration 
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schemes are necessary for a robust implementation. The third one is the pressure relaxation model 
[Tipton (1989); Kamm and Shashkov(2010)]. In this model, a relaxation mechanism like viscosity 
is introduced to make the pressure within a mixed cell move toward pressure equilibration. The 
forth one is the bulk modulus weighting model [Miller et al. (2007)]. In this model, when the mixed 
cell is in compression, the bulk modulus weighting algorithm is used; but the volume fraction keeps 
unchanged when the mixed cell is expanding. The fifth one is the contact mixture model, which was 
developed to permit slip and separation by solving the jump conditions for the stress and the strain 
rate across each interface [Benson (1997)]. The sixth one is a one-dimensional model called the 
sub-cell dynamics model [Barlow (2001)]. In this model, one first estimates the velocity normal to 
the interface between materials using the acoustic Riemann solver and then approximates the 
change of volume fraction for each material. In general, the first and the second closure models are 
very simple and only thermodynamic state dependent while the third and the fourth models are path 
or process dependent. The fifth and sixth models are more complex and more realistic which are 
wave structures dependent.  
Among these models, the pressure relaxation model is used in this paper because it is more efficient 
and more effective for three-dimensional MMALE computation. 
When the MOF interface reconstruction algorithm is coupled to a Lagrangian hydrodynamics 
scheme in MMALE methods, it is required that the positions of material centroids in mixed cells be 
updated during the Lagrangian phase. Following the idea of the constant parametric coordinate 
method presented in [Kucharik et al. (2010) ], it is assumed that the parametric coordinates of the 
material centroids keep unchanged during the Lagrangian phase. It is proved in  [Kucharik et al. 
(2010) ] that this method gives a second-order approximation provided that the time step is small 
enough. Here we extend the method from 2D to 3D, and present a new approach to compute the 
parametric coordinates in a hexahedron [Jia et al. (2013)]. In this approach, a good approximation 
for the initial value of the parametric coordinates is given at first, and then Newton iteration is used 
to obtain accurate value of it. The convergence of this algorithm is quite fast. 
Under the assumption that the materials of the fluid are immiscible, MOF algorithm is used to 
reconstruct the interface in mixed cells. MOF algorithm is second-order accurate. This method uses 
information not only about volume fraction but also about position of the centroid for each material. 
Also it provides automatic ordering of the materials in the process of interface reconstruction. In the 
case of three-dimensional unstructured meshes, the reconstructed interface is a plane which is 
chosen to match exactly the volume fraction and to provide the best possible approximation to the 
centroid positions of the materials.For more details about the numerical implementation refer to 
[Ahn and Shashkov (2007); Anbarlooei and Mazaheri(2009); Dyadechko and Shashkov (2008)]. 
In the remapping phase, the physical variables are interpolated from the Lagrangian mesh onto the 
rezoned mesh. In this paper, by simplifying and improving the method in [Goncharov and  Yanilkin 
(2004)], we develop a second-order accurate remapping method on three-dimensional unstructured 
mesh [Jia et al. (2013)]. It is a cell-intersection-based method which calculates the volume and 
centroid of the intersection polyhedron between the old and new cells. It is suitable for remapping 
between two meshes with different topology. 

Numerical Examples  

Example 1   3D Periodic Vortex Problem 
The three dimensional periodic vortex problem is constructed following the idea of manufactured 
analytical solution [Salari and Knupp (2000)]. It is the extension of the two-dimensional periodic 
vortex problem in [Shu (1998); Jia et al. (2013)]. The numerical results proved  that MMALE 
method reaches second-order with mesh refinement.   

Example 2   3D Noh Problem 
The Noh problem [Noh (1987)] has been used extensively to validate Lagrangian and ALE schemes 
in the regime of strong shock waves. A perfect gas with γ = 5/3 is given an initial unit inward radial 
velocity. The initial thermodynamic state is given by ρ =1and p=0. A spherical shock wave is 
generated at the origin and moves with constant speed 1/3. At time t =0.6, the shock wave has radial 
coordinate 0.2. The density behind shock is ρ =64. The initial domain is [0, 1] ×[0, 1] ×[0, 1] 
decomposed with a 48×48×48 orthogonal mesh. At the initial time, in the vicinity of the spherical 
x2+ y2+z2= 1/4, we place a layer of mixed cells. We note that in these mixed cells the two materials 
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are indeed perfect gases with the same polytropic index γ,  and that we treat them as mixed cells to 
compare the numerical solutions obtained by the MMALE method with the analytical solutions. To 
run this test we do not need MMALE strategy, traditional pure Lagrangian schemes usually 
performs well. However, we run this test with MMALE method just for the sake of validation. 
The mesh and the interface at t = 0.6 obtained by Lagrangian computation (left) and by MMALE 
computation (right) are shown in Fig. 2. It can be seen that the final meshes obtained by Lagrangian 
computation and by MMALE computation both have good quality, the position of interface for both 
methods are almost the same. The density distributions at t =0.6 are shown in Fig. 3. The peak 
densities obtained by Lagrangian computation and by MMALE computation reach the value 
52.6785 and 60.0365, respectively. It is obvious that MMALE result is better.   
More numerical results can be found in reference [Jia et al. (2013)]. 

 

Figure 2. mesh and the interface of Noh problem (Left ,Lagrangian ;  Right MMALE)      
 

       
Figure 3. Density distribution  at t=0.6 of Noh problem (Left ,Lagrangian ;  Right MMALE) 

                              

Concluding Remark 
A second order three dimensional unstructured MMALE method is presented in this paper, which 
uses MOF interface reconstruction for simulating multi-material compressible fluid flows involving 
strong shearing deformation. Numerical test proved the method is of second-order accuracy for 
continuous solutions. The application for 3D Noh Problem has shown the effectiveness and robust 
of the MMALE method.   
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Abstract

The long-range interaction between one incompressible fluid sur-
rounding solid objects is quite common and includes suspensions, sedi-
mentation, fluid motion around obstacles, and erosion. Concerning the
active research field of fluid-solid interactions, the challenging point
nowadays is to describe the fluid dynamics in the pore space of soils or
concrete samples and to establish a full coupling between the fluid and
the movable deformable solid phase. This paper describes an extension
of the material-point method (MPM) to modelling the interactions of
incompressible fluids and multi-body deformable particles, which are
discretized by a collection of unconnected, Lagrangian, material points.
Primary variables, such as displacement, velocity, pressure and accel-
eration, and material variables, such as mass, stress and strain are
associated with these points. To solve the equations of motion, data
mapped from the material points are used to update variables on a
background Eulerian mesh. The mesh solution is then mapped back
to material points. This standard particle-like method treats all ma-
terials in a uniform way, thus avoiding complicated mesh construction
and automatically possessing a no-slip contact algorithm at no addi-
tional cost.
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In this study, the solid phase is treated as elastic, but general in-
elastic descriptions can also be later included to explore the interaction
with the fluid phase. On the other hand, problems of incompressibility
introduce numerical difficulties which need to be treated. Hence the
enhanced strain method is adapted to the MPM analysis and spec-
ified to the study of long-range hydrodynamic interactions between
incompressible fluid and solid deformable objects. Numerical exam-
ples including a fluid flow around an obstacle, the collapse of a water
column and a sedimentation test are used to illustrate the proposed
approach and its potential. The results of the MPM are compared
with those obtained with classical FEM, XFEM and a modified im-
mersed boundary method. In addition, the MPM results also compare
well with existing experimental measurements of the collapsing water
problem.

Keywords: Material Point Method (MPM); Fluid-Solid Interaction (FSI);
Incompressible fluid; Enhanced Strain Method

1 Introduction

The long-range interaction between one incompressible fluid surrounding
solid objects is quite common and includes suspensions, sedimentation, fluid
motion around obstacles, and internal erosion. For example, the modelling of
internal erosion at the scale of pore constrictions requires a complete descrip-
tion of both the grains/particles and the fluid within the pores [12]. While
continuous methods are used at the scale of civil engineering structures, such
as embankment dams [4] or sandstones reservoirs [19], discrete and micro-
mechanical methods are being developed to describe the fluid dynamics in
the pore space of soils and to establish a full coupling between the fluid and
the movable deformable solid phase.

Concerning the active research field of fluid-solid interactions (FSI), a
number of numerical methods are been developed [10]: Eulerian-Eulerian,
Lagrangian-Lagrangian and Eulerian-Lagrangian methods.

Lagrangian-Lagrangian methods are based on the idea that calculation
points (i.e. nodes or particles) of both phases are fixed to the domain being
modelled throughout the analysis. This leads to the disappearance of convec-
tive terms in the governing equations of the model. The codes are then con-
ceptually simpler and faster in this aspect, in contrast to Eulerian-Eulerian
approaches. Since nodes/particles are placed and remain on material sur-
faces, interface tracking should be trivial. Those methods can be further
subclassified into grid-based methods and meshless/particles methods. Un-
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like grid-based methods [1, 15], meshless or particles methods approximate
partial differential equations only based on a set of points without the need
for an additional mesh (no nodal connectivity is introduced) [5]. The advan-
tages of those methods, absence of a mesh, continuity of the shape functions
and convergence, are damped by a few difficulties such as the application of
essential boundary conditions, the computational effort and a certain sensi-
tivity of the solutions to the inhomogeneous repartition of the particles.

The material point method (MPM) is a particle method that is based on
the approximation of the weak form of partial differential equations [23, 24].
Aside from the advantages from the Lagrangian frame of reference and from
the particle approach in terms of interface tracking, the key characteristic of
the MPM is to use a background finite element mesh to solve the governing
equations. Since this mesh does not carry any information, a regular grid
can be utilized throughout the simulations. Thereby, the MPM combines
the good features of both the finite element methods and the purely particle
based methods. Finally, the MPM enjoys a single-valued velocity field which
allows a natural treatment of no-slip contact and hence straightforward sim-
ulations of multi-phase materials.

Regarding geomechanical problems, different numerical methods have
been applied to FSI problems with some success [2, 17, 12]. However, sev-
eral drawbacks remain and there exists a need for a method combining the
possibility of accurate representation of large deformation and displacement,
together with an easy representation of solid-fluid interfaces and particles
of random size and shape. At the moment, the use of the MPM is in the
development of the research activities of our group [20, 8, 16] and pertains
to a wider project targeting the development of grain contact laws in a fluid
environment for the DEM. In this context, this work is a first step to es-
tablish a numerical framework and tools for the investigation of fluid-solid
interactions, towards the ultimate goals of exploring immersed grains and
developing corresponding DEM contact laws in the next step.

This paper describes an extension of the MPM to model the interactions
of incompressible fluids and multi-body deformable particles. In the second
section of this article, the governing equations are presented and the frame-
work of the MPM is briefly addressed. The third section is devoted to the
weak form of the governing equations, in which an enhanced strain element
is used to represent the incompressible fluid phase. To highlight the poten-
tials of the proposed method, we present in a final section three numerical
examples: a fluid flow around an obstacle, the collapse of a water column
and a sedimentation test.

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

218



2 Governing equations

In this section, the fundamental equations governing the problem are intro-
duced: i.e. balance equations, and constitutive laws for the solid and liquid
phases. Prior to the weak form, the MPM framework is presented which
implies the spatial discetisation of each phases with material points endowed
with point masses.

Motion of a continuum is governed by conservation of momentum and
mass. Let’s introduce the following global notations: ρ is the mass density, a
is the acceleration, v is the velocity, σ is a symmetric Cauchy stress tensor,
and b is the specific body force. For the whole domain (both the fluid and
the solid phases), the global balance of momentum in the Lagrangian frame
of reference and the global balance of mass read,

divσ + ρb = ρa ,

ρ̇ = −ρ div v ,
(1)

For solid and fluid material points, the general form of the constitutive
equation relates the stress rate, or the stress, to the strain rate via a tangent
modulus,

σ̇s = Ts : ε̇ ,

σf = λf tr(ε̇) I + 2µf ε̇ = Tf : ε̇ ,
(2)

with λf = 2νfµf/(1 − 2νf ) the Lamé parameter, µf the dynamic viscos-
ity and νf the Poisson’s ratio. Clearly, as νf → 1

2 , the Lamé parameter
approaches infinity, so that nearly incompressible cases are characterised by
µf � λf . For simplicity, constitutive equations are presented in terms of the
small deformation theory, and the strain rate tensor is related to the velocity
through,

ε̇ =
1

2

[
∇v + (∇v)T

]
= ∇∗v . (3)

More general responses for the solid have already been implemented in
the MPM [26, 16, 13] and are left for future work.

This work pertains to the classical MPM framework [23, 24], so that the
governing equations are solved in a Lagrangian frame on a finite element
mesh and the global mass density can then be written as a sum of point
masses Mp by use of the Dirac delta function,
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ρ(x) =
np∑
p=1

Mpδ(x−Xp) . (4)

The superscript p indicates a material point which is endowed with a
fixed mass Mp, a position Xp, a stress σ(Xp) and specific material param-
eters. Specific to our FSI problem, elements can be mixed, i.e. composed
of both solid and fluid phases. However, material points are either solid or
fluid. Hence, the finite collection of material points np gathers both the fluid
material points npf and the solid ones nps, i.e. np = npf +nps. As a consequence,
the grid forces accumulate the internal forces from both phases,

fi ∝
np
f∑

p=1

Mpdiv σ̄f (Xp) +

np
s∑

p=1

Mpdiv σ̄s(X
p) =

np∑
p=1

Mpdiv σ̄(Xp) . (5)

3 Method of solution

Problems of incompressibility are well known to introduce numerical difficul-
ties, such as mesh locking, in finite element (FE). The numerous solutions
developed in the realm of fluid mechanics are summarized in the compre-
hensive reviews of [7, 11]. A review of those methods is beyond the scope
of this paper. Rather, a simple approach is tested here within the MPM
and prove quite effective for our purpose (See section 4). This approach as-
sumes a nearly incompressible fluid and uses the assumed strain method [21].
The weak form of the problem, specified to FSI problems and the MPM, is
summarized below.

First, let’s assume strain and stress discontinuity across the grid elements
[25] holding fluid particles. The key point is to use a three-field variational
formulation for the fluid domain Ωf and a standard formulation for the solid
domain Ωs. Regarding the fluid phase we introduce the following enhanced
forms of the strain rate field ε̇ and the strain rate variation field γ,

ε̇ = ∇∗v + ˜̇ε
γ = ∇∗(δv) + γ̃

(6)

in which ∇∗v is the symmetric gradient of the velocity field v and δv is
the velocity variation field. Within the three-field formulation, two stresses
are introduced: σ the actual stress tensor and σε the stress tensor which
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satisfies the constitutive equation (2)2. In addition, δσ is the stress variation
field. Next, we consider the three standard variational equations:∫

Ω
δv · (divσ + ρb− ρa) dΩ = 0,∫
Ωf

δσ · (∇∗v − ε̇) dΩf = 0,∫
Ωf

γ ·
(
−σ + σε

)
dΩf = 0.

(7)

A modified form of this latter formulation is obtained by performing a
series of steps: integrate by part the divergence term and use the divergence
theorem, split the obtained stress term in two parts related to Ωs and Ωf ,
substitute eq. (6)1 into (7)2 and (6)2 into (7)3, and acknowledge that the
standard strain rate variation ∇∗(δv) and the enhanced strain rate variation
γ̃ are independent [21]. Finally, by following the second idea of the assumed
strain method [21], the explicit presence of the stress term (within the fluid
domain) is eliminated from the modified three-field variational formulation
by choosing the space of the stress field L2-orthogonal to the space of en-
hanced strains. As a result, the following modified three-field variational
problem writes,

∫
Ωs

∇∗(δv) : σ dΩs +

∫
Ωf

∇∗(δv) : σε dΩf +

∫
Ω
δv · ρa dΩ =∫

Ω
δv · ρb dΩ +

∫
Γt
s

δv · t dΓt
s.∫

Ωf

γ̃ · σε dΩf = 0.

(8)

in which σs · n = t on ∂Ωt
s and n is the unit vector outward normal to

the boundary. Specific to this FSI framework, no distinction is introduced
between the actual stress tensor of the solid phase and the stress tensor which
satisfies the constitutive equation (2)1.

The following development follows the standard MPM approach [23]. The
substitutions of eq. (4) into eq. (8) convert integrals to sums of quantities
evaluated at material points,
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np
s∑

p=1

Mp

ρp
∇∗(δv)|x=Xp : σ(Xp) +

np
f∑

p=1

Mp

ρp
∇∗(δv)|x=Xp : σε(Xp)

+
np∑
p=1

Mpδv(Xp) · a(Xp) =
np∑
p=1

Mpδv(Xp) · b(Xp) +

∫
Γt
s

δv · t dΓt
s

np
f∑

p=1

Mp

ρf
γ̃(Xp) · σε(Xp) = 0.

(9)

The Galerkin method is adopted for the spatial discretization of vari-
ables and test functions. The spatial discretization uses an enhanced strain
element. Each element is endowed with four displacement nodes and five
enhanced strain nodes (Q1E5) [21]. A grid of isoparametric quadrilateral
elements is used to define standard nodal basis functions, Nu(x), with nnu
being the total number of displacement nodes,

δu(x) =

nn
u∑

i=1

δue
iN

i
u(x) = Nu(x) δue, δv(x) = Nu(x) δve,

u(x) = Nu(x) ue, v(x) = Nu(x) ve, a(x) = Nu(x) ae

γ̃(x) = G(x) γ̃e, ˜̇ε(x) = G(x) ˜̇εe,

(10)

while G(x) is the enhanced strain rate interpolation matrix of size 5× 4, for
a 2D plain strain problem. δue

i , δv
e, ue

i , ve
i , ae

i , γ̃
e and ˜̇εe denote the nodal

vectors of the approximated functions.
For an arbitrary field δve and by use of definitions (2)2 and (6)1, the

fluid contribution to the internal force vector may be expressed as,

np
f∑

p=1

V pBT(Xp)σεf (Xp) =

np
f∑

p=1

V pBT(Xp)Tf

(
∇∗v(Xp) + ˜̇ε(Xp)

)
=

np
f∑

p=1

V pBT(Xp)Tf

(
B(Xp)ve + G(Xp) ˜̇εe

)
(11)
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in which B(Xp) = ∇Nu(x)|x=Xp is the strain displacement matrix evaluated
at Xp. Finally, the matrix form of the system is obtained for the arbitrary
components δve and γ̃e,

Ke(Xp) ue + De(Xp) ve + Me(Xp) ae + (Γe(Xp))T˜̇εe = Fe
v(Xp)

+ Θe(x),

Γe(Xp) ve + He(Xp) ˜̇εe = 0,

(12)

in which we have introduced the discrete stiffness matrix Ke(Xp), the dis-
crete diffusion matrix De(Xp), the discrete mass matrix Me(Xp), the discrete
coupled matrix Γe(Xp), the discrete body force vector Fe

v(Xp), the discrete
traction vector Θe(x) and the discrete enhanced strain rate matrix He(Xp).
The definitions of those matrices are given in Appendix A.

The system of equations (12), which is a compact system of (ndim ×
nnu + nnε) equations and unknowns, is solved fully implicitly by use of a
standard Newmark scheme and a Newton Raphson procedure. The obtained
formulation is further condensed out so that the enhanced strain unknowns
disappear. It is proposed that the obtained formulation be simulated with
the MPM. The idea is straightforward in that the algorithm is setup as any
other type of MPM simulation. More details on the complete algorithm can
be found in the following seminal references [23, 24].

4 Results and discussions

The potentials of the proposed method are highlighted with three numerical
simulations, in two-dimensions. First a fluid flow around a cylindrical obsta-
cle demonstrates the performance of the proposed algorithm for incompress-
ible fluids. Next, the method is tested for problems involving free surfaces.
The classic results of a collapsing water column are compared with experi-
mental and XFEM numerical data. Finally, the accuracy of the method is
tested on a sedimentation test. It was found that the results obtained with
the MPM are more accurate than those of an immersed boundary method.

4.1 Fluid flow around a cylindrical obstacle

To test the properties of the model for an incompressible fluid, several cal-
culations are performed by using a fixed elastic but very stiff obstacle. Fluid
flow is scrutinized past a unit-radius (r) cylindrical obstacle located at the
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Figure 1: The particles defining the incompressible fluid and the obstacle
along an axis of symmetry are shown for a 24 × 16 grid with 9 MPs per
Q1E5 element. The horizontal velocity and the pressure contours reflect the
good capabilities of the method, while the streamlines and the vorticity are
characteristic of ‘sticky’ Stokes flows.

center of the following domain −3 ≤ x ≤ 3 and −2 ≤ y ≤ 2 [7]. The sym-
metry of the setup allows us to restrict ourselves to the upper half of the
domain. The boundary conditions are as follows: vx = v0f(t/tendload) and
vy = 0 at the inlet (x = −3) with f(x) = x3 ∗ (10 − 15 ∗ x + 6 ∗ x2) for
x < 1, f(x) = 1 for x ≥ 1 and tendload being the acceleration time constant;
traction free boundary conditions at the outlet (x = 3) and symmetry else-
where (y = 0 and y = 2) with vy = 0. Initial velocities assume a no-flow
configuration. The time step in the Newton Raphson scheme is chosen as
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∆t = 0.001 s. The characteristic lengths defining the Reynolds number are
v0 = 5 × 10−6 m/s, νf = 0.1m2/s and r = 1m. The flow regime is hence
close to a Stokes flow.

The calculated response is examined to test linear stability (Figure 1).
The particles defining the incompressible fluid and the obstacle are attached
to a 24 × 16 uniform grid on which the system (12) solved. Both the hor-
izontal velocity and the pressure contours are reasonable, the latter being
symmetric about x = 0 and close to zero at the exit [7]. Note that the pres-
sure solution in mixed elements (in the vicinity of the obstacle) is inaccurate
highlighting the limit of the method. The streamlines in Figure 1 show the
‘large’ displacement thickness characteristic of ‘sticky’ Stokes flows; while
the vorticity has diffused in a nearly-symmetric shape.

Clearly, the classical FEM would lead to results of greater quality in the
vicinity of the obstacle to the price of adapting the mesh to this obstacle. A
similar result, would be obtained with the MPM and an unstructured mesh
that respects the boundary of the obstacle. Yet the aim here is to show that
even with an unstructured coarse mesh consisting of 24 × 16 elements, the
MPM can provide sufficiently accurate results.

4.2 A collapsing water column

This test case considers a domain of size 0.584m×0.45m containing a water
column on the left-hand-side of size a × b =0.146m×0.292m [6, 14]. While
the water properties are ρf = 1000 kg/m3 and µf = 1 × 10−3 Pa.s, the
rest of the domain is filled with an incompressible fluid endowed with the
following properties ρ = 1 kg/m3 and µ = 1×10−5 Pa.s, representing air. No
surface tension is considered. The loading is merely restricted to a volumetric
gravitation force g = −9.81m/s2. Free-slip boundary conditions are assumed
along the boundaries of the domain. Two meshes are used, consisting of 12×9
and 36× 27 elements. Each mesh is endowed with 36 MPs per cell and the
simulation time is restricted to 0.3 s with ∆t = 3× 10−4 s.

The water column positions and pressure contour at some selected points
in time are compared in Figure 2. The evolutions of the dimensionless wa-
ter column width and height with dimensionless times are compared with
experimental data [14] and the intrinsic XFEM solution [6] in Figure 3. Di-
mensionless displacements and times are defined as follows,

w∗ =
w

a
, h∗ =

h

b
, τw = t

√
2g

a
, τh = t

√
2g

b
(13)
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Figure 2: Water column position and pressure contour at 5 selected times
for the Q1E5 element. The 36× 27 elements mesh uses 36 MPs per cell.
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Figure 3: Dimensionless (left) width and (right) height over time, see eq.
(13), for the collapsing water column test case. Each MPM mesh uses 36
MPs per cell. The MPM solution agrees well with other results in spite of
the coarse nature of the meshes.

in which w and h correspond to the intersection points of the water column
interface with the bottom and left walls of the domain, respectively, so that at
t = 0, w∗ = h∗ = 1. An excellent agreement of the MPM solution with other
results is found where classical FEM results are known to be unsatisfactory
[6].

4.3 Sedimentation test

This last test case mimics the sedimentation of a deformable cylinder in an
incompressible fluid. We calculate the motion of the circular cylinder of
radius a in between two parallel walls, of width 2L = 2.0m. The motion
of the cylinder, directed perpendicular to its axis with its axis positioned
midway between the walls, is solely induced by gravity g = −9.81m/s2. The
cylinder properties are ρs = 2700 kg/m3, Es = 36GPa and νs = 0.25 and

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

226



the incompressible fluid properties are ρf = 1000 kg/m3 and µf = 1000Pa.s.
The boundary conditions assume zero vertical and horizontal velocities on
the vertical boundaries and zero vertical velocities only on the horizontal
boundaries. The time step in the Newton Raphson scheme is chosen as
∆t = 0.001 s.

For a cylinder settling along the axis of an infinite channel, Faxen [3]
presents a close form solution for small a/L that relates the ratio a/L to
the steady state vertical velocity v∞y (reported in Happel and Brenner [9],
p. 345). This theory is compared to MPM simulations and to the work of
Sulsky and Brackbill [22] for cylinders of various radius in Table 1.

The results are in agreement with the approximated theory [3] and the
error remains small for a/L < 0.5. By using a modified immersed boundary
technique, Sulsky and Brackbill [22] report an error decreasing in magnitude
with increased resolution of the cylinder (a/∆x) and increasing in magnitude
up to 10% error with a/L = 0.4. In comparison, the error on the MPM
solution seems less dependent of the mesh resolution and is most probably
due to the influence of mixed elements.

a/L a/∆x v∞y [m/s] v∞y [m/s] error% error%
theory MPM MPM Sulsky and Brackbill [22]

0.1 5 0.0585 0.0591 -0.96 1.8

0.2 10 0.1267 0.1263 0.38 2.6

0.3 15 0.1611 0.1594 1.05 -0.8

0.4 20 0.1549 0.1557 -0.52 -10.5

Table 1: Velocity comparison of a settling cylinder between two rigid walls
computed on a 50 × 100 grid with 9 MPs per cell. In comparison with the
results of Sulsky and Brackbill [22], the MPM response is less dependent on
the mesh resolution (a/∆x) and remains accurate within ≈ 1 % for a/L ≤
0.4.

5 Conclusion

The MPM is applied to the interaction of incompressible fluids and de-
formable particles. This method uses Lagrangian material points and an
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Eulerian grid or mesh to define the computational domain. The material
points move through the Eulerian grid on which the balance equations are
solved. This paper presents the modifications necessary to simulate the in-
teractions between incompressible fluids and solid materials by using the
assumed strain method. The spacial discretisation uses an enhanced strain
element (Q1E5) [21].

Several two-dimensional test problems are presented to demonstrate the
methodology. A fluid flow test past an obstacle is used to test the incom-
pressible fluid model, for Stokes flows. The method performs well despite
the fact that the mesh does not fit the obstacle. Next, a collapsing water
column test is presented to evaluate the accuracy of the method. The MPM
response compares very well with both experimental [14] and XFEM results
[15]. Finally, a sedimentation test is performed to validate the fluid-solid
interactions. Again the proposed method performs well with respect to the
analytical solution [3] and better than other numerical methods such as the
modified immersed boundary formulation [22].

The enhanced strain element Q1E5 used throughout this paper matches
well the MPM procedure since it is compatible with the use of a lumped
mass matrix during the initialization step. Yet this element does not satisfy
of the inf-sup test so that one possible extension of the method is to test
other elements such as the combined mixed displacement/pressure enhanced
finite element [18]. Also the proposed element does not satisfy strictly the
incompressibility condition div v = 0 and the results presented herein will be
compared in a near future with that obtained with a bi-linear mixed element
Q1P0 [7].
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A Discrete matrices used in eq. (12)

The discrete coupled matrix Γe(Xp), the discrete diffusion matrix De(Xp),
and the discrete enhanced strain rate matrix He(Xp) write,
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Γe(Xp) =

np
f∑

p=1

V pGT(Xp)TfB(Xp),

De(Xp) =

np
f∑

p=1

V pBT(Xp)TfB(Xp),

He(Xp) =

np
f∑

p=1

V pGT(Xp) Tf G(Xp).

(14)

Also we have introduced the discrete mass matrix Me(Xp), the discrete
body force vector Fe

v(Xp), the discrete traction vector Θe(x) and the discrete
stiffness matrix Ke(Xp) as,

Me(Xp) =
np∑
p=1

MpNT
u (Xp)Nu(Xp),

Fe
v(Xp) =

np∑
p=1

MpNT
u (Xp)b(Xp),

Θe(x) =

∫
Γt
s

NT
u (x) t dΓt

s,

Ke(Xp) =

np
s∑

p=1

V pBT(Xp) Ts B(Xp)

(15)

It is worth noting that the number of integration points used to obtain the
various discrete matrices is adapted depending on the nature of each term,
i.e. the diffusion, coupled and enhanced strain rate matrices are summed
over the fluid material points, the stiffness matrix is summed over the solid
material points, and the mass matrix is evaluated using all material points
of the element.
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Abstract 
Hydroelasticity has been included in ship seakeeping assessment for more than three decades, and it 
has finally become an essential tool in the marine industry for design of some ship types.  In the 35 
years of evolution, the hydroelasticity methods applied in the marine and offshore energy industries 
have grown from two-dimensional to three- dimensional and now feature  linear analysis models in 
the frequency domain and nonlinear models in the time domain. In this paper, we present the three-
dimensional hydroelasticity theory model in the frequency domain and time domain, show the 
difference in the approach, and discuss their applications in wave-structure interaction.  

Keywords:  Hydroelasticity, Springing, Frequency domain, Time domain, Boundary element 
method, Linear, Nonlinear. 

Introduction 

In the design process for floating structures, like ships and offshore structures, hydrodynamic 
analysis of wave-structure interaction is the first important step.  The methods of rigid-body based 
seakeeping analysis have been applied successfully in this type of work for many decades, but 
suffer failures on some of latest mega-ships, like a container ship over 350 meters in length.  It has 
been found that the predicted fatigue life of a large container ship based on a rigid-body approach is 
significantly longer than when the effects of elastic body responses are taken into account.  The 
elastic-body based analysis method explicitly allows for the interaction of water waves and elastic 
structures.  An ultimate hydroelasticity solution comes from a CFD approach, but this is too 
expensive to be applied for routine work; for example, the number of required regular wave cases 
will typically be 3,000 to 5,000 in a design process, and coupled with a few hundred combinations 
of ship speed, wave headings and sea states, leads to hundreds of thousands of hours of real time 
simulation.  The boundary element hydroelasticity model remains the only tool practical for routine 
work.  In this paper, a general approach for 3D hydroelasticity is presented.  Differences between 
the rigid-body approach and the hydroelasticity approach are discussed.  We also look into the 
theoretical details of the frequency domain hydroelasticity model orientated for conditions of low 
and moderate sea state, and that of the time domain hydroelasticity model orientated for high sea 
state conditions. 
  

Methodology of Hydroelasticity 

Accurate prediction of hydrodynamic structural load is key to a successful strength assessment for a 
structure operated in waves.  The hydrodynamic pressure is determined by the location and velocity 
of the wetted surface of the structure.  A rigid-body approach will be accurate enough if the elastic 
deformation of the structure’s wetted surface is small compared to that induced by rigid-body 
motion.  Elastic deformation needs to be considered in the boundary condition of the boundary 
value problem of flow solution for ships or structures with less stiffness, such as a container ship 
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longer than 350 meters.  The Hydroelasticity Method has been developed for the interaction of 
waves and elastic structures.  Due to the interaction of the flow and the structure’s motion and 
deformation, the hydrodynamic problem and structural dynamic problem is coupled together and 
needs to be solved simultaneously.  Direct finite element structural analysis can be combined with a 
flow solver like RANS or BEM in time domain to form a robust nonlinear tool for hydroelastic 
assessment, but it will be too expensive to be practical for routine design assessment.  FEM based 
modal analysis is usually used for the structural assessment portion, and its solution, eigen-values 
and eigen vectors are used with a boundary element method for hydrodynamic analysis, and this 
forms the so-called hydroelasticity method for seakeeping analysis.  The first 2D  frequency domain 
hydroelastic method was proposed by Bishop and Price in 1979.  In their method, a ship was 
represented by a Timoshenko beam and discretized to a number of 2D beam elements for structural 
analysis, and the wave flow solution around the ship was determined by strip theory.  This 
hydroelasticity method has continued evolving, now supporting a fully 3D structural FEM model 
with 3D BEM model for the hydrodynamic solution in both frequency domain and time domain. 
 
In a finite element model of a structure, stress in an element can be estimated by the displacement 
of the node points of the element.  A vector of model node displacements, U , can be determined 
from the model elastic motion equation  
 

              GFPUKUBUM   ,    (1) 
 
where   M ,  B  and  K  are the matrix of model mass, structural damping and stiffness;  P  is the 
vector of external surface force;  F  is the vector of external concentrated force, and  G  the vector 
of external mass force.  Dot represents the gradient w.r.t time.   
 
Introducing the homogenous solution of the node displacement vector,     tie   DU  and ignoring 
structural damping and all external forcing terms from equation (1), solution of equation 
 

       0DKM    2 ,     (2) 
 
gives the eigen value r  and eigen vector  rD  that define the dry eigenmodes.  The number of 
eigenmodes of a FEA model will be the same as the number of degrees of freedom, being six times 
of the number of node points.  Displacement at point  zyx ,,  can be expressed by those dry 
eigenmodes in terms of summary 
 

            
r

rr tqzyxtzyxtzyx  ,, ,,;,, DqDU    (3) 

where  tqr  is the amplitude of mode r , the so-called general coordinate, and  
 

     Tjrrrrrr

T

j
rrj

r wvu  ,,,,,, 


uD       (4) 
 
is the displacement of point j  induced by mode r with unit modal amplitude. 
 
Multiplying  TD on each term of equation (1), and right multiplying  D  on the matrix of model 
mass, damping and stiffness, we have an equation to determine the modal amplitude 
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              gfpqkqbqm         ,    (5) 
  
One of the advantages of using the dry eigenmode approach is the modal orthogonally.  For any 
elastic dry modes r and s, using Kronecker delta, we have   
 

     rsrss
T
r mDMD     and        rsrss

T
r kDKD      (6) 

 
where rrm  and rrk  are the modal mass and modal stiffness. 
 
We can solve the modal amplitude by applying a location and velocity given by equation (3) on the 
wetted surface in a hydrodynamic analysis model and expressing and estimating the three forcing 
terms in the hydrodynamic model. 
 
In a boundary element hydrodynamic model, linearized boundary surface condition for unsteady 
velocity potential U  can be given by the surface displacement  ,u  and the steady flow velocity 
W  

   2unWuWu
O

tn

U





 





 


.   (7) 

 
Here n   is the surface normal vector, and surface displacement  ,u  can be estimated from the 
shape functions, or eigen vectors, of the model.  
  
Another fact worth noting in a hydroelastic model is that the eigenmode with nonzero displacement 
on the wetted surface will receive hydrodynamic pressure force, and we call these modes the 
“wettable modes”.  All other modes, “non-wettable modes”, have no external force from 
hydrodynamic pressure.  The wettable modes will be coupled to each other through hydrodynamic 
pressure force, which means the motion of the i-th wettable mode will induce a surface forcing term 
on j-th wettable mode.  On the other hand, non-wettable modes are uncoupled.   In a hydroelastic 
model, we only need to consider those wettable modes, usually only the first few wettable modes in 
practice.  
 
Another difference between a rigid structure and an elastic structure is on the location of the center 
of gravity, COG.  The COG of a rigid structure is a point fixed with the structure when it oscillates 
in waves.  On the other hand, the COG is changing due to elastic deformation and not fixed with the 
elastic structure when it oscillates in waves.  This difference leads to a much complicated equation 
for the rigid body motion mode of the elastic case. 
 
Let’s introduce two Cartesian coordinate systems: 1) the body-fixed frame, HMF,  zyxo ~~~~   with 

axis~ x pointing to the bow, yxo ~~~   coordinate plane lying on the undisturbed water surface when the 
ship has no oscillations, and axis~ z  positive upward; 2) the moving reference frame, HRF,  xyzo  , 
which is an inertial frame moving at the constant ship speed U and which is identical with the body-
fixed frame if the ship has no oscillations. The coordinates of the body-fixed frame origin, o~ , in the 
reference frame HMF, namely  321 ,,  

  define the translational motion of the ship, so called 
Surge, Sway and Heave. Three Euler angles  654 ,,   between the body-fixed frame zyxo ~~~~   and 
the reference frame xyzo   define the rotational motion of the ship, also referred to as Roll, Pitch 
and Yaw.  Supposing zyxo ~~~~   rotates from the position of xyzo   with the angle 6  about 
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axis~ z first, then the angle 5  about axis~ y , and finally the angle 4  about axis~ x , we will have 
the relation between zyxo ~~~~   and xyzo   as follow 
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where R is the mapping matrix defined by the three Euler angles. 
 
By setting the origin on the gravitational center of the structure with zero elastic deformation, the 
equations for rigid body motion modes, translational and rotational, can be given by  
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where M and J are the total mass and moment of mass inertia of the structure; s  the amplitude of 
the s-th elastic mode; w the vector of rotational velocity; g

sr~ , sM , and sJ  are the modal mass 
center, modal mass vector and  modal mass moment of the s-th elastic mode defined by 
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I  is the modal moment of mass inertia and represents the effect due to the elastic rotational 
deformation of the s-th elastic mode 
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Boundary Element Hydroelasticity Method in the Frequency Domain 

In a linearized frequency domain model, the external disturbance, the wave, is assumed “small” and 
responses induced by this small disturbance follow the time function ti ee   . Where the encounter 
frequency e  is a function of incident wave frequency  , ship speed U , and wave heading   
 

 cosUke  ,       (13) 
 
where wave number gk /2 , g is the gravitational acceleration,  for deep water, and o0  
represents the following sea, the moving ship and propagating wave have the same direction, and  

o180  represents the head sea condition.  
 
Unsteady flow velocity potential is defined by 
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where L is the number of system freedoms. L is 6 for the rigid-body model and 6 plus the number 
of involved elastic eigenmodes of the Hydroelasticity model.     ti

jj
eet   Re  is the 

displacement of mode j at time t,  and j  is the complex mode amplitude containing information for 
amplitude and phase.  a is the amplitude of the incident wave and its space velocity potential for 
deep water is given by  

]})(sin)[(cosexp{),,( yxikezyx kz
I   .         (15) 

 
The first responsibility of the hydroelastic model is determination of the diffraction potential )(rD  
and radiation potential )(rj  for each system freedom. Both diffraction and radiation potential 

satisfy the Laplace equation 0)(2  r  and linearized free surface condition  
 

0 surface water calmon        ,0
2



















 







z
tn

g W .   (16) 

 
Additionally, the radiation condition requires the diffraction and radiation wave due to the existence 
of the ship propagating outward.  The velocity potential in the fluid domain and on the boundary 
surface can be estimated by an integration of a singularity distribution on the wetted hull surface hS  
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 qpG rr ,  is the Green’s function that satisfies the Laplace equation, free surface condition and 

radiation condition.  The strength of singularity   can be solved from the boundary integral 
equation 
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And  pr  is the interior solid angle of field point pr  on the wetted hull surface hS .  The required 
surface condition for the diffraction problem is 
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and for the radiation problem of j-th motion/elastic mode 
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Modal normal component jn , the so-called n-term,  and m-term can be estimated by 
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Hydrodynamic pressure on wetted hull surface comes from Benoulli’s equation using velocity 
potential and its gradient.  Its linearized form is of 
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The hydrodynamic force on mode i can be computed by integration 
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After an order analysis of the perturbation expansion of this theoretical approach, this surface modal 
force can be expressed in terms of modal amplitude 
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and the modal wave exciting force iE , modal wave making added-mass and damping coefficient 

ijA  and ijB  is computed as follows 
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The modal restoring coefficient ijC  has a similar, but more lengthy, integration formula. 
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The modal amplitude for a model without concentrated force can then be solved from 
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including the linearized equation of rigid body motion 
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These formulae are expressed in a hydrodynamic reference coordinate system.  This system is on 
the calm water surface and moving at the constant speed U toward the ship moving direction.  
Therefore it is an inertial coordinate system and the dynamic mass modal force is nil, as the existing 
mass force is gravity and it is a constant in time in this coordinate system.  In this 
deformation/motion equation, V

ijB  is the coefficient of viscous flow induced damping which is 
important to those modes having small wave making damping, such as roll motion mode.  It is 
possible to involve nonlinear viscous flow damping in the analysis.  ijb  is the coefficient of 
structural modal damping, which is still a challenge for structural engineers to estimate reliably.  So 
far, this coefficient is mainly determined from model tests and/or sea trials.    
 
In most of the available tools, the structural analysis is performed in a ship fixed coordinate system 
that leads to nonzero mass modal force with two components, one being induced by the inertial 
acceleration of the rigid body ship motion, and the other coming from the dynamic gravitational 
acceleration in this ship fixed coordinate system.  This mass modal force will excite every non-
wettable mode and therefore those modes may need to be involved in structural assessment.  
 

Boundary Element Hydroelasticity Method in Time Domain 

As described in the previous section, the frequency domain hydroelastic BEM model combines 
linear structural FEA, linear hydrodynamic BEM with linear or nonlinear deformation/motion 
equations.  It is basically a linear Hydroelasticity approach.  This frequency domain approach works 
well for a ship or offshore structure in low and moderate sea conditions, but it becomes unreliable 
for large wave cases and a nonlinear model is required.  For ship or offshore structures in large 
waves, the dominant nonlinear factors in hydrodynamic problems are the vertical shape change of 
the hull surface, i.e. the hull flare, and high wave itself.  A cheaper and more efficient time domain 
hydroelastic BEM model could be considered instead of the ultimate CFD model.  The time domain 
BEM model simulates responses in waves by using a retardation function, the response function to 
an impulse disturbance and carries the memory effects of disturbances in the past.  The retardation 
function in this time domain BEM model can be determined either by time domain Green’s function 
or by the Fourier transformation of hydrodynamic results obtained from frequency domain analysis.  
Compared to the first approach, the second approach usually takes less computing time and requires 
much less computer memory and it is the method we will use in this paper.  The important 
difference between the frequency domain hydroelastic BEM model and the time domain model is 
that the small wave restriction is removed in the time domain model, and it leads to large responses 
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like structural motion/deformation, internal load and so on. The nonlinear terms need to be involved 
in the computation of motion/deformation equations and internal loads. 
 
One of the main differences from the linearized frequency domain model is that the rigid-body 
motion mode can have large amplitude, and equation (9) and (10) are adopted.  Also in the time 
domain model, the modal surface force, i.e. the hydrodynamic force, will be determined by 

 
others
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ii FFFFFF  ,   Li ,...,2,1    (29) 
 

where subscript i stands for deformation/motion mode;  rad
iF  is the radiation force on mode i; dif

iF  
is the diffraction force; FK

iF is the so-called Froude-Krylov force due to incident waves; rst
iF  is the 

restoring force due to hydrostatic pressure; and others
iF  represents the force due to all other external 

effects like mooring, viscous damping, tank sloshing,  maneuvering, etc.  In contrast with the 
frequency domain model, the maneuvering force on rigid-body motion mode for a ship with 
forward speed is a mandatory factor in the time domain simulation.  Similarly the mooring force or 
position stationary force for a floating offshore platform is also important. 
 
The radiation force on mode i that is induced by the motion/deformation of the structure is 
determined by the convolution 
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 tj  is the displacement of mode j at time t,  

ijijij CBA  and  , is the coefficient of wave making 
added-mass, damping and restoring force at infinite encounter frequency.   tij  is the retardation 
function and can be estimated from 
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The diffraction modal force can be expressed in a similar way 
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Accuracy of the retardation function for radiation and diffraction modal force will directly affect the 
analysis results and development of a reliable algorithm for the infinite integration is one of the 
challenges in this time domain model. 
 
In time domain hydroelastic BEM model, nonlinear rigid body motion equations, (9) and (10), are 
applied.  The nonlinear terms in modal force computation needs to be consistently involved as well. 
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Examples of Application 

Two hydroelasticity codes have been developed in Lloyd’s Register, HydroE-FD for the frequency 
domain model and HydroE-TD for the time domain model.  The results of frequency domain 
hydroelastic analysis are compared against the results of Lloyd’s Register’s rigid body frequency 
domain code WAVELOAD-FD.  The structural analysis was performed by using Lloyd’s Register’s 
FEA code, Trident.  
 

Example 1 - Linear frequency domain hydroelasticity 

 
A container ship was selected as an analysis example.  Particulars of this vessel, including ship 
dimensions, draft at fore and aft perpendicular, displacement, COG and radii of gyrations, are 
shown in Table 1. The full ship global FEA model and hydroelastic panel model are shown in 
Figure 1.  A one meter sized panel model was selected to capture the responses in the high wave 
frequency range.  Figure 2 and 3 plot the shape of first 10 wettable elastic dry eigenmodes and their 
n-term. The n-term of rigid motion mode roll and pitch are also presented in Figure 3.  It can be 
observed that modes 9, 21 and 28 are the first three vertical bending modes, all the other modes are 
horizontal modes representing bending, torque or their combinations. 
 

Table 1:   Particulars of container ship model 

Lbp ( m ) 325.0 
B ( m ) 43.8 

T_fp ( m ) 11.075 
T_ap ( m ) 11.405 

Displacement ( 3m ) 94428 
Wetted hull area ( 2m ) 14910 

LOG ( m ) 154.5 
VOG ( m ) 15.342 
Kxx ( m ) 16.088 
Kyy ( m ) 78.235 
Kzz ( m ) 78.343 
Kxz ( m ) 6.112 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

241



 
 

  
 

Figure 1:    FEA model (left) and hydroelastic panel model (right) of the container vessel. 
 
Figure 4 shows the first key result, being the comparison of the vessel deformation due to the 
hydrostatic pressure and gravitational force when the vessel is floating in calm water. The upper 
plot is the result by a direct static 3D FEM analysis and the lower one is the result by HydroE-FD 
using the modal pressure force due to the hydrostatic pressure and modal mass force due the 
gravitation. Static modal amplitudes from HydroE-FD are given in Table 2.  The main contribution 
to the static deformation was from the three vertical bending modes as the model is very close to a 
symmetric case.  The ship is in a static hogging state and maximum static deformation by direct 
FEA using Trident was 324 mm while that from HydroE-FD was 323 mm, so they correlate very 
well. 

Table 2:   Static mode amplitude by Hydro-FD 

Mode 07 08 09 10 19 20 21 27 28 31 
S
j  7.975 11.30 -101.0 0.2505 -0.1286 1.077 -39.87 -0.689 25.46 -0.03120 

 
The natural frequency of each elastic eigenmode is one of most important results in a structural 
assessment and the results of the “dry natural frequency” and “wave making natural frequency” are 
listed in Table 3.  The “dry natural frequency” represents the natural frequency when the structure 
oscillates in air or "in vacuum" and these are the eigen values calculated by the whole ship FEA. 
The “wave making natural frequency” is the natural frequency when the structure oscillates in water 
and generates the so-called radiation waves.  The restoring force and encounter frequency 
dependent wave making added-mass are considered together with the modal mass and stiffness.  
From the results, we can see that the wave making effect always decreases the natural frequency 
and it can even change the sequence of some eigenmodes.  In this example, the first vertical 
bending mode is the third elastic eigenmode (09) in the original dry eigenmode list, but it jumps up 
to the second elastic mode in the wave making list due to the significant increase of mass due to the 
wave making added-mass associated with this modal shape.   For ocean waves, the typical wave 
period is on the order of 10 seconds and in general waves of this period do not directly excite 
resonant oscillation for those eigenmodes with a wave making frequency higher than 5 rad/sec.  
Waves with higher frequency  (> 2 rad/sec) can excite eigenmodes of natural frequency larger than 
5 rad/sec. But those shorter waves have smaller amplitude and are usually ignored in many 
analyses. 
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Figure 2:    Wetted surface of the first 10 elastic mode of the container ship model. 
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Figure 3:    The n-term of roll, pitch, and the first 10 elastic dry eigenmodes. 
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Figure 4:    Static displacement of the model by Trident (upper) and HydroE-FD (lower). 
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Table 3:   Natural frequency of the container ship 
Eigen 
Mode 

Dry natural frequency 
from FEA  
(rad/sec) 

Wave making natural 
frequency from 

HydroE-FD (rad/sec) 
07 2.823 2.655 
08 4.151 3.754 
09 4.689 3.501 
10 7.327 6.851 
19 13.21 12.38 
20 14.18 11.27 
21 14.78 10.11 
27 18.58 17.83 
28 18.69 13.11 
31 20.35 19.04 

 

Table 4:   Rayleigh coefficients of structural modal damping for S8100R model 

Mode 07 08 09 10 19 20 21 27 28 31 
% 1.27 3.29 2.28 1.15 0.67 14.3 1.13 0.0 2.82 0.0 

 
 
Structural modal damping applied in this example is listed in Table 4.   
 
RAO curves (Response Amplitude Operator curves which represent the response amplitude induced 
by a wave of 1 meters amplitude) of rigid-body motion (modes 1 to 6) and elastic deformation 
(modes 7 to N) over a range of incident wave frequency 0.0 to 1.2 rad/sec and 150 degree heading 
at three ship speeds are plotted in Figure 5.  The modal amplitude of the elastic eigenmodes over a 
wave frequency range 0 to 5 rad/sec at the same ship speed and heading are shown in Figure 6,  and 
the resonant responses of modes 7, 8 and 9 can be found. 
 
Distribution of hydrodynamic pressure RAO is shown in Figure 7 in a resonant condition of the 3rd 
elastic eigenmode, the first vertical bending mode.  Compared to the rigid-body analysis results, 
hydroelastic analysis received much higher pressure in this case.  Note the n-term pattern shown in 
Figure 3, from this we can find that the pattern of the pressure distribution is similar to that of the n-
term of the resonant eigenmode, and the radiation pressure is the dominant component in this case. 
 
The modal resonant is determined by two factors, frequency and strength of external excitation. For 
the case of a ship, an elastic structural eigenmode can be excited when the incident wave has an 
encounter frequency close to its modal natural frequency.  The scale of this resonant eigen response 
is determined strongly by the pattern of external exciting pressure, including pressure of incident 
waves and diffraction waves as well as the radiation waves of other modes. The third elastic 
eigenmode, the 1st vertical bending mode, has a resonant amplitude around 6.5 for the zero speed 
case at a wave frequency of 3.5 rad/sec where the incident wave length is very short, around 5 
meters; see Figure 6, top graph. When the wave length increases to 28 meters in 20 the knots case, a 
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wave frequency of 1.5 rad/sec, the amplitude of this eigenmode jumps up to a level of 50 times 
larger than that of zero ship speed. 

     

      

      
       

Figure 5:    RAO of rigid-body motion and elastic deformation in waves of 150  

1st row: U= 0 knots; 2nd row: U= 10 knots, 3rd row: U= 20 knots  
1st column: rigid body motion modes; 2nd column: elastic deformation modes.  
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Figure 6:    RAO of elastic deformation in waves of 150  

1st column: U=0 knots; 2nd column: U=10 knots; 3rd column: U=20 knots 
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Figure 7:    RAO of hydrodynamic pressure of rigid body model (upper) and hydroelasticity 
model (lower) for condition knots 12U , 150  and rad/s 875.1 . 

 
The internal load values, shear forces, bending moments and torsional moments, are obtained by 
summation the hydrodynamic pressure and ship motion inertial loads. To check the effects of elastic 
deformation, internal load results of tension force, horizontal shear force and vertical shear force on 
a section at 25% of ship length from aft perpendicular are shown on the left column of Figure 8. 
The torque, vertical bending moment and horizontal bending moment on the mid-ship section are 
shown in the right column of Figure 8.  Blue lines show the results of the frequency domain 
hydroelasticity model and the results from a rigid-body hydrodynamic analysis are shown as red 
diamond marks.  From this figure, we can see that the internal loads calculated by a hydroelastic 
analysis method will be close to the results from a rigid-body analysis method when the ship is in 
waves with encounter frequencies well away from its structural natural frequencies. When the ship 
is in waves with encounter frequencies close to the structural natural frequencies, then significant 
feedback can be expected from the internal loads and those resonant internal loads will induce 
structural vibration, so-called springing, which ultimately may lead to early onset of damage to the 
ship structure.  For curtain types of ship or floating structures, the fatigue life on some structural 
components based on hydroelasticity assessment can be more than 50% shorter than that by a rigid-
body based analysis.  A hydroelastic assessment will definitely be required for such cases. 
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Figure 8:    Non-dimensional RAO of internal load in condition of U=20 knots and 150 . 
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Example 2 - Nonlinear time domain hydroelasticity 

From analyses of frequency domain hydroelastic results, one can see the reasons for considering 
hydroelasticity and what impact a hydroelasticity analysis can have on an engineering assessment. 
We should bear in mind that the frequency domain hydroelasticity is based on a “linear response” 
condition and works well for cases of waves with small wave steepness.  A time domain 
hydroelasticity model needs to be considered for large wave cases.   
 
We present some results of time domain hydroelasticity analysis for the same ship model below.  
Time trace of four rigid-body motion modes is shown in Figure 10, for a case in waves of 120 
degree heading, 0.375 rad/sec of frequency, 20 meter wave height and ship speed of 10 knots.  We 
can see the time domain model predicts larger motion and nonlinear characteristics for pitch in this 
extremely high wave condition. The differences in results from the frequency domain analysis and 
time domain analysis are caused mainly by the so-called geometry nonlinear problem, i.e. the effect 
of “flare bow” and “flat stern” for the present model above the mean waterline and the lack of 
buoyancy at both ends below the mean waterline.  The frequency domain model and time domain 
will have similar responses if the wettable surface of the structure has a purely vertical shape, but 
this is not the case for most ships.  Another reason for this difference is the large nonlinear rotation 
motions.  For example, the roll motion amplitude of the present case goes up to 20 degrees, and this 
roll motion will affect the yaw motion.  The effects of roll on yaw in the nonlinear rotation term 

)(wJw   and mapping matrix R  are ignored in a frequency domain model therefore coupling 
between rotation motions are weaker there. 
 

 
Figure 9:    Amplitude of some rigid-body motion modes in condition U=10 knots, 120 , 

375.0  rad/sec and wave height = 20 meters. 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

251



 
 

 

          

          
Figure 10:    Pressure distribution by frequency domain model (top) and time domain model 
(bottom) in condition U=5.75 knots, 0 , 44.0  rad/sec and wave height = 24.2 meters, 

in a hogging state (left) and a sagging state (right)  
 
The most obvious difference between the frequency domain and the time domain approaches is the 
pressure distribution, as illustrated in Figure 10.  The hydrodynamic pressure only acts on the mean 
wetted surface of the ship in the frequency domain mode and changes in a pure sinusoidal style.  
From the top row of Figure 10, labelled "Total pressure distribution without intermittent," showing 
the linear frequency domain results with the addition of the hydrostatic pressure, we can see that 
there is no pressure on the mean dry hull surface and the total pressure on the bow can have a 
negative value in a frequency domain model. On the other hand, the total combined hydrostatic and 
hydrodynamic pressure calculated by a time domain model has no such problem and the pressure 
distribution looks much closer to reality, as shown in the bottom row of Figure 10 labelled "Total 
pressure distribution with intermittent".   
 
A problem in the frequency domain model is the “symmetric vertical load”.  The magnitude of the 
dynamic vertical bending moment and shear force will be the same for both the hogging and 
sagging conditions, but this is clearly not the case due to "intermittent" pressure effects which can 
become significant for higher waves.  For a conventional ship, the dynamic vertical load in a 
sagging wave condition is normally always larger than in a hogging wave condition.  In a time 
domain model we simulate the instantaneous wetted surface and solve the pressure on this surface, 
and as a consequence the vertical loads become much closer to reality.  The dynamic and total 
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vertical shear force on a section at ¼ of ship length are presented in the top row of Figure 11, and 
those for the vertical bending moment on a mid-ship section are presented in the bottom row.  This 
shows that for this example, the dynamic vertical bending moment in the sagging wave case is 
about twice of that of the hogging wave case.  The vertical shear force has similar tendency.  It is 
worth noting that the results of this extreme wave case are for demonstration of the difference of the 
frequency and time domain models, and we would not expect the ship to be operated at 20 knots in 
a 20 meters wave environment.  The asymmetric ratio of vertical load in sagging/hogging condition 
will decrease as the wave height becomes smaller. 
 

 

 
Figure 11:    Vertical shear force and bending moment in condition U=20 knots, 180 , 

475.0  rad/sec and wave height = 20 meters  

 
 
The last result presented is the time trace of the first elastic eigenmode, which is an almost pure 
torque mode for the present ship model, shown in the left of Figure 12, and the time trace of torque 
load on the mid-ship section. The amplitude of the first elastic mode predicted by the time domain 
model is smaller than that predicted by the frequency domain, but the torque load predicted by both 
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methods are almost the same due to the effect of the intermittent and nonlinear pressure correction 
in the time domain approach. 

 
Figure 12:    Time trace of first elastic eigenmode amplitude and dynamic torque at mid-ship 
in condition U=20 knots, 150 , 250.1  rad/sec (resonant frequency of the 1st (torque 

only) mode) and wave height = 2.82 meters  
 

Conclusions 

The theory of hydroelasticity is outlined for both the linear frequency domain approach and non-
linear time domain approach.  Results of a container ship of 320 meters in length are used to 
demonstrate the improvement for hydrodynamic analysis going from rigid-body to elastic body and 
from frequency domain to time domain.  Those results also prove the importance of considering the 
application of hydroelastic analysis for assessment of ships or structures where structural vibration 
plays a dominant role.  
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Abstract 

A windcatcher is a structure for providing natural ventilation using wind power; it is usually fitted 
on the roof of a building  to exhaust the inside stale air to the outside and supplies the outside fresh 
air into the building interior space working by pressure difference between outside and inside of the 
building. In this paper, the behaviour of free wind flow through a  three-dimensional room fitted 
with a centred position  two-canal bottom shape  windcatcher model is investigated numerically, 
using a  commercial computational fluid dynamics (CFD) software  package and LES (Large Eddy 
Simulation) CFD method. The results have been compared with the obtained results for the same 
model but using RANS (Reynolds Averaged Navier-Stokes) CFD method. The model with its 
surrounded space has been considered in both method. It is found that the achieved results for the 
model from LES method are in good agreement with RANS method’s results for the same model. 

Keywords: CFD,  Human comfort, K-ℇ, LES, RANS, Simulation, Ventilation, Windcatcher  

Introduction 

Windcatcher is one of the green features for providing natural ventilation using wind power which 
has been employed over centuries  in the hot arid parts of Iran and the other Persian Gulf countries 
to provide natural ventilation, passive cooling and thermal comfort [Fathy and Walter(1986); 
Karakastanis et al. (1986); Montazeri et al. (2010)].  

The low cost of windcatcher system in comparison with mechanical ventilation system,  being 
noiseless, durability, requiring no fossil energy, supplying clean air  and using sustainable energy of 
wind power have led to use of  the  windcatcher as a  passive and environmental friendly system. 

The cross sections of all windcatchers which have circular or square shapes are divided internally 
into various segments to get one-sided, two-sided, three-sided, four-sided, hexahedral, and 
octahedral windcatchers to make the windcatcher system safer to periodic wind changes [Liu and 
Mak (2007)]. Some traditional windcatchers with different number of opening have been shown in 
Figure 1. 

 

Figure 1. Traditional wind towers with different number of openings (a) one-sided, (b) two-
sided, (c) four-sided, (d) octahedral [Hughes et al. (2012)] 

The experimental studies of windcatcher systems for all different cases are obviously costly or even 
impossible. Employing computational fluid dynamics (CFD) for the assessment of windcatcher 
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systems’ performance is a  new, useful and reliable tool with reasonable accuracy [Karakastanis et 
al. (1986) ; Elmualim (2006)]. 

LES and RANS are two applicable and popular CFD techniques for simulations. In this paper, a 
two-sided windcatcher is modeled by using LES CFD method which is more accurate but requiring 
more computational efforts and the results will be analysed and compared with the achieved results 

from previous studies has been done by the same authors for the same model by using RANS K-ℇ 
CFD technique Niktash and Huynh (2014a; 2014b)]. 

Modelling and computation 

A three dimensional room with the size of  5×4×3 3m  has been fitted with a two-sided centred 
position windcatcher including two-canal bottom shape and 10cm bottom length with square shape 
is simulated using CFD-ACE+, a CFD software package from the ESI group; it is assumed that the 
height of  windcatcher’s canal type inlet/outlet duct is 2 m and the inlet/outlet area is 80×80 2cm . 
Figure 2 shows the simulated room and its fitted windcatcher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows the complete system for simulation including  the model with the windcatcher 
surrounded by the large space. The size of surrounded space has been chosen based on minimising 
the effect of forced flow and providing the conditions for free wind flow very similar to the real 
conditions.  
 
 
 
 
 

2 m

10 cm

Figure 2. 3D modelled room fitted with a two-sided windcatcher 
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It is assumed that the prevailing wind direction is perpendicular to the windcatcher’s inlet/outlet 
surface and it blows with the velocity of 3 m/s from the right side of the surrounded space towards 
the modelled room and windcatcher and part of it enters the room via windcatcher’s inlet and after 
circulation inside the room, it will exhaust through windcatcher’s outlet to the outdoor and finally it 
will exit from left side of the surrounded space. All air properties are assumed to be constant and 
corresponding to air temperature as 300 K and air standard pressure at sea level as 101.3 kPa. To 
provide similar conditions with the previous studies, it has not been considered any door or window 
or any home accessory inside the room. Also the ventilation process is assumed to be an isothermal 
process to minimise the influence of thermal changes on the ventilation’s quality. 

To reach the sufficient accuracy in CFD simulation and due to complexity in the geometry of 
windcatcher’s model, unstructured triangle meshes have been used throughout the whole system 
including room, windcatcher and the surrounded space; due to save on computational efforts and 
reduce accumulated errors, mesh distribution is less dense in the expected near stagnant flow 
regions like the room corners while dense mesh is applied for 3D model of the living area which is 
far from the corners of the room and windcatcher to observe the ventilation quality (Figures 4). 

 
Figure 4. Cross section of unstructured triangle meshes in a 3D model with surrounded area  

Wind 

9.9 m 

9.6 m 

3 m 

4 m 

Figure 3. A complete system for simulation including  the model and its 
large surrounded space 

5 m 10 m 

20 m 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

257



 
 

The grid-independence study has been done for different grid numbers  in the model including 
surrounding space to make sure that the grid pattern used is adequate.  
Consequently, the total number of grids in the complete system is about 135,000 and the maximum 
and the minimum grid areas are about 23104.1 m and 27104.1 m , respectively. 
The right side of the surrounded space is defined as the inlet, the opposite side is considered as 
outlet. In the boundary condition part, four faces are defined as interface which let the flow pass 
through them; these faces are including the model’s inlet/outlet and the inlet and the outlet of 
windcatcher’s duct to the room. Figure 5 shows the defined faces of model. Some of the walls have 
been hidden in the figure to provide a clear view of other faces. 

 

 

Figure 5. Defined boundary conditions for different faces of the model  
 

Large eddy simulation (LES) is essentially a simulation that directly solves the large  scale motion 
but approximates the small scale motion. A filtering process is used to separate out  the large-scale 
components of the flow field from the  small-scale ones. Within the finite volume method, it is 
rather sensible and natural to define the filter width as an average of the grid volume. The flow 
eddies larger than the filter width are large eddies while eddies smaller than the filter width are 
small eddies which require modelling. When filtering is performed on the incompressible Navier-
Stocks equations, a set of equations very similar to the RANS equations in previous parts are 
obtained. Similar to RANS, there are additional terms where a modelling approximation must be 
introduced. In the context of LES, these terms are the subgrid scale turbulent stresses which require 
subgrid scale (SGS) models to close the set of equations [Tu et al. (2008)]. 
The most popular subgrid scale model for engineering applications is the one proposed by 
Smagorinsky [Smagorinsky (1963)] where in the eddy viscosity is proportional to the square of the 
grid spacing and the local strain rate. Since it is prescribed through the eddy viscosity assumption, it 
therefore shares many similarities to the formulation of the Reynolds stresses as obtained through 
the RANS approach [Tu et al. (2008)]. For the unsolved subgrid scale turbulent stresses, these are 
modeled accordingly as: 

 

Wall 

Inlet 

Outlet 

Interface 
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Where SGS

T is the subgrid scale kinematic viscosity and ijS  is the strain rate of the large scale or 

resolved field.  
The form of the subgrid scale eddy viscosity SGS

T  (noting that  /SGS
T

SGS
T   ) can be derived by 

dimensional arguments and is given by: 
 

                                                      ijS
SGS
T SC 22                                                                        (3)   

                                                      ijijij SSS 2                                                                           (4)                     

 
Where ∆ is denoted by the grid filter width and the model constant SC  varies between 0.0065 and 

0.3 depending on the particular fluid flow problem [Tu et al. (2008)]. In this work, Smagorinsky 
SGS model is applied and the averaged value is assumed for SC  which is 0.15325. 

It is estimated that for the model and surrounded space totally it takes about 150 seconds to transfer 
flow from the inlet to the outlet of surrounded space by considering the full circulation inside the 
room’s space. So the procedure would have 300 steps of 0.5 second which totally is 150 seconds. 
The convergence criteria has been defined as 0.0001 for higher accuracy. 
 

Results and discussion 

Figure 7 shows velocity magnitude at  level 1.2 m above the floor along the room’s central plane. 
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Figure 6, Velocity Magnitude at level 1.2 m above the floor  for the 
model using LES method 
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It is seen that the velocity magnitude at this level is approximately stable in the range of 0.36~0.41 
m/s at the distance of 1.4 m to 4.4 m from the right wall which is about 3 m of the total room’s 
length (60% of the total room’s length).   

Figure 7 compares the velocity magnitudes profiles at level 1.2 m above the floor in the middle of 
the room for the model which has been achieved via RANS K-  and LES methods.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Comparing the calculated velocities in LES and K-  methods for the model 

It is seen from the profiles, there is minor difference in calculated velocity via these two CFD 
techniques. This small difference is due to the accuracy of LES method while the trends of velocity 
changes are very similar to each other. Moreover, LES method confirms the acceptable range of 
velocity for human comfort (less than 0.8 m/s for indoor air speed in hot climates based on ASHRAE 
2004) across the most regions of the room’s length which already has been calculated and shown by 
using RANS method. The average difference of  the two methods’ results is about 5.45 %. 

The flow traces for this model achieved by LES method is shown in Figure 8. 

 

 

 

 

 

 

 

 

 

 

A

Figure 8. Some traces of flow path for the model using LES method 

A
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As it is seen from the above flow path, there is full ventilation  in the living area and the uniform 
flow distribution in the room while there is only  a small stagnation region in top corner of the room 

at the right side (indicated as “A” in Figure 8). The average flowrate for this model is 1.075  

during the defined time period.  

Based on the previous studies, the flow traces for this model by using RANS K-  method is shown 
in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

As it is seen, the flowtraces  are very similar to the achieved one from LES method. It verifies the 

RANS K-  method’s results with minor difference of % 4.1 (the flowrate was computed 1.119   

by RANS k-  method in previous studies [Niktash and Huynh (2014a;2014b)]). 

Conclusions 

The achieved results by LES method are so close to the RANS method results for this model and it 
confirms that two-sided centred position windcatcher with two-canal bottom shape, 10cm bottom 
length with square shape, canal type inlet/outlet, 2 m inlet/outlet ducts height, and perpendicular 
inlet/outlet’s surface and the wind direction provides full circulation for most part of the room and 
large region of stable velocity magnitude in the acceptable range of indoor air velocity for human 
comfort.  

RANS K-ℇ method is a useful computational method and good alternative for more accurate but 
time consuming LES method where  very high accuracy is not required .  

 

 

A

Figure 9. Some traces of flow path for the model by using RANS K-  method 
[Niktash and Huynh (2014b)]   
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Abstract 

Due to overly-stiff effect, standard Finite Element Method (FEM) using triangular and 

tetrahedral elements gives upper bound solution of natural frequencies.  In order to improve the 

simulation results using low-order elements, one approach is to soften the overly-stiff of stiffness 

matrix to simulate the exact system, and the other is to match the mass matrix to the overly-stiff 

system. In this paper, the mass-redistributed method is further extended to analyse the eigenfrequency 

of solid systems. The mass-redistributed method is to modify the mass matrix of the discrete systems 

by shifting the integration points away from the Gaussian locations, while ensuring the mass 

conservation. Numerical examples including 2D and 3D problems have verified that Gaussian 

integration point in the mass matrix has a significant effect in the evaluation of eigenfrequency.  

 

key words: Mass-redistributed Method; Finite Element Method; Eigenfrequency 

1. Introduction 
The overly-stiff finite element method predicts upper bound solution of eigenfrequency 

[1]. In order to soften the overly-stiff effect, smoothed finite element method (SFEM) is 

developed [2]. With different types of smoothing domain, edge-based smoothed finite 

element method (ES-FEM) [3-9], node-based smoothed finite element method (NS-FEM) 

[10], alpha finite element method (αFEM) [11-13] and hybrid smoothed finite element 

method (HS-FEM) [14-17] have been formulated and applied to heat transfer, biomechanics, 

acoustic problems. The SFEM with right softened effect is able to achieve a close to exact 

stiffness, which provides more accurate solution of eigenfrequencies compared with finite 

element method. 

Alternatively, the balance of discrete model between mass and stiffness can be achieved 

with modification of mass matrix. For example, a weighted average of the consistent and 

lumped mass matrices has been proposed by Marfurt in the computation of the mass matrix 

for acoustic and elastic wave propagation problems [18]. In addition, a new modified 

integration rules in the calculation of the mass and stiffness for acoustic problems for 

quadrilateral mesh is developed by Murthy [19]. He et al have further proposed mass-

redistributed method to reduce the dispersion error in acoustic problems [20]. The re-

distribution of mass matrix of the discrete systems will be modified by shifting the integration 

points away from the usual Gaussian locations [20]. In this paper, we further extend mass-

redistributed method in the analysis of eigenfrequency. 

The paper is organized as follows: Section 2 briefly describes the formulation of mass-

redistributed method in the computation of eigenfrequency. Numerical examples including 

2D and 3D are presented in Section 3 to investigate the effect of Gaussian integration point 

on eigenfrequency using mass-redistributed method. Finally the conclusions from the 

numerical results are made in Section 4. 
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2. Materials and Methods 

2.1. 2D Mass-redistributed method 

The standard FEM behaves stiffer than the exact system, which causes larger 

eigenvalues compared to exact one.  

A B

C

a

b

c

 

Field node

Parent mesh Regular mesh

 

 Figure 1: Transformation of triangular mesh 

In the formulation of 2D mass-redistributed method, the first step is to transform parent 

mesh to regular mesh as shown in Fig. 1 [20]. Hence, the integration of stiffness and mass 

matrix is transformed into the natural coordinate system as follows:  
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At the same time, the linearly shape function  iN x can be written in the area coordinates 

form as shown in Fig. 2.  

With connection t to three vertices 1, 2, 3, three sub-areas A1, A2, and A3 corresponding to 

the triangles tAC, tBC and tBA, respectively can be determined for any given point t within 

the element. Using area coordinates, the shape functions for each node are expressed as 

follows: 
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With Gauss quadrature rule, Eq. (1) can be evaluated: 
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(3) 

where ng is the number of Gauss points, wi are the weights and ξ ,η are the local coordinates 

of Gauss points. Then the generalized stiffness and mass matrix can be obtained by the 

integration rule. 
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From Eq. (4), we can notice that the gradient of shape function using triangular mesh is 

constant within the elements and thus the integration of stiffness matrix in Eq.(4) equals to 

the constant multiplied by the Jacobi.  

The consistent mass matrix is evaluated by three Gauss points with 1/ 3iw  . 

point 1: 2 / 3i  , 1/ 6i  point 2: 1/ 6i  , 2 / 3i  point 3: 1/ 6i  , 1/ 6i   (5) 

On the other hand, the lumped mass matrix is formed with the following points: 

point 1: 1i  , 0i  point 2: 1/ 6i  , 2 / 3i  point 3: 1/ 6i  , 1/ 6i   (6) 

The generalized mass matrix is evaluated by introducing a variable integration point t: 
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where  0,1t , and weight 1/ 3iw   so that 
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Figure 3: Modified integration point for the mass matrix of linear triangular element 

It is noticed that the integration point will move from a triangular vertex to midpoint of the 

edge opposite to the vertex, as shown in Fig. 3 as t varies from 0 to 1.  

Using these three sampling points, the mass matrix can be expressed in terms of parameter 
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The summation of all matrix elements of e
Μ equals to the area of the element regardless of 

value of t: 
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The eigenvalues are determined by the stiffness and mass matrix: 
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where  are the eigenvalues of stiffness matrix ，  are the eigenvalues of 

mass matrix. 

2.2. 3D Mass-redistributed method 

In the formulation of 3D mass-distributed method using linear tetrahedral element, the 

mapping from a parent tetrahedral mesh to the regular tetrahedral mesh is based on volume 

coordinates. Thereby, the integration of stiffness and mass matrix is transformed into the 

natural coordinate system as follows:  

     
1 1 1 Te

1 1 1
det ,J d d d

  

  
     K N N   

 
1 1 1

e T

1 1 1
det ,J d d d

  

  
   Μ N N   

 

(11) 

Similarly, the linearly shape functions is expressed in the volume coordinates form as 

shown in Fig. 4.  

Four sub-volumesV1, V2, V3 and V4 corresponding to the tetrahedron tBCD, tACD, tABD and 

tABC, respectively can be determined for any given point t within the element. Hence, the 

1 ~k kn  K 1 ~m mn 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

266



 

 

shape function is formulated as follows: 
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Figure 4: Volume coordinate using tetrahedral mesh 

 

Similar to 2D case, the Gaussian integration point t controls the formulation of 3D mass 

matrix. For example, the consistence mass matrix is evaluated by using following four Gauss 

points with weight 1/ 4iw  : 

point1: 0.5854102i  , 0.1381966i   , 0.1381966i  , 

point 2: 0.1381966i  , 0.5854102i   , 0.1381966i   

point 3: 0.1381966i  , 0.1381966i   , 0.5854102i   

point 4: 0.1381966i  , 0.1381966i   , 0.1381966i   

Using the following four Gauss points with weight 1/ 4iw  , the lumped mass matrix is 

obtained: 

  point 1: 1i  , 0i   , 0i  ,   point 2: 0i  , 1i   , 0i   

   point 3: 0i  , 0i   , 1i  ,   point 4: 0i  , 0i   , 0i   

Here, the general formulation of mass matrix with a variable Gaussian integration point t is 

written as follows: 

point 1: i t ,
1

3
i

t
  ,

1

3
i

t
 , 

(13)  
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In Eq. (11), weight 1/ 4iw   so that
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 , and  0,1t . Using these four sampling 

points, the mass matrix can be formulated as: 
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where 
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The remaining parameters in Eq. (14) equal to 
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The summation of all matrix elements of e
Μ equals to the volume of the element regardless 

of value of t: 
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3. Numerical examples 
In this section, some examples will be analysed to demonstrate the properties of the present 

method. The triangular elements in 2D and tetrahedral elements in 3D are used.  

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

268



 

 

4.1 2D examples 
The first 2D cantilever beam with length l=1m and width d=0.2m is studied, which is 

subjected to fixed boundary condition at left hand side as outlined in Fig. 5 

1 0.2

 
Figure 5: 2D cantilever beam 

 

4.1.1 Effect of Gaussian integration point 

As shown in Fig. 6, the effect of Gaussian integration point on the computation of 

eigenfrequency using FEM is presented. In order to show the applicability of the proposed 

method, mode shape 1 and 4 are studied. It is easily observed that the Gaussian integration 

point controls the value of eigenfrequency.  
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(b) Mode shape 4 

Figure 6: Effect of Gaussian integration point on eigenfrequency using FEM 
 

 

As shown in Fig. 6, it is seen that t=1/3 provides the maximum eigenfrequency. As t=1 is 

corresponding to lumped mass matrix, the minimum eigenfrequency is obtained. While the 

eigenfrequency from t=2/3 which gives consistent mass matrix is less than value for t=1/3, 

but greater than the one using lumped mass matrix. 

The convergence rate of eigenfrequency for mode shape 7 and 20 using different Gaussian 

integration point is presented in Fig. 7. It is clearly indicated that FEM with lumped mass 

matrix gives the most accurate results compared with consistent mass matrix. In addition, it is 

noticed that Gaussian integration t=1/3 always gives the maximum eigenfrequency. 
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(a) Mode shape 7 (b) Mode shape 20 

Figure 7: Convergence rate for different Gaussian integration point using FEM 

4.2 3D examples 
In this section, the mass-redistributed method is further extended to 3D problem. 

4.2.1 Effect of Gaussian integration point 

As shown in Fig. 8, a three dimensional cantilever beam with dimension 1 0.2 0.2m   

subjected to fixed boundary condition is studied. The eigenfrequency is computed to analyze 

the performance of mass-redistributed method. 

1 0.2 0.2 

 
Figure 8: 3D cantilever beam 

 

As outlined in Fig. 9, it is seen that the consistent mass matrix is corresponding to t=0.585. 

The minimum eigenfrequency is obtained as t equals to 1 (t=1 formulates the lumped mass 

matrix). It is seen that  t=1/4 always provides the largest eigenfrequency as presented in Fig.9. 
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Figure 9: Effect of Gaussian integration point on mode shape using FEM 
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To further investigate the effect of mass-redistributed method in the evaluation of 

eigenfrequency, the convergence rate for mode shape 5 and 20 using different Gaussian 

integration point is shown in Fig. 10. Again, it is found that the lumped mass matrix always 

predicts much better solution compared with consistent mass matrix. The Gaussian 

integration point t=1/4 gives the largest solution of eigenfrequency. The solution from 

consistent mass matrix is always between the Gaussian integration point t=1 (corresponding 

to lumped mass matrix) and t=1/4. 

 
(a) Mode shape 5 

 
(b) Mode shape 20 

Figure 10: Convergence rate for different Gaussian integration point using FEM 

4. Conclusion 
In this paper, a mass-redistributed method is further developed for solving eigenfrerquency 

by modification of Gaussian integration point in the computation of mass matrix. In the 

present mass-redistributed method, the alternation of Gaussian integration point always 

ensures the mass conservation. The triangular and tetrahedral elements are focused in this 

study. Both theoretical and numerical results have demonstrated that the Gaussian integration 

point in the mass matrix has a significant effect on the prediction of eigenfrequency, and the 

following conclusions can be summarized: 

a) With adjustment of Gaussian integration point, the eigenfrequency of systems can be 

modified. 

b) The t=1/3 gives the maximum eigenfrequency in the 2D model; while t=1/4 results in 

the maximum eigenfrequency of 3D model 

c) Due to the correct balance between the stiffness and mass matrix, the lumped mass 

matrix has the best solution in the computation of eigenfrequency. 
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Abstract 
The Laplace transformation has been applied for analyzing viscoelastic behaviors of composite 
laminated shells. The constitutive equation in integral can be reduced to linear stress-strain 
relationship in Laplace domain. Therefore, the formulation such as displacement field, can be 
expressed similarly with elastic one. In order to describe accurately the viscoelastic behaviors of 
laminated shells, the efficient higher-order shell theory (EHOST) has employed. The general tensor 
formulation is used for accurate description and arbitrary shell. The time-dependent results of strain, 
stress distributions through the thickness of the shell are obtained by converting back to real time 
domain for creep and relaxation process. 

Keywords: Laplace transform, viscoelastic, composite laminated shell, efficient higher-order shell 
theory 

Introduction 

 Due to the time-dependent effects of matrix, viscoelastic behavior is one of important factors in 
the analysis of composite structures. These responses significantly depend on the applied loading 
and environmental conditions such as temperature or moisture. Nonetheless, the Botlzmann’s 
superposition principle in integral form of viscoelastic analysis is much more complicate than 
Hook’s law of elastic one [Yi and Hilton (1995); Venkat et al. (2012)]. Consequence, the 
computation costs extremely expensive for thick laminates. It needs to find a method which satisfies 
both efficiency and accuracy. 
 Some researcher have employed the Laplace or Fourier transforms to avoid above limitation [Lin 
and Hwang (1989); Chen (1995)]. The converted constitutive equation of viscoelastic materials in 
Laplace domain is very similar to the Hook’s laws of elastic one. However, all of formulation 
procedures are done in Laplace domain. Finally, the results in real time domain are obtained by 
inversion Laplace transforms [Hassanzadeh and Pooladi-Darvish (2007); Dubner and Abate (1968)]. 
Hence, these methods are effective for long-term problems of viscoelastic analysis. 
 On the other hand, plates and shells more and more are popular structures, especially in 
aerospace engineering such as wings and fuselages. Because of potential application, various plate 
and shell theories have been developed to improve the accuracy as well as efficiency [Reddy 
(2004); Pagano (1969); Cho and Parmerter (1993; 1994); Kim and Cho (2003); Nguyen et al. 
(2015)]. To express adequately viscoelastic behaviors and the advance of present method, EHOST 
is good choice which can predict accurately and efficiently strain stress distribution through the 
thickness of composite laminated shell [Kim and Cho (2003)].   
 The present study aims to develop EHOST for viscoelastic composite laminates. Besides, the 
Laplace transform is employed to reduce the mortal formulation and save an expanse computation 
amount. Thus, this study provides a powerful tool for investigating the time-dependent response of 
composite laminated shell with the advantage of accuracy and efficiency. 
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Mathematical Formulation 

1. Constitutive equation for viscoelastic material and Laplace transform 

The constitutive equation for a linear viscoelastic materials can be expressed, as follows: 

     
0

'
'

'

t
j

i ij
t

t Q t t dt
t





 

  (1) 

where t denotes time, t’ is a dummy variable for integration, Qijkl(t) is relaxation modulus which can 
be well represented by a series of decaying exponentials, as Prony series. 

 By applying Laplace transform, the above complex equation can be reduced as linear relationship in 
Laplace domain as follows:

 

     * * *
i ij js sQ s s     (2) 

where ( )* denotes parameters in the Laplace domain. Therefore, the procedures of viscoelastic 
composite laminated shell analysis in Laplace domain is the same to elastic counterpart in time 
domain.  
 Finally, the viscoelastic responses in real time domain can be obtained by using inverse Laplace 
techniques. In present study, the Fourier series algorithm is employed to convert the strain, stress 
values back into the real time domain as follows: 
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1 Re 1
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k

e kf t F a F a j
t t





       
  

  (3) 

where F(s) is a function in the Laplace domain that need to converted, f(t) is the converted function 
in real time domain, and a and n are the parameters that must be optimized for accuracy. 
 

2. Efficient higher-order shell theory for viscoelastic composite laminates 

The composited shells are considered, consisting of n orthotropic layers with uniform thickness 
h in a curvilinear orthogonal coordinate system xα as shown in Fig. 1. (x1, x2, x3=0) represents 
curvature of the mid-surface which is chosen as the reference surface. The position vector R can be 
expressed by position vector r pointing to reference surface and unit vector a3, which is 
perpendicular to the surface at the point xα, as follows:  
     ,R x x r x x a x   


 3 3
3   (4) 

where x3 is the distance from the reference surface to the material point. The covariant base vector 
is defined as: 

 i i i i
R rg z a
x x x
  

  
  





 

3   (5) 

 
Fig. 1. Geometry and coordinates of the rectangular 

laminated shell. 

 
Fig 2. Geometry and loading of cylindrical shell  
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where g3=a3 and ai=r,α are vector tangent to the surface coordinate curves. Hence, the displacement 
vector of the shell can be expressed as follows: 
 

,

iV x V g V g U a U a

V U V U

 
 


  

   

 



   3 3
3 3

3 3

   (6) 

where ai, gi are covariant base vectors and ai, gi are contravariant base vectors; μα
β denote the shifter 

tensor which is expressed as follows: 
 g a x b a  

        
  3  (7) 

 The metric tensor aαβ and surface tensor bαβ are defined from first and second fundamental forms 
respectively, as follows: 
ds dr dr a dx dx

dr da b dx dx b dx dx
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 The in-plane displacement fields of laminated shells are assumed as the one of the original 
EHOST, which superimposes linear zigzag displacements, with different slope in each layer, as 
follows: 
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where uα and w are displacements defined at the mid-surface, and H(x3- x3
(k)) is the Heaviside unit 

step function. The requirement that the transverse stress should be vanished at the top and bottom 
surface, and continuous through the thickness of the shells are employed to reduce the number of 
unknown primary variables. Due to the advantage of Laplace transform, this work can be executed 
conveniently in Laplace domain, and the displacements can be obtained as follows: 
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where 
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where υα
β*, κα

β* and (ϖk)α
β * denote the matrices in Laplace domain which depend on the material 

properties and the thickness of each ply. 
 Then, the converted virtual work principle () in Laplace domain is employed and integrated by 
part to obtain the equilibrium (), as follows: 
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where the stress resultants will be shown in final version. 
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3. Cylindrical bending for cylindrical shell 

 For cylindrical bending problem for cylindrical shallow shell as shown in Fig. 2, the coordinates 
are specified as    1 2 3, , , ,x x x x z , the curvature teams will be reduced as follows: 

, , ,

,

g a

b b
R

 
    

 
  

      

 
    
 
 

1

0 0
0 10

 (15) 

The sinusoidal loading is applied on the upper surface of laminated shell, as follows: 

   , , sinz zp x t P t 


 
  

 
 (16) 

The simply supported boundary conditions can be satisfied by the following forms of 
displacements: 

     0
2 2cos , cos , sinu U t t w W t  


  

     
        

     
 (17) 

where φ is chosen as π/3. 
 Substituting the form of displacement in Eq. () into Eq. () with the help of resultants-
displacements relations, we can obtain the algebraic relations between the primary variables and the 
external force in the Laplace domain as follows: 

** * *
11 12 13
* * * *
21 22 23
* * * * *
31 32 33
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UK K K
K K K
K K K W P

    
         
         

 (18) 

where K* is the stiffness matrix in Laplace domain. The detail formulation of stiffness matrix will 
be given in the presentation. After solving the above equation, the primary variables as well as the 
deflection, in-plane displacements, stress distributions in real time domain can be obtained by 
applying the numerical inverse Laplace transform 1 . 

Results and discussion 

To compare with previous studies, the laminated shell (90/0/90), assumed to be made of 
Graphite/Epoxy GY70/339 at reference condition (T=75oC, M=0.1%), is chosen as numerical 
example with elastic properties are shown as follows:  

5 3

3 3

2.89 10 6.063 10

4.134 10 2.067 10
0.31

L T

LT TT

LT TT

E MPa E MPa
G MPa G MPa
 

   

   
 

 (19) 

where L denotes a fiber direction and T denotes a perpendicular direction to the fiber. The time-
dependent function φ(t) for GY70/339 determined  by mastering curve Crossman’s experimental 
data is omitted because of limited space [14]. In present study, for the static creep process, the 
applied force is kept as constant p(t)=1.0. For the relaxation process, after the force p|t=0 =1.0 is 
applied, the deflection will be kept as constant as the time go by. In this version, the in-plane 
displacement distribution U2 is represented; the other stress-strain distributions through the 
thickness of the shell will be shown in the presentation. 

The Fig. 3 shows the distribution of in-plane displacement U2 through the thickness for creep 
process. The viscoelastic solution at initial time is the same to elastic solution. Then, it changes as 
the time goes by, but still have good agreement with elastic one. Due to the decay of the stiffness of 
composite matrix, the amplitude of U2 increases respect to time. The increment at upper and lower 
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is smaller because of dominant elastic fiber. These responses make the structures in risks with larger 
deformation.  

The Fig. 4 shows the distribution of in-plane displacement U2 through the thickness for 
relaxation process. The viscoelastic solution at initial time is the same as elastic solution. Then, 
similar with 1-D viscoelastic response of relaxation, the amplitude of U2 changes insignificantly. 
The amplitude lightly decreases at top and bottom of shell, and lightly increases at interface surface. 

Conclusion 

The viscoelastic response of laminated composite plate of EHOST has been analyzed with the 
help of Laplace transform without any integral transformation or any time step scheme. The 
accuracy and efficiency of the analysis are retained since the viscoelastic EHOST formulation was 
made in the linear elastic regime in the Laplace transformed domain. The numerical results for 
composite laminated shell, which are converted by employing inversion Laplace transform, 
adequately show the change of time-dependent mechanical behaviors for creep process as well as 
relaxation process. 
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Abstract 

If a new system of computational logic would be entirely based on the application of a true unified 
computational-based analytical theory of integration then what better way of validating such a  
system of mathematical logic then through the complete development of a unified theory of physics.  
The outcome of having successfully arrived at such a monumental theory in physics would 
represent a much greater expansion of our knowledge in terms of engineering science.  This would 
be the direct consequence of having analytically resolved under one unified theory of analytical 
integration the vast majority of  PDEs  some of which would prove very similar in appearance to 
those encountered in theoretical physics. 

Keywords: Polynomial Transform, ODEs, PDEs, Analytical Integration, Engineering Science 

Theoretical & Experimental Physics, CERN. 

 

0. Introduction 

The new development for the physical science begins with the introduction of what appears to be a 
computational-based unified theory of analytical integration.  This would eventually lead to the 
formation of some type of a new physical ideology by which a unified theory of physics could 
eventually be constructed over time. 

Even  Albert Einstein  who has always claimed that  God  never plays with dices would have 
conceded if he were alive today,  that somewhere out there in the vast realm of mathematics there 
has to exist some form of an algebraic system capable of addressing all of physics under one unified 
theory of   "computation". 

And I would like to quote from the ending of his book  The meaning of Relativity [Einstein (1974)]: 

" This does not seem to be in accordance with continuum theory, and must lead to an attempt to find 
a purely algebraic theory for the description of reality. But nobody knows how to obtain the basis of 
such a theory ". 

With a unified theory of integration now possibly well within our grasp, this would  represent a 
very important step towards becoming much less dependent on experimental scientific and 
engineering methods of analysis.  As a result of this, we would be adopting a far more theoretical 
approach towards every aspect of the physical sciences on a much wider universal scale than ever 
thought possible under existing traditional methods of analysis

" The greatest problem in having to rely on traditional methods of mathematical analysis is mainly 
due to a severe lack of universality as a direct consequence of not having uncovered a unified 
theory of analytical integration in the past. " 

Throughout the remaining of this article,  I will first and foremost attempt to briefly summarize in 
more layman's term an entirely new mathematical  ideology.   Next,  I will proceed to demonstrate 
how such a very powerful new ideology in mathematics can be mutated into a whole new branch of 
physics that I would like to introduce everyone as an   idealistic physics. 
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As a direct consequence of what appears to be a unified theory of analytical integration, I would 
like to address the importance of arriving at some unified theory of physics for a much greater 
expansion of our knowledge in terms of engineering science.  

1. First and foremost, the new mathematical ideology

What gives the new ideology its own and very unique flavor in mathematics is that all analysis 
pertaining to anti-differentiation whether in the form of a  DE  or an  integral  is always performed 
at the differential  level.   The main reason for this is to insure that the concept of continuity be 
preserved throughout the entire anti-differentiation process.  Because the laws of algebra apply 
equally well to finite quantities as they do to differential quantities without regards to any limiting 
process near zero, there is never a risk of violating any known mathematical principles.  The type of 
continuity I am referring to can ideally be described by a  DE  or a system of   DEs.   

Under  the new proposed mathematical ideology when it comes to solving for any type of  DE or 
system of DEs, rather than working with complete mathematical equations, we instead only become 
interested in working with complete  differential form representations. 

This is where the new  mathematical ideology now begins to deviate from the old traditional 
thinking of  Calculus. 

If we were to have complete access to every imaginable type of mathematical equations just from 
the computed values alone that would originate from the application of some very unique mathe- 
matical ideology then this would certainly represent a very significant discovery in mathematics.  
This would no doubt represent an extremely valuable tool for completely eliminating our most 
fundamental problem of not being able to select the most suitable type of  mathematical equation 
for handling all aspects of the physical and biological sciences under one "unified theory of 
computation".   Over time, this would inevitably lead towards the development of some form of a 
unified theory of physics by which some type of a "theory of everything" would be constructed 
from. 

The very first place we might want to look for the possible existence of such a potentially formi- 
dable mathematical theory of integration is in the following very simple integral equation: 

𝑡 =    ∫
𝑑𝑦

𝑎𝑦2 + 𝑏𝑦 + 𝑐
 (1.001) 

Everyone would certainly agree that only because "y(t)" was initially presented in its complete 
differential form, this has provided us with the capability of defining a wide range of mathematical 
expressions just by varying the numerical values present inside this integral.  From this very simple 
observation in Calculus, we can immediately deduce that differential forms could at least 
potentially represent a very powerful link between numerical computation  and complete mathe- 
matical expressions.   

So our primary objective now is to determine what possible variations in terms of differential form 
representations can we expect for including  "all"  types of mathematical equations regardless of the 
degree of complexity involved.  Such mathematical equations would be constructed from the use of 
algebraic and elementary basis functions that would involve the presence of composite functions 
with no limit whatsoever as to each of their degree of composition.  Furthermore, there would be no 
restriction whatsoever on the number of dependent and independent variables involved and finally, 
the entire mathematical equation may be expressible not only in explicit form but also in implicit 
form as well. 

Such an ideal universal differential expansion form can only be described mathematically in terms 
of  two  fundamental parts that would involve the use of multivariate polynomials  as well as com- 
plete differentials of multivariate polynomials. 
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For a general system of  "k"  number of implicitly defined multivariate mathematical equations in 

the form of  "𝑓𝑘(𝑧𝑚, 𝑥𝑛) = 0"  that consist of  "m"  number of  dependent variables and  "n"  

number of  independent variables this may be described as follow: 

(1).  Primary Expansion: 

𝐹𝑖(𝑊𝑗)  =   0 =   ∑  𝑎𝑖,𝑟 (∏ 𝑊𝑗

𝐸𝑖,𝑠

𝑝

𝑗

)             (1 ≤ 𝑖 ≤ 𝑘) 

𝑟

 (1.002) 

where "𝑊𝑗" are auxiliary variables,  "p" is the total number of such auxiliary variables each of 

which are raised to some floating point value and  "r"  is the total number of terms present in each 

of the  "k"  number of implicitly defined multivariate polynomial equations. 

(2).  Secondary Differential Expansion: 

𝑑𝑧𝑖  =   𝑑𝑊𝑖                                        ( 1 ≤ 𝑖 ≤ 𝑚) (1.003) 

  𝑑𝑥𝑖  =   𝑑𝑊𝑚+𝑖                                   (1 ≤ 𝑖 ≤ 𝑛)    (1.004) 

  

∑ 𝑁𝑖(𝑚+𝑛+1)−𝑚−𝑛−1+𝑡𝑑𝑧𝑡   +    ∑ 𝑁𝑖(𝑚+𝑛+1)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

 
 

 

                                       =   𝑁𝑖(𝑚+𝑛+1)𝑑𝑊𝑗          [1 ≤ 𝑖 ≤ 𝑝 − 𝑚 − 𝑛]  [𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝]    (1.005) 

𝑁𝑐(𝑊𝑗)   =  ∑ 𝑏𝑐,𝑡 (∏ 𝑊𝑗

𝐸𝑐,𝑠
′

𝑝

𝑗

)        

𝑐𝑟

𝑡=(𝑐−1)𝑟+1

 (1.006) 

                                                                             [1 ≤ 𝑐 ≤ 𝑖(𝑚 + 𝑛 + 1)]  [1 ≤ 𝑖 ≤ 𝑝 − 𝑚 − 𝑛]   

 

There is at present no other possible differential form capable of representing all mathematical 
equations with such a high degree of  universality then the one suggested above.   

In complete expanded form we would write this as follow: 

 

(1).  Primary Expansion: 

 𝐹1  =   0  =    𝑎1,1𝑊1
𝑚11𝑊2

𝑚12 ∙∙∙ 𝑊𝑝

𝑚1𝑝
 +     𝑎1,2𝑊1

𝑚1,𝑝+1
𝑊2

𝑚1,𝑝+2
∙∙∙ 𝑊𝑝

𝑚1,2𝑝
   +  … +      

                                                             + … +     𝑎1,𝑟𝑊1

𝑚1,𝑝(𝑟−1)+1𝑊2

𝑚1,𝑝(𝑟−1)+2 ∙∙∙ 𝑊𝑝

𝑚1,𝑟𝑝      (1.007) 
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𝐹2  =   0  =    𝑎2,1𝑊1

𝑚2,1𝑊2

𝑚2,2 ∙∙∙ 𝑊𝑝

𝑚2,𝑝  +     𝑎2,2𝑊1

𝑚2,𝑝+1𝑊2

𝑚2,𝑝+2 ∙∙∙ 𝑊𝑝

𝑚2,2𝑝    +  … +   

 

                                                             + … +     𝑎2,𝑟𝑊1

𝑚2,𝑝(𝑟−1)+1𝑊2

𝑚2,𝑝(𝑟−1)+2 ∙∙∙ 𝑊𝑝

𝑚2,𝑟𝑝      (1.008) 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

 

𝐹𝑘  =   0  =    𝑎𝑘,1𝑊1

𝑚𝑘,1𝑊2

𝑚𝑘,2 ∙∙∙ 𝑊𝑝

𝑚𝑘,𝑝  +     𝑎𝑘,2𝑊1

𝑚𝑘,𝑝+1𝑊2

𝑚𝑘,𝑝+2 ∙∙∙ 𝑊𝑝

𝑚𝑘,2𝑝    +  … +      

                                                             + … +     𝑎𝑘,𝑟𝑊1

𝑚𝑘,𝑝(𝑟−1)+1𝑊2

𝑚𝑘,𝑝(𝑟−1)+2 ∙∙∙ 𝑊𝑝

𝑚𝑘,𝑟𝑝      (1.009) 

 

 (2).  Secondary Differential Expansion: 

𝑑𝑧𝑖  =   𝑑𝑊𝑖                                        ( 1 ≤ 𝑖 ≤ 𝑚 ) (1.010) 

  𝑑𝑥𝑖  =   𝑑𝑊𝑚+𝑖                                   ( 1 ≤ 𝑖 ≤ 𝑛 )    (1.011) 

[ 𝑁1𝑑𝑧1 +   𝑁2𝑑𝑧2  +  … +  𝑁𝑚𝑑𝑧𝑚 ]   +   [ 𝑁𝑚+1𝑑𝑥1  +  𝑁𝑚+2𝑑𝑥2   +  … +     

                                                                         + … +   𝑁𝑚+𝑛𝑑𝑥𝑛 ]    =   𝑁𝑚+𝑛+1𝑑𝑊𝑚+𝑛+1   (1.012) 

 [ 𝑁𝑚+𝑛+2𝑑𝑧1  +   𝑁𝑚+𝑛+3𝑑𝑧2   +  … +   𝑁2𝑚+𝑛+1𝑑𝑧𝑚]   +    [ 𝑁2𝑚+𝑛+2𝑑𝑥1   +      

                             +  𝑁2𝑚+𝑛+3𝑑𝑥2    +  … +   𝑁2(𝑚+𝑛+1)−1𝑑𝑥𝑛 ]    =   𝑁2(𝑚+𝑛+1)𝑑𝑊𝑚+𝑛+2   (1.013) 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

                         .                                                     .                                                     . 
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[ 𝑁(𝑝−1)(𝑚+𝑛+1)+1𝑑𝑧1  +  𝑁(𝑝−1)(𝑚+𝑛+1)+2𝑑𝑧2   +  … +   𝑁(𝑝−1)(𝑚+𝑛+1)+𝑚𝑑𝑧𝑚 ]   +  

 

 +  [ 𝑁(𝑝−1)(𝑚+𝑛+1)+𝑚+1𝑑𝑥1  +   𝑁(𝑝−1)(𝑚+𝑛+1)+𝑚+2𝑑𝑥2    +  … +  𝑁𝑝(𝑚+𝑛+1)−1𝑑𝑥𝑛 ]    = 

                                                                                                                             =   𝑁𝑝(𝑚+𝑛+1)𝑑𝑊𝑝   (1.014) 

 

Assuming a system of implicitly defined mathematical equations consisting of 3 dependent 
variables and  5 independent variables with a total number of  12  auxiliary variables. 

We will determine the correct index value for each of the multivariate polynomials present inside 
the Secondary Differential Expansion that would be responsible for defining the complete expres- 
sion for the  10

th
  auxiliary variable: 

Starting with equation (1.005): 

∑ 𝑁𝑖(𝑚+𝑛+1)−𝑚−𝑛−1+𝑡𝑑𝑧𝑡   +    ∑ 𝑁𝑖(𝑚+𝑛+1)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

  

 
 

                     =   𝑁𝑖(𝑚+𝑛+1)𝑑𝑊𝑗         [1 ≤ 𝑖 ≤ 𝑝 − 𝑚 − 𝑛]  [𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝] (1.015) 

 

The results are for  "p=12", "m=3", "n=5"  we have  "i = 12 - 10 = 2"  and   "j = 10": 

     ∑ 𝑁2(3+5+1)−3−5−1+𝑡𝑑𝑧𝑖   +   ∑ 𝑁2(3+5+1)−5−1+𝑡𝑑𝑥𝑖

5

𝑡=1

   =     𝑁2(𝑚+𝑛+1)𝑑𝑊10    

3

𝑡=1

 (1.016) 

 

     [ 𝑁10𝑑𝑧1  +  𝑁11𝑑𝑧2  +  𝑁12𝑑𝑧3 ]   +    [ 𝑁13𝑑𝑥1 +  𝑁14𝑑𝑥2  +   𝑁15𝑑𝑥3  +   
 

 

                                                +   𝑁16𝑑𝑥4  +  𝑁17𝑑𝑥5 ]   =    𝑁18𝑑𝑊10   (1.017) 

 

 

Before proceeding any further, a few simple mathematical definitions need to be in order. 

The first one, the actual process of transforming a complete mathematical equation in terms of the 
above universal differential form representation is referred to as taking its Multivariate Polynomial 
Transform.   

Next, the complete reverse process of going from a differential form representation back to its ori- 
ginal complete mathematical equation would be referred to as taking the inverse of a Multivariate 
Polynomial Transform. This would require following a very unique integration process to be des- 
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cribed later for determining the complete analytical expression corresponding to each auxiliary 
variable "𝑊𝑗".  They each in turn would be substituting back into the  Primary Expansion  for 
arriving at the complete original expression that we started with being in the form of   
"𝑓𝑘(𝑧𝑚, 𝑥𝑛) = 0". 

As we are dealing mainly with multivariate polynomials and complete differentials of multivariate 
polynomials, new types of coefficients are being introduced along the way.   During the process of 
inverting from a differential form back to the original complete mathematical equation, some of 
these coefficients would be entirely responsible for defining the basis functions by which the 
complete mathematical equation was originally constructed from.  These particular types of 
coefficients are present only in the  Secondary Differential Expansion  of a  Multivariate 
Polynomial Transform.   The remaining types of coefficients will be described in more detail later 
on. 

 
 
 
Example (1.1).  Let us consider the simplest two dimensional case which would correspond to the 

case for  "𝑘 = 𝑚 = 𝑛 = 1"  and by replacing the dependent variable  "z"  with  "y",  we arrive at 

the following corresponding  general  Multivariate Polynomial Transform  for  "𝑦(𝑥)" : 

 

 

(1).  Primary Expansion: 

                                         𝐹(𝑊𝑗)  =   0                             [1 ≤ 𝑗 ≤ 𝑝]   (1.018) 

(2).  Secondary Differential Expansion: 

𝑑𝑥 =   𝑑𝑊1 (1.019) 

𝑑𝑦 =   𝑑𝑊2 (1.020) 

                                 𝑁3𝑖−2𝑑𝑥 +   𝑁3𝑖−1𝑑𝑦 =   𝑁3𝑖𝑑𝑊𝑗          [1 ≤ 𝑖 ≤ 𝑝 − 2]  [3 ≤ 𝑗 ≤ 𝑝] (1.021) 

 

For this general univariate two dimensional case, the Secondary Differential Expansion may be 
written in the following more general format upon replacing each auxiliary variable on the left hand 
side with the dependent and independent variables: 

𝑀(𝑥, 𝑦)𝑑𝑥  +   𝑁(𝑥, 𝑦)𝑑𝑦  =  𝑃(𝑊𝑗)𝑑𝑊𝑗 (1.022) 

The left hand side of this equation appears in exactly the same format by which all first order ODEs 
are written prior to applying Euler's method for specifically targeting those that are considered as 
exact differentials.  

This test is well known in Calculus and is defined by: 

𝜕𝑀

𝜕𝑦
 =   

𝜕𝑁

𝜕𝑥
    

(1.023) 

When this condition is met than Euler's general integral formula can then be applied and the result 
is a vastly simplified integration process. 
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The formula has two equivalent form. 

The first: 

∫ 𝑀𝑑𝑥  +    ∫ (𝑁 −   
𝜕

𝜕𝑦
∫ 𝑀𝑑𝑥) 𝑑𝑦   =   𝐶   (1.024) 

and the second one: 

∫ 𝑁𝑑𝑦  +    ∫ (𝑀 −   
𝜕

𝜕𝑥
∫ 𝑁𝑑𝑦) 𝑑𝑥   =   𝐶   (1.025) 

 
 
Example (1.2). We will apply the concept of an exact differential for demonstrating in detail the 
exact process involved for inverting the following Multivariate Polynomial Transform  
corresponding to a univariate implicitly defined equation in two dimension.  
 

(1).  Primary Expansion: 

𝐹(𝑊1, 𝑊2, 𝑊3  𝑊4 )  =   0 =   𝑊4  +   2𝑊2   (1.026) 

 (2).  Secondary Differential Expansion: 

                                     𝑑𝑥   +   0 ∙ 𝑑𝑦  =   𝑑𝑊1                                     (1.027) 

                               0 ∙ 𝑑𝑥   +         𝑑𝑦  =   𝑑𝑊2                                    (1.028) 

                         −2𝑊1𝑑𝑥    +   0 ∙ 𝑑𝑦  =   𝑊3𝑑𝑊3                               (1.029) 

                            2𝑊1𝑑𝑥    −   𝑊3𝑑𝑦  =   𝑊3(𝑊2  +   𝑊3)𝑑𝑊4       (1.030) 

The first step is to naturally begin by integrating in ascending order of complexity each first order 

ODE  that is present in the  Secondary Differential Expansion  for the expression of  each auxiliary 

variable. 

 

We begin first by defining   "𝑊1(𝑥)  =   𝑥"   and   "𝑊2(𝑦)  =   𝑦". 

For  "𝑊3(x)",  we integrate equation (1.029) by parts to arrive at: 

𝑊3(𝑥)  =   ± √𝐶3 − 2𝑥2 (1.031) 

For  "𝑊4(x, y)", the corresponding first order ODE to integrate is obtained by substituting the 

expression for  "𝑊1(𝑥)" and "𝑊2(𝑦)"  into (1.030)  to afterwards rearrange the resultant equation in 

the form of: 

2𝑥 𝑑𝑥 

𝑊3(𝑦 + 𝑊3)
   −    

𝑑𝑦

𝑦 + 𝑊3
  =   𝑑𝑊4 

(1.032) 

Let: 
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𝑀(𝑥, 𝑦)  =    
2𝑥

𝑊3(𝑦 +  𝑊3)
 (1.033) 

so that since  "𝑊3 =  𝑊3(𝑥)" : 

           
𝜕𝑀

𝜕𝑦
   =    

−2𝑥

𝑊3(𝑦 +   𝑊3)2
   (1.034) 

Next, define: 

𝑁(𝑥, 𝑦)  =   
−1

(𝑦 +  𝑊3)
        (1.035) 

so that: 

              
𝜕𝑁

𝜕𝑥
 =   

1

(𝑦 +   𝑊3 )2
  

𝑑𝑊3

𝑑𝑥
 (1.036) 

From equation (1.029): 

      
𝑑𝑊3

𝑑𝑥
  =   

−2𝑊1

𝑊3
  =   

−2𝑥

𝑊3
 (1.037) 

Substituting this equation into equation (1.036), we get: 

        
𝜕𝑁

𝜕𝑥
 =   

−2𝑥

𝑊3(𝑦 +   𝑊3)2
 

(1.038) 

Since:  

                         
𝜕𝑀

𝜕𝑦
 =   

𝜕𝑁

𝜕𝑥
 =   

−2𝑥

𝑊3(𝑦 +   𝑊3)2
   (1.039) 

it follows that equation (1.030) is an exact  differential whose solution may be obtained using any 

one of Euler's integral formula mentioned earlier in equation (1.024) and (1.025). 

The following general form will be used: 

∫ 𝑁𝑑𝑦  +    ∫ (𝑀 −   
𝜕

𝜕𝑥
∫ 𝑁𝑑𝑦) 𝑑𝑥   =   𝐶   (1.040) 

For the first integral: 

∫ 𝑁𝑑𝑦  =    ∫
−𝑑𝑦

𝑦 + 𝑊3
  =  − ln(𝑦 +  𝑊3)  (1.041) 

For the second integral: 
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𝜕

𝜕𝑥
∫ 𝑁𝑑𝑦  =    − 

𝜕

𝜕𝑥
ln(𝑦 + 𝑊3)  =   − 

1

𝑦 +  𝑊3
  

𝑑𝑊3

𝑑𝑥
     (1.042) 

From the differential that defined the third auxiliary variable as given by equation (1.029), we can 

write: 

𝑑𝑊3

𝑑𝑥
 =   

−2𝑥

𝑊3
 (1.043) 

Thus equation (1.042) may be rewritten as follow: 

𝜕

𝜕𝑥
∫ 𝑁𝑑𝑦   =  − 

1

𝑦 +  𝑊3
  

𝑑𝑊3

𝑑𝑥
  =     

2𝑥

𝑊3(𝑦 + 𝑊3)
  =   𝑴(𝒙, 𝒚)       (1.044) 

so that : 

∫ (𝑀 −   
𝜕

𝜕𝑥
∫ 𝑁𝑑𝑦) 𝑑𝑥  =   ∫(𝑀 −   𝑴) 𝑑𝑥  =   0 (1.045) 

Euler's integral formula may now be rewritten in the following final form: 

∫ 𝑁𝑑𝑦  +    ∫ (𝑀 −  
𝜕

𝜕𝑥
∫ 𝑁𝑑𝑦) 𝑑𝑥   =   ∫ 𝑁𝑑𝑦  =    ∫

−𝑑𝑦

𝑦 + 𝑊3
  =  − ln(𝑦 +  𝑊3)  (1.046) 

The complete exact solution of the differential form that define  "𝑊4"  is obtained by integrating 

equation (1.030) using the above integral solution. 

The results are: 

                     − ln(𝑦 +   𝑊3)  =   𝑊4  +   𝐾 (1.047) 

Substituting the expression for  "𝑊3(𝑥)"  as defined by equation (1.031) into the above equation, 

we obtain: 

−  ln( 𝑦  ±   √𝐶3  −   2𝑥2 )    =    𝑊4  +   𝐾  (1.048) 

Solving for "𝑊4" : 

𝑊4(𝑥, 𝑦)  =   𝐶4  −   ln( 𝑦  ±   √𝐶3  −   2𝑥2 ) (1.049) 

 

The complete inverse Multivariate Polynomial Transform of the given implicitly defined equation 

is obtained by substituting the expression for "𝑊1(𝑥)", "𝑊2(𝑦)", "𝑊3(𝑥)" and "𝑊4(𝑥, 𝑦)" into the 

Primary Expansion defined by equation (1.026). 
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The results are: 

𝑓(𝑥, 𝑦) =   0 =   𝐶4  −   ln ( 𝑦  ±   √𝐶3  −   2𝑥2 )  +   2𝑦 (1.050) 

where the constants of integration defined by  "𝐶3"  and  "𝐶4"  are each determined from the initial 

condition of   "𝑓(𝑥, 𝑦) = 0". 
 

 

In higher dimension than two, the basic principle behind the main test for exactness is still 
applicable but requires some very minor modifications in order to account for the multivariate 
nature of the corresponding general differential form representation. 

In view of equation (1.002) through (1.006), an example of a  single  first order multivariate  ODE  

that can be present inside a  Secondary Differential Expansion may be expressed in the following 

general form: 

( 𝑀1𝑑𝑧1  +   𝑀2𝑑𝑧2  +  … +  𝑀𝑚𝑑𝑧𝑚 )   +  ( 𝑀𝑚+1𝑑𝑥1  +   𝑀𝑚+2𝑑𝑥2  +  … +   

 

                                                       + … +   𝑀𝑚+𝑛𝑑𝑥𝑛 )   =   𝑀𝑚+𝑛+1𝑑𝑊𝑗  (1.051) 

where as by eliminating each auxiliary variable in terms of the dependent and independent variables 
on the left hand side of this equation, we can also define: 
 

                                         𝑀𝑖  =   𝑀𝑖(𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1, 𝑥2, … , 𝑥𝑛)           (1 ≤ 𝑖 ≤ 𝑚 + 𝑛) (1.052) 

The right hand side of this equation can be expressed only in terms of the auxiliary variable  "𝑊𝑗"  

so that: 

         𝑀𝑖  =   𝑀𝑖(𝑊𝑗)                    (𝑖 = 𝑚 + 𝑛 + 1)     

 

(1.053) 

The auxiliary variable  "𝑊𝑗"   is actually a  "multivariate composite function" and  is to be  deter-

mined assuming of course that an exact expression for each of the auxiliary variables "𝑊1, 𝑊2  , …  ,
𝑊𝑗−1"   have all been previously obtained in ascending order of complexity. 

 

Equation (1.051) may be rewritten as: 

𝑑𝐻1  =   𝑑𝐻2 (1.054) 

where: 

𝑑𝐻1  =   ( 𝑀1𝑑𝑧1  +   𝑀2𝑑𝑧2  + … +   𝑀𝑚𝑑𝑧𝑚 )   +   ( 𝑀𝑚+1𝑑𝑥1  +   𝑀𝑚+2𝑑𝑥2  + … +   
 

 

                                                                                                        + … +  𝑀𝑚+𝑛𝑑𝑥𝑛  ) (1.055) 

and where:  

𝑑𝐻2  =   𝑀𝑚+𝑛+1𝑊𝑗 (1.056) 
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If each side of equation (1.054) is an exact differential then from the chain rule: 

𝑑𝐻1  =   ∑
𝜕𝐻1

𝜕𝑧𝑘
𝑑𝑧𝑘  +     ∑

𝜕𝐻1

𝜕𝑥𝑘
𝑑𝑥𝑘  

𝑛

𝑘=1

 

𝑚

𝑘=1

 
(1.057) 

 

and since  "𝐻2 = 𝐻2(𝑊𝑗)"  : 

𝑑𝐻2  =   
𝜕𝐻2

𝜕𝑊𝑗
𝑑𝑊𝑗 

(1.058) 

 

It follows from equation (1.055) and (1.057) that : 

𝑀1  =   
𝜕𝐻1

𝜕𝑧1
 (1.059) 

𝑀2  =   
𝜕𝐻1

𝜕𝑧2
 

(1.060) 

                                                                            .     . 

                                                                            .     . 

                                                                            .     . 

 𝑀𝑚     =   
𝜕𝐻1

𝜕𝑧𝑚
  (1.061) 

𝑀𝑚+1  =   
𝜕𝐻1

𝜕𝑥1
 

(1.062) 

               𝑀𝑚+2  =   
𝜕𝐻1

𝜕𝑥2
 

(1.063) 

                                                                            

                                                                            .     . 

                                                                            .     . 

                                                                            .     . 

 

𝑀𝑚+𝑛  =   
𝜕𝐻1

𝜕𝑥𝑛
 

(1.064) 

 

It also follows from equation (1.056) and (1.058) that: 
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𝑀𝑚+𝑛+1  =   
𝜕𝐻2

𝜕𝑊𝑗
 

(1.065) 

From multivariate calculus, the condition that  both  sides of equation (1.054) each define an exact 

differential is of course when: 

𝜕𝑀1

𝜕𝑧2
 =   

𝜕𝑀2

𝜕𝑧1
 ,     

𝜕𝑀1

𝜕𝑧3
 =   

𝜕𝑀3

𝜕𝑧1
 ,   

𝜕𝑀1

𝜕𝑧4
 =   

𝜕𝑀4

𝜕𝑧1
 ,   …   ,

𝜕𝑀1

𝜕𝑧𝑚
  =   

𝜕𝑀𝑚

𝜕𝑧1
  

(1.066) 

𝜕𝑀1

𝜕𝑥1
 =   

𝜕𝑀𝑚+1

𝜕𝑧1
 ,     

𝜕𝑀1

𝜕𝑥2
 =   

𝜕𝑀𝑚+2

𝜕𝑧1
 ,   …   ,

𝜕𝑀1

𝜕𝑥𝑛
  =   

𝜕𝑀𝑚+𝑛

𝜕𝑧1
 

(1.067) 

𝜕𝑀2

𝜕𝑧3
 =   

𝜕𝑀3

𝜕𝑧2
 ,     

𝜕𝑀2

𝜕𝑧4
 =   

𝜕𝑀4

𝜕𝑧2
 ,   

𝜕𝑀2

𝜕𝑧5
 =   

𝜕𝑀5

𝜕𝑧2
 ,   …   ,

𝜕𝑀2

𝜕𝑧𝑚
  =   

𝜕𝑀𝑚

𝜕𝑧2
  

(1.068) 

𝜕𝑀2

𝜕𝑥1
 =   

𝜕𝑀𝑚+1

𝜕𝑧2
 ,     

𝜕𝑀2

𝜕𝑥2
 =   

𝜕𝑀𝑚+2

𝜕𝑧2
 ,   …   ,

𝜕𝑀2

𝜕𝑥𝑛
  =   

𝜕𝑀𝑚+𝑛

𝜕𝑧2
 

(1.069) 

                                                   ∙                         ∙                         ∙                          ∙                                                

 

                                                ∙                         ∙                         ∙                          ∙                                            

 

                                                ∙                         ∙                         ∙                          ∙                                            

𝜕𝑀𝑚

𝜕𝑥𝑛
  =   

𝜕𝑀𝑚+𝑛

𝜕𝑧𝑚
 

(1.070) 

If each of the above conditions are met then the solution for  "𝐻1"  and  "𝐻2"  is obtained as follow: 

For  "𝐻1", we integrate equation (1.059) : 

𝐻1  =   ∫ 𝑀1(𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1, 𝑥2, … , 𝑥𝑛)  𝑧1 (1.071) 

where in this case,  𝑧𝑖   and  𝑥𝑗   for   1 < 𝑖 ≤ 𝑚,  1 ≤ 𝑗 ≤ 𝑛   and   𝑖 ≠ 1  are all treated as 

constants when evaluating this indefinite integral. 

 

We can also use as another alternative: 
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𝐻1  =   ∫ 𝑀𝑘(𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1, 𝑥2, … , 𝑥𝑛) 𝑧𝑘 (1.072) 

where in this case, 𝑧𝑖  and  𝑥𝑗  for   2 ≤ 𝑖 ≤ 𝑚,  1 ≤ 𝑗 ≤ 𝑛   and  𝑖 ≠ 𝑘   are all treated as constants 

when evaluating this indefinite integral. 

 
 

Other alternatives for the same expression of  "𝐻1"  can also be obtained from: 

𝐻1  =   ∫ 𝑀𝑚+𝑘(𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1, 𝑥2, … , 𝑥𝑛) 𝑥𝑘 
(1.073) 

where in this case, 𝑧𝑖  and  𝑥𝑗  for   1 ≤ 𝑖 ≤ 𝑚,  1 ≤ 𝑗 ≤ 𝑛   and  𝑗 ≠ 𝑘   are all treated as constants 

when evaluating this indefinite integral. 

 

As for the expression of  "𝐻2"  defined by equation (1.056), it can be determined using the 

following integral : 

𝐻2  =   𝐻2(𝑊𝑗)   =   ∫ 𝑀𝑚+𝑛+1(𝑊𝑗) d𝑊𝑗 (1.074) 

because  "𝑊𝑗  =   𝑊𝑗(𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1, 𝑥2, … , 𝑥𝑛)"  is a multivariate composite function. 

 

The complete exact solution of the first order multivariate ODE  defined by equation (1.054) that 

would be present inside a  Secondary Differential Expansion is: 

𝐻1(𝑧1, 𝑧2, … , 𝑧𝑚,  𝑥1, 𝑥2, … , 𝑥𝑛)   −   𝐻2(𝑊𝑗)   =    0 (1.075) 

from which  "𝑊𝑗"  can be obtained explicitly whenever possible. 

Once the complete expression for each auxiliary variable is obtained, they can afterwards be 

substituted along with each of their initial condition(s) into the  Primary Expansion  for arriving at 

the required system of implicitly defined equations in the form of   "𝑓𝑘(𝑧𝑖, 𝑥𝑗) = 0"  for  1 ≤ 𝑖 ≤ 𝑚  

and  1 ≤ 𝑗 ≤ 𝑛 .   

The initial condition(s) that belong to each auxiliary variable all take part in satisfying the initial 
condition(s) of a system implicitly defined equations that can be used for completely representing 
the exact or approximate analytical solution of  a  system of  PDEs. 

 

For  inverting a Multivariate Polynomial Transform defined in much higher dimension follows 
the same type of logic as for the simple two dimensional case.  The following example illustrates 
this in greater detail. 

Example (1.3).  Assuming the following Secondary Differential Expansion as a part of a large 
Multivariate Polynomial Transform that would correspond to some large  system of implicitly 
defined equations involving several dependent variables and one single independent variable.  
Furthermore, for the sake of simplicity, let us assume that every first order ODE present in the 
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Secondary Differential Expansion would satisfy the condition for exactness everywhere and thus 
readily integrable using the method described earlier. 

 

Secondary Differential Expansion: 

               𝑑𝑥 +   0 ∙ 𝑑𝑦1   +  0 ∙ 𝑑𝑦2    +   0 ∙ 𝑑𝑦3   =  𝑑𝑊1  (1.076) 

         0 ∙ 𝑑𝑥 +         𝑑𝑦1   +  0 ∙ 𝑑𝑦2    +   0 ∙ 𝑑𝑦3   =  𝑑𝑊2 (1.077) 

         0 ∙ 𝑑𝑥 +   0 ∙ 𝑑𝑦1   +        𝑑𝑦2    +   0 ∙ 𝑑𝑦3   =  𝑑𝑊3 (1.078) 

         0 ∙ 𝑑𝑥 +   0 ∙ 𝑑𝑦1   +  0 ∙ 𝑑𝑦2    +         𝑑𝑦3   =  𝑑𝑊4 (1.079) 

        𝑊1
2𝑑𝑥 +  𝑊2

2𝑑𝑦1  +   𝑊3
2𝑑𝑦2   +   𝑊4

2𝑑𝑦3  =   𝑊5
2𝑑𝑊5 (1.080) 

         𝑊1𝑑𝑥 +   𝑊2𝑑𝑦1  +   𝑊3𝑑𝑦2   +   0 ∙ 𝑑𝑦3   =   𝑊6𝑑𝑊6 (1.081) 

𝑊1𝑊6
−1𝑑𝑥 +   (𝑊2𝑊6

−1 + 2𝑊3)𝑑𝑦1  +   (𝑊3𝑊6
−1 + 2𝑊2)𝑑𝑦2   +   0 ∙ 𝑑𝑦3   =  

                                                                                                                                    =    
𝑑𝑊7

1 +   𝑊7
2  (1.082) 

subjected to  "𝑦1(𝑥0)",  "𝑦2(𝑥0)"  and  "𝑦3(𝑥0)" 

 

We will now determine its complete inverse where it is assumed that for the sake of simplicity each 

first order  ODE  present in the above Secondary Differential Expansion have already been factored 

out in order to filter out any unnecessary multivariate polynomials.  These do not contribute in any 

manner on the overall integration process as they would tend to naturally cancel each other out by 

computation. 

 

The first step is to naturally begin by integrating in ascending order of complexity each first order 

ODE  present in the  Secondary Differential Expansion for an expression of  each auxiliary variable. 

 

The results are: 

For "𝑊1",   𝑊1(𝑥)   =  𝑥    (1.083) 

For "𝑊2",   𝑊2(𝑦1) =  𝑦1   (1.084) 

For "𝑊3",   𝑊3(𝑦2) =  𝑦2 (1.085) 

For "𝑊4",   𝑊4(𝑦3) =  𝑦3 (1.086) 

 

For   "𝑊5(𝑥, 𝑦1, 𝑦2, 𝑦3)",  this is more involved. 

Equation (1.080) can be rewritten as: 

       𝑀1𝑑𝑥 +   𝑀2𝑑𝑦1  +   𝑀3𝑑𝑦2  +   𝑀4𝑑𝑦3   =   𝑀5𝑑𝑊5 (1.087) 

where: 
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𝑀1  =   𝑊1
2  =   𝑥2 (1.088) 

𝑀2  =   𝑊2
2  =   𝑦1

2 (1.089) 

𝑀3  =   𝑊3
2  =   𝑦2

2 (1.090) 

𝑀4  =   𝑊4
2  =   𝑦3

2 (1.091) 

𝑀5  =    𝑊5
2             (1.092) 

Since  "𝑀1 = 𝑀1(𝑥)",  "𝑀2 = 𝑀2(𝑦1)",  "𝑀3 = 𝑀3(𝑦2)",  and  "𝑀4 = 𝑀4(𝑦3)",  our test for 

exactness using equation (1.066) through (1.070) reveals that: 

𝜕𝑀2

𝜕𝑥
  =    

𝜕𝑀1

𝜕𝑦1
  =  0 (1.093) 

𝜕𝑀3

𝜕𝑥
  =    

𝜕𝑀1

𝜕𝑦2
  =  0 (1.094) 

𝜕𝑀4

𝜕𝑥
  =    

𝜕𝑀1

𝜕𝑦3
  =  0 

(1.095) 

𝜕𝑀3

𝜕𝑦1
  =    

𝜕𝑀2

𝜕𝑦2
  =  0 (1.096) 

𝜕𝑀4

𝜕𝑦1
  =    

𝜕𝑀2

𝜕𝑦3
  =  0 (1.097) 

𝜕𝑀4

𝜕𝑦2
  =    

𝜕𝑀3

𝜕𝑦3
  =  0 

(1.098) 

 

so that equation (1.087) is an exact differential equation with solution: 

∫(𝑥2𝑑𝑥 +   𝑦1
2𝑑𝑦1  +   𝑦2

2𝑑𝑦2  +   𝑦3
2𝑑𝑦3)   =    ∫ 𝑊5

2𝑑𝑊5 (1.099) 

or: 

𝑊5  =   √𝑥3  +   𝑦1
3  +   𝑦2

3  +   𝑦3
3  +   𝑐5

3
 (1.100) 

For   "𝑊6(𝑥, 𝑦1, 𝑦2)",   equation (1.081) can be rewritten as: 

       𝑀1𝑑𝑥 +   𝑀2𝑑𝑦1  +   𝑀3𝑑𝑦2   =   𝑀4𝑑𝑊6 (1.101) 

where: 

𝑀1  =   𝑊1  =   𝑥 (1.102) 

 𝑀2  =   𝑊2  =   𝑦1 (1.103) 
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 𝑀3  =   𝑊3  =   𝑦2 (1.104) 

           𝑀4  =    𝑊6                       (1.105) 

 

Since  "𝑀1 = 𝑀1(𝑥)",  "𝑀2 = 𝑀2(𝑦1)"  and  "𝑀3 = 𝑀3(𝑦2)",  our test for exactness using equation 

(1.066) through (1.070) reveals that: 

𝜕𝑀2

𝜕𝑥
  =    

𝜕𝑀1

𝜕𝑦1
  =  0 (1.106) 

𝜕𝑀3

𝜕𝑥
  =    

𝜕𝑀1

𝜕𝑦2
  =  0 (1.107) 

𝜕𝑀3

𝜕𝑦1
  =    

𝜕𝑀2

𝜕𝑦2
  =  0 (1.108) 

so that equation (1.101) is an exact differential equation with solution: 

∫(𝑥𝑑𝑥 +   𝑦1𝑑𝑦1  +   𝑦2𝑑𝑦2)   =    ∫ 𝑊6𝑑𝑊6 (1.109) 

or: 

𝑊6  =   √𝑥2  +   𝑦1
2  +   𝑦2

2  +   𝑐6 

 

 

 

(1.110) 

For   "𝑊7(𝑥, 𝑦1, 𝑦2)",   equation (1.082) can be rewritten as: 

𝑑𝐻1  =   𝑑𝐻2 (1.111) 

where:  

𝑑𝐻1  =   𝑀1𝑑𝑥 +   𝑀2𝑑𝑦1  +  𝑀3𝑑𝑦2 (1.112) 

𝑀1  =   𝑊1𝑊6
−1 (1.113) 

                𝑀2  =   𝑊2𝑊6
−1  +   2𝑊3 (1.114) 

                𝑀3   =   𝑊3𝑊6
−1  +   2𝑊2 (1.115) 

 

 and: 

            𝑑𝐻2  =   𝑀4(𝑊7) 𝑑𝑊7               (1.116) 

     𝑀4  =     
1

1 +   𝑊7
2 (1.117) 

 

It follows that: 
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𝜕𝑀1

𝜕𝑦1
  =    

𝜕𝑊1

𝜕𝑦1
 𝑊6

−1  +   𝑊1(−𝑊6
−2)

𝜕𝑊6

𝜕𝑦1
   =   0 −  𝑊1𝑊6

−2(𝑊2𝑊6
−1) (1.118) 

                                                            =  −𝑊1𝑊2𝑊6
−3 (1.119) 

𝜕𝑀1

𝜕𝑦2
 =    

𝜕𝑊1

𝜕𝑦2
 𝑊6

−1  +   𝑊1(−𝑊6
−2)

𝜕𝑊6

𝜕𝑦2
   =   0 −  𝑊1𝑊6

−2(𝑊3𝑊6
−1) (1.120) 

                                                           =  −𝑊1𝑊3𝑊6
−3 (1.121) 

𝜕𝑀2

𝜕𝑥
 =    

𝜕𝑊2

𝜕𝑥
 𝑊6

−1  +   𝑊2(−𝑊6
−2)

𝜕𝑊6

𝜕𝑥
  +   2

𝜕𝑊3

𝜕𝑥
  =   0 −   𝑊2𝑊6

−2(𝑊1𝑊6
−1)  +   0 (1.122) 

                                                                    =  −𝑊1𝑊2𝑊6
−3 (1.123) 

𝜕𝑀2

𝜕𝑦2
 =    

𝜕𝑊2

𝜕𝑦2
 𝑊6

−1  +   𝑊2(−𝑊6
−2)

𝜕𝑊6

𝜕𝑦2
 +   2

𝜕𝑊3

𝜕𝑦2
  =   0 −  𝑊2𝑊6

−2(𝑊3𝑊6
−1)  +  2 (1.124) 

                                                                               =  −𝑊2𝑊3𝑊6
−3  +   2 (1.125) 

𝜕𝑀3

𝜕𝑥
 =    

𝜕𝑊3

𝜕𝑥
 𝑊6

−1  +   𝑊3(−𝑊6
−2)

𝜕𝑊6

𝜕𝑥
 +   2

𝜕𝑊2

𝜕𝑥
  =   0 −   𝑊3𝑊6

−2(𝑊1𝑊6
−1) +   0 (1.126) 

                                                                    =  −𝑊1𝑊3𝑊6
−3 (1.127) 

𝜕𝑀3

𝜕𝑦1
 =    

𝜕𝑊3

𝜕𝑦1
 𝑊6

−1  +   𝑊3(−𝑊6
−2)

𝜕𝑊6

𝜕𝑦1
 +   2

𝜕𝑊2

𝜕𝑦1
  =   0 −  𝑊3𝑊6

−2(𝑊2𝑊6
−1)  +   2 (1.128) 

                                                                              =  −𝑊2𝑊3𝑊6
−3  +   2 (1.129) 

Our test for exactness using equation (1.066) and (1.070) reveals that: 

𝜕𝑀2

𝜕𝑥
 =   

𝜕𝑀1

𝜕𝑦1
 =  −𝑊1𝑊2𝑊6

−3 
(1.130) 

𝜕𝑀3

𝜕𝑥
 =   

𝜕𝑀1

𝜕𝑦2
 =  −𝑊1𝑊3𝑊6

−3 
(1.131) 

          
 𝜕𝑀3

𝜕𝑦1
 =   

𝜕𝑀2

𝜕𝑦2
 =  −𝑊2𝑊3𝑊6

−3  +   2 (1.132) 

Furthermore: 
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𝑀4  =   𝑀4(𝑊7) (1.133) 

so that equation (1.112) is an exact differential equation with solution: 

∫ 𝑑𝐻1  =   ∫ 𝑀1 𝜕𝑥 =   ∫
𝑊1

𝑊6
𝜕𝑥               (1.134) 

                                =   ∫
𝑥

√𝑥2 +  𝑦1
2 +  𝑦2

2  +   𝐶6 
 𝜕𝑥                 

(1.135) 

Solving for "𝐻1 ": 

                                   𝐻1  =   √𝑥2 +  𝑦1
2 +   𝑦2

2  +   𝐶6    +   𝑓1(𝑦1, 𝑦2) (1.136) 

=   𝑊6  +   𝑓1(𝑦1, 𝑦2) (1.137) 

 

We can also define as a second alternative for  "𝐻1"  the following integral equation: 

∫ 𝑑𝐻1  =   ∫ 𝑀2 𝜕𝑦1  =   ∫ (
𝑊2

𝑊6
 +   2𝑊3) 𝜕𝑦1               (1.138) 

                        =   ∫ (
𝑦1

√𝑥2 +  𝑦1
2 +  𝑦2

2 +  𝐶6

 +  2𝑦2 ) 𝜕𝑦1                 (1.139) 

so that: 

                              𝐻1  =   √𝑥2 +  𝑦1
2 +   𝑦2

2  +   𝐶6  +  2𝑦1𝑦2  +   𝑓2(𝑥, 𝑦2) (1.140) 

=   𝑊6  +   2𝑊2𝑊3  +  𝑓2(𝑥, 𝑦2) (1.141) 

A third alternative for  "𝐻1"  can be derived from: 

∫ 𝑑𝐻1  =   ∫ 𝑀3 𝜕𝑦2  =   ∫ (
𝑊3

𝑊6
 +   2𝑊2) 𝜕𝑦2               (1.142) 

                        =   ∫ (
𝑦2

√𝑥2 +  𝑦1
2 +  𝑦2

2 +  𝐶6

 +  2𝑦1 ) 𝜕𝑦2                 (1.143) 

 

 

 

 

so that: 

                              𝐻1  =   √𝑥2 +  𝑦1
2 +   𝑦2

2  +   𝐶6  +  2𝑦1𝑦2  +   𝑓3(𝑥, 𝑦2) (1.144) 
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=   𝑊6  +   2𝑊2𝑊3  +   𝑓3(𝑥, 𝑦1) (1.145) 

 

From equation (1.140) and (1.144) we arrive at the conclusion that: 

𝑓2(𝑥, 𝑦2) =   𝑓3(𝑥, 𝑦1) (1.146) 

The only condition for this equation to be satisfied is of course when: 

𝑓2  =   𝑓3  =   𝐹(𝑥) (1.147) 

because   "𝑦1   ≠   𝑦2". 
 

Substituting equation (1.147) into equation (1.145), we obtain: 

𝐻1  =   𝑊6  +   2𝑊2𝑊3  +   𝐹(𝑥) (1.148) 

Since  "𝑓1(𝑦1, 𝑦2)"   in equation (1.137) is not a function of   "𝑥"  then it is safe to assume in 

equation (1.147) that: 

𝐹(𝑥)  =   0 (1.149) 

Substituting the expression for  "𝑊2 ", "𝑊3 ", "𝑊6 "  and  "𝐹(𝑥)"  into equation (1.148), the                             

expression for  "𝐻1"  can now be completely defined as: 

 

𝐻1  =   𝑊6  +   2𝑦1𝑦2  +   0 
(1.150) 

                                      =   √𝑥2 +  𝑦1
2 +  𝑦2

2  +   𝐶6    +   2𝑦1𝑦2 
(1.151) 

The expression for  "𝐻2"  can be determined by integrating equation (1.116) using equation (1.117): 

𝐻2  =   ∫ 𝑀4𝑑𝑊7  =   ∫
𝑑𝑊7

1 +   𝑊7
2   =   tan−1(𝑊7)  +   𝐾 (1.152) 

 
Since from equation (1.111)  "𝐻1 = 𝐻2"  we thus arrive at the following complete expression for  

"𝑊7": 

√𝑥2 +  𝑦1
2 +   𝑦2

2  +   𝐶6   +   2𝑦1𝑦2   =   tan−1(𝑊7)  +   𝐾 (1.153) 

or: 

𝑊7  =   tan (√𝑥2 + 𝑦1
2  + 𝑦2

2  +  𝑐6    +   2𝑦1𝑦2  +   𝑐7) (1.154) 
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The complete inverse of the Multivariate Polynomial Transform whose Secondary Differential 

Expansion is defined by equation (1.076) through (1.082) is obtained by substituting each of the 

expression for the auxiliary variables "𝑊1(𝑥)", "𝑊2(𝑦1)", "𝑊3(𝑦2)", "𝑊4(𝑦3)", "𝑊5(𝑥, 𝑦1, 𝑦2, 𝑦3)", 

"𝑊6(𝑥, 𝑦1, 𝑦2)"  and  "𝑊7(𝑥, 𝑦1, 𝑦2)"  into a Primary Expansion that could be described in the 

following general form: 

                                           𝐹𝑘(𝑊𝑗)   =   0          (1 ≤ 𝑘 ≤ 3)  (1 ≤ 𝑗 ≤ 7) (1.155) 

 
 

2. Complete analytical theory of integration under one universal system of computational logic 
 

The universal representation of all mathematical equations presented in the differential expansion 
form described by equation (1.002) through (1.006) should really be referred to as a general initially 
assumed Multivariate Polynomial Transform (IAMPT) when it comes to solving for DEs and 
systems of  DEs.  The only difference between traditional methods of series expansion and the one 
presented here, is that ours can succeed in arriving at complete  exact  analytical solution to any 
type of  DEs  and systems of  DEs.  All other known traditional methods of series solutions are 
incapacitated right from the beginning for arriving at exact  analytical solutions since they were 
originally meant only to be utilized as part of some functional approximation theory.  This being the 
direct consequence for all tradition methods of series solutions for not having originated from the 
application of some form of a unified theory of integration. 
 
For those functional expressions that are present inside a DE or a system of  DEs, they somehow 
would have to be totally accounted for in our initially assumed Multivariate Polynomial Transform.  
This is made possible only if we append at the end of our initially assumed expansion the 
Multivariate Polynomial Transform of each  functional expression by introducing additional new 
supplemental auxiliary variables.  Each of these additional auxiliary variables in turn are most likely 
to reappear in the final analytical solution of the  DE or  system of  DEs.  This would thus providing 
us with a real sense of measure in the manner by which such individual functional expressions can 
succeed in influencing the complete behavior of a physical system. 

For including these types of  DEs and systems of  DEs, our general initially assumed Multivariate 
Polynomial Transform would have to be modified accordingly as follow: 

 

(1).  Primary Expansion: 

𝐹𝑖(𝑊𝑗)  =   0  =   ∑  𝑎𝑖,𝑟 (∏ 𝑊𝑗

𝐸𝑖,𝑠

𝑝+𝑞

𝑗

)      (1 ≤ 𝑖 ≤ 𝑘)  

𝑟

 (2.01) 

where "𝑊𝑗" are auxiliary variables,  "q" is the total number of auxiliary variables required for 

defining the  Multivariate Polynomial Transform  of each functional expression that is present in a 

DE or a system of DEs.  The total number of auxiliary variables now grows from  "p"  to "𝑝 + 𝑞"  

when functional expressions are present in these types of DEs.   Each of the "p" number of auxiliary 

variables are always assumed raised to some floating point value and finally, "r" is the total number 

of terms present in each of the  "k"  number of implicitly defined multivariate polynomial equations. 

 

(2).  Secondary Differential Expansion: 

𝑑𝑧𝑖  =   𝑑𝑊𝑖                                        (1 ≤ 𝑖 ≤ 𝑚) (2.02) 

 𝑑𝑥𝑖  =   𝑑𝑊𝑚+𝑖                                   (1 ≤ 𝑖 ≤ 𝑛)    (2.03) 
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∑ 𝑁𝑖(𝑚+𝑛+1)−𝑚−𝑛−1+𝑡𝑑𝑧𝑡   +    ∑ 𝑁𝑖(𝑚+𝑛+1)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

  

 

                                         =   𝑁𝑖(𝑚+𝑛+1)𝑑𝑊𝑗          [1 ≤ 𝑖 ≤ 𝑝 − 𝑚 − 𝑛]  [𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝]    (2.04) 

𝑁𝑐(𝑊𝑗)   =  ∑ 𝑏𝑐,𝑡 (∏ 𝑊𝑗

𝐸𝑐,𝑠
′

𝑝+𝑞

𝑗

)        

𝑐𝑟

𝑡=(𝑐−1)𝑟+1

  

                                                                                      [1 ≤ 𝑐 ≤ 𝑖(𝑚 + 𝑛 + 1)]  [1 ≤ 𝑖 ≤ 𝑝 − 𝑚 − 𝑛]     

 

(2.05) 

∑ 𝑇𝑖(𝑚+𝑛+1)−𝑚−𝑛−1+𝑡𝑑𝑧𝑡   +    ∑ 𝑇𝑖(𝑚+𝑛+1)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

  

 

                                                         =   𝑇𝑖(𝑚+𝑛+1)𝑑𝑊𝑗         [1 ≤ 𝑖 ≤ 𝑞]  [𝑝 ≤ 𝑗 ≤ 𝑝 + 𝑞]    (2.06) 

where  "𝑇𝑔(𝑊𝑗)"  are the special multivariate polynomials that would be reserved exclusively for 

only representing those functional expressions that would be present inside a DE  or system of  

DEs. 

 

Just as we can represent any mathematical equation in universal differential form, we can also 
express and type of   DE  and system of   DEs  also in complete universal differential form. 
 

The Primary Expansion representation for the following general system of   DEs: 

𝑔𝑘 (  𝑧𝑖 ,  𝑥𝑗 ,   


x𝑢
( 
𝑧𝑟

𝜕𝑥𝑣
)    )   =   0 

(2.07) 

can be defined as follow: 

                                                             𝐺𝑘 (𝑊𝑡 ,   
𝑃𝑟𝑢𝑣

𝑄𝑟𝑢𝑣
)   =   0               [1 ≤ 𝑡 ≤ 𝑚 + 𝑛 + 𝑞] (2.08) 

where: 
𝑃𝑟𝑢𝑣

𝑄𝑟𝑢𝑣
  =   



x𝑢
( 
𝑧𝑟

𝜕𝑥𝑣
)   (2.09) 

As for the Secondary Differential Expansion representation, it becomes exactly identical to the one  
present inside the initially assumed Multivariate Polynomial Transform that would have been 
selected for solving the general system of   DEs. 
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Example (2.1).  The following system of  second order  ODEs  is used to describe the motion of a 

dumbbell of length  "L"  in space consisting of masses  "𝑚1"  and  "𝑚2"   both rigidly attached at its 

extremities and free to rotate under the influence of gravity: 

(𝑚1  +   𝑚2)
𝑑2𝑥1

𝑑𝑡2
  −    𝑚2𝐿

𝑑2𝜃

𝑑𝑡2
sin(𝜃)   −    𝑚2 𝐿 (

𝑑𝜃

𝑑𝑡
)

2

cos(𝜃)    =    0                          
(2.10) 

(𝑚1  +   𝑚2)
𝑑2𝑦1

𝑑𝑡2
  −   𝑚2𝐿

𝑑2𝜃

𝑑𝑡2
cos(𝜃)   −   𝑚2 𝐿 (

𝑑𝜃

𝑑𝑡
)

2

sin(𝜃)   =    −(𝑚1  +  𝑚2)𝑔 (2.11) 

𝐿
𝑑2𝜃

𝑑𝑡2
   −    

𝑑2𝑥1

𝑑𝑡2
sin(𝜃)    +    

𝑑2𝑦1

𝑑𝑡2
cos(𝜃)    =    −𝑔 cos(𝜃)                                                 (2.12) 

 

For this system of equations,  " 𝑥𝑖 "  and  "𝑦𝑖 "  represent the horizontal and vertical linear 

displacements of mass  "𝑚𝑖"  respectively and  "𝜃"  is the angle of rotation of the dumbbell with 

respect to the X-axis. We will assume for the sake of simplicity that the mass of the rod is 

negligible compared to mass  "𝑚1"  and  "𝑚2". 

The complete  Multivariate Polynomial Transform  of the system of  second order  ODEs  will now 
be determine. 
 
For the sake of simplicity, we will need to express the Sine and Cosine function as a rational 
combination of the  Tangent  function by selecting: 

ℎ1  =   tan(𝜃/2) (2.13) 

so that: 

sin 𝜃  =   
2 tan(𝜃/2)

1 +  tan2(𝜃/2)
  =    

2ℎ1

1 +   ℎ1
2 (2.14) 

and 

cos 𝜃  =    
1 −   tan2(𝜃/2)

1 +   tan2(𝜃/2)
  =    

1 −  ℎ1
2

1 +  ℎ1
2 

(2.15) 

We can arbitrarily select each auxiliary variable as:  

 𝑊1   =   𝑥1 (2.16) 

 𝑊2   =   𝑦1 (2.17) 

𝑊3   =   𝜃 (2.18) 

           𝑊4   =  tan (
𝜃

2
) (2.19) 

The Multivariate Polynomial Transform of the single external input  "ℎ1"  as defined by equation 

(2.13) is: 
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(1).  Primary Expansion: 

𝐻1  =   𝑊4  (2.20) 

(2).  Secondary Differential Expansion: 

0 ∙ 𝑑𝑥1  +   0 ∙ 𝑑𝑦1  +  (1 +  𝑊4
2)𝑑𝜃 =   2 𝑑𝑊4 (2.21) 

Using our standard notation in equation (2.08) and (2.09), we can now define the complete  
Multivariate Polynomial Transform of this entire system of second order  ODEs  starting with the  
Primary Expansion as: 
 
 

(1).  Primary Expansion: 

 

𝐺1  =   (𝑚1 +  𝑚2) (
𝑃21

𝑄21
)  −   𝑚2𝐿 (

𝑃23

𝑄23
) (

2𝑊4

1 +   𝑊4
2)  −    

                                                                                    −   𝑚2𝐿 (
𝑃13

𝑄13
)

2

(
1 −   𝑊4

2

1 +   𝑊4
2)   =   0   (2.22) 

𝐺2  =   (𝑚1 +  𝑚2) (
𝑃22

𝑄22
)   −   𝑚2𝐿 (

𝑃23

𝑄23
) (

1 − 𝑊4
2

1 + 𝑊4
2)  −  𝑚2𝐿 (

𝑃13

𝑄13
)

2

(
2𝑊4

1 +   𝑊4
2)   

                                                                                                        +  (𝑚1  +   𝑚2)𝑔  =   0   (2.23) 

𝐺3  =   𝐿 (
𝑃23

𝑄23
) −   (

𝑃21

𝑄21
) (

2𝑊4

1 +   𝑊4
2)   +   (

𝑃22

𝑄22
) (

1 −   𝑊4
2

1 +   𝑊4
2)   +  𝑔 (

1 −  𝑊4
2

1 +  𝑊4
2)  =   0 (2.24) 

 

 

Where: 

𝑃𝑛1

𝑄𝑛1
  =   

𝑑𝑛𝑥1

𝑑𝑡𝑛
 (2.25) 

𝑃𝑛2

𝑄𝑛2
  =   

𝑑𝑛𝑦1

𝑑𝑡𝑛
 (2.26) 

𝑃𝑛3

𝑄𝑛3
  =   

𝑑𝑛𝜃

𝑑𝑡𝑛
 (2.27) 

 

The complete Secondary Differential Expansion of this system of  second order ODEs  is the 

combination of  the Secondary Differential Expansion of  "ℎ1" as defined by equation (2.21) and 
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the same one present inside the initially assumed Multivariate Polynomial Transform that would 

have been selected for solving this particular system of second order  ODEs. 

 

 

 

Example (2.2).  For the following system of  second order  PDEs,  

𝑧2

𝜕𝑧1

𝜕𝑥1
  +   sin(2𝑥2)

𝜕

𝜕𝑥1
(

𝜕𝑧2

𝜕𝑥2
)  +  𝑥1𝑥2   =   0                                 (2.28) 

(
𝜕2𝑧1

𝜕𝑥2
2 ) (

𝜕2𝑧2

𝜕𝑥1
2 )  +   (

𝜕𝑧1

𝜕𝑥1
)

2

 +   (
𝜕𝑧2

𝜕𝑥2
)

2

 +   𝑥1
2  +   𝑥2

2    =   6𝑧1𝑒𝑥1   (2.29) 

 

we can define each external input as: 

ℎ1  =   𝑧1 (2.30) 

ℎ2  =   𝑧2 (2.31) 

ℎ3  =   𝑥1 (2.32) 

ℎ4  =   𝑥2 (2.33) 

            ℎ5  =   sin(2𝑥2) (2.34) 

     ℎ6  =   6𝑒𝑥1 (2.35) 

We can also select each auxiliary variable as: 

 

𝑊1  =   𝑧1 (2.36) 

𝑊2  =   𝑧2 (2.37) 

𝑊3  =   𝑥1 (2.38) 

𝑊4  =   𝑥2 (2.39) 

          𝑊5  =   tan(𝑥2) (2.40) 

  𝑊6  =   𝑒𝑥1 (2.41) 

 

The  Multivariate Polynomial Transform  of the first external input  "ℎ1"  is: 

 
(1).  Primary Expansion: 

𝐻1  =   𝑊1 (2.42) 

 (2).  Secondary Differential Expansion: 

𝑑𝑧1   +   0 ∙ 𝑑𝑧2   +   0 ∙ 𝑑𝑥1   +   0 ∙ 𝑑𝑥2   =   𝑑𝑊1 
(2.43) 
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The  Multivariate Polynomial Transform  of the second external input  "ℎ2"  is: 

 
(1).  Primary Expansion: 

𝐻2   =   𝑊2 
(2.44) 

 (2).  Secondary Differential Expansion: 

0 ∙ 𝑑𝑧1   +  𝑑𝑧2   +   0 ∙ 𝑑𝑥1   +   0 ∙ 𝑑𝑥2   =   𝑑𝑊2 
(2.45) 

 

 

The  Multivariate Polynomial Transform  of the third external input  "ℎ3"  is: 

 

(1).  Primary Expansion: 

𝐻3  =   𝑊3 (2.46) 

 (2).  Secondary Differential Expansion: 

0 ∙ 𝑑𝑧1   +  0 ∙ 𝑑𝑧2   +  𝑑𝑥1   +   0 ∙ 𝑑𝑥2   =   𝑑𝑊3 
(2.47) 

 

 

The  Multivariate Polynomial Transform  of the fourth external input  "ℎ4"  is: 

 

(1).  Primary Expansion: 

𝐻4   =   𝑊4 (2.48) 

 (2).  Secondary Differential Expansion: 

0 ∙ 𝑑𝑧1   +  0 ∙ 𝑑𝑧2   +  0 ∙ 𝑑𝑥1   +  𝑑𝑥2   =   𝑑𝑊4 
(2.49) 

 

 

The  Multivariate Polynomial Transform  of the fifth external input  "ℎ5"  is: 

 

(1).  Primary Expansion: 

𝐻5   =   
2𝑊5

1 +   𝑊5
2  

(2.50) 

(2).  Secondary Differential Expansion: 

0 ∙ 𝑑𝑧1   +   0 ∙ 𝑑𝑧2   +   0 ∙ 𝑑𝑥1   +  (1 + 𝑊5
2)𝑑𝑥2   =   𝑑𝑊5 (2.51) 
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The  Multivariate Polynomial Transform  of the sixth external input  "ℎ6"  is: 

 

(1).  Primary Expansion: 

𝐻6   =   6𝑊6 (2.52) 

 (2).  Secondary Differential Expansion: 

0 ∙ 𝑑𝑧1   +  0 ∙ 𝑑𝑧2   + 𝑊6𝑑𝑥1   +  0 ∙ 𝑑𝑥2   =   𝑑𝑊6 (2.53) 

 

Using the notation defined in equation (2.08) and (2.09), the complete  Multivariate Polynomial 

Transform of the entire system of second order  PDEs  may now be completely defined as: 

 
(1).  Primary Expansion: 

            𝐺1  =   𝐻2 (
𝑃110

𝑄110
) +  𝐻5 (

𝑃212

𝑄212
) +   𝐻3𝐻4  =   0                                                                 

(2.54) 

 𝐺2  =   (
𝑃122

𝑄122
) (

𝑃211

𝑄211
)  +   (

𝑃110

𝑄110
)

2

+  (
𝑃201

𝑄201
)

2

+  𝐻3
2  +   𝐻4

2  −   𝐻1𝐻6  =   0 (2.55) 

 
The complete Secondary Differential Expansion of this system of second order  PDEs  is the com- 

bination of  the  Secondary Differential Expansion of  "ℎ1" through  "ℎ6" and the same one present 

inside an initially assumed Multivariate Polynomial Transform that would have been selected for 

solving this particular system of  second order  PDEs. 

 

 
 

By substituting an initially assumed Multivariate Polynomial Transform into any type of  DE or 
system of  DEs would always result into defining a complete system of Nonlinear Simultaneous 
Equations to solve for.  Each exact numerical solution set obtained will always define a complete 
exact analytical solution of the DE or system of  DEs by inverting the corresponding initially 
assumed Multivariate Polynomial Transform.  This is provided of course that each of the first order  
ODEs  present inside the  Secondary Differential Expansion have all been determined as being 
exact differentials and therefore always completely integrable.  

Some of the unknown coefficients  present inside an initially assumed Multivariate Polynomial 
Transform would be reserved exclusively for defining all the basis function that  are to be present 
inside the analytical solution of a DE  or a system of  DEs.  Others would be mainly responsible for 
assuring that the boundary conditions of the  DE  or system of  DEs  would be completely satisfied.   

As a consequence of the fundamental laws of algebra, a completely differentiable mathematical 
equation as well as its many equivalent differential form representation in terms of a Multivariate 
Polynomial Transform can always appear in various disguise form.   That is, any mathematical 
equation as well as its equivalent differential form representation can always have many alternative 
equivalent representations.  However, to an observer each may appear quite distinct from one 
another and yet are completely identical with each other purely from a computational point of view. 

Such a unique mathematical property about equations in general would guarantee that there will 
always be an infinite number of numerical solution sets of the  Nonlinear Simultaneous Equations  
corresponding to a  DE  or a system of  DEs.  As a result of this, we acquire the ability of being able 
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to select among an infinite number of numerical solution sets obtained only those that would 
translate into defining much simpler Secondary Differential Expansion to integrate. This would 
have the effect of significantly facilitating the entire  integration process involved in the Secondary 
Differential Expansion when attempting to invert an initially assumed Multivariate Polynomial 
Transform for acquiring an exact analytical solution to a DE  or a system of  DEs. 

No analytical method of integration has ever been devised in the history of  Calculus  that could 
offer us with this much flexibility for selecting out of an infinite  number of integrals only those that 
are considered more friendly to evaluate then others while in the process of attempting to solve for a 
DE or a system of DEs.  Other well known traditional methods of analytical integration have shown 
weaknesses in that area mainly as a result of some major integrability issues due to a very restricted 
number of  integrals that could be resolved in the end while leaving behind a vast majority of them 
as completely unsolved. 

When the  Nonlinear Simultaneous Equations  cannot be solved in terms of an exact numerical 
solution set, this in turn would indicate that the exact analytical solution of the  DE  or system 
of  DEs  in question cannot be resolved as some exact combination of algebraic and elementary 
basis functions whether explicitly or implicitly defined.  It is then always possible to establish some 
form of a measure on the degree of accuracy that a particular numerical solution set can satisfy a 
system of  Nonlinear Simultaneous Equations  by using various well known methods of 
optimization techniques.   This in turn would provide us with some real measure of accuracy on 
how well the resultant analytical solution obtained can satisfy the  DE  or system of  DEs.   Of 
course only when an  exact  numerical solution set  of the Nonlinear Simultaneous Equations  has 
been found then this would automatically indicate that the  DE  or system of  DEs  in question can 
be completely resolved in terms of an  exact analytical solution.   All of this is provided of course 
that each first order ODE present in the Secondary Differential Expansion are determined to be 
exact and thus always completely integrable. 

The simplicity in appearance for the analytical solution of a particular  DE  or a system of  DEs  is 
very crucial towards a complete understanding of a physical system so that only those appearing in 
its simplest form would be of greatest interest to the physical science.  If we were to apply this very 
general principle directly into the world of physics under the new proposed unified theory of 
integration, then  Albert  Einstein's  assertion that   "God does not play with dices"  could certainly 
be put to the real test with potential major historical implications ! 

 

3. A universal method of proof for the quadratic equation and the superposition theorem 

As a direct consequence of having established a unified theory of integration, a universal method of 
proof can be devised for proving a variety of classical theorems that were once proven under old 
traditional methods of pure mathematical logic.  Only those theorems that can be formulated 
through some form of a  DE  or a system of  DEs  would be included.   

The simple quadratic formula would fall into such category of theorems since it can always be 
reformulated computationally using a method that is based entirely on the use of successive partial 
differentiation.  In this case, the unique computational method of proof for the quadratic equation 
begins by first computing the various partial derivatives of an initially assumed Multivariate 
Polynomial Transform  that has been selected solely on the basis of representing only the class of  
multivariate mathematical equations  that are defined in  explicit  form only. 

This would correspond to the case for  "k = 𝑚 =  1"  in equation (1.002) through (1.006) such that 

instead of assuming a Primary Expansion in the form of  "𝑓(𝑧𝑖, 𝑥𝑗) = 0",  we would instead assume 

an explicit version in the form of  "𝑧 =  𝑧(𝑥𝑗)"  as being a ratio of two general multivariate 

polynomials.  Note that since an explicitly defined equation is just a special case of an implicitly 

defined equation, we could have selected the original implicit form representation in the Primary 

Expansion and still arrive at an explicitly defined analytical solution in the end. 
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(1).  Primary Expansion: 

𝑧(𝑊𝑗)  =   
𝑃(𝑊𝑗)

𝑄(𝑊𝑗)
                                       (1 ≤ 𝑗 ≤ 𝑝)  (3.01) 

where "P"  and  "Q"  are each multivariate polynomials each consisting of a total number of  "p"  
auxiliary variables each of which are raised to some floating point value. 

(2).  Secondary Differential Expansion: 

𝑑𝑧  =   𝑑𝑊1                                         (3.02) 

            𝑑𝑥𝑖  =   𝑑𝑊𝑖+1                       (1 ≤ 𝑖 ≤ 𝑛)    (3.03) 

 

  ∑ 𝑁𝑖(𝑛+2)−𝑛−2+𝑡𝑑𝑧 

1

𝑡=1

  +    ∑ 𝑁𝑖(𝑛+2)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

  =                          
 

                                            =   𝑁𝑖(𝑛+2)𝑑𝑊𝑗          [1 ≤ 𝑖 ≤ 𝑝 − 1 − 𝑛]  [𝑛 + 2 ≤ 𝑗 ≤ 𝑝]    (3.04) 

  

𝑁𝑐(𝑊𝑗)   =  ∑ 𝑏𝑐,𝑡 (∏ 𝑊𝑗

𝐸𝑐,𝑠
′

𝑝

𝑗

)        

𝑐𝑟

𝑡=(𝑐−1)𝑟+1

   (3.05) 

                                                            [1 ≤ 𝑐 ≤ 𝑖(𝑛 + 2)]  [1 ≤ 𝑖 ≤ 𝑝 − 1 − 𝑛]  

 

The computed values for the various partial derivatives of  "𝑍 =  𝑍(𝑊𝑗)"  would then be equated 

with the various partial derivatives that are calculated based entirely on a very unique change of 

variables involving the coefficients and the root of the quadratic equation.   

This unique change of variable would include the root of the quadratic equation “r = r(A,B,C)"  that 
would be regarded as the  dependent  variable while the coefficients  A, B  and  C  would be defined 
as the independent variables.   This would correspond to "𝑚 = 1"  and  "𝑛 = 3" in the above 
differential expansion form representation.  We would setup our complete system of  Nonlinear 
Simultaneous Equations to solve for by simply equating the various partial derivatives of  
"r(A,B,C)"  with respect to each of the coefficient  A,  B  and  C with the various partial derivatives 
of our initially assumed  Multivariate Polynomial Transform that was setup to only represent all 
multivariate mathematical equations defined in explicit form only.   We can also apply the same 
logic for determining the root formulas corresponding to higher degree polynomials. 

By restricting our initially assumed Multivariate Polynomial Transform  to represent all mathe- 
matical equations in explicit form, this will guarantee the presence of exact numerical solution sets 
corresponding to the Nonlinear Simultaneous Equations to solve for.  Each of these exact numerical 
solution sets obtained would lead towards the formation of many complete snapshots of the actual 
general formula such that by some very special algebraic manipulations, will enable confirmation of 
its very unique existence.  The type of algebraic manipulation involved that is to be conducted will 
be referred to in the following section as being a special type of mathematical interpolation. 
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Another and far more interesting example mainly for the physical sciences is arriving at the 
famous  superposition theorem by once again beginning with an initially assuming Multivariate 
Polynomial Transform.  This time we would be selecting our differential expansion strictly in terms 
of  representing all  univariate  mathematical equations defined in  explicit  form only.   

This would correspond to the case for  "k = m = 𝑛 = 1"  in equation (1.002) through (1.006) such 

that instead of assuming a Primary Expansion in the form of  "𝑓(𝑧𝑖, 𝑥𝑗) = 0",  we would instead 

assume the explicit version of  "𝑦 =  𝑦(𝑥)"   as being a ratio of two general multivariate poly- 

nomials: 

 

(1).  Primary Expansion: 

𝑦(𝑊𝑗)  =   
𝑃(𝑊𝑗)

𝑄(𝑊𝑗)
                                       (1 ≤ 𝑗 ≤ 𝑝)  (3.06) 

where "P"  and  "Q"  are each multivariate polynomials each consisting of a total number of  "p"  
auxiliary variables each of which are raised to some floating point value.  

(2).  Secondary Differential Expansion: 

𝑑𝑥 =   𝑑𝑊1 (3.07) 

𝑑𝑦 =   𝑑𝑊2 (3.08) 

𝑁3𝑖−2𝑑𝑥 +   𝑁3𝑖−1𝑑𝑦 =   𝑁3𝑖𝑑𝑊𝑗         [1 ≤ 𝑖 ≤ 𝑝 − 2]  [3 ≤ 𝑗 ≤ 𝑝] (3.09) 

𝑁𝑐(𝑊𝑗)   =  ∑ 𝑏𝑐,𝑡 (∏ 𝑊𝑗

𝐸𝑐,𝑠
′

𝑝

𝑗

)        

𝑐𝑟

𝑡=(𝑐−1)𝑟+1

   (3.10) 

                                                                              [1 ≤ 𝑐 ≤ 3𝑖)]  [1 ≤ 𝑖 ≤ 𝑝 − 2]    

 

We would define the   Nonlinear Simultaneous Equations  to solve for by substituting  the above 
generally assumed Multivariate Polynomial Transform  into the following general class of second 
order  ODEs.  

ℎ1(𝑥)
𝑑2𝑦

𝑑𝑥2
  +   ℎ2(𝑥)

𝑑𝑦

𝑑𝑥
  +   ℎ3(𝑥)𝑦  =   ℎ4(𝑥)  (3.11) 

Next, we would be performing a very complete and detailed analysis on all computational results 
obtained by solving for the corresponding  Nonlinear Simultaneous Equations. 

The generalized form of this second order  ODE  would have been selected purely on the basis of its 
reoccurrence in describing various types of  linear mechanical and electrical models. 
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As in the case of the quadratic equation, by restricting our initially assumed Multivariate 
Polynomial Transform  to represent all mathematical equations in explicit form only, the presence 
of exact numerical solution sets corresponding to the  Nonlinear Simultaneous Equations  to solve 
for will confirm the unique explicit nature of the superposition theorem.  It is with some very 
special type of algebraic manipulations to be discussed in the next section that we will succeed in 
identifying a number of  subclasses  of  ODEs  by which the general explicitly defined analytical 
solution obtained would be applicable to.  By method of conjecture this would eventually lead us 
directly towards a purely computational proof of the famous  superposition theorem thereby 
completely bypassing all forms of non-computationally based mathematical methods of analysis ! 
 
 

 
4.  A new form of mathematical interpolation as a means of establishing a main pathway 

by which a unified theory of physics may be obtained 

Only from the relentless application of the new unified theory of integration on a very large scale 
over a substantial class of DEs and systems of  DEs can we expect to begin slowly unravelling 
many potentially new and yet undiscovered theorems similar to the superposition theorem.  It is 
only from the long term cumulative effect of gathering a large collection of such universal theorems 
that can only lead towards the development of some unified theory of physics.  This would be the 
result of having meticulously consolidate each of the most fundamental theorems ever discovered 
into one  gigantic universal theory of physics. 

All existing experimentally based methods of physics could never succeed in achieving such a 
monumental objective for the physical sciences.  That is because during the process of gathering the 
physical data there would be a severe loss of continuity that only mathematical equations are 
capable of maintaining throughout. 

There are of course more advanced examples that can be selected other than the ones involving the 
computational proof of the quadratic equation and the superposition theorem especially from 
someone with a remarkable understanding of mathematics and the physical sciences.  But no matter 
what example in whatever subject matter anyone decides to choose from, the bottom line is that by 
following a very unique brand of mathematical ideology such as the one being proposed in this 
article, the new unified theory of integration will always computationally arrive at the same  
mathematical equations that all traditional methods have succeeded in arriving at in the past.  By 
doing so, this would undoubtedly provide just the ideal fertile testing ground for any real future 
software development related to the unified theory of integration.  

It is expected that we would be following an extremely long computational trajectory for achieving 
in some cases the same exact results as with traditional methods of analysis.  However, it should be 
very obvious to everyone of the enormous potential benefits involved especially on a long term 
basis. 

"Our unique computational  approach  will always certainly succeed  in  solving  those "other" 
problems by  which  classical  methods  of  analysis  have  completely  failed  as  a  result  of  not  
having provided an adequate solution to certain key  DEs  or  systems  of  DEs" . 

So in order to take full advantage of what the unified theory of integration can offer to everyone, it 
must be implemented in a very methodological manner.  That is, each  DE  and system of  DEs  that 
is being solved for must absolutely undergo a very thorough examination in terms of determining 
the best analytical solution that can be extracted from the relentless numerical application of the 
initially assumed Multivariate Polynomial Transform described in equation (1.002) through 
(1.006).  All boundary conditions related to the  DE  or  system of  DEs must also become included 
as part of this gigantic computational process.   

We would therefore need to construct some form of a very unique presentation by which a very 
special type of mathematical database would have to be created for storing all empirical results 
obtained.  This would then be entirely converted in the form of pure mathematical equations.  
Beyond this computational stage, much further scrutiny would then be necessary for potentially 
recognizing certain key fundamental theorems that over time would eventually contribute towards 
the complete development of some unified theory of physics. 
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The exact nature of such a presentation that would be applicable for solving  all types of  DEs  and 
systems of  DEs under the new unified theory of integration can be described through the following 
general mathematical template. 

 

 

𝑔 (𝑥, 𝑦,
𝑑𝑦

𝑑𝑥
)  =   0 

 

 

Initial                                            Coefficient                         Exact analytical solution 

Condition                                      Values                               obtained using the Multivariate         

                                                                                                Polynomial Transform method 

 

𝑥0, 𝑦0                                                   𝑎0, 𝑏0, 𝑐0, …                                𝑈1(𝑥, 𝑦)  =   0 
 

𝑥0, 𝑦0                                                   𝑎1, 𝑏0, 𝑐0, …                                𝑈2(𝑥, 𝑦)  =   0 
 

𝑥1, 𝑦1                                                   𝑎0, 𝑏2, 𝑐2, …                                𝑈3(𝑥, 𝑦)  =   0 
 

𝑥1, 𝑦1                                                   𝑎3, 𝑏0, 𝑐0, …                                𝑈4(𝑥, 𝑦)  =   0 
 

𝑥2, 𝑦2                                                   𝑎4, 𝑏3, 𝑐2, …                                𝑈5(𝑥, 𝑦)  =   0 
  

.   .   .                                                 .    .    .                                        .    .    . 

.   .   .                                                 .    .    .                                        .    .    . 

.   .   .                                                 .    .    .                                        .    .    . 

 

 

 

Table 4.1 

 

This tailored designed template was produced to accommodate only first order ODEs.   However 
due to the universality nature of the fundamental logic behind introducing such a new type of 
template in mathematics, it can easily be modified to accommodate other far more complex types of  
DEs  and systems of  DEs. 

In the following example, we have included a very simple live demonstration by which the 
proposed unified theory of integration would succeed in resolving a randomly selected  "general"  
first order  ODE  uniquely in terms of a complete  "general"  analytical solution.    

Only by following this example very closely would it become very apparent that our unique 
mathematical template has succeeded in developing a more generalized approach for arriving at 
general analytical solutions to any type of  DEs  and systems of  DEs.   This would certainly go a 
long way towards uncovering the many well hidden potential mathematical theorems that lay very 
deep beneath many unresolved DEs  and  systems of  DEs. 
 
"It is only by being in complete possession of a very large collection of  powerful mathematical 
theorems that can succeed in carving a whole new pathway by which a unified theory of physics 
can eventually be uncovered. " 
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Example (4.1).  Starting with the following general first order  ODE,  

𝑥
𝑑𝑦

𝑑𝑥
 +   𝑎𝑦 +   𝑏𝑥𝑛𝑦2  =   0 

(4.01) 

we can begin by constructing the following table: 

 

 

𝑥
𝑑𝑦

𝑑𝑥
 +   𝑎𝑦 +   𝑏𝑥𝑛𝑦2  =   0 

 

 

Initial                                            Coefficient                         Exact analytical solution 

Condition                                      Values                               obtained using the Multivariate         

                                                                                                Polynomial Transform method 

 

𝑥0 = 1                                                  𝑎 = 1.0                              (−3𝑥 +   𝑥−1)𝑦 +   2 =  0 

𝑦0 = 1                                                  𝑏 = 1.0                                           
                                                               𝑛 = −1.0                                           

𝑥0 = 1                                                  𝑎 = 1.2                              (1.4𝑥1.2  −  𝑥2)𝑦 −   0.80 =   0 

𝑦0 = 2                                                  𝑏 = −1.0                                           
                                                               𝑛 = 2.0                                           

𝑥0 = 1                                                   𝑎 = 1.2                            (1.7𝑥1.2 +  1.5−2)𝑦 +  3.2 =   0  
𝑦0 = −1                                                𝑏 = 1.5                                           
                                                                𝑛 = −2.0                                           

𝑥0 = 1                                                   𝑎 = 2.0                             𝑥2𝑦(0.5 −   ln(𝑥))  −   1  =   0  
𝑦0 = 2                                                   𝑏 = −1.0                                           
                                                                𝑛 = 2.0                                           

𝑥0 = 1                                                   𝑎 = 1.5                             (−2.75𝑥1.5 +   2𝑥3)𝑦 −  1.5 =   0  
𝑦0 = −2                                                𝑏 = 2.0                                           
                                                                𝑛 = 3.0                                           

𝑥0 = 1                                                   𝑎 = 1.0                             𝑥𝑦(1 +   ln(𝑥))  −   1.0  =   0  
𝑦0 = 1                                                   𝑏 = 1.0                                           
                                                                𝑛 = 1.0                                           
                                

𝑥0 = 1                                                   𝑎 = −1.0                      𝑥−1𝑦(−1 +   1.5 ln(𝑥))  −   1.0 =  0 

𝑦0 = −1                                                𝑏 = 1.5                                           
                                                                𝑛 = −1.0                                           
 

 

Table 4.2 
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The evidence gathered purely by observation from this table suggests by conjecture that: 

𝑓1(𝑥, 𝑦) =   0 =   (𝐴𝑥𝐵  +   𝐶𝑥𝐷)𝑦 +   𝐸 (4.02) 

and: 

𝑓2(𝑥, 𝑦) =   0 =   𝑥𝐴𝑦(𝐵 +   𝐶 ln(𝑥))  +   𝐷 (4.03) 

both appear to be perfect candidates for the general exact solution of the ODE where the 

coefficients  "A", "B", "C", "D" and "E"  are to be expressed in terms of the coefficients  "a", "b", 

"n" and the initial condition of the  ODE. 

 
For the first expression defined by  "𝑓1(𝑥, 𝑦) = 0",  we substitute this equation into the  ODE  and 

equate like terms to zero. 

 
The first derivative of equation (4.02) is defined as: 

𝑑𝑦

𝑑𝑥
 =   −

𝜕𝑓1

𝜕𝑥

𝜕𝑓1

𝜕𝑦
⁄   =   

−𝑦(𝐴𝐵𝑥𝐵−1  +   𝐶𝐷𝑥𝐷−1)

𝐴𝑥𝐵  +   𝐶𝑥𝐷
 (4.04) 

─── 
Substituting this equation into the  ODE  defined by equation (4.01), we obtain: 

−𝑥𝑦(𝐴𝐵𝑥𝐵−1  +   𝐶𝐷𝑥𝐷−1)

𝐴𝑥𝐵  +   𝐶𝑥𝐷
  +   𝑎𝑦 +   𝑏𝑥𝑛𝑦2   =    0 (4.05) 

From equation (4.02): 

𝑦  =    
−𝐸

𝐴𝑥𝐵  +   𝐶𝑥𝐷
 

(4.06) 

Substituting this equation into equation (4.05) and simplifying the results we arrive at the following 

general expression: 

𝐴(𝑎 −   𝐵)𝑥𝐵   +   𝐶(𝑎 −   𝐷)𝑥𝐷  −   𝑏𝐸𝑥𝑛   =    0 (4.07) 

Based  purely on empirical observations only, we can conjecture from entry  1, 2, 3  and  5  of  

table (4.2)  and equation (4.02) that:  

𝐵 =  𝑎 
(4.08) 

and: 

𝐷 =  𝑛 (4.09) 

Under this purely hypothetical assumption based entirely on the empirical data obtained, equation 

(4.07) can now be rewritten as: 

 

𝐴(𝑎 −   𝐵)𝑥𝑎   +   𝐶(𝑎 −   𝐷)𝑥𝑛  −   𝑏𝐸𝑥𝑛   =    0 (4.10) 
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Since the initial condition of the ODE is always known in advance, we can also include the 

following additional equation by substituting  "𝐵 = 𝑎",  "𝐷 = 𝑛",  "𝑥 =  𝑥0"  and "𝑦 = 𝑦0"  into 

equation (4.02). 

  

The results are: 

(𝐴𝑥0
𝑎   +   𝐶𝑥0

𝑛)𝑦0  +   𝐸  =    0 (4.11) 

The complete system of nonlinear simultaneous equations to solve for where the unknown 

coefficients are now reduced to "A", "C" and "E", can now be obtained by equating like terms to 

zero in equation (4.10) and by including equation (4.11) for satisfying the initial condition of the  

ODE.  

 

The results are: 

𝐴(𝑎 −   𝐵)                          =   0 (4.12) 

𝐶(𝑎 −   𝑛) −   𝑏𝐸             =   0 (4.13) 

(𝐴𝑥0
𝑎  +   𝐶𝑥0

𝑛)𝑦0  +   𝐸   =   0 (4.14) 

One complete solution set to this system of three nonlinear equations in four unknowns is: 

𝐴  ≠   0 (4.15) 

𝐵 =   𝑎 (4.16) 

                               𝐶  =    
−𝐴𝑏𝑥0

𝑎𝑦0

𝑎 +   𝑏𝑥0
𝑛𝑦0 −   𝑛

 (4.17) 

and from equation (4.13): 

                                                               𝐸  =    
(𝑎 −   𝑛)𝐶

𝑏
                            (𝑎 ≠ 𝑛) (4.18) 

where in equation (4.02),  we can set the  "A"  coefficient as arbitrary defined provided that it is not 

equal to zero.  Note that the expression for  "C"  in equation (4.17) was derived by multiplying both 

sides of equation (4.14) with "b",  adding the result with equation (4.13) and finally solving for  

"C". 

If for example, we select   "𝐴 =  −2.75", "𝑎 = 1.5", "𝑏 = 2", "𝑛 = 3","𝑥0 = 1"  and  "𝑦0 = −2" 

then using equation (4.15) through (4.18) we find that: 

  

      𝐵  =   𝑎  =   1.5 (4.19) 

𝐶 =    
−𝐴𝑏𝑥0

𝑎𝑦0

𝑎 +   𝑏𝑥0
𝑛𝑦0 −   𝑛

  =    
−(−2.75)(2)11.5(−2)

1.5 +   2(1)3.0(−2) −  3
  =   

−11

−5.5
 =   𝟐 ← (4.20) 

𝐷 =  𝑛 =  3 (4.21) 

and: 

𝐸 =   
(𝑎 −   𝑛)𝐶

𝑏
  =   

(1.5 −   3)(2)

2
  =  −𝟏. 𝟓 ← (4.22) 
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Substituting these coefficient values into equation (4.02), we arrive at the same expression as the 

one defined in the fifth entry of  table (4.2).  

 

Equation (4.02) represents an exact solution that appears to only satisfy a limited range of values for 

the coefficients present in the ODE.  However, evidence suggests from table (4.2) that the exact 

solution obtained in entries 4, 6 and 7 are not in the same format as in equation (4.02). 

 

As a result of this observation, more digging is required before a more complete general exact 

solution satisfying all the initial conditions and the coefficients present in the  ODE  is obtained. 

For the second candidate  "𝑓2(𝑥, 𝑦) = 0"  as defined by equation (4.03), a relationship for the 

coefficients  "𝐴", "𝐵", "𝐶"  and  "𝐷" expressed in terms of the coefficients  "𝑎", "𝑏", "𝑛" and the 

initial condition of the  ODE  can be determined by simply substituting equation (4.03) into the  

ODE  and equating like terms to zero. 

 

The first derivative of equation (4.03) is defined as: 

𝑑𝑦

𝑑𝑥
 =   −

𝜕𝑓2

𝜕𝑥

𝜕𝑓2

𝜕𝑦
⁄    =   

−𝑦(𝐴𝐵𝑥𝐴−1  +   𝐴𝐶𝑥𝐴−1 ln(𝑥)  +   𝐶𝑥𝐴−1)

𝑥𝐴(𝐵  +   𝐶 ln(𝑥))
 (4.23) 

 
Substituting this equation into the  ODE  we get: 

[
−𝑥𝐴𝑦(𝐴𝐵 +   𝐴𝐶 ln(𝑥)  +   𝐶

𝑥𝐴(𝐵 +   𝐶 ln(𝑥))
]   +   𝑎𝑦  +   𝑏𝑥𝑛𝑦2   =   0 (4.24) 

From equation (4.03): 

𝑦  =    
−𝐷

𝑥𝐴(𝐵 +   𝐶 ln(𝑥))
 (4.25) 

Substituting this equation into equation (4.24) and simplifying the results we arrive at the following 

general expression to solve for: 

𝑦[(−𝐴𝐵 +   𝑎𝐵 −   𝐶)𝑥𝐴 +   𝐶(𝑎 −   𝐴)𝑥𝐴 ln(𝑥)  −   𝑏𝐷𝑥𝑛]   =   0 (4.26) 

based purely on empirical observations, we can conjecture from the fourth, sixth and seventh entry 

of  table (4.2) that: 

𝐴 =  𝑛 (4.27) 

Thus, on the basis of this purely hypothetical assumption, equation (4.26) becomes: 

 

𝑦[(−𝑛𝐵 +   𝑎𝐵 −   𝐶 −   𝑏𝐷)𝑥𝑛  +   𝐶(𝑎  −   𝑛)𝑥𝑛 ln(𝑥)]   =   0 (4.28) 

Since the initial condition of the ODE is always known in advance, we can also include the 

following additional equation by substituting  "𝑥 =  𝑥0 ", "𝑦 =  𝑦0"  and  "𝐴 = 𝑛" into equation 

(4.03). 
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The results are: 

𝑥0
𝑛𝑦0(𝐵 +   𝐶 ln(𝑥0))   +   𝐷  =   0 (4.29) 

The complete system of nonlinear simultaneous equations to solve for where the unknown 

coefficients are B, C and D can be obtained by equating like terms to zero in equation (4.28) and by 

including equation (4.29) for satisfying the initial condition of the  ODE. 

 

The results are: 

𝐵(𝑎 −   𝑛) −   𝐶 −   𝑏𝐷        =   0 (4.30) 

𝐶(𝑎 −   𝑛)                                  =   0 (4.31) 

𝑥0
𝑛𝑦0(𝐵 +   𝐶 ln(𝑥0))  +   𝐷  =   0 (4.32) 

Equation (4.31) is a critical equation that specifies under which condition for the parameters in the  

ODE  are  "𝑓1(𝑥, 𝑦) = 0"  and  "𝑓2(𝑥, 𝑦) = 0"  a valid exact solution. This condition is clearly 

visible since from equation (4.31), we know that  "𝐶 ≠ 0"  which ultimately leads us to conclude 

that "𝑛 = 𝑎". 

Thus as a result of equation (4.31), 

𝑓2(𝑥, 𝑦)   =   0  =   𝑥𝐴𝑦(𝐵 +   𝐶 ln(𝑥))   +   𝐷 
(4.33) 

satisfies the ordinary differential equation   IF AND ONLY IF    "𝑛 = 𝑎".  

 

By extending table (4.2) to include additional exact solutions corresponding to a different set of 

values for the initial conditions and the coefficients present in the ODE, we can easily deduce that: 

𝑓1(𝑥, 𝑦)  =   0  =   (𝐴𝑥𝐵  +   𝐶𝑥𝐷)𝑦  +   𝐸 (4.34) 

satisfies the  ODE  when  "𝑛 ≠ 𝑎". 

 

 

The complete solution set of this system of three equations in three unknowns is: 

     𝐷  ≠   0 
(4.35) 

          𝐶   =  −𝑏𝐷 (4.36) 

𝐵  =   
−𝐷

𝑥0
𝑛𝑦0

  −   𝐶 ln(𝑥0)    =   
 −𝐷  −   𝐶𝑥0

𝑛𝑦0 ln(𝑥0)

𝑥0
𝑛𝑦0

 
(4.37) 

where from equation (4.33), we can set the  "D"  coefficient as arbitrary defined provided that it is 

not equal to zero. 

 

If we select for example, "D = -1", "a = 2", "b = -1", "n = a = 2", "𝑥0 = 1" and "𝑦0 = 2" then using 

equation (4.27), (4.36) and (4.37), we find that: 

𝐴 =   𝑛 =   𝟐 ← (4.38) 
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𝐶 =  −𝑏𝐷 =  −1(−1)(−1) =  −𝟏 ← (4.39) 

and: 

𝐵 =   
−𝐷 −   𝐶𝑥0

𝑛𝑦0 ln(𝑥0)

𝑥0
𝑛𝑦0

   =     
−(−1) −   (−1)(1)2(2) ln(1)  

(1)2(2)
 =   𝟎. 𝟓𝟎 ←   (4.40) 

 

Substituting these coefficient values into equation (4.33), we arrive at the same expression as the 
one defined in the fourth entry of table (4.2). 

 
 

The results of having performed such an indebt computational analysis from the application of a 
unified theory of integration on this particular general first order  ODE  has provided a very 
substantial amount of detailed information.  In fact, this would go much further beyond the 
capability of  any traditional  non-universal method of computational analysis. 
  
A typical report that a numerical analyst might be presenting to management would appear as 
follow: 
 

"… thus, our empirical findings has indicated to us that for this first order  ODE there are two 

recognizable general exact solutions.  The first one is for the case when  "𝑛 = 𝑎"  and the other is 

when  "𝑛 ≠ 𝑎".  The general exact solutions obtained can be expressed as a combination of 

algebraic and elementary basis functions defined only in explicit form.  Furthermore, we have 

established that there is according to the empirical results presented in table (4.2) an explicit 

relationship involving the initial condition (𝑥0, 𝑦0)  of the ODE, the coefficients (𝑎, 𝑏, 𝑛)  of the  

ODE  and the coefficients in our two initially assumed general exact solutions." 

  
It is expected that many such reporting systems applied on a very large variety of  DEs and systems 
of DEs would inevitably lead to the discovery of many new fundamental theorems similar to the 
superposition theorem. 
 

 

5.  A universal system of implicit numerical interpolation 

Finite and infinite expansion series were traditional used for many centuries as a means of 
approximating certain types of functions.  Many forms of approximation were developed in the past 
but the Taylor's and Fourier's expansion series still remain the most widely used today. 

We have described an entirely new  universal  differential expansion form capable of representing 
far more complex mathematical functions than what is possible under the Taylor's and Fourier's 
expansion series method. It now becomes a matter of much further and deeper investigation to 
determine how well can such a type of  new differential expansion form succeed in approximating a 
general mathematical equation. 

There are two major requirements for an initially assumed Multivariate Polynomial Transform to be 
used as a practical method of approximation.  The first, is of course that there must be some type of  
DE  or system of  DEs  associated in the process of completely defining the mathematical equation 
that is being approximated.  The second, is that the Secondary Differential Expansion  must become 
completely integrable upon having successfully arrived at some fairly good approximate numerical 
solution set  of the relevant system of  Nonlinear Simultaneous Equations. 

When both of these conditions are met then this could potentially open the door for achieving a far 
more complex system of  approximations than what other traditional methods can offer in mathe- 
matics.  In our case, we would go much beyond the use of the more conventional types of 
approximation series by allowing only the computational aspect of our  initially assumed 
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Multivariate Polynomial Transform decide what basis functions are contained in the approximation 
solution and also whether it is explicit or implicit by nature.  This would also include 
computationally  arriving at the correct combination of composite functions without imposing any 
limits whatsoever on each of their degree of composition. 

We demonstrate in the following example a case by which a simple exponential function was being 
successfully approximated by a very complex implicitly defined mathematical equation consisting 
of at least one high degree composite function.   It must be emphasized that the exact nature of the 
composite function and the very implicit nature of the entire approximation solution obtained  were 
entirely established purely my method of computational analysis only. 

  

Example (5.1).  If we substitute the following initially assumed Multivariate Polynomial Trans-

form: 

 (1).  Primary Expansion:  

          𝑌 =   
𝑎1𝑊1   +   𝑎2 

𝑎3𝑊1   +   𝑎4
 

(5.01) 

 (2).  Secondary Differential Expansion: 

               𝑑𝑋 =   
𝑏1𝑊1  +  𝑏2

𝑏3𝑊1  +   𝑏4
  𝑑𝑊1 

(5.02) 

into the first order  ODE  that define the following exponential function: 

𝑦 =   1.5𝑒−0.5𝑥 (5.03) 

then by solving for the relevant system of nonlinear simultaneous equations, we arrive at the 
following initially assumed  Multivariate Polynomial Transform  to invert: 

 

(1).  Primary Expansion: 

𝑌 =   
−0.16301958 𝑊1   +    0.26986711

   1.82320996 𝑊1   +    0.07715033
 (5.04) 

 (2).  Secondary Differential Expansion: 

         𝑑𝑋 =   
   0.83816740 𝑊1   +    1.31793167 

0.64312753 𝑊1   +    0.0271196
  𝑑𝑊1 (5.05) 

 

The complete inverse  Secondary Differential Expansion can be obtained by first integrating both 

sides of equation (5.05) for  "𝑊1(𝑥)"  using the following general integral formula for partial 

fractions: 

∫  
𝑎𝑢 +  𝑏 

𝑝𝑢 + 𝑞  
𝑑𝑢    =     

𝑎𝑢

𝑝
   +    [

𝑏𝑝 − 𝑎𝑞

𝑝2
] ln (𝑝𝑢 + 𝑞) 

(5.06) 
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The next step afterwards is to substitute the expression obtained for  "𝑊1(𝑥)"  into the  Primary 

Expansion defined by equation (5.04). 
 

The solution of equation (5.05) using the above integral formula is written as: 

𝑥 =   [
0.838𝑊1

0.6431
]    +   [

{1.318(0.643) −   0.838(0.0271)}

0.6432
] ln(0.643𝑊1  +   0.0271)   +    

                                                                                                                            +     𝐾  (5.07) 

  =   1.303𝑊1   +   2.00 ln(0.643𝑊1  +  0.0271)   +   𝐾 (5.08) 

where: 

𝐾  =   𝑥0 −   1.303𝑊01  −   2.00 ln(0.643𝑊01  +   0.0271) 

 

(5.09) 

It can be shown that if: 

𝑦 =   
𝐴1𝑊1  +   𝐴2

𝐴3𝑊1  +  𝐴4
 

(5.10) 

then: 

𝑊1  =   
−𝐴4𝑦  +   𝐴2

    𝐴3𝑦  −   𝐴1
 

(5.11) 

so that from our  Primary Expansion  as defined by equation (5.04), we can directly express  "𝑊1"  

as a function of  "𝑦"  to obtain 

𝑊1  =   𝑊1(𝑦)  =    
−0.0771503𝑦  +   0.26986711 

1.82320996𝑦  +   0.16301958
 

(5.12) 

where: 

𝐴1  =  −0.16301958,                         𝐴2  =   0.26986711 

𝐴3  =  1.82320996,                            𝐴4  =   0.07715033 

 

It follows that: 

𝑊01  =   𝑊1(𝑦0)    =    
−0.0771503𝑦0   +   0.26986711 

1.82320996𝑦0   +   0.16301958
   

(5.13) 

                                   =    
−0.077(1.5)  +  0.270

   1.823(1.5)  +  0.163
  =   

0.1545

2.8975
 (5.14) 

  =   0.0533                    
(5.15) 

The constant of integration defined by equation (5.09) may now be evaluated as: 
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                      𝐾 =   0 − 1.303(0.0533) −   2.00 ln[(0.643)(0.0533) +   0.0271] (5.16) 

=   0 −   0.0694 −   2.00 ln(0.06137)  =   5.512 (5.17) 

By substituting equation (5.12) into equation (5.08) and simplifying the results, we arrive at an 

implicitly defined equation in the form of: 
 

𝑓(𝑥, 𝑦)  =   0 =   1.303 [
−0.077𝑦  +   0.270 

1.823𝑦  +   0.163
]   +    

                                                            +   2.0 ln [
0.178

1.823𝑦 +   0.163
]   −    𝑥  +    5.512 (5.18) 

𝑥 𝑦𝑒𝑥𝑎𝑐𝑡 𝑤1 𝑓(𝑥, 𝑦𝑒𝑥𝑎𝑐𝑡)  

-5.0 

-4.5 

-4.0 

-3.5 

-3.0 

-2.5 

-2.0 

-1.5 

-1.0 

-0.5 

 0.0 

 0.5 

 1.0 

 1.5 

 2.0 

 2.5 

 3.0 

 3.5 

 4.0 

 4.5 

18.273741 

14.231604 

11.083584 

8.631904 

6.722534 

5.235514 

4.077423 

3.175500 

2.473082 

1.926038 

1.500000 

1.168201 

0.909796 

0.708550 

0.551819 

0.429757 

0.334695 

0.260661 

0.203003 

0.158099 

 -0.034049 

 -0.031716 

 -0.028729 

-0.024910 

-0.020031 

-0.013808 

-0.005885 

0.004179 

0.016924 

0.033003 

0.053192 

0.078390 

0.109606 

0.147920 

0.194418 

0.250076 

0.315614 

0.391310 

0.476811 

0.570992 

 -5.861676E-003 

 -5.583780E-003 

 -5.233661E-003 

 -4.795080E-003 

 -4.249876E-003 

 -3.579069E-003 

 -2.765262E-003 

 -1.797217E-003 

 -6.780194E-004 

  5.611024E-004 

  1.838294E-003 

  2.985896E-003 

  3.697588E-003 

  3.452581E-003 

  1.412990E-003 

 -3.704934E-003 

 -1.377577E-002 

 -3.140153E-002 

 -5.999799E-002 

 -1.037754E-001 

                                   Table 5.1 

 

Many of the numerical solution sets obtained not shown here satisfied the relevant system of  
Nonlinear Simultaneous Equations  to a fairly high degree of accuracy.  In fact so much so that we 
decided to conduct a more indebt numerical analysis by comparing the results with the implicitly 
defined equation obtained from having inverting the corresponding initially assumed Multivariate 
Polynomial Transform.  This has created just the perfect environment by which an implicitly 
defined analytical solution was able to approximate to a fairly reasonable level of accuracy the 
simple ordinary exponential function defined by equation (5.03). 
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6. Mathematica’s own approach to analytical  integration 

Mathematica  is a very popular software package that maintains a collection of symbolic and 
numerical methods for dealing with the entire aspect of differentiation and integration. Their 
general approach to integration is nowhere near the one described in this article which is based 
entirely on the application of multivariate polynomials as well as the differential of multivariate 
polynomials for finding analytical solutions to all types of  DEs  that would also include systems of  
DEs  as well.  Their online documentation does not present a single instance by which multivariate 
polynomials and the differential of multivariate polynomials have ever being applied for solving 
any particular type of  DE or system of  DEs. 

Wolfram's general symbolic approach to solving  DEs  has the greatest drawback that it cannot be 
applied universally right across all types of  DEs  and  systems of  DEs.  Under the new proposed 
unified theory of integration presented in this article,  all  DEs  and systems of  DEs are first 
subjected to a very rigorous computational process designed specifically for acquiring the type of 
data that would be transformed in terms of analytical solutions involving the algebraic and 
elementary basis functions only. Depending on the nature of the data acquired, each analytical 
solution obtained would be expressed in either explicit or in implicit form involving the use of 
composite functions with no limit whatsoever on each of their degree of composition. 

The exact computational process involved would be the result of substituting the  initially assumed 
Multivariate Polynomial Transform described by equation (1.002) through (1.006) into a DE or a 
system of DEs and afterwards solving for the relevant system of  Nonlinear Simultaneous 
Equations that are generated from this process.  Each numerical solution set of the  Nonlinear 
Simultaneous Equations  become the data by which all analytical solutions are constructed from.   

As part of the general procedure, this would always involve the exact integration of a series of first 
order ODEs  that are present in the Secondary Differential Expansion of an initially assumed 
Multivariate Polynomial Transform as described by equation (1.003) through (1.006).   They will 
always appear as first order  ODEs  regardless of the type of  DE or system of  DEs that is being 
solved for.  Since only first order ODEs are always involved then each are subjected to passing the 
fundamental test of exactness for determining whether or not any one of them is an exact 
differential.  If so, then the integration process becomes considerably simplified for all those 
differentials that succeed in passing the critical test of exactness.  

The final stage of the process would require that exact analytical solutions obtained from this 
unique integration  process be substituted into the Primary Expansion as defined by equation 
(1.002).  It is at this point that the various boundary conditions of the original DE or system of  DEs 
are being matched with the ones that are naturally present throughout the complete integration 
process of the Secondary Differential Expansion of an initially assumed Multivariate Polynomial 
Transform. 

With Mathematica  you cannot just simply enter any type of  DE or system of  DEs, especially of 
the  PDE  type and  expect that an analytical solution whether exact or approximate be returned to 
you in either explicit or in implicit form.  Also, you cannot expect an analytical solution to be 
constructed entirely from composite functions with no limits on each of their degree of composition 
just from the use of the algebraic and elementary basis functions.   "That is only possible under a 
true unified analytical theory of integration which is currently not present anywhere within all of 
Mathematica".  So in no way does Wolfram appear to follow this type of ideology in mathematics 
mainly because the computational complexities involved would also have been far too 
overwhelming for execution on just a regular PC.  

By writing a general computer program for implementing such a proposed unified theory of 
integration in a complete automated setting would represent a far better alternative than using 
Mathematica's general non-universal approach to analytical integration.   
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7. The development of a new type of  physics for maintaining  uniform continuity 
throughout 

The new proposed mathematical ideology restricts all analysis on mathematical equations at the 
differential level in order to insure that the concept of continuity be always maintained 
throughout.  This would suggest that the application of a true unified  theory of integration for 
solving any type of  DEs  or system of  DEs  could hypothetically lead us towards the creation of 
some infinitely perfect universe over its entire composition.  This is provided of course that we are 
able to maintain complete continuity in mathematical equations throughout the entire process of 
finding analytical solutions to DEs  and systems of  DEs.   Such an infinitely perfect and continuous 
universe would be quite feasible to construct but only on the general assumption that   "the 
mathematical properties of a straight line equation will always remain the same regardless of your 
exact physical location inside this perfect universe and regardless to what time frame you are 
specifically referring to". 

A true unified analytical theory of integration will guarantee that every type of  DE  or system of  
DEs has some analytical solution behind it whether considered as being exact or approxi- 
mate.   Furthermore, if the theory is to retain all the basic features of universality then it must be 
applicable to all cases involved without any exceptions whatsoever.  The only way for this to be 
entirely possible is that such a  unified  analytical  theory of integration  must  absolutely be 
"computationally-base" for arriving at complete  analytical solutions  to  any type of  DE  and 
systems of  DEs.  So at this point there can be no doubt that  the new proposed mathematical 
ideology being presented in this article does indeed appear to define some sort of a unified theory of 
integration. 

This very powerful assertion made about analytical integration in general has mutated itself into a 
new kind of physics that I would like to introduce everyone as being an  "idealistic physics".   

The fundamental principle behind this new type of physics is that we can use an infinitely perfect 
universe for modelling our own imperfect physical universe as long as we are able to maintain 
complete continuity in mathematical equations by solving all  DEs  and systems of  DEs  under a 
single unified theory of integration.  Other imperfect physical universes similar to our own may be 
modeled like clay from the same infinitely perfect controlled universe.  Each would then differ from 
one another only in terms of some mathematical variation representing a measure on how energy is 
being distributed within the basic atomic structure of matter  

Without some way of maintaining complete continuity in  mathematical equations  it would 
virtually become impossible to establish some very fundamental links that can exists between 
mathematical equations.  It's only through the complete consolidation of each of these fundamental 
links between mathematical equations that in the end would play a vital role for arriving at some 
unified theory of physics.  All of this of course becomes absolutely invisible under any form of 
experimentally based theory. 

In an idealistic physics, discrete variables would have no meaning whatsoever since everything 
would exist inside an infinitely perfect dynamical structure involving infinitesimal measurements of 
space and time.  All forms of navigation inside this perfect universe would be moving along a 
pathway of  DEs  with the new mathematical ideology acting as the main propulsion engine.  The 
only access entry point inside such an infinitely perfect universe is by computation and not based 
entirely on the use of our imperfect sense of human physical observation that everyone was 
expecting to succeed during the complete historical development of classical and modern physics.   

" To always remain a part of this reality, we need to listen very attentively to what mathematics is 
telling us and not what we always want to hear. " 

The complete understanding of our own imperfect physical universe could never become reality 
unless we take advantage of the basic tools offered by the new proposed mathematical and physical 
ideology being introduced in this article.   Under this new system of logic, all references made from 
within this infinitely perfect universe would be driven strictly by computation which would 
virtually eliminate any risk of encountering the type of contradictions that today are so prevalent 
everywhere in classical and quantum physics. 
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If we were to succeed in arriving at some unified theory of physics then no doubt we would have at 
our fingertips a complete and very detailed understanding of our own physical universe that maybe 
one day might bring us one step closer to its original creator. 

and so ...  

"what we are able to understand could give us the capacity to change it  for the better." 

 

 

8. The complete unification of all of physics under one  computer software development

A unified theory of physics has true meaning only in relation to some unified theory of analytical 
integration.   It is based on the general assumption that everything in this physical universe can be 
described by the use of  DEs and systems of  DEs.    They in turn would be completely solvable as 
some exact or approximate algebraic combination of elementary and algebraic basis functions by 
following a very unique system of  computational logic such as the one being introduced in this 
article.   

Such a grand theory of physics would be constantly referring to the existence of some type of a 
gigantic universal algebraic system, the very same one in which  Albert Einstein  himself always 
believed had to exist for completely describing reality.   It would stand up at the very top of the 
hierarchy of all other known existing theories of physics that would include the theory of general 
relativity, quantum physics and including string theory as well. 

All traditional theories in physics lack a great deal of universality, the type that can only lead to the 
unification of all physics under a single unified theory of integration.  By following the same 
common mathematical ideology that would be entirely based on the fundamental continuity 
property of all mathematical equations,  there would be no risk of encountering any type of 
contradictions whatsoever.  That is because everything would be presented on a computational 
platform driven entirely from the relentless application of the fundamental laws of differentiation 
from which the proposed unified theory of integration is entirely based on. 

Methods of computation are so important in our everyday lives.  The current existing global 
monetary structure which drives our  entire world economy completely depends on it just as much 
as our technology could not exists without it.   None of this would be possible without the use 
of  some form of  a  "system of computational logic"  applied to mathematical equations that would 
have originated from the application of some type of a mathematical ideology. 

A highly automated computer software program can always be written for the complete 
implementation of the process involved in solving for any type of  DEs  and systems of  DEs  that 
would be entirely based on the application of the new proposed mathematical ideology.  Such a new 
type of software development would undoubtedly be regarded as being  "the complete unified 
theory of physics"  but only in its most raw state.   Human intervention would then only be 
necessary for complete translation of all computer results that would appear in the form of exact 
numerical computations into practical decipherable mathematical equations.  They in turn would be 
used exclusively for describing the very fundamental structure of our entire physical universe. 

Everyone would have complete access to this computer software over the internet for execution on 
the most advanced super computers of our time.   This software would then be regarded as the main 
pillar by which all of theoretical physics may now be  reconstructed  without leaving the impression 
that we are attempting to reinvent the wheel.  This I believe is possible since we would be finding 
ourselves moving along a pathway that would be describing an entirely new ideology in both 
mathematics and physics, the type that has never been investigated by anyone in the past.  Much 
along the same line of reasoning as  CERN  was built around every part of experimental nuclear 
physics.  In our case, we would be implementing a very unique technology by which every part of 
theoretical physics would now be investigated under a single common unified theory of integration.   

This may perhaps one day have a very profound effect in the manner by which the prestigious 
Nobel Prize would be presented for major contributions into physics.  There would be two such 
major prizes offered instead of one.  The first, would be for exceptional contributions to all aspects 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

321



 

of experimental physics while the other, for outstanding new contributions into all aspects of the 
new proposed idealistic physics under a  complete unified theory of integration.  Eventually at some 
point in time, both types of physics will be expected to intersect at the same common point of 
intersection by which a theory of everything may one day become reality for all of mankind. 
 

9. Engineering science under one universal system of computational logic 

The new proposed mathematical ideology can also be transformed into a very unique method of 
engineering analysis by which all  DEs  and systems of  DEs  may now be more closely scrutinized 
for arriving at a much greater variety of analytical solutions.  This would not be feasible by  
following any other existing traditional methods of analysis since the vast majority of analytical 
solutions obtained are generally limited to very simple functional expressions that are mostly 
expressed in explicit form. 

Today, methods of solving for  DEs  and  systems of  DEs  particularly of the  PDE  type are mostly 
based on the use of various forms of finite element methods of computational analysis.  Under the 
new proposed mathematical ideology, all forms of engineering analysis would be initiated from the 
direct application of the initially assumed Multivariate Polynomial Transform  that was defined by 
equation (1.002)  through (1.006)  above.   

So rather than presenting a solution to a particular physical problem as a part of some traditional 
numerical database, our very unique approach would consist of building an entirely new different 
type of database that would have been constructed on the principle of substituting an initially 
assumed Multivariate Polynomial Transform into  any type  of  DEs  and system of DEs.  The same 
computer program described earlier as representing the complete unified theory of physics in raw 
computational form would also be applicable for solving those well know DEs of engineering 
science that have proven very similar in appearance to those encountered in theoretical physics.  In 
both cases involved, the proposed initially assumed Multivariate Polynomial Transform would 
become the main center stage by which all forms of theoretical analysis would be conducted in the 
future. 

Most particularly important to the engineering science are the need for approximation methods of 
analysis that are based on the use of highly imperfect control volumes.  For these types of 
engineering problems, we would then be adopting a more  approximate  analytical method of 
analysis that would be sharing the same common principles as those introduced in section (5).   

It is expected that the same computer program originally built for handling all problems in 
theoretical physics would no doubt provide us with the greatest opportunity yet for revisiting all 
those problems in engineering science that have remained in cold storage.  They all have remained 
there for quite some time now mainly due to a lack of a unified theory of analytical integration  

 

10. Conclusions 

You have now all witness a very unique circumstance by which a new mathematical ideology has
mutated itself into some form of a new ideology for the physical sciences.  The new proposed 
mathematical ideology is entirely computational-based so that the entire process of arriving at some 
analytical solution for resolving  any   DEs  and systems of DEs can be entirely automated 
through the development of a unified computer program.  The proposed initially assumed universal  
differential expansion as described by equation (1.002) through (1.006) is a testament that all forms 
of pure analytical integration may now be handled under one gigantic unified computational-based 
algebraic theory. The development of such a unified theory of integration would not have been 
possible without the complete preservation of the fundamental continuity property of all 
mathematical equations.  It is only through the use of differential expansion forms defined in the 
very special format as described by equation (1.002) through (1.006) that we are able to maintain 
complete  continuity of all mathematical equations throughout the entire process of solving for any 
type of  DEs  and systems of  DEs.   Since virtually all of theoretical physics is founded on 
mathematical equations, it would be safe to assume that a universal computer program that would 
be build around such a proposed unified theory of integration would have to be regarded as 
being some sort of a "unified theory of physics"  in its most raw numerical state.   Human 
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intervention would then only be necessary for translating all computer results that would appear in 
the form of exact numerical computations into practical decipherable mathematical equations.  The 
very unique computational structure of our standard initially assumed differential expansion form 
would offer an unlimited variety of mathematical equations for conducting all forms of exact 
theoretical analysis not only in the field of theoretical physics but also in the engineering and bio- 
logical sciences as well.    
 
It would be conducted on a scale never imagined possible under any other known traditional 
methods of analysis.  Such a new exact method of analysis could one day offer the best hope yet for 
arriving at some unified theory of physics without the risk of incurring any form of contradictions 
that are so prevalent in modern physics today.   Also, by introducing such a unified theory of 
integration into the physical sciences, it is expected in the long term that both physicists and 
engineers would become much less dependent on pure experimental method of analysis for 
achieving much greater design reliability of commercial products. 
 
 
 
 

Mathematics  has  no  boundaries;  its  really  our  inability  to  understand  it  that  creates  such  boundaries  (12/14/97). 
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Abstract 

Improvised explosive devices (IED) have become the predominant weapon used in recent military 
conflicts against the coalition forces and in terror acts against civilian populations. IED technology 
and deployment methods have increased in complexity, and so have the resultant injuries, which 
require an increase in the sophistication of protection countermeasures and efficacy of medical 
interventions. Computational injury biomechanics, complemented with model-guided experimental 
testing can provide valuable support, not only in better understanding of blast injury mechanics, but 
also in the development of personnel protective armor, injury diagnostics, combat casualty care, and 
rehabilitation. Contemporary models of injury biomechanics typically focus on a specific loading 
mechanism and injury type to a single organ (e.g., bone, brain, or lung). IED injuries, however, 
typically result in polytrauma caused not only by the primary blast wave but also by associated 
penetrating injures caused by the debris and ejecta from buried IEDs. Computational modeling of 
blast wave injury poses significant challenges as it involves several physical disciplines such as 
blast wave gas dynamics, human body biodynamics, injury biomechanics, and trauma 
pathophysiology as well as a range of spatial and temporal scales. US DoD, in collaboration with 
academia and industry, is developing computational models and tools for various injury types 
caused by IEDs. Research projects are exploring experimental and computational tools dedicated to 
blast wave-induced traumatic brain injury, lung injury, hearing loss, extremity injury, and soldier 
protection. This paper presents a novel concept and prototype implementation of a multiscale, 
multiresolution computational framework for modeling human body injury caused by IED blast 
wave and fragmentation/debris loads. The overall architecture of the framework, major components, 
and example simulation results of blast injury mechanisms are discussed.  
Keywords: Blast Waves, Brain Injury, Military Medicine, Injury Biomechanics, Multiscale Models 

Introduction 

Improvised explosive devices (IED) have become the predominant weapon in recent military 
conflicts. IEDs proved to be particularly effective against softer military targets, such as Humvees, 
trucks and foot patrols. Blast events accounted for nearly 70% of injuries in wounded Service 
Members in both Iraq and Afghanistan, and are the main cause of traumatic brain injury (TBI) 
(Eskridge et al., 2012, Heltemes et al., 2012). IEDs have caused even more devastating casualties 
among civilian populations exposed to terrorist bombing events. Over the last decade, IEDs have 
evolved to be a formidable threat not only to dismounted soldiers but also to armored vehicles. 
Buried IEDs are particularly lethal as they not only launch the blast wave toward the target but also 
projectiles and soil ejecta. Such IEDs typically result in polytrauma involving non-penetrating 
injuries caused by the primary blast wave, penetrating injures and amputations caused by the debris 
and ejecta, and behind armor trauma in areas protected by the personal protective equipment (PPE).  

Compared to impact-related injury, the mechanisms involved in blast injury are much less 
understood. Recent improvements in PPE have reduced the severity of thoracic and brain ballistic 
injuries, but other sensitive organs, such as the brain, eye, ear, groin, genitals, and extremities, 
remain vulnerable to blast injuries [Curley et al., 2011]. Protection against blast wave TBI is 
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particularly challenging because, in spite of the protective helmet, a significant part of the soldier's 
head is still exposed to the blast. Until recently, it was not clear how a blast wave penetrates the 
cranium and causes brain injury and if military helmets protect against it [Zhang et al., 2011, 
Przekwas et al., 2011, Gupta and Przekwas 2013].  

A better understanding of blast wave injury mechanisms can be achieved with a complementary 
experimental and computational modeling approach. However, computational modeling of blast 
wave injury poses significant challenges as it involves several physical disciplines, such as blast 
wave gas dynamics, human body biodynamics, injury biomechanics and trauma pathophysiology, 
as well as a range of spatial and temporal scales. US Department of Defense (DoD) in collaboration 
with academia and industry, is developing computational models and tools for various injury types 
caused by IEDs. This paper presents a novel multiscale computational framework for modeling 
human body injury caused by IED blast wave and fragmentation/debris loads. Our goal is to design 
a software tool for modeling IED blast threats and resultant human injuries and to assess 
biomechanical injury criteria and injury severity scores from injury biomechanics simulation 
results. 

Computational Framework for Multiscale Modeling of Blast Injury  

Design of a simulation framework for multiscale modeling of blast injuries involves not only 
mathematical modeling and numerical algorithms, but also technical specifications for software user 
scenarios and data analysis. The target applications include: prediction of injury mechanisms, 
development of improved PPE, evaluation of injury severity, and trauma care. Figure 1 presents the 
overall architecture of the designed simulation framework. The framework is built around existing 
CoBi tools [Gupta and Przekwas, 2013].  

 
Figure 1. Schematic representation of the computational framework for multiscale modeling 

of blast wave soldier injury mechanisms, severity, and protection. 

The Threat module (top left, Figure 1) selects representative threat scenarios with an IED located 
above, on or under the ground, and specifies the type and the volume of the explosive charge. A set 
of test cases is being collected, including problems from benchmark experimental tests and from 
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IED threats seen in real combat and terrorist explosion events. The Body Posture module (top right, 
Figure 1) positions anatomical geometry models of the human body in the field of threat. The user 
can setup both high-fidelity and reduced order human body models with injury susceptible organs, 
including skin, bones, joints, spine, muscles, brain, lungs, liver, spleen, kidneys, vasculature, and 
lower extremities. The soldier can be equipped with protective armor (e.g., helmet, vest, boots, soft 
armor, backpack). An adaptive octree mesh is automatically generated with mesh refinements close 
to the IED and the human body. The Loading module (top center, Figure 1) computes blast wave 
pressure and blast wind loads on the entire human body surface, as well as impact loading from IED 
projectiles and ejecta. The time-dependent loading forces on the human body are used as boundary 
conditions by the Energy Absorption Biomechanics module, which computes three types of 
biomechanical responses: whole body biodynamics, biomechanics of internal organs and tissues, 
and penetration mechanics of fragmentation and debris. The Injury module uses the organ/tissue 
biomechanics results to simulate two aspects of the injury: primary injury caused by tissue 
mechanical damage followed by secondary physiological and biological mechanisms. The injury 
results could be used to calculate injury criteria and injury severity scores. The following sections 
briefly describe the computational methods, present example results, and identify outstanding 
challenges.  

Human Body Anatomical Geometry and Computational Mesh 
The anatomical geometry of a human body was used to generate computational meshes of the 
outside and inside of the body for blast and biomechanics simulations. Anatomical models can be 
generated using whole body imaging data (e.g., “Visible Human”) [Spitzer, 2006, Segars et al., 
2010]. To simulate blast wave dynamics and its interaction with the body we used an adaptive 
octree mesh refined around the human body surface. The mesh extends throughout the entire blast 
scene, including the IED and the human body. Figure 2 presents an example octree mesh for 
modeling blast wave physics using 
Computational Fluid Dynamics (CFD) 
tools. Human anatomical geometry was 
also used to construct the articulated 
body model for modeling body 
biodynamics and a computational mesh 
within the body to simulate organ/tissue 
biomechanics. Several anatomical 
geometric models have been developed 
to study human body/head impact injury 
biomechanics [Yasuki, 2011, Gayzik et 
al., 2011, Tan et al., 2011]. 

Computational Models of Blast Wave and Human Body Blast Loading  
A computational model of an IED explosion is often considered as a hallmark multiscale 
multiphysics problem as it involves four distinct elements: 1) the physics of charge detonation and 
energy release, 2) the detonation front interaction with soil mechanics and the generation of debris, 
3) the gas dynamics of the blast wave, and 4) the blast wave interaction with the human body. We 
have employed the coupled Eulerian-Lagrangian approach for the interaction between the high 
explosive detonation products, fragments and soil. A discrete element/particle method (DEM) was 
used to model the casing fragments and soil through contact and collisions of rigid spherical 
particles, in addition to the developed Eulerian-based compressible flow solver for gaseous media. 
This sub-millisecond event is followed by high-fidelity CFD simulations of blast wave propagation 
toward the human body using CoBi tools with domain decomposition and parallel distributed 
computing [Harrand et al., 2013]. In the simulations we assumed that the human body inertia is high 

 
Figure 2. Zonal adaptive octree grid for CFD 

simulations of blast wave impact on a human body. 
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enough to represent the human as a rigid body [Tan et al., 2012a, Gupta and Przekwas, 2013]. A 
Lagrangian ballistics model was used to simulate projectile and debris trajectories and their impact 
on the human body. Figure 3 presents typical simulation results of an IED detonation, debris 
generation and blast wave interaction with the human body for explosions on and above the ground 
as well as contour maps of the pressure loading on the human body surface [Tan et al., 2012a].  

 
Figure 3. FEM model simulation results of a buried IED detonation, debris generation, and 

blast wave interaction with the human body for explosions on and above the ground. 

The blast wave pressure loads and the forces generated by impacting debris on the entire human 
body are recorded for the duration of the blast event (10-20 milliseconds) and stored for consecutive 
human body biodynamics and biomechanics simulations.  

Models of Human Body Biodynamics and Biomechanics 

The Loading module (Figure 1) generates external forces on the human body for three types of 
simulations: 1) articulated human body biodynamics modeling of flexible human body translocation 
in air and body impact on the ground, 2) biomechanical propagation of the primary pressure and 
shear waves within the body organs and tissues, and 3) terminal ballistics of IED fragments and 
debris penetrating the human body.  

The articulated human body model represents a 1.78m, 84.6kg male with the anatomy divided into 
17 body segments, such as the head, neck, upper/lower torso, abdomen, and extremities, connected 
by flexible anatomically consistent joints. Conic joints constrain the range of joint rotation to 
imitate contact of the spinous processes. These joints have been defined in terms of locations and 
shape based on the joint rotations of an average human. To apply the blast loading accurately and 
efficiently, a time step increment comparable to that in the CFD simulation (10 microseconds) was 
used to run the multibody dynamics for a period of 6.5 milliseconds. For computational efficiency 
and to take advantage of the unconditional stability of the implicit multi-body solver, the simulation 
was restarted at the end of 6.5 milliseconds with a much larger time step of one millisecond, and ran 
for an additional second. Details of the body model and the Finite Element Method (FEM) 
biodynamic formulation and its implementation of implicit multi-body dynamics and model 
validation results can be found in Tan and Przekwas [2011]. Figure 4 presents typical simulation 
results of a human body response to a shallow buried IED showing human body postures at several 
time instances.  

 
Figure 4. FEM model of articulated human body biodynamics due to blast wave and  

fragment loadings at different times. 

Ground level
1.32m above ground

2.5ms 0.1525s

0.2925s
0.3525s 0.4225s
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Because of the large inertia of the human body, the body has not started to move yet at 2.5ms after 
the front impact blast on the body. The visible movement starts approximately 100ms post blast. 
This justifies our assumption of a rigid body during CFD blast simulations, presented in the 
previous section. The time required for the human body to impact the ground is on the order of one 
to two seconds, an order of magnitude longer than the blast loading duration. The predicted human 
body accelerations during free translocation and decelerations during the ground impact are used to 
calculate potential injury indicators, such as head injury criteria (HIC). The forces during the body 
impact on the ground are used as additional loads in the human injury biomechanics model.  

By applying the blast loading resulting from the CFD simulation, we could model the 
biomechanical response of human body organs and tissues during the pressure wave propagation 
within the body. To simulate these human body biomechanics we used the CoBi FEM solver. 
Because of the time step increment constraints in the present transient simulations, an explicit time 
marching solution algorithm was used. Details of the biomechanics model can be found in Tan et 
al., [2012]. Figure 5 presents the predicted pressure fields and maximum principal strains in two 
sagittal planes (mid plane and mid left extremity) inside the body at four time instances during the 
propagation of stress waves through the body, following a free field blast impacting the body from 
the front.  

 
Figure 5. FEM simulation results of biomechanical stress wave propagation through the 

human body loaded by a blast wave from the front at four time instances after the blast 

impact (t=05ms, 1ms, 2ms, and 5ms): a) pressure profiles and b) maximum principal strain.  
The simulations demonstrated that a stiffer material, like the skeleton, has high pressure, while the 
pressure in soft materials, like the lung, is much lower (Figure 5a). A relatively high level of strain 
appears at the interface between the brain and the skull due to the low shear resistance of the brain 
(Figure 5b). The maximum strain occurs in the lungs because of their softness compared to their 
surrounding tissue and skeleton. A detailed description and discussion of blast injury biomechanics 
of the whole body and of the brain has been presented by Tan et al., [2011] and Gupta and 
Przekwas [2013]. These macro-scale simulations provide the stress and strain fields in all organs 
and tissues in the body and can be used as a starting point for micro-scale analyses of injury 
biomechanics of selected tissue structures, such as brain axonal tracks, spinal cord injury, cochlear 
injury, vascular injuries.  

The simulation results of macro- and micro-scale injury biomechanics could also be used to 
evaluate biomechanical injury criteria (IC) and injury severity scores. Injury scores (IS), such as the 
Abbreviated Injury Scale (AIS), were developed to classify the type and severity of injury to aid in 
medical diagnosis. ISs are typically declared as a single number to represent complex and varying 

a b

Max. principal strain Pressure
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degrees of critical illness. Despite this ambiguity, ICs are commonly used in critical medical care. 
This paper proposes that mathematical models may be used for more rigorous calculation of injury 
criteria and injury severity scores, including AIS, ISS, TRISS, and RTS, as well as injury scores for 
specific organs and polytrauma scores. Ultimately a fast running mathematical model of patient 
specific trauma trajectory may replace conventional single number ISs. The overall procedure for 
model-based calculation of ICs and ISs, estimation of injury severity probability, as well as 
prediction of trauma trajectory outcome, is shown in Figure 6.  

 
Figure 6. A procedure to calculate ICs and ISs from computational biomechanics results. 

 
Conclusions  

This paper presented a novel concept and prototype implementation of a multiscale computational 
framework for modeling human body injury caused by IED blast wave and fragmentation/debris 
loads. The overall architecture of the framework, the major components and example simulation 
results of blast injury mechanisms were described. A framework has been developed with the 
interaction between the whole human body anatomical geometry model, the mesh generation, and 
the individual computational tools, including the CFD blast dynamics and FEM biomechanics. This 
framework provides a foundation for the development of a user-friendly framework, not only for a 
better understanding of blast injury mechanisms, but also for the development of personal protective 
armor, injury diagnostics, combat casualty care, and rehabilitation. Several challenges remain, such 
as better material properties for high strain rate tissue biomechanics, coupling between macro- an 
micro-scale tissue biomechanics, tissue damage models for the estimation of the injury location and 
severity (such as axonal injury and bone fracture), accurate models of penetrating injury, and model 
validation. 
Disclaimer  

The views expressed in this paper are those of the authors and may not necessarily be endorsed 
by the US Army or US Department of Defense. 
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Abstract

This paper presents a fast transient solver suitable for the simulation of incom-
pressible flows. The main characteristic of the solver is that it is based on the
projection method and requires only one pressure and momentum solve per time
step. Furthermore, advantage of using the projection method in the formulation is
the particularly efficient form of the pressure equation that has the Laplacian term
depending only on geometric quantities. This form is highly suitable for the high
performance computing that utilises the Algebraic Multi-grid Method (AMG) as
the coarse levels produced by the algebraic multi-grid can be stored if the grid is
not changing. Fractional step error near the boundaries is removed by utilising
the incremental version of the algorithm. The solver is implemented using version
5.04 of the open source library, Caelus [Applied CCM (2015)]. Accuracy of the
solver was investigated through several validation cases. The results indicate the
solver is accurate and has good computational efficiency.

Keywords: Projection Method; Fractional Step Algorithm; Algebraic Multi-grid
Solver; Transient solutions; Validation

Introduction

Fast transient solution of incompressible turbulent flows still occupy a dominant
place in engineering computations. Majority of the solvers that use finite volume
method on unstructured meshes with the arbitrary number of faces use either tran-
sient SIMPLE [Patankar and Splading (1972)] or PISO algorithm [Issa (1985)].
While these algorithms are known to produce spatially and temporally accurate
solutions, they are not particularly efficient due to algorithmic constraints. Typi-
cally they require a multiple solution of the pressure equation (PISO algorithm)
or multiple momentum and pressure solves per time step (SIMPLE algorithm).
Multiple solutions of the pressure pressure and/or momentum equation per time
step removes the fractional step error due to splitting of equations and recovers the

∗Corresponding author: d.stephens@appliedccm.com.au
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time accuracy. Unlike SIMPLE and PISO algorithms, the projection algorithm
introduced originally by [Chorin (1967)], does not require multiple pressure and
momentum solves per time step. In this paper we describe an efficient implemen-
tation of the projection algorithm that utilises the Algebraic Multi-grid Method
for the pressure equations suitable for high fidelity transient solutions.

Governing equations and boundary conditions

Incompressible Navier-Stokes equations are given by the following set of partial
differential equations:

∂tui + uj∂jui = −∂ip̂+ ν∂iiui. (1)

It should be noted that the density is absorbed in the pressure field since it
is considered to be constant in incompressible flow, i.e. p̂ = p/ρ. Discretization
in time of Eq. (1) yields time discretized Navier-Stokes equations with ignored
pressure term

δ∗,n
t ui = −unj ∂juni + ν∂iiu

n
i . (2)

Here symbol δ∗,n
t is a finite difference applied in time coordinate

δ∗,n
t ui = u∗ − un

4t
, (3)

where u∗ is the intermediate velocity field from which the pressure effects were
removed, and superscript n denotes the previous time level. This step is called a
momentum predictor step or simply predictor step in the language of fractional
step methods. Introduction of the intermediate velocity u∗ is the part of the
algorithm in which the Hodge decomposition was performed in order to compute
solenoidal free velocity field. The Hodge decomposition in this case becomes

u∗ = usol + uirrot = un+1 +∇φ, (4)

where usol = un+1 is the incompressible flow field we are solving for and uirrot = ∇φ
is the irrotational part of the flow field that is computed from the scalar potential.

The scalar potential φ is obtained using the second part of the fractional
step algorithm in which pressure gradient is brought to bare on the intermediate
velocity field:

δn+1,∗
t ui = ∂ip̂

n+1, (5)

where δn+1,∗
t denotes the following finite difference in time

δn+1,∗
t ui = un+1 − u∗

4t
. (6)

The Hodge decomposition now becomes

u∗ = un+1 +4t∂ip̂n+1. (7)

Since the field un+1 is solenoidal, application of the divergence operator to
Eq. (7) produces the equation for the scalar potential
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∂iip̂
n+1 = 1

4t
∂iu

∗
i . (8)

Eq. (8) is used to compute the pressure field that can be used used in the
corrector step to produce the solenoidal field field un+1:

un+1 = u∗ −4t∂ip̂n+1. (9)

Therefore, the scalar potential φ in the Hodge decomposition in Eq. (7) is
identified to be

φ = 4tp̂n+1. (10)

The fractional step error near the boundaries of the computational domian is
removed by reintroducing the pressure in the discretized momentum equation:

δ∗,n
t ui = −unj ∂juni + ν∂iiu

n
i − ∂ip̂n. (11)

This practice is commonly called incremental pressure method and is shown
to remove the fractional step errors near the boundaries [Strikwerda and Lee
(1999)].

Method of solution

With the fractional steps identified above, the solution algorithm takes the fol-
lowing form:

1. Compute intermediate velocity field u∗
i according to Eq. (2) (momentum

predictor step)

2. Compute pressure field p̂ from Eq. (8)

3. Compute divergence free velocity field un+1
i according to Eq. (9)

4. Repeat the process in the next time step

The most expensive part of the projection algorithm corresponds to the linear
solution of the pressure equation given by Eq. (8). The structure of the pressure
equation is strongly elliptic thus requiring the multi-level solver such as Algebraic
Multi-grid Method (AMG) for efficiency reasons. The expensive part of the al-
gorithm corresponds to the agglomeration procedure in which the coarse matrix
hierarchy is created using the heuristic rules for determining the link strengths
among fine equations. One advantage of the projection algorithm is that the
coefficients in the Laplacian in Eq. (8) are purely geometrical. Discretization co-
efficients entering the discrete matrix on fixed grids are constant thus allowing
the coarse hierarchy to be computed only once. Since the geometric coefficients
do not depend on any other variables in the discretization process, this does not
constitute any approximation beyond the usual approximations associated with
the discretization process.

Given the geometric nature of the Laplacian in Eq. (8), the algorithm can be
modified as follows:
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1. Compute coarse mesh hierarchy for Eq. (8) and store it for the duration of
the simulation

2. Compute intermediate velocity field u∗
i according to Eq. (2) (momentum

predictor step)

3. Compute pressure field p from Eq. (8) by using the stored hierarchy of coarse
matrices. The only change from time step to time step is in the right-hand-
side of Eq. (8).

4. Repeat the process in the next time step starting from the step 2

The above algorithm termed the Semi-Linear Implicit Method (SLIM) is im-
plemented as a solver using version 5.04 of the Caelus [Applied CCM (2015)]
library. The origin of the name can be traced to the fact that the coefficients of
the Laplacian are always stored and only the right-hand-side changes.

Furthermore, additional efficiency can be gained if the momentum predictor
equations are solved using explicit time stepping thus avoiding any need for creat-
ing and storing matrices for the momentum equations. With the stored hierarchy
for the Laplacian and explicit time stepping for the momentum equations, the al-
gorithm would completely avoid creation of matrices and computationally would
perform close to the fully explicit algorithms that are pervasive in compressible
flow computations.

Results and discussions

In the following section, several validation cases are presented for conditions rang-
ing from attached to separated flow. Whilst the SLIM algorithm is by nature a
time accurate solver, both steady state and transient cases have been considered
under laminar and turbulent flows to fully investigate the performance of the
algorithm and its implementation.

Laminar flat plate

In this case, steady, incompressible, laminar flow over a two-dimensional sharp-
leading edge flat-plate at zero angle of incidence was investigated. The flow gen-
erates a laminar boundary layer and the computational results are compared with
the Blasius solution for incompressible flow. Blasius, in his work [ Blasius (1908)]
obtained the solution to the Boundary Layer Equations using a transformation
technique. Here, equations of continuity and momentum in two-dimensional form
are converted into a single ordinary differential equation (ODE). The solution to
this ODE can be numerically obtained and is regarded as the exact solution to
the boundary layer equations. One of the highlights of Blasius solution is the
analytical expression for the skin friction coefficient (cf ) distribution along the
flat-plate given by

cf ≈
0.644√
Rex

, (12)

where Rex is the local Reynolds number defined as

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

334



Rex = ux

ν
, (13)

u is the freestream velocity, x is the distance starting from the leading edge and
ν is the kinematic viscosity.

This case is based on the validation work carried out by the [NASA NPARC
Alliance (2008)] for flow over a flat plate using the same conditions in the in-
compressible limit. A schematic of the geometric configuration is shown in Fig. 1.
The length of the plate is L = 0.3048 m wherein, x = 0 is the leading edge, the
Reynolds number of the flow based on the length of the plate is 200,000 and u
is the velocity in the x-direction. Assuming the inlet flow is at a temperature
of 300 K, the kinematic viscosity (1.58963× 10−5 m2/s) can be determined from
dynamic viscosity and density of the fluid. The value of dynamic viscosity is ob-
tained from the Sutherland viscosity formulation [Sutherland (1893)]. Using the
Reynolds number, plate length and kinematic viscosity, the freestream velocity
evaluates to u = 10.4306 m/s. As we have assumed the flow incompressible, the
density (ρ) remains constant. In addition, since the fluid temperature is not con-
sidered, the viscosity remains constant. For incompressible flows, the kinematic
forms of pressure and viscosity are always used in Caelus 5.04.

Figure 1: Flat plate computational domain

The computational domain is a rectangular block encompassing the flat-plate.
Fig. 1 shows the details of the boundaries used in two-dimensions (x − y plane).
The region of interest extends between 0 ≤ x ≤ 0.3048 m and has a no-slip bound-
ary condition. Upstream of the leading edge, a slip boundary is used to simulate
freestream uniform flow approaching the flat-plate. However, downstream of the
plate, there is an additional no-slip wall a further three plate lengths. This ensures
that the boundary layer in the vicinity of the trailing edge is not influenced by the
outlet boundary. Since the flow is subsonic, disturbances cause the pressure to
propagate both upstream and downstream. Therefore, placement of the inlet and
outlet boundaries were chosen to have minimal effect on the solution. The inlet
boundary is placed at start of the slip-wall (x = −0.06 m) and the outlet at the
end of the second no-slip wall (x = 1.2192 m). Both inlet and outlet boundaries
are between 0 ≤ y ≤ 0.15 m. A slip-wall condition is used for the entire top
boundary. At the inlet a fixed uniform velocity u = 10.4306 m/s in x direction
and zero pressure gradient is applied and at the outlet a fixed uniform pressure
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p = 0 m2/s2 and zero gradient velocity are applied. The simulation is initialised
with a constant velocity u = 10.4306 m/s in the x direction and uniform zero
pressure field.

A 3D hexahedral mesh was generated using [Pointwise (2014)] by extruding
the 2D quadralteral mesh in the x − y plane. The two x − y planes obtained as
a result of grid extrusion need boundary conditions to be specified. As the flow
over a flat-plate is generally 2D, we do not need to solve the flow in the third
dimension. This is achieved in Caelus by specifying an empty boundary condition
for each plane. Although, no flow is computed in the z direction, a velocity of
w = 0 has to be specified for the velocity boundary condition as indicated above.

Figure 2: Computational mesh for the flat plate domain.

Fig. 2 shows the mesh in the x − y plane. As can be seen, the grid is re-
fined perpendicular to the wall in order to resolve the viscous effects. To ensure
that the gradients in boundary layer are well resolved, about 50 grid nodes are
placed between the wall and the boundary layer edge. Grid refinement is also
added at the leading edge so that the growth of the boundary layer is also well
resolved. In this particular case, 399 cells were used in the streamwise (x) direc-
tion (x ≤ 0 ≤ 0.3048 m) and 297 in the wall normal (y) direction. For the
no-slip wall beyond x > 0.3048, a similar distribution is used, resulting in a total
cell count of 217,998.

A time-dependent solution was obtained using the SLIM solver. The flow was
simulated sufficiently long (several plate length flow times) such that steady flow
was established. For the discretization of time-dependent terms, the first-order
Euler scheme was used. Pressure and velocity gradients were calculated using
the Gauss method. A 2nd order linear upwind discretization was used for the
divergence of velocity.

In Fig. 3, the skin-friction distribution along the flat-plate obtained from the
SLIM solver is compared with that of the Blasius analytical solution. Here, the
distance x is normalised with the length of the plate (L). Excellent agreement is
observed along the entire length of the flat-plate. At the exit plane of the flat-
plate at x = 0.3048 m, velocity data was extracted across the boundary layer
and compared with the Blasius analytical solution. This is shown in Fig. 4 where
the velocity profile is plotted using similarity variables from the Blasius solution.
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Here, η is the non-dimensional distance from the wall to the boundary layer edge
and Ue is the velocity at the boundary layer edge. Similar to skin-friction, the
velocity profile also exhibits excellent agreement with the Blasius solution.

Figure 3: Skin-friction comparison between SLIM and Blasius solutions.

Figure 4: Non-dimensional velocity profile comparison between SLIM
and Blasius solutions.
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Tee junction

In this validation case, laminar, incompressible flow through a two-dimensional
90◦ tee junction was investigated. Due to the presence of the side branch, the flow
separates and forms a recirculation region. The recirculating region influences the
mass flow through the main and side branches. The numerically computed mass
flow ratio was calculated and compared with experiment. A comprehensive study
of flow through planar branches has been carried out by [Hayes et al. (1989)] due
to its prevalence in the bio-mechanical industry.

Fig. 5 shows the schematic of the tee-junction. Here, L = 3.0 m and
W = 1.0 m respectively, the Reynolds number based on the width is 300, and v
is the velocity in the y-direction. For simplicity, we have assumed the velocity,
v = 1 m/s. Using these values the resulting kinematic viscosity was 0.00333 m2/s.
Since this is an internal flow problem, the computational domain is contained
within tee-junction geometry. All tee-junction walls have a no-slip boundary con-
dition. At the inlet, a fully developed laminar flow parabolic profile is applied
with a mean velocity v = 1.0 m/s, otherwise a much longer main branch would
be required for the flow to develop. The domain has two outlets, one at the end
of the main channel and the other at the end of side branch. Exit pressures at the
two outlets are equal (p = 0 m2/s2) and a zero gradient condition is applied to
the velocity. The simulation is initialised with uniform zero velocity and pressure
fields.

Figure 5: Computational domain representing tee-junction.

The computational mesh is shown in Fig. 6. The two x−y planes obtained as
a result of grid extrusion have empty boundary conditions applied to achieve 2D
flow. A total of 2,025 hexahedral cells comprise the tee-junction of which, 90 cells
are distributed along the height of the main channel, and 45 along the length of
the side branch. The distribution is such that a dimensional length of L = 1 m
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has a total of 45 cells, giving a distribution of 30 cells for the (2/3)L segment of
the main channel. The width, W , consists of 15 cells.

Figure 6: Structured grid for tee-junction domain.

A time-dependent solution was obtained using the SLIM solver. The flow was
simulated sufficiently long such that steady separated flow was established. To
ensure this, the shear-stress distribution was monitored on the lower wall of the
side branch. For the discretization of time-dependent terms, the first-order Euler
scheme was used. Pressure and velocity gradients were calculated using the Gauss
method. A 2nd order linear upwind discretization was used for the divergence of
velocity.

The mass flow rate was calculated at the inlet and at the main outlet (outlet-
1) and the ratio was subsequently calculated. Table 1 compares the SLIM result
with the experimental value. As can be noted, the agreement between the two is
excellent.
Table 1: Comparison of mass flow rate split for SLIM and experiment.

Experimental SLIM Percentage Difference
Flow Split 0.887 0.886 0.112 %

Triangular Cavity

This validation study concerns the laminar, incompressible flow inside a lid driven
triangular cavity. Here, the top wall of the cavity moves at a constant velocity
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initiating a recirculating motion within the cavity. Experiments on this configu-
ration have been reported in [Jyotsna and Vanka (1995)] for a Reynolds number
of 800. The main objective of this validation case was to compare the x velocity
distribution against experimental data.

A schematic of the triangular cavity is presented in Fig. 7 where the depth of
the cavity D = 4 m and the width W = 2 m. The Reynolds number based on
the cavity depth is 800 and the wall velocity is u = 2 m/s. Using the Reynolds
number, u, and D, kinematic viscosity was calculated to be 0.01 m2/s. The side
walls of the cavity have a no-slip boundary condition while the top wall, has a
uniform velocity in the x direction. The simulation is initialised with zero velocity
and pressure fields.

Figure 7: Computational domain of the triangular cavity.

The mesh in x−y plane is shown in Fig. 8. A hybrid mesh is employed for this
case with a total of 5,538 cells. Up to a depth of D = 1.35 m hexahedral elements
are used while below that value triangular prisms are used. The triangular prisms
are used in the bottom portion because they resulted in better cell quality. For
the hexahedral region, 39 cells are distributed across the width of the cavity and
39 along the depth. The cavity walls in the prism region have 100 cells along
each. The interface of the two regions is node matched and has 39 cells across the
width. The mesh close to the cavity lid was refined to better capture the shear
layer. The flow characteristics in the cavity can be assumed to be 2D and here it
has been solved with the same assumption.

A steady solution to the cavity was obtained using the SLIM solver. While a
time-dependent approach was used, the solution was simulated sufficiently long
so that steady flow was achieved. To determine when this occurred the velocity
distribution along the cavity centre-line was monitored with respect to time. For
the discretization of time-dependent terms, the first-order Euler scheme was used.
Pressure and velocity gradients were calculated using the Gauss method. A 2nd
order linear upwind discretization was used for the divergence of velocity. A linear
corrected scheme was used for Laplacian discretization to account for mesh non-
orthogonality.

In Fig. 9, the x velocity distribution along the cavity centre-line is compared
with that of the experimental data [Jyotsna and Vanka (1995)]. The y distance
is normalised with the cavity depth (D) which gives y/d = 0 at the cavity lid
and y/d = −1 at the bottom vertex. Similarly, the u velocity is normalised with
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Figure 8: Hybrid grid for the triangular cavity.

the velocity of the cavity lid (uL). As seen in Fig. 9 the comparison with the
experiment is excellent.

2D Circular Cylinder

In this validation study, laminar incompressible flow over a 2D circular cylinder is
investigated at a Reynolds number of 100. This classical configuration represents
flow over a bluff body dominated by a wake region. For flows having a low
Reynolds number (40 ≤ ReD ≤ 150), periodic vortex shedding occurs in the
wake. The phenomenon of vortex shedding behind bluff bodies is referred to as
the Karman Vortex Street [Roshko (1954)] and provides a transient case for CFD
code validation.

In his work, [Roshko (1954)] experimentally studied wake development be-
hind 2D circular cylinders from Reynolds number ranging from 40 to 10000. For
Reynolds numbers of 40 to 150, the so called the stable range [Roshko (1954)],
regular vortex streets are formed with no evidence of turbulence motion in the
wake. Therefore, at a Reynolds number of 100, the vortex shedding exhibits
smooth, coherent structures making it ideally suited for validating laminar CFD
calculations. The frequency associated with the oscillations of the vortex streets
can be characterised by the Strouhal Number (St). The Strouhal Number is a
non-dimensional number defined as
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Figure 9: Comparison of experimental and computational x velocity
distribution along the cavity’s centre-line.

St = fD

u
(14)

where, f is the frequency of oscillations of vortex shedding, D is the diameter of
the cylinder and u is the freestream velocity of the flow. Experimentally [Roshko
(1954)], it has been determined that for a Reynolds number based on the diameter
of the cylinder of 100, the Strouhal number St ≈ 0.16− 0.17. The main objective
of this study was to compare the St for the SLIM calculation to the experimental
data of [Roshko (1954)]. Provided the cylinder has a sufficient span length, the
flow characteristics can be assumed to be 2D as the experiments suggest.

Fig. 10 shows the schematic of the 2D circular cylinder. Here, the diameter
D = 2 m and is the characteristic length for the Reynolds number. For simplicity,
the freestream velocity was taken to be u = 1 m/s in the x-direction. Using
these values the kinematic viscosity was calculated to be 0.02 m2/s. The domain
extends by 5 diameters upstream and 20 diameters downstream. In the y direc-
tion, the domain extends 5 diameters on either side. From the figure, multiple
inlet boundaries to this domain can be seen, one at the upstream boundary and
the other two for the top and bottom boundaries. This type of configuration is
needed to appropriately model the inflow, similar to an undisturbed flow in an
experimental set-up. It is noted that for top and bottom boundaries, the flow
is in the x direction. The outlet is located at the downstream boundary. The
cylindrical wall is a no-slip boundary condition. The solution is initialised with a
uniform velocity u = 1.0 m/s and uniform zero pressure field.

The computational mesh was generated using Pointwise in the x−y plane and
subsequently extruded one cell in the z direction. The mesh consisted of 9,260
cells. An O-grid topology was constructed around the cylinder with 10 cells in the
radial direction and 84 cells in the circumferential direction. 31 cells were used
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Figure 10: Computational domain of a circular cylinder.

upstream of the O-grid, in the x direction while 100 cells were used downstream.
The region of interest is about 10 diameters downstream, where the grids are
refined. In the y direction, 21 cells were used above and below the O-grid region.

Figure 11: O-grid around the circular cylinder.

A time-dependent simulation was carried out using the SLIM solver. For the
discretization of time-dependent terms, the 2nd order backward scheme was used.
Pressure and velocity gradients were calculated using the Gauss method. A 2nd
order linear upwind discretization was used for the divergence of velocity. A linear
corrected scheme was used for Laplacian discretization to account for mesh non-
orthogonality.

To capture the transient start-up process, the simulation was started from
time t = 0 s and was simulated up to t = 360 s, while lift and drag forces over the
cylindrical surface were monitored at a frequency of 2 Hz. It was found that the
on-set of vortex shedding occurred after about t = 90 s which was then followed
by a steady shedding process. A Fast Fourier transformation (FFT) was carried
out on the lift force data and the peak frequency of vortex shedding occurred at
f = 0.0888 Hz. Based on this value, it takes about 7.8 cycles for the shedding
to start. Table 2 compares the computed value from SLIM with that of the
experiment. The agreement is good given that experimental uncertainty can be
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relatively high at low Reynolds numbers.

Table 2: Comparison of experimental and numerical frequency results
for the circular cylinder.

Frequency (Hz) Strouhal Number
Experimental 0.0835 0.167

SLIM 0.0888 0.177

Square cylinder

This case considers the turbulent, incompressible flow around a square cylinder,
as studied experimentally by [Lyn and Rodi (1994) and Lyn et al. (1995)]. The
side of the square cylinder (D) is 1 m and it extends along the width (4D) of
the channel. All distances are made non-dimensional with reference to D. The
mean velocity at the inlet, u, is assumed to be 0.214 m/s. All velocities are made
non-dimensional using the inlet velocity. The Reynolds number, based on u and
D is 21,400.

A rectangular computational domain in the x− y plane was constructed sur-
rounding the square cylinder as shown in Fig. 12. The domains extends in the
z direction a length of 4D. The domain extends by 5 diameters upstream and
14.5 diameters downstream. In the y direction, the domain extends 7 diameters
on either side. At the inlet a uniform velocity u = 0.214 m/s in x direction and
a zero pressure gradient are applied. At the outlet a uniform zero pressure and
zero velocity gradient conditions are applied. The top and bottom boundaries
have a slip condition applied to velocity and a zero gradient condition applied to
pressure. Cyclic boundaries conditions are used in the span wise direction and
a no-slip boundary on the cylinder. The simulation is initialised with a uniform
velocity u = 0.214 m/s in x direction and zero pressure field.

Figure 12: Computational domain of the square cylinder.

The non-uniform computational mesh shown in Fig. 13 was generated using
Pointwise and consisted of 216 x 150 x 21 (668,850) cells (being denser near the
cylinder). For the discretization of time-dependent terms, the 2nd order backward
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scheme was used. Pressure and velocity gradients were calculated using the Gauss
method. A 2nd order linear upwind discretization with multidmensional interpo-
lation linear scheme utilising Barth-Jespersen limiter [Berger at al. (2005)] was
used for the divergence of velocity.

Figure 13: Square cylinder mesh.

Large Eddy Simulation (LES) computes the large-scale motions of the flow
directly. The small-scale, dissipative motions of turbulence tend to more amenable
to modelling because of their more uniform character, whereas the large-scale
motions contain the majority of the energy and anisotropy. As a result, LES is
expected to be more accurate, particularly in complex flows where the assumptions
inherent to RANS models rarely exist. The drawback is that LES simulations are
always three-dimensional and unsteady. For this particular case, the Smagorinsky
SGS model [Smagorinsky (1963)] was chosen. The model is based on the SGS
kinetic energy k = 1

2

(
ũ2 − ũ2

)
where ũ is the filtered velocity. The following

assumptions for the SGS stress tensor (B) and the filtered deviatoric part of the
rate of strain tensor (D̃D) in incompressible flows are used

B =
[2
3kI− 2νD̃D

]
, (15)

D̃D =
[
D̃− 1

3
(
trD̃

)
I
]
, (16)

D̃ = 1
2
[
∇ũ +∇ũT

]
, (17)

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

345



where I is the unit tensor. The Smagorinsky model is an algebraic model for the
SGS viscosity νSGS. Caelus 5.04 implements the SGS viscosity as

νSGS = ck
√

(kSGS)∆ (18)

where the kSGS is given by

kSGS = (ck∆2)
cε

∥∥∥D̃∥∥∥2
. (19)

and ∆ represents the top-hat filter with a characteristic filter width estimated
as the cubic root of the cell volume. The relationship between the classical Cs
constant and the constants ck and cε from the Smagorinsky model implementation
in Caelus 5.04 is

Cs =
(
c3
k

cε

)0.25

. (20)

In this work the value used for Cs was 0.1. In some circumstances the turbulent
viscosity near the wall is over predicted by the LES SGS model due to a lack of
constraint on the turbulent viscosity. To remedy this, damping is added to the
length scale (∆) using the [Van Driest (1956)] formulation. In Caelus 5.04 the
implementation takes the form

∆ = min
[
∆cr,

κy

C∆

(
1− e− y

y∗A+

)]
, (21)

where ∆cr is the filter width calculated from the cubic root of the cell volume,
y is the distance from the wall, C∆ , A+, κ are constants and y∗ is given by the
formula y∗ = ν/uτ . Here uτ is the wall friction velocity.

The simulation was started from time t = 0 s and was simulated up to
t = 1000 s using a fixed Courant number of 1, while lift and drag forces over the
cylindrical surface were monitored. It was found that the on-set of vortex shed-
ding occurred after about t = 100 s which was then followed by a steady shedding
process. The velocity field was spanwise and time averaged for the period be-
tween 200 ≤ t ≤ 1000 s. A Fast Fourier transformation (FFT) was carried
out on the lift force data and the peak frequency of vortex shedding occurred at
f = 0.028 Hz. Based on this value, it takes about 2.7 cycles for the shedding
to start. The most important time-averaged parameters are presented in Table
3, where they are compared to experimental and numerical data, available from
several authors from the ERCOFTAC database. The labels used are the same as
in [Voke (1997)]. The parameters compared are the recirculation length, Strouhal
number, the drag and lift coefficients and the R.M.S variation of the drag and lift
coefficients.

The values predicted by SLIM agree reasonably well with the corresponding
experimental and numerical data. The drag and lift coefficients are slightly greater
than experimental data but agree as well as other numerical data. Fig. 14 shows
the normalised time-averaged horizontal velocity along the centreline 10 diam-
eters downstream of the cylinder. The experiment shows the velocity reaching
approximately 0.6 of the freestream value and then leveling off thereafter. It can
be observed from this figure that there is a fair amount of disparity among the
numerical results. Some of the LES simulations, in particular UK1, UK3 and
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Table 3: Comparison among time-averaged squared cylinder data. The
labels are the same as used in [Voke (1997)].

Set lr St CD CL CD CL

IS3 1.24 0.133 2.79 -0.125 0.36 1.68

NT7 1.39 0.131 2.05 -0.050 0.12 1.39

ST3 1.24 0.150 2.66 -0.005 0.27 1.33

TIT 1.23 0.131 2.62 0.0093 0.23 1.39

UK1 1.32 0.130 2.20 -0.020 0.14 1.01

UK3 1.44 0.130 2.23 -0.050 0.13 1.02

UOI 1.20 0.130 2.03 0.0400 0.18 1.29

[Lyn et al. (1995)] 1.38 0.132 2.1

SLIM 1.41 0.131 2.44 0.076 0.33 1.29

NT7, show the velocity approaching the free stream value; others such as ST5
and UOI show a distinct decline beyond x/D = 5. The results from this work
agree reasonably well with the experimental data.

Figure 14: Streamwise distribution of the normalised time-averaged
horizontal velocity along the centreline y = 0 for the experimental and
numerical data sets.

The prediction of fluctuating horizontal and vertical velocities along the centre
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line are shown in Figs. 15 and 16 respectively. These figures also display disparity
amongst the numerical simulations and reveal that no simulation matches closely.
The result from this work shows a slightly higher peak in the horizontal velocity
fluctuation just behind the cylinder but does a much better job than most of the
other simulations at matching the experimental data beyond this point. The fluc-
tuations in the vertical velocity show reasonable agreement with the experimental
data over the entire measurement region.

Figure 15: Streamwise distribution of the normalised horizontal ve-
locity fluctuation along the centreline y=0 for the experimental and
numerical data sets.
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Figure 16: Streamwise distribution of the normalised vertical velocity
fluctuation along the centreline y = 0 for the experimental and numer-
ical data sets.

Conclusions

In this paper, the Semi-Linear Implicit Method (SLIM) algorithm was described.
The algorithm has many benefits including the exact satisfaction of the continuity
equation for each time step. In addition, the algorithm is computationally efficient
due the the geometric nature of the pressure Laplacian and the hyperbolic nature
of the momentum equations. The algorithm was implemented as a solver using
version 5.04 of the Caelus library and its accuracy tested through several validation
cases comprising steady and transient laminar problems along with a transient
turbulent case.
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Abstract 

In this paper a novel multimedia architecture design pattern (MADP) is proposed which uses 
controlled synchronization signals. The architecture can be tested for multimedia production. It is 
expected that the synchronization signals will play a vital role in multimedia production. The 
advantages of design pattern and design formation are clearly used. The prototype presented in this 
paper focuses on control signal with the feature of delay remover. The multimedia architectures 
used for framing has importance over synchronization; control signal with delay remover presents a 
novel architecture for audio joiner prototype. The problems of journalism mass communication for 
audio transfer, broadcast and presentation are affected at the time of audio mixing by the problems 
of synchronization and delay occured in multimedia formation. This algorithm will set new 
benchmark in commercial, educational, communication, entertainment multimedia products. 

Keywords: Audio, Delay remover, Binary Joiner, Multimedia, Synchronization 

Introduction 

Multimedia plays a vital role in different sectors like groupware, video on demand services, video 
conference, electronic shopping systems or entertainment systems. Even Multimedia enabled 
learning is very important in modern education. Teaching and learning process is nowadays 
dependent on interactive whiteboards, multimedia projectors, e-presentations. Modern Education 
policies are becoming increasingly dependent on Multimedia with quality. This society is in need of 
better Multimedia Architectures to fulfill the need of new emerging, real world problem oriented 
curriculum, effective analysis system and strong backbone to education system. Patterns are simple 
and elegant explanations. Patterns capture solutions that have developed and evolved over time. 
They are abstractions being used to increase reuse and quality in a variety of fields including 
architecture, software engineering, hypermedia, and teaching/learning [Jones, D. & Stewart, S. 
(1999)]. A design pattern is a three-part rule, which expresses a relation between a certain context, a 
problem, and a solution [Christopher Alexander (1979)]. The Multimedia Architecture revolves 
around the three-part rule. One has to define the relation between multimedia objects (text, 
graphics, animation, audio and video). Then identify the tool/ module that are expected. The tool/ 
module are the outcome of the exercise. After visualizing the relationship between multimedia 
objects and the tool/ module it is the time to work out for a solution. Mere investigation of solution 
to the multimedia tool will not solve everybody’s problem. More need of the Multimedia Tools is 
prone to defects, limitation of use, non-relationship with real world problems, and redundancy of 
development efforts.  There has to be a design pattern, which will trigger the generation of 
multimedia architecture and promote multimedia tool/ module reuse. Design Patterns can and 
should be used to help develop advanced Multimedia Architecture and implement the concept of 
modular objects.  
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Multimedia 
Multimedia is two or more media run continuously. Multimedia is a combination of more than two 
media such as text, graphics, animation, audio and video. The production of multimedia 
components varies from component to component. When written text, speech, photography, music, 
video and graphics are combined and integrated in digital texts, we are dealing not only with the 
convergence of media forms. On a more fundamental level it involves a convergence of semiotic 
systems, reading conventions and rhetorical patterns [Martin Engebretsen (2006)]. Today, certain 
media formats are of particular interest. When we are dealing with written text, graphics, sound 
produced, animation we are not only concerned with media objects; rather we are keen to bring a 
scenario into highlight where a complete multimedia will satisfy the zeal. Multimedia information is 
rapidly growing both in importance and in diversity [Jack Meadow (1998)]. 
 
Multimedia Architecture 

The Multimedia comprises of various media. The collection, production with synchronization can 
cause the overhead to the production systems. The production systems, therefore, should have a 
mechanism to overcome the problem of overhead elimination. Following are few architecture 
designs with specific features. CSI (Complex Streamed Instruction) eliminates overhead 
instructions (such as instructions for data sectioning, alignment, reorganization, and 
packing/unpacking) often needed in applications utilizing MMX -like extensions and accelerates 
key multimedia kernels [Cheresiz, D., Juurlink, B., Vassiliadis, S., Wijshoff, H.A.G. (2005)]. CCM 
(Community coordinated multimedia) envisions the paradigm of consuming multiple media via 
diversity display devices, converged networks, and heterogeneous platforms within a virtual, open 
and collaborative community. 
 
Multimedia Application development industry must demand for specialization in multimedia 
architecture during the recruitment of multimedia-application-developers [Katre Dinesh (2005)]. 
 
Design Pattern 

The question is whether to find a solution or to find a method that find solution to a problem?  A 
pattern for software architecture describes a particular recurring design problem. The problem arises 
in specific design contexts. So the pattern presents a well-proven generic scheme for its solution. 
The solution scheme is specified by describing its constituent components, their responsibilities and 
relationships, and the ways in which they collaborate. A design pattern is a method of using the 
knowledge about problem and its solution continuously. A pattern describes the problem and need 
of its solution. Design pattern straight-a-way tackles about the method of finding the solution of the 
problem. 
 
Controlled Synchronization Signal Algorithm for Multimedia Architecture Design Pattern: 

a. Introduction to Controlled Synchronization 
In this paper we propose a new algorithm with controlled synchronization 

signals. The MADP with controlled signals will help in reducing efforts, redundancy. 
Multimedia requirement analysis will start with object identification. Identification of 
size and parameters of modular objects will help in basic architecture definition. The 
component requirement validity will remove redundancy. The selective approach to 
High Level Features and Low Level Features of MARS (Multimedia Analysis and 
Retrieval System) for indexing of objects will resolve the complexities of object 
modularization [G.N.Shinde, S. B. Kurumbhatte (2002)]. The object interval, features of 
objects: discrete and continuous should go under temporal synchronization 
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specifications with logical mapping [Saul E. Pomares Hernandez, Luis A. Morales 
Rosales, Jorge Estudillo Ramirez, Gustavo Rodriguez Gomez (2008)]. The object 
precedence based on their status: Active, Passive has to be identified. There should be a 
clear notational way to design the object interaction [Rhan Jung, and Soung Won Kim 
(2009)]. As multimedia components are collection of features, and a query based 
approach seeks the information out of multimedia components, a refined query fine 
tunes the weight best suitable to user perception [G.N.Shinde, S. B. Kurumbhatte 
(2002)].].  

The synchronization model should possess the support for the generation of 
synchronization specifications. This ability concerns three aspects: specification 
maintainability, specification reusability and consistency checking [Saul E. Pomares 
Hernandez, Luis A. Morales Rosales, Jorge Estudillo Ramirez, Gustavo Rodriguez 
Gomez (2008)]. 

In an object identified, the color of a pixel generally cannot be independent from 
its neighbours. The objects of a same region will have texture effects [Mina Koleini, S. 
Amirhassan Monadjemi, Payman Moallem (2009)]. The modular objects should contain 
the database for pixel information (size, shape, color, hue, luminance, etc.). The 
algorithm sets and retrieves the values as required. 

In the audio visual synchronization Processor Scheduling for reducing wait time 
will be controlled.  

wait time (twa) for audio  
& wait time (twv) for video  
Processor Scheduling (tP) -> (twa) (twv) and Control Signal  

 
Here, we propose a Controlled Synchronization Signal Algorithm for multimedia architecture 

design pattern. 
1. Requirement Analysis 

a. Object Identification 
i. Object Specification 

Specify the objects/ components that comprise the tool/ module. The complete 
listing of the objects/ components will enable the categorization of them and 
their classification. 

ii. Object Occurrence 
The object occurrence and duration in the story is to be known well in advance. 
The occurrence will decide whether to make the appearance of the object/ 
component to be visible or not.  

iii. Object modularity 
iv. Integration Parameters 

b. Object Synchronization 
i. Object Selection 

ii. Component Precedence Algorithm 
iii. Component Relay (Baton Relay) 
iv. Control signal 
v. Verification 

2. Design Formation 
a. Script writing 
b. Multimedia Aspect Preparation 

i. Component Tokenization and Injection 
ii. Media Integration 

iii. Noise Removal 
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iv. Control Signal 
v. Design-ready-to-verify 

c. Design System 
3. Multimedia Generation 

a. Object Interaction 
The objects are now ready for interaction. Control signals will mix the objects in 
desired sequence.  

4. Example Substitution 
5. Validation 

 
Flowchart 

 
Conclusion 

This design pattern helps multimedia designers to manage the complexity of the multimedia tool/ 
module. When redundancy in problem is identified, the generalized algorithm can be implemented 
productively to provide a reliable multimedia tool/ module. The architecture design presented in this 
paper with delay remover is effective. The processor scheduling and control signals of delay 
remover are a part of a novel design in this prototype. This design pattern also describe about the 
multimedia components, the communication between these components, and the mechanism of 
building these components for obtaining a real world multimedia tool/ module. This pattern defines 
a way of communication using delay remover technology between multimedia-application-
developers. The architecture is useful for communication industry for removing delay problems. 
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Abstract 

The unique capabilities of the Computer Aided Design (CAD) and rapid prototyping (RP) have 
been useful for designing and manufacturing of the customized surgical guides (CSGs). In complex 
surgeries the CSGs have been shown to provide an accurate means of transferring virtual surgical 
planning (VSP) to actual surgery. The main purpose of this study is to highlight the different areas 
where RP assisted CSGs have been prominently use. This paper describes the successful application 
of RP for the production of CSGs in twelve different areas of complex surgeries. Rapid 
manufacturing of CSGs using RP technique and their applications; for drilling, cutting and 
positioning of the implant in various complex surgeries is given in this paper. Otherwise these types 
of complex surgeries could not be accurately treated through traditional surgeries. Different case 
reports are noted in this study to know the various innovative ideas related to the RP assisted CSGs. 
The detail methodology for development of CSGs is also described in this paper. The applications 
reported here have demonstrated that RP is a viable process for the manufacturing of CSGs. This 
approach shows good results in designing and manufacturing of the CSGs. Using advanced tools; 
VSP, CAD and RP for development of CSGs for the accurate surgery are possible easily. The main 
aim of this paper is to represent the applications of RP technology to direct manufacturing of CSGs 
in various complex surgeries.  
Keywords: Virtual surgical planning, Computer aided design, Rapid prototyping 

Introduction 

The CSG is a jig designed and manufactured by an engineer with surgeon input in complex 
surgeries using CAD/CAM technology and RP. Designing and manufacturing of CSGs are possible 
according to the pre-operative VSP of the engineer and surgeon with the aim to transfer this plan 
into the operating theatre [Oliveira et al., (2008); Fantini et al., (2013)]. CAD/CAM and VSP has 
improve preoperative planning and understanding of the surgical anatomy and has facilitate the 
digital preparation of CSGs. It consists of intraoperative instruments that transfer the VSP to the 
operating field for the exact resection, drilling or accurate placement of the implant in the surgery 
site. This process have the potential of reducing the major negative changes in the patient’s quality 
of life that can lead to low self confidence and negative self perception [Logan et al. (2013)]. In this 
paper the twelve different applications of CSGs in various complex surgeries and manufacturing 
methodology for the innovative development is discussed.      

Methodology for development of CSGs- 

Radiology  

The scan data of CT, CBCT or MRI in DICOM format are generally useful for the development of 
the CSGs. These are the inputs to develop the CSGs.   

 Image processing  

By using various advance image processing software like Mimics (Materialise NV, Leuven, 
Belgium) the collected data of CT, CBCT or MRI scan in DICOM format have to be convert into 
RP compatible STL format for the development of the CSGs. A thresholding technique is useful in 
order to highlight the areas of interest using exact threshold level for bone. A 3D model of diseased 
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part can quickly and easily create with the segmentation done. In the case of the diseased anatomy, 
reconstruction times ranged from 2 minutes for basic models where minor details were ignored, to 
half an hour for model where all details were included such as surface indentations. The 
sophisticated measurement tools in software provide accurate dimensions of complex geometries, 
allowing for accurate measurements and greater insight into the morphology of the diseased 
anatomy. The precise measurements which can be determined using software aid in the choice of 
the most appropriate CSGs design and surgery planning. Finally obtained 3D model of diseased 
anatomy have to export into STL format for the designing of CSGs.  
  
Virtual surgical planning  
The advance tools in software has capable to eliminate the inaccuracies commonly associated with 
traditional surgery planning and simplify the execution by eliminating surgical steps such as 
intraoperative measurement, marking of implant positioning site, etc. [Polley and Figueroa (2013)]. 
The computerized plan can be easily transfer accurately to the surgical site to position the implant, 
taking cut or drilling at the time of surgery using VSP [Hsu et al. (2013)]. Before design the CSGs 
the VSP plays vital role to achieve the accuracy in proper fitting of the implant, drilling or cutting 
on accurate site. VSP decides the size of implant, thickness of implant, screw positioning of 
implant, shape of implant, exact match of the implant, also it plan for design of CSGs as per the 
need like drilling, cutting or positioning of the implant. The main advantage of  VSP  compared  
with conventional  planning  is  that  it significantly  reduces  the  laborious manual steps [Schepers 
et al. (2012)].  
 
CAD of CSG 

Based on 3D model of the affected anatomy the optimal CSGs design generally plan. Surgery 
simulation on the 3D CAD model of affected anatomy makes it possible to begin designing CSGs in 
currently available advance CAD software like 3Matics. To create these CSGs, the bone surface 
was inversed which assured of a perfect fit. From a surgical point of view, the CSGs facilitates the 
identification of the most appropriate site with regard to bone volume, blood supply, and precisely 
assists in resection of the desired bony segment in a correct angle at the recipient site [Dérand et al. 
(2012)]. The wrap tool is used to design the CSGs for the accurate transfer of contour of affected 
anatomy on the guide. The designing procedure of the CSGs is given in “Table 1”. 

 

Table 1. Design methodology 

 

S.N. Design methodology 

1 Radiology 
2 Image processing 
3 Virtual surgical planning  
4 CAD 
5 Export into RP compatible STL format  

 
Manufacturing of CSGs  

After completion of the design of the CSGs, it has to save in STL i.e. RP compatible format for 
manufacturing. Various authors used various RP techniques for the fabrication of the CSGs. Among 
them FDM, SLA, SLS, 3DP are the common RP techniques use to easily manufacture the CSGs in 
plastic material. As per requirement DMLS, SLM, EBM are some RP techniques are used by 
different researchers to fabricate CSGs in metallic form.  
Even though the virtual model shows that there is a perfect fit, the researchers will have to play it 
safe, for that mock test of fitting and cutting with their own hands is important. In order to do so 
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prior to a real surgery, the RP plays dominant role to produce the diseased model and corresponding 
CSGs. If surgeon satisfied with the mock test the CSG can use in the surgery after sterilization. The 
manufacturing procedure of the CSGs is given in “Table 2”. 
 

Table 2. Methodology for the manufacturing of the CSGs 

S.N. Manufacturing process steps 

1 Slice STL file using RP software and link with RP machine  

2 Fabrication of CSG using RP machine  

3 Post processing for finishing 

4 Try in before surgery on RP assisted diseased model 

 
Applications of RP assisted CSG for various surgeries  

Author noted the twelve different areas where the RP assisted CSGs are prominently use in the 
complex surgeries. Among them dentistry and craniomaxillofacial (CMF) are the common fields 
where CSGs have been used tremendously. The various application of the RP assisted CSGs in 
various surgeries are given in the “Table 3”. 
 

Table 3. Application of RP assisted CSG for various surgeries 

 
S.N Area Application RP assisted 

CSG 

Researchers 

1 Dentistry CSG for drilling- 

Drilling and placement of the implant 
at exact position and orientation 

 

Giacomo et al. 
2014 

2 CMF CSG for resection- 

Accurate resection of the bone tumor 

 

St-Hilaire et al. 
2012 

3 PSI CSG for drilling- 

Accurate insertion of the screws in the 
pedicles  

 

Porada et al. 

4 THA CSG for resection- 

Accurate resection of the femur head  

 

Drstvensek et al. 
2013 
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5 TKN CSG for resection- 

Accurate resection of the knee 

 

Bagaria et al. 
2011 

6 CO CSG for resection- 

Accurate resection and placement of 
the plate  

 

Dobbe et al. 
2013 

7 BRAR CSG for resection- 

Accurate bone resection and allograft 
reconstruction 

 

Bellanova et al. 
2013 

8 OO CSG for resection- 

Exact cutting of the cancer affected 
part 

 

Khan et al. 2013 

9 MTPJ CSG for drilling- 

Exact placement of k wires for twisting  

 

Hirao et al. 2014 

10 OIP CSG for drilling- 

Placement of implants at accurate 
location in the orbit 

 

Unknown author  

11 TMJ CSG for resection- 

Exact resection and positioning of the 
scaffold 

 

Ciocca et al. 
2009 

12 NS CSG for drilling- 

Used in the deep brain stimulation 

 

Rajon et al. 2006 

CMF- craniomaxillofacial, PSI- pedical screw insertion, THA- total hip arthroplasty, TKR- total knee replacement, CO- corrective osteotomy, BRAR- 
bone resection and allograft reconstruction, OO- orthopedic oncology,  MTPJ- metatarsophalengeal joint surgery, OIP- orbital implant placement, 
TMJ- temporomandibular joint surgery, and NS- neurosurgery  

Discussion 

In this paper the development of the RP assisted CSGs and their applications in twelve different 
areas of medical in complex surgeries have reported. According to the researchers, it is really very 
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easy to find the best fit for positioning the CSGs manually, because of no significant free motion 
while the placement in position with slightly pressing against the affected bone. Although the 
technique requires a very clean preparation of the bone surface, including removal of the attached 
muscle and fat tissue, it will still proves to be better than other techniques reported in the literature. 
There are in fact several distinct advantages of using advance software to design the CSGs. The 
surgeon can decides on the location, orientation, and size of the customized implant based on the 
unique morphology of the patient prior to the surgery. Also it helps to take proper cut, drill holes in 
the complex sites in the surgery. This technique is very simple to use, so it does not require a 
specific expertise on the surgeon’s part. It eliminates the need for complex equipment and time 
consuming procedures in the operation theatre, thereby reducing the operation time considerably. 
Screws for fixation implant can be accurately place without perforating the nerves. The need for 
fluoroscopy during implant placement and screw insertion is eliminated, which considerably 
reduces the radiation exposure to the patient and the members of the surgical team [Lu et al. (2012); 
Cansiz et al. (2013)]. This is important as surgeons these days are tackling more challenging 
anatomy than ever so the valuable information provided by the 3D reconstructions ensures that the 
surgeons don’t encounter any unforeseen problems during surgery; this in turn increases confidence 
in the procedure. Using this technique the 3D reconstruction and manufacturing of CSGs is quick to 
perform and also aid surgeons in improving the treatment. With CSG’s wide applicability, high 
accuracy, proven safety and cost-effectiveness, RP assisted CSGs will likely enjoy widespread use 
in the future in various complex surgeries. 

Conclusions 

This study shows that RP is a viable rapid manufacturing method for the direct production of CSGs 
for various complex surgeries. The time and cost for development of CSGs using RP is comparable 
to other manufacturing processes. The CSGs produced using the RP process have been shown to be 
acceptable in terms of accuracy, quality of fit and function to surgical guides in twelve different 
prominent surgical areas which could not be otherwise possible easily using traditional 
manufacturing methods. 
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Abstract

In this paper, we proposed a new highly efficient two-point sixth-order family of
Halley type methods that do not require any second-order derivative evaluation
for obtaining simple roots of nonlinear equations, numerically. In terms of compu-
tational cost, each member of the family requires two function and two first-order
derivative evaluations per iteration. On the account of the results obtained, it is
found that our proposed methods are efficient and show better performance than
existing sixth-order methods available in the literature. Further, it is also noted
that larger basins of attraction belong to our methods although the others meth-
ods are slow and has darker basins while some of the method are too sensitive
upon the choice of the initial value.

Keywords: Nonlinear equations, Simple roots, Halley’s method, Basins of at-
tractions, Order of convergence

Introduction

Efficient solution techniques are required for finding simple roots of nonlinear
equation of the form

f(x) = 0, (1)

where f : D ⊆ R → R is a nonlinear sufficiently differentiable function in an
interval D, which partake of scientific, engineering and various other models. One
of the best known one-point optimal second-order method based on two func-
tional evaluations is the classical Newton’s method [Traub (1964); Petković et al.
(2012)]. Many methods have been developed which improve the convergence rate
of the Newton’s method or Newton like at the expense of additional evaluations
of functions or derivatives.

Halley’s method [Traub (1964); Petković et al. (2012)] is the third-order
modification of Newton’s method, which is defined as follows:

xn+1 = xn − 2f(xn)f ′(xn)
f(xn)f ′′(xn) − 2{f ′(xn)}2 . (2)
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Despite the cubic convergence, this method is considered less practical from a
computational point of view because of the costly second-order derivative evalu-
ation. Therefore, researchers introduced multi-point methods and the primarily
aim of these methods is to achieve as high as possible order of convergence using
a fixed number of function evaluations. However, multi-point methods do not use
higher order derivatives and has great practical importance since they overcome
the theoretical limitations of one-point methods regarding their convergence order
and computational efficiency.

Therefore, a number of sixth-order methods are also appearing as the exten-
sions of Newton’s method or Newton like method to solve nonlinear equation
(1). In [Neta (1979)] given a three-point sixth-order general iteration scheme for
obtaining simple roots of nonlinear equations, which is defined as follows:

yn = xn − f(xn)
f ′(xn)

,

zn = xn − 1 + βu

1 + (β − 2)u
f(yn)
f ′(xn)

= yn − Gf (u) f(xn)
f ′(xn)

,

xn+1 = zn − 1 − u

1 − 3u

f(zn)
f ′(xn)

,

(3)

where u = f(yn)
f(xn) , Gf (u) = u(1+βu)

1+(β−u) , β ∈ R.

In [Sharma and Ghua (2011)], proposed three-point family of sixth-order methods
based on fourth-order Ostrowski’s method [Kanwar et al. (2011)], which is given
by 

yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(xn)
f(xn) − 2f(yn)

f(yn)
f ′(xn)

,

xn+1 = zn − f(xn) + af(yn)
f(xn) + (a − 2)f(yn)

f(zn)
f ′(xn)

, a ∈ R.

(4)

On the other hand, [Wang and Liu (2009)] have constructed two three-point sixth-
order families of Jarratt’s method [Petković et al. (2012); Behl et al. (2013)]
requiring two of functions and two of first-order derivative evaluations per itera-
tion, one of them is defined as follows:

yn = xn − 2
3

f(xn)
f ′(xn)

,

zn = xn − 9 − 5w

10 − 6w

f(xn)
f ′(yn)

, w = f ′(yn)
f ′(xn)

xn+1 = zn − a + bw

c + dw + rw2
f(zn)
f ′(xn)

,

(5)

where a = 5c+3d+r
2 , b = r−3c−d

2 , c + d + r ̸= 0, a, b, c, d, r ∈ R.
But, the body structures of above mentioned three-point sixth-order meth-

ods are more complicated as compared with two-point methods [Kanwar et al.
(2011); Behl et al. (2013)]. Further, it is very rare to find two-point methods
whose order of convergence higher than four [Guem et al. (2015)]. Nowadays,
obtaining new two-point methods of order six not requiring the computation of a
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second-order derivative, is very important and interesting task from the practical
point of view,

Therefore, the principle aim of this manuscript is to provide a new highly effi-
cient two-point sixth-order class of Halley type methods, that do not require any
second-order derivative evaluation for obtaining simple roots of nonlinear equa-
tions, numerically. It is also observed that the body structures of our proposed
families of methods are simpler than the existing three-point families of sixth-
order methods. Further, our proposed methods are more effective in all the tested
examples to the existing three-point sixth-order methods available in the litera-
ture. Further, we also compare them with two-point sixth-order methods that is
very recently proposed by [Guem et al. (2015)] and it is found that our methods
our better than these methods. Furthermore, the dynamic study of our methods
also supports the theoretical aspects.

Development of two-point sixth-order methods

In this section, we intend to develop many new families of sixth-order Halley
type methods, not requiring the computation of second-order derivative. For this
purpose, we consider wn = xn − f(xn)

f ′(xn) , a Newton’s iterate. With the help of Taylor
series, we expand the function f(wn) about a point x = xn as follows:

f(wn) ≈ f(xn) + f ′(xn)(wn − xn) + 1
2

f ′′(xn)(wn − xn)2, which further implies

f ′′(xn) ≈ 2{f ′(xn)}2f(wn)
{f(xn)}2 . (6)

Similarly, expanding the function f ′(wn) = f ′
(
xn − f(xn)

f ′(xn)

)
about a point x = xn

by Taylor series expansion, we have f ′(wn) ≈ f ′(xn) + f ′′(xn)(wn − xn), which
further yields

f ′′(xn) ≈
f ′(xn)

(
f ′(xn) − f ′(wn)

)
f(xn)

. (7)

Now, taking the arithmetic mean of two equations (6) and (7), we get another
approximation of f ′′(xn) as follows:

f ′′(xn) ≈
2{f ′(xn)}2f(wn)

{f(xn)}2 +
f ′(xn)

(
f ′(xn)−f ′(wn)

)
f(xn)

2
. (8)

Inserting this approximate value of f ′′(xn) in scheme (2), and using the weight
function on the second step, we get

wn =xn − f(xn)
f ′(xn)

,

xn+1 =xn − 4{f(xn)}2

3f(xn)f ′(xn) + f(xn)f ′(wn) − 2f ′(xn)f(wn)
Mf (h, k),

(9)

where the weighting function Mf is a sufficient differential function with h =
f ′(xn)

(
f(xn)+f(wn)

)
f(xn)f ′(wn) and k = f(wn)

f(xn) . Theorem 1 indicates that under what choices on
the weight function (9), the order of convergence will reach at six without using
any more functional evaluations.
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Convergence analysis
Theorem 1 Let a sufficiently smooth function f : D ⊆ R → R has a simple zero
ξ in the open interval D. Assume that initial guess x = x0 is sufficiently close to
ξ. Then, the iterative scheme defined by (9) has sixth-order convergence when

M00 = 1, M01 = 3
4

, M10 = −1
4

, M20 = 1
2

, M11 = 1
2

, M02 = −5
2

, M03 = 9(6M30 + 3M21 + 5),

M12 = −3(3M30 + 2M21 + 3), M04 = −3{4M13 + 9(2M22 + 4M31 + 3M40 − 8)},
(10)

where Mij = ∂i+j

∂hi∂kj Mf (h, k)|(h=1, k=0). It satisfies the following error equation

en+1 = − c2

12

[
12(M13 + 18M21 + 9M22 + 54M30 + 27M31 + 27M40 − 10)c4

2 − {2M13 + 3(24M21

+ 6M22 + 72M30 + 18M31 + 18M40 − 5)}c2
2c3 + 6(4 + M21 + 3M30)c2

3 − 12c2c4

]
e6

n + O(e7
n).

(11)

Proof Let ξ be a simple zero of f(x). With the help of Taylor’s series, we get
the following expansion of f(xn) and f ′(xn) around x = ξ

f(xn) = f ′(ξ)
(
en + c2e

2
n + c3e

3
n + c4e

4
n + e5

nc5 + e6
nc6 + O(e7

n)
)
, (12)

and

f ′(xn) = f ′(ξ)
(
1 + 2enc2 + 3e2

nc3 + 4e3
nc4 + 5e4

nc5 + 6e5
nc6 + 7e6

nc7 + O(e7
n)

)
, (13)

respectively. By using equations (12)–(13), we get

f(wn) =f ′(ξ)
(

c2e2
n − 2(c2

2 − c3)e3
n + (5c3

2 − 7c2c3 + 3c4)e4
n − 2(6c4

2 − 12c2
2c3 + 3c2

3 + 5c2c4

− 2c5)e5
n +

(
28c5

2 − 73c3
2c3 + 34c2

2c4 − 17c3c4 + c2(37c2
3 − 13c5) + 5c6

)
e6

n + O(e7
n)

)
.

(14)
and

f ′(wn) =f ′(ξ)
(

1 + 2c2
2e2

n − 4(c3
2 − c2c3)e3

n + c2(8c3
2 − 11c2c3 + 6c4)e4

n − 4c2(4c4
2 − 7c2

2c3

+ 5c2c4 − 2c5)e5
n + 2(16c6

2 − 34c4
2c3 + 6c3

3 + 30c3
2c4 − 13c2

2c5 − 8c2c3c4 + 5c2c6)e6
n

+ O(e7
n)

)
.

(15)
By using equations (12)–(15), we obtain

h =
f ′(xn)

(
f(xn) + f(wn)

)
f(xn)f ′(wn)

= 1 + 3c2en + (5c3 − 3c2
2)e2

n − 7(c2c3 − c4)e3
n + (6c4

2 − 3c2
2c3

− 2c2
3 − 10c2c4 + 9c5)e4

n + {31c3
2c3 − 12c5

2 − c2
2c4 − 5c3c4

− c2(11c2
3 + 13c5) + 11c6}e5

n + O(e6
n).

(16)
and

k = f(wn)
f(xn)

= c2en + (−3c2
2 + 2c3)e2

n + (8c3
2 − 10c2c3 + 3c4)e3

n + (−20c4
2 + 37c2

2c3 − 8c2
3 − 14c2c4

+ 4c5)e4
n +

(
48c5

2 − 118c3
2c3 + 51c2

2c4 − 22c3c4 + c2(55c2
3 − 18c5) + 5c6

)
e5

n + O(e6
n).
(17)
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Since it is clear from equations (16) – (17), h = 1 + u and k = O(en). Then,
from these equations, we get the remainder u = h − 1 and k are infinitesimal with
the same order of en. Therefore, we can expand weight function M(h, k) in the
neighborhood of (1, 0) by Taylor series expansion up to fourth-order terms as
follows:

Mf (h, k) = M00 + M10u + M01k + M20u2 + 2M11uk + M02k2

2!
+ 1

3!
(
M30u3 + 3M21u2k

+ 3M12uk2 + M03k3)
+ M40u4 + 4M31u3k + 6M22u2k2 + 4M13uk3 + M04k4

4!
+ O(e5

n).
(18)

Using equations (12) – (18), in scheme (9), we obtain

en+1 = (1 − M00)en − c2(M01 + 3M10)e2
n +

6∑
l=3

Hle
l
n, (19)

where Hl = Hl(c2, c3, . . . , c6)Mij, for 0 ≤ i, j ≤ 4.
From the equation (19), it is clear that by substituting the following values

M00 = 1, M01 = −3M10, (20)

we get at least third-order convergence. Further, using (20) into H3 = 0, we find
two independent relation as follows:

(1 + 4M10) = 0, (M02 + 12M10 + 6M11 + 9M20 − 2) = 0 (21)

After some simplification, we get

M10 = −1
4

, M02 = (5 − 6M11 − 9M20). (22)

By substituting equations (20) and (22) into H4 = 0, we have

(M11 + 3M20 − 2) = 0,
(
M03 + 9(4M11 + M12 + 12M20 + 3M21 + 3M30 − 4)

)
= 0. (23)

Solving the above equation (23) for M11 and M03, which further yields

M20 = −1
3

(M11 − 2), M03 = −9(4 + M12 + 3M21 + 3M30). (24)

By substituting equations (20), (22) and (24) into H5 = 0, we obtain
(2M11 − 1) = 0,

(4M11 − M12 − 6M21 − 9M30 − 11) = 0,[
M04 + 3(168 − 48M11 + 24M12 + 4M13 + 144M21 + 18M22 + 216M30 + 36M31 + 27M40)

]
= 0.

(25)
Solving the above equation for M20, M12 and M04, we get

M11 = 1
2

,

M12 = −3(3 + 2M21 + 3M30),
M04 = −3{4M13 + 9(2M22 + 4M31 + 3M40 − 8)}.

(26)
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We obtain the following error equation, by using equations (20), (22), (24) and
(26) into (19)

en+1 = − c2

12

[
12(M13 + 18M21 + 9M22 + 54M30 + 27M31 + 27M40 − 10)c4

2 − {2M13 + 3(24M21

+ 6M22 + 72M30 + 18M31 + 18M40 − 5)}c2
2c3 + 6(4 + M21 + 3M30)c2

3 − 12c2c4

]
e6

n + O(e7
n).

(27)
This reveals that the modified family of Halley type methods (9) reaches the order
of convergence six by using only four functional evaluations(viz f(xn) f ′(xn) f(wn)
and f ′(wn)) per full iteration. This completes the proof. �

Special cases

In this section, we discuss some interesting special case of weight function defined
in (9) by inserting the values of free disposable parameters and different forms of
weight functions Mf (h, k).
(1) For M40 = 0, M31 = 0, M13 = 0, M22 = 4 and M30 = 0, in (18), we get the
following weight-function

Mf (h, k) =1 − u

4
+ u2

4
+ 3 + 2u + 2M21u2

4
k −

(5
4

+ 3
2

(3 + 2M21)u − u2
)

k2 + 3
2

(5 + 3M21)k3,

(28)
where M21 is a free variable and for the sake of simplicity u = h−1. This is a new
two-point sixth-order family of methods. For different specific values of M21, we
get various cases as well as two-point methods but some of the important cases
describes in the following table 1.

Table 1: Sub cases of weight function (28) and their error equations
Particular values Sub cases and their error equation

of M21

M21 = 0 Mf (h, k) = 1 − u
4 + u2

4 + 3+2u
4 k +

(
u2 − 5

4 − 9u
2

)
k2 + 15k3

2 ,(
−26c5

2 + 19
4 c3

2c3 − 2c2c
2
3 + c2

2c4
)

e6
n + O(e7

n).
M21 = −13

9 Mf (h, k) = 1 − u
4 + u2

4 + 27+18u−26u2

36 k +
(
u2 − 5

4 − u
6

)
k2 + k3,(

−47
12c3

2c3 − 23
18c2c

2
3 + c2

2c4
)

e6
n + O(e7

n).
M21 = −5

3 Mf (h, k) = 1 − u
4 + u2

4 + 9+6u−10u2

12 k +
(
u2 − 5

4 + u
2

)
k2,(

4c5
2 − 21

4 c3
2c3 − 7

6c2c
2
3 + c2

2c4
)

e6
n + O(e7

n).

(2) For M40 = 0, M31 = 0, M13 = 0, M22 = 4 and M30 = −3M21+5
6 in (18), we

obtain

Mf (h, k) = 1−u

4
+u2

4
−3M21 + 5

36
u3+3 + 2u + 2M21u

2

4
k+4u2 − 5 − 3(1 + M21)u

4
k2,

(29)
where M21 is a free variable. Therefore, some of the special cases given in the
following table 2.
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Table 2: Sub cases of weight function (29) and their error equations

Particular values Sub cases and their error equation
of M21

M21 = 0 Mf (h, k) = 1 − u
4 + u2

4 − 5u3

36 + 3+2u
4 k +

(
−5

4 − 3u
4 + u2

)
k2,

1
4c2

(
76c4

2 − 41c2
2c3 − 3c2

3 + 4c2c4
)

e6
n + O(e7

n).
M21 = −19

9 Mf (h, k) = 1 − u
4 + u2

4 + u3

27 + 27+18u−38u2

36 k +
(
−5

4 + 5u
6 + u2

)
k2,(

−47
12c3

2c3 − 23
18c2c2

3 + c2
2c4

)
e6

n + O(e7
n).

M21 = −5
3 Mf (h, k) = 1 − u

4 + u2

4 + 9+6u−10u2

12 k +
(
−5

4 + u
2 + u2

)
k2,(

4c5
2 − 21

4 c3
2c3 − 7

6c2c2
3 + c2

2c4
)

e6
n + O(e7

n).

(3) We consider following weight function, that satisfies all the conditions which
are mention in theorem 1

Mf (h, k) = 1
16

(
5 + 27

1 + 2h
+ 4k − 20k2 − 24k3 + h(2 + 8k)

)
. (30)

(4) We consider another weight function, which is given by

Mf (h, k) = 8 + k − 5k2 − 6k3 + h2(1 + 4k) + h (3 + 4k − 10k2 − 12k3)
4 + 8h

. (31)

(5) We consider one more weight function, which is defined as follows:

Mf (h, k) = 6 + 16k − 11k2 − 12k3 + 45k4 + h2 (
1 − 9k2)

+ h
(
−3 − k + 24k2)

4 + 12k
. (32)

Numerical experiments

In this section, we apply new methods for (M21 = −13
9 ) in scheme (28), for

(M21 = −19
9 ) in scheme (29), denoted by OM1

6 and OM2
6 respectively, to solve

some nonlinear equations given in table 3, which serve to check the validity and
efficiency of theoretical results. These methods are compared with method (5) for
(c = 0, d = 1, r = 0), proposed by [Wang and Liu (2009)], (called WM6) and
method (3) for (β = 2), proposed by [Neta (1979)], denoted by (NM6). Finally, we
will also compare our schemes with a two-point family of sixth-order methods that
is very recently proposed by [Guem et al. (2015)], between them we will choose
their best expression (3.4, 3.8 and 3.12) denoted by (GM1

6 , GM2
6 and GM3

6 ),
respectively. For better comparisons of our proposed methods, we have given
three comparison tables in each example: one is corresponding to absolute error,
the second one is with respect to number of iterations and third one is regarding
their computational error in table 4, 5, 6, respectively. All computations have been
performed using the programming package Mathematica 9 with multiple precision
arithmetic. We use ϵ = 10−34 as a tolerance error. The following stopping criteria
are used for computer programs:
(i)|xn+1 − xn| < ϵ and (ii)|f(xn+1)| < ϵ.
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Table 3: Test problems
f(x) Root(r)
f1(x) = tan−1(x2 − x) 1.00000000000000000000000000000000000
f2(x) = x3 − 30x + 5 5.3919091867997792317129299268950973
f3(x) = x3 + sin x + 2x 0.00000000000000000000000000000000000
f4(x) = sin x − tan x + 1 1.0826495247186551155684838889482183
f5(x) = e−x2+x+2 − 1 2.00000000000000000000000000000000000

Table 4: (Comparison of different sixth-order methods with the same
total number of functional evaluations (TNFE=12))

f(x) x0 WM6 NM6 GM1
6 GM2

6 GM3
6 OM1

6 OM2
6

1. 0.85 1.7e−93 2.8e−110 3.9e−95 1.1e−95 1.7e−111 6.0e−140 2.2e−161
1.6 3.2e−72 2.8e−78 1.7e−107 2.5e−63 8.3e−70 1.9e−153 5.3e−99

2. 4.5 7.1e−20 7.6e+5 9.4e−36 8.2e−35 1.7e−57 6.1e−68 3.3e−87
6.5 2.9e−97 2.0e−145 1.3e−95 3.2e−95 3.4e−102 1.3e−130 1.1e−147

3. −2.0 1.3e−4 2.7e−1 8.0e−60 1.6e−43 2.3e−49 2.4e−90 7.6e−75
−1.9 1.3e−47 1.7e−4 3.5e−67 4.3e−48 8.3e−55 3.5e−125 2.7e−75
1.9 1.3e−47 1.7e−4 3.5e−67 4.3e−48 8.3e−55 3.5e−125 2.7e−75
2.0 1.3e−4 2.7e−1 8.0e−60 1.6e−43 2.3e−49 2.4e−90 7.6e−75

4. 0.86 1.8e−14 C C C 1.3e−21 1.5e−9 1.5e−16
1.4 3.2e−26 3.3e−3 2.1e−25 9.0e−25 1.4e−29 1.5e−69 2.4e−38

5. 1.2 1.2e−47 5.0e−52 1.1e−50 9.5e−53 4.8e−57 3.5e−76 1.5e−98
2.25 7.5e−24 D 1.2e−30 8.9e−29 2.6e−54 1.7e−58 6.9e−74

C: stands for converge to undesired root, D: stands for divergent.

Table 5: (Comparison of different sixth-order methods with respect to
number of iterations)

f(x) x0 WM6 NM6 GM1
6 GM2

6 GM3
6 OM1

6 OM2
6

1. 0.85 4 4 4 4 4 4 4
1.6 4 4 4 4 4 4 4

2. 4.5 5 9 4 4 4 4 4
6.5 4 4 4 4 4 4 4

3. −2.0 4 6 4 4 4 4 4
−1.9 4 6 4 4 4 4 4
1.9 4 6 4 4 4 4 4
2.0 4 6 4 4 4 4 4

4. 0.86 5 C C C 5 5 5
1.4 5 6 5 5 5 4 4

5. 1.2 4 4 4 4 4 4 4
2.25 5 D 5 5 4 4 4

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

369



Table 6: (Computational order of different sixth-order methods )

f(x) x0 WM6 NM6 GM1
6 GM2

6 GM3
6 OM1

6 OM2
6

1. 0.85 5.999 6.000 5.999 5.999 6.000 6.000 6.000

1.6 6.003 6.000 6.000 5.993 5.996 6.000 5.997

2. 4.5 6.000 6.000 5.956 5.952 5.994 6.010 6.001

6.5 6.000 6.000 6.000 5.994 6.000 6.000 6.000

3. −2.0 6.970 6.997 8.985 7.005 7.010 7.000 7.000

−1.9 6.982 7.000 9.000 7.003 7.006 7.000 7.000

1.9 6.982 7.000 9.000 7.003 7.006 7.000 7.000

2.0 6.970 6.997 8.985 7.005 7.010 7.000 7.000

4. 0.86 6.000 C C C 6.000 6.005 6.002

1.4 6.000 6.000 6.000 6.000 6.000 6.001 6.011

5. 1.2 5.984 5.980 5.988 5.990 5.994 5.996 6.000

2.25 6.000 D 6.000 6.000 5.992 6.013 6.003

Attractor basins in the complex plane

We here investigate the comparison of the attained simple root finders in the com-
plex plane using basins of attraction. It is known that the corresponding fractal
of an iterative root-finding method is a boundary set in the complex plane, which
is characterized by the iterative method applied to a fixed polynomial p(z) ∈ C,
see e.g. [Scott et al. (2011); Neta et al. (2012); Behl and Motsa (2012)]. The
aim herein is to use basin of attraction as another way for comparing the iteration
algorithms.

From the dynamical point of view, we consider a rectangle D = [−3, 3] ×
[−3, 3] ∈ C with a 400 × 400 grid, and we assign a color to each point z0 ∈ D
according to the simple root at which the corresponding iterative method start-
ing from z0 converges, and we mark the point as black if the method does not
converge. In this section, we consider the stopping criterion for convergence to
be less than 10−4 wherein the maximum number of full cycles for each method is
considered to be 100. In this way, we distinguish the attraction basins by their
colors for different methods.
Test problem 1. Let p1(z) = (z4 + 1), having simple zeros {−0.707107 −
0.707107i, −0.707107+0.707107i, 0.707107−0.707107i, 0.707107+0.707107i}. It
is straight forward to see from Fig. 1 – 2 that our methods, namely OM1

6 and OM2
6

contain lesser number of non convergent points, have a larger and brighter basin
of attraction in comparison to the methods, namely WM6, NM6, GM1

6 , GM2
6 and

GM3
6 . Further, our methods do not show an chaotic behavior as method WM6.
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Figure 1: The methods WM6, NM6, GM1
6 and GM2

6 , respectively for test
problem 1.

Figure 2: The methods GM3
6 , OM1

6 , and OM2
6 , respectively for test

problem 1.

Test Problem 2. Let p2(z) = (z6 + z), having simple zeros {−1, −0.309017 −
0.951057i, −0.309017+0.951057i, 0, 0.809017−0.587785i, 0.809017+0.587785i}.
We can easily observe from Fig. 3 – 4 that our proposed methods have larger and
brighter basin of attraction in comparison to the mentioned methods.

Figure 3: The methods WM6, NM6, GM1
6 and GM2

6 , respectively for test
problem 2.

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

371



Figure 4: The methods GM3
6 , OM1

6 and OM2
6 , respectively for test prob-

lem 2.

Conclusions

In this paper, we proposed several second-derivative free families of Halley type
methods based on weight function and arithmetic means of the approximated
value of the second-order derivative. We can easily get several new methods
by choosing different values of the disposable parameter M21 in schemes (28)
and (29). Further, we can also obtain several families of sixth-order Halley-type
method by considering different kind of weight functions which satisfy the condi-
tions mentioned in Theorem 1. Each member of the proposed family requires two
evaluations of the function f and two of its first-order derivative f ′ per full step.
Our proposed iterative methods are compared in their efficiency and performance
to various other multi-point methods in Table 4, 5, 6 and it is observed from these
tables that our proposed methods are efficient and perform better than existing
methods available in the literature. Based on Figs. 1 – 4, we conclude that larger
basins of attraction belong to our methods namely, OM1

6 and OM2
6 although the

others methods are slow and has darker basins while some of the method are too
sensitive upon the choice of the initial value.
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Abstract 

In the present study, interaction between regular waves and free roll motion of a 2D floating body is 
investigated by our in-house particle solver MLParticle-SJTU based on modified Moving Particle 
Semi-Implicit (MPS) method. Numerical wave tank is developed to calculate the interaction 
between waves and floating body, including wave-maker module and free roll motion module. The 
comparison between the numerical wave elevation and analytical solution shows that the 
MLParticle-SJTU can provide acceptable accuracy of wave making. Roll motion and force acting 
on the floating body in waves are in good agreement with experimental results. Profiles of the wave 
surface surrounding floating body are presented. 
 
Keywords: Particle method; MPS (Moving Particle Semi-Implicit); Wave Floating body 

Interaction; Wave making; Roll motion 

Introduction 

Recent years, a variety of floating structures, such as ships, offshore platforms, floating-breakwater, 
fish-farms, floating-airports, play a crucial role in coastal and ocean engineering. It’s common for 
floating structures to suffer from loadings under waves, and responses of these structures mounted 
in ocean or coastal environments have significant relation to the wave impacts. The interaction 
between free-surface waves and floating body is one of the key aspects in ship design or offshore 
structure design to increase performance and efficiency. 
 
In the past decades, both theory and experimental analyses methods have been used by many 
researchers to investigate the interaction problem. The early established theoretical methods are 
mainly based on potential flow theories and limited to solve the motion of floating body with simple 
shape. Chahine, et al. (1999) developed a free surface hydrodynamics code based on three-
dimensional Boundary Element Method and then they modeled the nonlinear evolution of waves as 
they progress along a shallow sloping bottom in the presence of a floating body that is free to rotate 
and translate. Bai and Eatock Taylor (2006) studied the radiation and diffraction problem of vertical 
circular cylinders in a fully nonlinear numerical wave tank based on the boundary element method 
(BEM). You and Faltinsen (2012) developed a 3D fully nonlinear time-domain Rankine source 
code. A numerical wave tank with a piston wave maker and a numerical damping zone is applied to 
simulate the interaction between moored floating bodies and waves. Jung et al. (2004a) 
experimentally studied waves impacting on a fixed rectangular structure. PIV technique is used to 
obtain the mean velocity and turbulence properties of water around structure. The generation and 
evolution of vortexes of a barge in beam sea condition is simulated. Subsequently, Jung et al. 
(2004b, 2005) investigated the two-dimensional flow characteristics of interactions between waves 
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and freely rolling rectangular structures. Results between the roll motion and the fixed condition 
were compared. Ren et al. (2015) studied the motions of a freely floating body under nonlinear 
waves. 
 
Besides, a wide variety of nonlinear numerical models based on the NS equations in time domain 
have been developed to study the interaction problem. The finite difference method or the finite 
volume method (FVM) is typically used for spatial discretization. And various techniques are used 
for interface capturing, such as the Level Set method and the Volume of Fluid method. In Boo’s 
work (2002), a numerical tank was constructed, the linear and nonlinear irregular wave diffraction 
forces acting on a submerged structure was predicted. In Li’s work (2010), a 2-D numerical regular 
wave tank was built, which mainly based on the spatially averaged Navier- Stokes equations and the 
k-e model was used to simulate the turbulence of flow. The fully nonlinear wave-body interactions 
between a surface piercing body in finite water depth and flat/slop bottom topography were also 
investigated. Ye et al. (2012) constructed a three-dimensional numerical wave tank with a newly 
developed solver naoe-FOAM-SJTU based on the open source code library OpenFOAM, and a S-
175 container ship sailing in regular heading waves was simulated. Zha, et al. (2013) studied the 
motion responses of heave and pitch of a ship in different wave conditions. Numerically simulation 
of the motion response of a moored floating pier in regular waves was described in Liu and Wan 
(2013).  
 
The above researches are based on Eulerian methods and grids are necessary for spatial 
discretization. It’s difficult and inaccurate to obtain free surface with large deformation. Recently, 
Lagrangian particle methods draw much attention of researchers and are seen as promising 
numerical approaches for free surface flows. For example, Moving Particle Semi-implicit (MPS), 
originally proposed by Koshizuka and Oka (1996) for incompressible flow. In the present study, a 
particle solver, MLParticle-SJTU based on modified Moving Particle Semi-Implicit (MPS) method, 
is used for all simulation works. Some improved schemes are used in this solver to suppress 
numerical unphysical pressure oscillation usually observed in traditional MPS method. These 
improvements include: (1) momentum conservative pressure gradient model; (2) modified kernel 
function [Zhang et al., 2011b]; (3) mixed sourced term method for Poisson equation of pressure 
[Tanaka et al., 2010]; (4) surface detection method based on asymmetry of neighbor particles 
[Zhang et al., 2011a]. The MLParticle-SJTU was applied in many large free-surface deformation 
problems, such as dam breaking flow [Zhang, et al., (2011c, 2014)], liquid sloshing in LNG tank 
[Zhang, et al., 2012; YANG, et al.,2014], Floating Body Interacting with Solitary Wave [Zhang, et 
al., 2011b].  
 
This paper is organized as follow: Firstly, the MPS method for incompressible fluid is described. 
Numerical approach to solve the motion of floating body is introduced. Then, numerical wave tank 
is developed to calculate the interaction between waves and floating body, including wave-maker 
module and free roll motion module. Time history of wave propagation is measured and compared 
with the analytical solution to validate the accuracy of wave making. At last, roll motion and force 
acting on the floating body in waves is calculated and compared with experimental results. Profiles 
of the wave surface surrounding floating body are also presented.  
 
 
 

Numerical Scheme 

Governing Equations 
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Governing equations are the continuum equation and the momentum equation. These equations for 
incompressible viscous fluid are represented as：  
 0∇ ⋅V =  (1) 

 
21D P

Dt
ν

ρ
= − ∇ + ∇ +V V g  (2) 

where V is the velocity vector，t is the time, ρ is the density，P is the pressure，ν is the kinematic 
viscosity, g is the gravity acceleration.  
 
Particle Interaction Models 
Kernel Function 
In particle method, governing equations are transformed to the equations of particle interactions. 
The particle interactions are based on the kernel function. In traditional MPS method, the kernel 
function is expressed as follow (Koshizuka, 1996): 

 
 1         0( )
 0                 

e
e

e

r r rW r r
r r
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                                             (3) 

A drawback of the above kernel function is that it becomes singular at r=0. This may cause unreal 
pressure between two neighboring particles with a small distance, and affect the computational 
stability. To overcome this, an improved kernel function is used in this paper (Zhang and Wan, 
2011b): 

 
 1         00.85 0.15( )
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e
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e
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r r
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                                          (4) 

The above kernel function has a similar form with the original kernel function Eq. (3), but without 
singularity.  
 
Gradient Model  
Gradient operator is modeled as a local weighted average of the gradient vectors between particle i 
and its neighboring particles j: 

 0 2 ( ) (| |)
| |

j i
i j i j i

j i j i

D W
n

φ φ
φ

≠

+
< ∇ > = − ⋅ −

− r r r r
r r                                       (5) 

where φ  is an arbitrary scalar function, D is the number of space dimensions, 0n  is the initial 
particle number density for incompressible flow. The particle number density in MPS method is 
defined as: 

 (| |)i j i
j i

n W
≠

< > = − r r   (6) 
Laplacian Model 
Laplacian operator is derived by Koshizuka et al. (1998) from the physical concept of diffusion 
as： 

 
2
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where λ is a parameter, introduced to keep the variance increase equal to that of the analytical 
solution. Both viscous force 2∇ V  in Eq. (2) and 2P∇  in the right hand side of the PPE (Eq. 9 and 
Eq. 10) are discretized by Eq. (7). 
 
Model of incompressibility 
The incompressible condition in traditional MPS method is represented by keeping the particle 
number density constant. In each time step, there are two stages: first, temporal velocity of particles 
is calculated based on viscous and gravitational forces, and particles are moved according to the 
temporal velocity; second, pressure is implicitly calculated by solving a Poisson equation, and the 
velocity and position of particles are updated according to the obtained pressure. 
 
The pressure Poisson equation in traditional MPS method is defined as (Koshizuka et al., 1998): 

 
* 0

2 1
2 0

ρ+ < > −< ∇ > = −
Δ

k i
i

n nP
t n   (9) 

where *n  is the particle number density in temporal field.  
 
The source term of the Poisson equation in Eq. (9) is solely based on the deviation of the temporal 
particle number density from the initial value. As the particle number density field is not smooth, 
the pressure obtained from Eq. (9) is prone to oscillate in spatial and temporal domain. To suppress 
such unphysical oscillation of pressure, Tanaka and Masunaga (2010) proposed a mixed source 
term for PPE, which combines the velocity divergence and the particle number density. The main 
part of the mixed source term is the velocity divergence, while the particle number density is used 
to keep the fluid volume constant. This improved PPE is rewritten by Lee et al. (2011) as:  

 
0

2 k 1 *
2 0(1 ) ρ ργ γ+ < > −< ∇ > = − ∇ ⋅ −

Δ Δ

k
i

i i
n nP V

t t n  (10) 
where γ is a blending parameter with a value between 0 and 1. The value of γ has large effect on the 
pressure field. In particular, the larger γ produces smoother pressure field. However, the volume of 
fluid cannot be constant while 0γ = . The effects of γ have been investigated by Tanaka, et al. (2010) 
and Lee, et al. (2011).  0.01γ =  is used in this paper.    
 
Free Surface boundary condition 
On the surface particles, the free surface boundary conditions, including kinematic and dynamic 
boundary condition, are imposed. The kinematic condition is directly satisfied in Lagrangian 
particle method, while the dynamic condition is implemented by setting zero pressure on the free 
surface particles. So the accuracy of surface particle detection has significant effect on pressure 
field.  

 
Figure 1. Description of particle interaction domain 
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The interaction domain is truncated in the free surface (Fig. 1), so the particle number density near 
the free surface is lower than that in the inner field. In traditional MPS method, particle satisfying 
(Koshizuka et al., 1998): 

 
* 0  in nβ< > < ⋅  (11) 

is considered as free surface particle, where β is a parameter, can be chosen between 0.80 and 0.99. 
 
The traditional detection method (Eq. 11) is based on the particle number density. However, inner 
particles with small particle number density may be misjudged as free surface particles, thus unreal 
pressure around the misjudged particles occur. This usually causes nonphysical pressure oscillation. 
To improve the accuracy of surface particle detection, we employ a new detection method in which 
a vector function is defined as follow (Zhang and Wan, 2011c): 

 0

1 ( ) ( )
| |i i j ij

j i i j

D W
n ≠

< > = −
−F r r r

r r             (12) 

The vector function F represents the asymmetry of arrangements of neighbor particles.  
 
Particle satisfying: 
 | |   i α< > >F   (13) 
is considered as free surface particle, where α  is a parameter, and has a value of 0.9 

0F  in this 
paper, 

0F is the initial value of F  for surface particle. 
 
It should be specially noted that the Eq. (13) is only valid for particles with number density between 

00.8n  and 00.97n  since particles with number density lower than 00.8n  is definitely surface particles, 
while those with number density higher than 00.97n  should get pressure through Poisson equation. 
 
Motion of floating body 
The motion of the floating body is governed by the equations of rigid body dynamics, following the 
Newton's law of motion. The translation  motion  of  the  center  of  gravity and  the  rotation  of  
the rigid  body  are  given  in a simple 2-D framework by 

 

G
fluid solid

G
G fluid solid

dM M
dt

dI
dt

−

−

 = +

 =


V g F

TΩ  (14) 

where M  and GI  are the mass and the moment of inertia of the floating body around the center of 
gravity, respectively. GV  and GΩ  are the linear velocity of the center of gravity and the angular 
velocity of the body, respectively. fluid solid−F  is the hydrodynamic force acting on the body, fluid solid−T  
is the hydrodynamic torque with the direction normal to the plane. 
 

Numerical Simulations 

Test of wave making 
In present work, a piston-type wave generator was incorporated in the left side of 2D numerical 
wave tank. A slop beach was installed at the end of the wave tank to absorb waves and avoid 
reflection.  Sketch of the numerical setup is shown in Fig. 2. The numerical wave tank is 5.5 m 
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width and 1.5 m height with initial water depth 0.9 m. Wave conditions used in present numerical 
test is shown in Table 1, and travelling waves were generated based on linear wave theory.  
 

Table1. Parameters of wave making 

Parameters Values 
Water density 1000(kg/m3) 
Water height 0.9(m) 
Wave length 1(m) 
Wave height 0.029 
Wave period 0.8(s) 
Fluid spacing 0.004 (m) 
No. of fluid particles 132750 
No. of total particles 138130 

 

 
Figure 2.  Sketch of the 2-D wave tank 

 

 
Figure 3.  Comparison between numerical wave elevation and analytical solution at location 

1m from the piston paddle 
 
Fig. 3 shows a comparison between numerical wave elevation and analytical solution at the location 
1 m from the initial position of piston paddle. The trend of numerical free surface height is in 
agreement with analytical solution except that the former is less smoother than the later. The 
difference can be improved by reducing the particle space.  
 
Simulation of freely rolling body  
In this section, the roll motion of a 2D floating rectangular structure in a numerical wave tank was 
investigated in time domain. The wave generator and wave absorbing manner here are same as that 
in previous section. The width and height of the rectangular floating body are 0.3 m and 0.1 m, 
respectively. The structure was installed at the point 1.2 m from the wave maker and 0.9 m above 
the bottom of tank, fixed at the center of its gravity but free in the degree of roll. The initial 
geometry and set-up are shown in Fig. 4.  
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Figure 4.  Sketch of the freely rolling body 

 
In present simulation, the distance between particles is 0.004 m, the total number of particles is 
137718 while the number of fluid particles is 131762. The gravitational acceleration and water 
density are 9.8m/s2 and 1000kg/m3. The kinematic viscosity of water is given by 1.01×10-6 m2/s. 
The time step size is 0.0004s and the total computational time is 10s.Waves with period of 0.8 s, 
was generated in the present study. The wave conditions used in present computation are same as 
shown in Table 1. 
 
In the free rolling test of rectangular structure, angles of roll motion about the center of gravity were 
measured when the regular roll motion of rectangular body can be obtained.  
 

 
Figure 5.  Rolling motion of the rectangular body within wave period (solid line: result of 

simulation; dashed line: result of JUNG) 
 
Fig. 5 shows the inclined angle of the rectangular structure over one period of the regular wave. 
Results about the roll motion of floating body is compared between present simulation and 
experiment by Jung(2004). It can be found that both the pattern of curves and amplitude of roll 
angles are in good agreement.  
 

 
Figure 6.  Time history of buoyancy restoring moment of the rectangular body within wave 

period (solid line: result of simulation; dashed line: result of JUNG) 
 
Details about buoyancy restoring moment (MB) of the freely rolling body should be noteworthy, 
because the roll motion is closely related with the change of MB in time domain. Fig. 6 shows the 
time history of buoyancy restoring moment in one wave period. It can be seen that the calculated 
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results of MB agree fairly well with experimental results, though the calculated curve about moment 
has a little nonphysical fluctuations.  

 

 
Figure 7.  Rotary positions and wave surfaces around floating box, (a) t=t0, (b) t=t0+T/4, (c) 

t=t0+T/2, (d) t=t0+3T/4, (e) t=t0+T 
 
Fig. 7 shows the evolution process of rotation of the floating body. It can be seen that positions of 
the floating box is strong influenced by the propagation of incident wave through five snapshots of 
representative-instants (t0, t0+T/4, t0+T/2, t0+3T/4 and t0+T) in a  wave  period. Firstly, the body 
rotates clockwise until the value of MB climbs up to the maximum with the coming wave from left.  

(b) 

(c) 

(d) 

(e) 

(a) 
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After that, the crest of the wave transfers from left to right of the floating box. At the same time, 
buoyancy restoring moment of the body decreases. As a result, box rotates anti-clockwise and 
returns to horizontality at the instant of t0+T/2. With the propagating of the wave, water surface 
falling on the left and rising on the right from t0+T/2 to t0+3T/4. Box keeps on rotating anti-
clockwise until the value of MB declines to the minimum. Form the instant of t0+3T/4, it begins to 
rotate clockwise again, and returns to nearly horizontality at t0+T finally. The rotation of floating 
body will repeat with the next coming wave from left.  
 

Conclusions 

In this paper, interaction between regular waves and free roll motion of a 2D floating body is 
investigated by our in-house particle solver MLParticle-SJTU based on modified Moving Particle 
Semi-Implicit (MPS) method. Four improvements, including nonsingular kernel function, 
momentum conservative pressure gradient model, mixed source term for PPE and an accurate 
surface detection method, are employed in this solver. Numerical wave tank is developed to 
calculate the interaction between waves and floating body, including wave-maker module and free 
roll motion module. The comparison between the numerical wave elevation and analytical solution 
shows that the MLParticle-SJTU can provide acceptable accuracy of wave making. Numerical roll 
motion and force acting on the floating body in waves are in good agreement with experimental 
results. At last, the evolution process of rotation of the floating body was shown through five 
snapshots of representative-instants (t0, t0+T/4, t0+T/2, t0+3T/4 and t0+T) in a  wave  period. It can 
be seen that positions of the floating box are strong influenced by the propagation of incident wave. 
According to the results present in previous sections, the solver can be used to deal with waves 
floating body interaction problems. 
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Abstract 

In this work, we describe the development and implementation of a hybrid finite element based  
software “µsys” for the analysis of coupled multi-physical phenomena encountered in Micro-
Electro-Mechanical Systems (MEMS) or microsystems. The developed computational strategy 
entails the use of  hybrid finite elements for modeling structures, which overcomes some of the 
inherent shortcomings associated with the interpolation incompatibility of the finite elements. As a 
result, a coarse mesh with a single type of high aspect ratio element can be used for computationally 
efficient solution of many kinds of coupled partial differential equations. The same element is used 
to interpolate multiple state variables including displacement, temperature, fluid pressure and 
electric potential etc. Additionally, we use direct, rather than staggered, approach to solve coupled 
PDEs.  The µsys software has modular architecture to seamlessly interface the analysis codes with 
various packages having pre and post-processing capabilities. This helps the user to work with 
familiar and accessible pre- and post-processing environments while using µsys as the versatile  
finite element analysis engine. We illustrate the architecture and working of µsys with two coupled 
analysis modules, viz., coupled structure-electrostatics and coupled structure-squeeze film.  Pre- 
and post-processing capabilities of a commercial finite element software are used to demonstrate 
working with  µsys   as an example. 

Keywords: Coupled PDEs, MEMS, Multi-physics, Squeeze-film, Pull-in 

Introduction .  

Micro-Electro-Mechanical Systems (MEMS) or microsystems are ubiquitous in many consumer 
products and industrial applications today. Simulation and design of microsystem components and 
devices  is indispensable to achieve improved performance and cost-effective manufacturing.   
Various computational platforms are available to perform numerical modeling and finite element 
analysis of multi-physical phenomena associated with the microsystems [1-4]. Solving coupled 
partial differential equations in continuous domain and ordinary differential equations in the 
reduced order models is unique to microsystems. 

 The earliest published work [5] advocated the strategy of staggered coupling of PDE solvers 
and focused on 'wrappers' that exchanged  data between different modules during simulation. For 
example, in MEMCAD (which is now known as Coventorware), commercial finite element 
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software ABAQUS was used for elastic analysis and in-house developed  FASTCAP was used  for 
electrostatic analysis.  MEMCAD's wrapping code called ABAQUS  and FASTCAP alternately to 
find self-consistent solution of PDEs of elastic and electrostatic domains. The main focus of 
MEMCAD then was on emulating microfabrication process and building CAD models as well as 
post-processing. A comprehensive review of developments related to process modeling and 
visulaization tools for MEMS can be found in [6].  The staggered approach of alternating between 
solvers of  different physical domains is prevalent even now. 

  In µsys we take a different approach. We have a single integrated analysis engine that can 
be interfaced with any pre- and post-processing modules of other software. This is motivated by two 
commonly encountered problems in existing microsystems simulator software. First, the user 
should be familiar with types of finite elements to be used  for meshing the CAD model.  It is very 
common to have many types of elements to be used for meshing the CAD model also it is common 
to have different element types, one for each type of coupled simulation, in the existing softwares. 
The users should also be aware of the dangers of coarse meshing, distortion in the elements in the 
mesh and aspect ratio of the elements (which should ideally be close to unity) to avoid converged 
but inaccurate results. Interdisciplinary users of microsystem cannot be expected to have  intimate 
knowledge of finite elements and PDEs of many physical domains. Second, the staggered approach 
is computationally inefficient and leads to prolonged simulation time. 

  The two shortcomings of existing microsystems software are overcome in µsys by using 
hybrid finite elements. In hybrid finite elements, displacement and stress (i.e; the state variable and 
its derivative) are independently interpolated to avoid the incompatibility in the interpolation 
functions and ensuing problem of "locking" phenomena [7,8]. In a hybrid finite element, aspect 
ratio need not be close to unity and the element need not be very small to give accurate results. A 
single 3D element type can cater to solve multiple PDEs. Only one element across the thickness of a 
MEMS component is enough and this element can be very large in the in-plane dimensions. This 
makes it possible to get accurate results with coarse meshes [9-11].  The single 3D hybrid finite 
element type can be endowed with multiple state variables, namely, displacement, pressure, 
temperature, electric potential etc. This enables simultaneous solution of multiple coupled PDEs 
directly [12-15]  rather than in the staggered manner of most existing software today. Based on the 
foregoing, the focus in µsys is on a single analysis engine that is developed in-house. This analysis 
engine is easily linked with any pre- and post-processors. 

 In the next section, we discuss overall architecture of µsys. Analysis module of µsys is 
discussed later by illustrating briefly implementation and working of two analysis sub-modules, 
coupled structure-electrostatics and coupled squeeze film, respectively. The use of  pre- and post-
processing capabilities of finite element software NISA [16],  are demonstrated by use of  
appropriate data parsing.  

Architecture of µsys 

The overall system architecture of µsys is shown in Figure 1. As is common with simulation 
softwares, µsys is divided into three modules namely, pre-processing, analysis and post-processing. 
Our  focus is only in the development of µsys  on finite element analysis module by, relying on 
commercially available platforms for pre and post-processing through appropriate data parsing. Pre-
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processors are used to create CAD models, finite element meshing, specification of material data, 
loading data, boundary and initial conditions, etc. Pre-processing can be done using  popular 
commercially available platforms such as NISA, ABAQUS, ANSYS etc. The task of developing an 
independent pre-processor is very involved, and also, as the users are generally accustomed to using 
at least one of the available pre-processing platforms. The input data to the analysis module of µsys 
can be generated by parsing appropriate information from the input file generated using pre-
processor. Thus, the user  models using accessible pre-processor, and parsers take care of input data 
format required for µsys. Any additional analysis dependent data specification can be done using 
data input section of µsys.  
   After the analysis, the output file generated by µsys, which consists of field variables such 
as stress, potential, displacement, etc., sought at different nodes, is parsed into appropriate post-
processing format. Again, the commercially available post-processing tools can be used for 
visualization and graph plotting. The visualization of output using post-processing section of µsys is 
also another alternative. This development is partially completed. 
   As mentioned earlier, the primary focus of µsys development is on the finite element 
analysis section. Currently, structural, electrostatics and coupled analysis modules (see, Figure 1) 
are part of the µsys. The characteristic features and working with the  two coupled modules, is the 
subject of discussion of the next section. In doing so, we have selected NISA [16] as a pre and post-
processing platform of µsys as an example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Architecture of  µsys 
 

Figure 1: Architecture of µsys 
 
 
Currently, six different analysis modules are implemented in µsys. It includes: 

1. Structural 
2. Electrostatics 
3. Coupled structure-electrostatics or electroelastics 
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4. Coupled squeeze film 
5. Coupled piezoelectric 
6. Coupled piezoresistivity 

In this section, we discuss coupled structure-electrostatics and coupled squeeze film modules as 
illustrative examples to demonstrate solver capabilities of µsys.  Rest of the coupled modules are 
extension of the coupled structure-electrostatics with addition of analysis dependent data 
specification [12, 13].  
 
Coupled structure-electrostatics module 
 
Coupled structure-electrostatics is a very important module in the analysis of microsystems 
structures. The knowledge of static and dynamic pull-in voltages, capacitance, etc. is important for 
the design of electrostatic actuators and sensors.  
In this section we briefly describe the finite element formulation of the elastic-electrostatic coupled 
problem. Detailed implementation of nonlinear structural hybrid finite element development can be 
found in [7] and [8]. For coupling with electrostatics  [9, 10] and [13] may be consulted.  
Strong form of equations for the structural problem in the reference configuration Ω  (total domain) 
is given as 
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where  ( ) :F X I uχ= ∇ = + ∇ , is the deformation gradient defined with  respect to material coordinates 
X , u  the displacement field, E   the Lagrangian  measure of strain, TC F F=  the right Cauchy-Green 
strain tensor, S  the second Piola-Kirchhoff stress,  0 0Tt JF n t−=� �  the tractions defined on the 
reference configuration in terms of tractions on the deformed configuration,  0 Jρ ρ=  the density in 
the reference configuration in terms of the density in the deformed configuration, det( )J F= , 0n  the 
outward normal to Γ ,  mechS  is the constitutive equation of solid. The surface Γ , is the boundary 
between solid and surrounding consisting of open disjoint union of regions,  u tΓ = Γ ∪ Γ  for 
structural problem. 
For electrostatics, the governing equations are given by 
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where  MS  is the Maxwell stress, e  and d  the Lagrangian electric field and electric displacement 
vectors, respectively, φ  the electric potential or voltage, 0

nd  the normal electric displacement vector 
defined on the reference configuration,  σ  and ε  are the conductivity and permittivity, respectively.  
The surface Γ , is the boundary between solid and surrounding consisting of open disjoint union of 
regions,  d φΓ = Γ ∪ Γ  for electrostatic problem. 
By enforcing Eqns. (1)  and (7) in a weak sense, we get 

00
0

1

:  . . ,             (13)   

. ( )         ,      (14)   

t

d
n

S E d u b d u t d

JC d d d

δ δ δ

δ δ δ

ρ

φ σ φ φ φ

Ω Ω Γ

−

Ω Γ

Ω = Ω + Γ

∇ ∇ Ω = − Γ ∀

∫ ∫ ∫

∫ ∫
 

where uδ , Eδ  and δφ  denotes variation of displacement, strain and potential fields, respectively. 
In a hybrid formulation, strain-displacement relation Eq. (2), is also enforced in a weak sense. Thus, 
we get 
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where Sδ denotes the variation of stress field.  
After linearization of Eqns. (13), (14) and (15) at the reference configuration, we get incremental 
formulations [9]. Introducing  following  interpolation 
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and  using the same shape functions N  and P for increments, we get following finite element 
equations, 
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Expressions for the matrices 0,  ,  ,  , , ,u SQ G H G K K Kφ φφ φ  and the force vectors ,  ,  u Sf f fφ  can be 
found in  [ 9].  
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Example 
 
The working of coupled elastic-electrostatics module is demonstrated using an example of static 
pull-in of a cantilever beam. Pre- and post-processing is done using the commercial FEM package 
NISA.  Figure 2  shows the block-diagram of working with “NISA- µsys” system for coupled 
elastic-electrostatics problems. 
 

 
 

Figure 2:  Block-diagram of NISA- µsys coupled elastic-electrostatics module 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: A  Cantilever beam, ground,  and the surrounding air domain 
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Figure 3 shows the schematic for a cantilever beam subjected to gradual increase in the voltage 
from 0 to static pull-in value. In the direct solution strategy, the air domain is modeled as a weak 
elastic dielectric material. The dimensions and properties for modeling elastic and air domains are 
given in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Table 1: Dimensions and material data for cantilever pull-in problem 
 
Figure 4  shows the tip-deflection of cantilever beam as the voltage is increased from 0 till pull-in. 
Accurate calculation of deflection significantly affects determination of the pull-in voltage. Close to 
pull-in phenomena, the error in the deflection as computed by µsys  and COMSOL is close to 16%.   
Table 2  gives comparison of the values for static pull-in obtained from µsys and COMSOL  with 
analytical calculations. Figures 5 and 6 show the displacement and potential fields visualization in 
NISA.  More comparative studies can be found in  [13]. 
             
 
 
 
 
 
 
 
 
 

  Table 2: Static pull-in calculation for a cantilever beam 

Data Values 
Beam length (l) 100 µ m 
Beam width (b) 10 µ m 
Beam height (h) 0.5 µ m 

Surrounding domain box length (L) 140 µ m 
Surrounding domain box width (B) 60 µ m 
Surrounding domain box height (H) 52 µ m 

Initial gap (g) 1 µ m 
Young's modulus (beam) 169 GPa 

Poisson's ratio (beam) 0.3 
Density (beam) 2231 Kg/m3 

Relative permittivity (beam) 11.7 
Electrical conductivity (beam) 1.56e-03 S/m 

Young's modulus (air) 1.0e07 Pa 
Poisson's ratio (air) 0.0 

Density (air) 0.0 Kg/m3 

Relative permittivity (air) 1 
Electrical conductivity (air) 5.5e-15 S/m 

Method Static pull-in voltage (V) 

µsys 2.55 

COMSOL 2.6 

Analytical [19] 
Analytical [20] 

2.53 
2.55 
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Figure 4: Tip deflection of a cantilever beam with increase in voltage 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Displacement field visualization in NISA 
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Figure 6: Potential field visualization in NISA 
 

Coupled Squeeze-Film Analysis  
 
The squeeze film effect is prevalent in vibratory MEMS devices where a thin film of air trapped 
between a fixed substrate and a plate vibrating normally to the fixed plate behaves like both a 
viscous damper and as an air spring [18].  Various attempts have been made to model the coupled 
fluid structure problem of squeeze film. A thorough review of the prior works can be found in [14] 
where we discussed a coupled finite element based methodology to solve the fluid-structure squeeze 
film problem. In the present software developed, we have implemented a coupled hybrid monolithic 
formulation. Hybrid elements are  known to overcome locking issues faced with displacement based 
formulations in modeling high aspect ratio structures (as present in MEMS devices with squeeze 
film). Thus, our present formulation is able to show good results even for those mesh generators 
which are limited to lower order meshes and with far less number of elements compared to 
displacement based formulations.  
In implementing the analysis module for squeeze film, we  solve the 3D elasticity equation and the 
2D Reynolds equation for squeeze film flow in a coupled method following the procedure outlined 
in [14]. For the dynamic structural problem without any body force, we have the following 
governing equation in a weighed integral sense for hybrid elements [15].  

( )
_2 1. . : 0       (20)2

u
d t t d u C du u

t
τ ρ ε ττδ δ δ

Ω Γ Γ

   ∂ −  ∇ − Ω+ − Γ+ − Ω =     ∂   
∫ ∫ ∫  
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where u  is the displacement,  τ  the stress, t  the traction, uδ   and δτ  the variations in displacement 
and stress field respectively, C the constitutive matrix, t prescribed traction and 

( ) ( ) ( ) .Tu u uε = ∇ + ∇  For coupled squeeze film problem with structural  interaction, the wet surface 
(the surface in contact with air) is subject to the fluid pressure through traction ˆt pn= − ɶ . We 
discretize Eqn. (20)  using finite element interpolations for displacements and stress fields and their 
variations as, ˆuu N u= , ˆuu N uδ δ= , ˆ( ) uu B uε = , ˆPτ β= , ˆPδτ γ=  and ˆpp N p=ɶ  where P  is the 

stress interpolation function, the choice of which is described in [8], and ,  u pN N  and  uB  are as 

described in [14]. After substituting the interpolations and following the procedure outlined in [17] 
and considering a harmonic solution, we arrive at the following form of the equation, 

ˆ ˆ                                   (21)K u K p fuu up u + =         

where 

[ ] [ ] [ ]12 ,            (22)

ˆ ,                                          (23)

.                                                       (24)

TT
uu u u

T
up u p

wet

T
u u

K N N d G H G

K N nN d

f N t d

ω ρ −

Ω

Γ

Γ

= − Ω+  

  = Ω 

= Γ  

∫

∫

∫
                                                    

 

where H  and  G  are as described in [15], and ω is the frequency of harmonic vibration. The fluid 
domain is modeled using the linearized Reynolds equation given by 

3 2 2
0 0                    (25)2 212 aeff

h hP P P H

P t tx yµ

 ∂ ∂ ∂ ∂
 + = +
  ∂ ∂∂ ∂ 

 

Using the process outlined in [14] we arrive at the following  discretized  form of  Eqn. (25) 

ˆ ˆ 0                                  (26)K p K upp pu   + =     
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and pN , 
zuN and  pB  are  as described in [14]. Now, combining  Eqns. (21) and (26) we get the 

coupled form:   

ˆ
                                    (29)
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Implementation of Squeeze film module 

Following the implementation architecture discussed in this paper, we discuss,  as a representative 
example, the implementation of our squeeze film analysis module  into an existing commercial FEA 
suite, i.e. NISA [16] . The implementation architecture is shown in Figure 7.  
 As a first step we did a 'gap' analysis where we identified the additional information needed 
for squeeze film analysis that is not already a part of NISA input. Thus, an additional input GUI 
screen with squeeze film parameters, air gap, air viscosity, ambient pressure, frequency range of 
operation was designed. The NISA suite generates a raw data file in a particular format based on 
input from user. With our special requirements, two data files in NISA specific format gets created. 
A parser program written in 'C' language was developed to convert the NISA raw data files into 
formats compatible with our FORTRAN analysis module. As the current  NISA version does not 
allow the choice of "face id" selection by the user for denoting the face subject to squeeze film 
pressure, the logic was incorporated in the parser. The nodal connectivity from NISA had to be 
converted to the connectivity logic used in our analysis module, the conversion logic was also built 
into the parser.  
 We have incorporated a special feature "node of interest" , wherein the NISA  GUI was 
modified to allow the use to select a particular node of choice for which nodal displacement data 
will be generated. The output from our module consists of nodal solutions for pressure and 
displacement which may be visualized using NISA post processing capabilities. A special feature 
"frequency sweep" which is incorporated in our squeeze film module allows for a tabular output of 
nodal displacement, squeeze film damping and stiffness forces and the corresponding frequency 
used in the computation. The data is output in  a tabulated  format so as to allow the use to further 
plot frequency response graphs or force vs frequency plots as maybe desired. The user may also 
compute stiffness and damping coefficients from the displacement and the force values computed at 

each frequency as follows:   s d

z z
( , )

F F
K C

u u
= =

     
where 

   s' 'F
 
is the spring force,  d' 'F

   
is the 

damping force and z' 'u
 
is the 'z' direction displacement. Figure 7. shows the process schematic for 

implementation of the squeeze film module into NISA.  
 
Example 
We present a test case  to validate of our squeeze film solver implemented in NISA. We  model a 
cantilever resonator and compare the first three  Q factors with that from published literature. We 
choose to model a Si, cantilever beam as described in [21]. The simulation parameters are shown in 
Table 3. The  beam is meshed with a converged mesh of (Nx = 40, Ny =6, Nz = 4) elements. The 
simulations are run for the  frequencies between 1e4 Hz to 1e5 Hz in small incremental steps of 1e3 
Hz. The vertical displacement z' 'u for the tip node of the beam is noted for the range of frequencies. 
The corresponding value of  velocity is obtained as tip z* .V frequency u=  From the plot of normalized 

velocity (with input voltage) Vs frequency the Q factor is obtained using 3dB method. The 
computed Q factor is compared with reported values from experiments and from ANSYS [21] (See 
Table 4). Thus we see our squeeze film module computed Q factor compares well with 
experimental and numerical data from published literature. Figure 8, shows the post-processing 
capabilities of NISA for visualization of pressure field distribution. 
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Figure 7.  Squeeze film analysis module in NISA 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 3: Simulation parameters for squeeze film test case 

 

Simulation Parameters Values 
Young's Modulus (Si) 160GPa 

Density 2230 Kg/m3 

Poisson's Ratio 0.22 
Density (air) 1.2Kg/m3 

Viscosity 1.8e-05 Ns/m2 

Air Gap 1.4  µm 
Length 350 µm 
Breadth 22 µm 

Thickness 4 µm 
Actuation Voltage 1.5 Volts 
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Figure 8.  Squeeze film pressure distribution  (on the lower surface of a cantilever) visualization in 

NISA  
 
 

Q-NISA Q-Exp Q-ANSYS 
1.13 1.20 1.11 

 
Table 4: Q factor from 1st mode of a cantilever due to squeeze film 

Conclusions  

We  described the development of  hybrid finite element-based direct solution strategy in  software 
µsys, which is capable of doing multi-physical computational analysis of microsystems. The novel 
features of  µsys  are the use of hybrid finite elements which alleviates certain short comings of 
conventional finite elements, and the monolithic implementation of governing equations. 
Implementation and working of two coupled modules, coupled structure-electrostatics and coupled 
squeeze film are discussed  using pre- and post-processing capabilities of NISA. Currently, the 
major focus is on the development of analysis module of µsys and using other commercial pre- and 
post-processing capabilities through appropriate data parsing. Development of post-processing tool 
of µsys is also underway. 
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Abstract 

Osteoporosis is highly prevalent and a costly disease predicted to affect 1,555 million worldwide by 
2050, and the total cost of osteoporotic fractures worldwide could reach US$131 billion by 2025. 
These statistics clearly affirm the significant economic burden of osteoporotic fractures to the 
community, and the need for the development of improved fracture treatments. Studies over the last 
decade reveal that, even though osteoporosis may not necessarily lead to non-union, it is associated 
with delayed fracture healing due to impaired mecho-regulation and angiogenesis in osteoporotic 
condition. Despite the advances in locking compression plate (LCP) technology, the operative 
treatment in osteoporotic fractures remains a challenge for an orthopaedic surgeon, often with 
unpredictable outcomes. Therefore, it becomes necessary to bridge the ‘information gap’ between 
osteoporosis and its effect on fracture healing, and so enables healing progression prediction under 
different fracture geometries and fixation configurations. By using a computational model of 
fracture healing, this paper demonstrates that fracture healing can be significantly delayed due to 
impaired mechano-regulation as a result of osteoporosis, and the impact of osteoporosis on fracture 
healing can be mitigated by adjusting the configuration of the LCP system to allow a certain degree 
of interfragmentary movement (IFM) without compromising overall fixation stability. 

Keywords: Osteoporosis; Fracture healing; Interfragmentary movements (IFM); Locking 
compression plate (LCP). 

Introduction 

Osteoporotic fractures lead to chronic pain, disability, loss of independence and even premature 
death. The total cost of fracture management in community health programs, aids and appliances, 
and indirect costs, such as lost earnings, is projected to rise to US$131 billion worldwide by 2050 
(Harvey et al., 2010; Watts et al., 2013). Osteoporosis is associated with delayed fracture healing 
(Augat et al., 2005; Namkung-Matthai et al., 2001), even though it is not a risk factor for non-union 
(Wunnik et al., 2011). Although it still remains an open question whether fracture repair is impaired 
in osteoporosis, the mechanical and biological factors involved in the healing process are certainly 
affected (Augat et al., 2005; Nikolaou et al., 2009). Firstly the reduction in number of mesenchymal 
stem cells and their impaired response to mechanical stimuli in osteoporotic condition may lead to a 
delayed fracture healing. Secondly osteoporosis related the impaired growth factor expression and 
abnormalities in endothelial cells could result in impair angiogenesis progression. Current therapies 
for osteoporotic fractures focus on prevention, however, little emphasis has been given to the study 
of the fracture healing process itself in osteoporotic bone. 

The initial phase of healing is especially sensitive to mechanical conditions and influences the 
course of healing (Klein et al., 2003). It is widely believed that callus cell differentiation and 
proliferation are closely regulated by the magnitude of the so-called ‘stimulus index (S)’, which is 
determined by the octahedral shear strain and the interstitial flow velocity within a fracture callus. 
Mesenchymal stem cells differentiate into chondrocytes, osteoblasts and fibroblasts depending on 
their biomechnical microenvironment. However, fracture healing in osteoporotic bone may display 
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an impaired response to these mechanical stimuli (Sterck et al., 1998) due to the presence of fewer 
mesenchymal stem cells in osteoporotic bone, and a relatively lower proliferative response 
(Bergman et al., 1996; Giannoudis and Schneider, 2006). For example, an osteoporotic rat model 
showed a 40% reduction in the cross-sectional area of callus and a 23% reduction in bone mineral 
density in healing rate femurs (Namkung-Matthai et al., 2001).  

The mechanical microenvironment in a fracture callus is greatly influenced by the IFM which is 
largely dependent on the mechanical stiffness of a LCP. The stiffness of an osteoporotic fracture 
fixation construct, such as the locking compression plate (LCP) system, has normally to be 
increased as osteoporosis decreases the mechanical properties of bone. However, an overly stiff 
fixation construct may lead to impaired IFM at the fracture site which inhibits callus formation, and 
may lead to potential delayed healing or non-union (Gardner et al., 2010). Clinically, the flexibility 
of LCP could be enhanced by adjusting the working length (WL), bone-plate (BPD) and number of 
screws (Claes, 2011). However, the effect of the flexibility of LCP on osteoporotic bone healing has 
not been fully investigated. The problem becomes further complicated as fixation failure occurs as a 
consequence of reduced bone density (Barrios et al., 1993). 

Thus, the key questions are:  

1. How is the mechao-regulation altered in osteoporosis?  

2. How can the fixation design be strategically modified to achieve improved fracture healing 
outcomes in osteoporosis? 

To address these questions, the development to computational models for osteoporotic fracture 
healing becomes necessary. 

Methods 

Error! Reference source not found.Figure 1 shows the impact of both osteoporosis and fixation 
configuration on healing outcomes. Fracture 
healing is a time-dependent process which is 
closely regulated by the changes in mechanical 
microenvironment of fracture site as a result of 
a change of interfragmentary motion at 
fracture site as healing progresses. We have 
recently brought together our previously 
developed poroelastic large deformation 
model of biological soft tissues and tissue/cell-
level mechano-regulation model of fracture 
callus to gain a new insight into the early stage 
bone healing under different configurations of 
LCP (Miramini et al., 2014; Miramini et al., 
2015; Zhang, 2015; Zhang et al., 2013; Zhang 
et al., 2012). The mechanical behavior of 
fracture callus is described by using a 
consolidation approach (Zhang et al., 2007, 
2008; Zhang et al., 2009; Zhang et al., 2010) 
which treats callus as a fluid-saturated porous 
medium comprising an intrinsically solid 
phase (i.e. collagen-proteoglycan matrix) and a fluid phase. Mass conservation equations are written 
for each phase, while empirical laws (e.g. Darcy’s law) are used to describe relative velocity of each 
phase. Finally, momentum conservation laws can capture the interaction of the mechanical 

Figure 1 The schematic diagram shows the impact 
of osteoporosis and fixation configuration on 
healing outcomes. 
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quantities in each component. The model can be easily further extended by incorporating the impact 
of osteoporosis on fracture healing. 

The framework of fracture healing model is shown in Figure 2. Our developed model allows the 
high resolution 3D modelling of a tibia 
containing a fracture from the 2D 
computed tomography (CT) image data 
(Miramini et al., 2015; Zhang, 2015; 
Zhang et al., 2013; Zhang et al., 2012). 
The 3D meshed part of the fractured tibia 
is then exported into finite element 
applications. The model enables the 
determination of the change of mechano-
regulation distribution profiles (e.g. 
interstitial fluid flow and deformation) in 
fracture callus arising from external 
mechanical loading. Finally, the model 
predicts the tissue development regulated 
by callus cells that respond to their 
mechanical microenvironments. 
Furthermore, our developed model is 
capable of taking into consideration the 
fracture conditions (e.g. size, shape and 
position), fixation treatment selection, 
and loading regimes resulting from patient-specific physiological movement. In this paper, our 
developed model is implemented to investigate the effect of impaired mechanical stimuli due to 
osteoporosis on the healing outcomes at early stage of healing. 

Results and Discussion 

As shown in Figure 3, the effect of 25%, 
50% and 75% impaired mechanical 
response of callus cells resulting from 
osteoporosis on tissue differentiation 
outcomes is investigated respectively. The 
results show that at the same time point 
after surgery, the impaired mechanical 
stimuli due to osteoporosis could 
potentially delay the healing process by 
inhibiting cartilage tissue development at 
the early stage of healing. However, by 
allowing certain degree of flexibility of 
LCP system without compromising the 
overall stability of the construct (i.e. 
increasing BPD from 0mm to 2mm), the 
impact of osteoporosis on fracture healing 
can be significantly mitigated.  

Figure 2 The framework of fracture healing model. (a) 
Computed tomography (CT) image data. (b) 3D model 
created from the CT images. (c) In vivo, cells in fracture 
callus regulate the healing processes by responding to 
changes in their mechanical microenvironments. (d) 
Mechanical stimuli mediated tissue differentiation. 

Figure 3 The investigation of the effects of impaired 
mechano-regulation as a result of osteoporosis and the 
flexibility of LCP configuration on tissue differentiation 
at early stage of fracture healing. 
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Conclusions 

This paper presents an osteoporotic fracture healing computational model, which could bridge the 
‘information gap’ between osteoporosis and its effect on fracture healing, and so enable healing 
progression predictions under different fracture geometries and fixation configurations. The 
developed model will allow orthopaedic surgeons to design patient-specific surgical solutions by 
establishing a rigorous scientific relationship between the configuration of the fixation system and 
the biological processes of healing in patients with osteoporosis, and thereby achieve optimal 
fracture healing outcomes. 
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Abstract 
In the past decade, several experimental and numerical studies were conducted with reinforced 
concrete (RC) beam-column sub-assemblages to investigate the progressive collapse resistance of 
frame structures under column loss. Most of the studies suggested that the catenary action could be 
used as the final defensive mechanism against collapse. However, it was observed from the load-
deflection curves that there was a strength-decreased transition phase between the peak arch 
resistance and the commencement of catenary action. This transition region may imply an unstable 
snap-through behavior under a real dynamic column loss scenario. Hence, the chord rotation 
demands for effective catenary action of RC beams were investigated in this study. The nonlinear 
static load-deflection response of RC beam-column sub-assemblages under gravitationally 
monotonic loadings was idealized as a piecewise linear curve divided by the yield strength, peak 
arch resistance, leveled-off strength, and peak catenary resistance before bar fracture. The 
corresponding pseudo-static load response was then analytically derived for each linear region. 
Based on the analytical formulation, numerical analyses were carried out to understand the variation 
of the chord rotation demand with some key parameters related to the collapse-resistant 
performance. Parametric study results indicated that smaller peak-arch rotation and larger catenary 
stiffness could induce less rotation demand for the effective catenary action. This implies that RC 
beams with a deep section require larger rotation capacity for the effective catenary action. Since 
RC members with a deep section are usually responsible of large shear and/or moment, it is 
suggested that their peak arch strength is used as the collapse resistance for the sake of safety. Also, 
a peak-arch strength recovery in the nonlinear static response curve does not always guarantee a 
similar strength recovery in the pseudo-static counterpart. Complementary pseudo-static analysis is 
advised to verify the effective catenary action under realistic dynamic column loss.  
Keywords: Progressive collapse, Effective catenary action, Pseudo-static response, Chord rotation 

Introduction 

Progressive collapse vulnerability of building structures has become an active research topic since 
the 9/11 terrorism attack of the World Trade Center in 2001. As stated in the ASCE 7-10 Standard 
[ASCE (2010)], progressive collapse is defined as “the spread of an initial local failure from 
element to element, resulting eventually in the collapse of an entire structure or a disproportionately 
large part of it”. Therefore, it is sometime indicated as “disproportional collapse”. Several 
experimental studies were performed with beam-column sub-assemblages, as shown in Fig.1, to 
investigate the progressive collapse resistance of frame structures in the past decade. Su et al. (2009) 
performed static vertical loading tests on twelve longitudinally restrained RC beams with varied 
steel ratios and span-to-depth ratios. The tested specimens generally reached peak compressive arch 
strength at a deflection ranging from 16% to 34% of section depth. For some specimens, the load 
resistance in catenary stage may be lower than the arch strength. Sasani et al. (2011) adopted a 3/8 
scaled sub-assemblage to evaluate the column-loss response of an RC beam bridging over the 
removed column. Choi and Kim (2011) performed static loading tests on reduced-scale RC sub-
assemblages designed with and without seismic detailing and concluded that significant catenary 
action may be activated for seismically detailed beams. Some dynamic loading tests have been 
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carried out to investigate the dynamic column-loss response of RC beam-column sub-assemblages 
and structural frames [Tian and Yu (2011), Qian and Li (2012), Orton and Kirby (2014)]. Yu and 
Tan (2013) designed eight RC sub-assemblage specimens with varied steel ratios and span-to-depth 
ratios to study the ultimate catenary resistance under column loss.  
 
Most of the experiments suggested that the catenary action could be used as the final defensive 
mechanism against collapse. They also revealed that development of the catenary action was 
dependent on the beam-end rotational capacity. Hence, the design guidelines issued by the US 
General Service Administration [GSA (2003)] and the Department of Defense [DoD (2005), (2009)] 
have proposed an acceptance criterion of 0.20 radians for the chord rotation of the two-span beams, 
as defined in Fig. 1, in nonlinear progressive collapse analysis of RC frames. This threshold was 
specified independent of structural parameters. However, from those referred experimental studies, 
the rotational demands corresponding to the peak arch strength, commencement of catenary action, 
and bar-fracture strength were varied. Hence, analytical resolution of the rotational demands for 
effective catenary action of progressive collapse is proposed in this study. Piecewise linear curves 
divided by the yield strength, peak arch resistance, leveled off strength, and peak catenary 
resistance were used at first to idealize the general nonlinear static response of RC beam-column 
sub-assemblages under gravitationally monotonic loadings. Then, the corresponding pseudo-static 
load response was analytically derived for each linear region. A definition for the effective catenary 
action was described. The analytical expressions were used to carry out numerical investigations on 
the chord rotation demands of the effective catenary action and associated snap-through response. 
Practical implications were drawn based on the numerical analysis results.  
 

 
Figure 1 The definition of a beam-column sub-assemblage  

Idealization of Static Response 

From the results of most monotonic static loading tests, it was revealed that the load-deflection 
responses of RC beam-column sub-assemblage specimens were highly nonlinear. The nonlinear 
static response was initiated at the tensile cracking of concrete and grew significantly as the tensile 
reinforcement yielded. Along with the flexural yielding, the load response gradually increased to 
the so-called peak arch resistance, as shown in Fig. 2(a). This load-deflection range may be defined 
as the “compressive arch” phase. In this phase, compressive axial force is developed in the beam 
members of the RC sub-assemblage due to the restraint provided by the end columns. From most of 
the experimental and numerical studies, it was observed that there is a strength-decreased transition 
phase after the peak arch resistance. It is defined as the “transition phase”. This strength-decreased 
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region may induce snap-through response under a real dynamic column loss scenario [Tsai (2012), 
Orton and Kirby (2014)]. Analytical and numerical studies [Tsai and Lin (2008), Tsai (2010), Tsai 
and You (2012)] have indicated that pseudo-static response obtained from the nonlinear static load-
deflection curve may be used to predict the maximum dynamic response under column loss. As the 
supported loading is larger than the dynamic peak arch resistance, the beam-column sub-
assemblage will be loaded directly into the catenary phase and significantly large deformation could 
be induced under column loss. This reveals that the peak arch resistance is an important threshold 
for the snap-through behavior. In this phase, the load resistance may gradually decrease and level 
off at cP , where the catenary action is activated. The load resistance may be regained under the 
catenary action until any of the steel bars fails in rupture and this region is thus defined as the 
“catenary phase”. Axial tension is developed in the beam members during the catenary phase and 
provides the collapse resistance for the two-span beams.  
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Figure 2(a) Static load-deflection curve under gravitational monotonic loadings 
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Figure 2(b) Idealized piece-wise linear curve and pseudo-static response 

Although the general static load-deflection curve is nonlinear, as a rule of thumb, it can be 
approximated as piece-wise linear response with four threshold points, as shown in Fig. 2(b). The 
four threshold points are corresponding to the yielding strength, peak arch resistance, leveled off 
strength, and peak catenary resistance before bar fracture. As shown in the figure, the stiffness 
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ratios of the three post-yield regions to the elastic stiffness are designated by 1 , 2 , and 3 . 1  
is defined as the arch stiffness ratio ranging from the yield point to the peak arch resistance. 2  is 
defined as the softening stiffness ratio ranging from the peak arch resistance to the leveled off point. 

3  is defined as the catenary stiffness ratio for the catenary phase. With these parameters, the 
analytical pseudo-static response in each phase can be obtained for the idealized nonlinear static 
curve.  

Analytical pseudo-static response  

The pseudo-static loading may be numerically obtained from dividing the accumulated area under 
the nonlinear static load-displacement curve by the corresponding displacement of the column-loss 
point. Mathematically, it may be expressed as  
 

  
du

NS
d

dCC du)u(P
u

)u(P
0

1         (1) 

 
where )u(PCC  and )u(PNS  are, respectively, the pseudo-static loading and the nonlinear static 
loading at the displacement demand u . For the idealized nonlinear static response, the pseudo-static 
force in the elastic range may be written as  
 
  2/0, PPd  , yPP 0         (2) 
 
where yP  is the static yielding force. From the yield point to the peak arch resistance, it is derived 

that the pseudo-static force 2,dP  can be expressed as  
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where the ductility,  , is the chord rotation divided by the yield rotation y . a = a / y , which 

denotes the ductility demand at the peak arch resistance aP  (Fig. 2(b)). Similarly, the pseudo-static 
forces in the transition and catenary phases are respectively derived as  
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where adP , = )(1, adP    and cdP , = )(2, cdP   . c = c / y , which represents the ductility 
demand at the end of transition phase. A general form for the pseudo-static force in the i-th linear 
region and i≧ 2 may be deduced from the above equations as  
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where 1i  is the ductility demand of the previous turning point and the sign of stiffness is 
included in the ratios i  and j .  
 
As shown in Fig. 2(b), the pseudo-static peak arch resistance, denoted as apP , , does not occur at the 

chord rotation a  corresponding to its static counterpart. Instead, it happens during the transition 
phase, ie. in the range from a  to c . From setting the derivative of Eq.(4) equal to zero, it can be 
obtained that apP ,  occurs at  
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       (7) 

 
The value of apP ,  is then calculated as )(2, idP   . The chord rotation at i  is denoted as i in 
Fig. 2(b). This rotation is defined as the snap-through prevention limit. It can be regarded as an 
index to judge the importance of the catenary action. If i  is larger than the expected beam-end 
rotation, the catenary action will be minor under the column loss. Moreover, from the comparison 
of the nonlinear static and pseudo-static load-deflection curves, it is clear that if the static leveled 
off rotation c  is less than i , then the pseudo-static response shall be a non-degrading curve with 
non-negative tangent stiffness. In such a case, there will be no snap-through response under 
dynamic column loss [Tsai (2012)] and the catenary action is always effective in enhancing the 
collapse resistance. However, as c  is larger than i , the pseudo-static resistance mayl be lower 
than apP ,  and the snap-through response will be induced consequently. Once it happens, the 

dynamically falling behavior can be arrested only if the resistance of apP ,  may be regained in the 
catenary phase. Otherwise, dynamic collapse will happen. Therefore, an effective catenary action is 
defined as the capability of recovering the strength of apP ,  in the catenary phase. The chord 

rotation demand for the effective catenary action is then determined from apd PP ,3,  , which leads 
to  
 
  02  CBA           (8) 
 
where 3A , ]/2)()1(1[2 ,321 yidcaca PPB   , and 

0]/2)()1(1[2 ,21
2

3  ycdacacc PPC  .  

Two values of ductility demand,  , can be resolved from Eq.(8). The one larger than c , denoted 
as r , is the ductility demand for the effective catenary action. Its corresponding rotation is 
designated as r  in Fig. 2(b).  
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Parametric study  

From the previous derivation, it was observed that the chord rotation demand for the effective 
catenary action was involved with several parameters, which included the three stiffness ratios and 
chord rotations of the static arch resistance and leveled off point. The stiffness ratios were 
influenced by the span-to-depth ratio, reinforcement details, material strength, and boundary 
constraints of the members bridging the removed column. Fig. 3 shows the variations of 1 , 2 , 
and 3  with the span-to-depth ratio, which were estimated from several published test results [Su et 
al. (2009); Yu and Tan (2013); Lew et al. (2014); Tsai et al. (2013, 2014)]. They were calculated by 
using the static peak arch, leveled off, and maximum catenary response prior to bar fracture. It is 
observed that most of the stiffness ratios varied from 0.1 to 0.3 for 1 , from 0.05 to 0.15 for 2 , 
and from 0.05 to 0.2 for 3 . Therefore, the stiffness ratios considered in this study were determined 
as shown in Table 1. In the referred experimental results, a larger span-to-depth ratio generally led 
to a larger 1 . However, the corresponding chord rotation of peak arch resistance decreased with 
increased span-to-depth ratio.  
 

Table 1 Stiffness ratios of the three phases for the parametric study 
1  2  3  

0.1 0.05 ~ 0.15 @ 0.05 0.05 ~ 0.2 @ 0.05 
0.2 0.05 ~ 0.15 @ 0.05 0.05 ~ 0.2 @ 0.05 
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Figure 3 Variation of stiffness ratios 
estimated from published test results  
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Figure 4 Variation of snap-through 
prevention rotations  
 

In order to investigate the chord rotation demand for the effective catenary action, it was assumed 
that the static leveled-off strength yc PP 5.0 . This assumption was made to confirm that the 

pseudo-static peak arch resistance ( apP , ) occurred by the end of the transition phase. Then the 
leveled-off ductility was obtained as  

  
2

21 )1(5.0



 aa

c


        (9) 

The corresponding leveled-off rotation is determined from the product of the yield rotation y  and 

c . The yield rotation was assumed as 0.005 rads [FEMA (2000)] in this study. According to the 
selected stiffness ratios in Table 1, the variations of the snap-through prevention rotation ( i ) under 
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five different combinations of 1  and 2  are shown in Fig. 4. As implied in Eq.(7), it is observed 
that an increased a  could induce a larger snap-through prevention limit. Effect of the softening 
stiffness ratio is opposite to that of the arch stiffness ratio on i , which appears more sensitive to 
the former. Fig. 5(a) shows the comparison of the minimum rotation demands ( r ) for effective 
catenary action under five different parametric combinations with 1.01  . The corresponding 
snap-through response, which was obtained from ( r - i ), is shown in Fig. 5(b). These figures 
reveal that the rotation demands of both the effective catenary action and snap-through response 
decreased with increased softening and catenary stiffness ratios. However, they increased with the 
peak arch rotation. This means that if the snap-through behavior is delayed, more plastic 
deformation must be developed for the effective catenary action.  
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Figure 5(a) Minimum rotation demands ( r ) 
for effective catenary action with 1.01   
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Figure 5(b) Snap-through rotation ( r -

i )with 1.01    
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Figure 6(a) Minimum rotation demands ( r ) 
for effective catenary action with 2.01   

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 0.01 0.02 0.03 0.04 0.05
Peak-arch rotation a (rad)

R
ot

at
io

n 
( 

r- 
i) 

(ra
d)









 
Figure 6(b) Snap-through rotation ( r - i ) 
with 2.01     
 

It is noted that a large 2  represents swifter stiffness degradation in the transition phase and thus an 
earlier activation of the catenary action. It may occur in members suffered from shear failure during 
the gravitational monotonic loading process [Tsai et al. (2013)]. Also, it is observed that both 2  
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and 3  had similar influence in the rotation demands of effective catenary action and snap-through 
response. Either increasing 2  from 0.05 to 0.15 with 3 = 0.05 or 3  from 0.05 to 0.15 with 2 = 
0.05 could result in approximate rotational reduction. As indicated in some test results, larger peak-
arch rotation and smaller 2  were generally resulted from specimens with a deeper section. This 
implies that more critical chord rotation demand may be advised under such conditions. The 
acceptance criterion of 0.20 radians, which is regarded as the minimum demand for catenary 
development as recommended in the UFC guidelines, may not be always conservative for the RC 
beams with a deep section.  
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Figure 7 Experimental variations of the threshold chord rotations (estimated from the 
referred test results)  
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Figure 8(a) Static rotation demands for the 
effective catenary action  
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Figure 8(b) Static rotation demands for the 
snap-through response  
 

Figs. 6(a) and 6(b) show the chord rotations for effective catenary action and snap-through response 
with a larger arch stiffness ratio, 2.01  . Compared with the corresponding Figs. 5(a) and 5(b), , 
it is observed that a larger arch stiffness ratio may increase the rotation demands for effective 
catenary action, snap-through prevention limit, and snap-through deformation. From the referred 
test results, a larger span-to-depth ratio generally led to increased arch and catenary stiffness ratios, 
as observed from Fig. 3. Thus, the adverse influence of the increased arch stiffness on the chord 
rotation demand may be partially mitigated by the increased catenary stiffness. Also, from the 
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experimentally observed variations of the threshold chord rotations, as shown in Fig. 7, the rotation 
at peak arch resistance decreased with increased span-to-depth ratios. This could further reduce the 
rotation demands of effective catenary action and snap-through response for RC beams with a larger 
span-to-depth ratio. These observations explain why RC beams with shallower sections usually 
present earlier triggered catenary actions.  
 
Although dynamic tests may reflect the realistic column-loss scenarios, the experimental costs for 
test setup and instrumentation are usually larger than conventional static tests. Hence, there were 
more experimental studies conducted with static tests. From the idealized piece-wise linear curve, a 
ductility demand for statically effective catenary action may be obtained from ua PP  . The 
resulting static rotation demand is written as  

  
3

232
,

)(



 ac

ysr


       (10) 

Different from the pseudo-static rotation demand obtained from Eq.(8), the static rotation is 
independent of the arch stiffness ratio. Figs. 8(a) and 8(b) show the static rotation demands for the 
effective catenary action and snap-through response based on Eq.(10). The comparison of Figs. 8 
and Figs. 5 indicates that the rotation demand, either for the effective catenary action or the snap-
through response, may be underestimated if based on the nonlinear static response only. Hence, if 
the static monotonic test results of RC beams present a recovery of the static peak arch resistance in 
the catenary phase, complementary pseudo-static analysis is necessary to verify the effective 
catenary action under realistic dynamic column loss.  

Conclusions 

Because of the widespread attention paid to the progressive collapse resistance of building 
structures under column loss, chord rotation demands for the effective catenary action of RC beams 
were investigated in this study. The nonlinear static response of RC beams under monotonic 
pushdown loadings was idealized as a piece-wise linear curve with four threshold points. Based on 
the idealized static response, analytical formulations were derived to determine the pseudo-static 
chord rotation for the effective catenary action and accompanied snap-through response. The 
numerical parametric studies revealed that the minimum rotation demand of 0.20 radians 
recommended in the UFC guidelines for catenary development was not always conservative. Larger 
peak-arch rotation and smaller catenary stiffness may increase the rotation demand for effective 
catenary action. This implied that RC beams with a deep section may need higher rotation capacity 
for catenary development. Since RC members with a deep section are usually responsible of large 
shear and/or moment, it is suggested to adopt their peak arch strength as the collapse resistance for 
the sake of safety. Also, a peak-arch strength recovery in the nonlinear static response curve does 
not always guarantee a similar strength recovery in the pseudo-static counterpart. Complementary 
pseudo-static analysis is advised to verify the effective catenary action under realistic dynamic 
column loss. In general, a combination of smaller arch stiffness, larger softening stiffness, and 
larger catenary stiffness may lead to an earlier strength recovery in the catenary phase. Since the 
arch, softening, and catenary stiffness are involved with the span-to-depth ratio, main reinforcement 
ratio and layout, shear reinforcement, and boundary constraint of the RC members, it will be an 
important task to clarify their relationships in future studies.  
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Abstract 
In the Scaled Boundary Finite Element Method (abbr. SBFEM), the analytical advantage of the 

solution in the radial direction allows stress intensity factors (SIFs) to be determined directly from 
its definition. Therefore no special crack-tip treatment is necessary. In addition, the stiffness of 
infinite domain can be solved analytically. In present paper, the asymptotic fields of the crack tip of 
the infinite plate subjected to the different loadings are computed based on the SBFEM combining 
the sub-structuring technique (or super-element) , extracting the SIFs, some of higher order terms. 
The essential calculating formula of SBFEM is derived. The numerical results are compared with 
those in the literature, and the results show that SBFEM can evaluate the asymptotic fields of the 
crack tip with higher efficiency and accuracy. In addition, some of the higher order terms may 
provide evidence for the further research on the fracture characteristics of the mass concrete 
materials and structures. 

Keywords: stress intensity factors; the scaled boundary finite element method; high order singular 
terms; infinite plate； 

Introduction 

The analytical expression of stress fields of crack tip is presented by Williams[Williams (1957)]. 
It includes stress intensity factors KI , KII , T-stress and higher order terms which is named crack-tip 
parameters. Theoretical analysis and test can not determine parameters of the complex case, which 
is concerned on the material properties of structure, load form, and the initial angle of crack. Some 
of the numerical methods are applied to determine these parameters of practical and complex 
problem. The mainly numerical methods which can evaluate the singular fields of crack tip, include 
the finite element method(FEM), the boundary element method(BEM), the weight function method, 
the finite difference method and the scaled boundary finite element method(SBFEM) [(Deeks and 
Chidgzey(2005); Song(2005 )]. FEM need discretizing crack tip area, and BEM need discretizing 
crack surface area. Furthermore, they can’t gain analytical solution around singularity points in 
general case, because of their dependence on the piecewise smooth functions [Song ( 2002)]. The 
most important advantage of SBFEM is the stress singularity along the radial direction emanating 
from the crack tip is represented analytically. No analytical asymptotic expansion or enrichment is 
required. SIFs, T-stress and higher order terms are extracted directly [(Deeks and Chidgzey(2005); 
Song(2005 )]. According to the advantages of SBFEM, it has been applied to evaluating the 
dynamic stress intensity factors [Song(2004;2008)], the SIF of orthotropic material[Song ( 2002)], 
the SIF under the temperature load [Song(2006)], and a unified definition of GSIFs was proposed in 
[Song et al (2010)]. Crack propagation was modelled in  [Yang (2006);Yang and Deeks (2007); Ooi 
and Yang (2009; 2011a; 2011b); Bird et al (2010); Shi (2013) and Zhu(2014)]. Other applications in 
fracture mechanics include [Li (2014);Liu(2008)]. 
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In the paper, the asymptotic fields of the crack tip of the infinite plate subjected to the different 
loadings are computed based on the SBFEM combining the sub-structuring technique (or super-
element), extracting the SIFs, some of higher order terms of crack tip are provided. Numerical 
examples are provided to demonstrate the effectiveness and accuracy. The results are compared 
with those of analytical solutions and numerical solutions. The comparison shows that SBFEM can 
calculate the asymptotic field of crack tip with accuracy. 

2 The Fundamental Equations of Scaled Boundary Finite Element Method 

With emphasis placed on the two-dimensional problems the concept of the scaled boundary 
finite element method and the necessary equations for a bounded medium are summarized. 

The governing equations of SBFEM without dynamic problems is the following 

 ( ){ } ( ) ( ){ } ( ){ }0 2 0 1 1 2

, ,
0

T
E u E E E u E u

ξξ ξ
ξ ξ ξ ξ ξ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (1) 

where 0E⎡ ⎤⎣ ⎦ , 1E⎡ ⎤⎣ ⎦  and 2E⎡ ⎤⎣ ⎦  are the coefficient matrices on the boundary [Song and Wolf(1997)]. 

The solution of displacement field is expressed as the following 
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where, n is the dimension of eigen value vector matrix [ ]11Φ  whose meaning can be seen in the 

following formula. { }i
φ  is i column of the matrix [ ]11Φ , ic  is the i element of the integration 

constant vector { }1c . Then the radial displacement field within the sub-structure (super-element) 

can be obtained by interpolation through the function ( )uN η⎡ ⎤⎣ ⎦ , therefore 
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the stress field within the sub-structure  
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where, ( ){ }
i

ψ η  is the stress mode of local coordinate η , it can be calculated by the corresponding 

displacement mode { }i
φ , 
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The solutions of displacement and stress in the sub-structure can be expressed as polar-
coordinate form in order to calculate SIF. Radial coordinate can be expressed as 
 ( ) ( )ˆ ,r rξ η ξ η=  (7) 

where,  ( ) ( ) ( )2 2r x yη η η= + is the radial coordinate on the boundary of sub-structure. Angle θ  

is only related to η , 
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Eq.(7) is substituted into Eq.(4), we can get 
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Eq.(8) and Eq.(9) constitute the stress field similar to Williams which is expressed by the series 
coordinate. The expression of the singular fields of crack tip of Williams is used. 
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3 Numerical Examples 

3.1 Edge-cracked semi-infinite plate under uniform tension tractions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                             (a)                                                               (b) 

Fig.3a Edge-cracked semi-infinite plate under uniform tension traction 
Fig.3b Boundary discretization of edge-cracked semi-infinite plate 

First considering an edge-cracked semi-infinite plate subjected to uniform distributing tension 
p0 loaded on the crack faces as shown in Fig.3a. The semi-infinite plate is divided into three blocks 
(Fig.3b), and the corresponding scaling centers are O1(0,0), O2(-1,0) and O3(-1,2), respectively. The 
geometrical parameter of the first block is:W=1.5,H=4, the crack length is a=1. The length of 
loading for the crack face is b=0.35,0.5,0.75,0.85. The material properties elastic modulus E=1, 
Poisson's ratio ν=0.25. The Fig.3b gives the discretization model, and the total elements is 16 3-
node line elements. The analytical solutions of SIF are shown in Reference[Hiroshi(2000)], and the 
present compared results and relative difference (RD) are shown in Table 1. The higher order terms 
a2,a3 are shown in  Table 1. They are in good agreement and the maximum difference is less than 
3%.No analytical solutions or numerical results for the a2,a3 are compared. 
Table 1 Results of edge-cracked semi-infinite                Table 2 Results of edge-cracked semi-infinite plate under  
plate under uniform tension tractions（W=1.5，N=16）  uniform shear tractions 
 

 
 
 
 
 
 
 

3.3 Edge-cracked semi-infinite plane under uniform 
shear tractions 

Fig.3a shows the Edge-cracked semi-infinite plate under uniform shear tractions model. The 
geometrical parameter is W=1.5, H=4. The length of crack a=1, the loading length of uniform shear 
b=0.65,0.70,0.75,0.80,0.85,0.90,0.95. The material properties elastic modulus E=1, Poisson's ratio 

Loading length b KII Analytical solution RD(%)

0.65  0.9763 0.9415  -3.7035 

0.70  1.0401 1.0233  -1.6435 

0.75  1.1049 1.1103  0.4871 

0.80  1.1803 1.2046  2.0241 

0.85  1.2879 1.3100  1.6887 

0.90  1.4542 1.4336  -1.4335 

The length 
 of loading: b 

KI 
Analytical 
solutions  (RD)(%) a2 a3 

0.35 0.5130 0.4998  -2.6342  0.2728 -0.2698 

0.5 0.7317 0.7142  -2.4510  0.3474 -0.4386 

0.75 1.1385 1.1103  -2.5378  0.4376 -0.9263 

0.85 1.2698 1.3100  3.0722  0.6191 -1.3251 
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ν=0.25. The total number of elements is 8. Reference [Hiroshi(2000)] gives the analytical solutions. 
The comparison of the present results with analytical solutions are shown in Table 3. Both the 
numerical and analytical results are in good agreement. The maximum difference is less than 4%. 

3.3 Edge-cracked semi-infinite plane under concentrated shear tractions 

 
 
 
 
 
 
 
 
 
 
 
                                                  (a)                                                              (b) 

Fig.4a Edge-cracked semi-infinite plate under concentrated shear tractions 
Fig.4b Edge-cracked infinite plate under concentrated tension tractions 

Fig.4 shows the Edge-cracked semi-infinite plane model under concentrated shear tractions. 
The geometrical parameter is W=2, H=4. The length of crack is a=0.7,0.8,0.9,1.0,1.1,1.2,1.3. The 
material properties elastic modulus E=1, Poisson's ratio ν=0.25. The discretization is shown in 
Fig.3b and the total number of elements is 19. The analytical solutions of SIF are shown in 
Reference[Hiroshi(2000)], and the comparasion of the present results with analytical solutions are 
shown in Table 2. Both the numerical and analytical results are in good agreement. The maximum 
difference is less than 2%. The higher order terms a3 are also shown in Table 2. No analytical 
solutions or numerical results are compared. 
Table 3 Results of edge-cracked semi-infinite      Table 4 Results of SIF, a1,a2  and a3 of the edge-cracked infinite 
plate under concentrated shear tractions                             plate under concentrated tension tractions 

 
 
 
 
 
 
 
 
 
 

 3.4 Edge-cracked infinite plane under concentrated tension tractions 

Edge-cracked infinite plane under concentrated tension tractions model is studied, as shown 
in Fig.4b. The geometrical parameter is W=1.5, H=4. The length of crack a=1. The material 
properties elastic modulus E=1, Poisson's ratio ν=0.25. The analytical solutions of SIF are shown in 
Reference [Hiroshi(2000)]. The comparison of the present results with analytical solutions are 
shown in Table 4.The results of higher order terms a2 and a3 for the different element number are 
shown in Table 5. It shows that the numerical and analytical results are in good agreement. The 
maximum difference is less than 2%.   

Crack length a KII 
Analytical 
 solution RD（%） a3 

0.7  1.7371 1.7492  0.6917  -2.1328 

0.8  1.6263 1.6363  0.6108  -1.9439 

0.9  1.5353 1.5427  0.4795  -1.5322 

1.0  1.4598 1.4635  0.2522  -1.1236 

1.1  1.3968 1.3954  -0.0990  -0.8287 

1.2  1.3438 1.3360  -0.5827  -0.6297 

1.3  1.2988 1.2836  -1.1865  -0.4953 

Number of
 elements  

KI
RD（%） 
（Analytical 

 solution 0.5642） 
a1 a2 a3 

5 0.5605 0.6532  0.22360.0263  

7 0.5603 0.6864  0.22350.0131-0.2904

11 0.5680 -0.6725  0.22660.0111-0.2889

19 0.5707 -1.1562  0.2277 0.011 -0.2885

Q 

Q a 

a 

P
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Conclusions 

In the paper, the singular stress fields of edge-cracked infinite plate are computed based on the 
SBFEM, extracting the SIF and the coefficients of higher order terms. The expression of 
displacement field and stress field of SBFEM and the equation of asymptotic field of crack tip of 
fracture mechanics are derived. The results are compared with the ones of analytical solutions and 
some numerical results, which shows that the SBFEM can calculate the asymptotic field of crack tip 
with accuracy. In addition, the results of T-stress and the coefficients of higher order terms have 
certain significance on determining crack stability and studying the fracture characteristics of crack 
tip. 
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Abstract 
The authors previously show that NI-RPIM solution of 3D tetrahedral cells [Yavuz and Kanber 
(2015)] includes unstable stress distributions. Therefore, in this study, the fluctuations in stresses 
are attempted to reduce using two different algorithms; Average stress distribution (ASD) in local 
support domain and LSS (least square stabilization) algorithms. NI-RPIM is improved with these 
algorithms to solve 3D solid mechanics problems with higher order Taylor series terms in nodal 
integration. Integration methodology is developed based on the study of [Liu et al. (2007)]. 
Tetrahedral integration cells are used in the solution of 3D elasto-static problems. Order of Taylor 
series terms is used up to 4th order for ASD. Also effects of shape parameters ( cα  and q ) in RBF 
and support domain size (sd) are searched. The results are compared with available analytical 
solutions and discussed in detail. 

Keywords: Nodal Integration, RPIM, Tetrahedral Background Cells, Least-Squares Stabilization 
 

Introduction 

Strain and stress formations are one of the critical design factors and always considered in machine 
design. Besides the working performance, strength and service life are also important in a 
machinery system and must be adjusted in a range of safety. A well designed mechanical system 
has enough strength against working loads. It been also avoided from the usage of excessive parts. 
For this reason, the best and optimum structural designs should be created. 
 
It is needed to investigate the initial designs on stress analysis for optimizations. The critical 
locations must be determined and fixed. In general, the formation of stresses cannot be detected 
easily, especially for complex and non-uniform shapes. Geometry simplifications can be sometimes 
used with respect to analysed model. However, they include differences between analysed real 
model and simplified model, which causes errors. Thus, different numerical and experimental 
techniques have been developed for investigation with including less simplification, especially for 
complex shapes. Experimental techniques show responses of forces directly and reflect considerable 
results. However, investigation of each component or effect of parameter causes to repeat the 
experiment again and again.  
 
Numerical methods can be another alternative way for investigation. On the contrary to 
requirements of experimental setup and apparatus in experimental investigation, numerical 
techniques do not need any experimental preparation, which can give fast and sensible results with 
respect to developed computer technology and used numerical methods. Even if it is mainly used 
approximate solutions, precise results can be achieved with a well-defined model. Different 
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numerical techniques have been developed. FDM (finite difference method), FEM (finite element 
method) and BEM (boundary element method) are widely used. 
 
Unlike other methods, FEM has been very popular and used especially in the solutions of solid 
mechanics problems. The analysed model is divided to small elements, which are called finite 
elements and all solution procedure continues based on these elements. In most of the cases, 
formation of elements has poor shapes especially for complex geometries, which decreases 
accuracy of solutions. Construction of finite elements in smooth structure can consume most of 
analysing time. For this reason, meshfree techniques have been developed for decreasing numerical 
modelling time and effort. It is mainly used in early stages as SPH (smoothed particle 
hydrodynamics) [Gingold and Monaghan (1977); Lucy (1977)] on the solutions of astrophysical 
problems. DEM (diffuse element method) [Nayroles et al. (1992)] is developed at the further 
development stages. Mesh generation is not required, at least for interpolation. It includes MLS 
(moving least square) functions, which is used further development stage of EFG (element-free 
Galerkin) [Belytschko et al. (1994)] method. Partitions of unity [Babuska and Melenk (1996)] are 
developed by using MLS functions. Reproducing kernel particle method (RKPM) [Liu et al. 
(1996)], meshless local Petrov-Galerkin (MLPG) [Atluri and Zhu (1998)], point interpolation 
method (PIM) [Liu and Gu (2001)] and radial point interpolation method (RPIM) [Wang and Liu 
(2002a)] have been developed. Radial basis functions (RBF) are widely used in meshfree 
approximations, which are also used for development of BKM (boundary knot method) [Chen and 
Tanaka (2002)]. Also some of these methods are used in different integration methods. PIM and 
RPIM are further used with different methods and integration schemes; linearly conforming point 
interpolation method (LC-PIM) [Liu et al. (2005)], nodal integration radial point interpolation 
method (NI-RPIM) [Liu et al. (2007)], NS-PIM (node-based smoothed point interpolation method) 
[Zhang et al. (2007)], edge-based smoothed point interpolation method (ES-PIM) [Liu and Zhang 
(2008)] and CS-RPIM (cell-based smoothed radial point interpolation method) [Liu and Zhang 
(2009)] are available in literature.  
 
Different techniques and methods can be combined for increasing the applicability of these 
methods. One of the integration schemes; nodal integration schemes can increase applicability and 
be effective for compact usage inside of RPIM, which is explained in detail in the study of Liu et al. 
(2007). This method uses Taylor series expansion in integration and the solution results are mainly 
affected with the used order of Taylor expansion. It is used for tetrahedral background cells [Yavuz 
and Kanber (2015)] on the solution of 3D elasto-static problems for increasing applicability. Each 
node in the model has its own tetrahedral integration cells. However it is observed that stress results 
include fluctuations and high values when compared with available analytical and FEM solutions. 
In literature, behaviour of nodal integration includes instabilities in some cases. Initially Biessel and 
Belytschko (1996) include additional a stabilization term on potential energy function of element-
free Galerkin (EFG) method for nodal integration. It achieves instability problems of nodal 
integration in weak form formulations. Chen et al. (2001) also focus on instability of direct nodal 
integration and observe that integration constraints include errors in direct nodal integration and 
they cannot be satisfied enough in Gaussian integration at irregular discretization. They eliminate 
this problem with including a strain smoothing stabilization. Zhou et al. (2003) include square 
residual of equilibrium equation into potential energy function in stabilized nodal integration 
scheme. The used Voronoi diagram with supporting Delaunay triangles increases accuracy of 
volume assignment of nodal integration. Van et al. (2007) use conforming nodal integration into 
finite element formulation of laminate plates, which prevents shear locking. Han (2010) uses 
stabilized conforming nodal integration method on elasto-plastic analysis of metal forming process. 
Nodal integration with strain smoothing stabilization is used, which prevents instabilities of 
integration of Galerkin weak form formulations. Elmer et al. (2012) use a stable nodal integration 
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method on nearly incompressible solids. Xu (2014) uses stabilized nodal integration for cracking 
particles method (CPM), which supports stability and computational efficiency. Duan and 
Belytschko (2008) mention and compare 3 different stabilization techniques; which are least-square 
stabilization (LSS) [Biessel and Belytschko (1996); Fries and Belytschko (2007)], Taylor series 
expansion based stabilization (TEBS) [Liu et al. (1985); Nagashima (1999); Liu et al. (2007)] and 
the finite increment gradient stabilization (FIG) [Bonet and Kulasegaram (2000)], which can adjust 
stress instabilities. 
 
In the previous study of Yavuz and Kanber (2015), it is observed that the nodal integration of radial 
point interpolation method (RPIM) based on Taylor series terms with tetrahedral background cells 
causes some fluctuations in stress results. Therefore, in this study, it is attempted to stabilize 
stresses using average stress distributions for local support domain of each node and least square 
stress stabilization method. RBF includes different shape parameters and their effects [Wang and 
Liu (2002b); Kanber et al. (2013); Bozkurt et al. (2013)] are also searched in some studies. They 
can affect solution results and suitable parameters must be searched before their usage. Effects of 
shape parameters ( cα  and q ) in RBF and support domain size (sd) are searched. The results are 
compared with available analytical solutions. 
 

RPIM Shape Functions 

Construction of shape functions forms an important section for FEM and meshfree methods. High 
qualified shape functions gives better results and includes less errors. The shape functions are 
mainly occurred with interpolations and a suitable interpolation method must be used for increasing 
accuracy. 
 
Relation between nodes in meshfree methods is mainly obtained with interpolations. Various 
interpolation methods are available in literature. RPIM [Wang and Liu (2002a)] is one of 
interpolation technique and widely used. It includes PIM [Liu et al. (2001)] with radial basis 
functions. When shape functions have been constructed, a field function ( )xu  is created and given 
as in Eq. (1), which is consist of polynomial and basis functions.  
 
 ( ) ( ) ( ) ( ) ( ) bxPaxRbxPaxRxu TTm

j jj
n

i ii                 
11

×+×=×+×= ∑∑ ==
 (1) 

 
( )xRi  and ( )xPj  represent radial basis and polynomial basis functions, respectively. ia  and jb  are 

related constants, n  is the number of field nodes in the local support domain and m  is the number 
of polynomial terms. Interpolations between nodes are mainly accomplished within the local 
support domain for each node or point of interests. 
 
Various RBF [Liu and Gu (2005); Liu (2009)] are available in literature, like multi-quadrics (MQ), 
the Gaussian (Exp), the thin plate spline (TSP) and logarithmic radial basis functions. MQ is [Liu 
and Gu (2005); Dinis et al. (2007)] used as radial basis function in Eq. (2). 
 
 ( ) ( )( )qccii drxR 22       ×+= α  (2) 
 
where cd  is usually set as average nodal spacing near the point of interest at x ; cα  and q  are 
shape parameters. It is [Liu and Gu (2005); Liu (2009)] recommended to use q  as 1.03 and cα  as 
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3.00 for MQ basis function. The radial distance is given in Eq. (3) for 3D cases. Also the 
polynomial terms are given in Eq. (4) which are mainly derived from binomial expansion.  
  

 ( ) ( ) ( ) ( )222             iiii zzyyxxxr −+−+−=  (3) 

 
 ( ) { },...,,,,,,,,,1  222 zxzyzyxyxzyxxpT =  (4) 
 
Interpolation is applied in a support domain for point of interest. Different support domain 
geometries can be used, like circular, elliptical, triangular or rectangular. A circular local support 
domain is used and its covered area is given by radius of circle ( sd ), which is given in Eq. (5). 
 
 css dd     ×=α  (5) 
 
where cd is average nodal spacing and sα  is a positive real number of dimensionless size of the 
local support domain. Its value [Liu and Gu (2005); Dinis et al. (2007)] is commonly used between 
2.00 and 3.00. The unknown constants of field function of ia  and jb  in Eq. (1) can be determined 
by enforcing the field function to pass through all n  field nodes in the local support domain. At the 

thk  point or last point in a local support domain, field function can be written as: 
 
 ( ) ( ) ( )∑∑ ==

×+×=
m

j jkkkj
n

i ikkkikkk ,..n,k=bzyxPazyxRzyxu
11

21        ,,    ,,  ,,  (6) 

 
The matrix form of Eq. (6) can be expressed as 
 
 { }T

nmqe uuubPaRU ...            21=×+×=    (7) 
 
where eU  is the vector of function values at the nodes in the local support domain. qR  is the 
moment matrix of RBF and mP  is the polynomial moment matrix [Liu and Gu (2005)], which are 
given in Eq. (8) and (9), respectively. 
 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )nnnnnn

n

n

q

rRrRrR

rRrRrR
rRrRrR

R

×



















=

...
............

...

...

  

21

22221

11211

 (8) 

 

 

( )
( )

( ) ( )mnnmnnn

m

m

m

rPzyx

rPzyx
rPzyx

P

×



















=

...1
..................

...1
...1

  2222

1111

 (9) 

 
a  and b  are vectors of unknown coefficients for radial and polynomial basis functions 
respectively. They are given in Eq. (10) and (11). 
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 { }n
T aaaa ...    21=  (10) 

  
 { }n

T bbbb ...    21=  (11) 
 
For solution of field function, unknown parameter a  in Eq. (7) must satisfy in polynomial function, 
 

 ( )∑ =
=×=×

n

j
T

miij aPaxp
1

0           j=1,2,..,m (12) 

 
Combination of Eq. (7) and Eq. (1) yields the following equations in the matrix form: 
 

 0      
0

  
0

  ~ aG
b
aP

P
RU

U m
T

m

qe
e ×=

















=








=    j=1,2,..,m (13) 

 
where 

 

 { }T
n

e
e aaa

U
U 0... 0 0 ...    

0
  ~

21=







=  (14) 

 
Unique solution is obtained if inverse of matrix G exists: 
 

 eUG
b
a

a ~      1
0 ×=









= −  (15) 

 
Substituting Eq. (15) into Eq. (1), interpolation with respect to field function can be expressed as, 
 
 ( ) ( ) ( ){ } ( ) ee

TT UxUGxPxRxu ~ ~~        1 ×=×××= − ϕ  (16) 
 
Finally [Liu and Gu (2005); Dinis et al. (2007)], RPIM shape functions for the corresponding n  
field nodes can be obtained as 
 
 ( ) ( ) ( ) ( ){ }xxxx n

T ϕϕϕϕ  ...  21=  (17) 
 
The approximation function can be written as 
 

 ( ) ( ) ∑
=

×=×=
n

i
iie

T uUxxu
1

        ϕϕ  (18) 

 
The derivatives of ( )xu  can be easily obtained as 
 
 ( ) ( ) e

T
kki Uxxu     ,, ×=ϕ  (19) 

 
where k  denotes the coordinates x , y  or z . Partial differentiation is taken with respect to that 
defined coordinated by k .  
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3D Nodal Integration with Taylor Series Expansion 

The approximated solution must be adapted to equilibrium equation with respect to applied 
boundary conditions. General form of equilibrium equation [Liu and Gu (2005); Liu et al. (2007)] 
and natural and essential boundary conditions are given in Eq. (21), (22) and (23), respectively. 
  
 0      =+× bLT σ  (20) 
 
 iontn tσ       =⋅  (21) 
 
 uonuu t      =  (22) 
 

TL  is [Liu and Gu (2005)] differential operator, σ  is the stress vector, u is the displacement vector, 
b is the body force vector, t  is prescribed traction on the natural boundaries, u  is prescribed 
displacement on the essential boundaries and n  is the vector of unit outward normal on the natural 
boundary. TL ,σ , u  and b are given in Eq. (23), (24), (25) and (26) respectively.  
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000

000

000

  

xyz
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yzx
LT  (23) 

 
 [ ]xyxzyzzzyyxx

T tttσσσσ   =  (24) 
 

 















=

w
v
u

u    (25) 

 

 















=

z

y

x

b
b
b

b    (26) 

 
Equilibrium equation and natural and essential boundary conditions are represented with respect to 
weak form formulation in RPIM. Hence, the equilibrium equation, Eq. (20) can be defined as in 
Galerkin weak formulation in Eq. (27), 
 
 ( ) ( ) ( ) ( )∫∫∫ =Γ×−Ω×−Ω×××× 0            dtudbuduLDuL TTT ddd  (27) 
 
D  matrix is material coefficient matrix and it is given for isotropic solids as;  
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where E  is Young’s modulus and ν  is Poisson’s ratio [Liu and Gu (2005)]. When substituting the 
approximated function in Eq. (18), into Eq. (27), general form of stiffness and force matrices are 
obtained.  
 
 fuK     =×    (29) 
 
In Eq. (30), stiffness matrix formulation is represented. Force matrix formulation is given in Eq. 
(31). In addition, strain matrix, which includes derivatives of shape functions, is given in Eq. (32).  
 
 ∫ Ω××= dBDBK j

T
iij         (30) 

 
 ∫∫ Ω×+Γ×= bdtdf iii         ϕϕ    (31) 
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0
00
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,,

,

,

,

xiyi

xizi

yizi

zi

yi

xi

iB

ϕϕ
ϕϕ
ϕϕ
ϕ

ϕ
ϕ

   (32) 

 
A suitable integration method is needed to solve these equations. Various integration techniques are 
available. In NI-RPIM [Liu et al. (2007)], a series integration scheme is used with Taylor series. 
Series are widely used in mathematical operations, especially in numerical studies. An unknown 
value of a valid function can be estimated with a known value with series operations. One of the 
series is Taylor series and it is widely used in computational fluid dynamics with respect to finite 
difference method (FDM). An example of value estimation from 0x  to hx +0  can be defined serial 
expansion of functions and it is given in Eq. (33). nR  is the total error between value of )( 0 hxf +  
and its Taylor expansion results. In general, the degree of used terms in FDM increases the 
accuracy. In Eq. (33), Taylor series are expanded and derived to thn  order. 
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 ( ) ( ) ( ) ( ) ( ) ( )
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    030200
00 +×++×
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′
+=+  (33) 

 
Equations of integrations are expanded with respect to Taylor series expansion as Eq. (33). Stiffness 
matrix is set as approximate function as ( )zyxf ,, , which is given in Eq. (34), 
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The nodal integration of Eq. (34) can be written as Eq. (35), 
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If Eq. (35) is separated and arranged, the following form can be obtained, 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ...                              

  ,,      
!2

1  ,,                       

       ,,      ,,                       

      ,,  1  ,,  ,,

00

000
2

0000

00000000

0000000

+Ω−×−

×+Ω−××

+Ω−×+Ω−×

+Ω−×+Ω×=Ω

∫
∫

∫∫
∫∫∫

dyyxx

zyxfdxxzyxf

dzzzyxfdyyzyxf

dxxzyxfdzyxfdzyxf

xyxx

zy

x

 (37) 

 
In Eq. (37), 0xx −  represents x∆ , 0yy −  represents y∆  and 0zz −  represents z∆ . The distance is 
calculated from midpoint of related field node and integration cell, which is called Taylor 
integration cells. Ωd  is equal to volume of Taylor integration cell. Each Taylor integration cell for 
each field node includes a volume that does not interact with other field nodes of Taylor integration 
cells. 
 

Integration with Tetrahedral Shaped Taylor Integration Cells 

It is required in NI-RPIM [Liu et al. (2007)] to construction of integration domains for each node in 
the analysed model. These domains should not coincide with each other and must be fully 
integrated. Taylor integration domains are constructed with irregular tetrahedral geometries for 
irregular distributed nodes. These irregular domain construction supports to more flexible domains, 
rather than hexahedral cells. Delaunay triangulation method is used for creating tetrahedral cells 
between nodes by using MATLAB.  
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Figure 1. Sub-division of tetrahedral background cell for each node. 

 
In Fig. 1, a tetrahedral background cell is given. The cell which is formed by field nodes of P1 
(x1,y1,z1), P2 (x2,y2,z2), P3 (x3,y3,z3) and P4 (x4,y4,z4) is further divided into 6 different integration 
cells (ic I, II...). So, the total number of integration cells for a field node can be calculated by 
multiplying 6 by the number of tetrahedral cells that are connected to the field node. P12, P13, P14, 
P23, P24 and P34 are centre point of each side line of tetrahedral cell. P123, P124, P134 and P234 are 
centre points of surface areas. O is the centre point. 

Table 1. Components of edges for subdivided Taylor Integration cells for each node. 

 integration 
cell (ic) 

components of 
edges  integration 

cell (ic) 
components of 

edges 

N
od

e 
I (

P1
) 

I P1 P12 P123 O 

N
od

e 
II

I (
P3

) I P3 P13 P123 O 
II P1 P123 P13 O II P3 P123 P23 O 
III P1 P124 P12 O III P3 P134 P13 O 
IV P1 P14 P124 O IV P3 P34 P134 O 
V P1 P13 P134 O V P3 P23 P234 O 
VI P1 P134 P14 O VI P3 P234 P34 O 

N
od

e 
II

 (P
2)

 I P2 P123 P12 O 

N
od

e 
IV

 (P
4)

 I P4 P124 P14 O 
II P2 P23 P123 O II P4 P24 P124 O 
III P2 P12 P124 O III P4 P14 P134 O 
IV P2 P124 P24 O IV P4 P134 P34 O 
V P2 P234 P23 O V P4 P234 P24 O 
VI P2 P24 P234 O VI P4 P34 P234 O 

             

P1 

O 

P13 

P14 

P12 

P123 
P23 

P24 
P34 

P4 

P3 

P2 

P124 

P134 P234 

P1 

O 

P13 
P123 

P1 

O 

P12 
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P134 

ic II (node I) 
ic V (node I) 

ic I (node I) 

ic III (node I) 

ic VI (node I) 

ic IV (node I) 
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Subdivision of tetrahedral integration cell components for each node is tabulated in Table 1. 
Subdivision of tetrahedral cell can cause negative volumes [Toron (2004); Kovalev (2005)]. 
Therefore, the orientation of subdivided cell nodes is placed with an order of preventing negative 
volume results. 
 
In Eq. (37), the integrations ∫ Ωd1 , ( )∫ Ω∆ dx , ( )∫ Ω∆ dy , ( )∫ Ω∆ dz , ( )∫ Ω∆ dx2 … must be calculated 
for tetrahedral background cells. The first integration represents the volume of tetrahedron and can 
also be calculated as determinant of edge distances [Bhowmick and Shontz (2012)] in Eq. (38).  
 

 

141312

141312

141312

6
1

zzzzzz
yyyyyy
xxxxxx

Volume
−−−
−−−
−−−

⋅=  (38) 

 
However, integration of volume in terms of ,...,,, 2xzyx   includes complex operations for irregular 
tetrahedral shapes. Hence, geometry can be transformed into natural coordinates by using Jacobian 
transformation. In Fig. 2, the transformation of tetrahedron geometry from global to natural 
coordinates is shown for ic II of field node I. P1', P123', P13' and O' represent the transformed natural 
coordinates from global coordinates of P1, P123, P13 and O points, respectively. Also for other 
integration cells, P1', P123', P13' and O' in Fig. 2 correspond to second, third, fourth and fifth columns 
in Table 1 respectively.  
 
The bounds of integral starts from zero to upper natural coordinate. Hence P1, P2, P3 and P4 are 
placed at P1’ in integral calculations. This condition can provide to no usage of parallel axis 
theorem to carry integration results to related edge node. Hence, x1, y1 and z1 in Eq. (39), (40) and 
(41) are assigned x, y and z coordinates of P1, P2, P3 and P4 in related integral node calculation. 
 

 
 

Figure 2. Transformation of an integration cell (ic II in Fig.1) from global (a) to natural (b) 
coordinates. 

 
The transformation of coordinates is given in Eq. (39), (40) and (41) [Bhowmick and Shontz 
(2012)]. η , ξ and ζ are natural coordinates. 
  
 ( ) ( ) ( ) ζηξ ⋅−+⋅−+⋅−+= 1413121 xxxxxxxx  (39) 
  
 ( ) ( ) ( ) ζηξ ⋅−+⋅−+⋅−+= 1413121 yyyyyyyy  (40) 
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 ( ) ( ) ( ) ζηξ ⋅−+⋅−+⋅−+= 1413121 zzzzzzzz  (41) 
 
Determinant of Jacobian (J) transformation matrix are given in Eq. (42). 
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The transformation of integration of uniform geometry in natural coordinates is given in Eq. (43). 
Its application to tetrahedron geometry is given in Eq. (44). Hence integration in terms of 

,...,,, 2xzyx  can be easily calculated as follows:  
 
 ( ) ( ) ( ) ( )[ ] ( )∫∫ Ω=Ω '*,,,,,,,,,, dJDETzyxfdzyxf ζηξζηξζηξ  (43) 
 

 ( ) ( ) ( ) ( ) ( )[ ]∫∫∫∫
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ηξξ
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1

0

1

0

1

0

,,,,,,,,*,, dzyxfddJDETdDzyxf
D

 (44) 

 
Even if suitable orientation is used in Table 1, in some cases node coordinate orientations can be 
changed with respect to construction of tetrahedral cells in Delaunay triangulation technique. Its 
symptoms can be determined with negative value of determinant of Jacobian matrix. For this 
reason, upper integration bounds in Eq. (44) are updated with respect to where the subdivided 
tetrahedral cell exists, which are given in Table 2. 

Table 2. Direction of tetrahedral cell and used bounds of integral in natural coordinates. 

 12x∆  13y∆  14z∆  ∫
[]

0

],,[ ζdzyxf
 
∫
[]

0

],,[ ηdzyxf
 
∫
[]

0

],,[ ξdzyxf
 

I + + + ηξ −−1  ξ−1  1+  
II + + - ( )ηξ −−− 1  ξ−1  1+  
III + - + ηξ +−1  ( )ξ−− 1  1+  
IV + - - ( )ηξ +−− 1  ( )ξ−− 1  1+  
V - + + ηξ −+1  ξ+1  1−  
VI - + - ( )ηξ −+− 1  ξ+1  1−  
VII - - + ηξ ++1  ( )ξ+− 1  1−  
VIII - - - ( )ηξ ++− 1  ( )ξ+− 1  1−  

  
Where 12x∆ is the sign of difference between 12 xx − , 13y∆  is the sign of difference between 13 yy −  
and 14z∆  is the sign of difference between 14 zz −  for each sub-divided integration cell. The signs of  
η , ξ  and ζ  in Eq. (39), (40) and (41) is also regulated with respect to signs of 12x∆ , 13y∆  and 

14z∆ . 
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These calculations are applied for each tetrahedral cell and the results are summed for the 
corresponding field node. Hence, a node includes more than one tetrahedral integration cells, which 
looks like a polyhedron geometry. However, all main structure of integrations is carried on each 
subdivided tetrahedral cells for related nodes.  
 

Application of Stress Stabilizations 

The application of nodal integration is fast and suitable for complex geometries. However, in the 
previous study of Yavuz and Kanber (2015), the stress results of pure/unstabilized nodal integration 
include high fluctuations. Even if two close nodes are selected, their stress results can be highly 
different. Hence application of different methods is investigated for trying to decrease the stress 
fluctuations. 

Average Stress Distribution for Each Local Support Domain 

In the previous study [Yavuz and Kanber (2015)], it is observed in nodal integration that high stress 
fluctuations occur at far away from application locations of force and boundary conditions. It is not 
expected that formation of these high fluctuations occur at that conditions with respect to Saint 
Vernant’s principle.  
 
For decreasing the fluctuations, average stress distributions are taken for each local support domain. 
The stresses of nodes in a local support domain of a related node is summed and averaged for 
number of nodes in that support domain. 

Stiffness Effect on Boundary Locations 

In the previous study [Yavuz and Kanber (2015)], some stress peak points are observed, especially 
on the application location of boundary conditions. Hence local stiffness matrix of nodes on 
boundary condition locations are changed for decreasing stress peak points. Its effects are 
investigated. 

Least Square Stabilization 

In order to decrease fluctuations, least square stabilization method (LSS) [Biessel and Belytschko 
(1996), Fries and Belytschko (2007), Duan and Belytschko (2008)] is used in nodal integration 
scheme. This method adds two equations ( γK  and γf ) in Galerkin weak form of governing 
equation for providing stress stabilization. The main governing equation is previously given in Eq. 
20. Addition of stress stabilization equations and detail transformation operations about governing 
equations can be reached from the study of Duan and Belytschko (2008). The simplified equation is 
given in Eq. 45. γK  and γf  equations are given in Eq. 46 and 47. 
 
 ( ) ( )PP fffdKKK ββ γγ ++=++  (45) 
 
 ( ) ( ) Ω= ∫

Ω

DDLNLDLNLK TTTγγ  (46) 

 
 ( ) Ω−= ∫

Ω

DbDLNLf TTγγ  (47) 
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γ  is the stabilization parameter and it is given in Eq. 48. 
 

 
E

lcs
22αγ =  (48) 

 
sα  is the dimensionless stabilization parameter and used as 0.3 in this study. cl  is used as nodal 

spacing, which is nearly equal to 0.04*L/100. 
  

Solution and Discussion 

A cantilever beam problem is examined for investigation of stress stabilization methods. The nodal 
integration of RPIM is mainly prepared with respect to the study of Liu. et al. (2007). The solutions 
of formulations, creation of tetrahedral integration cells and subdivision calculations are 
accomplished with MATLAB.  
 
The geometry and meshfree model is given in Fig. 3. The used beam has a length of 1.0 m with 
square section of 0.1m× 0.1m. The used meshfree model has 878 irregularly distributed nodes.  
 

 

Figure 3. The used cantilever beam model geometry and meshfree model 

 
The used material properties have linear elastic behaviour with a Young’s Modulus of 200 GPa and 
Poisson’s ratio of 0.0. The selection of Poisson’s ratio as 0.0 is aimed for providing similar 
conditions as analytical solutions. Applied force (P) is used as 29000 N and other side of force 
application location is determined as application of boundary condition location. This location is 
fixed.  
 
Vertical deflection equation [Beer et al. (2009)] of cantilever beam is given in Eq. 49. Where P  is 
applied force, x  is distance from fixed support location, E  is Young’s Modulus and  I  represents 
inertia of beam. 
 

 ( )xL
IE

xPy −×
××

×
= 3

6

2

 (49) 

 
The bending stress at upper and lower surfaces of beam is given as; 

x 

y 

z 

P  
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I

cM ×
=σ  (50) 

 
c  is the distance between upper/lower surface and natural axis of the beam. In meshfree solutions, 

cα is used as 3.00, dimensionless support domain size ( sα ) parameter is used as 1.30 and q is used 
as 1.03 as default parameters. 
 

 

Figure 4. Comparison of deflection results of cantilever beam for analytical and pure nodal 
int. technique. 

 
Deflection results of cantilever beam is shown in Fig. 4 for NI-RPIM with 0th, 1st, 2rd, 3rd and 4th 
order Taylor terms. It is observed that 0th and 4th order terms give the best results when they are 
compared with analytical solution. There is no fluctuation occurs on deflection results of these order 
terms. However the used other terms includes less accuracy and small distortions at the results. 
 

 

Figure 5. Comparison of bending stress results of cantilever beam for analytical and 
pure/unstabilized nodal int. technique. 

 
The bending stress results are given in Fig. 5 for pure/unstabilized nodal integration, which include 
highly fluctuation results. The best results achieved with 0th order terms, when results of all terms 
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are compared with each other. The stress results of 1st and 4th order terms include high stress values 
at the application locations of boundary conditions.  
 

 

Figure 6.  Comparison of bending stress results of cantilever beam for analytical and nodal int. 
technique with ASD. 

 
The formation of stress results are given in Fig. 6, when averaged stress distribution (ASD) of local 
support domain method is applied for each node. It is observed that fluctuations of stress results are 
decreased. The best accuracy is achieved with the usage of 0th order term. However, results of 
higher terms without 0th order term have poor accuracy and include fluctuations.  

 

Figure 7. Comparison of bending stress results of cantilever beam for analytical and nodal int. 
technique of 0th order term with ASD and LSS. 

 
In Fig.7, only the usage of 0th order term results of NI-RPIM are compared with unstabilized, ASD 
and LSS methods. It is observed that the usage of both stress stabilization methods decreases 
fluctuations in the results.  
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Figure 8. Comparison of bending stress results of cantilever beam for analytical and nodal int. 
technique of 0th order term with ASD/ASD+BC Stiffness E. 

 
NI-RPIM results of 0th order term have a difference from analytical solution at the application 
location of boundary conditions (BC). NI-RPIM results have less stress values than analytical 
solution at BC. Hence, the stiffness values are decreased about %30 at this location for achieving 
same results at BC. 

 

Figure 9. Comparison of effect of sd on bending stress results of cantilever beam for nodal int. 
with ASD (0th order term). 

 
Effect of support domain (sd) size is shown for 0th order term results of NI-RPIM with ASD. When 
sd value of 3.9*L/100 is used, there is high fluctuation occurs about at a beam length of 0.6 m. sd 
size of 4.42*L/100 gives better stress results, which is used default in other solutions in this study. 
The average number of nodes in the local support domains is approximately equal to 44. When sd is 
increased, the accuracy begins decreasing. 
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Figure 10. Comparison of effect of alfc ( cα ) on bending stress results of cantilever beam for 
nodal int. with ASD (0th order term). 

 
Effect of alfc ( cα ) results are given in Fig. 10. The only dominant effect is shown at BC and its 
near locations. Different alfc ( cα ) results have similar characteristics.  

 

 

Figure 11. Comparison of effect of q on bending stress results of cantilever beam for nodal int. 
with ASD (0th order term). 

 
Effect of q results is given in Fig. 11. Nearly all the results of different q values have same values. 
 

Conclusions 

Tetrahedral background cells are used for the nodal integration of RPIM. The fluctuation problem 
in stress results of nodal integration is investigated with application of different methods. Averaged 
stress distribution (ASD) on local support domain and least square stabilization (LSS) methods are 
used. Effect of orders of Taylor terms, support domain size and RBF terms are investigated at NI-
RPIM with ASD. 
 
Results can be summarized as follows: 

- The usage of various orders of Taylor terms directly affects deflection and stress results.  
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- There is no fluctuation on deflection results of 0th and 4th order terms, which gives good 
accuracy with respect to analytical solution. 
- Less fluctuated stress values are obtained with the usage of 0th order Taylor series terms in 
NI-RPIM when no stabilization method is used.  
- Fluctuations on stress results are decreased with the usage of ASD and LSS methods.  
- 0th order term results of NI-RPIM with ASD gives the best stress results and less fluctuation 
values in the solutions.  
- High stress fluctuations on boundaries where essential boundary conditions are applied can 
be decreased with changing local stiffness values of corresponding nodes. 
- Support domain size (sd) can affect stress results of NI-RPIM with ASD method.  
- Changes of alfc ( cα  ) with ASD method do not have significant effect on NI-RPIM stress 
results in the regions where the essential boundary conditions are not included. Different values 
of q show similar stress distribution characteristics on NI-RPIM with ASD method. 
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Abstract 
The paper presents a study for quantitative imaging of damage in metallic plates using the 
fundamental anti-symmetric mode of (A0) Lamb wave. The study proposed a two-stage approach, 
in which the damage location is first determined in stage-one through analyzing the cross-
correlation of the excitation pulse and scattered wave signal, and the damage is then characterized 
in stage-two using the Mindlin plate theory based Lamb wave diffraction tomography. The damage 
considered in this study is an elliptical shape of plate thickness reduction, which is a simplified 
representation of corrosion damage in metallic plates. The two-stage approach is employed to 
quantitatively image the plate thickness reduction, i.e. determine the location, size and shape of the 
thickness reduction. Finite element simulation of a circular transducer network with eight 
transducers is used to demonstrate the capability of the two-stage approach in characterizing the 
damage. The results show that the two-stage approach is able to accurately identify the damage 
location and provide a reasonable estimation of the size and shape of the damage. 
Keywords: Lamb wave, diffraction tomography, scattering, imaging, damage characterization, 
structural health monitoring 

Introduction 
Structural health monitoring (SHM) is a process of monitoring the performance and evaluating the 
state of health of structures based on measurements. It can be used to ensure the safety and 
sustainability of structures and have been widely employed in different engineering fields, such as 
civil, mechanical and aerospace engineering. Lamb wave based approach has been widely 
recognized as one of the promising techniques for damage detection, and hence, to ensure the 
structural safety (Alleyne et al 2001; Veidt and Ng 2011; Ng and Veidt 2012). The advantages of 
using Lamb wave in damage detection are its high sensitive to most types of damage, efficient in 
detecting small and subsurface damage, and capable for inspecting large structure areas. In the last 
decade, different Lamb wave based methods have been developed for damage inspection. Apart 
from the essential requirement that damage inspection systems must be reliable, two highly 
desirable features are the graphic representation and quantitative damage identification.  
 
Lamb wave based tomographic approach is one of the techniques that can achieve the 
aforementioned desirable features. Early developments focused on the use of the time-of-flight 
information to reconstruct an image for damage identification (Jansen and Hutchins 1990; 
Malyarenko and Hinder 2001; Leonard and Hinders 2005; Belanger et al. 2010; Huthwaite and 
Simonetti 2013). A Mindlin plate theory based Lamb wave diffraction tomography framework was 
proposed by Wang and Rose (2003). The framework reconstructs the damage image through Born 
approximation of the Lamb wave scattering from the damage and the inversion is solved by direct 
Fourier inversion approach. Rohde et al. (2009) then demonstrated the damage imaging 
reconstruction could be achieved using eight transducers through the far-field Born approximation. 
Recently Rose and Wang (2010) proposed a filtered back-propagation algorithm to solve the 
inverse problem in the Lamb wave diffraction tomography. They demonstrated that the filtered 
back-propagation algorithm in reconstructing the damage image is more robust and computationally 
efficient. 
 
This study employs a two-stage approach to reconstruct the elliptical shape of plate thickness 
reduction in metallic plates, which demonstrates the capability of the approach in imaging the 
damage size and shape. The paper is organized as follows. The proposed two-stage approach is first 
described in the first section. The numerical verification using a three-dimensional (3D) explicit 
finite element (FE) simulation is then described and the results are discussed in detail. Finally, 
conclusions are drawn in the last section. 
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Two-stage imaging approach 
The two-stage imaging approach relies on collecting Lamb wave data through a distributed 
transducer network with N transducers. Each of these transducers can act as actuator and sensor for 
actuating and sensing the Lamb waves. In the damage detection process, the network of transducers 
is used to sequentially scan the structure before and after the presence of the damage by transmitting 
and receiving Lamb waves. In each scan, one of the transducers is used to excite the A0 Lamb wave 
and the rest of the transducers are used to measure the Lamb wave signals. In each sequential scan 
process, there are in total of N(N-1) actuator-sensor signal paths. Once the data of before and after 
the presence of the damage is collected, a baseline subtraction process is then used to extract the 
scattered wave signals (Ng and Veidt 2011) 
   (1) 
where  and  are the signals measured before and after the presence of the damage.  is the 
scattered signal extracted using the baseline subtraction process. The scattered signals are then used 
in the two-stage approach to reconstruct the damage.  
 
In the stage-one, the targeted inspection area is discretized into a set of image pixels located at (x,y). 
Considering two of the transducers in the transducer network as an example, the intensity of the 
image pixel ( ) at (x,y) contributed by the actuator/sensor signal path a-b (two of the transducers 
in the network) can be calculated as (Wang et al. 2005; Ng and Veidt 2009) 

   (2) 

where ( ) and ( ) is the location of transducer a and b, respectively. ( )  is the location 
of image pixel.  is the group velocity of the fundamental asymmetric mode of Lamb wave.  is 
the cross-correlation between the incident pulse generated by transducer a and the scattered wave 
signal measured by transducer b. In this study the wavelet coefficient calculated using the 
continuous Gabor wavelet transform (Kishimoto et al. 1995; Ng et al. 2009) is used in the cross-
correlation to provide a reliable extraction of the scattered wave signal components at the excitation 
frequency. Once the image of each actuator-sensor signal path is reconstructed using Eq. (2), the 
image indicating the estimated damage location can then be reconstructed by superimposing the 
power flux of all images as 

   (3) 

where  is a weighting factor used to account for varying sensitivities of individual transducer 
and is equal to unity for uniform aperture weighting. 
 
After the damage location is estimated in stage-one, the Mindlin plate theory based Lamb wave 
diffraction tomography is then employed to reconstruct the size and shape of the plate thickness 
reduction in stage-two. It is assumed that the damage is a weak inhomogeneity with a finite region 

. The scattered flexural wave can be represented as follow using the Born approximation (Wang 
and Chang 2005) 

   (4) 

where  is the excitation frequency of the incident wave.  is the flexural 
stiffness of the plate, where ,  and  are the Young’s modulus, thickness and Poisson’s ratio, 
respectively.  and  are the effective shear modulus and the density of the plate material. 

 is the through-thickness area moment.  is the shear correction factor for 
accurate representation of the low frequency behavior. , for  , are parameter 
perturbations and have non-zero value for  but vanish for .  is a position vector and  
is an arbitrary point within the region .  and  are the plate-normal displacement and rotary 
deflections. is the plate-theory strain. The comma indicates the differentiation between 
subscripts [ , ] = 1,2.  is the dynamic Green’s functions solution for wave 
scattering (Rose and Wang 2004; Ng et al. 2012). The scattered waves can be simplified using the 
far-field asymptotic expression of the Hankel function as 
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   (5) 

where .  and  are the angle of the incident and scattered waves, 
respectively.  and  denote the incident and scattered 
wave vector.  is the wavenumber evaluated using Mindlin plate theory.  for  are 
defined as 

   (6) 

   (7) 

   (8) 

   (9) 

where  is the wavenumber of the second possible wave mode in Mindlin plate theory. 
.  is the two-dimensional Fourier transform of the perturbation functions 

and is defined as 
   (10) 

In this study the focus is on the reduction of the plate thickness due to corrosion in metallic plate, 
and hence,  is used in the image reconstruction. Once the  is 
calculated, the perturbation function  can be obtained by carrying out the two-dimensional 
inverse Fourier transform as  

   (11) 

where . The obtained perturbation function can 
then provide a quantitative imaging of the damage. 

Numerical case studies 
A 300×300×6mm3 steel plate was modeled using 3D explicit FE simulation. The commercial FE 
software LS-DYNA was used in this study to carry out the FE simulation. The material properties 
of the steel are = 203GPa, = 0.29 and = 7800 kg/m3. The steel plate was modeled using eight-
noded 3D reduced integration solid brick elements with hourglass control. It is assumed that a 
50mm radius circular transducer network was installed on the steel plate as shown in Fig. 1. The 
transducer network has eight piezoceramic transducers ( ) with 5mm diameter. The excitations 
generated by the transducers were modeled through applying the out-of-plane displacement to the 
surface nodal point covered by the piezoceramic transducers. The excitation signal is a 200kHz 
narrow band six-cycle sinusoidal tone burst pulse modulated by a Hanning window. In this study 
the A0 Lamb wave was excited and the wavelength was 11.99mm. The solid brick elements had in-
plane square shape with dimension 0.75×0.75mm2 and the thickness was 0.375mm, and hence, the 
plate was modeled using 16 layers of solid element in the thickness direction. 
 
Three damage cases, Cases E1 – E3, were considered in this study. Case E1 considered an elliptical 
thickness reduction with major axis length  4mm and minor axis length  2mm, 
respectively. In this case the major axis is along the x-axis as shown in Fig. 1. The thickness 
reduction was generated by removing a top and bottom layer of the solid element in the elliptical 
thickness reduction area. The total percentage of thickness reduction is 12.5%. As the thickness 
reduction was symmetrical about the mid-plane of the plate, there was no mode conversion effect in 
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the scattered waves. Cases E2 and E3 consider the same elliptical thickness reduction but the major 
axis direction was rotated 45° and 90° in anti-clockwise direction, respectively. All cases 
considered the center of the elliptical thickness reduction located at the center of the circular 
transducer network. 

 
Figure 1. Transducer network and elliptical thickness reduction in the numerical case studies 

a)  b)  

c)  d)  
Figure 2. a) Reconstructed damage location image (white cross: actual damage location), b) 
reconstructed plate thickness reduction percentage image (close up view at the damage region 
(black ellipse: actual size and shape of the damage), and profile across the damage in c) x-axis 
and d) y-axis (black solid line: reconstructed thickness reduction percentage; red dashed line: 
actual thickness reduction percentage) for Case E1 
Using the stage-one of the proposed methodology, a reconstructed damage location image for Cases 
E1, E2 and E3 are shown in Figs. 2a, 3a and 4a, respectively. The while circles indicate the 
transducer locations and the white cross indicate the center of the actual thickness reduction. The 
reconstructed damage location image correctly determines the actual damage location for all three 
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cases. Figs. 2b, 3b and 4b show the reconstructed plate thickness reduction percentage image using 
stage-two of the proposed methodology, i.e. the Lamb wave diffraction tomography. In these 
figures, the actual thickness reduction size and shape are indicated by black ellipses. The images 
show that there is a good agreement between the reconstructed and actual plate thickness reduction 
size and shape. 

a)  b)  

c)  d)  
Figure 3. a) Reconstructed damage location image (white cross: actual damage location), b) 
reconstructed plate thickness reduction percentage image (close up view at the damage region 
(black ellipse: actual size and shape of the damage), and profile across the damage in c) x-axis 
and d) y-axis (black solid line: reconstructed thickness reduction percentage; red dashed line: 
actual thickness reduction percentage) for Case E2 
 

Figs. 2c, 2d, 3c, 3d, 4c and 4d show the thickness reduction percentage profile across the damage 
for Cases E1 to E3. The black solid line is the reconstructed thickness reduction percentage and the 
red dashed line is the actual thickness reduction percentage. These figures show that the 
reconstructed profiles are able to provide a reasonable estimation of the actual thickness reduction 
percentage.  

Conclusions 

This paper has presented study of employing a two-stage approach for quantitative imaging of 
damage in metallic plates. The damage type considered in this study is an elliptical thickness 
reduction. In stage-one of the approach, the location of the thickness reduction was first determined. 
The size and shape of the thickness reduction were then determined in stage-two using the Lamb 
wave diffraction tomography. Numerical cases studies have been carried out using the 3D explicit 
FE simulation. Three cases were considered in the study, which considered the same size of the 
elliptical thickness reduction but with different orientations of the major axis. The results show that 
the two-stage approach could accurately determine the damage location and provide a reasonable 
estimation of the size and shape of the thickness reduction. 
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a)  b)  

c)  d)  
Figure 4. a) Reconstructed damage location image (white cross: actual damage location), b) 
reconstructed plate thickness reduction percentage image (close up view at the damage region 
(black ellipse: actual size and shape of the damage), and profile across the damage in c) x-axis 
and d) y-axis (black solid line: reconstructed thickness reduction percentage; red dashed line: 
actual thickness reduction percentage) for Case E3 
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A Non-intrusive Polynomial Chaos For Uncertainty Quantification On 
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Abstract 
Uncertainty quantification (UQ) aims at a meaningful characterization of uncertainties in stochastic 
systems and efficient propagation of these uncertainties for quantitative validation of model 
predictions from available measurements. In this paper, UQ of flows around cylinder is studied by 
non-intrusive polynomial chaos (NIPC) method. The flow is described under the uncompressible   
Navier-Stokes equations as  

2u (u )u u

u 0

p
t

υ∂ + ⋅∇ =−∇ + ∇
∂

∇⋅ =
 

Where u ( , )u v= , and p  are the x − component of the velocity, the y − component of the velocity, 
and the scalar pressure field, respectively, with at the initial time, zero flow is assumed, the inflow 
boundary conditions for this case are given by a parabolic inflow profile, modulated by a sine 
function depending on time as 

2( , , ) 0.41 sin 6( 0.2)(0.21 ),
8

( , , ) 0,

u x y t t y y

v x y t

π⎛ ⎞⎟⎜= + −⎟⎜ ⎟⎟⎜⎝ ⎠
=

 

no slip boundary conditions are imposed on the cylinder and cannel walls; at the outflow, a zero 
pressure is assumed and nature boundary conditions for velocity. We here assume that the inflow x-
component of velocity u  and viscosity coefficient υ  are random parameters. By the initial velocity 
of inflow, we let its simulating terminated time be 8T = . In this study we assume that their PDF are 
uniform distribution. So their bases of polynomial chaos are Legendre polynomials. 
Based on the validation with benchmark results, discussions are mainly focused on the statistic 
properties of horizontal and vertical components of the total force on the cylinder. The influence of 
random variables on flow parameters decreases with increasing of viscosity coefficient. The results 
indicate the effect of NIPC method on the simulation of propagation of uncertainty in the flow field. 
Keywords: Non-intrusive Polynomial Chaos, Uncertainty Quantification, Flows around Cylinder, 
Numerical Simulation.  
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Appendix: 
The spatial domain for this problem is shown in Fig. 1. In the simulation of Fig. 2.-4., the mean 
value of viscosity coefficient is 103; its standard deviation is 10% of the mean value. In the 
simulation of Fig. 5.-7., the mean value of velocity u  is the boundary condition of inflow; its 
standard deviation is also 10% of the mean value. 

 
Fig. 1. The spatial domain of the flow around cylinder 

Fig. 2. Vertical components of the total force on the cylinder with mean value 103 of υ  
(Left: mean values; Right: standard deviations) 

Fig. 3.  Horizontal components of the total force on the cylinder with mean value 103 of υ  
(Left: mean values; Right: standard deviations) 
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Fig. 4. The drop in pressure between the leading point of the cylinder and  
trailing point with mean value 103 of υ  

(Left: mean values; Right: standard deviations) 
 

Fig. 5. Vertical components of the total force on the cylinder with random parameter u  
(Left: mean values; Right: standard deviations) 

Fig. 6.  Horizontal components of the total force on the cylinder with random parameter u  
(Left: mean values; Right: standard deviations) 
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Fig. 7. The drop in pressure between the leading point of the cylinder and  
trailing point with random parameter u  

(Left: mean values; Right: standard deviations) 
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Abstract 
A multi-resolution MPS (Moving Particle Semi-implicit) method is applied into 2D free surface 
flows based on our in-house particle solver MLParticle-SJTU in the present work. The basic idea of 
the present MPS method is to distribute high-resolution particles in the local concern region and 
low-resolution particles in the other region, such that both the number of particles and the 
computational cost can be reduced without sacrificing the corresponding accuracy. Considering the 
effect of different size particles, the kernel function is modified for gradient and Laplacian models 
and the incompressible condition between different size particles is enforcing by increasing the 
weight of divergence of velocity in the mixed source term of PPE (Poisson Pressure Equation). In 
order to validate the present MPS method, two cases are carried out. Firstly, a hydrostatic case is 
performed. The results show that the contour of pressure field by multi-resolution MPS is quite 
agreement with that by single resolution MPS. Especially, the multi-resolution MPS can still 
provide a relative smooth pressure together with single resolution MPS in the vicinity of the 
interface between the high-resolution and low-resolution particles. For a long time simulation, the 
kinetic energy of particles by multi-resolution MPS can decrease quickly to the same level as that of 
single resolution MPS. In addition, a 2D dam breaking flow is simulated and the multi-resolution 
case can run stably during the whole simulation. The pressure by the multi-resolution MPS is in 
agreement with experimental data together with single resolution MPS. The contour of pressure 
field by the former is also similar to that by the later. In addition, the simulation by multi-resolution 
MPS is as accurate as the traditional MPS with fine particles distributed in the whole domain and 
the corresponding CPU time can be reduced.  
Keywords: Multi-resolution method, MPS (Moving Particle Semi-Implicit), dam breaking, free 
surface flows 

Introduction 

In recent years, meshfree particle methods have been developed widely and applied successfully 
into practical engineering. Unlike the mesh-based method, the fluid is presented as a set of 
Lagrangian particles in the meshfree method and there is no constant topology relationship between 
these particles. Thanks to the Lagrangian nature, the particle method is very suitable to deal with 
flow with largely deformed free surface and moving boundaries [Liu (2008); Khayyer (2008); 
Tanaka (2010)]. MPS (Moving Particle Semi-implicit) is one of such meshfree methods, which is 
first proposed by Koshizuka [(1996; 1998)] and then improved by numerous MPS practitioners 
[Tanaka and Masunaga (2010); Khayyer and Gotoh (2012); Kondo and Koshizuka (2011); Zhang 
and Wan (2012a)]. Up to now, this method has been applied into a wide variety of violent free 
surface flows, such as liquid sloshing [Zhang and Wan (2012b; 2014)], dam breaking [Khayyer and 
Gotoh (2012); Shakibaeinia and Jin (2011)], wave breaking [Gotoh and Sakai (2006); Khayyer and 
Gotoh (2008); Tang et al. (2014)], green water [Zhang et al. (2013)] and ship-wave interaction 
[Shibata et al. (2012)]. Despite being an excellent method for solving the largely deformed free 
surface problems, it still suffers from high computational cost. Especially when applied into 3D 
simulations, a great number of particles are necessary and the required CPU time can increase 
sharply. To overcome this problem, multi-resolution simulation are introduced to accelerate the 
computation. In the framework of SPH, Vacondio et al. [(2012; 2013)] presented a dynamic particle 
refine algorithm based on particle merging and coalescing during the simulation. Omidvar et al. 
[(2013)] studied the wave body interaction using variable particle mass distribution. Most of these 
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works are carried out based on explicit algorithm. Unlike the SPH, the pressure field is obtained 
based on semi-implicit algorithm in the MPS method. The consuming time per one time level in the 
later method is much more than that in the former. Many MPS practitioners attempt to introduce the 
multi-resolution simulation in the MPS. Shibata et al. [(2012)] proposed an overlapping particle 
technique (OPT) and applied it into a 2D green water. Tanaka [(2009)] presented a multi-resolution 
method based on traditional MPS. Unfortunately, validation is not given in the article. 
 
In the present work, the multi-resolution technique is applied into 2D free surface flows based on 
modified MPS [Zhang and Wan (2012a); Zhang et al. (2014)]. Considering the effect of different 
size particles, the kernel function is modified for gradient and Laplacian models. The 
incompressible condition between different size particles is enforcing by increasing the weight of 
divergence of velocity in mixed source term of PPE. In order to validate the present MPS method, 
two cases are carried out. Firstly, a hydrostatic case is performed. The pressure field and the kinetic 
energy for fluid particles by multi-resolution MPS are compared with that by single resolution MPS 
with fine particle distributed in the entire domain. In addition, a 2D dam breaking flow is simulated 
and the multi-resolution case can run stably during the whole simulation. The comparison among 
the pressure by single resolution MPS and multi-resolution MPS and experimental data is also made. 

NUMERICAL SCHEME 

Governing Equations 

In the MPS method, governing equations are the mass and momentum conservation equations. They 
can read as: 
 

1
0

D

Dt

ρ

ρ
= −∇ ⋅V =                                                                     (1) 

21D
P

Dt
ν

ρ
= − ∇ + ∇ +

V
V g                                                                  (2) 

 
Where: ρ  is the fluid density, V  is the velocity vector, P  presents the pressure, ν  is the kinematic 
viscosity, and g  is gravitational acceleration vector, t  indicates the time. It is noted that Eq. (1) is 
only available for incompressible fluid. 

Particle Interaction Models 

Kernel Function 
In the original MPS method, the kernel function (Eq. (3)) first proposed by Koshizuka [(1998)] is 
usually employed by MPS researchers. However, it has a drawback due to its singular at 0r = . 
Conversely, we adopt an improved kernel function introduced by Zhang [(2012a)]: 
 

 1         0
( )

 0                                   

e

e

e

r
r r

W r r

r r

−                     ≤ <
=

  ≤





                                               (3) 

 

 1         0
0.85 0.15( )

 0                                   

e

e

e

e

r
r r

r rW r

r r

− ≤ <
+=

  ≤






                                              (4) 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

450



 
 

 
Where 

e
r  denotes the radius of the particle interaction. According to Koshizuka's suggestion, the 

radius adopted in particle number density and the gradient model is 
0

2.1
e

r l= , while 
0

4.01
e

r l=  is used 
for the Laplacian model, where 

0
l  is the initial distance between two adjacent particles.   

 
Gradient Model 
 
In MPS, the gradient operator is discretized as weighted average of the gradient vector between 
particles i  and its neighboring particle j , it can be given as: 
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Eq. (5) cannot conserve the linear and angular momentum of the system, and a conservative form is 
introduced as following [Tanaka and Masunaga (2010)]: 
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Where 0n  is the initial particle number density, d  indicates the number of space dimensions, r  
presents the coordinate vector of fluid particle. 
 
Divergence Model 
 
Similar to gradient model, the divergence model for vector V  can be formulated as [Shakibaeinia 
and Jin  (2012)]: 
 

( ) ( )
0 2

d
(| |)

| |n ≠

− ⋅ −
< ∇ ⋅ > = −

−
  j i j i

i j i

j i j i

V V r r
V W r r

r r
                                      (7) 

 
Laplacian Model 
 
The Laplacian operator is modeled by weighted average of the distribution of a quantity φ  from 
particle i  to its neighboring particle j , it can read as the following equations: 
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Where, the parameter λ  is introduced to keep the variance increase equal to the analytical solution. 
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Model of Incompressibility 

In the MPS method, the incompressibility is assured by keeping the particle number density 
constant. There are two stages in each time step when incompressible condition is enforced: firstly, 
temporal velocity of particles is calculated explicitly under the action of viscous and gravitational 
forces, and particles move to intermediate location; secondly, pressure fields are obtained implicitly 
through solving the Poisson Pressure Equation (PPE), and the velocity and position of particles are 
updated based on the obtained pressure.  
 
The Poisson Pressure Equation in MPS method is first derived by Koshizuka [(1998)] as following: 
 

* 0
2 1

2 0
k i

i

n n
P

t n
ρ+ < > −

< ∇ > =
Δ

                                                    (10) 

 
Where *n  is the intermediate particle number density, tΔ  denotes the calculation time step. 
 
Eq. (10) is commonly employed by many MPS practitioners. However, the source term of the PPE 
only consists of the deviation of the temporal particle number density from the initial value, and this 
may lead to high oscillation pressure field in spatial and temporal domain because of unsmooth 
particle number density. To stabilize the pressure calculation, a mixed source term method 
combining the velocity divergence-free and constant particle number density is investigated by 
Tanaka et al. [(2010)] and rewritten by Lee et al. [(2011)] as: 
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Where the subscript k  and k +1 indicate the physical quantity in the k th and k +1 th time step, γ  is 
the weight of the particle number density in the source term and is assigned a value between 0 and 1. 
In this paper, γ = 0.01 is selected. 
 

Detection of Free Surface Particles 

In the original MPS method, zero pressure boundary condition are enforced to the free surface 
particles. Free surface particles are recognized as the particle number density satisfying the 
following condition [Koshizuka (1998)]: 
 

* 0
in nβ< ⋅                                                                  (12) 

 
Where 0n  is the initial particle number density, and β  indicates a threshold parameter and can be 
chosen between 0.8 and 0.99. However, misjudgment may occur for inner particles with small 
particle number density, and imposed unphysical false zero pressure may increase the oscillation 
frequency and amplitude of pressure field. To overcome this, some approaches have been 
developed to improve the accuracy of surface particle detection. Tanaka et al. [(2010)] judged the 
surface particle by using number of neighbor particles. This approach is further improved by Lee et 
al. [(2011)]. Khayyer et al. [(2009)] proposed a new criteria based on asymmetry of neighboring 
particles in which particles are judged as surface particles according to the summation of x-
coordinate or y-coordinate of particle distance. In the present study, we employ a detection method 
[Zhang and wan (2012b)] which is also based on the asymmetry arrangement of neighboring 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

452



 
 

particles, but uses different equations, aiming at describing the asymmetry more accurately, as 
following: 
 

( ) ( )0
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F r r
r r

                                                     (13) 

 
F is a vector with a large value near the free surface where the neighboring particles distribute 
largely asymmetry. In F function, the nearer neighboring particles have larger contribution, while 
further neighboring particles have smaller effect. This make F function not sensitive to the 
neighboring particles locating near the boundary of interaction domain.  
 
If the absolute of the function F  at particle i  is more than a threshold α , then particle i  is 
considered as free surface particle. Where α  is assigned to 00.9 F , 0F  is the initial value of F  for 
surface particle. 

Modified Gradient and Laplacian Model 

In the single resolution MPS, the interaction radius for each particle is the same as its neighbor 
particles. However, this condition cannot be ensured since both low-resolution particles with larger 
interaction radius and high-resolution particles with smaller interaction radius are distributed in the 
computational domain. This may lead to situations where two interaction particles i  and j  with 
different interaction radiuses. In the other words, the influence domain of particle i  contains 
particles j  but not vice versa. When calculating the force between particle i  and its neighbor 
particle j , a violation of Newton’s third law may occur. In the present work, the supported domain 
for two neighbor particles i  and j  is modified using the arithmetic mean. In particular, the cut-off 
radiuses for gradient and Laplacian models are presented as following respectively: 
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Define L  is the particle diameter, the modification for gradient [Tanaka (2009)] and Laplacian 
models can be expressed as following: 
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TEST CASES 

The hydrostatic case 

In this section, the hydrostatic problem is carried out by the employment of the single resolution 
and multi-resolution MPS. A schematic view of the computational domain for this test is shown in 
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Fig. 1, where both the width of the water tank and the height of fluid are H = 1.0 m. The 
computational parameters are summarized in Table 1. In case A1, the entire computational domain 
is discretized by high resolution particles and the corresponding initial particle space is d = 0.01 m. 
In case A2, two kinds of particle size are employed where the yellow and blue regions are presented 
by high resolution (H/d=100) and low resolution (H/d=50) particles respectively. The height of the 
high resolution region in Case A2 is 0.4 m as the yellow region in Fig. 1. Specially note that the fact 
fluid height in Case A1 and A2 are 1.0 m and 0.995 m respectively. 
 
Fig. 2 shows the pressure field after a long time evolution of the hydrostatic test. The contour of 
pressure field in the fine region by multi-resolution MPS is quite similar to that by single resolution 
MPS with fine particles. Furthermore, in the vicinity of the interface between the high and low 
resolution particles, a relative smooth pressure field can also be predicted by multi-resolution MPS.  
 
Fig. 3 shows the comparison between the kinetic energy predicted by multi-resolution MPS and 
single resolution MPS, where the entire domain is represented by fine particles in the later, while 
the fine particles are only distributed in the yellow region in the former. In Fig. 3, the kinetic energy 
by multi-resolution MPS quickly decreases to the same level as that by single resolution MPS. This 
means that the disturbance produced in the interface between different particle sizes is not large, 
and can be reduced quickly as the initial disturbance in the uniform particle size simulation in this 
case. 
 

     
Figure 1. A schematic sketch of the computational domain for hydrostatic problem 

 

           

 
 (a) Single resolution                             (b) Multi resolution 
Figure 2. The pressure field predicted in Case A1 and A2 
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Table 1. Computational parameters in the simulations 

Cases Initial particle space 
(H/d) Description 

A1 100 Single resolution 
A2 50，100 Multi resolution 

 

 
Figure 3. The comparison between the kinetic energy predicted by single resolution and 

multi-resolution MPS 
 

 
Figure 4. A schematic view of the computation domain for dam breaking 

 

 
 
 
 
 
 
 
 

Figure 5. Initial particle mass distribution for 2D dam breaking problem 
 

Dam Break Flow 

Dam breaking is commonly computed as benchmark case for validation of CFD method in violent 
flows. In this paper, a dam break is simulated to verify the validation and efficiency of the Multi-
resolution MPS method. A schematic view of the computational domain is shown in Fig. 4. The 
tank is 3.22 m long, 2.0 m high. Initial water column is 1.2 m long and 0.6 m high. The water is 
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initially constricted by a removable door which is picked up suddenly at 0t =  s. A wave height 
probe is placed at 2.725 m from the left boundary and two pressure probes are placed on the right 
wall. The initial particle mass distribution for multi-resolution simulation is depicted in Fig. 5, 
where three kinds of particle size are selected, including H/d=30, 60, 120, and corresponding 
masses are 0.4, 0.1 and 0.025 respectively. 
 

 
Figure 6. Propagation of the surge front after dam gate removal compared to literature data 

 

          

 
(a) Single resolution                                      (b) Multi-resolution 

Figure 7. Comparisons of dam-break flows using Single resolution and Multi-resolution MPS 
at gt H =1.45 

 

          

 
(a) Single resolution                                        (b) Multi-resolution 

Figure 8. Comparisons of dam-break flows using Single resolution and Multi-resolution MPS 
at gt H =5.7 

 
The wave front propagation along the downstream horizontal dry bed after the dam door release are 
shown in Fig. 6. The multi-resolution result is quite agreement with that of single resolution MPS 
and is also quite similar to that of SPH [Ferrari et al. (2009)] and BEM [Colagrossi and Landrini 
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(2003)]. However, the speed of the leading edge by these numerical results is quick than that of the 
experiment. Similar results can also be reported in literatures [Koshizuka and Oka (1996); Rogers et 
al. (2010); Abdolmaleki (2004)]. 
 
In Fig. 7 and Fig. 8, the pressure fields by single resolution and multi-resolution MPS are depicted 
for comparison. It can be seen that the computed pressure fields are both relative smooth throughout 
the time of flow propagation, free surface overturning and impacting the underline water. The 
contour of the pressure field by multi-resolution MPS is also similar to that by single resolution 
MPS. 
 

 
Figure 9. Time variations of dimensionless pressure at the bottom of the probe P1 

 
The detailed comparisons of time variations of pressure results at the bottom of the probe P1 are 
shown in Fig. 9, it can be seen that the overall tendency of pressure variation by both the single 
resolution and multi-resolution MPS is quite in agreement with experimental data except a clear 
discrepancy between the position of second pressure peak by the numerical results and experimental 
data, which is also reported by many researchers employing the single phase model [Marrone et al. 
(2011); Khayyer et al. (2009)]. However, the pressure variation by multi-resolution MPS is quite 
close to that of single resolution MPS, including the first impact time and the position of the second 
pressure peak.  
 

 
Figure 10. The number of particles and required CPU time for flowing 3 seconds 

 
Fig. 10 shows the total number of particles and required CPU time for flowing 3s by conventional 
single resolution MPS and multi-resolution MPS. Both of these two cases are carried out on 
personal computer with Intel i7-3770.  From the Fig. 10, the number of particles by multi-resolution 
MPS is nearly half of that by single resolution MPS, while the consuming CPU time in the later is 
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about two times and a half than that in the former. As presented by Koshizuka [(1988)], the 
consuming time for solving PPE is proportional to 1.5 0.5N M , where N  is the number of particles and 
M  presents the average number of neighboring particles. The number of particles in multi-
resolution MPS is less than that in single resolution MPS, which means that multi-resolution MPS 
can reduce the number of particles and further decrease the required CPU time. Therefore, the 
multi-resolution method can be an alternative way to reduce the required computational time if one 
only concern the local region. Furthermore, considering the pressure variation and the contour of 
pressure field between single and multi-resolution MPS, the multi-resolution MPS can reduce the 
CPU time without sacrificing the accuracy. 
 

Conclusions 

In this paper, the multi-resolution MPS method is applied into 2D free surface flows based on in-
house particle solver MLParticle-SJTU. In particular, the entire computation domain is discretized 
with both the low-resolution and high-resolution particles, where only the high-resolution particles 
are distributed in the concerned local region. Considering the effect of different size particles, the 
kernel function is modified for gradient and Laplacian models and the incompressible condition 
between different size particles is enforcing by increasing the weight of divergence of velocity in 
the mixed source term of PPE. To verify the availability and efficiency of the multi-resolution MPS, 
two cases are carried out. Firstly, a hydrostatic case is performed. The results show that the contour 
of pressure field by multi-resolution MPS is nearly the same as that of single resolution MPS. 
Especially, the multi-resolution MPS can still provide a relative smooth pressure in the vicinity of 
the interface between the high-resolution and low-resolution particles. For a long time simulation, 
the kinetic energy of particles by multi-resolution MPS can decrease quickly to the same level as 
that of single resolution MPS with fine particles distributed in the entire domain. In addition, a 2D 
dam break flow is carried out and the multi-resolution case can run stably during the whole 
simulation. Both the pressure variation at the measuring position and the contour of the pressure 
field at different times by multi-resolution MPS are quite in agreement with that of single resolution 
MPS. Considering the required CPU time of these two methods, multi-resolution MPS can reduce 
the computational time without sacrificing its accuracy.  
 
From the above mentioned, it can be seen that the multi-resolution MPS can reduce the required 
number of particles and further decrease the computational cost. When the traditional MPS is 
applied into 3D free surface flows such as ship-wave interaction, a great number of particles are 
necessary and the computational cost can increase sharply. The multi-resolution MPS can be an 
alternative method to solve this problem and relative work is ongoing. 
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Abstract 
By solving the unsteady RANS (Reynolds Averaged Navier–Stokes) equations in combination with 
the k-ω SST turbulence model, the unsteady viscous flow around a 12000TEU ship model while 
entering the Third Set of Panama Locks with different ecentricity is simulated and the 
hydrodynamic forces, vertical displacement are predicted and analyzed. Overset grid technology is 
used to maintain grid orthogonality. The effects of the free surface are taken into account. A 
benchmark test case is designed first to validate the capability of the present methods in the 
prediction of the viscous flow around the ship when maneuvering into the lock. The accumulation 
of water in front of the ship during entry into a lock is noticed, which causes the increase of the 
velocity of the return flow. A set of systematic computations with different ecentricity are then 
carried out to examine the effect of ecentricity on the ship-lock hydrodynamic interaction while 
entering the lock. With higher ecentricity, higher hydrodynamic forces and higher yawing moment 
is observed, which cause greater risk of contact of a ship with the lock infrastructure.  
Keywords: lock; 12000TEU, overset grid; ship-lock hydrodynamic interaction; ecentricity 

Introduction 
The lock approach will always be accompanied with bank effect on the hydrodynamic forces, since 
ships can have very small side margins in the lock. Besides, ships are also allowed with a very small 
under keel clearance to exploit the lock maximally and thus typically a high blockage. The high 
blockage influences the flow along the ship hull, increasing the relative speed between the ship and 
inverse flow. Furthermore, the high blockage also causes a so called piston effect, which provokes 
an accumulation of water during ship’s entry into the lock. The frictional resistance increases and 
water piles up inside the lock resulting in higher resistance. What’s more, it is very difficult to keep 
the ship maneuvering along the lock’s centerline. This obviously produces a worse situation for a 
ship approaching a lock. Overall, a ship will experience a particular hydrodynamic force caused by 
the hydrodynamic interaction with the lock, during the entering manoeuvre into a lock. This 
hydrodynamic interaction has a significant influence on the ship navigation safety. The 
investigation on the effects of eccentricity is of crucial importance for safe operation and effective 
control of ships passing through a lock. 
 
Several methods have been used to examine the feasibility to use locks for large vessels. Although 
real scale and model scale tests can be carried out, reliable simulations are necessary to examine 
infrastructure in an affordable and efficient manner. Vrijburcht (1988) used six-waves-model to 
calculate the translation waves generated by the lock entry. Vergote (2012) improved the six-waves-
model model. Chen (2010) developed a viscous frictional model to calculate dynamical ship-lock 
interaction problem. Delefortrie et al. (2008, 2009) analyzed the navigation behavior of different 
ship models in the Third Set of Panama Locks and the influences of approach wall configurations, 
eccentricities, propeller rates, approaching scenarios and under keel clearances were also discussed. 
Verwilligen and Richter (2012) investigated the entering manoeuvre of full form ships into the 
Terneuzen West Lock by means of model testing, full scale trials and real-time simulations. Wang 
et al. (2014) studied the viscous flow around a ship when entering the Pierre Vandamme Lock 
based on the CFD package Fluent, but the free surface was neglected. 
 
The objective of this study is to examine the effects of eccentricity on a 12000TEU ship model 
when entering the Third Set of Panama Locks by predict and analyze the viscous flow and 
hydrodynamic forces of the ship model maneuvering into the lock with different lateral position. At 
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first, the capability of the present method for the prediction of the viscous flow around the ship 
model is validated by the good agreement of the predicted results with the corresponding 
experimental data. Then a series of systematic computations with different lateral position are 
carried out and the predicted forces and moments, vertical displacement are analyzed to investigate 
the viscous flow around the ship and the influence of the eccentricity on the ship-lock 
hydrodynamic interaction during its entry into a lock. 
 
The computation is carried out by an in-house CFD code based on the Finite Difference Method 
(FDM). The code was proved to be competent in simulating the unsteady viscous flow around a 
ship in confined water (Meng et al. 2014). Finite Difference Method (FDM) can be used even when 
high cell aspect ratio is present and thus is very suitable to solve low speed problems. Refinement 
grid are used only in the vertical direction to ensure the grid number within an acceptable range as 
well as the accuracy of the capture of the free surface. When a ship entering into a lock, a mass of 
water will be pushed into the lock, which might causes the initial bow up and a significantly 
increased resistance. So, to make our prediction more reasonable, the effects of the free surface is 
taken into account. Besides, the overset grid technique is introduced to avoid the deterioration of the 
computational accuracy caused by the mesh distortion near the boundary layer region when the ship 
moves with large amplitude. 

Mathematical Method 

Governing Equations 
The viscous flow around the ship is assumed incompressible and the numerical problem is 
described by RANS equations coupled with the time-averaged continuity equation in non-
dimensional tensor form: 

 -1
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where ( )i = u v,U w  ，  denote the Reynolds-average velocity components; ( )ix = x  y, z， represent the 
independent coordinate directions; iS  stand for a body force due, for instance, to a propeller model, 
respectively; the piezometric pressure p̂ and the effective Reynolds number effRe are: 

 2 2
abs 0p̂ = p ρU + z Fr + 2k 3   (3) 

 -1
eff tRe = 1 Re+γ   (4) 

with k the turbulence kinetic energy, absp the absolute pressure, z the local vertical elevation 
and tγ the non-dimensional turbulent viscosity obtained from a turbulence model. All the variables 
and properties are nondimensionalized by the reference velocity U, ship length Lpp and the mass 
density of the water ρ. 

Turbulence Model 
The k-ω SST turbulence model was chosen to close the RANS equations. As the k-ω SST turbulence 
model employs the k- ω model near walls and the k- ε model away from walls, it gives highly 
accurate predictions of the onset and the amount of flow separation under adverse pressure 
gradients. 
 
The turbulence kinetic energy k is computed using a blended k-ε/k-ω model (Menter, F. R. 1994). In 
this model, the eddy viscosity tν , turbulence kinetic energy k and the turbulence specific dissipation 
rate ω can be computed from: 
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where the source terms, effective Reynolds numbers, and turbulence production can be described as: 
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with β , *β , kσ , ωσ  constants and F1 the blending function, which is designed to be one in the sub-
layer and logarithmic regions of boundary layers and gradually switches to zero in the wake region 
to take advantage of the strengths of the k-ω and k-ε models in different position. The model 
constants are calculated locally as a weighted average, i.e., ( )1 1 1 2= 1F Fφ φ φ+ − where 1φ  denote the 
standard k-ω and 2φ  represent k-ε values. 

Free Surface 

We capture the location of the transient free surface using level set function φ (Osher, S., & Sethian, 
J. A., 1988; Sussman et al. 1994; Sethian and Smereka. 2003), whose value is related to the distance 
to the interface. And the value ofφ is arbitrarily set to positive in water and negative in air and the 
iso-surface =0φ represents the free surface. Since the free surface is considered a material interface, 
then it should satisfy the kinematic free surface boundary condition and can be described as: 

 0
t
φ φ∂ + ⋅ ∇ =

∂
ν   (12) 

The following conditions for the velocity and pressure should be satisfied: 

 0∇ ⋅ =v n   (13) 

 ˆ
2

zp =
Fr

  (14) 

where φ
φ

∇= −
∇

n is the unit normal vector to the free surface, pointing from water to air. 

 
To make sure that the level set function is kept a distance function after the transport step, a 
reinitialization procedure is used in which the points close to the free surface are reinitialized 
geometrically, while a transport equation is solved for all other points. 
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Simulation Design 
The problem under study is a 12000TEU container carrier moving into the Third Set of Panama 
Lock with different eccentricity. The ship is a 1/80 scale model of 12000TEU. The geometry of the 
ship model is shown in Fig. 1. A 1/80 scale model of a lock and approach channel is designed 
according to the preliminary design of the Panama Canal Third Set of Locks. The geometry and the 
principal dimensions of the lock model is shown in Fig. 2. These geometry is a benchmark on the 
ship behavior in locks, tested in Flanders Hydraulics Research in 2007-2008. Numerical results are 
compared with the experimental data by Vantorre, M. et al. (2012). 

                 
Fig.1 Geometry of the 12000TEU hull                             Fig.2 Geometry of the lock 

 
All the present work is conducted on a computer cluster which consists of 16 Intel Xeon E5520 
(2.27GHz) processors, with 8 cores and 24GB RAM per processor. Each computation is performed 
using 16 cores and costs about 144 hours of wall clock time. 

Case Conditions 
The ship model is Lpp=4.35 m long with 0.19 m draft. Table 1 gives the principal dimensions of the 
ship model. Three cases are studied numerically. Case A, with lateral position Δy = 0.0 mm, is 
designed according to the benchmark test and selected for validation. Numerical tests cases A1 and 
A2 are also carried out to study the effects of eccentricity on the hydrodynamic forces acting on the 
ship, with lateral positions: Δy = 7.5 mm and Δy = 19 mm model scale, respectively. Details of the 
case conditions are shown in table 2. Free surface is considered for all cases. 
 

Table 1 Principal dimensions of the 12000TEU model 

Item Symbol Unit Value
Length between perpendiculars ppL m 4.350 
Breadth (molded) B m 0.613
Draft (molded) D m 0.190
Blockage coefficient BC -- 0.65 
 

Table 2 Details of the case conditions 

Conditions Test No.
  A A1 A2 
water depth h m 0.228 0.228 0.228
Froude number Fr - 0.0176 0.0176 0.0176
Reynolds number Re ×105 4.392 4.392 4.392
Depth/draft ratio h/D - 1.2 1.2 1.2 
lateral position Δy mm 0.0 7.5 19 

Computational Domain, Coordinate System and Boundary Conditions 
The computational domain, which extend within -1.62≤x≤5.10, -0.0524≤z≤0.17, -0.079≤y≤
0.079 for the lock and -0.313≤y≤0.313 for the approach channel, covers the whole ship 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

464



 
 

considering the asymmetry of the flow field. A right-handed Cartesian coordinate system is located 
at the door of the lock. The longitudinal Ox-axis points to the approach channel, the Oz-axis is 
vertical and points upward, and the undisturbed free surface is taken as the plane z=0. The origin of 
the coordinates is located at the intersection of the waterline, the center plane of the lock and the 
plane of the lock door. A schematic diagram indicating the coordinate system and the computational 
domain is given in Fig. 3. The boundary conditions mimic the conditions in the FHR (Flanders 
Hydraulics Research) towing tank for later comparison of the numerical results with the 
experimental data. The computational domain is made up of three kinds of boundaries: no-slip wall 
(hull surface), far-field (z=zmax) and slip wall (all other boundaries). 

 
Fig.3 Computational domain, coordinate system and boundary conditions 

Grid Design 
For all cases, structured grids are used and overset gird technique is utilized to keep the 
orthogonality of the grid under the consideration of keeping a good computational accuracy. 
 
A sketch of the grid distribution is shown in Figs. 4-5, where the grids are coarsened for clarity. The 
grid consists of a background orthogonal grid, which mimics the towing tank, and a boundary layer 
curvilinear grid which conforms to the ship geometry where two clusters of grid points are 
concentrated around the bow and stern regions. The boundary layer grid is generated with a grid 
spacing at the hull satisfying the condition y+ <1 for all case. All the grids are refined in the vertical 
direction in -0.003≤z≤0.003, where the free surface is expected. 
 

          
Fig.4 boundary layer curvilinear grid                          Fig.5 a sketch of the grid distribution 

of the ship model 

Results of Benchmark Test Case 
Test case A, designed according to the experiment, is used to confirm the capability of present 
method in the prediction of the viscous flow around the ship model while maneuvering into the lock. 
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Comparisons between computed and experimental data is presented for the x-direction 
hydrodynamic force X, y-direction hydrodynamic force Y, the moment around the z-axis N and the 
vertical displacement of the fore and aft perpendiculars zFP and zAP. 
 
For a clear insight of the viscous flow around the ship during the maneuvering into the lock, three 
special instants, shown in Fig. 6, are defined. At time T1, the ship is still moving in the approach 
channel, while forebody of the ship has entered the lock at time T2. At time T3, the ship has entered 
the lock. 

       
Fig. 6 Definition of three certain times                  Fig. 7 Coordinate systems for hydrodynamic 

forces and moment 

Hydrodynamic Forces 
Coordinate systems for hydrodynamic forces and moment is shown in Fig. 7. Fig. 8 presents the 
comparison of the computed results and experimental data for the time history of hydrodynamic 
forces and moment, where the x axis represents the position of the bow. Notice that the x coordinate 
values change from 2.5 to -1 when the ship maneuvering from the approach channel into the lock, 
as the coordinate system, shown in Fig. 3, is located at the door of the lock and the longitudinal Ox-
axis is pointing to the approach channel. The predicted results show good agreement with measured 
data and exhibits consistent oscillation compared with the experimental data. 
 

 
(a) X                                            (b) Y                                             (c) N                          

Fig. 8 Time history of the hydrodynamic forces and moment 
 
Taking longitudinal force X as an example, during maneuverer the ship into the lock, it goes 
through three stages. In the first stage, the hydrodynamic force X is very small with insignificant 
oscillation when the ship maneuvers in the approach channel. This is caused by the extremely low 
ship speed. Then, a soaring increase of the hydrodynamic force X is noticed during the ship 
maneuvering into the lock. During the entry into the lock, an accumulation of water is provoked in 
front of the ship because of the piston effect. This induces the increase of the bow pressure and the 
decrease of the stern pressure, which causes a dramatically increase of the viscous pressure 
resistance. Also, an increased friction resistance will occur because of the higher velocities of the 
return flow. Accordingly, the longitudinal force X increases. At the least stage, once the ship has 
entered the lock, a significant decrease of the resistance force can be noticed. When the ship has 
entered the lock, water is evacuated out of the lock. As a result, the pressure difference between the 
fore and aft part of the ship decreases, reducing the oscillations. The hydrodynamic force Y and the 
moment N also shows the same tendency. Bank effect develops in case of an eccentric approach 
until the ship has entered the lock. The asymmetric flow around the ship induced by the vicinity of 
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banks causes pressure differences between port and starboard sides. The velocity will increase 
alongside the nearest bank, causing a pressure decrease. As a result, a lateral force will act on the 
ship, directed towards the closest bank, as well as a yawing moment pushing the ship bow towards 
the center of the waterway. Once the ship has entered the lock, the asymmetric flow disappears and 
the lateral force, as well as the yawing moment falls to zero. This is confirmed by the results shown 
in Figs. 8b and 8c. 

Vertical Displacements 
Piston effect, which provokes an accumulation of water during entry into a lock, causes the increase 
of the return flow velocity and a sinkage of the water level in the vicinity of the ship, which induces 
a general sinkage of the ship. The return flow of the ship causes a pressure drop around the ship, 
according to the Bernoulli principle. As a result, the ship also moves vertically downward. 
Generally, the pressure drop will not be distributed equally over the ship, causing a trim. 
 
The mean sinkage σ and trim τ were determined from the calculated sinkage force Z and trim 
moment M using the formulae (positive sinkage upwards and positive trim bow-up): 

 wσ = Z ρgA   (15) 

 wτ = M ρgI   (16) 

where Aw denotes the water plane area and Iw represents the longitudinal moment of inertia of the 
water plane area about the center of floatation. The vertical displacement of the fore and aft 
perpendiculars zFP and zAP can be computed by: 

 zFP + zAP = 2σ   (17) 

 PPzFP - zAP = L τ   (18) 

Fig. 9 reports the vertical displacement of the fore and aft perpendiculars. Reasonable 
correspondence between the computational and experimental data can be noted.  
 

                    
(a) Time history of zFP                                       (b)  Time history of zAP 

Fig. 9 Time history of zFP and zAP 
 
Three stages in the development of zFP are shown in Fig. 9a. Firstly, negatively zFP, which is 
caused by the shallow water effect, with insignificant oscillation is noticed when the ship 
maneuvers in the approach channel. This is caused by the low speed. Then, an initial rising of the 
bow, which might be caused by the accumulation of water in front of the ship, can be noticed when 
the ship entering the lock. Thirdly, once more than half of the vessel is inside of the lock, the 
sinkage oscillation of zFP decreased. This is induced by the evacuation of the water in the lock. 
When the ship has entered the lock, the sinkage of the bow disappears. Fig. 9b manifest that the 
vertical displacement of the aft perpendiculars zAP is increasing as the ship entering the lock. This 
might be caused by the continuous declination of the surface pressure of the aft-body of the ship. 
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The increasing of the relative speed between ship and return flow, as well as the sinkage of water 
level around the stern induce the decrease of the surface pressure of the aft-body of the ship, so that 
the aft perpendiculars moves vertically downward. 
 
The results of hydrodynamic forces and moments, as well as the vertical displacements show good 
agreement with the experimental data, which demonstrates that FDM method can accurately 
simulate the viscous flow around the ship with relatively small amounts grids. The results also 
indicate that the currently used numerical methods are suitable for studying the viscous flow around 
the ship during the entering manoeuvre into a lock with different eccentricity, which is presented in 
the next section. 

Results of Systematic Computations 
The effect of eccentricity on the characteristic of the viscous flow around the ship, during the 
entering manoeuvre of a ship into a lock is significant. In order to give a clear insight into the ship 
behavior when entry the lock with different eccentricity, case A1 and case A2 were carried out. The 
details of the test conditions for the systematic study was given in table 2. 

Hydrodynamic Forces 
Fig. 10 presents the hydrodynamic forces and moment of the 12000TEU ship model when entry 
into the lock with different lateral position. All the results show that the eccentricity increases do 
not alter the general pattern of the forces and moment, but just cause higher extreme values. The 
results declare that more pronounced prevention of water in the lock from evacuate out can be 
noticed with increasing eccentricity. So, more water in the lock might be accumulated in the lock, 
which causes higher velocities of the return flow. Accordingly, the longitudinal force X increases. 
Furthermore, the flow around the ship will be more asymmetric with higher eccentricity. As the 
ships are allowed with very small side margins in the lock, higher eccentricity represents higher risk 
of collision of ship and side walls. So, protection measures, such as fenders, are suggested. 
 

  
(a) X                                             (b) Y                                             (c) N                          

Fig. 10 Time history of the hydrodynamic forces and moment for different eccentricity cases 

Vertical Displacements 
The vertical displacement of the fore and aft perpendiculars zFP and zAP for different lateral 
position are computed and presented in Fig. 11. Both of zFP and zAP increase with increasing 
eccentricity. This causes higher risk of bottom touch. Due to the high blockage of the lock, 
especially the shallow water effect, the increase of the risk of bottom touch are noteworthy. 
According to the results, moving along the lock’s centerline is the safest way when maneuvering 
into a lock. 

Surface pressure distribution 
Fig. 12 presents the computed results of the surface pressure at time T3 for different eccentricity 
cases. Firstly, higher surface pressure around fore-body than that around aft-body is shown in all 
cases. This is causes by the higher water level elevation in the vicinity of the fore-body. Secondly, 
the results also manifest that the surface pressure, as well as the asymmetry of the surface pressure 
increases with increasing eccentricity. The difference of surface pressure between port and 
starboard sides is mainly concentrated in the aft-body of the hull and the surface pressure on the 
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starboard side is larger than that on the port side. As a result, a negative yaw moment will turn the 
hull toward the starboard-side. 
 

              
(a) Time history of zFP                                       (b)  Time history of zAP 

Fig. 11 Time history of zFP and zAP for different eccentricity cases 
 

 
 

 
 

 

 
 

a Δy =0.00 mm 
 

 
 

 
 

 
 

b Δy =7.50 mm 
 

 
 

 
 

 
 

c Δy =19.0 mm 

 
Fig. 12 Pressure (port side view, starboard side view and top view) against different ship 

speed at time T3 
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Conclusions 

Effects of eccentricity on the hydrodynamics of a ship while entering a lock were investigated and 
reported in this paper. The capability of the present method for the prediction of the viscous flow 
around the ship model when entering the lock is confirmed by the good agreement of the predicted 
results with the corresponding experimental data. The hydrodynamic forces, vertical displacements 
were presented and discussed. A significant effect of high blockage on the hydrodynamic forces and 
moment, as well as ship sinkage was noticed. Furthermore, FDM method is especially suitable for 
solving low speed headache with remarkable free surface effects. 
 
A systematic investigations were then made to examine the effects of the eccentricity on the 
hydrodynamics on the ship when it enter a lock. According to the results, several interesting 
observations can be made: 
1. Hydrodynamic forces moment, as well as the sinkage of the ship are sensitive to the 

eccentricity. 
2. Hydrodynamic forces and moment, as well as the sinkage of the ship, increase with increasing 

eccentricity. This causes the increases of the difficulty to manoeuvre a ship into a lock, safely. 
3. When the eccentricity increases, an increase of the risk of side collision is observed. 
4. When entering a lock, moving along the lock’s centerline and protection measures is suggested. 
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Abstract
Orthogonal Frequency division multiplexing is a popular method for high data rate 
applications and is corrupted by impulsive noise. Methods must be investigated to mitigate 
this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based 
adaptive impulsive noise suppressor ofdm communication is proposed. It gives the better 
tracking due to its state space model-dependent recursive parameters. The proposed method 
came out to be very effective in noise cancellation of OFDM signal without requiring 
reference noise source. The fastest convergence and better tracking characteristics of 
proposed scheme demonstrated by the simulation results in mean square error (MSE) sense 
proved to be the effective solution for the impulsive noise cancellation in OFDM signal.

Keywords: Impulsive Noise, OFDM, cyclic prefix, NLMS, RLS, SSRLS, MSE

Introduction
Orthogonal Frequency Division Multiplexing (OFDM), with their ability to mitigate the 
effects of multipath, makes them most suitable for the transmission over high data rate in 
wireless communications [Ghorpade et al (2013); Krishnamoorthy et al (2013)]. Therefore 
numeric wireless standards of audio/video broadcasting fourth generation mobile systems 
particularly WIMAX and LTE have been used in OFDM systems over the past decade [Zhou 
and Xie (2007)]. Orthogonal Frequency division multiplexing is suspected to have impulsive 
noise, which completely destroys the information. Practically, impulsive noise is a non-
Gaussian noise generated by human activities and has more catastrophic effects in 
communication systems[Torio (2011)]. Nowadays active area of research is to inspect the 
impulsive noise behavior and suggest solutions to improve the performance of systems by 
suppressing it. For noise cancellation, various techniques are reported in literature which 
attempt to recover the original transmitted signal by [Jimaa et al (2012); Araji (2011)].

[Mathew and Murukan (2014)] carried out the comparative bit error rate analysis of adaptive 
notch and Least Mean Square algorithm to suppress the Periodic impulsive noise from 
OFDM based power line communication systems. An adaptive receiver technique based on 
NLMS, RLS, VSNLMS filters are used to remove impulsive noise from the MIMO-OFDM 
system by [Hakam et al, (2012)].An impulsive noise canceller of sinusoidal and ECG signal 
based on SSRLS filter in time domain has been proposed by [Mirza et al (2015)] . In addition 
comparison of SSRLS with RLS and NLMS adaptive algorithm was carried out. Motivated 
by the results obtained by [Mirza et al (2015)] an impulsive noise suppressor for OFDM
system is designed and implemented in this paper.
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This paper is organized as: Section II briefly explain the basic mechanism of OFDM, Section 
III gives the review of different adaptive filters which is followed by comparative analysis 
supported with the simulation results in section
paper and is then followed by the references.

OFDM

Orthogonal Frequency Division Multiplexing is a multicarrier modulation in which 
transmission over a dispersive channel is carried out .In OFDM the high data rate
splitted into low data rate streams in parallel and modulated separately on different 
orthogonal sub-carriers. The introduction of pilot insertion and cyclic redundancy at the 
transmitter reduces the complexity to only Fast Fourier Transform F
receiver side.

Figure 1

These subcarriers are multiplexed and passed through the channel, which is responsible for 
adding impulsive noise and white Gaussian noise in the transmitted OFDM signal. At 
receiver side, the signal is demodulated and passed through the adaptive filter block for 
impulsive noise reduction in the OFDM signal. The parameters used in simulating the OFDM 
system are tabularized below.

Table 1: Parameter set for simulation of O

Parameters
Modulation technique
Number of subcarriers
Size of cyclic prefix
FFT-length
Number of bits 
generated

This paper is organized as: Section II briefly explain the basic mechanism of OFDM, Section 
III gives the review of different adaptive filters which is followed by comparative analysis 
supported with the simulation results in section-IV. In the end, section V then concludes the 
paper and is then followed by the references.

Orthogonal Frequency Division Multiplexing is a multicarrier modulation in which 
transmission over a dispersive channel is carried out .In OFDM the high data rate
splitted into low data rate streams in parallel and modulated separately on different 

carriers. The introduction of pilot insertion and cyclic redundancy at the 
transmitter reduces the complexity to only Fast Fourier Transform FFT processing on the 

1. Block Diagram of OFDM system

These subcarriers are multiplexed and passed through the channel, which is responsible for 
adding impulsive noise and white Gaussian noise in the transmitted OFDM signal. At 
receiver side, the signal is demodulated and passed through the adaptive filter block for 
impulsive noise reduction in the OFDM signal. The parameters used in simulating the OFDM 

Table 1: Parameter set for simulation of OFDM system

Values
Modulation technique QPSK
Number of subcarriers 52
Size of cyclic prefix 16

length 64
Number of bits 52000

This paper is organized as: Section II briefly explain the basic mechanism of OFDM, Section 
III gives the review of different adaptive filters which is followed by comparative analysis 

In the end, section V then concludes the 

Orthogonal Frequency Division Multiplexing is a multicarrier modulation in which 
transmission over a dispersive channel is carried out .In OFDM the high data rate streams are 
splitted into low data rate streams in parallel and modulated separately on different 

carriers. The introduction of pilot insertion and cyclic redundancy at the 
FT processing on the 

These subcarriers are multiplexed and passed through the channel, which is responsible for 
adding impulsive noise and white Gaussian noise in the transmitted OFDM signal. At the 
receiver side, the signal is demodulated and passed through the adaptive filter block for 
impulsive noise reduction in the OFDM signal. The parameters used in simulating the OFDM 
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Adaptive Algorithms

There are many adaptive algorithms used for noise removal. The brief summaries of adaptive 
algorithms which are used in this research are as follow. 

RLS Algorithm

The Gauss Recursive least squares (RLS) adaptive filter is the one in which autocorrelation 
matrix estimation is used to de-correlate the current input data. It recursively finds the filter 
coefficients that is then used to minimize a weighted linear least squares cost function
relating to the deterministic input signals. Also, The RLS exhibits extremely fast convergence 
over all variants of LMS but with a cost of high computational complexity. The filter weights 
w are updated in RLS algorithm by following equations.

݊)ݓ + 1) = (݊)ݓ + (݊)ݔ(݊)݇ (1)

            ݇(݊) = ఒ−భః−భ(ିଵ)௫()
ଵାఒ−భ௫()ః−భ(ିଵ)௫()                                                 (2)

(݊)ଵିߔ = ݊)ଵିߔଵିߣ െ 1) െ ݊)ଵିߔ(݊)்ݔ(݊)ଵ݇ିߣ െ 1) (3)

Where ߣ is the forgetting factor. ିߔଵ is the cross correlation matrix. The ߣ is initialized with 
1 and ିߔଵ with ିߜଵܫ.I is the identity matrix.

SSRLS Algorithm

State Space Recursive Least Squares or SSRLS algorithm is state space representation of an 
extension of RLS algorithm. It is used to remove noise and its performance  can be evaluated 
in a non-stationary environment(impulsive noise).The steps of SSRLS form II filter along 
with sinusoidal model for implementation are given by [Malik (2004].

[݊]ොݔ = [݊]ොݔ + (4)      [݊]ߝ[݊]ܭ

[݊]ොݔ = ݊]ොݔܣ െ 1]       (5)

[݊]ߝ = [݊]ݕ െ ത[݊]                        (6)ݕ

[݊]തݕ = [݊]ݔܥ (7)

[݊]ߔ = ݊]ߔ்ିܣ)ߣ െ ଵିܣ([1 + (8)      ܥ்ܥ

[݊]ܭ = ்ܥ(݊)ଵିߔ      (9)

Where ݔො[݊] is the input state, ߝ[݊] is the prediction error, (݊)ܭ is observer gain, ݊ is 
predicted input state, ො݊ is estimated state, ݕത[݊] is the predicted output state and Φ[n] is the 
correlation matrix.
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NLMS Algorithm

The variant of Least Mean Square (LMS) algorithm is Normalized Least Mean Square which 
gives faster convergence than LMS. The limitation of the LMS algorithm is its sensitivity to 
its input signal scaling. The convergence is very slow and step size should be chosen 
carefully to guarantee algorithm stability. The whole algorithm remains same only filter tap 
weights are updated by following recursive formula:

)(
2

)()(
)()1(

nx
nxne

nwnw






                                        (10)

Where ߳ a small number is added for algorithm stability, ߤ is the step size of filter and  ݁(݊) is error signal.

Simulation Results

In this section, we compare the performance of the different adaptive filters in impulsive 
noise cancellation of OFDM signal by computer simulation using MATLAB version 12.

Figure 2.  Impulsive Noise Signal

Table 2. Parameter set for simulation of Impulsive Noise

Parameters Symbol Value

Sampling Frequency F 10
Total time T 100
Average Time between samples ߚ 1s

Mean of log amplitude A 10dB
Standard deviation of log amplitude B 5dB

Mean of Additive Gaussian Noise m 0.1

Standard deviation of Gaussian Noise ߪ 0.4
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The generated binary data is passed through the 
noise and white Gaussian noise are depicted

Figure 

The system output error signal 
sense. The length of all the three adaptive filters is fixed to 10. The step size parameter for 
NLMS Algorithm is chosen to be equal to 0.
SSRLS is 0.99. The error signals obtained by above mentio
with one another in Fig. 4-6.

Figure 4. Comparison of original data, received d

Fig.4 represents that the largest peaks of impulsive noise from the noisy binary signal are 
properly removed by the RLS and NLMS algorithm. The RLS filter is removing impulsive 
noise better than NLMS. The error plots of 
with the original signal and received signal

The generated binary data is passed through the channel responsible for adding impulsive 
noise and white Gaussian noise are depicted in Fig. 3. 

Figure 3. Original and received signal 

should contain the original signal in an optimum 
sense. The length of all the three adaptive filters is fixed to 10. The step size parameter for 

Algorithm is chosen to be equal to 0.005 and forgetting factor for RLS is 1 and for 
SSRLS is 0.99. The error signals obtained by above mentioned adaptive filters are

original data, received data and recovered data using
and RLS Filters

Fig.4 represents that the largest peaks of impulsive noise from the noisy binary signal are 
RLS and NLMS algorithm. The RLS filter is removing impulsive 
The error plots of above mentioned algorithms are a

and received signal.

channel responsible for adding impulsive 

in an optimum 
sense. The length of all the three adaptive filters is fixed to 10. The step size parameter for 

and forgetting factor for RLS is 1 and for 
ned adaptive filters are compared 

ata and recovered data using NLMS 

Fig.4 represents that the largest peaks of impulsive noise from the noisy binary signal are not 
RLS and NLMS algorithm. The RLS filter is removing impulsive 

lso compared 
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Figure 5. Comparison of original data, received data and recovered data using NLMS 

The results of Fig. 5 illustrate that superior performance of SSRLS in 
noise from the noisy OFDM signal as compared to the NLMS adaptive algorithm
plots of above mentioned algorithms are also compared with the original signal and received 
signal. 

Figure 6. Comparison of original data, received data and recovered

Similarly the comparison of SSRLS
noise from the OFDM signal are shown in Fig.6.it is clear from the above Figures that the 
SSRLS exhibit better performance in 
OFDM signal, while other two investigated algorithms fail to remove the noise with large 
amplitudes. 

Comparison of original data, received data and recovered data using NLMS 
and SSRLS Filters

that superior performance of SSRLS in suppressing impulsive
the noisy OFDM signal as compared to the NLMS adaptive algorithm

plots of above mentioned algorithms are also compared with the original signal and received 

Comparison of original data, received data and recovered data using RLS and 
SSRLS Filters

of SSRLS and RLS filter error plots while cancelling impulsive 
are shown in Fig.6.it is clear from the above Figures that the 

SSRLS exhibit better performance in cancelling the largest peaks of impulsive noise
while other two investigated algorithms fail to remove the noise with large 

Comparison of original data, received data and recovered data using NLMS 

suppressing impulsive
the noisy OFDM signal as compared to the NLMS adaptive algorithm. The error 

plots of above mentioned algorithms are also compared with the original signal and received 

data using RLS and 

while cancelling impulsive 
are shown in Fig.6.it is clear from the above Figures that the 

impulsive noise from the 
while other two investigated algorithms fail to remove the noise with large 
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Figure 7. Comparison of MSE (dB) of adaptive filters

The mean square error in terms of decibel simulation results also confirms that SSRLS give 
lowest MSE and fastest convergence while cancelling impulsive noise as depicted in Fig.
7.The conclusion drawn from Fig. 4-7 is that SSRLS filter outperforms both NLMS filter and 
RLS in  Impulsive noise cancellation of OFDM signal.

Conclusion

In this paper, an adaptive impulsive noise suppressor for OFDM system has been proposed 
that is based on state space recursive least square (SSRLS) algorithm. Due to the state space 
dependent model, the proposed technique exhibit better impulsive noise cancellation in 
OFDM signal when compared to normalized Least Square (NLMS) and Recursive Least 
Square (RLS).The simulation results obtained by proposed enhanced impulsive noise 
suppressor guarantees the superior performance of SSRLS  in terms of convergence speed 
and lowest MSE.
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Abstract 
Most geomaterials exhibit localised modes of failure, which appear in the form of shear bands or 
cracks. This appearance could be gradual or very abrupt, depending on the type of materials and 
also loading conditions. In particular, failure of rocks or concrete is very abrupt in tension and 
indicates the brittle nature of these materials under such conditions, while in compression regime 
and under increasing confining conditions, their failure gradually becomes more ductile with the 
onset and propagation of shear bands. The orientation and size of shear bands and/or fracture 
process zones in localised failure vary with the loading and materials. As a consequence, a correct 
description of geomaterial behaviour must take into account all these characteristics of failure. This 
is however not always the case in constitutive modelling of geomaterials, and while working well 
under homogeneous condition, most (if not all) existing models do not possess details on the size 
and orientation of localisation zones when localised failure takes place. This prevents them from 
capturing correctly the failure behaviour of the materials, the most important characteristic of which 
is size effect. We present in this study a new approach to incorporating both size and orientation of 
localisation zone in constitutive models for geomaterials. The concepts together with technical 
details, and preliminary results are presented to show the potentials of the new approach. 
 
Keywords: Localisation, Size effects, Geomaterials, Constitutive Modelling 

Introduction 

Constitutive models play a key role in correctly predicting load carrying capacity and failure of 
materials and structures. They give a mathematical description of material behaviour under different 
loading conditions, and it is essential that this description follows closely the observed behaviour of 
materials in experiments and/or real life. This requires not only advanced experimental techniques 
for better understanding of material behaviour, but also a generic and strong theoretical framework 
to transfer this understanding to a constitutive model. In geomaterial modelling, while the 
experimental part has been advancing quickly in the last few decades, with sophisticated techniques 
such as X-Ray and Digital Image Correlation [Alshibli and Sture (1999); Desrues and Viggiani 
(2004), Réthoré et al (2007)] for the observation of failure initiation at the micro scale, in our 
opinion, the development of a theoretical framework to accommodate these experimental 
development is still lagging behind. Despite the developments of more and more advanced 
constitutive models, one of the most important features of geomaterial failure - localised failure 
mode and the associated size effect - is still an outstanding issue in constitutive models for 
geomaterials. 
 
Localisation of deformation appears in the form of thin bands such as shear bands in soils or 
fracture process zones in concrete/rock under tensile loadings. The material outside a localisation 
band usually unloads elastically, giving the indication that most (or all) inelastic behaviour happens 
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inside this thin band. In addition, while the orientation of a localisation band depends on loading 
conditions [Runesson and Ottosen (1991)], the size and behaviour of the material inside this band 
are material characteristics. It can be seen that classical continuum models utilise a single stress-
strain relationship under both diffuse and localised modes of failure; this is not adequate, due to 
lack of details on the size and behaviour of the localisation band to capture correctly localised 
failure of the material. A correct description of failure must, therefore, account for the transition 
from diffuse to localised mode, and the progression of material failure beyond that. In this sense, 
most existing models ignore localised failure and size effect issues, either partly or completely, in 
the model developments and interpretation/mapping of experimental data. In particular, they 
possess no details on the size, orientation and evolution of the localisation band. As a consequence, 
their behaviour does not scale with the volume, and hence size effects cannot be captured. This 
requires ad hoc treatments incorporated later, after the model development, should these models be 
used in the analysis of failure that involves numerical methods for the solutions of boundary value 
problems. Typical examples of these treatments are the nonlocal/gradient regularisation [Ba!ant and 
Lin (1988); de Borst and Muhlhaus (1992)], and viscous regularisation [Forest, E. Lorentz (2004)], 
with several corresponding applications in geomaterial modelling [Pedersen et al (2008); Nguyen 
and Einav (2010); Das et al (2013)]. Other examples to overcome deficiencies of existing 
continuum models in capturing localised failure and size effects involve enhancements to the 
discretisation techniques (e.g. finite element methods) to correctly describe the kinematics of 
localised failure and behaviour. 
 
In this study, we start from a key characteristic of localisation in constitutive modelling of 
geomaterials: kinematics of localised failure, and enhancement is developed after enriching the 
kinematics of constitutive models. In this sense, an enriched constitutive model will possess more 
than one stress-strain relationships to correctly describe different material behaviours in- and out-
side the localisation zone. Size effects are automatically taken into account thanks to the intrinsic 
material length scale in the framework. A new formulation will be established and applied to 
different kinds of existing constitutive models. Numerical examples at the constitutive levels are 
used to illustrate key features of the new theoretical framework. 

Kinematic enrichment at the constitutive level 

Localised deformation takes place at certain stage of the deformation process (Fig. 1), with the 
onset and propagation of localisation band, where inelastic response occurs. This leads to incorrect 
representation of the deformation if a single homogeneous strain is used, as in classical continuum 
models (Fig. 2). In other words, the strain in the volume where constitutive model is defined is no 
longer homogenous, while homogenised deformation is considered only appropriate inside the 
localisation zone and the bulk material outside it.  

 

 
 

 
Figure 1. Diffuse and localised stages. Figure 2. Observed localised failure and classical 

assumption of homogenous deformation. 

localised diffuse 

Strain 

Stress 
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In this section, the connection between the averaged (macro) stress 𝛔 and averaged (macro) strain 𝛆 
over the domain Ω crossed by a localisation band (Figs. 1 & 2) is derived by coupling the response 
of the material inside and outside the localised region. For the volume of consideration, the stresses 
and strains for materials inside the localisation band and outside the homogeneous bulk are denoted 
as 𝛔!, 𝛆!  and 𝛔!, 𝛆!  respectively. 
 
As can be seen in Fig. 2, two strain measures and correspondingly two stresses are required to 
capture correctly localised deformation, while for backward compatibility with existing numerical 
codes that takes a single stress-strain relationship, a macro stress-strain relationship is needed. For 
this, the macro strain rate is defined as the volume averaged quantity: 

 𝜺 = 𝑓𝜺! + 1− 𝑓 𝜺! (1) 

in which 𝑓, the volume fraction of the localisation zone, is defined as the ratio between the width ℎ 
of the localisation zone and the effective size 𝐻 of the volume element: 

 𝑓 = !!
!
= !

!
 (2) 

where 𝐴 is the surface area of the localisation zone. The strain inside the localisation zone takes the 
following form (Nguyen et al, 2012): 

 𝜺! =
!
!
𝒏⊗ 𝒖 !  (3) 

where 𝒏 denotes the normal vector of the band and 𝒖  is the relative velocity between opposite 
sides of the localisation band. We note that homogeneous term was ignored in the above equation, 
on the assumption that the deformation inside the localisation zone is usually of higher order of 
magnitude than that in the bulk volume containing it [Vardoulakis et al (1978), Vardoulakis and 
Graf (1985a; 1985b)]. This simplifies the formulation and also makes it adaptable to other cases of 
quasi-brittle modelling (Nguyen et al, 2014). The macro stress in this case cannot assume a volume 
averaged form, but needs to be worked out from the virtual work equation in the following form: 

 𝝈: 𝜺 = 𝑓𝝈!: 𝜺! + 1− 𝑓 𝝈!: 𝜺! (4) 

Substituting (1) and (3) into the above and after some rearrangement, we have: 

 !
!
𝒕− 𝒕! ∙ 𝒖 + 1− 𝑓 𝝈− 𝝈! : 𝜺! = 𝟎 (5) 

in which 𝒕 = 𝝈 ∙ 𝒏 and 𝒕! = 𝝈! ∙ 𝒏 are the tractions associated with the macro stress and the stress 
inside the localisation zone, respectively. 
 
Since the strain rate and velocity jumps are arbitrary the following conditions are obtained: 

 𝒕 = 𝒕!, and 𝝈 = 𝝈! (6a,b) 

Given 

 𝛔! = 𝐃! : 𝛆!, and 𝛔! = 𝐃!!: 𝛆!    (7a,b) 

as generic constitutive behaviours for the macro volume element and the localisation zone, with 𝑫! 
and 𝑫!

! being the corresponding tangent stiffnesses, using equations (1, 3, 6), we can solve for the 
velocity jump as: 

 𝒖 = !
!
𝒏 ∙𝑫! ∙ 𝒏 + !!!

!
𝒏 ∙𝑫!

! ∙ 𝒏
𝑪

!!
∙ 𝑫!: 𝜺 ∙ 𝒏 (8) 
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Substituting (1, 3 and 8) into (7a) and rearranging the obtained expression, we get the macro stress-
strain relationship in the rate form as: 

 𝝈 = !!!
!
𝑫!: 𝜺−

!
!
𝒏⨂ 𝑪!! ∙ 𝑫!: 𝜺 ∙ 𝒏 !  (9) 

in which tensors 𝑨! = 𝒏 ∙𝑫! ∙ 𝒏 and 𝑨! = 𝒏 ∙𝑫!
! ∙ 𝒏 are the acoustic tensors associated with the 

tangent stiffness outside and inside the localisation band, respectively. Further details on the 
approach can be found in Nguyen et al (2012 & 2014). 

Numerical implementation 

As mentioned in the previous section, the enriched approach focuses on the post-localisation 
behaviour which means it is active only when localised failure has been detected. Bifurcation 
analysis, therefore, is of crucial importance and is presented in this section. Later, the implicit stress 
update algorithms for the enriched approach is given. 

Onset and orientation of localisation band 

The deformation behaviour of geomaterials under some specific circumstances can bifurcate from 
homogeneous to inhomogeneous localisation. There are several equivalent methods used for 
detecting that bifurcation point [Rudnicki and Rice (1975); Ottosen and Runesson (1991); Nielsen 
and Schreyer (1993)]. The loss of positive definiteness of the acoustic tensor is used in this paper as 
the indication of the onset of a localisation band. The normal vector 𝐧 determines the orientation of 
the localisation band and also indicates the occurrence of the discontinuous bifurcation by the loss 
of positive definiteness of the acoustic tensor 𝐀 associated with the tangent stiffness 𝐃 [Schreyer 
and Nielsen (1996); Chambonet al. (2000)]: 

 det 𝑨 = det 𝒏 ∙𝑫 ∙ 𝒏 ≤ 0 (10) 

 
Figure 3. A spherical coordinates, after Wolfram 

 
Using a standard spherical coordinates and define 𝜃 to be the azimuthal angle in the xy-plane from 
the x-axis with 0 ≤ θ ≤ 2π and 𝜙 the zenith angle from the z-axis with 0 ≤ ϕ ≤ π, Fig. 3, the unit 
direction vector can be defined as following: 

 𝒏 =
𝑛!
𝑛!
𝑛!

=
sin𝜙 ∙ cos θ
sin𝜙 ∙ sin θ
cos𝜙

 (11) 

The matrix form of 𝒏, derived from the equation used to calculate the traction vector from the stress 
vector, is: 
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 𝒏 =

𝑛! 0 0
0 𝑛! 0
0 0 𝑛!
𝑛! 𝑛! 0
0 𝑛! 𝑛!
𝑛! 0 𝑛!

 (12) 

For the case of incrementally multi-linear models such as classical elasto-plastic models, a wide 
range of orientations can be physically admitted [Ottosen and Runesson (1991); Chambonet al. 
(2000)] hence it is determined through minimization of det 𝑨  provided that det 𝑨 ≤ 0  [Sanborn 
and Prevost (2011)]. 

Implicit stress return algorithm 

After the bifurcation point, a post-localisation analysis is performed with two distinct solutions of 
stresses and strains for the zones inside and outside the band. In this approach the macro stress 
coincides with the stress outside the localisation zone, whilst the macro strain is computed from the 
inside and outside strains and the volume fraction f. This section presents the stress update 
algorithm used in the enhanced approach. 
 
Following the implicit algorithm, the traction equilibrium across the discontinuity plane is rewritten 
in the residual form as following: 

 𝒓 =   𝝈 ∙ 𝒏− 𝝈! ∙ 𝒏 (13) 

then the iterative scheme is performed so that the norm of this residual is zero, indicating a 
converged solution in which the equilibrium across the discontinuity plane has been met. A first 
order Taylor expansion of the above equation at the state of the last iteration can be written as: 

 𝒓!"# = 𝒓!"# + 𝛿𝝈 ∙ 𝒏− 𝛿𝝈! ∙ 𝒏 (14) 

After some arrangement the following relation between the residual and the increment displacement 
jump is obtained: 

 𝒓!"# = 𝒓!"# − !
!!!

!
!
𝒏 ∙𝑫! ∙ 𝒏 + !

!
𝒏 ∙𝑫!

! ∙ 𝒏 ∙ 𝛿 𝒖  (15) 

Enforcing the requirement of 𝒓!"# = 0 leads to: 

 𝛿 𝒖 = !
!!!

𝑪
!!
∙ 𝒓!"# (16) 

Once 𝛿 𝒖  is calculated, the iterative strain inside the localisation band is computed as: 

 𝛿𝜺! =
!
!
𝒏⊗ 𝛿 𝒖 ! (17) 

then the stress increment 𝛿𝝈! is updated along with internal variables for the material inside the 
band and the tangent stiffness 𝑫!. The convergence criteria is defined as: 

 𝒓!"#

𝝈∙𝒏
≤ TOLERANCE (18) 

with TOLERANCE is a sufficiently small positive number. 
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A constitutive model based on breakage mechanics 

The theoretical aspects and numerical implementation of the enriched approach are given in the 
previous sections. This section presents a specific constitutive model which will be used with the 
enriched approach to illustrate its capabilities. A breakage constitutive model [Einav (2007a)] is 
used to describe the behaviour of the material inside the localisation zone. First, a brief description 
of the breakage model is given including the stress-strain relationship, yield condition and tangent 
stiffness tensor; then performances of the model with and without using the enriched approach are 
given. For the shake of simplicity, the responses obtained without using the enriched approach are 
named “homogeneous”, whereas the responses obtained using the enriched approach are named 
“localised” indicating that the localisation behaviour has been taken into account.  

Model description 

The breakage mechanics theory for crushable granular materials [Einav (2007a)] is built on the 
micromechanics of grains, using statistical homogenisation to upscale the grain-scale energy 
potential to obtain the macro energy potential of the continuum model. A simple breakage model 
proposed by Einav [2007b] and later improved by Nguyen and Einav [2009] is considered in this 
study. The following standard notations are used: bulk and shear modulus 𝐾 and 𝐺, mean effective 
stress and deviatoric shear stress 𝑝 and 𝑞, total and elastic volumetric strain 𝜀!  and 𝜀!!, total and 
elastic deviatoric shear strain 𝜀!  and 𝜀!!, total and deviatoric stress tensor 𝜎!" and 𝑠!", and total, 
elastic and plastic strain tensors 𝜀!" , 𝜀!"!  and 𝜀!"

! , the Kronecker delta 𝛿!". 
 
The stress-strain relationship in the triaxial stress space is: 

 𝑝 = 1− 𝜗𝐵 𝐾𝜀!! (19) 

 𝑞 = 3 1− 𝜗𝐵 𝐺𝜀!! (20) 

The above relationships can also be written in tensorial form as: 

 𝜎!" = 1− 𝜗𝐵 𝐷!"#$𝜀!" (19) 

in which 𝐷!"#$ is the linear elastic stiffness tensor. The grading index 𝜗 is a result of the statistical 
homogenisation, and can be obtained from the initial and ultimate grain size distributions (gsd). 
Physically 𝜗 is related to the crushing potential of the materials and admits values from 0 to 1. The 
breakage variable 𝐵 represents the degree of grain crushing, and is used to linearly interpolate the 
current gsd from the initial and ultimate gsd’s [Einav, 2007a]. 
 
Einav [2007b] derived an elastic-plastic-breakage yield criterion, written in the mixed stress-
breakage energy space as: 

 𝑦! =
!!! !!!

!!
+ !

!"

!
− 1 ≤ 0 (22) 

where 𝑀 is the slope of the critical state line in the 𝑝 − 𝑞 space; 𝐸!  is the critical breakage energy 
which is computed from the critical crushing pressure during isotropic loading condition 𝑃!"  as: 

 𝐸! =
!!"! !
!!

 (23) 

𝐸! is the breakage energy, the thermodynamical conjugate to the breakage variable 𝐵, and has the 
form: 
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 𝐸! =
!

! !!!" !
!!

!
+ !!

!!
 (23) 

The evolution laws for the breakage and plastic strains can be written as: 

 d𝐵 = d𝜆 ! !!! !!! !"#!!
!!

 (24) 

 d𝜀!"
! = d𝜆 − ! !!! !!! !"#!!

!!!

!!"
!
+ !!!"

!!!!
 (25) 

in which d𝜆 is the nonnegative breakage/plasticity multiplier; 𝜔 is a parameter that couples the 
plastic volumetric deformation with grain crushing. Physically 𝜔 represents the pore collapse of the 
material due to grain crushing and reorganisation [Einav (2007a; 2007b)].  
 
The incremental stress-strain relationship can be written as: 

 d𝜎!" = 𝐿!"#$d𝜀!" (26) 

where the elastic-plastic-breakage tangent stiffness tensor 𝐿!"#$ has the form [Nguyen & Einav, 
2009]: 

 𝐿!"#$ = 1− 𝜗𝐵 𝐷!"#$ −
!!!" !!"!!"!!"#$

!!"!!"!
!"
!!

 (27) 

in which: 

 𝑋!" = 1− 𝜗𝐵 𝐷!"#$
!!!"

!

!!
+ !!!"

!!!"
 (28) 

and 𝑌!" =
!"
!!!"

 (29) 

Behaviour of the breakage model 

For the illustration of the behaviour of the breakage model, a triaxial drained test simulation is 
performed at the constitutive level on the highly porous Bentheim sandstone. In the context of the 
triaxial test, the confining pressure p0 means the initial isotropic confining pressure and this 
confining pressure is maintained horizontally during a strain-controlled axial loading. 
 
Bentheim sandstone exhibits significant compactive behaviour and distinct compaction bands in 
experiments [Wong et al. (2001)]. Material parameters of Bentheim sandstone are taken from the 
reported experimental data and calibrated parameters [Wong et al. (2001), Das et al. (2011)]: bulk 
stiffness 𝐾 = 138333 MPa, shear stiffness 𝐺 = 7588 MPa, critical breakage energy 𝐸!  = 4.67 MPa, 
critical state parameter 𝑀 = 1.7 MPa, grading index 𝜗 = 0.85 and  𝜔 = 70o. 
 
Fig. 4(a, b) presents the homogeneous responses of the breakage model in the drained triaxial test 
with different initial confining pressures. The increasing hardening of the breakage model is 
consistent with the experimental data [Baud et al (2004)] and represents the compactive cataclastic 
flow regime in which the stress-strain relationship is hardening and the porosity decrease 
monotonically with deformation [Wong et al. (2001)]. At the onset of inelastic deformation, 
localisation analysis is carried out following the classical bifurcation condition, Eq. (10-13). It is 
revealed that for all three confining pressures of 120, 180 and 240 MPa, bifurcation points exist and 
the corresponding inclination angles 𝜙 of the localisation surfaces are 35o, 15o and 0o, respectively. 
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Because of the symmetry in the triaxial loading condition, the angle 𝜃 (Fig, 3) is 90o in all three 
cases. 

  
(a) Homogeneous response, 𝜀! − 𝑞 (b) Homogeneous response, axial σ-ε 

  
(c) Localised response, 𝒇 = 𝟎.𝟐𝟓, 𝜀! − 𝑞 (d) Localised response 𝒇 = 𝟎.𝟐𝟓, axial 𝜀 − 𝜎 

Figure 4. Triaxial loading at different confining pressure 
 

Fig. 4(c, d) depicts the localised responses following the enriched framework with the volume 
fraction f = h/H = 0.25 in the same loading conditions and given parameters. It is clear from Fig. 4 
that localisation changes the material behaviour not only quantitatively but also qualitatively. The 
homogeneous behaviour is hardening but the localised behaviour, following the enriched 
framework, first exhibits softening associated with the activation and evolution of a localisation 
band, followed by hardening with the slope of the macro hardening much larger than that of the 
homogeneous hardening. Details of the localised behaviour are analysed in the next section. 
 
Fig. 5 presents the initial yield envelopes obtained from the given constitutive parameters. The 
range of stress state along that initial yielding surface, in which the localisation bands most likely 
occur, is predicted numerically. In very high pressure regime, no localisation is observed which 
may be due to diffuse compaction band formation over the entire sample under high confining 
pressure [Wong et al. (2001)]. In such cases, the deformation may evolve into cataclastic flow 
without localisation [Das et al. (2011)]. However, as pointed out by Besuelle [2001], 
extension/dilation shear bands can form in Bentheim sandstone at low confining pressures. Note 
that the material behaviour at low confining pressures is not yet captured by this version of the 
breakage model. Fig. 5 also indicates that the inclination angle of the compact band varies from 0o-
35o with the variation of the pressure regime, which implies that the localisation band is compactive 
dominant. In the high pressure regime, the angle is 0o which implies a pure compaction localisation 
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band; whereas in the medium pressure regime, the angle is about 30o-35o which implies a 
compactive shear localisation band. 

  
Figure 5. Predicted zone of localisation Figure 6. Contours of the determinant of the 

acoustic tensor 
 
Fig. 6 presents the contours of the determinant of the acoustic tensor against the band orientation 
angle and the normalised mean stress (𝑝 𝑃!" in which 𝑃!" = 389.87 MPa) at the onset of crushing. 
In Fig. 6, the inner zone denotes negative determinant of the acoustic tensor which implies that 
localisation is possible only within this zone. It is clear from Fig. 6 that for a given stress state there 
is a set of inclination angles that are physically admissible in forming a localisation band. In the 
post-localisation analysis, only the angle with the minimum value of the determinant of the acoustic 
tensor is chosen as the inclination angle of the localisation band. 

Size dependent behaviour 

In this section, the performance of the enriched approach is investigated in details. The post-
bifurcation responses of the Bentheim sandstone during the drained triaxial test are given in the first 
section; in the second section, the size dependent behaviour is proven by studying the influence of 
the localisation band width h on the macro responses.  

Post-bifurcation responses 

The stress-strain responses during the drained triaxial test at different confining pressures obtained 
by using the enhanced framework are given in Fig. 7; the general responses (q-εs) are given in Fig. 
7(a, c) whereas the responses on the loading direction – in short: the axial response – (σ-ε) are given 
in Fig. 7(b, d). Two confining pressures of 180 and 240 MPa, corresponding to two inclination 
angles of 15o and 35o of localisation bands, as calculated in the previous section from the 
bifurcation analysis, are applied. In these analyses, the volume fraction f is chosen to be 0.25. 
 
It is clear from Fig. 7 that the general and axial homogeneous behaviours are always hardening 
whereas the macro localised behaviours are more complex. Initially after localisation, the 
mechanism of elastic unloading for the material outside the band and plastic hardening for the 
material inside the band dominates, leading to a steep softening behaviour for the macro material. 
However when the load reaches a minimum, the outside material starts behaving elastically, the 
macro softening terminates and the macro response is hardening. This hardening phase is then 
dominated and the localised hardening slope is much larger than the homogeneous hardening slope.  
 
The general response of the material inside of the band is hardening with the long-term localised 
hardening slope is smaller than the homogeneous one, Fig. 7(a, c). This can be explained from the 
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fact that in the localised situation, only a band with the volume fraction f = 0.25 exhibit a hardening 
behaviour whereas in the homogeneous situation the whole sample is undergoing hardening 
deformation. It is also noted that the initial hardening slope in the localised response is larger with 
the larger confining pressure. This can originate from different types of the localisation bands at 
different confining pressures which changes from a compactive shear band, Fig. 7(a) with φ = 35o to 
a pure compaction band, Fig. 7(c) with φ= 0o. On the loading direction, Fig. 7(b, d), the axial 
response of the inside material is first softening and then hardening which is analogous to how the 
macro behaviour is.  

  
(a) p0 = 180 MPa, q-εs (b) p0 = 180 MPa, axial σ-ε 

  
(c) p0 = 240 MPa, q-εs (d) p0 = 240 MPa, axial σ-ε 

Figure 7. Responses at different confining pressure, f = 0.25 
 
Since the homogeneous behaviour of the breakage model in drained triaxial tests is hardening, the 
initial strong softening behaviour originates from the kinematics enhancement occurred with strain 
localisation. Gajo et al [2004] also observed this saturation process and suggested that another 
mechanism of strain hardening is occurring inside the band, induced by the contractive behaviour of 
the material. It is worth mentioning that as the hardening phase is reached – or the band saturation 
process continues, at a certain point the material outside the localisation zone will reach the yield 
condition. At this point, a localised inelastic deformation occurs outside the band while the material 
inside the band starts elastic unloading, as suggested by Gajo et al [2004]. This behaviour is, 
however, not considered in this paper.  

Effects of localisation band width 

There is considerable experimental evidence on the relation between the shear band thickness h and 
the mean grain size d50 [Scarpelli and Wood (1982); Vardoulakis et al. (1985a; 1985b); Muhlhaus 
and Vardoulakis (1987)], usually given in the form: 
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 ℎ = (10÷ 15)𝑑!" (30) 

This band width h is of a great importance in understanding and numerical modelling of progressive 
failure in granular materials [Gudehus (1978); Muhlhaus and Vardoulakis (1987)]. In this section, 
the size dependent behaviour in the drained triaxial test is investigated by varying the value of h 
whilst keeping H constant which means the volume fraction f is changed. Three values of f are 
chosen 0.25, 0.50 and 0.75, and two confining pressures of 180 and 240 MPa are applied. 

  
(a) p0 = 180 MPa, inside (b) p0 = 180 MPa, macro 

  
(c) p0 = 240 MPa, inside (d) p0 = 240 MPa, macro 

Figure 8. Size dependent behaviour on q-εs response 
 
It is clear from Fig. 8 (a, c) that the response of the material inside the localisation band is 
independent of the value of f. This independence implies that the macro dissipation energy, which 
only takes place inside the localisation band, scales linearly with the volume fraction of the band. 
Fig. 8 (b, d) illustrates that a size effect is exhibited since the macro response is strongly affected by 
the value of f. Since all of the dissipation energy occurs only inside the localisation band, apparently 
the smaller the value of f, the steeper the macro softening experiences initially. It can also be seen 
from Fig. 8 (b, d) that the band saturation process occurs at larger strain magnitude for the larger 
value of f which is explained by the fact that the localisation area is larger. Moreover, with a larger 
value of f, the influence of the elastically loading behaviour of the outside material on the 
subsequent hardening of the macro becomes smaller which is indicated by the smaller value of the 
hardening slope, Fig. 8 (b, d).  
 
The experimental validation of the proposed constitutive model is shown in Fig. 9. The same set of 
parameters for the breakage model obtained from experimental data on Bentheim sandstone (see the 
preceding section on the breakage model) was used. A volume fraction f=0.35 needed for the 
enriched model was estimated from the experimental figures in [Baud et al (2004)]. We know that f 
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is evolving during failure of the material, so the fixed value of f=0.35 is used merely as a rough 
estimation to explore the trend of the material behaviour. 

  
(a) p0 = 180 MPa (b) p0 = 250 MPa 

Figure 9. Validation of model response under different confining pressures 
 
As can be seen in Fig. 9, the softening behaviour at the onset of localised failure, followed by 
hardening due to an increase of the density as a result of compaction, can be captured by the 
enriched model, while the original breakage model always exhibits a hardening trend. This 
preliminary result should serve as a basis for future improvements of the both the breakage model 
and the enrichment framework.  

Conclusions 

Theoretical development, numerical implementation and performance of a new constitutive 
modelling framework were presented in conjunction with the use of a model based on breakage 
mechanics for exploring localised failure in sandstone. The results explain the response of the 
material inside and outside the localisation band and how they influence the macro response. This 
helps improve both the performance and capacity of constitutive model in capturing post-
bifurcation behaviour of geomaterials. Although the enriched approach provides a good 
understanding on the influence of the localised deformation, it is not adequate yet to capture 
correctly the material behaviour with oscillation in the macro response due to the gradual formation 
of several compaction bands during loading [Wong and Baud (2012); Das (2012)]. With that 
evolution of the localisation behaviour, inelastic behaviour outside the band must be also taken, and 
this is a subject of an on-going research. 
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Abstract  

This paper discusses the indoor climate in a full-scale three-story house using the MICS model, 
which is a multiphase model that is able to predict the velocity and temperature profiles in a 3D 
domain, as well as the interaction of temperature between air and different solid materials. The 
paper first compares the numerical results with existing experimental results done for similar 
multistory structures.  Further more, numerical experiments are conducted with different heating 
methods: floor heaters and panel heaters, in order to find the optimum conditions required to heat 
the building efficiently. As a result, the suitable heating method is successfully suggested in the 
multistory building by the multiphase model. 

Keywords: Indoor climate, multiphase model, CFD, multi-story house 
  

Introduction 

It is an important engineering subject to keep the comfortable indoor climate of multi-story 
houses located in cold districts with efficient heating system to save energy.  For this purpose, many 
experimental investigations have been conducted within experimental rooms and in actual outside 
fields.  On the other hand, the numerical studies to predict indoor climate have relatively few in 
particular for the actual multi-story houses due to the difficulty in dealing with the complicated-
shaped and multiple materials of houses, which have different thermal conductivities.   

Thus, the numerical predictions were carried out for a full-scale three-story house [1] with a 
multiphase model, MICS proposed by Ushijima [2].  The MICS model is useful to deal with 
thermal interactions between air and the solid materials having different thermal conductivities.  As 
a result of computations, it was shown that the temperatures on the walls between the experiment 
and simulation are in good agreement in first and second floors. In addition, numerical experiments 
were conducted for the house with different heating elements: floor heaters and wall attached panel 
heaters. It was shown that the floor heaters provide a better heating in the house compared with the 
panel heaters. 
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Computational method 
 

The governing equations of the multiphase model MICS model [2] are shown as follows: 
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where 𝜏𝑖𝑖 is given by Equation (4) 
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In the above equations, t is time, 𝑥𝑖 is the orthogonal coordinate, 𝑆𝑐 is the heat source term, 𝑔𝑖 is 
acceleration due to gravity and 𝑢𝑖  is the mass-averaged velocity between gas and solid phases 
defined by the following equation: 

𝑢𝑖 =  𝛴𝑘𝜌𝑘𝑉𝑘𝑈𝑘𝑖
𝛴𝑘𝜌𝑘𝑉𝑘

     (5) 

In Equations (2) to (4), temperature T, density ρ, specific heat 𝑆𝜕, Pressure 𝑝 and viscosity 
coefficient μ  are volume-averaged variables defined by 

Ψ = 𝛴𝑘𝑉𝑘Ψ𝑘
𝛴𝑘𝑉𝑘

     (6) 

In Equations (5) and (6),  Vk represents volume of the phase-k. In this study, the non-isotoropic 
characteristics for thermal conductivity λ are taken into account [3].   

The governing equations are discretized with FVM.  The numerical algorithm for solving 
the set of equations is divided into three separate stages: prediction stage, pressure calculation stage 
and correction stage.  In the prediction stage, in which convection and diffusion equations are 
solved, the implicit method is used on a collocated grid system, which is called C-ISMAC method 
[4].  In the C-ISMAC method, tentative velocity 𝑢𝑖

* is calculated from Equation (2) as follows: 
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where 0 ≤  γ1  , γ2  ≤ 1.  Fifth-order TVD scheme [5] is used to solve the convection terms 
included on the right hand side of Equation (7). 

In the pressure calculation stage, C-HSMAC method [6] is used. It satisfies the 
incompressible conditions accurately.  

The relationship between density and temperature is given by the following equation: 

𝜌 = 𝜌0
1+𝛽(𝜕−𝜕0)      (10)  

where β is the coefficient of thermal expansion,   ρ0  and T0 are the reference density and 
temperature respectively. 

In order to improve computational efficiency, the numerical procedures are parallelized 
using Message Passing Interface (MPI). Due to this parallelization, computational times are largely 
reduced in particular to solve the implicit equations as well as the pressure computation stage.  

Application 

The multiphase model was applied to the full-scale three-story house, for which 
experimental study had been conducted by Usami[1] in the Sendai prefecture in Japan. Figure 1 
shows the house that was used for the experimental study. 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure:1 Experimental house [1] 
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Figure: 2 Blue prints of the house with the locations of measured points [1] 

Table 1:  Locations of measuring points. 
Location for measurement (x1 [m] * x2 [m]) 

 A 2 x 2.3 G  2.4 x 2.5 
B 12.9 x 2.6 H 11.9 x 3.5 
C 7.3 x 3.5 S1 6.1 x 0.5 
D 2.6 x 2.7 S2 6.1 x 0.5 
E  11.9 x 2.7 S3 6.1 x 0.5 
F 12.9 x 1.8 W1 7.3 x 5.5 

  
W2 8.9 x 5.5 

 
The house used in the experiment is a three-story house complete with minimal furniture. 

Figure 2 shows the blueprints of each level as well as the measured locations of temperature. The 
exact locations are given in Table 1. The height of the measured locations is 1.5m above the floor 
level. The locations were chosen for the center point of major human activity.  

In the experiments, the effect of the floor heaters was examined. The thermal conductivity 
for each material in the house is shown in Table 2. The heat supplied by the floor heater is 7.8 kW.  
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Table 2: Thermal conductivity for materials in the house 
Materials Thermal conductivity (W/(m.K)) 

1st floor walls 0.45 
2nd floor 0.45 

2nd floor walls 0.13 
3rd floor walls 0.13 

 furniture 0.13 
2nd floor windows 0.96 
3rd floor windows 0.96 

 
In the present numerical study, the solid materials of the house were represented by 

tetrahedron elements to respond to the complicated-shaped structures as shown in Figures 3 and 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Visualization of the house in 3D and co-ordinate system 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Tetrahedron mesh created for the solid parts of the house 
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The number of computational cells is 240 x 240 x 120. The simulation required 26 hours of 
computational time for 10 actual hours. The computation used 128 processors. The simulations 
were run in Cray XE6 in Kyoto University. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 5: Cross section on 𝑥1 −  𝑥3 plane at 𝑥2 = 4.5 [m] 

 
Figure 5 shows the 𝑥1 −  𝑥3  plane view of the velocity profile inside the middle of the 

house. The green and yellow area indicates the location of the floor heaters. The outside boundary 
condition is set at 0 oC with the no wind, while the adiabatic condition is used for the floor. As 
shown in Figure 5, the bottom left and bottom right rooms have little disturbance. 
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Figure 6: Cross section on 𝑥2 −  𝑥3 plane at 𝑥1 = 4.5 [m] 
 

The 𝑥2 −  𝑥3 plane view of the velocity profile is shown in Figure 6.  It is noted that the 
location of the stairs that is on the right side of the Figure 6 plays an important role in drawing out 
air in the bottom floors, as shown in Figure 7. In Figure 7, the air flows upwards due to buoyancy 
effects, thus reducing the heat at the first floor. 
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Figure 7: Velocity profile in the stairs on 𝑥2 −  𝑥3 plane 
at 𝑥1 = 8.5 [m] 

 
Comparisons with experimental results 

The calculated temperatures on the walls in first floor, W1, and second floor, W2, are shown 
in Figure 8.  Compared with experimental results in Figure 8, it can be seen that they are in good 
agreement.  

 
Figure 8 : Temperature at the walls in experiment and current simulation 
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Figure 9 shows the comparison of the temperatures at the measuring points, A, D and G, in 

the rooms shown in Figure 2. In general, the calculated results agree with the experimental data. 
The differences of temperature between the experimental data and the calculated results are less 
than 0.1 oC. 
 

 
Figure 9: Temperature in the rooms in experiment and simulation 

 
Numerical experiments 
 

In addition to the comparisons with experimental results, numerical experiments were 
conducted to find the effective heating method.  Using the same three-story house and boundary 
conditions, two heating methods were compared: floor heaters and heat panels with same heat 
source at 7.8 kW. The floor heater configuration is the same as the simulation above. The panel 
heaters were installed near the floor on the second floor walls of the house. Figure 10 shows the 
locations of three panel heaters, in blue, as well as the resulting velocity profile. Figure 11 shows 
the resulting temperature distributions in the house. The measured points are taken from the center 
of the room at 1.5m in height. The locations of points A to S3 are shown in Figure 2. 
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   Figure 10: Cross section of the house on 𝑥1 −  𝑥3 plane at 𝑥2 = 5 [m] 
 

 

Figure 11: Temperature distribution in house comparing floor heater and heat panel 

 
As shown in Figure 11, it is clear that the floor heater is able to increase temperature in all of 

rooms, A to H, except the stair regions, S2 and S3. The top two floors, locations D, E, F, G and H, 
have a less significant difference in the temperature at only less than 0.5 C different results.  
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Conclusively, it was suggested that the present multiphase model enables us to find optimum 
heating method with minimum energy.  The computational method is a useful tool since the heating 
method can be easily changed compared with the full-scale experiments. 
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Abstract 
Coupled behaviors of fluid-flow and swimming-jellyfish are necessary for swimming movements and 
the dynamics governing these coupled behaviors is difficult and complex. A lot of researches 
investigated coupled behaviors of fluid-flow and jellyfish-swimming by using two-dimensional 
axisymmetric numerical simulations. However, in order to simulate swimming jellyfish in an 
asymmetric current, the three-dimensional simulation is necessary. On the other hand, in the 
simulation of an unsteady flow caused by a moving wall boundary, the Geometric Conservation Law 
(GCL) is important. In the computational method which does not strictly satisfy GCL, arbitrary grids 
moving affects the flow field and the physical conservation law is destroyed. Moving-Grid Finite-
Volume Method (MGFVM) is suitable for such a flow because GCL is strictly satisfied. In MGFVM, 
GCL condition is automatically and strictly satisfied by the discretization performed using a four-
dimensional control volume in the space and time unified domain (x, y, z, t). In this paper, we perform 
the three-dimensional coupled simulation of fluid-flow and jellyfish-swimming with six degrees of 
freedom of motion by using MGFVM and investigate the influence of a current on swimming 
jellyfish.  

 

Keywords: Coupled simulation, Swimming, Jellyfish, Incompressible Flow 

Introduction 

Coupled behaviors of fluid-flow and swimming-jellyfish are necessary for swimming movements and 
the dynamics governing these behaviors is difficult and complex. Jellyfish were the earliest animals to 
evolve muscle-powered swimming in the sea. A swimming of jellyfish consists of contraction, 
relaxation and inertia. First swimming mechanism is a jet propulsion caused by the subumbrella 
volume change that occurs during the contraction and the relaxation. In a jet motion, a first vortex ring, 
which is called the ‘starting vortex’, occurs by the contraction and causes a strong jet propulsion. 
Second swimming mechanism is a paddling motion on the bell margin and not as simple as jet 
propulsion. In a paddling motion, a second vortex ring, which is called the ‘stopping vortex’, occurs 
by the relaxation. The stopping vortex rotates in the direction opposite to the starting vortex and 
influences the starting vortex. The stopping vortex plays an important role in swimming mechanisms 
[Colin and Costello (2002); Mchenry and Jed (2003); Dabiri et al. (2005); Costello et al. (2008)]. 
 
A lot of researches investigated swimming jellyfish by using computational fluid dynamics (CFD). 
The dynamics of swimming jellyfish was modeled by using the two-dimensional simulation using the 
SIMPLE algorithm [Dular et al. (2009)]. The vortex structure caused by a swimming jellyfish was 
investigated by using the two-dimensional simulation using the arbitrary Lagrangian–Eulerian (ALE) 
method [Sahin and Mohseni (2009)]. The relationship between kinematics and swimming jellyfish 
was investigated by using the two-dimensional axisymmetric simulation [Alben et al. (2013)]. The 
three-dimensional geometry of swimming jellyfish was extrapolated from the two-dimensional 
axisymmetric simulation [Rudolf and Mould (2010)]. Thus far, there are few investigations into three-
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dimensional simulations of swimming jellyfish. Moreover, in these investigations, it was assumed that 
jellyfish is in stationary fluid. However, in the sea, a current may change the vortex structure caused 
by swimming jellyfish and affect a swimming of jellyfish. The swimming jellyfish in the current 
cannot be simulated by using a two-dimensional axisymmetric simulation because the current is not 
axisymmetric. Thus, a three-dimensional simulation is necessary in order to investigate the influence 
of the current on swimming jellyfish.  
 
On the other hand, in the simulation of an unsteady flow caused by a moving wall boundary, the 
computational grid moves and deforms time-dependently. As the computational method for such a 
moving grid, the method applying discretization of the governing equation on a general body-
conforming curvilinear coordinate [Vinokur (1974)], the arbitrary Lagrangian-Eulerian (ALE) method 
in which the mesh point can be moved independently of fluid motion [Noh (1964)], the space-time 
finite-element method [Tezduyar et al. (1992)] and so on were suggested. It is most important for the 
computational method for moving grid that the Geometric Conservation Law (GCL) is satisfied 
[Thomas and Lombard (1979)]. In the computational method which does not strictly satisfy GCL, 
arbitrary grids moving may affect the flow field and physical conservation law may be destroyed. 
Moving-Grid Finite-Volume Method (MGFVM) was suggested as the computational method which 
strictly satisfy GCL [Mihara (1999)] and its performance was shown in various unsteady flows 
[Matsuno (2010)]. The GCL condition is automatically and strictly satisfied by the discretization 
performed using a four-dimensional control volume in the space and time unified domain (x, y, z, t). 
In structured grids, the method was firstly applied to compressible flows [Matsuno (2001)] and 
extended to incompressible flows [Inomoto (2004)]. In incompressible flows, the couple of pressure 
and velocity was done by the fractional step method on the four-dimensional domain. In order to 
apply to the object of complicated shape, Unstructured Moving-Grid Finite-Volume Method, which 
was MGFVM extended to unstructured grids, was suggested [Yamakawa and Matsuno (2003)]. 
Moreover, in order to apply to a greatly moving wall boundary, Moving Computational Domain 
(MCD) approach in which whole of computational region could move was suggested [Watanabe and 
Matsuno (2009)].  
 
In this paper, we perform the three-dimensional coupled simulation of fluid-flow and jellyfish-
swimming in a current with six degrees of freedom of motion by using Moving-Grid Finite-Volume 
Method. The swimming jellyfish demonstrated and the influence of the current is shown.  

Governing equations for fluid flow 

Governing Equation 
The governing equations of fluid-flow are the continuity equation,  
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where q is the vector of conserved variables, Ea, Fa and Ga are the convective flux vectors, Ev, Fv and 
Gv are the viscous flux vectors, u, v and w are the fluid velocity, p is the fluid pressure and Re is 
Reynolds number. The equations are nondimensionalized by 
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where overline shows the dimensional quantity, 0L  is the characteristics length, 0U  is the 
characteristics velocity, ρ  is the characteristics density and 0μ  is the viscosity. 
 
Discretization 
In Moving-Grid Finite-Volume Method (MGFVM) is used for discretization. In MGFVM, the control 
volume in the space-time unified four-dimensional (x, y, z, t) domain is used in order to assure both 
physical and geometrical conservation laws simultaneously. Fig. 1 shows the Unstructured 
computational cell on three-dimensional (x, y, z) domain at m time step and m+1 time step. R = (x, y, 
z)T, the subscript i shows the computational grid number and the superscript m shows time step. In 
four-dimensional domain, the blue computational cell is the surface (l = 5) perpendicular to t-axis at m 
time step and the red computational cell is the surface (l = 6) perpendicular to t-axis at m+1 time step. 
The control volume Ω is a volume on four-dimensional domain and formed between the lower surface 
(l = 5) and the upper surface (l = 6). The control surface is the surface of the control volume on a 
unified four-dimensional space-time (x, y, z, t) domain and corresponds the volume on three-
dimensional domain. The control surface is formed by the surface at m time step and it at m+1 time 
step (l = 1, 2, …, 4), corresponds the computational cell at m time step (l = 5) and corresponds the 
computational cell at m+1 time step (l = 6). For example, the control surface l = 4 corresponds the 
volume on three-dimensional domain shown by the heavy line in Fig. 2. 
 

 
Figure 1. Computational cells 

 at m time step and m+1 time step 

 
Figure 2. Control surface l = 4 
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Navier-Stokes equations for incompressible flows are discretized with Unstructured Moving-Grid 
Finite-Volume Method. Eq.(2) is integrated over the control volume Ω as 
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Eq.(3) is shown in divergence as 
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Gauss' divergence theorem is applied to four-dimensional domain and Eq.(4) becomes as follows: 
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where the subscript l shows the control surface number as Fig. 2. In the control surface, ( xn~ , yn~ , zn~ , 

tn~ ) are the outward unit normal vectors, S is magnitude of the normal vector, Snt
~  corresponds to 

volume in (x, y, z) domain, Snx
~  corresponds to volume in (y, z, t) domain, Sny

~
 corresponds to volume 

in (z, t, x) domain, Snz
~  corresponds to volume in (t, x, y) domain. In the control surface l = 5 and 6, 

0~~~ === zyx nnn  and Snt
~  corresponds to the volume V of the computational cell. E, F, G, q, P1, P2 

and P3 are evaluated at m+1/2 time step (l = 1, 2, … ,4), at m time step (l = 5) and m+1 time step (l = 
6).  
Therefore Eq.(5) becomes as follows:  
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This equation is the fundamental equation of Unstructured Moving-Grid Finite-Volume Method.  
 
Fractional Step Method 
By fractional step method, Eq.(6) is divided as 
1st step:  
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2nd step:  
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where * shows intermediate step.  
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The divergence of Eq.(8) on three-dimensional (x, y, z) domain at m+1 time step becomes as follows:  
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Here, pay attention that this is the divergence on (x, y, z) domain at m+1 time step in order to correlate 
to the continuity equation Eq.(1) at m+1 time step. Assuming that the continuity equation Eq.(1) is 
satisfied at m+1 time step (Dm+1 = 0), Eq.(9) becomes the pressure equation including the normal 
vectors on four-dimensional (x, y, z, t) domain as follows:  
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where the differential of pressure on three-dimensional (x, y, z) domain at m+1 time step is solved 
with finite-volume-method on the computational cell at m+1 time step.  
The computational procedure is as follows: 
1. q* is calculated from qm by Eq.(7).  
2. pm+1/2 is calculated from q* by Eq.(10).  
3. qm+1 is calculated from q* and pm+1/2 by Eq.(8). 
 
Other Numerical Method 
The convective flux vectors (Ea, Fa, Ga) are evaluated with second order upwind difference scheme. 
The viscous flux vectors (Ev, Fv, Gv) and the pressure vectors (P1, P2, P3) are evaluated with central 
difference scheme. The iterative method of Eq.(7) is LU-SGS [Yoon and Jameson (1988)] and the 
iterative method of Eq.(10) is Bi-CGSTAB [van der Vorst (1992)]. 

Numerical methods for body motion 

Governing Equation 
The governing equations of body-motion are Newton’s motion equation with six degrees of freedom 
of motion including translation and rotation as follows:  
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where M is the weight of the body, uB, vB and wB are the body velocity, Fx, Fy and Fz are the forces to 
be received by the fluid, g is gravity acceleration, Ix, Iy and Iz are the moment of inertia of the body 
about a center of x', y' and z' axis, ωx, ωy and ωz are the body angle speed about a center of x', y' and z' 
axis, T'x, T'y and T'z are the torques to be received by the fluid about a center of x', y' and z' axis and (x', 
y', z') is the cartesian coordinate fixed to the body. The equations are nondimensionalized by  
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where overline shows the dimensional quantity. Quaternion [Yatabe (2007)] is used for the coordinate 
transform.  
The time derivative of Eq.(11) and (13) is discretized by forward Euler method and the time 
derivative of Eq.(12) is discretized by Crank-Nicolson method as follows: 
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Coupled Procedure of Fluid-Flow and Body-Motion 
The computational procedure is as follows: 
1. The force and the torque of the body at m time step are calculated from the pressure and the shear 

stress of the fluid.  
2. The velocity and the angle speed of the body at m+1 time step are calculated by Eq.(14) and 

Eq.(16).  
3. The translation and the rotation of the body at m+1 time step are calculated by Eq.(15) and 

quaternion. 
4. The computational grid at m+1 time step is formed.  
5. The velocity and the pressure of the fluid at m+1 time step are calculated by Eq.(7), Eq.(8) and 

Eq.(10).  
 
Numerical simulation 
 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

508



 
 

Computational Condition 
Fig. 3 shows the jellyfish which is the target of this simulation. The jellyfish is 16.8-24.0mm in 
diameter DB, 8.64-12.48mm in height HB, 1mm in thickness, 10g in weight and elliptical cross 
section. The water is 1000kg/m3 in density and 1.0*10-3kg/ms in viscosity. 0L  is 24.0mm, 0U  is 
24.0mm/s, ρ  is 1000kg/m3, 0μ  is 1.0*10-3kg/ms, Re is 576, M is 10g and g is 0.0m/s2 considering 
buoyancy. Case1 is condition without a current and Case2 is condition with a current. The jellyfish 
velocity (uB, vB, wB) is (0.0, 0.0, 0.0) in the initial condition. The change of diameter DB and height 
HB is decided as follows: 
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Fig.4 shows time history of diameter DB and height HB, where Exp denotes the experimental data 
[Mchenry and Jed (2003)].  
 
 
 

 
Figure 3. Jellyfish 

 
Figure 4. Time history of diameter DB and 

height HB.  
 
Fig. 5 shows the computational domain and the boundary conditions. The computational domain is a 
sphere 240mm in diameter. In BC1 which is the wall boundary of the jellyfish, the velocity is fixed to 
the velocity of the jellyfish and Neumann boundary condition applies to the pressure. In BC2 which is 
the external boundary, the inflow velocity is fixed to (u, v, w) = (ui, vi, wi), the outflow velocity is 
calculated by linear interpolation and Neumann boundary condition applies to the pressure. The whole 
of computational grid moves together with the jellyfish by using Moving Computational Domain 
(MCD) approach [Watanabe and Matsuno (2009)]. Simulations are performed in three conditions 
Case1, Case2 and Case3 as shown in Table 1.  
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Figure 5. Computational domain and boundary conditions 

 
Table 1. Conditions of simulation 

 Case1 Case2 Case3 
Current Without With With 

(ui, vi, wi) (0.0, 0.0, 0.0) (0.5, 0.0, 0.0) (0.5, 0.0, 0.0) 
Diameter DB Eq.(14) Eq.(14) Constant (24.0mm) 
Height HB Eq.(14) Eq.(14) Constant (8.64mm) 

 
 
Result of Simulation 
As a result, Fig. 6, 7 and 8 each show velocity vectors, pressure contours and vorticity magnitude 
contours in Case1 at t = 0.40 (contraction) and  t = 1.12 (relaxation). Colors denote magnitude 
velocity in Fig. 6. The contour denotes 4.0 of vorticity magnitude in Fig. 8. The starting vortex occurs 
outside the jellyfish at the contraction and the stopping vortex occurs inside the jellyfish at the 
relaxation. The whole flow field is axisymmetric.  
 
(a) (b) 

Figure 6. Velocity vectors in Case1 
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation) 
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(a) (b) 

Figure 7. Pressure contours in Case1 
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation) 

 
(a) (b) 

Figure 8. Vorticity magnitude contours in Case1 
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation) 

 
Fig. 9 shows swimming speed wB of the jellyfish in Case1, where Exp denotes experimental result 
[Mchenry and Jed (2003)]. The jellyfish accelerates at the contraction and decelerates at relaxation. 
The present result gives good agreement with experimental result.  
 

 
Figure 9. Time history of swimming speed in Case1 and experimental result 
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Fig. 10, 11 and 12 each show velocity vectors, pressure contours and vorticity magnitude contours in 
Case2 at t = 0.40 (contraction) and  t = 1.12 (relaxation). Colors denote magnitude velocity in Fig. 10. 
The contour denotes 4.0 of vorticity magnitude in Fig. 12. The flow field is not axisymmetric because 
of the current. At relaxation, the stopping vortex is clear not vortex structure in the right side and 
pressure in the jellyfish is higher in the right side. The asymmetry of the vortex structure inclines the 
jellyfish to x-axis negative direction.  
 
 (a) (b) 

Figure 10. Velocity vectors in Case2 
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation) 

 
(a) (b) 

Figure 11. Pressure contours in Case2 
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation) 

 
(a) (b) 

Figure 12. Vorticity magnitude contours in Case2 
at (a) t = 0.40 (contraction) and (b) t = 1.12 (relaxation) 
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Figure 13. Time history of inclination angle of jellyfish in x-direction 
 in Case1 (blue line), Case2 (red line) and Case3 (green line) 

 
Fig. 13 shows time history of the inclination angle of the jellyfish in x-direction. In Case1 without a 
current and with the contraction motion, the jellyfish does not rotate because the whole flow field is 
axisymmetric, and the inclination angle is almost zero. In Case3 with a current and without the 
contraction motion, the current itself rotates the jellyfish to x-axis negative direction, and the 
inclination angle decreases gradually. In Case2 with a current and the contraction motion, moreover 
the vortex structure which becomes asymmetric by the current rotates the jellyfish to x-axis negative 
direction, and the inclination angle decreases faster than Case3.  
 
CONCLUTIONS 
In this paper, we have performed three-dimensional coupled simulation of fluid-flow and jellyfish-
swimming in a current with six degrees of freedom of motion by using Moving-Grid Finite-Volume 
Method. In the simulation without a current, the jellyfish accelerates at the contraction and decelerates 
at relaxation. The swimming speed of the jellyfish gave good agreement with experimental result. 
Moreover, in the simulation with a current, the current makes flow field asymmetric and changes the 
vortex structure caused by swimming jellyfish. The vortex structure rotates swimming jellyfish.  
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Abstract 
The reliability optimization has achieved great concern in recent years. Nowadays, many 
researchers obtain allocation results which can maximize the system reliability subject to the system 
budget. In these researches, the effect of system’s functions is always neglected or only considering 
the single main function of system. In addition, there are also not obvious evidences in results to 
distinguish the importance level of different units. However, complex systems tend to perform 
multiple functions. What’s more, the use frequency of each function and the combinations of units 
to realize different function is not the same. In addition, the use demand of different function is 
decided by different task environment, the demand differentiation of functions has led to the use 
frequency of various functions should have different levels about reliability. Therefore, the 
reliability optimization allocation that only considering cost constraint conditions is not accuracy 
and will results in disaccord between the obtained results with actual situation.  
 
Focusing on the problem mentioned above, a reliability optimization allocation method that 
considering cost constraint and importance factor is proposed. In this paper we consider systems 
consisting of units characterized by different reliability and importance factors. Such systems are 
multi-function because they must perform different tasks depending on the combination of units. 
Different functions may be work simultaneously. Firstly, the concept of importance factor is 
defined to describe the importance of a unit and the required importance factor level of system 
functions in the task is also given. To deal with the differentiation of system functions, the 
corresponding bound about importance factor are executed when looking for the optimal solution. 
Similarly, the cost constraint is also forced. Finally, in order to reduce the randomness of intelligent 
algorithm, a number of optimization are conducted and a rule is proposed to select the most optimal 
solution from all the optimal solutions which are obtained in every iterative loop. 
 
Example of the comprehensive transmission equipment is presented. To begin with, we establish 
the reliability function of system as the objective optimization function. Then, the restraint of 
budget and different demands of importance factor of system functions are posed. Furthermore, 
using a genetic algorithm as the optimization tool, the optimization result can be obtained. Finally, 
the most optimal solution is selected. The results show that the method we proposed is more correct 
and more approximate the reality. 
 
The reliability optimization allocation method presented in this paper can not only consider the 
constraint of cost, but also can consider the diversities of functions, and thus the optimization 
results will more approximate actual situation. At the same time, this paper can also provide 
guidance for the similar reliability optimization problem. 
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Introduction 

Reliability is an important index of a system, and system reliability allocation is prerequisite for 
reliability design and analysis of system. The reliability design of system must be done under 
several constraints such as cost, volume, weight etc. In engineering, some researchers often make 
reliability allocation which can maximize the reliability of system under the condition of budget 
constraint. The early researchers also study the method of reliability allocation for all kinds of 
system structure, such as series, parallel, series-parallel etc., and the related reliability allocations 
subject to the budget of system are done under the condition that units of a system are independent 
of each other: [Chen (1992); Bueno (2005); Levitin and Lisnianski (1999); Ramirez-marquez and 
Coit (2004)]. In these research work for reliability allocation, people often only consider one single 
main function of the system and ignore other functions. That may lead to a great error for system 
reliability allocation. G. Levitin etc. conduct the research about the reliability allocation of multi-
state system, and they make a conclusion that all units in the system must be involved in to realize 
any state of the system while the reliability of system is allocated to all the units: [Levitin and 
Lisnianski (2003); Levitin (2003); Levitin et al. (2003); Levitin and Lisnianski (2001)]. However, 
with the development of science and technology, the structure of the system is more and more 
complex and the system that has multiple main functions is also more and more popular. In these 
complex systems, the usage frequency of each function and the combination of units to realize 
different functions are not the same. In addition, different use demand of each system function is 
determined by different environment of task, and the differentiation of use demand of each system 
function results in that the reliability level of various functions should be different. But the existing 
research results cannot solve the reliability optimization allocation problem of systems with 
differentiation of functions. Meanwhile, as the complexity of reliability model of system and the 
complex relation between reliability index and constraints, it is difficult to obtain the solution for 
the reliability optimization allocation problem. A large number of researches can prove that 
applying artificial intelligence methods (such as neural networks, ant colony algorithm, genetic 
algorithm, hybrid genetic algorithm, simulated annealing algorithm, etc.) into reliability 
optimization allocation can achieve good effect: [Altiparmak et al. (2003); Nabil and Mustapha 
(2005); Chen and You (2005)]. Way Kuo made a good overview about the related content of 
reliability allocation before 2006: [Kuo and Rin (2007)]. Nevertheless, the artificial intelligence 
methods mentioned above also have their disadvantages, such as: premature phenomena may occur 
in the course of using, swinging near optimal solution when approaching optimal solution, slow 
convergence and easy to fall into local extremum, or optimization result is not ideal, and so on. 
Therefore, it is meaningful to improve the basic algorithm so that it is applicable for specific 
problems and can obtain the optimal solution efficiently. 
 
In order to solve the above problem, a reliability optimization allocation method for systems with 
differentiation of functions is proposed in this paper. Firstly, a constraint considering the 
differentiation of functions is presented, namely a new index named importance factor is used to 
measure the usage frequency of each function and the use demand of each function determined by 
different environment of task. Then, the objective function of optimal allocation of system 
reliability is built according to the new cost model proposed in this paper, and further put forward 
the description of reliability optimization allocation of systems with differentiation of functions. In 
addition, the operation of code, evolution and selection in the genetic algorithm is also transformed 
to improve the accuracy and efficiency of solving the optimization problem. Finally, the proposed 
method is applied into the reliability optimization allocation of an integrated transmission device 
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whose goal is to minimize the cost of system. The result shows that the obtained solution is more in 
line with the actual situation. 

A reliability optimization allocation method considering differentiation of functions 
Assumption that a system that consists of m units can execute n functions. 

Establishment of objective function 

The reliability allocation is usually done according to the requirement of task. Not only the final 
reliability of system must meet a certain standard sR , but also the allocation results must minimize 
the cost of system. In fact, reliability and cost are often nonlinear relationship. A cost model is 
presented under the assumption that their relationship submits to exponential distribution, it is 
shown as Eq. (1). 

( ) ,min
1

,min, ,
i

i

R
R

i i i i ic P R R Pe
 

−  
 =                                           (1) 

Where, ( )ic ⋅  represents the cost model of i th unit, iP  is the basic price of i th unit, iR  is the 
reliability of i th unit, ,miniR  is the lower limit value of reliability of i th unit. The total cost of 
system is the objective function of reliability optimization allocation, and its mathematical form is 
shown as Eq. (2). 
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1
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m
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i
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Where, ( )SC ⋅  is the total cost function of system. 

Constraint considering the differentiation of functions 

To deal with the differentiation of functions in the process of reliability allocation, the more 
reasonable approach is to convert it into a constraint condition and to select an optimal solution in 
the optimization process. As to it, a new index named importance factor is proposed. Obviously, the 
units in a system not only have reliability index, but also have the parameter of importance factor. 
The importance factor is used to measure the importance of a unit or its usage frequency. The 
importance factor is related to the reliability of the unit. Generally, the higher usage frequency of a 
unit, the greater importance of the unit and the higher reliability allocated to the unit. Therefore, 
according to the positive correlation between importance factor and reliability, a model is proposed 
based on the experience in engineering application, shown as in Eq.(3). 

( ) ( 1) 0 1iR
i ig R e g−= < <                                               (3) 

Where, ( )ig ⋅  is the importance factor of i th unit. 
 
When importance factor is applied to deal with the differentiation of functions, if the importance 
factor of j th function cannot reach the scheduled request, as shown as in Eq.(4). 

( ), 0
j j jf f fF G W <                                                           (4) 

The Eq. (4) indicates the allocated result is disqualified, and new iteration has to be done to make it 
meet the requirement, as shown as in Eq.(5).  
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( ), 0
j j jf f fF G W ≥                                                         (5) 

Where, 
jfF  is a function to determine whether j th function can be realized or not, 

jfG
 
is the 

importance factor of j th function, 
jfW  is the predetermined level of importance factor of j th 

function. 
 
Because a function of system is implemented by combination of units and importance factor reflects 
the important degree of each unit, the calculation method of importance factor of each function is 
shown as in Eq. (6). 

( )
1

[1, ]
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l

f i i
i

G g R k l l m
=

= ∈ ≤∏                                              (6)  

Where, l is the number of units involved in j th function. 
 
Compare 

jfG
 
with 

jfW , the state of j th function can be determined. When a system has several 
functions, only all functions can be realized successfully does a system succeed. In other words, the 
importance factor of each function should satisfy the requirement of importance factor of itself, 
shown as in Eq. (7). 

0 [1, ]
jfF j n≥ ∈                                                         (7) 

Problem formulation 

Combining the objective function and constraint conditions mentioned above, the reliability 
optimization allocation problem with differentiation of functions can be formulated as in Eq. (8). 
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(8) 

Where, SR  is the reliability goal of system which needs to be achieved. 

The improvement of genetic algorithm 

The concrete operation process of basic genetic algorithms is shown as in Fig. 1. The operation of 
code, evolution and selection in the genetic algorithm are also transformed to improve the accuracy 
and efficiency for solving the optimization problem. 
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Figure 1. Operation process of basic genetic algorithm 

1. Coding scheme 
 
The real number coding is used for its several advantages compared with binary coding, such as: 
unnecessary to be transformed from the chromosome to performance value which can improve the 
efficiency of the genetic algorithm, reduces the requirements on memory and the use of different 
genetic operator is very free and so on. 
 
2. Initial population 
 
The characteristics of the initial population have important influences on the calculated results and 
efficiency of calculation. To achieve the global optimal solution, initial population should be 
dispersed in the solution space.  
 
In order to ensure the uniform distribution in the solution space and get good initial population, 
homogeneous array can be constructed artificially. Firstly, the solution space is divided into A 
subspaces. Then, B chromosomes are produced in each subspace based on the predetermined or 
random method. Finally, C chromosomes whose fitness is the largest are selected from all these 
chromosomes.  
 
3. Design of fitness function 
 
Fitness indicates that the ability of an individual to adapt to the environment, and how to select 
fitness function depends on different situations. The objective function is taken as the fitness 
function in this paper and the best individual adapt to the environment has the largest value of 
fitness, which equal to the minimum of objective function. In addition, in order to guarantee that 
individuals produced randomly are within the above established constraints and remove the 
unsuitable individuals in the process of searching, penalty strategy is adopted. For the unsuitable 
individual, the fitness of it is set to be zero. The formulation of penalty function is shown as in Eq. 
(9). 
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Where, ( )fit ⋅ is the function of fitness, S is the size number of population, a  is the ranking in the 
descending order of reliability. 
 
4. Reproduction 
 
The value of fitness is used to judge whether the chromosome is good or not. The larger the 
individual’s fitness is, the larger the chance of being selected is. Fitness assignment based on rank 
and the strategy of roulette are adopted to select the excellent individuals in this paper. 
 
5. Crossover operation 
 
Crossover operation is the main genetic operator in genetic algorithm, which is acting on the 
individuals selected for reproduction. In this paper, the discrete restructuring and randomly 
selecting parent individuals with the same probability are selected as the crossover operation to 
determine the value of offspring individuals. 
 
6. Mutation 
 
Selection and crossover basically complete most work of the search function of genetic algorithm, 
and the mutation can enhance the ability of genetic algorithm to find the optimal solution. The 
mutation operation in this paper is that an individual is selected randomly among population and the 
value of a character in the gene string is changed randomly with a certain probability. Variation can 
increase the diversity of population, and adaptive mutation is operated to make the individual whose 
fitness is larger to do searching in the small scope while the individual whose fitness is smaller to 
do searching in the wide scope. 
 
7. Termination criterion 
 
Because genetic algorithm optimization can be unlimited evolution, and it is often difficult to have a 
big improvement after a certain degree of evolution, so a specific number of iteration need to be 
predetermined as the standard to decide whether the optimization process will go on or not. The 
certain generation of evolution is selected as the optimization criterion in this paper. 
 
8. Optimization of multi-population 
 
Because selection operation may make the population evolution to be controlled by superior 
individual, and crossover operation might destroy the good genes, so the basic genetic algorithm has 
the problem of premature convergence. Therefore, the optimization of multi-population is carried 
out to improve the performance of genetic algorithm.  
 
Genetic algorithm of multi-population allows the child population to evolve along different 
directions, and the outstanding individuals in the solution space of different area can be obtained. It 
also can prevent the occurrence of premature convergence from searching in expanding scope. On 
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the other hand, with the migration and spread of excellent individual among different populations, 
the convergence rate and precision of solution can be improved. 
 
Different optimal solutions can be obtained through optimization of multi-population. According to 
the actual situation, we can formulate some suitable guidelines to select the final optimal solution 
from these different optimal solutions. 

Reliability optimization allocation process for systems with differentiation of functions under the 
goal of minimizing the cost of systems 

For systems with differentiation of functions, the reliability optimization allocation to minimize the 
cost of systems can be done according to Fig. 2.  

 

Identify functions of 
system

Units of each function

Ascertain cost model

Establishment of 
objective function

Identify the importance factor 
model of functions Gfi

Give out the levels of 
importance factor Wfi

Build the constraints Ffi

Formulation of reliability 
optimization allocation

Genetic algorithm

Analysis of optimal solutions 
of different populations

Final reliability resultsSystem analysis Establishment of 
objective function Establishment of constraints

 
Figure 2. Reliability optimization allocation process for systems with differentiation of 

functions under the goal of minimizing the cost of systems 

Example 

The analysis of an integrated transmission device  

There are 19 subsystems in an integrated transmission device, and they are 1-overall gearing, 2-
body parts, 3-middle bracket, 4-torque converter assembly, 5-transmission assembly, 6-hydraulic 
torque converter, 7-planet before shift gear, 8-auxiliary drive, 9-hydraulic gear reducer, 10-
hydraulic retarder control valves, 11-left side cover, 12-right side cover, 13-fan drive assembly, 14-
liquid viscous clutch assembly, 15-oil pump group, 16-couplet of pump motor, 17-oil supply 
system, 18-hydraulic control system and 19-manipulation of the electronic control system. The 
integrated transmission device needs to implement five functions: straight driving, swerve, braking, 
fan cooling and compressor drive, and the reliability requirement of system is 0.7. The relationship 
among system functions and subsystems is shown as in Fig. 3. 
 

Integrated transmission 
device

straight driving swerve braking fan cooling compressor drive

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 

Figure 3. Relationship among system functions and subsystems 
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Establishment of the objective function 

Compared with the data of engineering, the lower limit of reliability of each subsystem is all equal 
to 0.8, the upper limit of reliability of each subsystem is all equal to 0.9999, and the basic price of 
each subsystem is shown as in Table 1. 
 

Table 1. The basic price of each subsystem 
No. 1 2 3 4 5 6 7 8 9 
P 320 170 60 200 230 260 80 80 240 
10 11 12 13 14 15 16 17 18 19 
110 220 220 120 240 540 420 90 270 210 

 
According to Eq. (2, 3), the objective function of integrated transmission device can be established 
as the sum of cost of each subsystem. 
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Establishment of constraint condition considering differentiation of functions 

Only the five functions of integrated transmission device all meet the requirements in terms of 
importance factor, the system can be denoted as success. The values of fW  about five functions are 
shown in Table 2. 
 

Table 2. The values of fW  about five functions 

No. straight 
driving swerve braking fan cooling compressor 

drive 
fW  0.52 0.39 0.32 0.2 0.35 

 
Naturally, the constraint conditions can be obtained as follows. 
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Problem formulation of reliability optimization allocation of integrated transmission device 

Reliability is allocated for each subsystem under the constraint conditions of reliability index of 
system with differentiation of functions, so as to make the cost of system to be minimum. 
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Genetic algorithm and selection of results of optimization allocation 

The suitable parameters of genetic algorithm are determined and shown as in Table 3. 
 

Table 3. Parameter of genetic algorithm 
Size number 
of population 

Probability of 
crossover 

Probability of 
mutation 

Maximum 
generation 

120 0.9 0.01 500 
 
The reliability optimization allocation of integrated transmission device is done according to the 
reliability optimization allocation process in section 2.5. The optimization allocation process with a 
single population is shown as in Fig. 4.  
 

 
Figure 4. Process of reliability optimization allocation with a single population 

 
At last, the additional 20 populations are selected to do the reliability optimization allocation of the 
integrated transmission device, and the results are shown in Table 4, iβ  indicates the i th 
population. The results are shown in Table 4. The obtained reliability of each subsystem is ranked 
every time. Each line represents a set of optimal solutions, and the number of subsystem whose 
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reliability is the lowest is set at far left, and the number of subsystem whose reliability is the highest 
is set at far right. In other words, the degree of reliability value increase gradually from left to right.  
 

Table 4 The rank of reliability of subsystem 
β Degree of reliability (decrease gradually) 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 
1 14 15 6 16 1 12 5 18 19 11 9 4 2 13 17 10 8 3 7 
2 16 15 1 9 19 18 5 13 6 10 4 12 7 17 3 14 8 2 11 
3 1 16 15 18 14 12 2 6 9 5 19 4 7 8 17 13 3 10 11 
4 15 16 1 11 18 14 12 9 4 19 6 8 10 5 7 2 17 13 3 
5 16 15 14 1 9 6 18 12 5 4 19 2 11 17 10 13 7 8 3 
6 15 1 16 18 6 11 12 9 14 10 19 4 5 13 2 8 3 17 7 
7 15 18 16 6 9 11 1 5 19 2 14 12 4 13 10 8 7 17 3 
8 15 1 11 6 18 16 12 5 19 4 9 14 10 3 7 13 17 2 8 
9 16 9 15 1 6 14 18 12 11 4 5 2 19 17 8 10 7 13 3 

10 6 15 16 1 5 14 9 11 18 19 3 2 4 13 8 10 7 17 12 
11 16 15 1 6 4 9 18 14 12 11 13 2 5 10 19 17 7 3 8 
12 16 15 12 11 1 6 9 14 4 18 5 7 2 10 13 17 19 8 3 
13 15 9 16 1 5 11 14 6 12 4 19 18 17 10 13 2 3 7 8 
14 1 15 18 5 16 9 2 19 6 14 12 11 7 13 10 17 8 3 4 
15 16 12 15 18 1 11 19 6 14 9 5 4 2 7 8 10 17 13 3 
16 15 1 14 16 6 9 18 11 5 4 12 10 13 19 7 2 8 3 17 
17 15 6 14 16 1 18 5 9 19 11 17 12 13 4 10 7 3 8 2 
18 15 1 16 14 6 9 18 5 11 12 19 4 13 8 2 10 3 7 17 
19 16 6 15 18 1 14 12 9 11 5 19 4 13 17 2 10 3 7 8 
20 5 15 16 1 12 19 18 6 11 4 9 7 2 3 14 8 17 10 13 

 
In addition, the total costs with different populations are shown in Table 5. 
 

Table 5. Total costs with different populations 
NO. 1 2 3 4 5 6 7 8 9 10 
Total 
cost 5073.9 5070.4 5075.5 5067.2 5078.4 5077.5 5077.2 5072.5 5076.3 5074.8 

NO. 11 12 13 14 15 16 17 18 19 20 
Total 
cost 5062.9 5076.7 5078.4 5078.6 5066.4 5077.9 5078.3 5069.1 5077.7 5076.0 

 
The improved genetic algorithm is applied in the reliability optimization allocation of the integrated 
transmission device. We can see from Fig. 4 that the total cost of system become stable after 
iterating 75 times and the optimal solution is also obtained. What’s more, Table 5 shows that the 
total costs of different population are very close. This result illustrates the correctness and accuracy 
of the algorithm proposed in this paper. Observation can be seen from Table 4, the reliabilities 
assigned to the 15th and 16th subsystems are smaller, and reliabilities assigned to the 3rd, 7th, 17th 
subsystems are bigger. This shows that the method proposed in this paper can well deal with the 
issue of the reliability optimization allocation of complex system with differentiation of functions. 
Based on the correct reliability allocation method, a better and more correct optimal solution can be 
obtained through several times of reliability optimization allocation, and the randomness is also can 
be reduced. At last, the rule for selecting the final solution for the reliability optimization allocation 
can be formulated with reference of the allocation results of different population. 
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In this paper, the allocation results of the population that its cost of system is less and smaller 
reliabilities are assigned to the 15th, 16th subsystems and the larger reliabilities are assigned to the 
3rd, 7th, 17th subsystems, will be selected to be the final solution. From Table 4 and Table 5, we 
can see that the allocation value of 19th population can be determined as the final solution for the 
integrated transmission device. The corresponding cost of system is 5062.9 and the reliability of 
each subsystem is shown in Table 6. 
 

Table 6. Final reliability of each subsystem 
No. 1 2 3 4 5 6 7 8 9 10 

Reliability 0.9841 0.9972 0.9995 0.9621 0.9911 0.9658 0.9740 0.9610 0.9832 0.9776 
No. 11 12 13 14 15 16 17 18 19  

Reliability 0.9890 0.9630 0.9692 0.9885 0.9745 0.9745 0.9889 0.9807 0.9795  

Conclusion 

In this paper a reliability optimization allocation method for systems with differentiation of 
functions is proposed. Firstly, a cost model is presented, in which the meaning and value of its 
parameters are easy to ascertain. What’s more, the index of importance factor is proposed to deal 
with the differentiation of functions. Finally, the system model of reliability optimization allocation 
is built and the improved genetic algorithm is used to solve the problem of system reliability 
optimization allocation under the target of minimum total cost. 
 
In order to verify the validity and accuracy of the proposed method in this paper, the reliability 
optimization allocation of an integrated transmission device is done. The results show that the 
proposed method can solve the problem of differentiation of functions, and the allocated results also 
indicate the differentiation of reliability requirements. This method has better guidance than 
traditional reliability allocation method and it is easy to be applied in engineering. 
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Abstract 

The acoustic resonance scattering of a zero-order Bessel beam by elastic spheroids 
immersed in water and centered along the beam axis is investigated. The T-matrix 
method is utilized to establish the Bessel acoustic scattering formulas through the 
harmonic expansion of Bessel beam. For a specific half-conical angle   , the far-
field backscattering form functions of spheroids with different materials and a variety 
of aspect ratios are curved versus the dimensionless frequency 2kL , where k  is the 
wave number in water and L  is the length of the spheroid. By subtracting an 
appropriate background from the total backscattering form functions, the 
corresponding resonance of the elastic spheroids can be determined. It is concluded 
that the T-matrix method is effective to calculate both the total and resonance 
backscattering fields under an end-on incident Bessel beam illumination. Moreover, 
by selecting appropriate half-conical angles, the excitation of certain resonance of 
elastic spheroids may be suppressed and this phenomenon may have some potential 
value in practical applications.  

Keywords: Acoustic resonance scattering, Zero-order Bessel beam, T-matrix method, 
Backscattering form function, Elastic spheroid 

1. Introduction 

During the past decades, considerable efforts to analyze  acoustic resonance scattering 
by elastic targets immersed in an ideal fluid illuminated by plane wave has been 
devoted through experimental and theoretical methods by many authors[Flax et al. 
(1978); Gaunaurd and Uberall (1983); Werby et al. (1988); Williams and Marston 
(1986); Bao et al. (1992); Haumesser et al. (2002)]. When the incident acoustic 
excitation takes Bessel beam into consideration, the corresponding investigation is 
very limited. Bessel beam was first introduced by Durnin et al [Durnin (1987); 
Durnin et al. (1987)] in optics and then had a following development in acoustics 
[Campbell and Soloway (1990); Lu and Greenleaf (1990); Marston (1992)]. Bessel 
beam is characterized by an important parameter, termed as half-conical angle  , 
which describes the angle of the planar wave components of the beam relative to the 
beam axis. Note that in practice, Bessel beam can only propagate over a limited 
distance without spreading due to the finite width of sources, however, in the 
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published studies, the ideal Bessel beam is always taken as the incident acoustic 
excitation. Also, in our work, targets are under the illumination of ideal Bessel beam.  
Recently, Bessel beam has attracted increasing attention in acoustic aspect because it 
has demonstrated several advantages over the plane waves, such as the characteristics 
of non-diffraction and the ability to retain its form without block. Marston first 
studied the scattering characteristics of both rigid and soft spheres centered on a 
Bessel beam and curved the form function modulus as a function of scattering angle 
  [Marston (2007a)]. After that in 2007, Marston continued to investigate the 
resonance scattering of elastic solid sphere and spherical shell under the Bessel beam 
illumination and evaluated the influences of several selective half-conical angles on 
the suppression of backscattering resonance [Marston (2007b)]. Subsequently, further 
study on acoustic scattering associated with Bessel beam was also reported by others, 
such as Mitri and Li’s research group. There has been considerable interest in Mitri’s 
study of high-order Bessel beams to explore acoustic scattering characteristics by 
several objects, including rigid (movable and immovable) spheres [Mitri (2009a; 
2011); Mitri and Silva (2011)], elastic spheres [Mitri (2008a; 2009b)], and elastic 
spherical shells [Mitri (2010; 2012)]. In addition, Mitri devoted much efforts to 
calculate acoustic radiation force of spheres and rigid spheroids [Mitri (2008b; 2009c; 
2015); Silva et al. (2013)], which may provide an impetus to design acoustic tweezers. 
Moreover, our research group has studied the scattering properties of arbitrary-shape 
rigid scatterer facing the incident Bessel beam. In our work, the backscattering fields 
of rigid spheroid and finite cylinder with two hemispherical endcaps were 
investigated, and the peak to peak intervals in backscattering form functions were 
analyzed both in geometry and using numerical method [Li et al. (2015)]. 
Despite the recent reports about acoustic Bessel beam reviewed above, to date, it still 
remains an unsolved problem when calculation of resonance scattering by elastic 
spheroid placed in Bessel beam is taken into consideration. In previous studies 
published by Marston and Mitri, the exact scattering by spheres and spherical shells 
was expressed as a partial wave series. Specifically, Mitri improved the partial-wave 
series expansion (PWSE) method to calculate acoustic radiation force of rigid 
spheroid under the illumination of Bessel beam [Mitri (2015)]. Unfortunately, the 
PWSE method has not yet been further developed to provide theoretical analysis on 
elastic spheroid interacted with Bessel beams. Instead, the T-matrix method, as 
originally conceived by Waterman [Waterman (1965; 1971)], has been demonstrated 
a very efficient tool to handle acoustic scattering problems by elastic targets with 
arbitrary shape, for instance, cylinders [Varadan 1978], spheres [Pao and Mow (1963)] 
and spheroids [Flax et al. (1983); Bostrom (1980a)]. The philosophy of the T-matrix 
method is to expand all field quantities in terms of a set of spherical functions in order 
to obtain the T matrix (also called transition matrix) that relates the known 
coefficients of expansion of the incident wave to the unknown expansion coefficients 
of the scattered field. When all parameters of scatterer and incident wave are provided, 
the scattered fields can be obtained immediately by using the T-matrix method. To 
our knowledge, there is no evidence that the Bessel beam scattering by elastic 
spheroid immersed in an ideal fluid has been studied in previous work published. To 
this end, in the present study, we aim to extend the application of T-matrix to study 
the acoustic scattering characteristics of elastic spheroid under the illumination of 
Bessel beam. 
This paper is outlined as follows. In section 2, a brief review of the T-matrix method 
for acoustic scattering is given and subsequently, we derive the formula of incident 
coefficients of Bessel beam. In section 3, two numerical examples are carried out to 
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explore the acoustic resonance characteristics of PMMA sphere and spheroid 
immersed in an ideal fluid under the illumination of ideal zero-order Bessel beam. 
Finally, the conclusion of this paper is conducted in section 4. 

2. Theoretical formulation  

In this section, the theoretical formulas of an elastic scatterer immersed in an ideal 
fluid under the normal illumination of Bessel beam by using the well-known T-matrix 
method are present. As in the previous work of other authors, the ideal Bessel beam is 
also considered here. 

2.1 A brief review of the T-matrix method for the scattering  

To determine the transition matrix, which connects the expansion coefficients of the 
incident and scattered fields, the integral representations for the displacement field, 
the boundary conditions and expansions of surface fields should be provided 
explicitly. Now consider an elastic scatterer with its geometry shown in Fig. 1. The 
boundary surface between fluid and solid is denoted by S. The host medium is 
homogeneous water with density 

f  and lame parameter
f . The properties of elastic 

scatterer are given by density   and lame parameters   and  . For convenience, we 
would rather use the vector formalism than the scalar wave equation for both the fluid 
(outside S) and solid (inside S) regions to facilitate the application of the boundary 
conditions. As given in detail by Bostrom and Peterson [Bostrom (1980b); Peterson et 
al. (1980]], here, we will only present the most pertinent formulas. 

 
Fig. 1 Elastic scatterer under Bessel beam illumination.  

 
The starting point for the following is the integral representation for the displacement 

i s u u u  in the fluid region 

   outside
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Here n  is the unit normal taken as outward pointing, 
fΣ and

fG  are the free space 
Green’s stress triadic and Green’s dyadic, respectively. The surface traction vector t  
can be obtain by Hooke’s law expressed as 
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For the solid region inside S, the displacement u  is governed by the following 
representation 
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where G is the Green’s displacement dyadic and Σ  is the Green’s stress dyadic 
related to G  by Hooke’s law [Varadan (1980)]. For an elastic scatterer immersed in 
water, the relevant boundary conditions on surface are given by 
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Both the integral representations for the displacement fields and the corresponding 
boundary conditions are presented above. Subsequently, the incident and scattered 
displacement fields are expanded in vector spherical functions, with the time factor 
e iwt  being suppressed throughout, as follows: 
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Finally, the incident and scattered field coefficients are related through the transition 
as given by 
 , ' ' ' ' ' '
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where 
 

11 1ReT QR P QR P


            (8) 
The detailed expressions of matrices Q , R and P are given by Bostrom and Peterson 
[Bostrom (1980b); Peterson et al. (1980)]. Through the formulas described above, the 
unknown scattered coefficient can be computed immediately, and thus the scattered 
field can be acquired correspondingly. 
 

2.2 Derivation of the incident coefficients of Bessel beam 

 
In this part, the formulas of the incident coefficient nma  in the case of Bessel beam 
will be derived for the combination with original T-matrix method. Note that by using 
the T-matrix method, all field quantities should be expanded in terms of one series of 
spherical functions. Here the following scalar basis functions adopted in the 
computation are defined as 
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where  nh kr  is the spherical Hankle function of the first kind, m

nP  is the associated 
Legendre function and 02m m    is the Neumann factor.  e, o even, odd  
specifies azimuthal parity, 0,1, ,m n  specifies rank and 0,1,n  specifies order 
of the spherical harmonics. Also,   and  are the axial and azimuthal angles, 
respectively. 
The wave function defined above may be used to expand the scattered fields that 
satisfy radiation conditions at infinity. But to expand the incident fields that are finite 
at origin, the spherical Hankle function in the wave function in Eq. (9) should be 
replaced by the spherical Bessel function, which is regular at origin. In the case of the 
ideal zero-order Bessel beam we are interested, the expression of incident coefficients 
can be derived by using the foregoing basis functions in the following procedure. 
Provided that the complex velocity potential of ideal zero-order Bessel beam could be 
denoted as follows [Marston (2007a)] 
      0 0expB i J  z,ρ κz   (11) 
where 0  stands for the beam amplitude, z  and ρ  specify the axial and radial 
coordinates, κ  and  , satisfying the relation 2 2 2k   , represent the axial and 
radial wavenumbers,  and 0J  is a zero-order Bessel beam. 
Given by Eq. (B2) in APPENDIX B by Marston [Marston (2007a)], Eq. (11) may be 
expanded in spherical partial wave as 

          0
0

2 1 cos cosn

B n n n

n

i n j kr P P




      r,   (12) 

By using the addition theorem of the Legendre polynomial [Stratton (2007)], the 
desired integration can be obtained 
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where  i  and s  represent the incident and scattered axial angles, respectively. 
Combining Eq. (9), (10), (12) and (13) gives an expression of the incident coefficients 

nma   under ideal zero-order Bessel beam as follows 
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  (14) 

It should be noted that the expression of the incident coefficients depend on incident 
axial angles, half-conical angle and incident azimuthal angle. The ideal Bessel beam 
taken as the incident excitation is with unit amplitude  0 1  and meanwhile 
normally incident  0i  . The half-conical angle   is decided by plane wavefront of 
component of Bessel beam relative to the beam axis. Specially,    gives the 
limiting case of an ordinary plane wave. During the derivation process presented 
above, the azimuthal angle  is neglected, which is totally feasible for rotationally 
symmetrical targets considered here. 
Substituting Eq. (8) and (14) into the relation given by Eq. (7), the scattered fields of 
elastic targets under the illumination of ideal zero-order Bessel beam can be obtained 
and this may help lay a foundation for further exploring the characteristics of acoustic 
scattering of Bessel beam.  
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3. Numerical results 

In order to study the Bessel beam modification to the coupling to resonances of 
elastic scatterers, several numerical examples are presented by using T-matrix method. 
In the first part, sphere model is given to verify the validity of the T-matrix method to 
investigate the acoustic resonance scattering under the illumination of Bessel beam. 
While in the second part, we extend the range of applicability of T-matrix to further 
investigate Bessel beam scattering characteristics of spheroid.  

3.1 Acoustic Resonance Scattering from Spheres 

In this part, acoustic resonance analyses for the case of Bessel beam scattering from 
polymethylmethacrylate (PMMA) sphere are carried out and the ambient ideal fluid 
here is considered to be water. The corresponding material parameters in our 
numerical example are listed explicitly in Table 1. To facilitate the discussion in the 
following, several half-conical angles are selected specially which are defined n  as 
the lowest root of  cos 0n nP  . The 6-digit approximations to n for 2,3,4n   and
5  are 2 54.7346 , 3 39.2315 , 4 30.5556 and 5 25.0173 , respectively.  
The backscattering form functions with different half-conical angles are calculated 
and plotted in Fig. 2. The black solid curve shown in Fig. 2 is the backscattering 
(    in Eq. (9)) for plane wave illumination  0 . When other approximations 

 2 3 4 5, , and    are implemented, it could be found that the thn order resonance is 
suppressed. This is most easily seen from the dashed black line which has 2  . 

This behavior is in agreement with Eq. (14) because of the dependence on  cosnP  . 
All of the curves shown in Fig. 2 agree very well with results in Marston’s work. 
 

Table 1 Material parameters 

Material Density 
(kg/m3) 

Longitudinal 
velocity (m/s) 

Shear velocity 
(m/s) 

PMMA 1.19 2690 1340 
Water 1000 1500 — 

3.2 Acoustic Resonance Scattering from Spheroids 

In the prior part, backscattering form function of PMMA sphere with different half-
conical angles are calculated. In the following part, we will further investigate the 
influences of different half-conical angles upon the backscattering resonance of 
PMMA spheroid. The aspect ratio (semi-minor axis/semi-major axis) of spheroid is 
0.95. The backscattering form functions of PMMA spheroid under the illumination of 
Bessel beam with different half-conical angles are plotted in Fig. 3. The plane wave 
case is also given here by the black solid curve when 0 . Similarly, by choosing 
approximations  2 3 4 5, , and    , the corresponding resonances are suppressed. 
That is, in the case of 2  , the 2nd order resonance is suppressed, in the case of

3  , the 3rd order resonance is suppressed, and for the remaining 4 5,  , the same 
results can be obtained. 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

531



 
 

 
Fig. 2 Backscattering form function modulus computed as a function of 

dimensionless frequency ka for an elastic PMMA sphere in water under the 

illumination of Bessel beam with different half-conical angles  

 

 
Fig. 3 Backscattering form function modulus computed as a function of 

dimensionless frequency ka for an elastic PMMA spheroid in water under the 

illumination of Bessel beam with different half-conical angles  
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4. Conclusions 

In this paper, two numerical examples are carried out to calculate the backscattering 
form functions of underwater PMMA sphere and spheroid illuminated by zero-order 
Bessel beam with several selective half-conical angles. The T-matrix method is 
implemented and thus demonstrated to be an effective tool to compute the scattered 
fields. Also, the T-matrix method is able to expand its range of applicability through 
the combination with Bessel beam. With appropriate selection of specific Bessel 
beam parameters, some resonances can be suppressed and this in turn may provide 
useful directions on engineering applications. 
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Abstract
Resonant cantilever mass sensors (RCS) can quantitatively detect the unknown analyte by
measuring the frequency shift induced by attached the mass of analyte. With the
characteristics of high sensitivity, long term stability and easy interfacing with digital
signal processing, such sensors have been successfully applied in various application
fields such as proteomics, genomics, gas sensing, food contamination, cancer detecting,
chemical or fluidic detection. Recently, a great deal of attention has been paid on
developing high sensitivity sensors that can be used outside of laboratory environments.
According to the operating principle of the resonant sensor, the mass sensitivity is mainly
depending on the ratio of the resonant frequency at mode number n to the corresponding
effective mass of the resonant cantilever. Simultaneously increasing the resonance
frequency and reducing the effective mass can effectively improve the mass detection
sensitivity. As reported in many references, reducing geometry dimensions to increase the
natural frequency by MEMS or NEMS technology is an effective way to improve
sensitivity and spatial resolution of resonance mass sensors. Due to the limitation of the
equipment for measuring the nano-sized cantilever deflection, the geometrical size
reduction method encounters a bottleneck in improving the sensitivity. Different from the
method of reducing the cantilever dimension, a new sensitivity improving method was
proposed to inspire high-order mode by optimizing the stiffness and mass distribution of
the cantilever. Through theoretically analyzing the relationship among structural
parameters, vibration modes and the sensitivity, a novel piezoelectric resonant mass
sensor working in the fourth order vibration mode is designed and fabricated. The
experimental sensitivity of the proposed sensor is 41041.188  Hz/g nearly 19.5 times
greater than that of the custom rectangular cantilever sensor of 41085.9  Hz/g. The
simulated sensitivity is nearly consistent with that of the experiment with the deviation of
1.28%. Meanwhile, the quality factor is 82.65, which is about 3.5 times as great as that of
the rectangular uniform cantilever sensor with the same size, hence, validates the
feasibility and effectiveness of the newly proposed sensitivity improving method.

Key words: mass sensor, cantilever, high mode resonance, sensitivity, quality factor

1 Introduction

Resonant cantilever mass sensors (RCS) can quantitatively detect the unknown analyte by
measuring the induced frequency shift by itself. With the characteristics of high
sensitivity, long term stability and easy interfacing with digital signal processing, such
sensors have been successfully applied in various application fields such as proteomics
[Liu et al.(2007); Ekinci and Roukes(2005); Frederic et al.(2005)], genomics, gas sensing,
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food contamination, cancer detecting, chemical or fluidic detection [Murali et al.(2007);
Margarita et al.(2009);Degertekin et al.(2001)].

Recently, a great deal of attention has been paid on developing high sensitivity sensors
that can be used outside of laboratory environments. According to the operating principle
of the resonant sensor, the mass sensitivity is mainly depending on the ratio of the
resonant frequency at mode number n to the corresponding effective mass of the resonant
cantilever, which can be indicated by

2
n n

n e e
n

f fS
m M


 


(1)

In Eq. (1), ∆fn is the frequency shift for per unit mass change of ∆me, fn is the nth flexural-
mode resonance frequency for a cantilever of effective mass Mne. From equation (1), it
can be seen that simultaneously increasing the resonance frequency and reducing the
effective mass can effectively improve the mass detection sensitivity. As reported in
many references, reducing geometry dimensions to increase the natural frequency by
MEMS or NEMS technology is an effective way to improve sensitivity and spatial
resolution of resonance mass sensors[Shen et al.(2006; 2007); Kumar et al.(2010)]. Due
to the limitation of the equipment for measuring the nano-sized cantilever deflection, the
geometrical size reduction method encounters a bottleneck in improving the sensitivity. In
other words, for nano-sized cantilevers, the high sensitivity is achieved at the expense of
complex supplementary equipments for accurate detecting and low anti-jamming in
vacuum. Alternatively, another method of using high-order resonant modes has been
introduced to improve sensitivity and quality factor[Lochon et al.(2005); Maraldo and
Mutharasan (2010)]. Unfortunately, as the most often used method to achieve high order
mode vibration, the geometric size reduction method will directly reduce the cantilever
surface area and make it difficult to manipulate the particles in the detecting system,
Actually, the cantilever profile can also affects the vibration modes of the uniform
cantilevers by means of changing the cantilever profile as well as by changing the
effective stiffness and the mass distribution. Intuitively speaking, the cantilever profiles
can be optimized to lightweight in the manner of reducing the stiffness by a smaller factor,
thus resulting in higher resonance frequencies than that of the uniform cantilevers.

In this paper, different from the methods of reducing the cantilever dimension, a new
sensitivity improving method was proposed to inspire high-order mode by optimizing the
resonant cantilever with step change in thickness of the mass sensor. By theoretically
analyzing the relationship among structural parameters, vibration modes and the
sensitivity, a novel piezoelectric resonant mass sensor inspired with fourth order mode
vibration is designed and fabricated. The experimental and simulated sensitivities of the
proposed sensor are 188.41×104 Hz/g and 192.50× 104 Hz/g respectively, which are
nearly 19.50 times greater than that of the custom rectangular cantilever sensor of
9.85×104 Hz/g. Additionally, the simulation results of the sensitivity is nearly consistent
with that of the experiments with the deviation within 1.28%. Meanwhile, the quality
factor is 82.65, which is about 3.50 times as great as that of the rectangular uniform
cantilever sensor with the same size, hence, validates the feasibility and effectiveness of
the newly proposed sensitivity improving method. Furthermore, the influence of the
length and thickness of the step change section of the resonant cantilever on the
sensitivity is analyzed.
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2 Structure of the high-order mode resonant mass sensor

Commonly, rectangular uniform cantilever is the most widely used spring element in
designing resonant mass sensor, as shown in Fig.1(a), and the corresponding elastic
constant is determined by the structural geometry and material properties. Actually, the
sensitivity is deeply related to the cantilever resonance frequency and the deflection at the
free end. Therefore, it is an effective way to reduce the thickness at the free end properly
to change both the stiffness and mass distribution, as shown in Fig.1(b), in which, the
non-piezoelectric extension is set to be the detection area, and the characters of 1l , 2l and

3l represent the lengths of the piezoelectric layer, and the cantilever and the step part , w
is the width of the cantilever, 1t , 2t and 3t are the thicknesses of the piezoelectric layer and
the cantilever and the step part.

In Fig.1(b), the cantilever can be divided into three distinguished parts with different
cross sections and non-uniform lengths of 1l , 2l and 3l . The bending vibration equation
for constant cross-section beam based on Euler–Bernoulli beam theory is established as
follows.

(a) Rectangular section cantilever sensor (b) high-order mode resonant cantilever
sensor with step change in thickness of

the cantilever

Fig.1 Comparison between two kinds of cantilever sensors

   
4

2
4 0i i

d Y x
D mY x

dx
  (2)

In Eq. (2), iD and im represent the bending modulus and mass per unit length of each part,
respectively.  is the angular frequency, )(xY is the displacement amplitude.In Eq.
(3), 1D and 1m are the bending modulus and mass per unit length in section 1, 2D and 2m in
section 2, and 3D and 3m in section 3.Then, the natural frequencies of the cantilever are
obtained as

2 2 2
1 2 3 31 2

1 2 32 2 2
n n nk k k DD Df
m m m  

    (3)

where, nk1 , nk 2 and nk 3 are the wave numbers of the n th, n th and n  th order mode in
section 1, section 2, and section 3.
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When single piezoelectric layer is utilized, the effective stiffness and mass of the three
lengths ( 1D , 1m , 2D , 2m , 3D , 4m ) can be expressed as Eq. (4) to Eq. (9).
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where, 1 , 2 and 3 are the mass densities of each section, w is the width.

If the added mass is a point mass loaded at the cantilever tip, the flexural-mode resonance
frequency thus can be approximated in terms of Rayleigh Quotient.

 2
2

1
2

e
n

n e
n n

Kf
M m Y x

 
  

(10)

In Eq. (10), x is the position of the added point mass, nY2 is the nth mode shape, 
nK and


nM are effective flexible stiffness and effective mass.

For 
nMm  , the resonance frequency shift nf , due to the added point mass at the

cantilever tip, is thus Eq. (11)

 
 

 2 2
2 2'

2
2

1 1
2 2( )

n n
n n n n n ee e nn n n

m Y x m Y x
f f f f f

MM M m Y x

    
    

  
(11)

If the added mass m is distributed on the surface of the non piezoelectric extension part,
the resonance frequency shift can be expressed as Eq. (12).

' 1
2

e

n n n n e
n

mf f f f
M


    (12)

The detailed expression of the mass sensitivity of the proposed cantilever sensor can be
obtained, which can be expressed as Eq. (13).
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(13)

3 Simulation and Experiments

Through numerical simulation, the detection sensitivity for different vibration modes can
be obtained in Fig.2. It can be seen that the sensitivity of the fourth order vibration mode
is much higher than those of the lower order vibration modes. Then, the influences of the
step parameters including step length and thickness on the sensitivity were analyzed, as
shown in Fig.3 and Fig.4. The output sensitivity is varying with the step length
nonlinearly while the thickness and the total length keep constant. When the length l3
reaches 6.00×10-3 m, the sensitivity can achieve the highest value, as shown in Fig.3.
Meanwhile, keeping the step length and the total cantilever thickness constant, the
sensitivity also varies nonlinearly with the thickness ratio of the step part to the cantilever.
In the thickness ratio range from 3.33×10-1 to 5.00, the sensitivity deceases with the
increasing of the thickness ratio.

Fig.2 Sensitivity curve of each order with step change in thickness of the cantilever
sensor

More importantly, to evaluate the sensitivity improvement, we fabricated a novel grooved
cantilever type mass sensor by using electric discharge wire-cutting technology, as shown
in Fig.5. The mass sensor mainly consists of a fixture and a cantilever which was made by
bonding a PZT layer with 3-1000.4  m width, 4-1050.2  m thickness, 2-1000.1  m length
to a two-layer steel sheet with 5

2 1000.6 t m, 2
2 1062.1 l m , 5-

3 1000.3 t m,
3-

3 1080.1 l m using conductive epoxy. The experiment results in Fig.6 show that the
sensitivity is about 188.41×104 Hz/g with a quality factor of 82.65, which is much higher
than that of the rectangular uniform cantilever sensor. Also, the simulation result is nearly
consistent with that of the experiments with a maximum deviation of 1.28%. Finally, the
proposed design model for the high order modes resonant sensors is adequately validated.
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3l (
3-10 m)

Fig.3 The influence of the length 3l on the sensitivity of the sensor

Fig.4 The influence of the ratio of thickness )( 323 ttt  on the sensitivity

Fig.5 Non-uniform thickness sensor with large thickness ratio
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Fig.6 Test system for sensor sensitivity measurement

4 Conclusion

As the key spring element in the resonant mass sensor, a new cantilever profile has been
proposed to inspire high-order mode by optimizing the mass and stiffness distribution at
the free end. The analytical model was established for theoretically analyzing the
relationship among structural parameters, vibration modes and the sensitivity. Through
the linear search optimization, a novel piezoelectric resonant mass sensor inspired with
fourth order mode vibration is designed and fabricated. The experimental and simulated
sensitivities of the proposed sensor are 188.41×104 Hz/g and 192.50×104 Hz/g
respectively, which are nearly 19.50 times greater than that of the custom rectangular
cantilever sensor of 9.85×104 Hz/g. Additionally, the simulation results of the sensitivity
is nearly consistent with that of the experiments with the deviation within 1.28%.
Meanwhile, the quality factor is 82.65, which is about 3.50 times as great as that of the
rectangular uniform cantilever sensor with the same size, hence, validates the feasibility
and effectiveness of the newly proposed sensitivity improving method.
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Abstract 

A new smoothed finite element method (S-FEM) with tetrahedral elements for finite strain analysis 
of nearly incompressible solids is proposed. The proposed method is basically a combination of the 
F-bar method and edge-based S-FEM with tetrahedral elements and is named “F-barES-FEM-T4”. 
The isovolumetric part of the deformation gradient (Fiso) is derived from the F of ES-FEM, whereas 
the volumetric part (Fvol) is derived from the cyclic smoothing of J (=det(F)) between elements and 
nodes. F-barES-FEM suppresses the pressure oscillation in nearly incompressible materials 
successfully with no increase in DOF. 
Keywords: F-bar method, Smoothed finite element method, Tetrahedral element, Finite strain, 
Nearly incompressible, Pressure oscillation. 

Introduction 

In the practical numerical simulation for solids, the use of tetrahedral elements are indispensable due 
to the complexity of body shapes. The edge-based smoothed finite element method with first-order 
tetrahedral elements (ES-FEM-T4) [Liu et al. (2010)] is one of the most accurate FE formulations 
that resolve the shear locking issue of the standard tetrahedral (i.e., constant strain) FE formulation. 
However, ES-FEM-T4 raises volumetric locking in the analysis of nearly incompressible materials 
such as rubber. Therefore, development of accurate FE formulations with T4 elements is still in a 
research stage. 
 
There are already several methods proposed for locking-free analysis with tetrahedral meshes, but 
they all have some sort of serious drawbacks as follows. 
 Hybrid (or mixed) second-order tetrahedral elements: 

significant increase in DOF; inevitable Lagrange multipliers; convergence problems in contact 
analysis; accuracy loss in severely large strain analysis. 

 F-bar-Patch method [Neto et al. (2005)]: 
difficulties in pre-definition of good-quality patches; shear locking. 

 Selective reduced integration hexahedral elements as the subdivision of tetrahedral elements 
(4 hexahedrons in a tetrahedron): 
significant increase in DOF; severe element distortion of initial mesh; pressure oscillation. 

 Selective edge/node-based S-FEM-T4 (ES/NS-FEM-T4) [Onishi and Amaya (2014)]: 
pressure oscillation; locking at corners. 

 Bubble-enhanced ES-FEM (bES-FEM-T4) [Ong et al. (2015)]: 
significant increase in DOF; quick pop out of bubble nodes; pressure oscillation. 

In addition, formulations with the selective integration have a drawback that they cannot treat 
materials with deviatoric/volumetric coupling terms. For these reasons, a new formulation without 
intermediate nodes, mixed variational principle, pre-defined patches, element subdivision, selective 
integration, nor bubble nodes is awaited. 
 
In this paper, we propose a new ES-FEM-T4 formulation combined with F-bar method [Neto et al. 
(1996)] named “F-barES-FEM-T4”. The smoothed deformation gradient and stress in the proposed 
method are defined at each edge, and the stress integration is performed over the smoothing domains 
of ES-FEM. The isovolumetric part of the deformation gradient (Fiso) is derived from F of ES-FEM, 
whereas the volumetric part (Fvol) is derived from the cyclic smoothing of J (=det(F)) between 
elements and nodes. Therefore, the proposed method can suppress the pressure oscillation without 
any unfavorable approaches listed above. 
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Method 

Mutli-Smoothed Deformation Gradient 

As is well known today, NS-FEM-T4 can avoid volumetric locking and gives solutions that have less 
pressure oscillation in nearly incompressible cases. It implies that the node-based smoothing of  𝐽 (≡
det(𝑭)) can be regarded as an operation to suppress pressure oscillation to some extent. Here we 
define the cyclic smoothing of J as the following operation: 
 

1) Calculate 𝐽 at each element, 𝐽elem, in the same way as the standard FEM-T4. 
2) Calculate smoothed 𝐽 at each node, 𝐽node, in the same way as NS-FEM-T4: 

𝐽node =
∑ 𝐽𝑖

elem 𝑉𝑖
elem

𝑖∈𝕀

∑ 𝑉𝑖
elem

𝑖∈𝕀

, (1) 

where 𝕀 is the set of elements attached to the each node and 𝑉 denotes the volume. 
3) Calculate smoothed 𝐽 at each element, 𝐽elem, as the average of 𝐽node: 

𝐽elem =
∑ 𝐽𝑗

node
𝑗∈𝕁

4
, (2) 

where 𝕁 is the set of four nodes comprising the each element. 
4) Repeat 2) and 3) as necessary to calculate multi-smoothed 𝐽 at each element, 𝐽e̅lem. 

(𝐽elem is considered as 𝐽elem in Eq. (1), and the last 𝐽elem in Eq. (2) is considered as 𝐽e̅lem.) 
5) Calculate multi-smoothed 𝐽 at each edge, 𝐽e̅dge, in the same way as ES-FEM-T4: 

𝐽e̅dge =
∑ 𝐽�̅�

elem 𝑉𝑘
elem

𝑘∈𝕂

∑ 𝑉𝑘
elem

𝑘∈𝕂

, (3) 

where 𝕂 is the set of elements attached to the each edge. 
 

In F-barES-FEM-T4, 𝐽e̅dge  is used to define the volumetric part of the deformation gradient as 
�̅�vol

edge
= (𝐽e̅dge)

1/3
 𝑰. 

 
Meanwhile, ES-FEM-T4 can avoid shear locking and gives accurate solutions in the analysis with 
compressible materials. The smoothed deformation gradient of ES-FEM-T4 is calculated as 

�̃�edge =
∑ �̃�𝑘

elem 𝑉𝑘
elem

𝑘∈𝕂

∑ 𝑉𝑘
elem

𝑘∈𝕂

. (4) 

In F-barES-FEM-T4, �̃�edge is used to define the isovolumetric part of the deformation gradient as 
�̅�iso

edge
= (𝐽edge)

−1/3
 �̃�edge, where  𝐽edge ≡ det (�̃�edge). 

 
Finally, the multi-smoothed deformation gradient at each edge, �̅�edge, is defined in manner of the F-
bar method as 

�̅�edge = (
𝐽e̅dge

𝐽edge
)

1/3

�̃�edge. (5) 

 

Nodal Internal Force and Stiffness 

The Cauchy stress at each edge 𝑻edge is calculated in the standard way with �̅�edge. In contrast to the 
methods based on the selective integration, F-barES-FEM-T4 has no difficulty in treating dev/vol 
coupled materials. 
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The contribution of each edge to the nodal internal force is then calculated in manner of the F-bar 
method as 

{𝑓int
edge

} = [�̃�edge]{𝑇edge}𝑉edge, (6) 
where [�̃�edge] is the smoothed B matrix of ES-FEM-T4 at each edge. In contrast to the methods based 
on mixed variational formulation, F-barES-FEM-T4 is purely a displacement-based formulation and 
thus eliminates the use of pressure or volumetric strain unknowns. 
 
The contribution of each edge to the tangent stiffness matrix, [𝐾edge], necessitates a little complicated 
way of derivation due to the cyclic smoothing, thereby omitting in this paper. As the number of the 
smoothing cycles is increased, the bandwidth of [𝐾] is also increased; however, there is no increase 
in DOF. 

Results 

Bending of Cantilever 

Figure 1 shows the pressure distributions of a small deformation cantilever bending analyses in 2D 
plane-strain condition. The analysis domain is a 10 m × 1 m rectangle discretized with a structural 
mesh of 500 triangular elements. Its left-hand side is perfectly constrained, and a concentrated 
bending load is assigned to the top-right node. The material is the neo-Hookean hyperelastic material 
with an initial Poisson’s ratio of 0.499. It is clearly shown that NS-FEM-T3 raises severe pressure 
oscillation (Fig. 1 (a)), whereas our method with k times cyclic smoothing, F-barES-FEM-T3(k), 
suppresses pressure oscillation to some extent (Fig. 1 (b)-(d)). Our heuristic diagnostics suggest that 
νini < 0.48 ⟹ 𝑘 = 0  (i.e., ES-FEM is recommended), 0.48 ≤ νini < 0.49 ⟹ 𝑘 = 1 , 0.49 ≤
νini < 0.499 ⟹ 𝑘 = 2, 0.499 ≤ νini < 0.4999 ⟹ 𝑘 = 3 and so on. 

 

 
(a) NS-FEM-T3                                                  (b) F-barES-FEM-T3(1) 

 
                   (c)  F-barES-FEM-T3(2)                                           (d) F-barES-FEM-T3(3) 
Figure 1. Pressure distributions of the plane-strain small deformation cantilever bending 

analysis. The contour range is adjusted to the result of (d). Increase in the number of cyclic 

smoothing helps suppressing the pressure oscillation in the nearly incompressible material.  

 

Partial Compression of Block 

Figure 2 shows the pressure distributions of a finite strain block compression analyses in 3D. The 
analysis domain is a 1 m cube discretized with an unstructured mesh of 55821 tetrahedral elements. 
Its –x, –y and –z faces are constrained in the normal direction of each face, its +z face is constrained 
in x and y directions, and a pressure is applied to 1/4 of +z face. The material is the Arruda-Boyce 
hyperelastic material with an initial Poisson’s ratio of 0.499.  As noted in Introduction, ES/NS-FEM-
T4 suffers from pressure oscillation (Fig. 2 (a)). In contrast, our F-barES-FEM-T3(2) and F-barES-
FEM-T3(3)  suppress pressure oscillation to some extent (Fig. 2 (b), (c)). 
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(a)ES/NS-FEM-T4                   (b) F-barES-FEM-T4(2)                (c) F-barES-FEM-T4(3) 

Figure 2. Pressure distributions of the finite strain block compression analysis. The contour 

range is adjusted to the result of (c). Our method with three-time cyclic smoothing, F-barES-

FEM-T4(3), successfully suppresses the pressure oscillation in finite strain analysis of nearly 

incompressible materials.  

Conclusions 

A novel S-FEM called F-barES-FEM-T4 was proposed. The cyclic smoothing of 𝐽 (≡ det(𝑭)) 
between elements and nodes was introduced to combine the idea of F-bar method and ES-FEM-T4 
efficiently. Accordingly, F-barES-FEM-T4 suppressed the pressure oscillation in nearly 
incompressible materials with no increase in DOF. 
 
Meanwhile, the relations among the Poisson’s ratio, the number of smoothing cycles, underestimation 
of stress concentrations, etc. are still unclear. The impact of the increase in the matrix bandwidth on 
the computational efficiency is also unclear. Further investigation about them is our future work. 
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Abstract 

A new version of the Method of Fundamental Solutions is proposed. Instead of 
locating external point sources, an external boundary should be defined, and an 
extension of the original solution is created by enforcing the original boundary 
conditions for the extended problem. This leads to a better conditioned problem than 
the traditional Method of Fundamental Solutions. To numerically solve the extended 
problem, a quadtree-based multi-level finite volume method is used, which is quite 
economical from the computational points of view. In addition to it, the problem of 
large, dense and ill-conditioned systems is completely avoided. 
Keywords: Meshless Methods, Method of Fundamental Solutions, Multi-level 
Methods, Quadtrees 

Introduction 

Due to its simplicity and accuracy, the Method of Fundamental Solutions (MFS, see 
e.g. [Alves et al. 2002]) has become quite popular among the meshless methods. This 
approach can be applied easily, if the fundamental solution of the original partial 
differential equation is known (or the original problem can be converted to such a 
problem). In its traditional form, the approximate solution is sought as a linear 
combination of the fundamental solution shifted to some external source points: 





N

j
jj xxxu

1
)~()( ,    (1) 

where Nxxx ~,...,~,~
21  are predefined source points located in the exterior of the domain 

  of the original partial differential equation,   denotes the fundamental solution. 
In case of the familiar second-order partial differential equations,   has a (weak) 
singularity at the origin, so that the approximate solution (1) has singularities at the 
source points but remains smooth inside the domain. The a priori unknown co-
efficients N ,...,, 21  can be computed by enforcing the boundary conditions at 
some boundary collocation points Nxxx ,...,, 21 : 
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     (2) 

Here D  and N  denote the Dirichlet part (and the Neumann part, respectively) of 
the boundary of the domain  ; kn  is the outward normal unit vector at the point kx ; 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

547



 
 

ku , kv  are the Dirichlet and Neumann boundary conditions at the boundary colloca-
tion points. 
 
Generally speaking, the MFS has excellent convergence properties (see [Li (2005)]); 
however, it is well known that the matrix of the system (2) is fully populated, non-
selfadjoint and severely ill-conditioned, especially when the sources are located far 
from the boundary. On the other hand, if they are located too close to the boundary, 
numerical singularities are generated. In addition to it, the proper definition of the 
location of the sources can hardly be automatized. Therefore it is popular to allow the 
source points and the boundary collocation points to coincide, which needs special 
tricks to handle the problem of appearing singularities.  
 
To circumvent these difficulties, a lot of approaches have been developed. In the 
boundary knot method [Chen (2002)], [Chen et al. (2005)], nonsingular general solu-
tions are used instead of fundamental solutions. It is also possible to use fundamental 
solutions concentrated to lines rather than discrete points, see [Gáspár (2013b)]. In 
both approaches, the solution is approximated by nonsingular functions, thus, the 
problem of singularity is avoided. However, though they have especially good 
accuracy, the resulting linear system is severely ill-conditioned, which can cause 
serious computational difficulties. The problem is more difficult, if the original 
fundamental solution is used. Utilizing some boundary mesh structure, the appearing 
singular integrals can be evaluated analytically, see [Young et al. (2005)]. The 
desingularization can also be carried out by solving some auxiliary Dirichlet 
subproblem, as in the Modified Method of Fundamental Solutions (MMFS, see 
[Šarler (2008; 2009)]), or in the Boundary Distributed Source method (BDS, see [Liu 
(2010)]). It is also possible to combine the above approach with the use of approxi-
mate fundamental solutions which have no singularity at the origin; such an 
approximate fundamental solution may be the fundamental solution of the fourth-
order Laplace-Helmholtz operator )( 2Ic  with a sufficiently large scaling 
parameter c, (the Regularized Method of Fundamental Solutions, see [Gáspár (2013a; 
2013b)]). A further possibility is that, in contrast to Eq. (1), the approximate solution 
is sought as a linear combination of the normal derivatives of   (dipole 
formulation), which can be considered a discretization of an indirect boundary 
integral equation based on a double layer potential and so forth. 
 
Most of the above methods are indirect in the sense that they convert the original 
problem to the determination of some coefficients of the linear combination (i.e. the 
strengths of the point sources in the original MFS-formulation). These coefficients 
control the values (and their derivatives) at the collocation points, thus control the 
whole approximate solution inside the domain. 
 
In this paper, we present a technique in which the values at the collocation points are 
controlled by the values at some external boundaries. In another words, an extension 
(continuation) of the solution is computed directly by prescribing certain, a priori 
unknown ‘external boundary conditions’. If the external boundary is located 
sufficiently close to the original boundary, this results in much better conditioned 
problem. The external conditions are updated iteratively. During the iteration 
procedure, the original problem should be solved in a larger domain, which can 
economically be performed by using quadtree-based multi-level tools. In addition to 
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this, the problem of large, fully populated and ill-conditioned matrices is completely 
avoided. 

Approximation of the solution by external boundary conditions 

To illustrate the above outlined idea, consider the 2D model problem with pure 
Dirichlet boundary conditions: 

     uUU  |,in 0     (3) 

defined on a circle }||||:{:: 2 RxxR  R  with boundary RR  : . Let us 
express the function u in terms of (complex) Fourier series: 

   ikt

k
k etu  )( ,     (4) 

where, for the sake of simplicity, we used polar coordinated. Then the solution of (3) 
is expressed as: 

ikt

k

k

k e
R

r
trU  










||
),(     (5) 

Now consider a larger circle  R:~  with boundary  R:~ , where 0 . 
Then Eq. (5) defines a harmonic continuation of U to ~ . On the boundary this yields: 
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provided that the series is convergent in a proper function space. (This is sometimes 

not the case due to the exponentially increasing factor 
||

1
k

R







 
 .) 

Conversely, if U is prescribed along the external boundary ~ : 

         uUU ~|,~in 0 ~ 


,    (7) 

where ikt

k
k etu  )(~ , then the restriction of U to   defines a (much more smooth) 

function: 
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k

k e
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1)(     (8) 

The operator )()~(:~ 2/12/1  HHA  is always bounded and 1||~|| A , but it is not 
regular, since the inverse operator is not bounded. However, the discretized operators 
might have uniformly bounded inverses, if the distance   itself depends on the 
discretization. Let us discretize the above problems by cutting the Fourier series (6) 
and (8) at a maximal index N. Define the distance   of the original and the external 

boundary to be inversely proportional to N, i.e. 
N

R

2: 0 . Then Eqs. (4), (6) are 

rewritten as: 
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, the operators 1~
NA  defined by 

NNN uuA ~~  are uniformly bounded, moreover, the condition numbers are also 

bounded: 02)~(cond 
 eAN , independently of N. Therefore the ‘discrete’ problem: 

 find Nu~  in such a way that the solution of the Dirichlet problem 

NuUU ~|,~in 0 ~ 


,    (10) 

satisfies the original ‘inner’ boundary condition NuU | ; 
is now a well-conditioned problem, independently on N (which characterizes the 
fineness of the discretization). 
 
Based on the above considerations, in order to solve the Dirichlet problem (3), it is 
sufficient to solve the extended problem 

uUU ~|,~in 0 ~ 


,    (11) 

where the boundary condition u~  should be chosen in such a way that the original 
boundary condition 

uU | ,      (12) 

is satisfied. That is, the approximate solution of the original boundary value problem 
is controlled by the external boundary condition u~  rather than external sources as in 
the case of the traditional method of fundamental solutions. It is expected that, in 
order to enforce the boundary condition (12), the simple, traditional iterative methods 
e.g. the Seidel iteration or the simplest Richardson iteration 

 uUuu nnn   |~:~
1     (13) 

can be applied, where 0  is a predefined iteration parameter. In the above model 
problem, this remains the case. 

The external boundary ~  can be defined in a flexible way. The approach can easily 
be generalized for mixed boundary conditions and 3D problems as well. 

Solution of the extended problem 

In principle, the extended problem (11) can be solved by an arbitrary method. Since 
the external boundaries are not predefined, it is worth defining them in such a way 
that the extended problem (11) could easily be handled. In the next examples, the 
extended problem is solved by the regularized method of fundamental solutions 
[Gáspár (2013a)], which does not result in an optimal technique from a computational 
point of view, however, it demonstrates well the main idea of the approach. 

Example 1. Let   be the unit circle and discretize the boundary   by the boundary 
collocation points Nxxx ,...,, 21  in an equidistant way. Let the external boundary 
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~  be a concentric circle with radius 1 , where 

N



2: 0  ( 0  is a constant of 

proportionality). That is, the distance of the original and the external boundary is pro-
portional to the characteristic distance of the boundary collocation points. Consider 
the pure Dirichlet problem (3) with the simple test solution 

yyxU ),(       (13) 

(using the more familiar notations x, y for the space variables). The extended problem 
(11) is (approximately) solved by the regularized method of fundamental solution 
(see [Gáspár (2013a)]), using the truncated fundamental solution: 





















|||| iflog
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|||| if||||log
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xx

x     (14) 

In this example, the truncation parameter   was set to the value 
N

)1(2
4
1: 
 . 

The collocation points on the external boundary 
~~,...,~,~

21 Nxxx  were defined from 
the original collocation points Nxxx ,...,, 21  by shifting them in the outward normal 
direction. The extended solution is sought in the form: 





N

j
jj xxxU

1
)~(~:)( ,    (15) 

where the coefficients j~  are determined by the system of equations: 





N

j
kkjj

N

j
jkj NkuAxx

11
),...,2,1(~~~:)~~(~   (16) 

In short:  

uA ~~~
       (17) 

(where the matrix A
~  and the column vectors u~,~  are assembled from the entries 

defined in Eq. (16)). 
 
At the original boundary collocation points: 





N

j
kkjj

N

j
jkj NkuAxx

11
),...,2,1(~:)~(~ ,  (18) 

In short: 

uA ~       (19) 

Eliminating the vector of coefficients ~ , we have: 

                                            uuAA  ~~ 1       (20) 
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Remark: In the traditional method of fundamental solutions, the coefficients ~  are 
determined by enforcing the original boundary conditions at the original boundary 
collocation points, i.e. by solving Eq. (19) only. However, the matrix A is generally 
much more ill-conditioned than 1~ 

AA . That is, the original boundary conditions are 
more easily controllable by the external boundary conditions than by the strengths of 
the external sources. If the distance   is small enough, then the matrix 1~ 

AA  is 
diagonally dominant, and the Richardson iteration  

 uuAAuu  
 nnn

~~~:~ 1
1     (21) 

is convergent for a sufficiently small iteration parameter 0 .  

 

In this example, the iteration parameter was set to 1: . Table 1 shows the condition 
numbers of the matrices A and 1~ 

AA  as well as the relative 2L -errors of the 
approximate solution (in %, after 5 Richardson iterations (21)) at the boundary 
collocation points with different numbers of boundary collocation points (N). The 
constant of proportionality 0  was set to 2:0  . The results demonstrate that the 
system (20) is really much better conditioned than the system (19) obtained by the 
classical method of fundamental solutions. 

 

Table 1. Results of Example 1 

N 16 32 64 128 256 512 

)(cond A  478 1.1E+3 4.1E+3 1.1E+4 2.8E+4 6.2E+4 

)~(cond 1
AA  46 89 139 180 207 226 

Rel. 2L -error (after 5 
Richardson iterations) 

0.4528 0.0317 0.0012 3.25E–5 1.54E–5 2.44E-5 

 

Example 2. The difference between the test problems of Example 1 and Example 2 is 
that now a mixed boundary condition is prescribed: 

,|,| v
n

U
uU

ND





       (22) 

A half of the boundary was considered to be the Dirichlet part D , and the remaining 
part was treated as a Neumann boundary N . The boundary conditions were defined 
to be consistent with the test solution (13). In principle, it is possible to use the same 
strategy as earlier, i.e. to control the original mixed boundary by pure Dirichlet condi-
tion on the external boundary, but this seemed to result in slow convergence. Instead, 
let us control the original mixed boundary by a similar mixed boundary condition on 
the external boundary as shown in the followings. 

The extended problem: 

v
n

U
uUU

ND

~|,~|,~in 0 ~~ 






   (23) 
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is solved again by a version of the regularized method of fundamental solutions, 
assuming the approximate solution in the following form 





N

j
jj xxxU

1
)~(~:)( ,    (24) 

where   denotes again the truncated fundamental solution (14). The Dirichlet 
boundary condition is treated as earlier, but the proper treatment of the Neumann 
condition needs a desingularization procedure [Šarler (2008; 2009)], [Liu (2010)], 
[Gáspár (2013a; 2013b).] The normal derivatives of U are expressed as: 












 N

j
jj xx

n
x

n

U

1
)~(~)(     (24) 

Consequently, the boundary values of the external boundary satisfy 
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  (25) 

Note that the diagonal entries kkB
~  should be defined in a special way (by solving a 

pure Dirichlet subproblem in the extended domain) due to the desingularization 
procedure, see [Liu (2010)], [Gáspár (2013a)] for details. 

The original boundary conditions can be enforced by the following system of 
equations: 
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  (26) 

Let us build up the following matrices and vectors: 

)(:,~:~,:,~:~
)(:,~:~,:,~:~

Nkkkkkkjkjkjkj

Dkkkkkkjkjkjkj

xvwvwBCBC

xuwuwACAC




 (26) 

Then we have: 

wCwC  ~,~~~       (27) 

Eliminating the vector of coefficients ~ , we have: 

                                            wwCC  ~~ 1 ,      (28) 

Once the external boundary conditions w~ have been computed, the coefficients can 
also be computed by wC ~~:~ 1 . Thus, the approximate solution on the original 
boundary uA ~ , which makes it possible to directly compute the 2L -error of 
approximation at the boundary collocation points (referred to as ‘direct solution’ in 
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Table 2). The iteration parameter was set again to 1: . Table 2 shows the condition 
numbers of the matrices C and 1~ 

CC  as well as the relative 2L -errors of the 
approximate solution (in %, after 5 Richardson iterations) at the boundary collocation 
points with different numbers of boundary collocation points (N). The constant 0  
was set to 2:0  . The results show that the method still works in case of mixed 
boundary conditions. 
 
Finally note that the extended solution can be computed also in a quite economical 
way based on a non-uniform cell system and multi-level tools. This is outlined in the 
next section. 

 

Table 2. Results of Example 2 

N 16 32 64 128 256 512 

)(cond C  322 1.1E+3 4.1E+3 1.2E+4 2.9E+4 6.5E+4 

)~(cond 1
CC  65 218 1.0E+3 5.3E+3 2.4E+3 1.0E+5 

Rel. 2L -error (direct 
solution) 

0.0407 0.0077 0.0026 0.0014 0.0010 0.0008 

Rel. 2L -error (after 5 
Richardson iterations) 

0.8515 0.2100 0.0526 0.0137 0.0036 0.0012 

 

Multi-level solution using quadtree-based cell systems 

From a computational point of view, the realization of the above methods is far from 
being optimal. However, if the extended problem (11) - (12) or (23) is handled direct-
ly, this makes it possible to use the much more economical multi-level techniques. 
Here a quadtree- (QT-) based finite volume method is used (see [Gáspár (2000)]). 
(The natural 3D generalization is based on the octtree cell system.) Strictly speaking, 
this is a domain type method; however, the generation of the cell system is performed 
entirely on the basis of the boundary collocation points in a completely automatic 
way, so that it can be considered a meshless method. The computational cost as well 
as the memory requirement is typically )log( NN O only.  
 
Thus, the solution algorithm is as follows. 

 Generate a quadtree cell system by the boundary collocation points 1x , 2x ,…, 

Nx . This results in a nested cell system with automatically created local 
refinements at the boundary collocation points. By additional subdivisions, it 
is possible to assure that the ratio of the sizes of the neighbouring cells is at 
most 2, i.e. no abrupt changes occur in cell sizes (regularization of the QT-cell 
system). 

 Shift the points 1x , 2x ,…, Nx  in the outward normal direction with the 
distance  . Determine the leaf cells of the QT-cell system which contain these 
points. (These cells have typically larger sizes than the finest cells containing 
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the boundary collocation points.) Define the external boundary points ,~
1x ,~

2x

…, Nx~  to be these cell centers. 
 Using simple cell-centered finite volume schemes, solve the extended problem 

and update the external boundary condition by e.g. a Richardson iteration. 
Repeat this step until convergence. 

 
The solution procedure can be embedded in a natural multi-level context (see [Gáspár 
(2000; 2004)] for details). 

Example 3. Let   be a circle contained in the unit square ]1,0[]1,0[   centered at the 
point ]5.0,5.0[  with radius 30.0:R . Discretize the boundary   by the boundary 
collocation points Nxxx ,...,, 21  in an equidistant way. A regular QT-cell system 
was generated by recursively subdividing the unit square based on the boundary 
collocation points. The maximal subdivision level was 8, i.e. the finest cell size was 
1/256. The collocation points of the external boundary 

~~,...,~,~
21 Nxxx  were defined 

as the cell centers of the boundary collocation points shifted in the outward normal 

direction with distance 
N

R


2: . Figure 1. illustrates the QT-cell system and the 

external boundary points generated by 32 boundary collocation points. 

 

 
 

Figure 1.  Quadtree cell system and external boundary points generated by  

32 boundary collocation points 

 

The test solution was as follows: 

2
12),(  yxyxU       (29) 

(using the more familiar notations x, y for the space variables). Mixed boundary 
conditions were prescribed: on a half of the boundary, Dirichlet boundary condition 
was supposed, while the remaining part of the boundary was considered as Neumann 
boundary. Along the boundary of the initial unit square, a separate boundary 
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condition can be prescribed independently of the original boundary conditions; in this 
example, a homogeneous Dirichlet boundary condition was imposed. The method 
gives the approximate solutions in the interior and the exterior of the original domain 
at the same time. The Dirichlet data at the external boundary points were updated by 
Richardson iteration (13).  
 
Another variant of the method was also tested. Here mixed boundary conditions were 
prescribed also along the external boundary. That is, the original Neumann boundary 
condition was controlled by an external Neumann boundary condition, which was 
updated by Richardson iteration as well: 














  v

n

U
vv n

nn |~:~
1     (30) 

At the Neumann part, the external boundary was supposed to be the union of circles 
centered at the external Neumann points; the radii were defined to be proportional to 
the characteristic distance of the external Neumann boundary points. This boundary 
condition was implemented on the (coarser) QT-cells containing the external 
Neumann points only. (The role of external boundaries is only to control the original 
boundary conditions at the original boundary collocation points, therefore the solution 
at the external boundaries is allowed to be less exact than at the original boundary.)  
Table 3 shows the relative 2L -errors (in %) at the original boundary collocation 
points in both cases. Here ‘Method 1’ refers to the method which controls the mixed 
boundary conditions via external Dirichlet boundary condition, while ‘Method 2’ 
corresponds to the external mixed boundary conditions. It can be clearly seen that the 
exactness of the two variants is the essentially the same: however, the second variant 
has proved faster. 

 

Table 3. Relative 2L -errors using QT-cell system, Example 3 

N 16 32 64 128 256 

Rel. 2L -error (Method 1) 0.7035 0.1606 0.0918 0.0338 0.005 

Rel. 2L -error (Method 2) 0.7036 0.1606 0.0913 0.0337 0.004 
 
 
For illustration, Figure 2 shows the approximate solution on the QT-cell system with 
32 boundary collocation points. Along the boundary of the initial rectangle of the QT-
subdivision, a homogeneous Dirichlet boundary condition was prescribed. In the 
vicinity of the external boundary, the solution is less smooth than the interior of the 
original domain, similarly to the case of the traditional method of fundamental 
solutions. However, the irregularity is much less, due to the fact that the solution is 
controlled by external boundary condition rather than the strengths of the external 
singularities; moreover, the cell system is allowed to be coarser here than in the 
vicinity of boundary collocation points. 
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Figure 2.  Approximate test solution on a quadtree cell system generated by  

32 boundary collocation points 

 
 

Conclusions 

In this paper, the original idea of the Method of Fundamental Solution has been 
extended in the sense that the approximate solution was sought as a solution of an 
extended problem with an external boundary. This often results in a well-conditioned 
problem provided that the external boundary is located sufficiently close to the 
original boundary (depending also on the discretization). The method controls the 
values along the original boundary via the external boundary conditions. These 
external boundary conditions are adjusted iteratively using familiar, simple iterative 
techniques. The external boundary can be defined in a flexible way. In the vicinity of 
the external boundary, the approximate solution is allowed to be less exact than along 
the original boundary, which makes it possible to apply a coarser discretization at the 
external boundaries. The numerical benefit of the approach is that the extended 
problem can be handled by the quite economical quadtree-based multi-level method. 
Moreover, the problem of large, dense and ill-conditioned systems of equations is 
also avoided. 
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Abstract
Bird ingestion by jet engines will lead to serious consequences such as power loss, aircraft fires, and
high speed blades debris, which is catastrophic to aviation. The primary compressor is the most
vulnerable component during the transient impact. The method of experiment and simulation
usually was used to anti-bird strike design on blade. However, simulation and experiment on
compressor under bird strike at high rotating speed was rarely carried out.
In present paper, the model of a compressor impacted by bird is established by using commercial
explicit code PAM-CRASH. The bird is meshed with smooth particles hydrodynamic (SPH)
method and Murnaghan equation of state is employed to describe the fluid behaviour of the bird
under high speed impact. The bird model shows no sign of instability and accurately characterized
the splashing particles of the bird. Simulation of compressor revolving at speed of 3000r/min and
8000r/min impacted by bird with mass of 250g is preformed according to the experiments. The
results show a good agreement between simulation and test , which indicates that the SPH–FE
method could provide a very powerful numerical model in predicting the transient dynamic
responses of engine structures in bird impact events. Finally, a number of parametric studies are
conducted including: influence of the failure stain, the bird impact location, and impact timing.
Keywords: Bird impact, Engine blades, SPH method, Constitutive model, Transient finite element
analysis

Introduction
Just about one and a half years after the first airplane was invented, Wright Brothers recorded the
first bird-strike on 7 September 1905 [1]. Nowadays, bird-strike puts almost every single flight in
risk. According to Federal Aviation Administration (FAA) database [2], the number of reported
wildlife strikes of civil aircraft increased dramatically from 1990 to 2013, as is shown in Fig.1. In
America, 10,856 bird strikes occurred solely in the year of 2013 and 601 of them caused damage to
aircraft components. Besides, over 50 planes of civil aviation have been destroyed and more than
220 people have died due to bird-impact accidents since 1912 [3].

Figure 1. Number of reported wildlife strikes with civil aircraft, USA, 1990–2013.
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Aircraft engines are most easily damaged by bird strikes (30 percent of all damaged components)
compared with other components. They are particularly vulnerable while turning at a very high
speed during the takeoff phase when the plane is at a low altitude where birds are commonly found.
On 20th December, 2013, a Bombardier Challenger 300 hit 4 or 5 soaring turkey vultures at 1800
feet AGL while climbing from the Florida airport. Pilot declared an emergency and landed safely at
an alternate airport. Repair costs for the engine and tail were over $800,000. The relevant airline
closed down for 22 days. Fortunately, no one was injured in the accident.

Figure 2. The severely damaged engine

In bird ingestion tests, engines are required to demonstrate their ability to withstand bird ingestion
and the following ingestion to produce enough trust as required by safety regulations. However, full
scale of an aircraft engine testing is very expensive. In order to decrease this cost, a range of
analysis methods applicable to bird strike simulation were developed. R.H.Mao et al. studied the
nonlinear transient response of a bird striking a fan system using LS-DYNA. The bird is modeled as
a fluid jet with a homogenized fluidic constitutive relation, using the Brockman hydrodynamics
model [4]. They also analyzed the geometry effects of an artificial bird striking an aero engine fan
blade, including hemispherical-ended cylinder, straight-ended cylinder, and ellipsoid [5]. Guan
Yupu et al. set up a three-blade computational model of a fan rotor with shrouds. They compared
the transient response curves from the simulation with that obtained from experiment and found that
the variations in measured points and corresponding points of simulation agreed well[6,7]. Rade
Vignjevic et al. carried out a number of parametric studies including: influence of the bird shape;
the bird impact location and impact timing [8].
Rich experience has been obtained from the one or several engine blades tests subject to bird
impacting. But simulations and experiments of bird strikes on the full scale of compressor rotating
at high speed are rarely carried out. In the present paper, a 3D finite element compressor with a
failure model is developed using commercial explicit code PAM-CRASH. The bird is modeled with
smooth particles hydrodynamic (SPH) method and Murnaghan equation of state (EOS) is employed
to describe the constitutive model. Simulations of the compressor rotating at different speeds
(3300r/min and 8800r/min respectively) impacted by a 250g bird at velocity of 102 m/s were
preformed to compare with the experimental results and analyze the influence of parameters used in
the simulations. The flexible fan blades adopted in the present paper are typical metallic aero engine
fan blades.
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Test of bird impacting on primary compressor

Test methods and apparatus
The intention of the test is to obtain the dynamic responses of a primary compressor structure under
a bird strike. The test results is used to compare with the numerical results presented in Section 3.

Fig.3 illustrates the arrangement of experimental apparatus during the test. The engine test-bed with
high-speed rotation is placed in a vacuum box. The launching system accelerates the bird into the
vacuum box through an air separation device and the bird will crash on the high-speed rotating
blades.

Figure 3. Experiment rig of bird impact on a rotating compressor

The geometry shape of the bird in present study is straight-ended cylinder. The ratio of length to
diameter is 2 to 1. Gelatin is used to characterize the bird body due to its similarity with the real
bird properties. The mass of the bird is 280g. The blades of engine is made of Ti6Al4V and the
geometrical details of the primary compressor are showed in the following section.

Test results
Fig.4 displays the experimental results of a gelatin bird body impacting on a primary compressor in
low rotating speed. The bird body is 280g and the velocity of the bird is 110m/s. The rotating speed
of the blades ranges from 2900 to 3100r/min. The blades are visually inspected after the test. Slight
plastic deformation of 3mm is found in one blade.

1 Rotating experiment device
2 Primary compressor
3 Vacuum box
4 Air separation device
5 Gun Barrel
6 Launching System
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Figure 4. The deformation of blades after impact under low rotating speed

Fig. 5 shows the experimental results of bird body impacting on a primary compressor at high
rotating speed. The actual mass and velocity of the bird is 280g and 110m/s respectively. The
rotating speed varies from 7000 to 9000r/min. Severe plastic deformation are found in 7 blades, see
Fig. 5(a). Fig. 5(b) shows a 40mm by 40mm block missing at a leading edge. A serious laceration
is shown in Fig. 5(c). A shroud has a small dislocation accompanied by missing a small piece of
block, which is shown in Fig. 5(d).

(a) (b)

(c) (d)
Figure 5. The deformation of blades after impact under high rotating speed
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Numerical simulation

Bird modelling
During the impact at high velocity, the bird crushes into particles and splashes to all directions,
which could be modeled by Smoothed Particle Hydrodynamics (SPH) method with the Murnaghan
EOS for Solids.

SPH method
The SPH method is a grid-less Lagrange technique which allows for severe distortion. It is
introduced by Lucy in the 1970s and first applied to solve hydrodynamic problems in astrophysical
environment [9]. In terms of situation of high-velocity impact, the SPH method is very suitable for
modeling problems associated with characterizing large displacements, strong discontinuities and
complex interface geometries. This method has been implemented in PAM-CRASH [10].

A smooth particle is input like a 3-DOF (degree of freedom) solid element and defined by its center
of mass, volume, part number, and domain of influence. It can be used with great advantage to
model bulk materials with no cohesion (sand, liquid, gases) or in situations where perforation or
mixing is expected. Note however that it can be much more time consuming for computational
calculation than a classical solid element. Every smooth particle with its own shape function, which
is similar to a finite element, is reconstructed at each iteration from its dynamic connectivity.
Localization and information transmission from one particle to another are achieved through the
notion of an interpolation distance called the smoothing length. Please see reference [11] for more
detailed information.

Geometry and material model for bird
In order to match with the geometry shape of the bird used in the experiment, the straight-ended
cylinder is adopted in the following simulation.
Five impact mechanics for solid materials is list by Wilbeck: elastic, plastic, hydrodynamic, sonic
velocity and explosive. The hydrodynamic region shows to be suitable for characterizing the bird in
a bird strike. In the case of a bird impacting, the yield stress of the bird is greatly exceeded due to its
rapid deceleration and its inhomogeneity becomes increasingly negligible, so the bird can be
considered as a homogeneous jet of fluid while impacting on a structure. The Murnaghan EOS
implemented in PAM-CRASH (materials type 28) provides a powerful tool to simulate
hydrodynamic behavior. The pressure for the Murnaghan EOS is given by:





















 1B

0

0






pp (1)

where 0p is a reference pressure, p is the current pressure, 0 and  are initial and current
mass density respectively, and B and  are the materials constants to be determined. B equals
to128 MPa and  equals to 7.9 in present paper.

Blade and rotor modelling
The blade disk assembly considered in this work comes from an aircraft jet engine. It consists of 27
equally spaced blades (Fig. 6) attached to the disk. The external radius is measured to the tip of the
blade, the internal radius is measured to the root of the blade and the initial impact location is
defined by the initial position of the bird’s center of mass.
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Figure 6. Finite element model of the blades

FE model of the disk and shrouds
The blades are meshed using Hypermesh software. Constant stress brick elements are used to mesh
the blade and its attachment. Although plastic deformation due to in-plane and bending loads could
be modelled by shell elements, the brick elements allows stress along the thickness and wave
propagation to be taken into account, which is impossible using shell elements. A number of
analyses are performed with different mesh densities, including increasing number of elements
through the thickness. However, there is no considerable improvement of the results with the
significant growth of the computational time. Hence, the blade is meshed with 21,400 elements: 107
elements along lengthwise, 50 elements width wise and 4 elements through the thickness, see Fig. 7.
The disk is modelled as rigid body using tetrahedral elements and the shrouds are modelled using
tetrahedral elements as well.

Figure 7. Finite element model of the disk and shrouds

Constitutive model of material
The disk is assigned with a rigid material, which is used to simulate a structure which is much
stiffer than the regions of interest or experiences negligible deformations. In addition, the rigid
material is computationally less expensive than other material models. The deformable blades are
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made of titanium alloy Ti-6Al-4V and the constitutive model used for this material is elastic-plastic
solid with damage and failure which contains elastic behavior, elastic-plastic behavior, stain rate
behavior, and damage behavior. The elastic behavior is described by the shear modulus and bulk
modulus as follows:

Shear Modulus:
)1(2 


EG (2)

Bulk Modulus:
)21(3 


EK (3)

The Johnson-Cook law is applied to describe elastic-plastic behavior and strain rate behavior,
formulated as:

1( , ) ( ) 1 ln max ,1n
pa b

p D
   

              

 (4)

where n
pba )( denotes the basic elastic-plastic material curve; a , b and n are material constants

which could be obtained by the test results of split Hopkinson bar; p indicates the plastic strain;
and p and D are the control parameters of strain rate which could be obtained by the stress-plastic
strain curve results at different strain rates.

For damage and failure behavior, the isotropic damage law acts on the total element stresses in the
formula:

0(1 ( ))pd    (5)

where  is damaged full tensor; p is the isotropic function; 0 is the full stress tensor as calculated
from the undamaged elastic-plastic material law. An element is failure as soon as one of the
equivalent plastic strain values at its integration points reaches the specified limit of failure.
The blade material properties of titanium alloy Ti-6AL-4V are given in Table 1.

Table 1. Johnson Cook material properties for Tie6Ale4V
Parameter Value
Density 4.4×103kg/m3

Shear modulus 43GPa
Bulk modulus 110Gpa

Initial yield stress 1070MPa
Strain hardening modulus 850MPa
Strain hardening exponent 0.6

Strain rate dependence coefficient 0.01
Maximum plastic strain for element elimination 0.2

Calculation model
After establishing the fan FE model and the bird SPH model, the contact type 34 in software is
applied to define the contact between the FE model and SPH model as well as between the two tips
on adjacent blades. The rotation and displacement of the fan in y and z directions is fixed, and the
displacement of the fan in x direction is fixed. Just rotation of the fan around x is free. The rotation
speed 3300 r/min and 8880r/min are defined in the present simulation. At last, the bird velocity
along negative x direction is set at 112 m/s and 114m/s respectively according to the experiment.
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Simulation results
Fig. 8 illustrates the simulation results of bird impacting on the rotating blades of 3000r/min. As
shown in the figure, slight plastic deformation take place on three blades’ leading edges indicating
that the blades are not severely damaged under low rotating speed situation, which shows a good
agreement with the experimental results.

Figure 8. The deformation of blades after impact under low rotating speed

Fig. 9(a)-(d) are the simulation results of bird striking on high speed rotating blades. Fig. 9(a) shows
that 6 blades yield large plastic deformation with 4 of them damaged. Fig. 9(b) shows that the
leading edge of a blade is damaged severely with a block of 37mm by 58 mm missing. Fig .9(c)
shows a serious laceration in another blade’s leading edge. Fig. 9(d) shows dislocation occurred on
two shrouds.

(a) (b)
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(c) (d)
Figure 9. The deformation of blades after impact under high rotating speed

The good agreement of the simulation results and the experimental results suggests that the FE
model with Murnaghan EOS for solid is quite suitable for soft body strike situation. This model can
predicts the transient response of the blades under bird impact very well.

Parametric study

In order to study the influence of the parameters in the model intensively and analyze the stability, a
number of parametric studies are performed to assess the influence of different impact conditions on
the blade response.

Influence of the failure stain
The element elimination is determined by the failure stain. The maximum plastic strain for element
elimination in the original model is 0.2. But in the actual situation, the value varies in a certain
range. Fig. 10(a) and (b) gives the impacted results of model with different failure stain (0.17 and
0.23 respectively). Fig. 10(a) shows that the missing block area becomes larger than that in Fig. 9(a).
Fig. 10(b) shows although the blade deforms a lot, the laceration of the blade is slight, while i the
laceration n Fig. 9(c) is much more severe.

(a) (b)
Figure 10. Comparison of models with different failure stain

Bird impact location
In the actual situation, the bird may strike on almost anywhere of the compressor. To find the most
vulnerable striking position is necessary. Fig. 11(a) and (b) show the deformation of blades of
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different impact locations (on middle and root of the blades). As shown in Fig. 11(a), 4 blades have
large deformation and two of them have slight lacerations, while only a small extent of plastic
deformation occurs in Fig. 11(b).

(a) (b)
Figure 11. Comparison of models with different impact location

Impact timing
In the case of high rotating speed, the amount of bird sliced off by the blade in front of the leading
blade is random. In this assessment impacts with different levels of interaction between the bird and
the leading blade are considered. The impact timings considered are defined by varying initial
location of the bird along the x axis and the amount of the bird which is removed from the analysis
( from 5mm to 20mm). The distribution of plastic deformation on the blades varies a lot.

(a) (b)
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(c) (d)
Figure 12. Comparison of models with different impact timing

Conclusions

The FE model accompanied with SPH method provides accurate predicative numerical tools for
simulation. The SPH method can attain high accuracy in process the problems with large
displacements and deformation. The numerical results are compared with the blade recovered from
the physical experiment, indicating a good reliability of the numerical simulation method on this
issue. The simulation indicates that the failure stain in the model somehow influences the result
while there are strong dependences for the results on the bird impact timing and deformation
location on the blade. This study shows the potential of the finite element method in predicting the
deformation of engine primary compressor in bird strike events.
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Abstract 
Multi-cell tubes have been drawn increasing attention for their excellent energy-absorbing 

ability. However, the effect of cell number and oblique loads on crashing behaviors is seldom 
studied to date. In this paper, a group of multi-cell tubes with different cell numbers are 
comprehensively investigated under both axial and oblique loads. The finite element models are 
first established and then validated by experimental tests. The simulation results show that the 
increase in cell number can be beneficial to the energy absorption (EA) but detrimental due to 
increase in peak force (Fmax) under axial load. When the oblique loads are taken into account, the 
tubes could undergo global bending, which is an inefficient deformation mode.  

Keywords: Multi-cell tube; Oblique impact; Crashworthiness 

1 Introduction 

In automotive engineering, the bumper system requires to endure a load with a 30° loading angle 
to the longitudinal axis [1]. Under this condition, thin-walled structures always undergo a 
combined deformation of bending and axial crushing, rather than pure axial collapse that is 
designed as an efficient deformation mode for energy absorption. Due to the presence of global 
bending, the energy absorption of thin-walled structures can be reduced dramatically. For this 
reason, oblique loading has to be considered in crashworthiness design for thin-walled structures. 
For this purpose, Han and Park [2] investigated the crush behavior of a square column subjected 
to oblique loads and found that the loading angle has considerable effect on deformation pattern 
from the axial buckling to global bending. Reyes et al. [1, 3, 4] studied the crashworthiness 
performance of hollow and foam-filled aluminum tubes under quasi-static oblique loads by using 
experimental and numerical methods. Zarei and Kröger [5] performed axial and oblique impact 
tests on empty and aluminum honeycomb filled square tubes and observed a dramatic decrease in 
first peak load during the oblique impact test. Tarlochan et al. [6] proposed a design process for a 
thin-walled structure subjected to both axial and oblique loads and found that the hexagonal 
profile was a better choice for energy absorption application. Yang and Qi [7] developed an 
optimization procedure for design of the empty and foam-filled square columns under oblique 
loading and the results showed that compared with the foam-filled tubes, the empty column can 
behave better under oblique impact but worse under pure axial loading. To be the author’s best 
knowledge, there have been very limited studies of multi-cell tubes to take into account the 
oblique loads so far. Qi et al. [8] employed LS-DYNA to predict the crashing behaviors of four 
tubes with different cellular configurations under oblique loads, and they found that multi-cell 
tapered tube has the best crashworthiness performance. Song and Guo [9] found that the 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

570

mailto:fangjg87@gmail.com
mailto:qing.li@sydney.edu.au


effectiveness of multi-cell configuration for improving tubes’ energy absorption reduces as the 
load angle increases, and multi-cell tubes can even have worse performance if they collapse in 
global bending mode.  

From the abovementioned studies, it is known that comprehensive comparison of the 
crashworthiness of multi-cell structures with different cell numbers remains under-studied thus 
far. Furthermore, how does the cell number affect the crashworthiness under oblique loads? This 
study aims to address these two issues.  

2 Numerical modeling 

2.1 Finite element (FE) model 

The structures to be analyzed here comprise a group of thin-wall multi-cell square tubes with the 
same axial length of L=200 mm and the same width of b=75mm subjected to oblique impact 
loading (Fig. 1). These square tubes have different cell numbers (i.e., N×N=1×1, 2×2, 3×3, …, 
10×10), and are assigned different thicknesses in order to investigate these tubes with the same 
mass (Fig. 1). As shown in Fig. 2, a rigid wall with a mass of 600 kg and an incident angle θ 
impacts on the top end of the tubes at an initial velocity of v= 15 m/s. the bottom ends of the tube 
is attached to the fixed rigid ground.  

 

(a) N=1, t= 3.0mm    (b) N=2, t=2.0mm    (c) N=3, t= 1.5mm   (d) N=4, t= 1.2mm   (e) N=5, t=1.0mm 

 

(f) N=6, t=0.86mm   (g) N=7, t=0.75mm   (h) N=8, t=0.67mm   (i) N=9, t=0.6mm   (j) N=10, t=0.55mm 

Fig. 1 Cross-sections of multi-cell tubes with the same mass but different wall thicknesses. 

 
The numerical models are developed using explicit non-linear finite element code LS-DYNA. 
The Belytschko-Lin-Tsay reduced integration shell elements with five integration points through 
the thickness were employed to model the tubes. Stiffness-based hourglass control was employed 
to avoid spurious zero energy deformation modes and reduced integration was used to avoid 
volumetric locking. The interfaces between the tube and rigid wall and between the tube and 
rigid ground were both modeled as an “automatic node to surface”. “Automatic single surface” 
contact was also prescribed to the tube to avoid interpenetration during tube folding. For both 
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static and dynamic friction, the friction coefficient of 0.2 was adopted for all contact conditions 
[10-12]. 

V0

M
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ti-
ce

ll 
tu

be
Fully fixed rigid ground

Bottom edge  
fully fixed to 
rigid ground

Rigid wall translates 
in V0 direction

θ

 

Fig. 2 Finite element model of multi-cell tube subjected to oblique loading. 

The tube was modeled through a piecewise linear elastic-plastic behavior with strain hardening 
(material model 24 in LS-DYNA). The thin wall material was aluminum alloy AA6063-O with 
the density =2700 kg/m3, Poisson’s ratio =0.3, and Young’s modulus =70 GPa. The material 
model was considered insensitive to strain rate but defined as non-linear isotropic work 
hardening in the plastic region [13, 14].  

 

2.2 Validation of FE modeling 

In order to validate the FE modeling, a tube with 3×3 uniform cells was compressed using the 
available test facilities with a constant axial impact velocity of 3mm/min. The simulation model 
with the same specimen configuration was established under the same testing conditions. Fig. 3(a) 
depicts a comparison of the deformed shapes between the FE simulation and experimental tests. 
The overall profile of FE model in terms of the collapse mode and number of folds is in good 
agreement with the experiment. Fig. 3(b) illustrates a comparison of the FE and experimental 
results of the load-displacement responses, in which a fairly good overall agreement between 
them is observed. From which, it is easily found that the maximum discrepancy of initial peak 
force is less than 5% and the FE prediction exhibits a slightly higher peak load than the 
experiment during the subsequent folding. This could be attributed to that the existence of 
imperfections in the physical specimen, which is difficult to be considered precisely in FE 
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modeling. Overall, the numerical modeling technique adopted here is considered sufficiently 
accurate and will be extended to the subsequent study. 
 

 

(a) Comparison of deformation profile between experimental test (left) and numerical model (right) 

 

(b) Force – deformation curves from experimental test and FE modeling 

Fig. 3 Comparison of experimental and simulation results. 

 

3 Crashworthiness of multi-cell tubes under different load angles 

To systematically measure the crashworthiness of different structures, many different indicators 
have been proposed [15, 16], of which the energy absorption (EA) denotes the absorbed energy 
via plastic deformation of structures as 

0
( )EA F dx

d
= ∫ x

                                                                        (10) 

where ( )F x  is the instantaneous crushing force in axial direction. δ denotes the crash 
displacement, which is taken as 0.6L in this study, and L= 200mm is the tube length.  
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In addition to energy absorption, crushing forces designate other key crushing criteria, of which 
peak crushing force (Fmax) represents the maximum value of ( )F x  and the mean crushing force 
(MCF) measures level of average crushing force given as 

dd

d

∫== 0
)( dxFEAFavg

x   
          (11)

 

Besides, crushing force efficiency (CFE) is also used as an indicator given as: 

max
100%avgF

CFE
F

= ×  
     (12)

 

Note that a large Fmax often leads to a high deceleration and high risk of severe injury or even 
death of occupant when impact occurs. Besides, the higher the CFE value, the better the load 
uniformity for an energy absorber. In this paper, these abovementioned indictors will be 
considered under oblique and axial loads. 

3.2 Results of pure axial crushing 

Fig. 4  displays the deformations of multi-cell tubes with the different cell numbers of 1×1, 4×4, 
7×7 and 10×10 (i.e., N=1, 4, 7 and 10) under pure axial loads respectively, and Fig. 5a depicts 
the corresponding crushing force curves. For single cell structure (N=1), it can be seen that the 
crushing force first reaches an initial peak, followed by a dramatic drop and then fluctuates at 
some low values that correspond to the progressive folding. When cell number N increases, the 
crush force does not increase noticeably in the initial peak and tends to be stable during the 
whole crushing displacement. Specifically, the difference between the initial peak and the 
following peaks becomes small, and the force tends to fluctuate within a narrow range when cell 
number N increases. This might be attributed to that the fold length (the distance between two 
adjacent plastic hinges) decreases and thus the fold number increases with the increase in N (as 
shown in Fig. 4 ).  

From Fig. 6(a) it can be seen that under the same mass the EA increases as the cell number 
increases, but the increased value become smaller and smaller, which represent that the energy 
absorption becomes stable gradually. From Fig. 6(b), the value of Fmax increases fairly slowly 
when the cell number increases, indicating that Fmax is insensitive to the cell number under the 
pure axial load condition. As for the CFE, its value increases when N< 4 and then oscillates 
when N> 4.  

3.3 Results of oblique crushing 

From Fig. 4 , the deformation modes of tubes the oblique impact of θ=10° are fairly similar to 
those of θ= 0°. That is to say that when the tubes are subjected to the oblique impact with a small 
incident angle, they are still able to generate proper progressive folding in the axial direction, 
which is typically regarded as an efficient deformation pattern. Interestingly, the impact forces 
fluctuate within a fairly small range after the initial peaks when θ increases from 0 to 10° (Fig. 
5(b)). Similarly to the situations of θ= 0°, the more the cells of the tube has, the larger the force 
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bears during the impact. As a result, it is observed from Figs. 8(a) and 8(b) that the increase in 
cell number N leads to the increase of Fmax and EA. Besides, the Fmax and EA of all tubes both 
decrease when θ increases from 0° to 10°; and the Fmax decreases more than EA does, which well 
explains why the CFE of θ=10° is larger than that of θ=0° for each tube (Fig. 6(c)), since the EA 
is equivalent to Favg (see Eq.(11)). 

When θ increases to 20°, the global bending mode is observed for the tubes with more cells (N> 
2). The compression flange buckles and develops a plastic hinge close to the clamped distal end 
(in N=4, 7, 10 in Fig. 4 ). Then the whole tube bends around this hinge as almost an rigid body 
motion. On the other hand, the tubes with a smaller cell number (e.g. N= 1 and 2) still succeed to 
avoid such a global bending. From Fig. 5(c), the tubes of N= 4, 7 and 10 reach a peak load and 
then decrease dramatically due to the global bending, weakening the energy absorption and load-
carrying capacity. As a result, Figs. 8a and 8b exhibit that the EA and Fmax of N= 4, 7 and 10 
reduce much more when θ increases from 10° to 20°, compared with those of N= 1 and 2. When 
θ increases up to 30°, global buckling occurs in all the tubes (Fig. 4 ) and the EA and Fmax 
become even smaller (as Figs. 8(a) and 8(b)). Interestingly, from Fig. 5(d), the tube of N= 1 
undergoes a longer deformation before the impact force decreases significantly, representing that 
it bends later than the other three.  

Overall, when multi-cell tubes are impacted obliquely with a small loading angle θ, all of them 
collapse progressively in the axial direction, which is very similar to the situation in pure axial 
loading. When θ increases, multi-cell tubes begin to bend globally, which leads to reduction of 
load-carrying and energy absorption. It can also be seen that the tubes with more cells are more 
sensitive to oblique loads, although they succeed to absorb more energy in pure axial case and 
oblique case with small angle θ. 

 

4 Conclusions 

In this study, the crashing behaviors of multi-cell tubes with ten different cell numbers have been 
comprehensively investigated under both axial and oblique loads. The simulation models were 
established using non-linear finite element code LS-DYNA and then validated by experimental 
test. It was found that both energy absorption (EA) and peak force (Fmax) of multi-cell tubes 
increase with the increase in cell number under axial loads. Regarding the oblique loads, the 
tubes can remain to collapse progressively in axial direction when the incident angle (θ) is small, 
but they develop global bending when θ increases up to 20° and 30°. It was also observed that 
the tubes with fewer cells are more robust to oblique loads with large angle but perform worse 
under pure axial load than the tubes with more cells. 
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 θ= 0° θ= 10° θ= 20° θ= 30° 

N= 1     

N= 4     

N= 7     

N= 
10     

Fig. 4  Deformation modes of multi-cell tubes with different cell number N 
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(a)   (b) 

 

(c)   (d) 

Fig. 5 Crashing force vs. displacement curve: (a) θ= 0°, (b) θ= 10°, (c) θ= 20°, (d) 
θ= 30°. 
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(b) 
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Fig. 6 Performance comparisons under different loading angles: (a) EA, (b) Fmax, (c) 
CFE. 
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Abstract 
The topology optimization design of structures with anisotropic constrained damping layers (ACDL) 
is investigated in present paper. The evolutionary structural optimization (ESO) method is 
employed to find the optimal layout of ACDL with aim to maximum the modal damping loss factor 
of the sandwich structure. Modal strain energy (MSE) method is used to calculate the damping loss 
factor of whole sandwich structure, and the sensitivity is analyzed. Optimization topology 
configuration of ACDL is obtained under the constraint of total amount of ACLD materials in terms 
of percentage added weight to the base structure. The merit of constrained damping treatment is 
evaluated quantitatively by damping efficiency formula introduced. 

Keywords: Evolution Structural Optimization, Modal Strain Energy, Anisotropic, Topology 
optimization 

Introduction 

Passive constrained damping layer (CDL) treatment is one of the common and effective means to 
reduce vibration and noise of thin-walled structures. However, aero structures require strictly for 
additional mass quality. On one hand, optimizing the layout of the CDL parts is needed to reduce 
the amount of material, and obtain a better suppression damping effect; on the other hand, we 
suppose to employ anisotropic constrained damping layer (ACDL), whose density is smaller and 
damping loss factor may not be neglected.  
Lall[ 1,2]used analytical methods to study the structural characteristics of fragmentation damping 
structure for beams and plates respectively. Zheng[ 3]has studied the structural characteristics of 
fragmentation damping structure for cylindrical shell by same methods and explored the 
fragmentation arrangement of constraint damping layout optimization problem. From their work, 
we learn that better vibration control effect with less structural mass increment could be achieved 
by arranging damping structure appropriately without full coverage, which leads to the topology 
optimization problem of constrained damping structure. 
Several topology optimization methods are commonly used, such as homogenization method 
(Bendsøe and Kikuchi[4]), variable density method (Bendsøe[5]; Sigmund[6]), evolutionary structural 
optimization method (Xie and Steven[7]), level set method (Wang et al.[8]; Allaire et al.[9]) and so on. 
Guo[10]optimized a square plate with CDL based on ESO method, and obtained a clear topological 
structure by remove the inefficient damping materials gradually; Zheng[11] used SIMP interpolation 
model and MMA solution algorithm to optimized the layout of constraint damping structure with a 
target to maximize the modal loss factor. The research of optimization for anisotropic constrained 
damping layers (ACDL) is rare. 
This paper introduces damping efficiency formula to evaluate the merit of constrained damping 
treatment results quantitatively and then anisotropic material is employed as constraint sheet and the 
topology optimization problem of structures with ACDL is investigated based on ESO method. 
Finally, a numerical example is presented to show the superiority of ACDL in lightweight design 
concept. 
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Damping efficiency 

The damping loss factor of structure will increase after an additional constrained damping layer 
treatment. We always want to attach additional mass as little as possible to get a bigger damping 
loss factor. In other word, a larger ‘damping efficiency’ after damping treatment is expected. To 
compare the results of damping treatments quantitatively, formula (1) is introduced to calculate the 
damping efficiency: 
 

meff ∆
∆

=
ηη  (1) 

In this formula, η∆  denotes the increment of the structure’s damping loss factor, and m∆ denotes 
the mass of the damping layers, which is also additional mass. 

Topology optimization model 

The topology optimization problem of given thickness of both constraint layer and damping core, 
aiming at the maximum of damping loss factor, under the constraint of additional mass quantity, 
using element existence state as design variables, is formulated as: 
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Where η  is the damping loss factor of the sandwich structure; n  denotes the number of viscoelastic 
damping core elements; ix  is design variable with 0 denoting element deleted and 1 denoting 
element reserved; vW and cW  denote the mass quantity of the viscoelastic damping core and the 
constraint sheet respectively. *W  is the constraint mass quantity. 

Finite element model 

In a thin-walled structure with anisotropic constraint damping layer, energy consumption comes 
from both damping layer and constraint layer. The damping layer dissipates energy by shear 
deformation and the constraint layer dissipates energy by tensile/compressive and bending 
deformation. Thus, a finite element model reference to Johnson’s [12] method is employed using the 
commercial program package ABAQUS, as shown in figure 1. The constraint sheet and bottom 
sheet are modeled with quadrilateral shell elements called S4R producing stiffness at two rotational 
and three translational degrees of freedom per node. The viscoelastic damping core is modeled with 
solid elements called C3D8R producing stiffness at three translational degrees of freedom per node. 
All nodes are at element corners. A key feature of this kind of element in the present application is 
its ability to account for coupling between stretching and bending deformations. This feature allows 
the plate nodes to be offset to one surface of the plate, coincident with the corner nodes of the 
adjoining solid elements. In this way, a three-layer plate can be modeled with only two layers of 
nodes, and finite element analysis will not take too much time. 
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Figure 1.  Finite element modeling of structure with ACDL 

Sensitivity analysis of modal damping loss factor 

According to modal strain energy (MSE) method, the k-th modal damping loss factor of the 
sandwich structure is calculated as follows: 
 

tk

bkbckcvkv
k E

EEE ηηη
η

++
=  (3) 

where vη , cη  and bη  are damping loss factors of damping material, constraint sheet material and 
bass structure material respectively; vkE , ckE , bkE  denote the k-th modal strain energy of damping 
core, constraint sheet and bass structure respectively, and bkckvktk EEEE ++= . 
In a difference method way, when the damping core element i  and the corresponding constraint 
layer element are deleted, small change of the whole sandwich structure's damping loss factor can 
be approximately expressed as: 
 ( )

2
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In each iteration of the ESO method, the whole structure changes very little when an element i  is 
deleted, so the following approximation can be adopted: 
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 (5) 

Where E  always denotes model strain energy. From (3), (4) and (5), kη∆ can be calculated as 
 ( )( )
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=∆ 2  (6) 

Formula (6) denotes the change amount of the thk −  modal damping loss factor after the damping 
core’s element i  and its corresponding constraint element are deleted. Thus formula (7) can be 
defined as the design sensitivity of element i . 
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If maximization of the former thm −  model damping loss factors is required, the design sensitivity 
of element i  is formulated as 
 

1

m

k ki
k

S Sω
=

=∑  (8) 

where kω denotes the weight coefficients of each model. 
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Mesh-independent filtering 

Discrete mesh-independent filtering method is employed during the optimization process to avoid 
checkerboard phenomenon. Referring to Sigmund's work, the new sensitivity of element i after 
filtering is: 
 

∑
∑ =

=

=
N

j
jjjN

i
ii

new
i SxH

Hx
S

1

1

1  
(9) 

Where jx is design variable (0 or 1). The weight factor iH  is written as 
 ( )( )jidistrH i ,,0max −=  (10) 
In formula (10) the operator ( )jidist ,  is defined as the distance between center of element i  and 
center of element j  and operator ( )max  is defined to take larger one of two values; r denotes 
filtering radius.  

Optimization process 

The initial idea of ESO topology optimization method is the ‘survival of the fittest’, which will not 
change when the traditional ESO method is applied to ACDL topology optimization, but its form 
varies. Design sensitivities of elements could be negative or positive, or they could all be positive. 
In the former case, elements with maximum positive sensitivities should be removed in each 
iteration so that the loss factor of whole structure may increase, and in the latter case, elements with 
minimum absolute sensitivity value should be deleted so that the loss factor may decrease slowly. 
The optimization process aiming at the maximization of the modal damping loss factor of 
constrained damping structure with assigned material properties, boundary conditions, and the 
single iteration delete ratio R is shown in figure 2.The specific steps are as follows: 

1. Generate the finite element model of the sandwich structure. 
2. Execute structural modal analysis and calculate model strain energy.  
3. Calculate the sensitivities of elements and filter them.  
4. Find the maximum sensitivity.  
5. If the maximum value is negative, remove RNNi *=  (N denotes the total number of 

original damping core elements) damping core elements with maximum sensitivities and 
corresponding constraint sheet elements; If the maximum value is positive, remove damping 
core elements with maximum value and corresponding constraint layer elements. 

6. Judge whether the amount of material constraint conditions is reached, if not, repeat steps 1-
5, otherwise finish the result. 
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Figure 2.  Topology optimization process based on ESO method 

However, it should be noted that, if the original structure is symmetrical, the number of elements 
removed will not necessarily equal to  in step 6 to obtain a reasonable symmetrical topology 
result. The reason may be that the elements in symmetrical positions share equal sensitivities. The 
deleted method now is to obtain a sensitivity threshold using  and then remove the elements 
with sensitivities below (or above) the threshold value. 

Numerical examples 

Consider a square aluminum plate fully covered with ACDL and four edges clamped, which finite 
element model is shown in figure 3. Resin-based carbon fiber composite unidirectional laminates is 
adopted as the constrained sheet and C fiber direction parallels to the x-axis. The viscoelastic 
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material 3M112D is employed as the damping core. Properties of each material are shown in table 1 
and table 2. 

 
Figure 3.  Initial design model 

 

Table 1. Material properties 

Properties Bass shell Damping core Constraint sheet 

Elastic modulus, E(GPa) 70 — — 

Density, ρ (kg/m3) 2.7×103 0.98×103 1.64×103 

Thickness, h (m) 0.002 0.003 0.001 

Shear modulus, G (MPa) — 10 — 

Poisson ratio, μ 0.33 0.49 — 

Loss factor, η 0.0001 1 0.01 

 
Table 2. Modulus of the constraint sheet 

E1/GPa E2/GPa μ12 G12/GPa G13/GPa G23/GPa 

125 10.3 0.29 4.3 4.3 4.3 

 

Taking 50% amount of ACDL material as constraint and aiming at the maximization of the first 
modal damping loss factor, optimization result is shown in figure 4: 
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Figure 4.  Topology optimization design of ACDL 

Isotropic material can be treated as a special anisotropic material. The method used here are equally 
applicable to optimize structure with isotropic constrained damping layers (ICDL). Replace 
constraint layer material with aluminum in the same finite element model, we can get an optimal 
result of square plate with traditional ICDL, which is shown in figure 5. 

 
Figure 5.  Topology optimization design of ICDL 

 
Figure 6 shows damping loss factor's variation history with delete ratio. Loss factors of both model 
decline slowly when more and more damping elements are deleted. After eliminating 50% 
constraint damping layer material, structure with ACLD dropped from an initial 0.41 to 0.36, 
decreased by 12.2%; structure with ICLD dropped from an initial 0.43 to 0.37, decreased by 
14.0%.The optimization results are satisfactory. 
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Figure 6.  History of damping loss factor 
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Calculate damping efficiency using formula (1), and damping efficiency was increased greatly after 
optimization, as shown in table 3. We can also find that ACDL has higher damping efficiency than 
traditional ICDL. 
 

Table 3. Damping efficiency of the plates with CDL（kg-1） 

 Before  optimization After   optimization 

ACDL 0.56 0.98 

ICDL 0.48 0.82 

 

Conclusions 

The topology optimization problem of thin-walled structure attached ACDL with given thickness is 
investigated based on ESO method in present paper. The numerical example shows that the 
damping efficiency increases after optimization, and damping efficiency of ACDL with assigned 
materials is higher than traditional ICDL due to the non-negligible damping loss factor of 
composites. The advantage of ACDL is shown in lightweight design of vibration suppression and 
the approach presented has a strong engineering practicability. 
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Abstract 

In this paper, an interface-tracking method combined with the Moving-Grid Finite-Volume method 
is presented for simulating free surface flows. In the interface-tracking method, the calculation grid 
is moved and deformed according to the movement of the free surface. For tracking free surface, 
surface height equation for the free surface shape was solved. We applied this method to some flow 
cases with free surface. Numerical results show that the present new flows simulation method using 
Moving-Grid Finite-Volume method is very accurate and have a promising feature for free surface 
flows. 
Keywords: Free Surface Flows, Computational Fluid Dynamics, Moving-Grid, Finite Volume 
Method 

Introduction 

Free surface flows are important from a point of view of engineering. For example, sloshing flow in 
tanks, mixing in vessels, jet from nozzle and injection molding are free surface flows. 
Many numerical methods are presented for free surface flows [Scardovelli and Zaleski (1999)]. 
These method can be classified to two approaches, interface-capturing method and interface-tracking 
method. 
In the interface-capturing method, fixed grid is used. For free surface capturing, particle movement 
or some function is solved. MAC method [Harlow and Welch (1965)], VOF method [Hirt and Nichols 
(1981)] and level set method [Sussman at al. (1994)]) are used in this approach. These method can 
solve bubble flow and breaking waves. However, these method often have interface smearing. 
On the other hand, in the interface-tracking method, moving grid is used. For free surface tracking, 
computational grids are moved and deformed according to movement of free surface. ALE [Okamoto 
and Kawahara (1990); Lo and Young (2004); Ushijima (1998)] and Finite Volume method [Apsley 
and Hu (2003); Muzaferija and Peric (1997)] are used in this approach. This approach is very simple 
and can track free surface with sharp interface. However, computational grids are usually large 
deformed. 
 
Free surface flow can be interpreted as a moving boundary problem. For moving boundary problems, 
Moving-Grid Finite-Volume Method was suggested [Mihara and (1999)]. This method can solve flow 
with moving grids with satisfying physical and geometrical conservation laws. The method has been 
applied to various flows [Mihara et al. (1999); Watanabe and Matsuno (2009); Matsuno (2010)]. 
However, these applications have been limited to single phase flows.  
 
The purpose of this paper is to extend the Moving-Grid Finite-Volume Method to free surface flows.  
The main advantages of this method is simple treatment with free surface and satisfying physical and 
geometrical conservation laws. 
In some test cases with free surface, comparison with analytical solution or experimental data are 
presented.  
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Governing Equations 

The governing equations are the continuity equation and the nondimensionalized incompressible 
Navier-Stokes equations. These equation are written as follows: 
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where yx, and z are coordinates, t  is time. vu, and w are velocities in yx, and z directions, 
respectively. q is the velocity vector,  Twvu ,,q . FE, andG are flux vectors in yx, and z

directions, respectively. H is the body force term including gravity. 
Flux vectors are written as follows: 

    pvpvpv GGGGFFFFEEEE  ˆ,,


,     (3) 

where FE ˆ,ˆ and Ĝ are the advection flux vectors, vv FE , and vG are the viscous flux vectors, and

pp FE , and pG are pressure flux vectors in yx, and z directions, respectively. The elements of flux 
vectors and body force term are: 
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where p is the pressure, Re is the Reynolds number and Fr is the Froude number.  
The subscripts yx, and z indicate derivatives with respect to yx, and z respectively. X is the body 
force in x direction. Reynolds number and Froude number are: 
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where 0L is the characteristics length, 0U is the characteristics velocity,  is the kinematic viscosity 
and  g is the gravitational acceleration. Over bar shows the dimensional quality.  

Discretization method and numerical method 

Discretization method 

In discretization for these equations, we use Moving-Grid Finite-Volume Method. This 
discretization method is based on cell-centered Finite-Volume Method in space-time unified 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

589



domain. In three-dimensional case, four-dimensional polyhedron in the ),,,( tzyx control volume is 
used. 
 

 
Figure 1.  Schematic drawing of control volume 

 
Fig. 1 shows schematic drawing of structured control volume in ),,,( tzyx unified domain. R  is grid 
position vector,  Tzyx ,,R , where superscript n shows time step and subscript kji ,, show 
structured grid point indexes. The purple region is n  time step computational cell, green region is 

1n  step computational cell. The control volume is four-dimensional polyhedron . Eq. (2) is 
integrated with the control volume as 
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where V is a four-dimensional volume ( 


  dV ). Eq. (6) is divergence form in ),,,( tzyx

dimension. By using Gaussian divergence theorem, Eq. (6) is written as, 
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where n is the vector normal to control volume surface.   is the surface of the control volume. 
The zyx nnn ,, and tn are components of n in zyx ,, and t directions, respectively.  
From Eq. (7), we can write as,  
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where, 

      zpypxpzvyvxvzyx nnnnnnnnn GFEΠGFEΦGFEΦ  ,
Re
1,ˆˆˆ .     (9) 

The subscript l  in Eq. (8) denotes the surface of the control volume in four dimension ),,,( tzyx . 
The 7l surface normal vector is the computational cell at n time step , 8l surface normal vector 
is the computational cell at 1n time step. For example, Fig. 2 shows the control volume surface at 

2l . 
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Figure 2.  Schematic drawing of control volume surface 

 
Control volume surfaces at 7l , 8l are perpendicular to the t axis. Eq. (8) becomes as follows: 
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This Eq. (10) is discretized equation. 
 
Numerical method 

To solve Eq. (10) , we use SMAC method [Amsden and Harlow (1970)]. Intermediate velocity is 
solved iteratively using LU-SGS method [Yoon and Jameson (1988)]. The inviscid termΦ  and 
moving grid term tnq are evaluated using QUICK method [Leonard (1979)]. The viscid term Ψ and 
pressure gradient termΠ are evaluated using central difference scheme. The Poisson equation about 
pressure correction is solved iteratively using Bi-CGSTAB [van der Vorst (1992)]. 
 
Interface-Tracking method 

In present method, a surface height equation [Apsley and Hu (2003)] is solved for free surface 
height. Fig. 3 shows free surface shape.  

 
Figure 3. Free surface height 

 

In Fig. 3,  tyxff ,,  is the surface height function. The surface height equation is as follows: 
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Eq. (11) can be discretized as follows: 
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where t is time step size, superscript n shows time step and subscript kji ,, shows grid point 
indexes. The xuf and yvf in Eq. (12) are evaluated using 1st order upwind differencing scheme. Once 
the free surface height is solved, computational grids moved and deformed according to the 
movement of the free surface. In the present study, the surface tension is neglected. The pressure on 
the free surface is fixed by 0p . 

Numerical Results 

Sloshing flow case 

To check the present method, sloshing flow case is solved. A comparison was made with the 
experimental result [Okamoto and Kawahara (1990)]. The geometry of the domain is shown in Fig. 
4.  

 
Figure 4.  Geometry of sloshing flow case 

 

The size of the initial domain is 11.02  . The calculation domain is nondimensionalized by initial 
free surface height.  
In our case, fluid flow with oscillating body force is solved. The body force is as follows: 

    tAX  sin2 ,     (13) 

where 00186.0A and 20.1 are the amplitude and frequency of the oscillation, respectively.  
The numerical grid used for calculation had 511161  grid points. The time step size is 0.001. The 
Reynolds number is 6101.1   and the Froude number is 1. 
The initial condition of the velocity is given by 0 wvu . The initial condition of the pressure is 
given by 0p . The boundary conditions is as follows. In the wall boundary, the velocity is slip 
condition and the pressure is Neumann boundary condition. In the free surface, the velocity is 0th 
extrapolated and the pressure is fixed by 0p . 
 
Fig. 5 shows numerical simulation results. In these figures, the left column show the free surface 
shape and the right column show pressure distributions at t=2.6, 5.2, 7.9 and 10.5. From the free 
surface shape, nonlinear surface movement is appeared. 
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(a) t=2.6 

 

 
(b) t=5.2 

 

   
(c) t=7.9 

 

 
 

(d) t=10.5 

Figure 5.  Results of sloshing flow case (left : surface shape, right : pressure distributions) 
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Figure 6.  Time history of the free surface elevation at the left wall and the right wall 

 
Fig. 6 shows the time history of the free surface elevation at the left wall and right wall. The initial 
free surface height is 0.5 m. Points are experimental results [Okamoto and Kawahara (1990)], green 
lines is present result at the left wall and red line is present result at the right wall. As shown in Fig. 
6, surface height at the left wall and the right wall increase alternately, and present results agree 
reasonably with experimental one. From these results, the present method can apply sloshing 
analysis. 
 
Ramp flow case 

In inviscid case, flow over a ramp [Apsley and Hu (2003); Muzaferija and Peric (1997)] is solved. 
This case is basic test case with free surface flow. The geometry of the domain is shown in Fig. 7. 
Four Froude number condition cases were solved: subcritical flow at Fr=0.3, 0.32 and supercritical 
flow at Fr=1.92, 2. These conditions are same as references Fr=0.3, 2.0 [Apsley and Hu (2003)] and 
Fr=0.32, 1.92 [Muzaferija and Peric (1997)]. 
 

 
Figure 7.  Geometry of ramp flow case 

 
The calculation domain is nondimensionalized by initial free surface height. The numerical grid 
used for calculation had 311161  grid points. The time step size is 0.005. In this case, inviscid 
flow is assumed. The Froude number is 0.3, 0.32, 1.92 and 2.0.  
The initial condition of velocity is given by 0,1  wvu . The initial condition of pressure is 
given by hydrostatic pressure. The boundary conditions as follows. In the inlet boundary, the 
velocity is fixed by 0,1  wvu , and the pressure is Neumann boundary condition. In the outlet 
boundary, the velocity is 0th extrapolated and the pressure is 0th extrapolated. In the bottom wall 
boundary, the velocity is slip condition and the pressure is Neumann boundary condition. In the 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

594



front and back boundary, the velocity is slip condition and the pressure is Neumann boundary 
condition. In the free surface, the velocity is 0th extrapolated and the pressure is fixed by 0p . 
Fig .8 shows the free surface shape of Fr=0.3 case at t=200. Fig. 9 shows the free surface shape of 
Fr=2.0 case at t=200. 
 

 
Figure 8.  Surface shape of ramp flow case (Fr=0.3) 

 

 
Figure 9.  Surface shape of ramp flow case (Fr=2.0) 

 

As shown in Fig. 8, the free surface height at the outlet boundary decrease from the inlet boundary. 
On the other hand, as shown in Fig. 9, the free surface height at the outlet boundary increase from 
the inlet boundary. These results are caused by subcritical (Fr=0.3) or supercritical (Fr=2.0) 
conditions. 
 
Table 1 shows the free surface height from the bottom wall at the outlet boundary. In Table 1, 1-d 
theory shows analytical results using 1-d theory [Apsley and Hu (2003)]. Present shows present 
results. Error shows our results error from 1-d theory. As shown in Table 1, our results are agree 
with reference solutions and 1-d theory solutions. 
 

Table 1. Free surface height of ramp flow case 

                                Froude number 
0.3  0.32  1.92   2 

1-d theory   0.7689  0.7635  1.0897  1.0776 
Present    0.7949  0.7940  1.0910  1.0794 
Error [%]   3.39  3.98  0.12  0.17 
Apsley and Hu (2003)  0.7687      1.0792 
Muzaferija and Peric (1997)   0.7752  1.0992                                                             

 

Conclusions 

In this paper, new flow simulation method with free surface is presented. This method is based on 
the Moving-Grid Finite-Volume Method and coupled with the interface-tracking method. We 
applied present new method to some flow cases. From the comparison with experimental or 
numerical data, present method using the Moving-Grid Finite-Volume method is very accurate and 
have a promising feature for free surface flows. 
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Abstract：The low accuracy near the boundary or the interface in SPH method has 

been paid extensive attention. Finite Particle Method (FPM) is a significant 

improvement to the traditional SPH method, which can greatly improve the 

computational accuracy for boundary particles. However, there are still some inherent 

defects for FPM, such as the long computing time and the potential numerical 

instability. By conducting matrix decomposition and structural analysis on the basic 

equations of FPM, an improved FPM method (IFPM) is proposed, which can not only 

maintain the C
1
 consistence of FPM for boundary particles, but also keep the 

invertibility of the coefficient matrix in traditional FPM and greatly reduce the 

computing time. Finally, some numerical results show that IFPM is really an effective 

improvement for traditional FPM. 

Key words：SPH；Finite Particle Method；matrix decomposition；stability；C
1
 

consistence 

1. Introduction 

Traditional Smoothed Particle Hydrodynamics method (SPH) is the most important 

meshfree particle methods [Lucy. (1997); Gingold and Monaghan. (1997); Liu and 

Liu. (2003)], which has been widely applied in Fluid Dynamics [Yang et al. 

(2014) ;Feng et al. (2013)], Continuum Elasticity
 
[Liu et al. (2011)], Solid Mechanics 

[Libersky et al. (1993)] and so on. However, the low accuracy near the boundary or 

the interface is also the most remarkable defect for SPH by now. Some numerical 

method has been proposed to improve this problem, such as the Corrective Smoothed 

Particle Method (CSPM) [Chen and Beraun. (2000)] and discontinuous SPH [Liu et 

al. (2003); Xu et al. (2013)], but all of them could not avoid the error accumulation. 

In 2005, M B Liu, G R Liu and G M Zhang, R C Batra proposed a new-type SPH 

method based on Taylor series expansion respectively[Liu et al. (2005); Zhang and 

Batra. (2004)], named Finite Particle Method (FPM). Compared with SPH, FPM has 

the advantages of free selection on the basis function, high accuracy near the 

boundary, and it is also not sensitive to the smooth length and the irregular 

distribution of particles. In addition, FPM could get the function value and derivative 

value simultaneously, which avoids the error propagation when the low-order 

derivative is used in the calculation of the high-order derivative in SPH. 

However, there are still two disadvantages for FPM, which are the long 

computation time and computational instability. The former is caused by the large 

amount of calculation on solving the linear equations for each particle in the 
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computational domain, and the latter is because the invertibility of the coefficient 

matrix in the linear equations cannot be well satisfied all the time. Therefore, in this 

paper, an improved algorithm for FPM is proposed, which is abbreviated to IFPM and 

is proven to cover the shortage in FPM effectively.  

2. Original FPM 

  In 1D case, considering a Taylor series expansion at ix  up to the first-order 

derivative,  

( ) ( ) ( ) ( )i i x if x f x x x f x                          (1) 

  Multiplying both sides of (1) with the basis function 1( )x and 2 ( )x respectively, 

and integrating in the computational domain, 

1 1 1

2 2 2

( ) ( )d ( ) ( )d ( ) ( ) ( )d

( ) ( )d ( ) ( )d ( ) ( ) ( )d

i x i i

i x i i

f x x x f x x x f x x x x x

f x x x f x x x f x x x x x

  

  

  

  

  

  
            (2) 

  Expression (2) could be seemed as linear equations, and expressed as the following 

matrix form, 

1 1 1

2 2 2

( )d ( ) ( )d ( ) ( )d( )

( )( )d ( ) ( )d ( ) ( )d

i i

x ii

x x x x x x f x x xf x

f xx x x x x x f x x x

  

  

     
    
     
   

  

  
            

(3)

 Further, the particle form of the above equations (3) can be obtained as follows, 

1 1 1

1 1 1

2 2 2

1 1 1

( ) ( ) ( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( ) ( )

N N N

j j j i j j j j j
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j j j i j j j j j

j j j

x d x x x d f x x d
f x

f x
x d x x x d f x x d

  

  

  

  

   
      

               
   

  

  
       

(4)

 

where jd is the particle size. Equation (4) is the basic expression of FPM in 1D case. 

  Similarly, the basic expression of FPM in 2D case could be derived as follows, 
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(5) 

where jS is the particle size. 
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3. IFPM 

3.1 1D case 

In 1D case, IFPM could be derived based on the matrix decomposition on the 

coefficient matrix and the constant term in the basic FPM equation (4). 

  First, the coefficient matrix decomposition: 

1 1

1 1

2 2

1 1

1 1

1 1 1 2 1 2 2

2 1 2 2 2

( ) ( ) ( )

( ) ( ) ( )

1

( ) ( ) ( ) 1
      

( ) ( ) ( )

1

N N

j j j i j j

j j

N N

j j j i j j

j j
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N N i
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d x x

x x x d x x
K D C
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(6) 

  Second, the constant term decomposition: 
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    (7) 

  Based on (6) and (7), the basic FPM equation (4) could be expressed as follows, 

KDCf KDF                             (8) 

where  ( ) ( )
T

i x if f x f x , N is the number of the particles in the support of ix . 

  Solving equations (8) is equivalent to solve the following equations, 

( ) 0KD Cf F                              (9) 

Since FPM is free on the selection of the basis function, we could just consider the 

case of rank(K) = 2, i.e. K is a row full-rank matrix. Specially, as shown in Figure 1, 

if just two nearest particles to ix  in its support (i.e. N = 2) are chosen and introduced 

into the approximate calculation equations (9) of ix , the matrix K , C and F have the 

following reduced forms, 
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Figure 1. The schema on the selection of computational particles in 1D-IFPM 

 

Here, the matrices K and D are invertible, and thus the equations (8) is equivalent 

to the following simplified equations (11), 

0Cf F                              (11) 

  Equations (11) are the basic equations of proposed 1D-IFPM in this paper. It can be 

clearly found that the coefficient matrix C of equations (11) is always invertible, and 

thus 1D-IFPM is always stable.  

 

3.2 2D case 

  Similar to section 3.1, 2D-IFPM equation could be derived after the decomposition 

and deformation to equation (5). The difference is that, as shown in Figure 2, three 

nearest particles to ix  in its support (i.e. N = 3) should be chosen and introduced 

into the approximate calculation equations in order to keep that K is a invertible 

matrix. The basic equation of 2D-IFPM are shown as follows (12), 

1 1 1 1

2 2 2 2

3 3 3 3

1 ( , ) ( , )

1 ( , ) = ( , )

1 ( , ) ( , )

i i i i

i i x i i

i i y i i

x x y y f x y f x y

x x y y f x y f x y

x x y y f x y f x y

     
    

      
                         

(12)

 

 

Figure 2. The schema on the selection of computational particles in 2D-IFPM 

It can be also clearly found that the coefficient matrix of equations (12) is always 

invertible, and thus 2D-IFPM is always stable.  
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Meanwhile, it must be mentioned that the uniform distribution of particles is 

actually a special case of random distribution, thus the above IFPM method is also 

suitable for uniformly distributed particles. 

 

4. Numerical tests and analysis 

4.1 Particle approximation accuracy 

Generally speaking, if one method could reproduce a k-order polynomial, this 

method could be called with C
k
 consistence. In order to verify the accuracy of IFPM, 

the following examples are tested. For 1D case, considering the function ( ) 1f x  and

( )f x x  in [0,10] respectively, 11 particles are randomly distributed and their 

coordinates are shown as follows. The smooth length h=1, and the cubic B-spline 

function and its derivative function are chosen as the kernel function for SPH and the 

basic functions for FPM
 
[Monaghan. (1992)]. 

(R): 0.3770, 2.3160, 3.9550, 4.8890, 6.2410, 6.7910, 7.9620, 8.8520, 9.1330, 9.8800 

The numerical results are shown in the Table 1~2, where Error is defined as the 

difference between the reproduced value and the exact value, i.e. ˆError f f  . It can 

be seen that both IFPM and FPM have distinct accuracy compared with SPH method. 

They could reproduce both the interior particles and the particles near the boundary 

accurately, which means they could be called with C
1
 consistence. 

Table 1. Reproduced results for ( ) 1f x   

Exact 

f  

Reproduced results and error 

SPH FPM IFPM 

f̂  Error f̂  Error/×10
-15

 f̂  Error/×10
-15

 

1 0.8977 -0.1023 1.0000 0 1.0000 -0.2220 

1 1.2028 0.2028 1.0000 0 1.0000 0 

1 1.1022 0.1022 1.0000 0 1.0000 0 

1 1.0648 0.0648 1.0000 -0.1110 1.0000 0 

1 1.0745 0.0745 1.0000 -0.2220 1.0000 0 

1 1.0971 0.0971 1.0000 0 1.0000 0 

1 0.9539 -0.0461 1.0000 0 1.0000 0 

1 1.0076 0.0076 1.0000 0 1.0000 0 

1 0.9476 -0.0524 1.0000 -0.1110 1.0000 0 

1 0.5817 -0.4183 1.0000 0 1.0000 0 

1 0.8977 -0.1023 1.0000 0 1.0000 -0.2220 
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Table 2. Reproduced results for ( )f x x  

Exact 

f  

Reproduced results and error 

SPH FPM IFPM 

f̂  Error f̂  Error/×10
-14

 f̂  Error/×10
-15

 

0.3770 0.3386 -0.0384 0.3770 -0.0056 0.3770 -0.2220 

2.3160 2.8021 0.4861 2.3160 0 2.3160 0 

3.9550 4.5517 0.5967 3.9550 0.0888 3.9550 0 

4.8890 5.0218 0.1328 4.8890 -0.0888 4.8890 0 

6.2410 6.8541 0.6131 6.2410 -0.0888 6.2410 0 

6.7910 7.3309 0.5399 6.7910 0 6.7910 0 

7.9620 7.6692 -0.2928 7.9620 0 7.9620 0 

8.8520 8.8754 0.0234 8.8520 0 8.8520 0 

9.1330 8.5581 -0.5749 9.1330 -0.1776 9.1330 0 

9.8800 5.5330 -4.3470 9.8800 0 9.8800 0 

0.3770 0.3386 -0.0384 0.3770 -0.0056 0.3770 -0.2220 

For 2D case, considering the function ( , ) 1f x y   and ( , )f x y x y  in 

[0,100]×[0,100] respectively, 5664 particles are randomly distributed in this area. The 

numerical results are shown in the Table 3, where MSE represents the Mean Square 

Error. It can be seen that IFPM could also keep C
1
 consistence in 2D case. 

Table 3. Reproduced results in 2D case 

Function type 
MSE 

SPH FPM IFPM 

( , ) 1f x y   0.0357 1.5834×10
-32

 7.4650×10
-31

 

( , )f x y x y   427.7285 3.8521×10
-28

 2.1792×10
-27

 

4.2 Computation time analysis 

  In order to compare the computing time among SPH, FPM and IFPM, we consider 

the function ( )f x x  in [0, 100]. The computing time of the three methods with 

increasing of the number of particles in the computational domain from 11 to 10001 

are shown in Figure 3. 

  It is shown that with increasing of the particle number, the computing time of FPM 

increases rapidly, and SPH method increases steadily. While the computing time of 

IFPM proposed in this paper has no obvious change. When the number of particles 

increases from 11 to 10001, the computing time just increases from 0.0002s to 
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0.1176s. Therefore, IFPM method can greatly reduce the computing time compared 

with FPM. 

 

Figure 3. Comparison on the computing time among the three methods 

4.3 Calculation of high-order functions 

  Table 4 shows the MSE among SPH, FPM and IFPM for the function ( ) 1f x  ,

( )f x x  and 2( )f x x  in [0, 100] with the number of particles 11 and 10001. It can 

be found that the accuracy of IFPM clearly decreases when the function times is 

bigger than 1.  

Table 4. MSE of reproduced results by using different methods 

Particle number Function SPH FPM IFPM 

11 

( ) 1f x   0.0089 2.2411×10
-33

 0 

( )f x x  54.6845 9.7532×10
-29

 9.9513×10
-33

 

2( )f x x  6.3848×10
5
 1.8257×10

3
 1.5455×10

4
 

10001 

( ) 1f x   1.3038×10
-5

 4.9299×10
-36

 0 

( )f x x  0.0598 1.3449×10
-28

 3.7050×10
-30

 

2( )f x x  554.8744 2.2677×10
-9

 1.0068×10
-8

 

However, it is also shown in Table 4 that the accuracy of IFPM could be improved 

by increasing the total number of particles in the computational domain. Figure 4 

shows the MSE of reproduced results for 
2( )f x x  with increasing of the number of 

particles by using IFPM, where the data in Figure 4 is the denary logarithm of 
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original results. It is shown that the MSE will keep linear decrease with the increased 

particle number, which means the accuracy of IFPM is controllable. 

 

Figure 4. MSE of reproduced results with the number of particles 

 

4. Conclusions 

  Based on the numerical tests above, it can be found that the proposed IFPM 

method could not only keep the high accuracy of FPM in both the interior area and 

the boundary area for the constant function and the linear function, but also modify 

the deficiencies of the long computing time and computational instability in the 

traditional FPM. For the high-order functions, the accuracy of IFPM is controllable, 

which could be improved by increasing the number of particles. Therefore, IFPM is 

an effective improvement for traditional FPM. 
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Abstract 

A multiscale numerical approach is presented in this paper to model the tensile 
behaviour of engineered cementitious composites. A unit cell model with a random 
realisation of the matrix cracking strength distribution and fibre volume fraction 
distribution is employed. Cracks are adaptively introduced within cracked elements 
by means of extended finite element method along with a cohesive law which defines 
the relationship between the stress and the crack opening displacement. The 
developed numerical method is used to predict the tensile properties of an ECC, and 
good agreement between the numerical results and experimental results from direct 
tension tests validate the developed numerical method. 

Keywords: Engineered cementitious composites (ECC), Tensile behaviour, Multiple 
cracking, Multiscale numerical modelling, Unit cell model 

Introduction 

High performance fibre reinforced cementitious composites (HPFRCC) are a special 
family of fibre-reinforced cement-based composites, and they distinguish from the 
conventional quasi-brittle fibre reinforced concrete (FRC) by macroscopic pseudo 
strain-hardening behaviour in tension with multiple cracking developed up to 
relatively high strain levels. The associated enhanced ductility, energy absorption 
capacity and toughness compared with FRC are expected to significantly enhance the 
serviceability and sustainability of cementitious materials. Engineered cementitious 
composites (ECC) are a unique member of HPFRCC, featuring extraordinary tensile 
ductility with a low to moderate fibre content. For example, ECC materials reinforced 
with polyethylene fibre or the polyvinyl alcohol (PVA) fibre with a fibre volume 
fraction no greater than 2 % exhibited a tensile strain capacity of 3 – 6 % [Li (1998)]. 
 
The tensile behaviour of ECC has been most often characterized by results of direct 
tension or flexure tests. Although some numerical models have been developed over 
the past few years [Spagnoli (2009); Kabele (2010)] to model the tensile strain-
hardening behaviour of ECC, these models could only qualitatively assess the tensile 
strain capacity of an ECC in comparison to that of conventional FRC. In this paper a 
multiscale numerical approach based on the unit cell (UC) model is developed to 
predict the tensile behaviour of ECC. The bridging behaviour of individual fibres is 
regarded as the composite characteristics at microscale. The formation and opening of 
one single crack is regarded as a representation of the material behaviour at 
mesoscale, and it is derived by superimposing the bridging responses of all fibres 
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involved in the crack-bridging action. The effect of crack bridging provided by matrix 
and fibres is considered for the individual crack through a cohesive law that relates 
the bridging stress to the crack opening displacement. Finally, the overall microscopic 
tensile stress-strain relationship for ECC is determined from the joint response of 
sequentially emerged individual cracks and the contribution of the uncrack matrix. 
The UC should be able to accommodate a random number of cracks under the tensile 
loading. Various micromechanics crack bridging model are available to derive the 
cohesive law based on the material constituent parameters and fibre/matrix interface 
parameters. As a result, the presented multiscale approach has the great advantage to 
link the material parameters at microscale with composite properties at macroscale. 
The multiscale modelling framework for HPFRCC was first proposed by Kabele 
[Kabele (2007)] and an analytical method was employed to derive the overall tensile 
stress-strain relationship of the proposed model. However, in this work the overall 
tensile stress-strain relationship of the UC model is obtained numerically by means of 
the extended finite element method (XFEM). 

A cohesive law 

It is assumed that cracks can occur at any material point during the loading where the 
maximum principle stress attains the local matrix cracking strength ck . After crack 
occurs, the crack response is governed by the cohesive law utilizing the cohesive 
crack concept, which corresponds to a characteristic material response at the 
mesoscale. In this study, the contributions to the crack bridging effect from both 
matrix and fibres are taken into account, and therefore, the cohesive law is the 
superposition of the crack bridging law of plain matrix and the crack bridging law due 
to fibres [Wang (2005)]. Especially, the fibre bridging law is computed by summing 
up the force contributions of all fibres bridging the crack. A representative cohesive 
law of the ECC is shown in Fig. 1 schematically. It should be noted that the cohesive 
law of ECC possesses a hardening branch prior to the softening, i. e. the ultimate 
bridging strength pb  exceeds the matrix cracking strength such that more cracks can 
be triggered, and this essentially differentiates ECC from conventional quasi-brittle 
FRCs. 
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Figure 1. The cohesive law of ECC  

 

In Fig. 1, pb  is crack opening displacement corresponding to the peak bridging stress 
and u  is the ultimate cracking opening displacement. 
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When fibres on one of the cracks have exhausted their load carrying capacity and 
became unable to carry increasing load, softening starts on this plane. Consequently, 
only this crack continues to open while others undergo unloading, which triggers 
fracture localization. For cracks that undergo unloading, it is assumed that the 
protruding fibres elastically contract [Kabele (2007)]. 

A unit cell (UC) model 

The most common UC approach assumes that the microstructure of composite tends 
to spatially repeat itself at macroscale, i. e. the whole macroscopic specimen consists 
of periodically arranged unit cells. Therefore the UC approach is based on describing 
the microstructure of material in a unit cell, which can statistically represent the 
macroscopic material point, and periodic boundary conditions are imposed on the 
boundaries of the UC to capture the effect of the surrounding medium. A UC model 
as shown in Fig. 2 under uniaxial tension loading is adopted. The UC is meshed by a 
one-dimensional array of quadrilateral strips along the loading direction, and the 
matrix strength as well as the fibre volume fraction of each element is randomly 
generated based on a probability distribution function calibrated from experimental 
observations. Element size is determined by referring to the minimum spacing dx  of 
the cracks, which can be theoretically estimated for the randomly distributed short 
fibre composites based on the fibre parameters and interface parameters [Wu and Li 
(1992)]. Consequently, only one crack can occur in an element in one simulation. A 
crack initiates when the axial stress reaches the matrix strength at an element, and it is 
introduced directly within the element through the entire middle cross-section 
perpendicular to the loading direction by means of the XFEM. While the behaviour of 
uncracked matrix is considered to be linear-elastic, the crack behaves according to the 
non-linear cohesive law. 
 

xu

w

w

 
Figure 2. A unit cell model (UC) with boundary conditions for uniaxial tension 

and the periodic boundary conditions on the top and bottom boundaries (dash 

lines) 

 
The macroscopic material properties are then obtained as the volume average of their 
microscopic counterparts at the UC level as given by [Nguyen et al. (2011)]: 
 

 M m
R

1
xx xf

w
   (1) 
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 M 1
xx xu

w
   (2) 

 
where M

xx  and M
xx  are macroscopic stress and strain in the x direction; m

R xf  stands 
for the sum of internal x-forces at all nodes along the right boundary of the UC on 
which an prescribed displacement xu  has been imposed. 

Numerical validation and discussion 

In this research, the experimental results obtained from the selected mix design 
named as Mix-3 in literature [Wang (2005)] is used to validate the proposed 
numerical model. In the test, the interface parameters, the macroscopic tensile stress-
strain relationship as well as the matrix flaw size distribution were measured. The 
direct tension tests were conducted on specimens with a gage length of 180 mm. Here, 
a UC of a dimension nearly two-thirds of this characteristic length, which can be 
discretized into 60 elements, is used. The computational macroscopic material 
properties including the ultimate tensile strength and tensile strain capacity, as well as 
the experimental results are summarized in Table 1. 
 

Table 1. Summary of computational and experimental tensile properties 

 Ultimate tensile strength (MPa) Tensile strain capacity (%) 
Prediction 5.04 1.79 

Experiment 
[Wang (2005)] 4.84 1.86 

 
While the measured ultimate tensile strength is 4.84 MPa and the tensile strain 
capacity is 1.86 %, the computational tensile properties of the ECC are 5.04 MPa and 
1.79 % respectively, which are in reasonably good agreement. This demonstrates the 
effectiveness of the proposed numerical multiscale approach in predicting the tensile 
properties of ECC. 

Conclusions 

In this study, a multiscale numerical approach is developed for modelling of the 
multiple-cracking fracture behaviour of ECC under direct tension. The macroscopic 
material properties including the ultimate tensile strength and tensile strain capacity 
are obtained based on the homogenized response of a UC under uniaxial tension 
proposed in the work. The UC is able to accommodate a number of cracks 
accompanying the strain hardening, which is one of the distinct features of ECC. 
These cracks are adaptively introduced within cracked elements by means of the 
XFEM, with the effect of crack bridging provided by matrix and fibres implemented 
through a cohesive law. 
 
The approach was verified by comparison of the predicted tensile properties of an 
ECC with experimental results obtained from the uniaxial tension tests.  
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Abstract 

Numerical simulations were conducted to study the combustion characteristics in a 
coaxial Twin Swirl Combustor (TSC) burning pulverized coal. Results under 
different stoichiometric ratios show that volatiles release in between two recirculation 
zones close to the secondary air inlet, and char burns mostly in the near-wall region 
due to the centrifugal force brought in by two swirling airflows. Intensive near-wall 
burning of pulverized coal favors a relatively high wall temperature, contributing to 
continuous molten slag discharge. An evenly distributed temperature profile with an 
average of about 1500 K in the chamber is obtained, which is beneficial for low NOx 
emissions. The case with stoichiometric ratios of 0.9 yielded lower NOx emission 
rates near exit while remains high volatile conversion rate and char burnout rate, as 
compared with the case with stoichiometric ratios of 0.8. 

Keywords: Twin swirl combustor, Computational Fluid Dynamics (CFD), thermal, 
NOx 

Introduction 

Confined swirling flows are widely used in most the industrial instruments, i.e. 
internal combustion engines and industrial burners. A strong swirling airflow in the 
chamber will cause negative-pressure effects, generating internal recirculation zones 
(IRZ). The existence of recirculation is beneficial for both premix and non-premixed 
combustion. In pulverized coal combustion, it can help increase the gas recirculation 
for flame stabilization, and prolonging the travelling time of the coal particles, which 
is beneficial for reaching high-level burnout rate. 
 
In this paper, a Twin Swirling Combustor (TSC) burning pulverized coal has been 
proposed. A schematic plot for the inlet structures of TSC is shown in Figure 1. With 
two swirling airflows, coal particles are burned near the chamber wall in intensive 
combustion rates. Under the centrifugal force, burnout particles are captured by the 
chamber wall in the form of fusion slag. With the operation pressure and/or the 
gravity effect, the ash is removed in the form of molten slag and discharged from the 
bottom of the combustor to a water quenched slag hopper, where it forms crystal 
pellets.  
 
CFD simulation was conducted on the Twin Swirl pulverized coal Combustor (TSC) 
to evaluate the combustion performance inside the chamber in a slagging combustion 
condition. Results under different stoichiometric ratios were obtained in a fuel-rich 
condition for restraining of NOx generation. C1 and C2 were given to each case, with 
the stoichiometric ratio () of 0.9 and 0.8, respectively. Comparative analyses were 
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made on the combustion performance as well as the pollutant emission rates. A 
schematic plot for the inlet structures of TSC is shown in Fig. 1. The non-swirling 
inner primary and outer secondary airflows were turned into two coaxial swirling 
airflows with the same swirl direction after they flow through the fixed annular vanes. 
Detailed geometries for TSC can be referred to [Liu and Tang (2014)]. Inlet 
conditions for case C1 and C2 are described in Table 1. Coal proximate analyses and 
ultimate analyses results are illustrated in Table 2. 

Annular Vanes for 
Primary Air

Annular Vanes for 
Secondary Air

Secondary Air Inlet

Primary 
Air/Coal Inlet

 
Figure 1.  Schematic plot of inlet structures of TSC  

Table 1 Operation conditions for different cases 

 Stoichiome-
tric ratio 



Air flow rate 
(kg/s) 

Coal feed rate 
(kg/s) 

Temperature (K) 

Primary air Secondary air 

C1 0.9 5.559e-2 7.676e-3 293 673 
C2 0.8 5.559e-2 8.529e-3 293 673 

Table 2 Properties of the pulverized coal 

Proximate analysis (%) Ultimate analysis (%) 
FC Volatile Ash Moisture C H O N S 

36.9 45.5 12.9 4.7 77.58 6.57 14.71 1.12 0.02 
 

Numerical models and mathematical methods 

The thermal simulation of the pulverized coal combustion in TSC was performed 
using a finite volume method. Coal combustion is modeled as a diluted two-phase 
(solid-gas) reacting flow using an Eulerian-Lagrangian approach. For the gas phase, 
the governing equations of mass, momentum, species and energy are written in 
conservative form: 

   j

j j j

u
S

t x x x


 

      
         

    (1) 

With , t, u,  and S denoting Favre-averaged variables, time, velocity diffusion 
coefficient, and source term, respectively [Muller et al. (2010)]. 
 
The RNG k-model [Yakhot and Orszag (1986)] was adopted to simulate the 
turbulent flows in the chamber. The devolatilisation process of the coal particles was 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

612



 
 

simulated using the two-competing-rate model [Kobayashi et al. (1976)]. The 
turbulence-chemistry interaction was modeled using the finite-rate/eddy-dissipation 
model with the -Probability Density Function (PDF) methods [Smoot and Smith 
(1985)]. The Discrete Ordinates (DO) model [Raithby and Chui (1990)] was used to 
calculate the radiation heat transfer. For the prediction of NOx emission, both the 
thermal and fuel NOx were calculated, while the prompt NOx was ignored [Zhou et al. 
(2014)]. The formation of the thermal NOx is modeled by the extended Zeldovich 
mechanism [Zeldovich (1946)]. Fuel NOx is generated when nitrogen originally 
bound in the coal particles combines with excess oxygen. 
 
Mesh independence test had been implemented before simulations started. A total 
number of about 100,000 quadrilateral mesh cells were chosen for all the calculations. 
The isothermal cases were first simulated with converged results. Then coal particles 
were added to couple with the continuous phase calculation. Convergence criteria 
were set to five orders of magnitude reduction and at least 20,000 iterations were 
carried out to ensure the convergence. 

Results and discussion 

The contours of the axial velocity are shown in Figure 2. Only half of the calculation 
domain is shown due to axisymmetric flow characteristics. The upper half depicts the 
axial velocity under isothermal condition, while the lower half describes the axial 
velocity of C2, which is under thermal condition. The recirculation zones are 
highlighted with black curves, in which the axial velocity is negative. The IRZ moves 
more downstream towards the axis direction under thermal condition, and the area of 
IRZ is larger compared with the isothermal one. There is another recirculation zone 
near the combustor wall. When combustion process is taken into consideration, this 
recirculation zone becomes smaller and move downstream. The discrepancy in the 
shape and location of the IRZ can be due to two aspects. Firstly, the chemical 
reactions and heat generated during coal combustion have huge impacts on the flow 
field inside the chamber. Also, when coal particles are added into the chamber, the 
interaction between the air and coal particles can also affect the aerodynamic field of 
the continuous phase.  

IRZ

Isothermal

Thermal

 
Figure 2.  Contours of axial velocity (upper half, isothermal results; lower half, 

thermal results) 

Figure 3 compares the particle evaporation/devolatilization rate and particle burnout 
rate for C1 and C2 are shown in Figure 4. In each figure, the upper half is the contour 
of C1 ( 0.9  ) and the lower half is that of C2 ( 0.8  ). The light yellow outlines 
in Figure 3 and Figure 4 depict the recirculation zones where the axial velocity is 
negative. Though the length of the IRZ of C1 is slightly larger than that of C2, the 
other recirculation zones are almost with same shape and located in same place. As 
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seen in Figure 3, the place where volatiles release from coal particles is located just in 
between the two recirculation zones near the secondary air inlet. Moreover, the 
contour of particle burnout rate shown in Figure 4 indicate that char also burns out in 
between two recirculation zones, though the char burnout district extends further 
downstream along the axial direction than that of the particle 
evaporation/devolatilization zone. As is shown in Figure 3, the contours for particle 
evaporation/devolatilization rates of C1 and C2 differ little from each other. For C2, a 
higher evaporation/devolatilization rate is obtained. Similarly, higher burnout 
intensity is fulfilled in C2, while the length of the char burnout area of C1 is larger 
than that of C2. The char burnout zones for both cases are located in the vicinity of 
wall regions, due the centrifugal force aroused by the swirling airflows. Large 
evaporation/devolatilization rate and char burnout rate near the chamber wall 
indicates an intensive combustion in the near-wall region, which is beneficial for 
particle deposition and melting slag discharge. 

1( 0.9)C  

2 ( 0.8)C  

 
Figure 3.  Contours of particle evaporation/devolatilization rate (upper half, C1; 

lower half, C2) 

1( 0.9)C  

2 ( 0.8)C  

 
Figure 4.  Contours of particle burnout rate (upper half, C1; lower half, C2) 

The temperature contours in the TSC chamber of C1 and C2 are depicted in Figure 5. 
A relatively uniform temperature distribution is obtained, which is beneficial for low 
thermal NOx emission. In most part of the chamber for both cases, the temperature 
can reach up to 1600 – 1700 K. Within this temperature range, slagging combustion 
can be realized. The temperature profiles in C1 and C2 are similar in most of the parts 
in the chamber. This is because the same inlet conditions for the air flow, which 
results in the similar aerodynamic field and combustion performance shown in Figure 
2 to 4. For C1, there is a near-exit zone with a relatively lower temperature near the 
wall (marked with a red ellipse in Figure 5). Moreover, in the corner near the 
contraction part of C2, there is an area with a temperature peak of 2300K (marked 
with a blue ellipse in Figure 5), which indicating a large generating rate of thermal 
NOx in this place. 
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1( 0.9)C  

2 ( 0.8)C  

 
Figure 5.  Contours of axial velocity (upper half, C1; lower half, C2) 

The distribution of NOx in the TSC chamber is shown in Figure 6. Here only thermal 
and fuel NOx was calculated while prompt NOx was ignored, considering the 
characteristics of the pulverized coal combustion. As is shown in Figure 6, NOx is 
mainly generated in the near-axis regions downstream and the upper corner near the 
contraction part in C1; while for C2, NOx is more evenly distributed along the radial 
direction. There is a NOx concentration peak in the contraction part near the exit of 
C2 (highlighted in a blue ellipse in Figure 6). This is contributed by high thermal NOx 
generation rate in this area, in accordance with the temperature peak shown in Figure 
5. 

1( 0.9)C  

2 ( 0.8)C  

 
Figure 6.  Contours of axial velocity (upper half, C1; lower half, C2) 

Table 3 Summary of simulation results 

 Particle Average 
Residence Time 

(s) 

Average Volatile 
Conversion Rate 

(%) 

Average Char 
Burnout Rate 

(%) 
C1 1.00 99.61 93.52 
C2 0.93 99.93 92.96 

 Average 
Temperature in 
TSC Chamber 

(K) 

Average NOx 
Concentration Rate 
in TSC Chamber 

(ppm) 

Average NOx 
concentration rate 

@ exit 
(ppm) 

C1 1472.75 21.47 25.89 
C2 1516.54 23.21 71.46 

 
Table 3 shows the combustion performance and the NOx generation rates under a 
fuel-rich condition of C1 and C2. The average particle residence time during 
combustion is around 1 s, which is favorable for highly efficient coal combustion. In 
both cases, the average volatile conversion rate is larger than 99.5%, and C1 yields a 
merely higher average char burnout rate of 93.52% to 92.96%. The average 
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temperature in the TSC chamber of C2 is about 45 K higher than that of C1. This is 
because with the same amount of combustion air and almost the same combustion 
efficiency, more burned coal means more heat is generated. Low NOx combustion is 
realized for both cases, and C1 acquire a relatively lower NOx generation rate. The 
evenly distributed temperature profile in the chamber, along with the reducing 
atmosphere greatly inhibits the NOx generating rate during the pulverized coal 
combustion. The average NOx concentration rate near the exit for C1 is only 25.89 
ppm, compared with 71.45 ppm for C2. 

Conclusions 

In this paper, the thermodynamics properties of a Twin Swirl Combustor (TSC) 
burning pulverized coal were studied. Simulation results show that the pulverized 
coal is burnt efficiently, with an average volatile conversion rate of larger than 99.5% 
and an average char burnout rate of 93%. Meanwhile, the NOx generation rate is 
reduced in a low level in the chamber. C1 with the stoichiometric ratio of 0.9 yielded 
lower NOx emission rates near combustor exit while remained high volatile 
conversion rate and char burnout rate, as compared with C2 with the stoichiometric 
ratio of 0.8. 
 
Two swirling airflows in the chamber form strong swirling and recirculation zones. 
The particle residence time in the chamber is prolonged for around 1 s, which is 
beneficial for the highly efficient coal combustion. Most of the coal particles are 
burned in the vicinity of chamber wall. The increased wall temperature is favorable 
for ash deposition and molten slag discharge. An evenly distributed temperature 
profile as well as the fuel rich environment in the TSC chamber can further inhibit 
NOx generation during pulverized coal slagging combustion.  
 
A detailed measurement of the thermal properties in the TSC is essential to further 
compare and evaluate the performance of the TSC and is expected to be conducted 
soon. 

Acknowledgement 

This work is supported by Funding of Jiangsu Innovation Program for Graduate 
Education (CXLX11_0193). 

References 

Liu, Y. L. and Tang H. (2014) Numerical study on the interaction mechanism between swirl and 
reverse flow rate in a twin swirl combustor, Advance Materials Research 960-961, 341-348.  

Müller, M., Lemp, O., Leiser, S., Schnell, U., Grathwohl, S., Maier, J., and Mönckert, P. (2010). 
Advanced modeling of pulverized coal combustion under oxy-fuel conditions. In The 35th 
International Technical Conference on Clean Coal and Fuel Systems. Clearwater, FL. 

Yakhot, V. and Orszag S. A. (1986) Renormalization group analysis of turbulence. I. Basic theory, 
Journal of Scientific Computing 1, 1-51. 

Kobayashi, H., Howard, J. B., and Sarofim, A. F. (1976) Coal devolatilization at high temperatures. In 
Symposium (international) on combustion, Cambridge, Massachusets. 

Smoot, L. D., & Smith, P. J. (1985). Coal combustion and gasification, Plenum Press, New York, USA. 
Raithby, G. D. and Chui, E. H. (1990). A finite-volume method for predicting a radiant heat transfer in 

enclosures with participating media. Journal of Heat Transfer, 112(2), 415-423. 
Zhou, H., Yang, Y., Liu, H. Z. and Hang, Q. J. (2014) Numerical simulation of the combustion 

characteristics of a low NOx swirl burner: Influence of the primary air pipe, Fuel 130, 168-176.  
Zeldovich, Y. B. (1946) The oxidation of nitrogen in combustion and explosions. Acta Physicochim. 

URSS, 21(4), 577-628. 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

616



 

 
 

The inadequacy of elastic properties from tensile tests for Lamb wave analysis 

W.H. Ong¹, *W.K. Chiu¹, N. Rajic2 and C. Rosalie2 
1Department of Mechanical & Aerospace Engineering, Monash University, Clayton, Victoria, Australia  

2 Defence Science & Technology Organisation, Aerospace Division, Airframe Diagnostic Systems Group,  
Fishermans Bend, Victoria 3207, Australia 

*Presenting and corresponding author: wing.kong.chiu@monash.edu  

Abstract 

Lamb wave analyses have been conducted on metallic and composite structures. The dispersion 
characteristics for these plate structures are evaluated using the Rayleigh-Lamb equations and an 
assumption that the material properties are known. In most studies, the elastic moduli used are 
determined using standard tensile tests. These properties have been used to adequately model the 
dispersive behavior of Lamb wave in metallic plates. It has been shown that the use of elastic 
properties from tensile tests is able to model the dispersive Lamb wave behavior. However, this 
may not be the case for plates made from woven fibre reinforced plastics. The effects of material 
properties on the propagation of Lamb wave in fibre reinforced composite plates are significant. In 
most of these investigations, the elastic properties used are obtained from tensile tests. It will be 
shown that the use of such properties will lead to significant inaccuracy in the determination of the 
dispersion characteristics of a composite plate.  
Keywords: Lamb wave, elastic properties of composite materials  

Introduction 

A modelling capability for propagating Lamb waves has always been desirable to gain 
understanding, reduce costly experimentation and perform analyses not possible experimentally. A 
key factor to accurate modelling of Lamb wave propagation is correctly defining the properties of 
the propagating medium. Much of the previous literature was focused on aluminium plates. In all 
these studies, the elastic properties used in structural analysis are also used in modelling Lamb wave 
propagation. This assumption was valid because such aluminium is a homogenous and isotropic 
material.  Its elastic property does not exhibit significant strain rate effects.  
 
Recently the use of advanced composite structures, in particular carbon fibre reinforced polymers 
(CFRP) have become commonplace and as a result accurate modelling in composite plates is now 
desirable. Unlike aluminum, the elastic properties of the fabricated CFRP plates are affected by the 
processing conditions and fibre compaction. The advances in the computational and experimental 
structural analyses have led to the use CFRP component in significant load bearing structures. 
Copious studies have reported good agreement between these analyses that suggest the validity of 
the elastic properties used. 
 
Naik (1994) reported that stiffnesses of woven composite panels are governed by weave parameters 
such as weave architecture, yarn sizes, yarn spacing and yarn crimp [1]. The concept of the 
repeating unit cell (RUC) was used to help define the elastic properties of woven composites [2]. 
However, in the work by West [3], they showed that the axial stiffness of woven composite is not 
dependent on the crimp angle. 
 
Lamb waves are low amplitude, high frequency elastic waves travelling on a medium. The length-
scale of Lamb wave in the propagating direction is large compared with the microstructures of 
metallic plates. However, in this case of woven composite plates, the length-scale of the 
propagating Lamb wave may be comparable to that of its RUC. To this end, this paper will present 
a set of results that will highlight the apparent shortcoming in using elastic properties that are 
determined for structural analyses for analyzing Lamb wave propagation in a woven composite 
plate.  
 
In this study, a set of results obtained with an aluminium plate will first be presented. The 
computational analyses of the Lamb wave propagation were conducted using published elastic 
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properties commonly used in structural analyses. The aim of this part of the work is to validate the 
computational capability and the experimental scanning laser vibrometry equipment. A quasi-
isotropic test plate was fabricated from woven composite material. A series of tensile tests was 
performed to determine the elastic modulus of the test plate. These results were compared with 
theoretically derived elastic moduli using the manufacturer has published material properties. These 
properties were subsequently used to model the propagating Lamb wave on this woven composite 
plate. These computational results were compared with the experimental test data. This concerted 
work highlights the need for a new approach to establish a set of elastic properties of woven 
composite plates.  

Laser vibrometry 

The dispersion curves of the test plates were acquired using a laser vibrometry facility described in 
detail in [4, 5]. The PZT bonded to the plate is made to actuate Lamb waves by a 50V peak-peak 
drive signal from a Krohn-Hite model 7602 amplifier. The out-of-plane displacements from the 
Lamb waves are detected on the plate surface by a Polytec OFV 505 laser vibrometer. The 
positioning of the laser vibrometer relative to the plate is controlled by a stepper motor driven high 
resolution X-Y table set to 5000 steps per mm.  

Metallic plate 

An aluminium plate measuring 300x300x4mm had a Ferroperm Pz27 PZT Ø10mm x 1mm disc 
placed 75mm from the bottom edge as shown in Figure 1. Also shown is “line 1” which will be 
used to record the Lamb waves propagating across the plate by LV. Line 1 measured 210mm long 
and spans from the top edge of the plate to the edge of the PZT disc. During the laser vibrometry 
scan 256 points were collected along this line. A frequency sweep was conducted at each point 
using Hanning windowed sinusoids with centre frequencies ranging from 100 kHz to 1 MHz in 100 
kHz intervals. At 200 kHz the window resulted in a 5 cycle sinusoid, the window was kept constant 
in time such that the energy at each frequency would be similar.  
 
The data along line 1 was then transformed using a 2D FFT at each frequency and summated to 
reveal the full spectrum of Lamb modes shown in Figure 2. The theoretical Lamb wave modes are 
overlaid on the 2D FFT contour plot in the form of dispersion curves and demonstrate a good 
agreement. These curves were predicted using DISPERSE with the material properties summarized 
in Table 1.  The properties are from the material library supplied by DISPERSE and the values 
common across engineering applications (such as FEA software) and literature. The excellent 
agreement between the theoretical and experimental dispersion curves show: 

a. The use of elastic properties commonly used in structural analyses of aluminium structures 
can also be used in modelling Lamb wave propagation in aluminium plates. 

b. The veracity and efficacy of the scanning laser vibrometry test facilities. 
 

 
Figure 1 Aluminium plate with PZT and scanned line. 
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Figure 2 2D FFT on aluminium plate showing agreement with mathematical modelling. 

Table 1 Aluminium material properties 

Density (kg/m3) 2700 

Poisson’s ratio 0.3375 

Young’s modulus (GPa) 70.758 

 

Composite Plate 

A composite specimen was fabricated using Hexcel M18 prepreg with woven carbon G939 fabric. 
The quasi-isotropic test plate used is fabricated from 16 bi-axial plies in the layup [0/90, +/-45, +/-
45, 0/90, 0/90, +/-45, +/-45, 0/90]s. Upon curing, the plate was trimmed to a planar dimension of 
400mm x 400mm. A Ferroperm Pz27 Ø10mm x 1mm PZT disc was placed at the centre of the plate 
as shown in Figure 3. The dimensions and the mass of the test plate were measured and the material 
density is calculated to be 1434 kg/m3. 
 
A series of uniaxial test specimens were cut from the fabricated composite plate as shown in Figure 
4a to measure the stiffness in the 0-degree direction. A unidirectional strain gauge was bonded at 
the centre of each of the coupon aligned with the tensile direction. An Instron tensile machine 
equipped with a 2kN load cell was used as shown in Figure 4b. Stress across the strain gauge was 
calculated by dividing the load by the cross sectional area of the test specimen. The stress-strain 
curves from the 4 test specimens are shown in Figure 5. The effective moduli of the test specimens 
were calculated from these results are shown in Table 2. The average modulus was found to be 43.9 
GPa. 
 
Using the in-plane modulus provided by Hexcel and estimates for the remaining values (Table 3), 
the effective modulus of the test plate was calculated using classical laminate theory. This method 
returned an effective modulus of 46.2 GPa which agreed well with the experimental value of 43.9 
GPa, which corresponds to a 5% variation.  
 
The material properties in Table 3 were used to calculate the dispersion curves in DISPERSE. 
Figure 6 shows the comparison between the experimentally measured dispersion curve compared 
with those calculated using DISPERSE. The measured wavenumbers of majority of all modes are 
higher than the theoretical values. Curiously, there is a region where there is apparent agreement 
between the theoretical and the experimental dispersion characteristics (see Figure 6). The deviation 
of the experimental and theoretical dispersion curves are greater than 5%.  
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Figure 3 Photograph of specimen showing scan lines. 

 
 

 
a) 

 
b) 

Figure 4 a) Test coupons cut from plate. b) Test coupon in tension loading. 

 
Figure 5 Stress-strain curve using strain gauges. 
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Table 2 Effective tension moduli. 

Specimen 

Laminate 
theory using 

initial 
properties T1 T2 T3 T4 

T1-4 
Average 

Effective 
modulus 

(GPa) 46.2 45.7 44.3 43.0 42.7 43.9 
 

Table 3 Published and estimated material properties 

E11=E33 (GPa) 67 
E22 (GPa) 8.6 

G12=G13=G23 (GPa) 5 
ν12= ν13=ν32 0.35 

Ply thickness (mm) 0.269 
 
 

 
Figure 6 Preliminary reference 2D FFT showing modes in close proximity. 

Discussions 

The results presented above can be summarized as follows: 
a. Excellent agreement between the theoretical and experimental dispersion curves can be 

obtained when a metallic plate. The efficacy of the laser vibrometry test facility is verified. 
b. The use of elastic properties as defined by tensile tests is sufficient for modelling the 

dispersive characteristics of Lamb wave. 
c. The elastic modulus of a composite specimen determined from a tensile test agreed well 

with the theoretical modulus calculated using manufacturer’s data. 
 
This discussion establishes a possible explanation for the disagreement between the measured and 
theoretical dispersion curves obtained for the composite panel. According to Naik [1] elastic 
stiffnesses of woven composite panels are governed by weave parameters such as weave 
architecture, yarn sizes, yarn spacing and yarn crimp. The concept of the repeating unit cell (RUC) 
was used to help define the elastic properties of woven composites [2]. The definition of the RUC 
shows that the need to consider the length-scales when defining the elastic property of woven 
composite. Figure 7 shows the weave pattern of the test plate used in this paper. The width of the 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

621



 
 

tow is approximately 1.9 mm. Figure 7 outlines the concept of the RUC for the test plate used in 
this paper. The important length-scales associated with this RUC are shown in Figure 7.  
 
The measured wavelength of the Lamb wave modes ranges from 3 mm to 25 mm. Whilst these are 
small compared with the thickness of the plates, it is evident that they are comparable to the length-
scale of the RUC as defined in Figure 7. Therefore, it is expected that the perturbations associated 
with the propagating Lamb wave mode will have length scales that are comparable to the RUC. In 
this respect, one can expect the yarn crimp angle to have an effect on the elastic property of the 
woven composite. To this end, one can expect a reduction in the effective elastic modulus that will 
bring about a reduction in the group velocity of the Lamb wave modes. This is consistent with the 
results shown in Figure 6. However, the region where modes are in close proximity (see Figure 6) 
show that merely altering the elastic moduli by trial-and-error is not sufficient. A systematic 
approach based on the dispersive characteristics of the propagating Lamb wave mode including the 
higher order modes is required to establish a set of elastic properties that will allow for an accurate 
representation of the dispersion curves of woven composites. 
  

 
Figure 7 Photograph of CFRP test specimen showing satin weave. 

Conclusions 

The efficacy of the non-contact laser vibrometry for studying the propagation of Lamb wave 
propagation in plate-like structures was first demonstrated. In the experiments where an aluminium 
plate was used, there was an excellent agreement between the theoretical and experimental 
dispersion curves. The elastic constants for aluminium used in the theoretical analyses were 
obtained from standard tensile tests.  
 
Similar investigations were repeated on a composite plate incorporating a satin weave carbon fibre 
fabric. Firstly, the results from a series of tensile test confirmed that the in-plane elastic constant of 
were consistent with manufacturer’s data. The elastic properties were then used to determine the 
dispersion curves of Lamb waves propagating in the test specimen. The agreement between the 
theoretical and experimentally measured Lamb modes was poor.  
 
An explanation for this disagreement is attributed to the length-scale of the RUC of the woven 
fabric of the CFRP. It was found that the wavelength of the propagation Lamb wave is comparable 
with the length-scale of the RUC. In this respect, one expects the elastic constant to be less than that 
determined from standard tensile tests which is consistent with the higher wave number measured. 
These results show a need for an appropriate test method for determining the elastic constants that is 
governed by the dispersion relationship of the propagating Lamb waves. 
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Abstract 
In the present study, two irregular honeycombs are manufactured by a 3D printer and tested under 
compression. Experimental observation shows that the first fracture of cell walls is significantly 
critical, which is indeed the onset of global failure of honeycombs. To predict the onset of global 
failure of honeycombs, failure criteria based on stress or strain at integration point level need to be 
used, which is difficult to realize due to stress singularity at cell wall joints. To circumvent this 
issue, a mesh level, 40 elements within each cell wall, is chosen in FE analysis so that numerical 
results at cell wall joints are close to engineering solutions. Failure criteria based on von Mises 
stress, equivalent plastic strain, tensile plastic strain, surface tensile stress and bending moment are 
then employed to predict the first fracture of cell walls. It is found that failure criteria based on von 
Mises stress, equivalent plastic strain, tensile plastic strain yield the same predictions which are 
within 9% of experiment value for strength and within 24% for strain at failure. The cell walls 
which are predicted to be the most likely to fracture first in the honeycombs agree well with these 
cell walls that rupture first in experiments. 
Keywords: Irregular honeycombs, fracture and failure, FE modelling 

Introduction 
As manufacturing techniques advance, cellular solids have seen a wide range of applications in 
automotive, aerospace, aircraft, marine, construction and packaging industries due to their 
advantage in weight-saving, impact-absorbing, thermal-insulating, noise-abating and so forth. 
Naturally, the mechanics of cellular solids have become a field of interest for researchers over the 
past few decades (a comprehensive review can be found in [Gibson and Ashby (1997)].  
For the safe and efficient use of cellular solids, characterization of mechanical properties of cellular 
solids is vitally important and has been carried out extensively [Deshpande and Fleck (2000); 
Deshpande and Fleck (2001); Motz and Pippan (2001); Kabir, Saha et al. (2006); Daniel and Cho (2011); 
Battley, Clark et al. (2013)]. With tests under different loading conditions, the constitutive relations of 
cellular solids can be established [Deshpande and Fleck (2000); Deshpande and Fleck (2001)], 
which, however, are generally valid for a specific cellular solid. Generalization of constitutive 
relations of cellular solids can be found in [Gibson and Ashby (1997)]. To develop tools of 
predicting the properties of cellular solids, cellular solid modelling have been progressed from 
simple single cell models [Gibson and Ashby (1982)] to complicated models of random geometry 
[Ribeiro-Ayeh (2005); Chen, Das et al. (2014)]. Through modelling, it is recognized that the global 
response of cellular solids is strongly related to their relative density, microstructure and the 
properties of base materials [Gibson, Ashby et al. (1982); Gibson and Ashby (1982); Ribeiro-Ayeh 
(2005); Chen, Das et al. (2014)].  
The majority of modelling work has been undertaken to study the elastic response of cellular solids 
[Zhu, Knott et al. (1997); Grenestedt and Tanaka (1998); Simone and Gibson (1998); Simone and 
Gibson (1998); Grenestedt and Bassinet (2000); Roberts and Garboczi (2001); Gan, Chen et al. 
(2005); Ribeiro-Ayeh (2005); Li, Gao et al. (2006); Chen, Das et al. (2014)]. In terms of instability 
analysis of cellular solids which involves geometrical and material nonlinearity, limited work has 
been conducted. Papka and Kyriakides [Papka and Kyriakides (1994); Papka and Kyriakides 
(1998)] numerically reproduced the crushing process of aluminum hexagonal honeycombs with 
integration of geometric imperfections. Zhu etc. [Zhu, Thorpe et al. (2006)] studied the effect of  
cell irregularity on the high strain compression of Voroni honeycombs using Abaqus Riks method. 
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In their models cell wall material was assumed to be elastic, therefore the typical stress plateau of 
honeycombs under compression did not occur and the nonlinearity of response of Voroni 
honeycombs under high strain arises solely from large deformation of cell walls. Jouneid and Sab. 
[Jouneid and Sab (2009)] pointed out global buckling (a great number of cell walls buckle 
simultaneously) disappear in irregular honeycombs, and thus elastic buckling analysis is not able to 
predict the instability of irregular honeycombs. Kyriakides etc. [Jang, Kyriakides et al. (2010); 
Gaitanaros, Kyriakides et al. (2012)] simulated the crushing of an open-cell aluminum foam using 
LS-DYNA. The typical three stages: initial elastic, stress plateau and densification regimes were 
reproduced. It is noteworthy that the spread of localized band of crushed cells agrees well with 
experimental observation made using X-ray tomography. Nammi ect. [Nammi, Myler et al. (2010)] 
modelled the compressive response of a closed-cell aluminum foam using a repeating unit cell 
constructed from the tetrakaidecahedra structure, and remarkable stress fluctuation in stress plateau 
regime were predicted. Daxner and Bische [Robert (2005); Daxner, Bitsche et al. (2006); Daxner 
(2010)] predicted the yield surface of Kelvein and Weaire-Phelan closed-cell foams using 
macroscopic plastic effective strain and energy dissipated as criteria to define the onset of global 
failure of foams. Mills [Mills (2010)] investigated the yield surface of polyethylene and polystyrene 
closed-cell foams using the Kelvin foam model, with foam failure defined by the moment when the 
yield zone (equivalent plastic strain larger than 0.01) crosses the foam structure.  
In above mentioned simulations, cell wall materials are assumed to be elastic-plastic (except [Zhu, 
Thorpe et al. (2006); Jouneid and Sab (2009)], without consideration of material fracture. This is 
valid for cellular solids made from ductile material such as aluminum subjected to compression, 
because no cell wall fracture was experimentally observed during compressive tests. However, for 
these cellular solids made from brittle or quasi-brittle materials, cell walls fracture at some stage, 
leading to the failure of cellular solids. Additionally, when cellular solids are subjected to tension or 
shear, they fail by cell walls tearing apart. Therefore, material failure criteria need to be 
incorporated into models to predict the failure of cellular solids. To apply material failure criteria, 
accurate stress or strain (Von Miss stress or equivalent plastic strain) at integration point should be 
used. However, due to stress singularity at the corners of cells (cell wall joints), stress and strain are 
actually mesh dependent. Hence, appropriate mesh size should be determined and adopted. 
Due to three dimensionality, it is difficult to observe the deformation and failure pattern at cell wall 
level in foams, and thus is challenging to validate foam models. Honeycombs, as a member of the 
family of cellular solids, are often employed to study the mechanics of cellular solids due to their 
geometric simplicity [Papka and Kyriakides (1994); Papka and Kyriakides (1998)]. The deformation of 
each cell wall in honeycombs can be readily captured by camera and used to validate numerical 
models [Papka and Kyriakides (1994)]. Nevertheless, in most of cellular solids, variations in 
microstructures are ubiquitous, for instance, irregular cell shape, non-uniform cell size and wall 
thickness. Therefore, irregular honeycombs, such as honeycombs with random wall thickness and 
cell size, are more geometrically representative of realist cellular solids. It is a challenging task to 
manufacture irregular honeycombs in conventional manner, but with 3D printing it become easier. 
This paper aims to predict the onset of global failure of irregular honeycombs under compression 
which fail by cell wall fracture. To accomplish this, two irregular honeycombs are manufactured by 
a 3D printer and tested under compression firstly. During the tests, progressive cell wall fracture is 
captured by a camera positioned squarely toward the specimens. The mechanical properties of base 
material of the honeycombs are measured with printed dogbone specimens and subsequently 
incorporated into finite element (FE) models. Static analyses are conducted in Abaqus for these two 
honeycombs. Then different failure criteria are utilized to predict the onset of global failure of the 
honeycombs, and finally these predictions are compared. 

Experiments 
In the present study specimens were manufactured by a 3D printer (Projet HD 3500 Plus), which 
has a net build volume of 203 × 178 × 152 mm. The build material VisiJet M3 X is utilized. The 
highest printer resolution of 16 µm layers (750x750x1600 DPI (xyz)) was chosen. As 3D printers 
build parts by stacking a layer of materials on top of the previous layer, the properties of printed 
materials may be anisotropic and different from that of raw materials, and thus the properties of the 
printed materials still need to be measured. To this end, dogbone specimens of type I were printed 
in three orthogonal orientations (see Figure 1a) and tensile tests were conducted with them. 
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Two irregular honeycombs of uniform wall thickness but having cell size (diameter of incircle of 
cells) following prescribed log-normal distributions (see Figure 1b) were printed here. To print 
these specimens, the geometry need be created first, which is done in the software Abaqus using 
python scripts. Firstly, a precursor honeycomb without wall thickness (dashed line in Figure 2) is 
created, which is indeed a 2D Laguerre tessellation. The details of the generation of 2D Laguerre 
tessellations are given in [Chen, Das et al. (2014)]. Once the precursor honeycomb is generated, the 
points, lines, and cells are labelled and stored in a hierarchical order, so that the topologies can be 
readily known, i.e., which lines construct a cell and which points form a line. Thereafter, cell wall 
thickening is performed for all the cells one by one. To illustrate the thickening process, we take a 
cell ABCDE (see Figure 2) as an example. First we determine the inner normal of each edge of the 
cell ABCDE. As the thickness of each wall is given, five linear equations which represent lines 
coincidental with inner edges (A’B’, B’C’, C’D’, D’E’ and E’A’) can be developed. Solving a set of 
two linear equations which represent two adjoining inner edges can yield the coordinates of an inner 
vertex, such as A’. Following the same process by rotation, the coordinates of the other four inner 
vertices (B’, C’, D’, E’) are calculated. Each cell is analysed through this process, and then all the 
edges of cell walls are determined. With all the topological data obtained by this process, a sketch is 
drawn and extruded to 3D geometry in Abaqus. Two thin plates are added at two edges (see Figure 
1b) to protect cell walls at edges from localized damage due to contact with compression platens. 
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Figure 1: (a) printing orientations of dogbone specimens; (b) printed regular honeycomb 
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Figure 2: Schematics of cell wall thickening 
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As specimen size is limited by the maximum building volume of the 3D printer, the more the cells 
in the specimens are, the smaller the cell size is and the thinner the cell walls are, which make it 
difficult for the camera to capture deformation at cell wall level and for the 3D printer to print. Here 
the average cell size is chosen to be 4.46 mm, with a standard deviation of 1 mm, and cell wall 
thickness is set to be 0.3 mm. The specimens are 170 mm wide, 190 mm tall and 25 mm thick. 
Compressive tests were subsequently carried out with a synchronized camera positioned squarely 
toward the specimens to capture deformation in honeycombs. 

Computational models 
In modelling of compression of ductile honeycombs, it is not necessary to accurately calculate 
stress and strain at integration point level since the predicted global response is generally not 
sensitive to them. Nevertheless, it is critical for brittle honeycombs, because stress and strain at 
integration point level determine whether or not cell walls rupture and thus affect the prediction of 
global response of honeycombs. However, it is impossible to calculate the exact stress and strain at 
cell wall joints due to stress singularity. Engineering solutions are more effective and practical in 
predicting beam failure than exact solutions. For example, Davidge [Davidge (1979)] pointed out 
that brittle beams rupture when maximum surface tensile stress (σmax) is 1.1 times the ultimate 
tensile strength of beam material, maximum surface tensile stress is calculated as  

max
max 2

6M
bt

σ =  (1) 

where Mmax is maximum bending moment, and b and t are the width and thickness of the beam, 
respectively. In a compressed honeycomb, cell walls are basically under the conditions similar to 
the beam shown in Figure 3a. If we adjust mesh size in FE analysis to make numerical results 
(surface stress and bending moment) match engineering solutions, then the numerical results at 
integration points can be utilized to determine cell walls fracture. To find out the mesh size, a mesh 
sensitivity study is conducted for the beam shown in Figure 3a. The beam is modeled using shell 
elements (S4R), with one element along width direction, as shown in Figure 3b. Beam material is 
assumed to be elastic. One end of the beam is fixed and the other is constrained from rotating and 
pushed downward a third of length of the beam. Three beam length-to-thickness ratios, 10, 20 and 
30, are considered. The maximum surface stress and bending moment are read at the integration 
points.  The engineering solutions for surface stress and bending moment are calculated by Eq. (1) 
and Eq. (2). 

max 2
FLM =  (2) 

 
F

L FL/2
  

(a) (b) 

Figure 3: (a) beam with one end fixed and one end constrained from rotating subjected to a 
load at the free end; (b) FE model of the beam 

The honeycombs are modelled by shell element (S4R) as well. The geometry of shell models is 
extruded from the precursor sketches mentioned in the experiments section. Instead of full model, 
the compression of honeycombs is seen as plain strain and thus only a slice of honeycomb (0.5 mm 
thick) is modelled, with one element along thickness direction. All elements are constrained moving 
along honeycomb thickness direction. The tensile properties measured with printed dogbone are 
incorporated into models. Since the simulations is up to the point when cell wall start to break and 
no cell wall contact occurs before that, static analyses with large deformation considered are 
conducted. 
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Results and discussion 
In this section, the tensile properties measured with dogbone specimens are presented firstly. Then 
the compressive response of the honeycombs is described. The results of mesh study are 
subsequently illustrated. Finally, the predictions on the onset of honeycomb failure with different 
criteria are developed and discussed. 

Experimental results 
Table 1 lists the measured modulus, ultimate tensile strength and elongation at break of material 
printed in different orientations. It can be seen that the printed specimens give Young’s modulus 
reasonably closed to that of raw material. The ultimate stresses of the specimens printed standing up 
along y direction and lying along y direction are slightly smaller than that of raw material, while the 
specimens printed along z direction exhibit ultimate stress 35.5% lower than that of raw material, 
which is attributable to the way of 3D printer making part by stacking materials. As honeycombs 
are built up along thickness direction, the properties measured with specimens printed standing up 
along Y direction, as shown in Figure 4, is adopted in numerical models. 

Table 1. Measured properties of printed dogbone specimens 

 Modulus (Chord 
0.05%-0.25%) (GPa) 

Ultimate tensile 
strength (MPa) 

Elongation at break 
(standard) (%)  

Lying along Y direction 2.05 ± 0.06 44.3 ± 0.36 3.98 ± 0.07 
Standing up along Y direction 2.34 ± 0.03 45.9 ± 0.36 5.71 ± 0.42 

Z direction 2.27 ± 0.03 31.6 ± 2.57 1.98 ± 0.30 
Raw material  2.17 49.0 8.3 
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Figure 4: Stress-strain curve of the dogbone specimens printed  standing up along Y direction 
During the compression, it was observed that cell walls fracture progressively. Figure 5 shows the 
compressive stress-strain of the two irregular honeycombs. Each drop in stress in Figure 5 
corresponds to one or multiple cell wall fracture. The first fracture of cell wall occurs at a strain of 
0.078 (marked as point A in Figure 5) for specimen-1 and at a strain of 0.071 (marked as point A in 
Figure 5) for specimen-2, giving failure stresses 40.6 kPa and 33.3 kPa, respectively. It is 
noteworthy that the first fracture of cell walls are important as it marks the onset of global failure of 
honeycombs. The configurations of specimen-1 and specimen-2 corresponding to point A and B are 
shown in Figure 6, and the cell walls that rupture at the moment are marked by a line.  
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Figure 5: Compressive stress-strain curves of the honeycombs 

  
(a) (b) 

Figure 6: Configurations of specimens: (a) specimen-1;(b) specimens 2 at the point when the 
first fracture of cell walls occurs 

Numerical results 
As to the mesh sensitivity study with the beam shown in Figure 3a, the maximum surface tensile 
stress and bending moment at the fixed end obtained by FE analysis are compared against 
engineering solutions here. Figure 7 shows the variation of ratio of numerical results to engineering 
solutions with element number in the beam. The ratio increases with increasing element number. 
With 40 elements, numerical results are 97.5% of engineering solutions. Additionally, it is found 
that the variation of this ratio with element number is insensitive to beam configuration (thickness-
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length ratio). Considering computational cost and accuracy, the mesh level of 40 elements within 
each cell wall is chosen in the subsequent honeycomb simulations. 
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Figure 7: Variation of accuracy of stress prediction at the ends of the beam with element 

number 
Figure 8 shows the comparison of compressive stress-strain curves of honeycombs between 
experiments and FE analysis. It can be seen that for specimen-2, the predicted stress-strain curve 
agrees well with experimental counterpart before the first fracture of cell wall (point B), while the 
predicted stress for specimen-1 is a little larger than experimental value, which could be attributable 
to imperfections induced during manufacturing.  
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Figure 8: Comparison of stress-strain curve between experiments and FE analysis 

To predict the first fracture of cell walls, criteria based on tensile stress, bending moment, von 
Mises stress, tensile plastic strain and equivalent plastic strain are used. When tensile stress, 
bending moment, von Mises stress, tensile plastic strain and equivalent plastic strain at an 
integration point of a cell wall reach specified values, the cell wall fracture and the honeycomb 
fails. In order to establish failure criteria, the data from tensile tests with printed dogbone are 
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employed there, namely, ultimate stress (45.9 kPa) and plastic strain (0.04) at breaking point. All 
the criteria are listed in Table 2. For bending moment criterion, as mentioned in the computational 
model section, 1.1 times the ultimate tensile stress are used, and bending moment here is actually 
bending moment force per unit width. With these criteria, The onset of failure of honeycombs are 
predicted and marked in Figure 8, with points A1 and B1 by bending moment criterion, points A2 
and B2 by tensile stress criterion and points A3 and B3 by von Mises stress, equivalent plastic strain 
and tensile plastic strain criteria. The corresponding strength and strain at failure of the honeycombs 
are listed in Table 2. It is noticeable that criteria based on von Mises stress, equivalent plastic strain 
and tensile plastic strain yield the same results, which are the closest to experimental results, within 
9% for strength and within 24% for strain at failure. Figure 9 shows all the cell walls which have 
maximum von Mises stress larger than 45 at the point of honeycomb failure. These cell walls are 
the most vulnerable and have the greatest potential to fracture first in the honeycombs, which agree 
well with the cell walls that fracture first in experiments. 

Table 2. Strength and strain at failure of the honeycombs predicted by different criteria 

Variables Criteria Predicted strength (kpa) Predicted strain at failure 
Specimen-1 Specimen-2 Specimen-1 Specimen-2 

Tensile stress 
(σmax) (kPa) σmax=45.9 32.7 31.1 0.054 0.041 

Bending moment 
(Mmax) (N) Mmax=45.9×1.1×0.32/6 27.4 27.4 0.041 0.034 

von Mises stress 
(σmises) (kPa) σmises=45.9 34.8 36.9 0.060 0.054 

Tensile plastic 
strain (εp) 

εp=0.4 34.8 36.9 0.060 0.054 

Equivalent plastic 
strain (εpe) 

εpe=0.4 34.8 36.9 0.060 0.054 

Experimental results 33.3 40.6 0.078 0.071 
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Figure 9: Configurations of (a) specimen-1; (b) specimen-2 at failure point in FE analysis and 
cell walls which may fracture first 
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Conclusions 
This paper concerns with predicting the onset of failure of irregular honeycombs. Due to stress 
singularity, the exact stress and strain at cell wall joints cannot be calculated. To circumvent this 
issue, a mesh level with 40 elements within each cell wall is adopted in FE models so that the 
calculated stress and strain at cell wall joints are close to engineering solutions. Then tensile stress, 
plastic strain, bending moment, von Mises stress and equivalent plastic strain at integration point 
level are used to predict the global failure of honeycombs. It is found that criteria based on von 
Mises stress, equivalent plastic strain and tensile plastic strain give the same predictions, which are 
the closest to experimental values, within 9% for strength and within 24% for strain at failure. The 
cell walls which are predicted to have the greatest potential to fracture first in the honeycombs agree 
well with these cell walls that rupture first in experiments. In summary, with a mesh level of 40 
elements in each cell wall and von Mises stress, equivalent plastic strain and tensile plastic strain 
criteria, the onset of global failure of brittle honeycombs can be reasonably predicted. However, the 
deviation of predicted strain at failure from experiment value is not negligible. More specimens will 
be printed and tested in the future to further confirm the modelling. 
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Abstract 

Forensic investigation has the primary challenge of assessing cause from limited evidence. To 
inform the investigation process, computational modelling can assess: i) the potential ballistic 
pathways, by analysing entry wound and blood spatter patterns; and ii) the influence of target 
material effects and cranial geometry. The retrograde ejection of blood and tissue following 
projectile impact from the entry wound is called ‘backspatter’ and can aid in informing the 
investigator about the proximity of the shooter, with the potential to differentiate between suicide 
and homicide. However, the ‘backspatter’ phenomenon is not well understood. This study presents 
(i) the development of an anatomically-based model of cranial ballistic injury using the Smoothed 
Particle Hydrodynamics (SPH) method; (ii) simulation of the tail splashing and temporary 
cavitation mechanisms by utilizing a range of scalp and bone simulants and comparison with 
experiment; (iii) evaluation of cranial stress and strain and energy dissipation; and (iv) evaluation of 
the effects of bullet characteristics on the creation of the entry wound by parametric analysis.   

Keywords: Smooth Particle Hydrodynamics, SPH, Ballistic Simulation, Backspatter 

Introduction 

Backspatter refers to ejection of biological tissue from ballistic wounds, opposite to the line of fire 
(Stephens and Allen 1983, Karger 2008). It is widely accepted that backspatter occurs, particularly 
in close-range contact shots to the head (Stephens and Allen 1983, Yen, Thali et al. 2003). The stain 
patterns resulting from backspatter are of critical importance in a crime scene because of the 
direction against the line of fire (Grosse Perdekamp, Vennemann et al. 2005), providing a potential 
connection between the victim and the shooter. However, the literature on backspatter is limited 
compared to other areas of blood spatter research, providing a less solid foundation and a less 
thorough understanding of the mechanisms (Radford 2009).  
 
The three main mechanisms contributing to backspatter reported in the literature are (i) 
subcutaneous gas pockets; (ii) temporary cavities; and (iii) tail splashing (Karger 2008). 
Subcutaneous gas pockets are temporary spaces between skin and bone created due to muzzle gas 
from contact or near-contact shots (Karger and Brinkmann 1997). Temporary cavities form when 
the passage of a projectile through near-water density organs, such as the musculature or the brain, 
creates pressure waves to radially expend the bullet trail temporarily (Karger 2008). In the case of 
distant shots, the temporary cavity in brain is believed to be a major contributor(Foote 2012). Tail 
splashing results from a backward streaming of fluid and fragments along the sides of the bullet in 
the retrograde direction upon projectile impact (Amato, Billy et al. 1974).  
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Due to the extreme speed of a projectile, the ballistic event happens very quickly, making study of 
the backspatter event difficult, with little prior work collecting detailed physical evidences to allow 
thorough validation. Additionally, the backspatter event is the result of various combinations of 
mechanisms and variables, making it difficult to isolate each mechanism to gauge their contribution. 
To reduce the complexity issues, this study focuses only on distant shots, so the subcutaneous gas 
pocket mechanism can be eliminated from consideration. The focus of this research is solely on the 
tail splash and temporary cavitation.  
 
In order to collect the necessary detailed physical evidences, it is essential to form proper models, as 
human samples are not viable due to ethical issues. Previous literature has shown that the problem 
of finding a target for experimentation that best simulates the properties of the human cranium has 
been a significant constraint with much controversy. The use of animal models, involving calves or 
swine has been established well in the literature (Karger, Nusse et al. 1996, Karger, Nusse et al. 
1997, Karger, Nusse et al. 2002, Radford 2009). The animal models used commonly have ethical 
issues, different geometry to that of a human cranium, and individual biodiversity which makes 
them unreliable as an experimental model (Yen, Thali et al. 2003). To provide an alternative to the 
animal models, physical models using synthetic materials have been developing, with increased 
geometric details and complexity in their construction (Stephens and Allen 1983, Thali, Kneubuehl 
et al. 2002, Radford 2009, Foote 2012, Carr, Lindstrom et al. 2014, Kwon 2014). Physical models 
have no ethical issues and the experimental results agree well with the reported human case studies 
(Thali, Kneubuehl et al. 2002, Carr, Lindstrom et al. 2014). However, the high cost of each sample 
and the manufacturing difficulties are major hurdles to using physical models to study backspatter.  
 
Computational models are increasingly being used as an alternative to complicated, costly, and 
potentially ethically challenging experiments. In ballistic experiments, the experimental parameters, 
such as speed of the bullet or the sample material properties, are not easily controlled. However, the 
computational model allows fast and easy customisation of the experimental parameters. This gives 
the computational model a clear advantage for forensic crime scene reconstructions, where the 
bullet calibre or the impact speed is not known, or the victim had significantly different biological 
material properties due to aging or disease. For example, if the victim was suffering from 
osteoporosis (a disease effecting bone density, causing weak and brittle bones), the current studies 
in animal or physical models would have to be re-done to compensate for this factor. The 
computational model has unmatched analytic advantage as the each layer of the model can be 
visualised separately without damaging the other layers. For animal or physical models, the skin 
layer must be damaged in order to analyse the bone layer defect size and crack propagation. 
 
 
There are two computational methods through which study of backspatter could be made possible: 
finite element method (FEM) and Smoothed Particle Hydrodynamics (SPH). FEM offers the 
advantage of being able to model structures with intricate shapes and indirectly quantify their 
complex behaviour at a point (Raul, Deck et al. 2007). However, this method has a significant 
limitation in that at high speeds and deformations, mesh integrity is lost. In contrast, SPH, originally 
developed for astrophysics (Gingold and Monaghan 1977), is a conservative, mesh-less method that 
can handle complicated, highly-deformable geometry, large void areas, and dynamic ballistic 
behaviour (Stellingwerf and Wingate 1993). The SPH method has been utilized in several 
applications, including explosive fragmentation of metal casings involving intense shock and high 
rate plastic deformation (Kong, Wu et al. 2013) and the high speed impact of a metal sphere on a 
thin metallic plate with a range of materials and velocities (Kalameh, Karamali et al. 2012). 
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In this study we present both a simple flat plate SPH model as well as an anatomically accurate SPH 
model of the male human head. The less-computationally-expensive simple geometry is used to test 
various material constitutive models and different simulants, as well as ballistic characteristics. The 
anatomical geometry was used for the final models, which represent a more detailed and realistic 
ballistic simulation. Both geometries consist of two layers: the scalp and the skull. The scalp 
comprises of the skin and the connective tissues overlying the top of the head (Harris, Yoganandan 
et al. 1993). The skin is a highly non-linear, anisotropic, viscoelastic and nearly incompressible 
material (Crichton, Donose et al. 2011, Crichton, Chen et al. 2012). The skull is the firm bone that 
encases the brain. On projectile impact, the skull is expected to show radial fractures originating 
from the point of impact and concentric fractures around the bullet entry and exit sites (Viel, Gehl et 
al. 2009). Common characteristics often observed but not always present, include bevelling and 
keyhole defects (Quatrehomme and Iscan 1997). Another major layer of the human cranium, the 
brain, has been omitted in this research to concentrate the investigation on the contribution of scalp 
and skull to backspatter generation.  
 
In this paper, we present findings of the SPH-based simple and anatomically-accurate model of 
cranial ballistic injury, including: (i) simulation of the tail splashing and temporary cavitation 
mechanisms, utilizing a range of scalp and bone simulants and comparison with experiment; (ii) 
evaluation of cranial stress and strain and energy dissipation; and (iii) evaluation of the effects of 
bullet calibre and speed on the creation of the entry wound by parametric analysis.   

Methods 

The simple plate geometry (Figure 1) is composed of two flat plates of 100 x 100 x 5 mm, each 
representing the scalp layer and the skull layer of a human cranium. The minimum SPH particle 
size for this geometry was 0.7 mm, which contained ~ 580,000 SPH particles.  
 
A representative scalp and cranium geometry was adapted from the Physiome Project repository of 
a 38 year old male from the Visible Human male data set (Spitzer, Ackerman et al. 1996) and 
developed at the Auckland Bioengineering Institute. The dimensions of the scalp layer were 
acquired from MRI scan results taken from images from the Centre from Advanced MRI (Auckland 
University). The SPH particle size was set to 2.5 mm, which contained ~141,000 SPH particles. 
 

  
 

Figure 1.  Simple geometry with a 9 mm bullet, Scalp layer is shown as red, Skull layer is 

shown as yellow, the pinned boundary is shown as yellow edge on the right 

 
 
 
 

9 100 

14 
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Figure 2. Anatomical geometry with a 9 mm bullet, scalp is shown in grey, skull is shown in 

white, the pinned boundary below the plane abcd is highlighted with yellow 
 
Both geometries had equivalent physical models, with matching geometry and simulant materials. 
The experimental result was recorded using high speed photography, at a frame rate of 30,000 
frames per second. The purpose of the physical models was to be the validation tool for the 
computational models.   
 
A total of 16 scalp-skull simulant combinations, consisting of four scalp simulant and four skull 
simulant materials, were simulated using the simple geometry model. For the scalp simulants, the 
material properties of the ballistic gelatine, Room Temperature Vulcanizing (RTV) silicone_1, RTV 
silicone_2 and natural rubber were modelled using either viscoelastic or hyperelastic failure. The 
material constants were obtained from either the Mooney-Rivlin or the Yeoh models (Wang, Deng 
et al. 2004, Korochkina, Jewell et al. 2008). Both models use strain energy potential to characterise 
rubber. For the skull simulants, the material properties of the Medium-Density Fiberboard (MDF), 
Particle board, Polyurethane_1 and Polyurethane_2 were modelled using isotropic-elastic failure. 
No material constants were required for the elastic failure.  
 
The anatomical geometry model was simulated using the best performing simulants selected based 
on the simple geometry model simulation results. The scalp layer was modelled using RTV 
silicone_2 and the skull layer was modelled using Polyurethane_2.  
 
The simple geometry model was also used for the parametric studies of the effect of bullet calibre 
and the velocity on ballistic response of the target. 2 different types of bullets were used, a 9 mm 
Luger and a .22 Long Rifle (LR). The 9 mm is a 115grain, Full Metal Jacket, and has solid lead core 
with a copper gilding material coating. The .22 LR had less wounding potential and penetrating 
potential compared to the 9 mm Luger. Both the 9 mm and .22 bullets were modelled as a cylinder 
with hemisphere tip, with material properties of copper and density of lead to represent the solid 
lead core. The bullet was modelled using Johnson and Cook high velocity impact copper model 
from ANSYS material library (Johnson and Cook 1985). 
 
The 9 mm was simulated with 300 m/s and 370 m/s impact velocity, each representing the lower 
limit and the upper limit of the projectile speed respectively. In ballistic experimentation, the 
physical models were shot from a distance over 1 m. This isolated the tail splashing and temporary 
cavitation as backspatter generation mechanisms by eliminating the subcutaneous gas pockets that 
would have formed if the shot distance were to be closer. As seen in Figures 1 and 2, the bullet has 
been positioned at the centre of the simple geometry model and on the right temple of the 

a b 

c d 
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anatomical geometry model. The anatomical position was chosen based on the frequency of the 
cranial ballistic wounding site.  
 
                          

 
 

Figure 3. Physical and computational bullet geometry comparison between 0.22 (left) and 9 

mm (right) – only the projectile part is modelled in computational models 
 

Results and Discussion 

Simple geometry 

The experimental and simulation results were analysed to determine the most suitable scalp and 
skull simulant combination to represent human cranial ballistic wounding. The simulation results 
were validated by comparison to the experimental results. The comparison was based on both 
qualitative and quantitative observations made over dynamic deformation behaviour and static 
defect dimensions and characteristics. Two of the most typical dynamic ballistic deformation results 
from the testing and simulation of the physical and computational models are compared 
chronologically in Figures 4 and 5. 
 
The first main point of analysis was the ability to replicate the tail splash and temporary cavitation 
backspatter generation mechanisms. The gelatine skin simulant was better at demonstrating the tail 
splashing mechanism than any other scalp simulants used. The tail splash from the Gelatin-
Polyurethane_1 model is illustrated, at 0.1 ms post-impact, in Figure 4 (a) and (e). On the other 
hand, the Silicone_1-Polyurethane_2 model illustrates the subcutaneous temporary cavity 
mechanism very well. The computational model successfully simulated the retrograde elastic 
bulging of the scalp simulant as well as the reduction of the bullet entry hole size. The choice of 
skull simulants affected the magnitude of the ballistic response, producing more backspatter for the 
Polyurethane simulants compared to the MDF or Particle Board. Also, there was minimal skull 
simulant backspatter observed, which concurs with the literature findings (Burnett 1991, Coupland, 
Rothschild et al. 2011).  
 
It is expected that the tough integument of the human scalp will prevent the crushed tissues to 
backspatter as freely as the gelatine simulant. Therefore, the Silicone_2 was accepted as the best 
scalp simulant. The human skulls also show bevelling and minor crack formation at the bullet 
entrance, and the lack of ability to produce such characteristics eliminated both the MDF and 
Particle Board as a viable skull simulant. The Polyurethane_2 was chosen as the best skull simulant 
based on the bone defect diameter and morphology.  
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(a) 0.1 ms 

 

(b) 0.3 ms 

 

(c) 0.7 ms 

 

(d) 1 ms 

 

(e) 0.1 ms 

 

(f) 0.3 ms 

 

(g) 0.7 ms 

 

(h) 1 ms 

Figure 4. Comparison of experimental (a-d) and simulation (e-h) results of a 9 mm projectile 

impact on Gelatin-Polyurethane_1 model 
 

 

(a) 0.1 ms 

 

(b) 0.3 ms 

 

(c)  0.7 ms 

 

(d) 1 ms 

 

(e) 0.1 ms 

 

(f) 0.3 ms 

 

(g) 0.7 ms  

 

(h) 1 ms 

Figure 5. Comparison of experimental (a-d) and simulation (e-h) results of a 9 mm projectile 

impact on Silicone_1-Polyurethane_2 model 
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Anatomical geometry 

The anatomical geometry model simulated using the Silicone_2-Polyurethane_2 simulant 
combination produced an extended subcutaneous temporary cavity, due to surface curvature and 
increased kinetic energy absorption. This increased magnitude of temporary cavity dynamics 
illustrated the existence of a delayed backspatter due to the temporary cavity mechanism. Crucially, 
the tail splash mechanism produced backspatter at the early impact stage, and the anatomical 
geometry model produced a chronologically separated second ejection of the backspatter. This 
delayed backspatter was observed around 2.6 ms and coincided with the collapse of the temporary 
cavity. Therefore, the pressure created by the collapse of the temporary cavity mechanism is 
responsible for the retrograde ejection of the fragments inside the cavity of this backspatter via path 
of least resistance (Figure 6).  
 

 
 
Figure 6. Comparison of experimental (left) and simulation (right) results of a 9 mm projectile 

impact on Silicone_2-Polyurethane_2 anatomical geometry model, at 2.6 ms post-impact. The 

delayed backspatter is highlighted with yellow circles.  

 
Computational model unique analysis  

One of the main advantages of the simulation is that it allows detailed analysis of the impact event 
without the use of complicated actuators and associated error. In experimentation, it is almost 
impossible to isolate the stress and strain developed in each layer of the cranial model. For the 
aforementioned practical reasons, there has been no analysis on the stress patterns developed in an 
animal model nor a physical model reported in a literature previously.  
 
However, the computational modelling has ability to calculate the stress and strain of the target 
without additional processing. The anatomical geometry model simulation result was analysed for 
the Von Mises Stress (Figure 7) and Plastic strain (Figure 8). These are typical engineering 
measurements used to analyse stressed and deformation developed in a structure. The plastic strain 
was useful to monitor the area of the deformation while the Von Mises stress was used to visualise 
stress distribution in the bone layer. 
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Figure 7. Evolution of Von Mises stresses on the scalp (a-d) and the skull (e-h) of the 

anatomical geometry model 

 

 

Figure 8. Evolution of mean effective strain on the scalp (a-d) and the skull (e-h) of the 

anatomical geometry model 
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For the stress analysis, the Silicone_2 scalp simulant stretches and fails at the impact point 
immediately upon the projectile impact. This is due to the high stresses generated around the entry 
site as shown in Figure 7 (a). A maximum stress of 4.02 MPa is generated at the bullet entry site, 
which is greater than the tensile strength of the material, leading to extension and failure. This is in 
accordance with the observations made by Jussila et al (Jussila, Leppaniemi et al. 2005), who assert 
that ‘an impacting bullet makes the skin to stretch, partially crush and finally rupture, allowing the 
bullet to enter underlying tissue’. The impact stresses are localized and most of the surrounding 
areas of the head are not affected, as indicated by the blue regions. At a time of 0.3 ms, Figure 7 (b), 
the entrance cavity oscillates and closes up, causing build-up of high pressures. Following the exit 
of the bullet shown in Figures 7 (c) and 7 (d), the hyperelastic nature of the material leads to minor 
oscillations as it tries to recover to its original state and close up the cavity.  
 
On bullet impact, high stresses in the order of 30 MPa are produced in the Polyurethane_2 skull 
simulant. Since the stresses are greater than the ultimate tensile strength of the resin it fails at the 
impact point in a brittle manner. The stresses then radiate outwards as shown in Figure 7 (e) and 7 
(f). The magnitude of the radiating stresses (4-10 MPa) is well below the failure stress of the 
material. High stresses produced at the exit site initiate crack propagation along the cranium as 
indicated by the faint red lines in Figures 7 (g) and 7 (h). The entry site presents a clean ‘punched 
out’ external appearance while the exit wound is much larger and irregular in shape. This is the 
desired result supported by other sources in literatures (Quatrehomme and Iscan 1998, 
Quatrehomme and Iscan 1999). 
 
For the strain analysis, the Silicone_2 scalp simulant strains and starts tearing as shown in Figure 8 
(a). A similar tearing of the skin from a contact shot has been recorded in literature (Faller-
Marquardt, Bohnert et al. 2004). Even after failure, the Silicone_2 tries to close up the entrance 
wound causing the surrounding material to strain as indicated by the light blue particles in Figure 8 
(b). The elastic deformation of the silicone rubber on bullet exit can be clearly perceived by the red 
regions in Figure 8 (c). Over time, the oscillations die away and the strain diminishes as shown in 
Figure 8 (d).  
 
When the bullet enters the Polyurethane_2 skull layer of the model, strains up to 2% are observed at 
the impact point leading to fracture. In addition, the high strains caused around bullet entry and exit 
sites in Figures 8 (f) and 8 (h) are much larger than the bullet diameter. An implication of this 
observation is that the polyurethane resin demonstrates some amount of plastic deformation and is 
therefore not perfectly brittle.  
 
The energy graph of each part and layers involved (Figure 9) provides a very valuable insight into 
the ballistic impact event. It shows how the original kinetic energy of the bullet is converted to 
various other forms of energy to result in the ballistic response of the target as a whole. Initially, the 
particles that shape the scalp and cranium layers are at rest (Point A and Origin). On impact (energy 
change to point B and E), it is assumed that the bullet’s kinetic energy changes into: bullet 
deformation energy, damage energy, heat generation, and impact energy (Komuński, Kubiak et al. 
2009). Since the bullet used in experimentation has a full metal jacket it is assumed not to lose 
energy due to bullet deformation. Energy lost in the form of heat is thought to be minimal in our 
analysis. 
 
The scalp and cranium layers each absorb 50-60J of energy as the bullet passes through (Point E). 
The rest of the energy (117J, point A to point B in Figure 9) is used to fracture and damage the 
material. Between points E and F, the total energy of the cranial layer remains fairly constant, but 
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the scalp loses a fraction of its energy. A similar effect is observed between points F and G as the 
scalp layer gains 50J of energy and then loses a small percentage of it. 
 

 
Figure 9. The total energy of the bullet, scalp and skull over time 

 

This behaviour can be best explained by considering the total energy absorbed by the hyperelastic 
scalp over time in relation to its internal energy, as shown in Figure 10. Due to its elastic nature, a 
fraction (5J) of the total internal energy (25J) at 0.12ms is utilized in deforming the material as it 
tries to recover to its original state (Point E and F). Thus, the scalp loses 20% (5J/25J) of its internal 
energy in the form of strain energy.  Once the scalp layer partially recovers to a position of 
equilibrium, it stops oscillating and the total energy of the system remains constant over time. The 
cranium is represented by a hard, brittle material so it sustains its internal energy after bullet exit 
(Point G and beyond) without further deformation. In summary, a total of 380J of energy is lost by 
the projectile, while the scalp and cranium layers gain 66J (17.4% of projectile energy) and 112J 
(29.5%) respectively. The scalp layer loses 20% of its internal energy due to straining of the 
material. 
 

 

skull 
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Figure 10. Comparison of the scalp layer internal energy to its total energy 
 
The ballistic parametric study showed that the larger calibre bullet produces the larger defect size, 
which concurs with the experimental observations. The simulation produced similar defect 
characteristics for the bone layer, producing bevelling and keyhole defect of similar dimensions 
(Figure 11).  
 

 
Figure 11. Comparison between the bone layer keyhole defect of (a) physical and (b) 

computational (anatomical geometry) model 
 
Bullet characteristic parametric study 

The calibre and speed of the projectile used was varied in the anatomical geometry model to 
investigate the dependence of bullet characteristics on the backspatter generation and the 
stress/strain developed in the model.  
 
The .22 LR produced entrance defect smaller than the 9 mm. Also the stress generated by the .22 
LR was more localized on the impact site. More significantly, the .22 LR impact did not produce 
any backspatter from both the physical and computational models.  
 
The bullet speed change does not have a physical experimental result to compare to. The 
simulational observation was: i) higher impact speed of 370 m/s resulted in larger area of stress 
development with greater impact stresses for both the .22 LR and the 9 mm; ii) The percentage 
energy absorbed from the projectile was almost independent of the impact velocity. This signifies 
more energy is absorbed into the target as the projectile speed increases. In an experimental study 
by Clemedson et al. (Clemedson, Falconer et al. 1973), the maximum pressure created in the head 
varied by approximately the square of the projectile velocity.  
 

Conclusions 

This study presents both a simplified and anatomically-accurate computational models of human 
cranium for ballistic backspatter research. The computational model successfully incorporated 
human anatomical geometry into the scalp and the skull layers. The simple geometry was used to 
increase simulational efficiency in simulant evaluation. 
 
The tail splash and temporary cavitation mechanism has been witnessed and confirmed as a major 
backspatter cause/mechanism when the subcutaneous gas pocket mechanism was eliminated. When 
combined with the unique ability of the computational models to provide the stress, strain and 
energy graphs, a detailed chronological description of the temporary cavitation mechanism was 
made, which was not reported in literatures before. 

(a) Physical    
model 

(a) Computational        
model 
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The effect of the bullet calibre or speed change resulted in desired variation in the simulational 
results.  
 
Overall, the computational model has these benefits 

 No ethical issue 
 Cost-effective 
 Ease of experimentation 
 Higher control of experimental variables 
 Ease of customisation for the use of forensic case studies and crime reconstructions 
 Unmatched analytical advantage, providing otherwise unattainable values such as stress, 

strain and energy of individual parts.  
 Non-invasive analysis  
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Abstract 

[Objective] This study is to evaluate the clinical and radiographic results of 
cementless total hip arthroplasty with and without screw fixation. [Methods] 
Cementless total hip arthroplasty was performed from August 2009 to August 2011. 
76 patients (78hips) were randomized screw fixation group (group A, n = 40) and 
non-screw fixation group (group B, n = 38). Consecutive radiographs were compared 
to evaluate acetabular condition at 3 months, 12 months and 24 months after surgery 
and the last follow-up, respectively. Harris Hip Scores (HHSs) were determined 
before surgery and at the most recent follow-up. The Kaplan-Meier survivorship 
analysis was used to estimate the survival rate of the prothesis in the two groups. 
[Results] 39 hips in group A and 36 hips in group B were available for complete 
clinical and radiographic analysis while the lost-to-follow-up patients in group A and 
group B were 1 and 2, respectively. The mean follow-up period was 4.2 years (range, 
2.3~5.5 years). In group A, radiolucent lines were present around the cup in 4 hips 
(10.3%), 3 hips (7.7%) and 1 hip (2.6%) at 3 months, 12 months and 24 months, 
respectively. By contrast, in group B, radiolucent lines appeared around the cup in 1 
hip (2.8%), 2 hips (5.6%) and 2 hips (5.6%) at 3 months, 12 months and 24 months, 
respectively. Osteolysis and migration were observed in 1 hip in group A and 2 hips in 
group B. The Harris scores were 95±2.1 points in group A and 93±5.5 points in group 
B, respectively. The mean surgery time and operative blood loss were less in group A 
than those in group B. The year mean polyethylene liner wear was 0.08 mm in group 
A and 0.1mm in group B, respectively. Kaplan-Meier survivorship at 4.2 years was 
95% in group A and 93% in group B with radiographic loosening as the end point. 
[Conclusion] Additional screw fixation in principle is not necessary in press-fit cups. 
 
Key words: screw, arthroplasty, hip, cementless 

Introduction 

Applications of cementless prosthesis in primary total hip arthroplasty replacement 
have been reported to obtain excellent results. However, it still remains controversial 
that whether screw fixation is needed when using cementless press-fit acetabular hip 
prosthesis. To address this problem, we followed up 76 patients (78 hips) who 
undewent total hip arthroplasty with cementless hemispheric and non-press-fit 
acetabular prosthesis in our department from August 2008 to December 2011, to 
investigate the clinical effect of the acetabular screw in the fixation of acetabular 
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prosthesis and to explore whether acetabular screw fixation is necessary in cementless 
total hip arthroplasty if the bone is under good condition.  

Clinical data and methods 

Patients data 

From August 2008 to December 2011, 76 patients (78 hips) that need to receive total 
hip arthroplasty replacement but with good condition of acetabular bone were 
randomly divided into two groups. Group A, non-screw fixation group, is composed 
of 40 hips, including 21 male and 19 female with a mean age of 56 years old (range, 
46-77 years) and average BMI of 21 (range, 15-32). The reasons for primary total hip 
arthroplasty in group A included aseptic necrosis of femoral head in 20 cases, femoral 
femoral neck facture in 16 cases, ankylosing spondylitis or joint stiffness in 2 cases 
and osteoarthritis in 2 cases. Group B, screw fixation group, comprises of 38 patients, 
including 20 male and 18 female with a mean age of 54 years old (range, 21-77 years) 
and average BMI 21 (range, 15-32). The reasons for primary total hip arhroplasty in 
group B included aseptic necrosis of femoral head in 19 cases, femoral neck fracture 
in 19 cases and osteoarthritis in 3 cases. The age and weight of patients in group A is 
not significantly different from those in group B respectively (p>0.05). 

Surgery opproaches 

All patients received the surgery by the same group of surgeons in our department. 
The operation was performed using a direct lateral transgluteal approach and with hip 
revealed in a conventional way. The operation materials included cementless and 
press-fit metal cup, polyethylene liner and metal femoral head in 28 mm diameter. 
The patients in rroup A were directly implanted with the press-fit acetabular 
components and the surgery took 75 min in average with 248 ml of mean 
intraoperative bleeding. The patients in group B were implanted with the acetabular 
and followed by fixation in the top with 2-3 screws. The operation took 89 min in 
average with 291 ml of mean introperative bleeding. The drainage tubes were 
removed after surgery and the patients was allowed to direct full weight bearing and 
do the functional exercises with weight-bearing ambulation. The average period of 
hospitalization for the patients was 18 days. 

Follow-up after surgery 

The patients were followed up at 1 month, 6 months, 24 months and last follow-up, 
respectively after operation. The Harris hip score (HHS) was assessed, the 
standardised anteroposterior and lateral view radiographs were taken and the 
radiological changes were evaluated. A vertical line against the teardrop joining line 
was drawn from the hip center, which would meet the teardrop joining line at an 
intersection. The distance between a line joining the inferior aspect of the teardrop 
and the acetabular component was measured as the horizontal migration of the 
acetabular prosthesis. The acetablular component migration greater than 4o in rotation 
or greater than 4 mm in width was considered to be unstable. Criteria for acetabular 
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loosening included continuous radiolucencies around the cup in zones 1 to 3 with 
respect to Delee-Charnley catergories and the incidence frequency of radiolucent lines 
was recorded as well. The heterotopic ossification was graded according to Brooker 
classification and the polythylene wear was measured according to Dorr method [Dorr 
and Wan (1996)] and the correction was performed based on the femoral head 
diameter (28 mm). 

Statistical analysis 

Statistical analysis was performed with the SPSS version 13.0 software. Since this 
was a comparative study, the results were analyzed with the paired student’s t-test or 
chi-square test and a set point of p<0.05 was considered as statistically significant. We 
use Kaplan-Meier survival analysis to determine the survivorship with component 
loosening or revision for any reason as the endpoint. The 95% confidence intervals 
(95% CI) were presented and the survivorship of the prosthesis from the two groups 
was compared. 

Results 

Clinical evaluation 

Overall, 39 hips in group A and 36 hips in group B were available for complete 
clinical and radiographic analysis. The average follow-up period was 4.2 years (range, 
2.3-5.5 years) after surgery. The lost-to follow-up patients in group A and group B 
were 1 and 2, respectively. In group A the average Harris hip score increased from 38 
± 8.1 before surgery to 95 ± 2.1 at the last follow-up 93 ± 5.5 while in group B the 
mean Harris hip score was improved from 36 ± 8.6 preoperatively to 95 ± 2.1 at the 
recently follow-up. It could be easily seen that the Harris hip scores of the both two 
groups were significantly increased after surgery (p <0.01). 
 
Complications associated with total hip replacement surgery were observed. In group 
A, one patient was found to have hip dislocation on the surgery side 20 days after 
surgery but the patient did not have dislocation anymore after closure. Additionally, 
one patient (2.6%) was reported to have osteolysis between 2 and 3 acetabular and 
cup aseptic loosening. But the patient only suffered from mild pain and refused 
revision (Figure 1). In group B, 2 patients (5.6%) had to undergo revision surgery due 
to loosening accompanying with moderate to severe pain. To be more specific, one of 
the patients suffered from septic loosening and acetablular osteolysis 2.8 years after 
surgery but the patient recovered well after revision and no infection occurred 
anymore. Overall, no patient was found to have symptomatic deep vein thrombosis or 
nerve damage. 
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Figure 1-2  X-ray examples of hips needed revision：1A) A female patient with 67 
years old，who suffered from fracture of the femoral neck and received cementless 
total tip replacement without acetabular screw fixation. 1B) The patient was found to 
have acetablular osteolysis and cup migration at 4-year follow-up but she only got 
mild pain and refused revision. 2A) Another female patient with 55 years old, who 
underwent cementless total tip replacement with screw fixation due to femorfal 
necrosis. 2B) The patient was found to get septic loosening and acetablular 
oseteolysis with apparent cup migration 2.8 years after surgery. 2C) The Harris hip 
score was 89 one year after revision was performed using acetabular reinforcement 
ring. 

Radiological evaluation 

In group A, radiolucent lines were present around the cup in 4 hips (10.3%), 3 hips 
(7.7%) and 1 hip (2.6%) at 3 months, 12 months and 24 months, respectively. At 4 
years after operation, one patient had to undergo revision due to acetabular oseolysis 
and aspetic loosening with moderate pain. In addition, 10 hips (26%) developed 
heterotopic ossification and the average year polyethylene wear was 0.08 mm (range, 
0-0.25 mm). By contrast, in group B, radiolucent lines appeared around the cup in 1 
hip (2.8%), 2 hips (5.6%) and 2 hips (5.6%) at 3 months, 12 months and 24 months, 
respectively. Among them, 2 hips had to undergo revision resulting from oseolysis 
and migration and 11 hips shown heterotopic ossification. The average year 
polyethylene wear was 0.10 mm (range, 0.03-0.28 mm). The X-ray examples 
representative of the typical cases were shown in Figure 3. 

 

1A 1B 

2A 
2B 2C 
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Figure 3. X-ray examples of typical cases: A) A female patient with 61 years old, 
who suffered from aseptic necrosis of femoral head; B) The patient underwent total 
tip replacement without screw fixation; C) Radiolucent line of 1 mm in width was 
present in acetabulum at 6-month follow-up; D) The radiolucent line disappeared and 
heterotopic ossification graded at level 3 appeared at 2-year follow-up 

Statistical data 

The clinical data of group A and B were analyzed using the Student’s paired t-test or 
chi-square test. It could be easily seen from the table one that the operation time and 
blood loss during operation in non-screw fixation group were less than those in screw 
fixation group. Furthermore, more radiolucent lines could be observed in group A at 
3-month follow-up after surgery. 
 

Table 1. The clinical data and statistical analysis of patients in group A and B 

Evaluation                         Group A（n=39）    Group B（n=6）  p* 
Harris hip scores, mean                95                93           >0.05 
Operation time in min, mean            75                89           <0.05* 
Bleeding in ml, mean                 248               291           <0.05* 
Heterotopic ossification frequency       26%              31%          >0.05 
Annual polyethylene wear in mm, mean  0.08               0.10          >0.05 
Occurrence of radiolucencies (3rd.m.)    10.3%             2.8%          <0.05* 
Occurrence of radiolucencies (12rd.m.)   7.7%              5.6%          >0.05 
Occurrence of radiolucencies (24rd.m.)   2.6%              5.6%          >0.05 

 
The Kaplan-Meier survival analysis demonstrated that the survivorship of group A 
and B were 0.95 (0.91-0.99) and 0.93 (0.88-0.98), respectively. Apparently, there was 
no significant difference between the groups in survivorship. 

A B C D 
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Figure 4. The Kaplan-Meier survival curve of group A and B 

Discussion 

Cementless acetabular prosthesis design and materials have greatly improved over the 
past decades. The improvement in smoothness of acetabular inner surface, the locking 
mechanisum of polyethylene liner and the particle coating on cup surface are able to 
promote bone ingrowth, which significantly increase the survivorship of cementless 
acetabular components and enable the application of the primary total hip arthroplasty 
replacement to achieve excellent results. However, it still remains controversial when 
the use of crew fixation in essential when using a hemispherical press-fit acetabular 
prosthesis. 

Supporters of the use of screws fixation believed that screw in the press-fit acetabular 
component could enhance the initial stability and osseointergration and prevent 
acetabular prosthesis migration in the long-term [Heller et al. (2013; Hsu and Lin 
(2010; Roth et al. (2006)]. In the vitro studies, researchers have found that the screw 
can increase the primary stability of acetabular cup by 26%. When the bone quality 
was not in an excellent condition, bone defect would have an impact on cup fixation. 
By contrast, the use of screws could significantly improve the initial cup stability, 
especially in bone with central defects [Heller et al. (2013)]. Hsu et al. [Hsu and Lin 
(2010)] demonstrated via their in vitro study that well-fitted screws would enhance 
the initial cup stability and the stability would enhance with the increase in the screws 
number. However, the screws would locally reduce the micromotion at the cup-bone 
interface. As a result, it was not advisable to place the screws close to one another. In 
addition, the screws should be placed peripherally and separately to expand the stable 
region, avoiding the micromotion at the cup-bond interface. Zilkens et al [Zilkens et 
al. (2011)] reported that 107 patients who underwent acetabular replacement 
combined with screw fixation were found to achieve good results at 2.6-year 
follow-up. They believed that screws fixation would not increase the occurrence of 
osteolysis and radiolucencies after acetabular replacement. 

Opponents of the use of additional screws have argued that the stability of a press-fit 
acetabular prosthesis depends on surgical techniques and excellent press-fit technique 
rather than the use of screws fixation. The recent press-fit technique will provide 
adequate initial fixation so that adjunctive screw fixation is not indicated and 
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insufficient to prevent late migration. Furthermore, the in vitro results can only 
simulate the immediate state after surgery but do not represent the outcomes after 
bone ingrowth into the components. Won et al. [Won et al. (1995)] found that adding 
the screws to the component would reduce the micromotion at the superior cup but 
could increase it on the inferior side sometimes. Therefore, the author believed that 
screw fixation was unnecessary to improve the initial cup stability. Additionally, from 
the biomechanics point of view, it is not necessary to use the non-weight-bearing 
acetabular screws for fixation at the ischial or pubic bone. Garavaglia et al 
[Garavaglia et al. (2011)] reported that 335 patients underwent total hip arthroplasty 
without screws fixation. No hip had to be revised due to aseptic loosening or 
osteolysis during the follow-up up to 10 years and the ten-year survival rate of the 
prosthesis was about 98.8%. Udomkiat et al. [Udomkiat et al. (2002)] reported that 
110 cases primary total hip replacements were performed with a porous-coated socket 
that was implanted using a press-fit technique. The aseptic loosening rate was only 
0.9% at 10-year follow-up. The press-fit component could improve osseointergration 
to the coated without the loss of cup elasticity modulus. Furthermore, it could transmit 
the biomechanical force from the cup to the joint to reduce stress-shielding and 
osteolysis [Morscher et al. (2002)]. Röhrl et al [Röhrl et al. (2006)]reported that 50 
patients were operated with cups using additional screw fixation. And 28 hips were 
observed to display osterolytic lesions with varying degrees mainly relate to screws. 
The author suggested that the joint pressure transmitted by the cup screws and the 
access of polyethylene wear debris into the cup-bound interface through the screw 
holes would result in component oserolysis, which would increase the risk of aseptic 
loosening.  

In this study, we found that the cup radiolucent lines appeared more in non-screw 
fixation group at 3 months after surgery. But most of the radiolucent lines disappeared 
at 2-year follow-up. By contrast, in screw fixation group, the cup radiolucencies 
initially were similar to those found after the component reached to a stable stage. 
However, overall, there was no significant difference in the survival rate regardless 
screw fixation. Similar results were reported by other research groups. Pakvis et al. 
[Pakvis et al. (2012)] also reported that the cup radiolucent lines were present more 
within 2 months of healing period. But after the component was stable no significant 
difference could be observed from the two groups with or without the use of screw in 
two months after the healing period. Iorio et al. [Iorio et al. (2010)] carried out an 
investigation on 775 cases up to 10-year follow-up. He found that screw fixation did 
not have a favorable or adverse effect on the clinical outcome of the radiolucencies. 
However, several researches suggested that more radiological changes around the cup 
occurred in screw fixation group after bone healing period. Roth et al. [Roth et al. 
(2006)] divided 220 patients into two groups based on the use of screws or not. He 
found that radiolucent lines shown more in the non-screw fixation group at 5 months 
after surgery. But they disappeared and no cup migration occurred at 25-month 
follow-up. On contrary, more radiolucent lines were observed in the srew fixation 
group during 5-25 months after surgery. He suggested that the causes for more 
radiolucent lines were found in the screw fixation group could be explained by the 
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fact that the joint pressure transmitted by the cup screws and the access of 
polyethylene wear debris into the cup-bound interface through the screw holes. 
Therefore, he came to the conclusion that an additional screw fixation in principle was 
not necessary in press-fit cups. In this study, more radiolucent lines were found in the 
non-screw group at the early postoperative, which might be ascribed to the fact that 
the cup and bony acetabulum did not reach osseintergration at this stage. However, 
after the healing period, no significant difference in radiolucencies was found between 
the non-screw fixation and screw fixation group. In addition, the radiolucencies and 
osteolysis were inclined to increase in the screw group.  

This study suggested that the acetabular screws could improve the initial stability of 
the cup prior to healing period. But after healing period, it made no significant 
difference to the component stability regardless of the use of screw fixation. However, 
it should be noted that the non-screw fixation procedure would reduce the operative 
time, blood loss and operation fees. Additionally, it could avoid injury on blood 
vessels and nerves caused by screws fixation and it also made it easier to perform 
possible revision. Therefore, the screwless fixation procedure might favor patients 
when the patient bone condition allowed doing it. Nevertheless, screws fixation 
should be carried out to improve the component stability if the following symptoms 
appeared, including osteomalacia after osteolysis, intraoperative acetabular fractures, 
acetabular dysplasia and acetabular bone defects on the edges in which good press-fit 
and initial stability could not be satisfied. 

The authors are ware that this investigation has some limitations, such as an 
inadequate cases and a more subjective evaluation which would probably generate 
bring data bias. In recent years, some authors have advocated to use objective tests, 
such as using RSA (Radiostereometric Analysis) and EBBA (Einzel Bild Roentgen 
Analyse) to measure the component migration or use of computer-aided quantitative 
measurement software to analyze the radiological images [Garavaglia et al. (2011; 
Röhrl et al. (2006; Zilkens et al. (2011)]. However, the present study still utilizes the 
conventional analysis strategy. Furthermore, another limitation of this study is a short 
follow-up period. So a long-term follow-up should be performed.  
 
In summary, this study suggested that when performing the total hip arthroplasty 
replacement, the inherent stability of the cup could be achieved via press-fit technique. 
In addition, the use of screw fixation did not improve the stability of the cup when the 
acetabular bone was in good quality condition. Thus, we arrive to the conclusion that 
screws are not necessary for the total hip arthroplasty replacement.   
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Abstract 

Global sensitivity indices based on variance can effectively apportion the output 
uncertainty to the inputs. How to efficiently and accurately perform the global 
sensitivity analysis is of great concern for researchers. In this work, the employment 
of sparse grid integration to the estimate of global sensitivity indices is discussed. The 
new method can be used for sensitivity analysis of the structural models involving 
independent variables or correlated variables, and can further decompose the variance 
contribution in the correlation cases. Advantage of the sparse grid integration in 
estimating integrals is well inherited by the new method, to ensure the accuracy while 
keeping the computational burden controllable. Numerical and engineering examples 
have been studied to test the applicability of the proposed method. 
Keywords: Sensitivity analysis; variance; uncertainty; sparse grid integration 
 
1. Introduction 

Global sensitivity indices are playing an important role in identifying and 
representing uncertainties in engineering, and many researchers have proposed their 
own indices, as well as corresponding computing techniques [Borgonovo (2007); 
Sobol (2001)]. Among these different indices, the variance based ones have attracted 
increasing interests as they are able to capture the influence of the full range of 
variation of each input factor, and reflect the interaction effects among input factors. 
Variance based sensitivity analysis has been acknowledged as a versatile and effective 
tool in the uncertainty analysis. 
 
In the real world, input factors of a model are often correlated to each other, and 
sometimes the correlation may have significant impacts on the sensitivity results 
[Borgonovo and Tarantola (2008); Kucherenko et al. (2012); Mara (2009)]. Xu and 
Gertner (2008) pointed out that the contribution of uncertainty to the output by an 
individual input factor should be decomposed into two parts: the uncorrelated part, 
which means this part is completely immune from the other input factors and is 
produced by this input factor “individually and independently”, and the correlated 
part, which means this part is produced by the correlation of this input variable with 
the others. Mara and Tarantola (2012) proposed a set of variance-based sensitivity 
indices to perform sensitivity analysis of models with correlated inputs, which can 
distinguish between the mutual dependent contribution and the independent 
contribution of an input to the model response variance. 
 
An important task in the sensitivity analysis is to improve the computational 
efficiency, especially in engineering cases where the models involved usually take a 
long processing time [Saltelli et al. (2010)]. It is found that the variance based 
sensitivity indices can be viewed as nested expressions of expectation operator and 
variance operator. Enlightened by this feature, in this work a new method is 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

656



 
 

developed for global sensitivity analysis by using the sparse grid integration (SGI) 
technique. The sparse grid technique, which is based on one-dimensional formulae 
and then extended to higher dimensions, has been extensively utilized for highly 
dimensional multivariate integration, as well as interpolation [Barthelmann et al. 
(2000); Gerstner and Griebel (2003); Gerstner and Griebel (1998); Smolyak (1963)]. 
To a certain extent, this technique avoids the “curse of dimension” of conventional 
integration algorithms, which means the computational cost grows exponentially with 
the dimension of the problem. In the SGI technique, multivariate quadrature formulae 
are constructed with combinations of tensor products of suitable one-dimensional 
formulae, thus the function evaluations needed and the numerical accuracy become 
independent of the dimension of the problem up to logarithmic factors. Existing 
literature has reported the high efficiency and accuracy of sparse grid applications.  
 
2. Review on variance based sensitivity indices 

2.1 Sensitivity analysis of model output with independent inputs 

Let ( )Y g X  be the performance function of the model under investigation, with Y  
the output, T

1 2( , , , )nX X X X  the vector of independent input variables, where iX  
is the ith variable. Sobol (2001) proposed that the performance function can always 
be decomposed into summands of different dimensions, that is 

 0 , 1,2,..., 1 2
1

( ) ( ) ( , ) ( , ,..., )
n n

i i i j i j n n

i i j

g g g X g X X g X X X
 

       X  (1) 

 
Sensitivity analysis based on variance is to quantify the contribution of an individual 
input variable to the output variance, and Sobol proposed the variance decomposition 
equation based on Eq.(1), 

 1,2, ,
1 1,

( )
n n

i ij n

i i j i

V Y V V V 

  

         (2) 

iV  is the first order variance contribution of iX , and can be formulated as 
 ( ( | ))

i ii X iV V E Y X


 X  (3) 
where iX  denotes the vector of all input variables except iX , i.e. 

T
1 1 1( , , , , , )i i i nX X X X    X . ijV  and higher order variance terms in Eq.(2) denote 

the contribution to the output variance of variable interaction brought by the form of 
the performance function. When only the first order variance contribution is 
considered, the variance decomposition can be reformulated as 

 
1

( )
n

i

i

V Y V


  (4) 

 
The first order variance contribution iV  is also referred to as the main effect of iX  
on the output variance, and it measures the first order effect of iX  on the output, 
ignoring the interactions between iX  and the other variables. When taking the 
interactions into consideration, the total contribution of iX  is measured by 

( ( | ))
i iX iE V Y

 X X . According to the known identity: 
 ( ( | )) ( ( | )) ( )

i i i iX i X iV E Y E V Y V Y
   X XX X  (5) 

( ( | ))
i iX iV E Y

 X X  can be seen as the first order effect of iX , thus ( )V Y  minus 
( ( | ))

i iX iV E Y
 X X  should give the contribution of all terms in the variance 
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decomposition which includes iX .  
 
To normalize the variance contribution, the main effect index is defined as [Saltelli et 
al. (2010)] 

 
( ( | ))

( )
i iX iM

i

V E Y X
S

V Y


X   (6) 

and the total effect index is defined as 

 
( ( | ))

( )
i iX iT

i

E V Y
S

V Y

 


X
X

  (7) 

2.2 Sensitivity analysis of model output with correlated inputs 

The variance decomposition in Eq.(2) is proposed under the assumption of input 
independence, which thus means it may not hold when the input variables are 
correlated. For correlated variables, the main effect index and total effect index still 
reflect the variance contribution of variables, yet the difference from the 
independence case lies in that both indices are now composed by two parts. Take iV  
for example, according to Xu and Gertner (2008), it can be divided into two parts, i.e. 
the variance contribution of the uncorrelated part of iX , denoted by U

iV , and the 
variance contribution of the correlated part with the other variables, denoted by C

iV . 
It should be pointed out that the variance contribution of the correlated part of iX  is 
way different from the interaction contribution of iX  to the output variance. These 
two are absolutely different concepts, as the former comes from the correlation 
among the input variables, and the latter is produced by variable interactions in the 
performance function. 
 
Thus, the main effect index, M

iS , can be decomposed in the following way, 
 M MC MU

i i iS S S    (8) 
where MC

iS  denotes the correlated main contribution of iX  to the output variance, 
and MU

iS  denotes the uncorrelated main contribution. Similarly, the total effect index, 
T

iS , can be decomposed as  
 T TC TU

i i iS S S    (9) 
where TC

iS  denotes the correlated total contribution of iX  to the output variance, 
and TU

iS  denotes the uncorrelated total contribution.  
 
In fact, in the existing literature measuring the contributions of inputs to the output 
variance for cases involving correlated inputs is still a tricky issue. Researchers have 
proposed different variance based sensitivity indices based on different considerations, 
and it is difficult to judge which one is better. Agreement is highly needed to give an 
exact and unambiguous definition of the ANOVA for correlated inputs just as the one 
provided by Sobol decomposition when the inputs are independent. In this work, the 
sensitivity indices talked about are related to those in the work of Mara and Tarantola 
(2012).  
 
3. Variance based sensitivity analysis with SGI 

The SGI technique has been proven to be an effective tool in the uncertainty analysis, 
and it will be employed to perform the variance based sensitivity in this section. It 
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should be pointed out that normally the SGI procedure is carried out in the 
independent space, which means it cannot be directly used when input variables are 
correlated. In this section, the procedure using SGI for sensitivity analysis of models 
with independent variables is first introduced. Afterwards, the use of SGI for variance 
based sensitivity analysis with correlated variables is discussed, which is partly based 
on the work of Mara and Tarantola (2012). 
3.1 Algorithm based on SGI for sensitivity analysis of independent variables 

For the performance function ( )Y g X  with independent variables, the expectation 
and variance of the output can be estimated by SGI according to the following 
formulae, 

      
1

( ) d
p

j j

j

E Y g f w g


   X
x x x x   (10) 

 2 2

1
( ) ( ( ) ( )) ( ) d ( ( ) ( ))

p

j j

j

V Y g E Y f w g E Y


     X
x x x x   (11) 

where the n-dimension quadrature point jx  and the associated weight jw  
( 1,2,...,j p ) are obtained by the Smolyak algorithm [Gerstner and Griebel (2003); 
Gerstner and Griebel (1998)].  
 
With the output variance obtained, ( ( | ))

i iX iV E Y X
X  and ( ( | ))

i iX iE V Y
 X X , both of 

which can be seen as nested expressions of expectation operator and variance 
operator, need to be estimated to get the indices M

iS  and T

iS . 
 
Consider ( ( | ))

i iX iV E Y X
X  first. Keep iX  fixed, and treat iX  as variables, then Y  

can be seen as the function of iX . The inner expectation can be estimated by SGI as 
follows, 

      
1

( | ) , d ,
i i

m
j

i i i i i j i i

j

E Y X g x f w g x
    



  X X
x x x x   (12) 

where j

ix  denotes the j-th value of iX . Apparently ( | )
i iE Y X

X  can be seen as a 
univariate function of iX , and is redefined as 
 ( ) ( | )

ii iX E Y X


 X   (13) 
Thus, 
 ( ( | )) ( ( ))

i iX i iV E Y X V X


X   (14) 
The variance of the univariate function ( )iX  can be estimated by SGI as follows, 

 2 2

1
( ( )) ( ( ) ( ( ))) ( ) d ( ( ) ( ( )))

i

m
j

i i i X i i j i i

j

V X x E x f x x w g x E X   


       (15) 

where 

 
1

( ( )) ( ) ( ) d ( )
i

m
j

i i X i i j i

j

E X x f x x w g x 


     (16) 

Finally, the main effect index can be obtained as 

 
( ( | )) ( ( ))

( ) ( )
i iX iM i

i

V E Y X V X
S

V Y V Y


 

X   (17) 

The total effect index T

iS  can be obtained in the similar manner.  
3.2 Algorithm based on SGI for sensitivity analysis of correlated variables 

When the input variables are correlated, the algorithm based on SGI in Section 3.1 is 
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no longer applicable. In this section, the SGI technique is extended to the case of 
correlated variables to perform the variance based sensitivity analysis. In this work, 
the correlation matrix, which is a symmetric matrix composed of Pearson correlation 
coefficients, is adopted to measure the correlation between random variables.  
3.2.1 Estimate of the response variance 

Eq.(10) and Eq.(11) in Section 3.1 can be used to estimate the expectation and 
variance of the model output only when the variables are independent. Thus, for 
correlated variables there has to be a transformation from correlation space to 
independence space. In this work, we only consider the problems with normal 
distributions, i.e. 2~ ( , )

i ii X XX N   . 
 
The covariance matrix of T

1 2( , , , )nX X X X  is denoted as 

 

1

2

2
1 2 1

2
2 1 2

2
1 2

( , ) ( , )

( , ) ( , )

( , ) ( , )
n

X n

X n

n n X

Cov X X Cov X X

Cov X X Cov X X

Cov X X Cov X X







 
 
 

  
 
 
 

X
C  (18) 

where    , ,
i ji j j i ij X XCov X X Cov X X     , as ij  is the Pearson correlation 

coefficient of iX  and jX . The joint PDF of X  is 

        
1 T 122

12 exp
2

n

f 
  

    
 

X X X X
X C X μ C X μ  (19) 

where 1 2

T( , , , )
nX X X   

X
μ  is the vector of input expectations, X

C  and 1
X

C  are 
the determinant value and reverse matrix of XC  respectively. 
 
An orthogonal matrix A  exists which would introduce random variable vector 

T
1 2( , , , )nU U U U  by the following formula [Shi et al. (2009)]: 

  
1 2
22

1 2
1

1( ) 2 ( ) exp( )
2

nn
i

n

i i

U
f    







      X
AU μ  (20) 

where 1 2, n    is the latent roots of XC . 
 
Thus the n-dimension correlated input variables T

1 2( , , , )nX X X X  can be 
transformed to independent normal variables T

1 2( , , , )nU U U U  by 
 ( )T 

X
U A X μ  (21) 

where the column vectors of A  are the latent root vectors of XC , and the 
probability distribution of the independent normal variables can be obtained as 

~ (0, )i iU N  . 
 
By Eq.(21), we further get 
   XX AU μ  (22) 
Substitute Eq.(22) into ( )Y g X , the performance function in the independence 
space can be obtained as follows, 
 ( ) ( )Y g  X U  (23) 
where ( )   denotes the mapping relationship between U  and the output. Because 
distribution parameters of U  in the dependence space have been obtained, the 
expectation and variance of the model output can be readily estimated by Eq.(10) and 
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Eq.(11). 
3.2.2 Orthogonalization of correlated variables 

For two normal variables, iX  and jX , ( | )i jE X X  can be used to define the 
marginal relationship between them. The value of ( | )i jE X X  measures how much 

iX  is correlated to jX , and equals ( )iE X  when the two variables are independent. 
In the same manner, ( | , )i j kE X X X  defines the correlation of iX  to jX  and kX . 
Mara and Tarantola declared that for non-normal random variables, higher conditional 
moments are needed to characterize the correlation between the variables. Issues 
concerning correlated non-normal variables would become much complicated in most 
cases. In this work, the scope of research is confined to problems only involving 
normally distributed variables. 
 
For a vector of correlated normal variables, T

1 2( , , , )nX X X X , the following 
relationship holds, 
 1 2 1 2 1 1 2 1( , ,..., ) ( ) ( | ) ( | , ,..., )n n nf X X X f X f X X f X X X X    (24) 
where 1 2( , ,..., )nf X X X  is the joint PDF, 1( )f X  is the marginal PDF of 1X , 

2 1( | )f X X  is the marginal PDF of 2X  conditioned on 1X , 1 2 1( | , ,..., )n nf X X X X   is 
the marginal PDF of nX  conditioned on T

1 2 1( , ,..., )nX X X  . As we have talked about, 
( | )i jE X X  can quantify the marginal relationship between two correlated normal 

variables, thus the following equations hold, 

 

1 1

2 2 1 2 2 1

3 3 12 3 3 1 2

12...( 1) 1 2 1

( | )
( | , )

( | , ,..., )n n n n n n

X X

X X X E X X

X X X E X X X

X X X E X X X X





  



  

  

  

  

 (25) 

 
Mara and Tarantola (2012) pointed out that the above transformation is one of 
Rosenblatt’s for normal variables. A new set of variables T

1 2( , ,..., )nX X X  can be 
generated by the above transformation. In fact, these new variables are obtained by 
subtracting the correlation part from the original correlated variables, thus the new 
variables are independent from each other. 
 
Besides, the orthogonalization from correlated variables to independent ones is not 
unique. This can be seen from the transformation in Eq.(25), which clearly depends 
on the ordering of variables. If we reorder the original input variables as 

2 1( , , , )nX X X X , which is valid except the corresponding correlation matrix needs 
to be modified accordingly, and apply the orthogonalization, a new set of independent 
variables will be obtained and denoted as 2 1( ,..., , )nX X X . It should be reminded that 

2 1( ,..., , )nX X X  is different from 1 2( , ,..., )nX X X  initially obtained by orthogonalizing 
1 2( , , , )nX X X . In fact, through changing the ordering of the original correlated 

variables in sequence, a total of n  sets of independent variables can be generated 
by the orthogonalization. However, among all these sets, only a total of n sets 
generated by cycling the orthogonalization are used in this work, i.e. 1 2( , , , )nX X X , 

2 1( , , , )nX X X ,…, 2 1( , , , )n n nX X X  . 
3.2.3 Interpretations on sensitivity indices of the newly independent variables 
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It is necessary to find out the relationship between the sensitivity indices of the 
independent variables and those of correlated ones. Let us focus on the main effect 
index first, which is denoted as  

 

1 1

2 2

3 3

[ ( | )] / ( )

[ ( | )] / ( )

[ ( | )] / ( )
...

[ ( | )] / ( )

M

M

M

M

n n

S V E Y X V Y

S V E Y X V Y

S V E Y X V Y

S V E Y X V Y









 (26) 

 
Now consider the explanation of the sensitivity indices. Because 1 1X X , 1

MS  is the 
full marginal contribution of 1X  to the response variance, which means 1 1

M MS S . 

2
MS  is the marginal contribution of 2X  to the response variance without its 

correlative contribution with 1X , as 2X  is uncorrelated with 1X . In the same 
manner, 3

MS  is the marginal contribution of 3X  to the response variance without its 
correlative contribution with T

1 2( , )X X . For the last new variable nX , M

nS  is the 
uncorrelated marginal contribution to the response variance, which means M MU

n nS S . 

1X  keeps all the information concerning 1X  including its correlated part with the 
other variables while nX  only keeps the independent part of nX  excluding all of its 
correlated part.  
 
Clearly, by the variance based sensitivity analysis on T

1 2( , ,..., )nX X X , the main effect 
index of 1X , i.e. 1

MS , as well as the uncorrelated main effect index of nX , i.e. MU

nS , 
can be obtained. Remember that a total of n sets of independent variables can be 
generated by orthogonalizing the original correlated variables in cycle. In the same 
way of obtaining 1

MS  and MU

nS , the indices 2
MS  and 1

MUS  can be obtained by the 
sensitivity analysis on 2 1( ,..., , )nX X X . Change the order of the original correlated 
variables, and perform orthogonalization to get the corresponding independent 
variables, which is further analyzed to get the sensitivity indices, the full and 
uncorrelated contributions of each correlated variable can be obtained. Similarly, the 
total effect index T

iS  of the correlated inputs can be thus estimated and decomposed. 
3.2.4 Computational issues 

In this section, the computational issues involved in the procedure of sensitivity 
analysis are addressed. Still, we take the analysis on T

1 2( , ,..., )nX X X  as an example. 
To analyze the sensitivity indices on T

1 2( , ,..., )nX X X , firstly the statistical 
characteristics have to be known. 
 
By Eq.(25) we know the mean value and standard deviation of 1X  are equal to those 
of 1X . For the ith ( i >1) variable, the following equation holds according to Eq.(25), 
 1 2 1( | , ,..., )i i i iX X E X X X X    (27) 
Only the first i variables are involved in Eq.(27), i.e. T

1~ 1 2( , ,..., )i iX X XX , of which 
the mean vector is 1~ 1 2

T( , , , )
i iX X X   

X
μ , and the corresponding covariance matrix 

can be taken from Eq.(18) as 
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2
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X i
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i i X
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X
C  (28) 

 
Now consider the conditional mean value in Eq.(27), 1 2 1( | , ,..., )i iE X X X X  . The mean 

vector and covariance matrix for 1~iX  can be rewritten as 1~

1~( 1)

i

i

i

X



 
  
  

X

X

μ
μ

 and 

1~( 1)

1~

1~( 1) 1~( 1) 1~( 1)

i i i i

i

i i i i

X X X

X



  

 
  

  

X

X

X X X

C C
C

C C
, where 

 2
i i iX X XC  (29) 

  
1~( 1) 1~( 1) 1 2 1( , ) ( , ) ( , )

i i i i

T

X X i i i iCov X X Cov X X Cov X X
      

X X
C C  (30) 

 

1

2

1~( 1) 1~( 1)

1

2
1 2 1 1

2
2 1 2 1

2
1 1 1 2

( , ) ( , )

( , ) ( , )

( , ) ( , )

i i

i

X i

X i

i i X

Cov X X Cov X X

Cov X X Cov X X

Cov X X Cov X X







 







 

 
 
 

  
 
 
 

X X
C  (31) 

 
The conditional distribution of iX  conditioned on T

1 2 1( , ,..., )iX X X   is still a normal 
distribution, and its mean value can be calculated in the following way [Shi et al. 
(2009)], 
 1~( 1) 1~( 1) 1~( 1) 1~( 1)

1
1 2 1 1~( 1)( | , ,..., ) ( )

i i i i i ii i X X iE X X X X 
   



   
X X X X

C C X μ  (32) 
 
From the above equation, it can be seen that 1 2 1( | , ,..., )i iE X X X X   is in fact an 
expression containing the first (i–1) variables. Substitute Eq.(32) into Eq.(27), we can 
get an expression containing the first i variables. In other words, iX  can be viewed 
as a function of the first i correlated variables, of which the expression can be 
explicitly obtained. In the same way in Section 3.2.1, the mean value and standard 
deviation of iX  can be conveniently obtained using the SGI technique, which are 
denoted as 1X

  and 
iX

 , respectively. After obtaining the mean and standard 
deviation of the independent variables, the sensitivity analysis still cannot be 
performed immediately, as the original performance function is a mapping of the 
output response with the original correlated variables, not with the new independent 
ones. Thus the performance function has to be rebuilt to describe the relationship 
between the output response and the new independent variables. 
 
From Eq.(25), the following relationship holds, 

 

1 1

2 2 2 1

3 3 3 1 2

1 2 1

( | )
( | , )

( | , ,..., )n n n n

X X

X X E X X

X X E X X X

X X E X X X X 



 

 

  

 

 (33) 
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As discussed above, 2 1( | )E X X  is an expression only containing 1X . Now substitute 
1 1X X  into 2 1( | )E X X , then 2X  can be transformed into an expression only 

containing 1X  and 2X . Similarly, substitute the expression of 1X  and 2X  into 
3 1 2( | , )E X X X , then 3X  can be transformed into an expression only containing 1X , 

2X  and 3X . Repeat this process, the expression for nX  can be finally obtained, 
which should only involve T

1 2( , ,..., )nX X X . This process can be denoted as 

 

1 1 1

2 2 2

3 2 1 2 3

2 1 2

( )
( )
( , , )

( , ,..., )n n

X X

X X

X X X X

X X X X















  



 (34) 

in which i  denotes a mapping relationship. 
 
Substitute Eq.(34) into the original performance function, a new performance 
function between the output response and the new independent variables can be 
obtained, which is denoted as 
 1 2( , ,..., )nY g X X X  (35) 
 
According to the previous discussions, variance based sensitivity analysis can be 
easily performed for the performance function in Eq.(35). The sensitivity indices thus 
obtained are then used to interpret the main effect index, total effect index, as well as 
the decompositions, for the original correlated variables according to Section 3.2.3. 
 
4. An automobile front axle 

In the automobile engineering, the front axle is an important component that bears 
heavy loads. Due to the rigid requirements for its strength, stiffness and fatigue life, 
mechanical property of the front axle must be strictly tested before the mass 
production [Lu et al. (2012)]. Variance can act as an important index to measure the 
robustness of the front axle, considering the uncertainty existing in the structure. The 
I-beam structure is widely used in the design of front axle due to its high bending 
strength and light weight. Consider the I-beam structure shown in Figure 1. The 
maximum normal stress and shear stress are / xM W   and /T W   respectively, 
where M is the bending moment, T is the torque, xW  and W  are the sectional 
factor and polar sectional factor given as 

 
3

3 3( 2 ) ( 2 )
6 6x

a h t b
W h h t

h h


        (36) 

 2 30.8 0.4 ( 2 ) /W bt a h t t
       (37) 

 
Consider the static strength of the front axle, the performance function can be thus 
established as 
 2 23sg        (38) 
where s  is the yielding stress, and s =460 MPa according to the material property. 
In the real engineering, uncertainty is unavoidable in the manufacture process, and 
randomness exists in the external loads. In this example, the geometry parameters of 
the I-beam, i.e. a, b, t, m, and the loads M and T are taken as random variables. The 
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probability distribution information is given in Table 1.  
 

  
a

b

t

h  

Figure 1. Sketch of the automobile front axle 

 
Table 1. Distribution information of the inputs for the I-beam 

Input (unit) Distribution type Mean Standard deviation 
a (mm) Normal  12 0.06 
b (mm) Normal 65 0.325 
t (mm) Normal 14 0.07 
h (mm) Normal  85 0.425 
M (N·mm) Normal 3.5×106 1.75×104 
T (N·mm) Normal 3.1×106 1.55×104 

 
By the above illustration, we may get the impression that the nonlinearity of the 
performance function is high, thus the interaction effect on the output variance should 
be noticeable. However, conclusions might be different if we perform the quantitative 
sensitivity analysis. First, consider the contribution of the inputs to the output 
variance under the assumption that the inputs are independent from each other. The 
results obtained by the proposed method and MCS are reported in Table 2. 
 
When the inputs are independent, a total of 451 runs of the performance function are 
needed by the proposed method, and comparison with MCS shows the accuracy of 
the proposed method is acceptable. Another important feature in the sensitivity results 
is that, for each input, the main effect index is very close to the total effect index. It 
indicates the effect of interactions between inputs on the output variance is negligible, 
despite of the nonlinearity of the performance function. The independent inputs can 
be ranked as {t, T, b, a, h, M} in the descending order according to their contributions 
to the output variance.  
 

Table 2 Sensitivity indices of the independent inputs for the I-beam 

  a b t h M T 

M

iS  Proposed method 0.112 0.171 0.418 0.033 0.0001 0.265 
MCS 0.115 0.172 0.410 0.032 0.0004 0.262 

T

iS  Proposed method 0.113 0.171 0.418 0.033 0.0001 0.265 
MCS 0.117 0.171 0.417 0.033 0.0001 0.269 

 
As a matter of fact, in the real engineering it is inappropriate to assume the 
independence among the inputs. In most cases, one input is probably correlated to 
another, and such correlation may have notable effect on the output performance. 
Now consider the sensitivity analysis on the I-beam structure under the assumption of 
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input correlation. Assume 0.3ab   , 0.3th   , and 0.4MT  . Since interactions 
between the inputs have little effect on the output variance, thus only the main effect 
index is estimated and decomposed by the proposed method, and shown in Figure 2. 
 
The sensitivity analysis results in Figure 2 can provide helpful interpretations of the 
model. Still, the input t and T contribute the most to the output variance, as is the case 
when the inputs are independent. Thus, these two inputs should be carefully 
controlled if we want to reduce the output variation, especially the former one. 
Besides, M becomes more important than h after the correlation is introduced. It can 
also be noticed that the contributions of the correlated part by the first four inputs are 
negative, which is caused by the negative correlation coefficient. In this example, the 
inputs can be seen as independent pairs of dependent variables, e.g. the input a is only 
correlated to b and independent from the rest. As a result, the correlated contributions 
of two correlated inputs are equal, e.g. MC MC

a bS S . From Figure 2 it can be clearly 
seen that correlated part of the inputs plays an important role in contributing to the 
output variance, sometimes even more significant than the uncorrelated part. With the 
proposed method, more information has been explored, which can be referred to by 
analysts to improve the model performance.  

M

iS

MC

iS

MU

iS

a b t h M T

 

Figure 2 Sensitivity indices of the correlated inputs for the I-beam 

 
5. Conclusions 

In this work, application of the SGI technique to the global sensitivity analysis is 
discussed. Sensitivity analysis under the case of independent variables is much 
different from that of correlated variables, as in the latter case both the computation 
and interpretation are more complicated. When the variables are independent, both 
the main effect index and total effect index can be estimated by the two-stage use of 
the SGI technique. The whole procedure is considerably clear and simple. When it 
comes to the correlated variables, necessary steps need to be taken before the 
sensitivity results can be obtained. The whole procedure can be generalized as 
follows: (1) estimate the output variance with the SGI technique, (2) orthogonalize 
the correlated variables to independent variables, (3) estimate the statistical 
information of the independent variables by SGI, as well as the mapping between 
these new variables and the output, and (4) perform the sensitivity analysis with the 
SGI technique for the new performance function and independent variables. The 
sensitivity results are then used to interpret the contributions of the original correlated 
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variables to the output variance. The proposed method inherits the merits of the SGI 
technique, and can estimate the integrals involved in the sensitivity analysis with 
acceptable accuracy, while keeping the computational burden under control. 
Applications to the examples have shown that the proposed method can be seen as a 
viable choice for sensitivity analysis of engineering models.  
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Abstract 

External fixations are used to treat skeletal fractures. Patients are required to be immobilized for up 
to 12 weeks to allow the fracture to heal. This paper presents some preliminary finite element 
findings to highlight the potential of attaching sensing elements on the fixation to monitor the 
progression of healing of the fracture. This work paves the way for the extension of structural health 
monitoring concepts for orthopaedic devices.  
Keywords: Structural health monitoring, bone healing assessment, bone fracture 

Introduction 

Musculoskeletal injuries are often associated with traumas. One of the associated effects of these 
injuries is bone fracture which is a complete or incomplete breakage of a bone, as a result of 
excessive force or trauma to the site.  Following a fracture, there are a variety of treatment choices, 
most commonly internal and external fixation, should operative methods be chosen. In general, 
intermedullary nailing, a type of internal fixation, is chosen, as it has been associated with 
decreased complications such as pin tract sepsis and joint stiffness (Wu, 2006). However, as noted 
by Ingari and Powell (2007), temporary external fixation has been indicated in situations where 
temporary fixation is necessary and risks of infection high, such as in combat. In these 
circumstances after a short period of time it is possible to convert to internal fixation, but in these 
cases risks of infection are high, and often the temporary fixation is modified to be permanent.  The 
objectives of orthopaedic injury management are to prevent infection, promote fracture healing and 
restore function.  
 
The healing process of fractures is a complicated procedure, on both a macroscopic and 
microscopic level. Due to the precise balance required between anabolic and catabolic phases, 
delayed unions, mal-unions and non-unions are common, occurring in 5-10% of all long bone 
fractures (Griffin et al, 2011). Hernigou et al (2005) define a delayed union as a fracture site 
continuing to sustain clinical and radiological signs of fracture outside of the expected healing time, 
or the absence of signs of progressive repair between the 3rd and 6th month of repair following a 
fracture. Mal-unions are defined as a pathological union of a fracture, usually involving shortening 
and rotational or angular deformity (Wu, 2006), while non-unions are defined as a lack of union 
within the expected healing time (Griffin et al, 2011). Although there is a lack of a standardised 
definition of these pathologies, they are clinically significant and have an impact on quality of life. 
 
In the above studies, it is evident that an ability of assess the degree of union of the fixated fracture 
is of fundamental importance. It is needed to (1) determine if a re-operation is required, and (2) to 
assess the effectiveness of the external fixation as a definitive treatment. The most common method 
of determining state of union, following clinical data collected, is a plain radiograph or a CT scan. 
Unfortunately, both have significant drawbacks to the patient, primarily exposure to radiation, and 
both are fundamentally inconclusive in determining state of union. Progesses in Engineering 
research has led to a significant advancement in Structural Health Monitoring (SHM) which have 
been shown to offer the prospect of a quantum gain in performance and efficiency for the structural 
integrity management of expensive assets such as aircraft and infrastructure. The key enabling 
technologies for this revolution include primarily the rapid and continuing advances that have been 
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made in the past three decades in the development of miniaturised sensors, actuators, and of various 
multifunctional materials and structural concepts Srinivasan, A.V. and D.M. McFarland (2001). 
 
For the purpose of this paper, a fixated femur will be used to outline this potential. A saw-bone 
femur fixated with a Hoffmann II external fixator was used. This paper will present a set of results 
that will establish the fundamentals required to underpin the ability to integrate sensing into an 
external fixator for union and healing assessment. It will be shown that the modal response of a 
fixated femur is sensitive to the state of union of the fractured region.  
 
Finite element analysis 
The aims of this part of the work are to: 

1. Determine the potential of locating sensing devices on the external fixation to determine the 
state of healing of the fractured femur. 

2. Qualitatively identify suitable sensor placement locations on the fixation and the appropriate 
frequency bandwidth that will facilitate the monitoring of the healing of the fracture femur.  

 
This will be conducted with a series of finite element analyses of the fixated femur. The geometry 
of the fixated femur shown in Figure 1 was digitally scanned using structured light 3D scanning 
technology. A finite element model was created from the scanned geometry as shown in Figure . 
Due to its complex geometry, it was meshed using tetrahedral elements set to a spacing of 2mm. 
This resulted in 345,966 elements and 79,793 nodes as shown in Figure 2. The fracture was 
simulated with a 3mm thick slice in the middle of the femur (shown in Figure 3) and was assigned a 
Young’s modulus 1% of the flawless bone. The properties used for the fixation and the saw-bone 
are shown in Table 1. The unlabeled fixation components in Figure  were assigned titanium material 
properties. A constant 1% viscous damping was used in the simulation. In this respect, the finite 
element analyses reported in this section is use for qualitative purposes. 
 

Table 1 Material properties used in simulations (Rudman et al, 2006). 

Material Density (kg/m3) Young’s Modulus 
(GPa) 

Poisson’s Ratio 

Cortical bone 1500 17 0.3 
Stainless steel pin 7817 198 0.272 
Composite rod 1500 134 0.3 
Titanium 4430 121 0.34 
 

 
Figure 1: Saw-bone femur fixated with Hoffmann II external fixation. 
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Figure 2: 3D model of fixated saw-bone specimen. 

 

 
Figure 3: 3D model illustrating mesh density. 

 
 
The fixed constraints applied to the fixated femur are shown in Figure 3. The dynamic response of 
the model was solved using NX Nastran. The mode shapes and natural frequencies of the fixated 
femur were first analysed. To facilitate the assessment of the healing and union of the fracture 
femur, it is important that the desired mode must include significant deformation of the femur. 
 
Identification of sensing location 
Figures 4(a) and (b) show two typical mode shapes that were calculated. They were selected to 
highlight the significance of using the appropriate modes for monitoring of the union and healing of 
the fracture femur.  It was found that the lower modes are likely to be insensitive to the presence of 
the fracture because it is dominated by the deformation of the fixation (see Figure 4a). However, the 
higher mode (e.g. the 6th mode) shown in Figure 4b shows the deformation of the femur. Therefore, 
it is expected that the higher order resonant behaviour of the femur is likely to be affected by the 
changing material properties of the femur in the fractured region that is representative of the state of 
healing and/or union.  
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The 6th mode shape shown in Figure 4(b) also includes significant deformation of the legs of the 
fixation. It is inferred from these results that the sensors can suitably be located on the legs of the 
fixation to determine the state of healing. This is essential as they are easily accessible and are 
external to the body.  
 

 
a)  Mode 2, 126Hz 

 
b) Mode 6, 402 Hz 

Figure 4: Mode shapes.  

 
Forced analyses 
To confirm this, a series of forced dynamic response of the fixated femur were conducted with a 
forced input is applied to the fixation as shown in Figure 5. A unit force is applied over a frequency 
bandwidth of 1000 Hz. The 4 sensing locations are selected and the transfer functions between the 
surface stress on these locations and the force input were calculated. Sensing locations 1 and 2 and 
3 and 4 were located on the opposite sides of the fracture location. The calculations were conducted 
with the following femur configurations: (a) no fracture; (b) the fractured femur simulated with the 
properties at the fractured location reduced to 1% of its original. 
 
The forced responses of the fixated femur with and without the fractured region are shown in 
Figures 6 and 7. These results shows that the effects of the fractured femur on the transfer function 
are only evident in the higher modes above 300 Hz. This is because significant deformation of the 
femur was present only in the higher modes. The results also showed that the sensing location 
shown in Figure 5 is potentially sensitive to the state of healing and union of the fractured femur.  
 

 

Figure 5:  Input and output locations for transfer function calculation. 
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The transfer function obtained for sensing locations 1 and 2 are shown in Figure 6(a) and 6(b). The 
results obtained from these two sensing locations are similar both in magnitude and in phase. The 
natural frequencies for the modes above 250 Hz increases when the fracture is totally healed and 
united. Figure 7(a) and 7(b) shows the transfer function obtained for sensing locations 3 and 4. The 
healing of the femur can be indicated by the appearance of natural modes at about 300 Hz and 480 
Hz.  
 
This set of results clearly demonstrates the significance of locating the sensing element in the 
proximity of the drive point. It also highlights the potential of integrating structural health 
monitoring concepts into the orthopaedic devices for the monitoring of healing and union of a 
fractured femur. An important feature is the possibility of locating sensors external to the human 
body for healing assessment.  
 
Conclusions 
The work presented in this paper described the potential of integrating structural heath monitoring 
concepts into fixators to determine the state of union of a fractured long bone. The work presented 
showed how the inclusion of actuation and sensing protocol can be established to assess the state of 
union of the externally fixated saw-bone femur. This preliminary study highlights the potential of 
locating sensors external to the human body in assessing the state of healing of a fixated fractured 
femur.  
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Figure 6(a): Transfer function for a fractured and flawless bone on pin 1. 
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Figure 6(b): Transfer function for a fractured and flawless bone on pin 2. 
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Figure 7(a): Transfer function for a fractured and flawless bone on pin 3. 
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Figure 7(b): Transfer function for a fractured and flawless bone on pin 4. 
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Abstract 

This paper used rigid-plastic finite element DEFORMTM 3D software, studying on 6061 aluminum 
alloy cutting plastic deformation behavior. The main design including a variety of different types of 
turning tools chipbreakers that under the same conditions, chipbreakers including without 
chipbreaker design, square chipbreaker design and an elliptical chipbreaker design, in order to 
analyze the effective stress after cutting, the effective strain after cutting, tool temperature, tool 
wear analysis in different chipbreaker types. The results of simulation analysis hoped to confirm the 
applicability of finite element method for cutting 6061 aluminum alloy.   
Keywords: Turning tool, Chipbreakers design, 6061 aluminum alloy. 

Introduction 

Cutting is an important method for forming a metal material, in order to improve processing 
efficiency and product surface quality, together with co industry stringent requirements. Must 
examine cutting inherent principle, since the metal cutting technology is quite complex and involves 
many factors. It used analytical methods are difficult to accurately describe the chip formation 
process, and funding for purely experimental study required a lot of investment and time. The finite 
element analysis techniques aided design as an effective tool to the workpiece material properties 
such as temperature, strain and strain rate functions for the interaction between the various 
machining parameters. 

Includes regarding the mechanical processing research: [Toru et al. (2014)] research the cutting tool 
hot-working, transfers heat from heated up cutting tool, the work piece carries on the simulation 
analysis, the cutting experiment showed that the cutting tool heated up the pattern to improve the 
cutting process capability. [Stepan et al. (2014)] confirmed for calculating the stability of fixed 
milling, surveys in the working conditions carries on the confirmation the general numerical 
algorithm, its can forecast that the cylindrical milling cutter geometric form carries on the milling 
process the stability condition. [Gandjar et al. (2014)] described  five axis milling, during using an 
analysis method to define the CWE half fine mill ring-like and plane face cutter in the carving part. 
[Totis et al. (2014)] research cutting tool shape optimization. It has carried on the optimization to 
the design of module through the use finite element analysis method, the dynamic mathematical 
model of common sensor having. Through conducting modal analysis and cutting test. The 
experimental result has proven the new equipment outstanding characteristics. [Jaroslava and Zdenk 
et al. (2014)] studied the cutting blade and cutter life of cutting blade radius, the process steam 
turbine outer covering division. 

 
Finite element analysis 

In metal shaping process, because comes under influence of the plastic deformation, creates the 
production of flaw mostly is caused for the material ductile fracture by processing. The brittle 
failure of metallic material among crystallizing cleavage surfaces, the atom unifies to destroy for 
the focus micro phenomenon mutually, namely breaks out the destruction, and before the material 
destroys. The strain capacity does not have minimum even the plastic deformation, and formation 
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destruction of non-early warning. The DEFORMTM software according to the design system and 
processing process, because of the analysis pattern that the two-dimensional or three-dimensional 
flow distorts, can simulate the metallic material in the die forming, after ductile fracture value and 
distortion, temperature and plastic flow speed, stress and strain of distributed situation. 

 
Simulation and parameter setting 

Table 1 illustrated the different tools chipbreakers cutting simulation parameters of 6061 aluminum 
alloy, including fixed parameters include: speed 200 rpm, tool temperature  200 oC, friction factor 
0.7. 
 
Table 1.  Different tools chipbreakers cutting simulation parameters of 6061aluminum alloy 

turning tools 
chipbreakers types Rotational speed (rpm) Tool Temperature (oC) friction factor 

without chipbreaker  
200 20 0.7 square chipbreaker 

elliptical chipbreaker  
 
Figure 1 (a) and (b) show simulation diagram for an 6061 aluminum alloy chipbreaker turning 
cutting before forming and after forming .  
 
 
 
 
 
 
 
 
 
   
 

(a) before cutting                               (b) after cutting 
Figure 1. 6061 aluminum alloy chipbreaker turning cutting 

 

Figure 2 shows 6061 aluminum alloy turning chipbreaker entity diagram, which (a) without 
chipbreaker, (b) square chipbreaker and (c) elliptical chipbreaker.  

 
 
 
 

 
 
 
 
 

 
                  
 

(a) without chipbreaker              (b) square chipbreaker                  (c) elliptical chipbreaker 
Figure 2. Entity diagram of 6061 aluminum alloy chipbreaker turning cutting  

 

Figure 3 shows simulation diagram of 6061 aluminum alloy  turning chipbreaker, which (a) without 

chipbreaker, (b) square chipbreaker and (c) elliptical chipbreaker. 
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(a) without chipbreaker            (b) square chipbreaker           (c) elliptical chipbreaker   

Figure 3. Simulation diagram of 6061 aluminum alloy 6061 chipbreaker turning cutting  

Results and discussion 

Figure 4 shows effective stress diagram for different chipbreaker, the maximum value at 0.1 second 
for an elliptical chipbreaker. Moreover stress producing is 841MPa, square chipbreakers stress 
arising is smallest value 790MPa. Stress arising from 0.02-0.05 seconds is no difference. Figure 5 
shows effective stress diagram of without chipbreaker tool. It can be seen that the maximum 
effective stress generated in the tool and billet contact. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Different chipbreaker effective stress diagram             Figure 5. Effective stress of without chipbreaker 

 

Figure 6 shows effective strain diagram for different chipbreaker. The without chipbreaker produce 
the greatest strain 16(mm / mm) at 0.2 seconds. The square chipbreakers is arising smallest 
effective strain 7.5(mm/mm). Strain The elliptical chipbreakers is arising largest effective strain at 
0.4 seconds. Figure 7 shows strain- effective diagram for without chipbreaker. It can be seen that 
the maximum effective strain generated in the chip curler. 
 
 
 
 
 
 
 
 
 
 
 

  
 

Figure 6. Different chipbreaker effective strain  diagram 
Figure 7. Effeive strain of without chipbreaker 

Figure 8 shows different chipbreaker temperature diagram, the square chipbreaker produced 
maximum value at 0-0.5 seconds, the temperature is 141oC. Figure 9 shows without chipbreaker 
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temperature diagram.  It can be seen that the maximum temperature generated in the tool and billet 
contact. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 shows wear simulation diagram for different chipbreakers, (a) the wear is homogeneous 
at the tip for without chipbreakers, (b) square type chipbreaker generate maximum wear in the 
chipbreaker area and (c) elliptic chipbreaker induced  homogeneous wear at the tip area. 
 
 
 
 
 
 
 
 
 
 
          

 
(a) without chipbreaker              (b) square chipbreaker                    (c) elliptical chipbreaker 

Figure 10. Wear simulation diagram of different chipbreakers  

Conclusions 

This article in view of the aluminum alloy 6061 materials, has built the finite element model of 
description cutting process for without chipbreaker design, square chipbreaker design and an 
elliptical chipbreaker design. The results have shown that: (1) square chipbreakers stress arising is 
smallest value 790MPa; (2) the maximum effective strain generated in the chip curler; and (3) 
square type chipbreaker generate maximum wear in the chipbreaker area.  
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Figure 8. The  temperature of different chipbreaker   Figure 9.  The temperature of without chipbreaker 
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Abstract 

This paper puts forward an experimental program on accurate phase matching control between laser 
pulse and MIG arc waveform, and achieves continuous trigger control of the laser pulse. With the 
relationship between laser pulse, MIG arc and droplet, the effect of laser pulse on droplet transfer is 
studied by controlling laser pulse to act on the peak value and basic value of the MIG arc waveform 
respectively during laser-MIG hybrid welding process on aluminum alloy 6061. High-speed camera 
is used to acquire the droplet transfer. Experimental results show that the form of droplet transfer 
hasn’t changed with the laser pulse acting. However, laser pulse can changes the necking form of 
droplet and the speed for droplet transfer by changing the electromagnetic force. The necking form 
of droplet changes from symmetrical necking to asymmetrical necking when the laser pulse acts on 
the peak value, however there is no significant change for the necking form when the laser pulse 
acts on the basic value. The speed of droplet transfer is faster than that without laser, and it 
improves with the increase of the laser power. The speed of droplet transfer with laser acting on the 
basic value is faster than that with laser acting on the peak value. Welding appearance with laser 
pulse acting on the basic value is better than that with laser pulse acting on the peak value. It is 
thought that this study can technically support the aluminum alloy welding with high speed and low 
thermal damage at small welding currents. 

Keywords: Phase matching, Hybrid welding, Drop transfer, Welding appearance 

Introduction 

As an advanced method, laser–MIG hybrid welding has many advantages in increasing welding 
speed and improving drop transfer and so on. Liu S et al studied the droplet transfer mode and 
forming process in 5kW CO2 laser-MAG hybrid welding, it is found that arc characteristic, droplet 
transfer mode and final weld bead geometry are strongly affected by the distance between laser and 
arc, the droplet transfer mode is changed from globular transfer to projected transfer with the 
increasing DLA[Liu et al. (2012)]. Lei Z et al studied characteristics of droplet transfer in 3kW CO2 
laser-MIG hybrid welding, it was found that the droplet transfer mode is changed from short 
circuiting transfer to projected transfer due to interaction between CO2 laser and MIG arc in CO2 
laser-MIG hybrid welding process, and the frequency of droplet can be improved by adjusting the 
parameters[Lei et al. (2004)].  
 
The above researches mainly focus on the influence of high-power laser on the arc and droplet 
transfer. Our team discovered the low power pulsed laser enhancing arc discharge phenomenon. It 
found that the arc plasma can be stabilized by the laser pulse, and the enhancing effect of laser on 
arc plasma leads to the characteristic variation of the arc plasma, including the arc composition, the 
arc behavior, the arc electron temperature and density, which results in a very stable arc discharge 
in high speed welding conditions [Liu and Chen (2013a;2013b;2011)] 
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Considering the low power pulsed laser enhancing arc discharge phenomenon, this study mainly 
focuses on the improvement of the laser pulse to the droplet transfer based on the matching control 
of laser pulse and arc waveform. Using high-speed camera, the characteristics of droplet transfer 
after employing this system is studied. By comparing the variation in the characteristics of droplet 
transfer with laser acting on the peak value and basic value of the MIG arc waveform respectively, 
the interactions between laser and droplet transfer are analyzed. 

Experimental setup 

As is shown schematically in Fig. 1, the heat source is composed of a pulsed Nd: YAG laser (LWS-
1000) hybrid and a direct current pulsed MIG arc. The laser, with a wave-length of 1.064μm, is 
focused by a lens with a focal distance of 150 mm into a spot measuring about 0.5 mm on the 
surface of the workpiece. The MIG arc acts behind the laser along the welding direction with an 
adjustable DLA, and the angle of the metal electrode axis to workpiece is 45o. Argon with a purity 
of 99.99% is used as the shielding gas, and the flow rate through the MIG nozzle is 15L·min−1. 
  

 

Figure 1.  Schematic diagram of experimental devices 

 

A xenon lamp is positioned towards the laser acting point and perpendicularly to the welding 
direction to avoid the influence of arc to droplet transfer, and on the opposite side a high-speed 
camera is placed to acquire the droplet transfer. A suitable optical filter should be attached to the 
camera lens to ensure suitable light intensity. The acquiring frequency of the camera is set to be 
1000 frame/s and the interval time between every two successive photos is 1ms. By a cable, the data 
acquired is transferred to a computer that can translate the data into visible images through 
corresponding software. 
 
In order to acquire the accurate matching control of laser pulse and arc waveform, the matching 
control system is developed. Hall sensor is used to detect the arc wave in welding process. As 
shown in Fig. 1, the data signal of MIG arc is transmitted to computer and acquired by NI PCI-6221, 
the DAQ system process the signal and capture the feature points of arc by the computer, thus 
accurately analyze the waveform field of MIG arc, and realize a continuous trigger control of laser 
pulse on peak value and basic value of MIG arc respectively by outputting the wave signal and 
enable signal to YAG laser directly. The function of this system is as shown in Fig 2. The laser 
pulse distribute in the pulsed MIG arc waveform uniformly.  
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Figure 2.  Schematic diagram of function of the matching control system  

Experiments are performed at atmospheric pressure and room temperature. A 6061 aluminum alloy 
plate with a thickness of 2 mm is applied as the workpiece. Oxide film and grease on the plates are 
cleaned before welding. In this welding system, workpiece travels in a direction, while the MIG 
torch, the high-speed camera and the laser beam maintain fixed. Therefore, the information of 
droplet transfer can be acquired continuously and steadily.  

Experiment results 

In the single DC pulsed MIG welding, there are different modes of droplet transfer (such as one 
droplet per pulse and one droplet every two pulses). It’s the mode of drop transfer that determines 
the pattern of pulse scatter distribution, so we should confirm the mode of drop transfer in this 
experimental condition. In MIG welding process, the metal electrode is the anode during the DC 
MIG arc, in which the electrons are accelerated to impact and heat the welding wire. Thereinto, the 
peak value is used to melt the welding wire, and the basic value is used to maintain the burning of 
the arc. As is shown in fig.3, the cycle of arc plasma is about 14ms (the peak value is about 3ms and 
the basic value is about 11ms), and the cycle of drop transfer is the same, so the mode of drop 
transfer is one drop per pulse in this experimental condition.  

 

 

Figure 3.   The relationship of the MIG arc and drop transfer 

 

Therefore, the pattern of laser pulse distribution is determined to be the format as shown in the fig.4. 
The laser pulse acts on the peak value and basic value respectively. That is to say, the pulse scatter 
act on the period when the droplet forming and entering into molten pool respectively.  
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Figure 4.    Schematic diagram of the MIG arc waveform position of laser pulse acts on 

 
Fig.5 shows the necking mode with different laser pulse distribution modes between pulsed laser 
and DC pulse MIG arc. It is found that the necking mode under different laser pulse distribution 
modes has different variation rules: when the laser pulse act on the peak value, the necking of 
droplet deviates from the axis more easily with the increase of laser power, that is to say the 
necking form is changed from symmetrical necking to asymmetrical necking; to the contrary, there 
was no significant deviation in the necking of droplet during the laser pulse act on the basic value.  

 

 

Figure 5.  The diagram of the necking form of droplet 

 

Due to the difference of laser pulse acting on the peak value and basic value, the path of droplet 
shares certain regularity during the droplet entering into molten pool: There is no deviation between 
the path of droplet transfer and the metal electrode axis without laser pulse, and the angle between 
the path and axis increases with the increasing of the laser power when the laser pulse acting on the 
peak value. During the laser pulse acting on the basic value, there is no significant deviation 
between the path of droplet and the metal electrode axis, just as is shown in Fig 6. It indicates that 
there are some differences of the interactions between laser pulse and arc plasma under different 
laser pulse distribution modes.  
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Figure 6.  The diagram of the path of droplet transfer 

 
In the droplet transfer cycle shown in Fig.7, the time for the droplet entering into melt pool is about 
11ms in the single MIG welding, and it almost occupies the whole time of the basic value (the basic 
value is about 11ms).  

 

 

Figure 7.  The time of MIG droplet entering into melt pool  

 

Figure 8 is a typical metal transfer cycle from the comparative experiment between different pulse 
scatter distribution modes under different laser power. As can be seen, during the laser pulse acting 
on the peak value, the time for the droplet entering into melt pool is reduced with the increase of the 
laser power. For example, the time with 400W power is about 6ms, and it decreases about 4ms than 
that in the single MIG welding, and decreases about 1ms than that with 300W power.  
 

 

Figure 8.  The time of droplet entering into melt pool during laser pulse acting on peak value 
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As is shown in Fig 9, during the laser pulse acting on the basic value, there are the same phenomena 
compared with the laser acting on the peak value: the time of droplet entering into melt pool is 
reduced with the increase of the laser power. The only difference is that the time of droplet entering 
into melt pool is shorter when laser pulse acting on the basic value. For example, the time with 
400W power is about 4ms, and it decreases about 1ms than that with 300W power.  
 

 

Figure 9.  The time of droplet entering into melt pool during laser pulse acting on basic value 

 

Therefore, the time of droplet entering into melt pool with laser pulse is shorter than that without 
laser pulse, and the time with laser acting on the basic value is shorter than that with laser acting on 
the peak value.  
 
In order to ensure the impact on the formation of the laser pulse distribution pattern, the welding 
experiment is performed on aluminum plate with the laser of 500W and speed of 1500mm/min. 
Under the same welding conditions, the laser pulse is controlled to act on different positions of MIG 
arc wave form. Fig. 10 shows the hybrid weld bead appearances under the welding parameters with 
different laser pulse distribution modes. It can be seen that the weld appearance with laser pulse 
acting on the basic value is better than that with laser pulse acting on the peak value. When the laser 
pulse acts on the basic value, the laser-induced plasma can stabilize the small basic value easily, and 
the droplet is more advantageous to enter the melt pool because of the shorter time.  
 

 

Figure 10.  The appearances with different laser pulse distribution modes 
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Discussion 

From above results, it can be seen that, in the process of laser-MIG hybrid welding, the laser pulse 
cause the above-mentioned change, and the force on droplet is the primary cause of this change, so 
we should analyze the force on the droplet caused by the laser pulse. Fg is the gravity force, Fp is the 
plasma flow force, FCZ is the electromagnetic pinch force. The plasma flow force is caused by the 
electromagnetic pressure difference, which is one part of the electromagnetic pinch force. Because 
the size of droplet has not changed, so compared with the single welding, the Fg also has no change 
in the laser-MIG hybrid welding.  

 

 

Figure 11.  Schematic diagram of force of droplet of MIG welding and laser-MIG hybrid 

welding 

When the laser pulse acts on the MIG arc, there is the laser-induced plasma generating on the 
surface of the materials. The cation and free electron in the laser-induced plasma attract the arc to 
discharge in this area, and the boot of arc will be compressed [13, 15]. Therefore, the hybrid arc is 
changed because of the influence of laser pulse. The higher the laser power is, the stronger the 
electromagnetic attraction gets. That change also makes the direction of the electromagnetic pinch 
force and plasma flow force originally along with the axis of the wire offset at an angle θ°, just as is 
shown in Fig 11. Therefore, the extent and direction of the electromagnetic pinch force both change 
under the function of laser pulse. Therefore, the necking mode of droplet transfer changes regularly 
from symmetrical necking to asymmetrical necking by the influence of changed electromagnetic 
pinch force and plasma flow force when the laser pulse acts on the peak value of the MIG arc 
waveform, just as is shown in Fig 12. The droplet deviates from the wire axis, and with the laser 
power increasing, the larger the attraction it has, the bigger the angle of deviation is. When the laser 
pulse acts on the basic value of the MIG waveform, that is the droplet enter into the melt pool, the 
effect of laser pulse on the necking of droplet is not obvious for the reason that the droplet has 
already fallen off, then it also has little effect on the path of droplet entering into melt pool.  

 

Figure 12.  Schematic diagram of necking form of droplet for MIG welding and laser-MIG 

hybrid welding 
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When the laser pulse acts on the MIG arc, the boot of MIG arc can be compressed at the place being 
acted by laser due to the effect of laser pulse[15,16], which results in the increasing of the 
electromagnetic pressure difference between the electrode and the surface of workpiece. The 
electromagnetic pressure difference causes the change of the plasma flow force. Therefore, the 
extent of plasma flow force is also increased.  
 
The time of droplet entering into melt pool is mainly influenced by the speed of the droplet. The 
speed of the droplet is mainly influenced by the plasma flow force after the droplet falls off. The 
plasma flow force increases due to the action of the laser pulse, therefore, it is the increasing of 
plasma flow force that gives rise to the shorter time of the droplet entering into the melt pool. The 
laser power is increasing, the faster speed it has, and the faster the speed of droplet has, then the 
shorter of the time that the droplet entering into the melt pool is. The time with laser acting on the 
basic value is shorter than that with laser acting on the peak value, this is because that the influence 
of the plasma flow force to the speed of droplet transfer with laser pulse acting on the basic value is 
stronger than that with laser pulse acting on the peak value.  

 Conclusions  

The influence of the laser pulse to the droplet in laser-MIG hybrid welding on 6061 aluminum 
alloys is studied in this paper, and the following conclusions can be drawn:Laser pulse can changes 
the necking form of droplet and the speed for droplet transfer by changing the electromagnetic force. 
The necking form of droplet deviates from the axis more easily with the increase of laser power 
during the laser pulse acting on the peak value, and because of the influence of the necking of 
droplet, the angle between the path for the droplet entering into melt pool and wire axis increases 
with the increasing of the laser power, but there is no significant change for the path during the laser 
pulse acting on the basic value. The time of droplet entering into melt pool has a few characteristics 
under the action of laser pulse. The time of droplet entering into melt pool is shorter than that 
without laser. The time with laser power of 300W, 400W and 500W is 7ms, 6ms and 5ms during 
the laser pulse acting on the peak value. And the time with laser power of 300W, 400W and 500W 
is 5ms, 4ms and 4ms during the laser pulse acting on the basic value. The weld appearance with 
laser pulse acting on the basic value is better than that with laser pulse acting on the peak value.  
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Abstract

A Kriging based genetic algorithm (GA) was employed to optimize the parameters of the operating 
conditions of plasma actuators (PAs). In this study, the multi-objective problem around a circular 
cylinder was considered. The objective functions are the lift maximization and the drag 
minimization. Two PAs were installed on the upper and the lower side of the cylinder. This problem 
was similar to the airfoil design, because the circular has potential to work as airfoil due to the
control of flow circulation by the PAs with four design parameters. The aerodynamic performance 
was assessed by wind tunnel testing to overcome the disadvantages of time-consuming numerical 
simulations. The developed optimization system explores the optimum waveform of parameters for 
AC voltage by changing the waveform automatically. Based on these results, optimum designs and 
global design information were obtained while drastically reducing the number of experiments 
required compared to a full factorial experiment. An analysis of variance and a scatter plot matrix 
were introduced for design knowledge discovery. According to the discovered design knowledge, it 
was found that duty ratios for two PAs are an important parameter to create lift while reducing drag.

Keywords: Plasma Actuator, Genetic Algorithm, Efficient Global Optimization, Experimental 

Evaluation

Introduction

Plasma actuators (PAs, shown in Fig. 1) are flow control devices that utilize atmospheric pressure 
discharge [Matsuno et al. (2008; 2009)] they have gained attention in recent years, because their 
advantages of being fully electronically driven with no moving parts and having a simple structure 
and a fast response are potentially ideal for application to subsonic flow control. Such active flow 
control devices have potential to control of the circulation around arbitrary objects and produce the 
lift-creating object even if it is not airfoil geometry.

In this study, the design problem is defined as the optimization of lift creation and drag reduction 
via flow circulation controlled by the PAs. A circular cylinder model is used as a model and two 
PAs are installed. Thus, the objective functions considered in this paper are the maximizing lift and
the minimizing drag around the circular cylinder. A multi-objective genetic algorithm (MOGA)-
based efficient design technique was employed with wind tunnel testing to efficiently find the 
optimum designs. Through the design case, the applicability of the present wind tunnel testing to 
the multi-objective/ multi-parameter design problem was also investigated.

Design problems are often solved by GAs based on numerical simulation, such as computational 
fluid dynamics (CFD) [Kanazaki, et al. (2004), Kanazaki and Jeong (2007)]. However, there are 
several difficulties with solving the flow field around PAs. First, the accuracy of existing simulation 
methods is still insufficient. Second, the computational cost is very high for design techniques such 
as GAs. Several days are needed to acquire the results for each case, whereas the actual flow 
physics finishes in a few seconds.

In MOGA based efficient design technique, Kriging surrogate model was applied to represent the 
input/output relationship in the experimental data to reduce the experimental cost. This optimization 
technique, which is called efficient global optimization (EGO) [Donald, et al. (1998); Jeong, et al. 
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(2005); Kanazaki and Jeong (2007); Kanazaki, et al. (2008)], enables the optimization of global 
parameters in a small number of experiments while simultaneously obtaining information on the 
design space. The EGO based on Kriging surrogate model can find efficiently near-global optimum. 
In this study, Kriging surrogate model based GA performs optimization during a wind tunnel 
experiment in real time. The design system is automated developing the interface between the 
optimization and the wind tunnel testing.

Figure 1. Schematic of plasma actuator.

Overview of Active Flow Control by Means of Plasma Actuator

In this research, a PA consisting of an exposed electrode and insulated electrode was used. A 
nonconductor was placed between the two electrodes, and AC voltage was applied. Fig. 1 shows the 
setup; this type of PA is called a single dielectric barrier discharge (SDBA) PA. The flow around 
the PA can be controlled by changing the number and location of PAs and the waveform of the AC 
voltage. Thus, the optimal technique for solving the design problem has to handle many parameters 
to acquire the best flow control.

Generic home-style AC voltage has a waveform with a constant frequency. However, several 
studies have reported that pulse width modulation (PWM) is effective for flow control of PAs. 
PWM is a drive system that turns the AC voltage on or off, as shown in Fig. 2. The frequency of 
on/off is defined as the "modulation frequency" (fmod) and is expressed by following equation:

                                                                    (1)

where T1 is the time of one cycle and T2 is the time the AC voltage is on. The ratio of T2 to T1 is 
defined as the duty ratio, which is an important parameter for PWM. The duty ratio (Dcycle) is 
expressed by the following equation:

                                                                 (2)

Design Method: Efficient Global Optimization

Efficient Global Optimization (EGO)

The optimization procedure (Fig. 4) for PA design consists of the following steps. First, N design 

samples are selected by Latin hypercube sampling (LHS) [Donald, et al. (1998); Jeong, et al. 

(2005); Kanazaki and Jeong (2007); Kanazaki, et al. (2008)], which is a space filling method, and 

then assessed for the construction of an initial Kriging surrogate model. Second, an additional

design sample is added, and the design accuracy is improved by constructing a Kriging model based 

on all N + 1 samples. Note that the additional sample is selected by using expected improvement 

(EI) maximization [Donald, et al. (1998); Jeong, et al. (2005); Kanazaki and Jeong (2007); 

Kanazaki, et al. (2008)]. GA is applied to solve this maximization problem. This process is iterated 
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until the improvement of the objective functions becomes negligible. Through the design procedure 

proposed in this paper, all samples are evaluated by the wind tunnel testing. 

The Kriging models express the value y(xi) at the unknown design point xi as

                                         (3)

where m is the number of design variables, μ is a constant of the global model, and ε(xi) represents a 

local deviation from the global model. The correlation between ε(xi) andε(xj) is strongly related to 

the distance between the corresponding points, xi and xj . In the Kriging models, the local deviation 

at an unknown point x is expressed using stochastic processes. Specifically, a number of design 

points are calculated as sample points and then interpolated using a Gaussian random function as 

the correlation function to estimate the trend of the stochastic process.

Once the models are constructed, the optimum point can be explored using an arbitrary optimizer. 

However, it is possible to miss the global optimum design, because the approximate model includes 

uncertainty. Therefore, this study introduced EI values as the criterion. This study solves the lift 

maximization problem, then EI for maximization problem can be calculated as follows:

                                    (4)

EI for maximization problem can be calculated as follows:

                                   (5)

where fmax and fmin are the maximum and the minimum values among sample points, respectively. s

is root mean square error (RMSE) and ŷ is the value predicted by Eq. 3 at an unknown point x. Φ

and are the standard distribution and normal density, respectively. EI considers the predicted 

function value and its uncertainty, simultaneously. Therefore, by selecting the point where EI takes 

the maximum value, as the additional sample point, robust exploration of the global optimum and 

improvement of the model can be achieved simultaneously as shown in Fig. 4 because this point has 

a somewhat large probability to become the global optimum. In this study, the maximization of EI 

is carried out using GA.

GAs (Fig. 5(a)) was first proposed by Holland in the early 1970s [Holland, et al. (1975)] and are 

based on the evolution of living organisms with regard to adaptation to the environment and the 

passing on of genetic information to the next generation. GAs can find a global optimum because 

they do not use function gradients, which often lead to an exact local optimum. Thus, GA is a 

robust and effective method that can handle highly nonlinear optimization problems involving 

nondifferentiable objective functions. Owing to this advantage, GAs were applied to this 

experimental system. The GA used in this study [Kanazaki, et al. (2004); Donald, et al. (1998); 

Jeong, et al. (2005); Kanazaki and Jeong (2007); Kanazaki, et al. (2008)] utilizes a real-coded 

representation, the blended crossover (BLX-α), and the uniform mutation. The selection probability 

of individuals for the crossover and mutation is expressed as follows:

                                                        (6)

where rank is the value of fitness ranking among the population. In BLX-α, children are generated 

in a range defined by the two parents as shown in Fig. 5(b). The range is often extended equally on 

both sides as determined by the parameter α.
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Analysis of Variance (ANOVA)

In this study, Kriging model based ANOVA [Donald, et al. (1998); Jeong, et al. (2005); Kanazaki 

and Jeong (2007)] is employed to investigate the effect of the design variables to objective 

functions. Variance of a surrogate model can be calculated as,

                                      (7)

where the total mean μ is calculated as

                                                                (8)

The proportion of the variance attributed to the design variable xi to the total variance of the model 

can be expressed as:

                                                          (9)

The value obtained by Eq. (9) indicates the sensitivity of an objective function to the variance of a 

design variable.

Scatter Plot Matrix (SPM)

The solution and the design space of the multivariable design problem obtained by EGO are 

observed by the SPM which is one of the data mining, because the Kriging model cannot be 

visualized directly when the design problem has over four attribute values. SPM arranges two-

dimensional scatter plots like a matrix among the objective functions and the design variables and 

facilitates the investigation of the design problem investigation. Each of the rows and columns is 

assigned attribute values such as design variables, objective functions, and constraint values. The 

diagonal elements show mutual same plots. Therefore, it can be said that the SPM shows scatter 

plots on the upper triangular part of the matrix and the correlation coefficients on the lower 

triangular part as additional information. modeFrontier
TM

ver. 4. 4. 2 is employed in this study.

Figure 3. Optimization procedure based on wind tunnel evaluation
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Figure 4. Improvement of the global                 Figure 5. Schematic illustration of genetic 

model by expected improvement                       algorithm

(EI) maximization

Experimental Setup

Wind Tunnel and Model

The wind tunnel experiments were conducted in the subsonic closed-return wind tunnel of the 

Aerodynamics Laboratory at Tottori University. The wind tunnel has a closed test section with a 

0.70 m × 1.0 m cross-section and 2.0 m length (Fig. 6). A two-dimensional circular model (105 mm 

in diameter) was used as shown in Fig. 7. Model was placed on a flat plate and mounted to a 

support connected to a six-component external balance for measurement of the aerodynamic forces 

and moments. The output of the balance was amplified and acquired with a data acquisition board 

(National Instruments PXI-8106). The output signal contains noise from the atmospheric discharge

of the plasma actuators. To eliminate this effect, the clean portion of the signal, during which the 

discharge did not appear, was extracted and used as a “clean” portion of the data.

PA and Its Power Supply

In this study, two PAs were installed on the surface of the model. PA#1 and PA#2 were installed 

with mount angles of θ1 = 85.0◦ and θ2 = −85.0◦, respectively, as shown in Fig. 7. The reference 

waveform of a high-voltage AC input was amplified by a solid-state high-power amplifier; the input

power was increased up to 400.0 W with amplitude of 70.0 Vpp. A high-voltage transformer was 

used to achieve an AC input with amplitude of up to 30 kV at a frequency of 5.0-15.0 kHz. The 

voltage and current of the AC input were monitored by an oscilloscope along with the reference 

waveform.

Integration of Experiment System

Figure 8 shows the schematic illustration of the developed system. EGO is executed in the 

workstation and receives the experimental data via LabVIEW® from the balance in the wind tunnel. 

The condition of the AC voltage can be automatically set during the optimization process based on 
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balance measurements.

  
Figure 6. Test section of the wind tunnel                 Figure 7. Circular cylinder model and the location 

of plasma actuators

Figure 8. Schematic diagram of the integrated optimization system

Formulation

In this study, multi-objective/ multi-parameter design problem which has four design variables was 

considered and the lift creation and drag reduction effect due to circulation control by PAs was 

investigated. The objective function was maximization of the lift coefficient (Cl) and the 

minimization of the drag coefficient (Cd) around the circular cylinder model. This design problem 

can be expressed as follows:

                                                              (10)

The flow velocity was set to 10.0 m/s. The design problem expressed in Eq. (10) was solved by 

changing four parameters (fmod, Dcycle1, Dcycle2, ) related to the AC voltage waveform. In this case, 

two PAs are applied different Dcycle; Dcycle1 and Dcycle2, for each design and the difference between 

Dcycle1 and Dcycle2 is decided by a phase difference . The design space is defined as follows:
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                                       (11)

is the phase difference between PA#1 and PA#2. Consequently, the time lag can be expressed as

/ fmod.

Results

Design Exploration Result

In this section, the design problem expressed by Eq. (10) is discussed. To construct the initial 

Kriging model, 15 samples were obtained by LHS. To acquire additional samples, the island GA 

was executed with the following specifications: BLX-0.5 (α = 0.5), four subpopulations, 16 

individuals for each subpopulations (64 individuals generated in total) and 64 generations. The 

EGO process will be stopped after ten or more additional samples show better function value than 

that of initial samples.

After the objective function was converted, seven additional samples were obtained, for a total of 

22 sample designs. Figure 9 shows the history of Cl values for the sampling process. According to 

the history, the objective function converged well with a small number of samples. 

Design Knowledge by Analysis of Variance

Figure 10(a) shows the main effects and the two-way interaction of the design variables for 

objective function for Cl. According to Fig. 10(a), fmod and Dcycle2, which defines the driving 

condition of PA on the lower side of the cylinder, has a predominant influence on Cl. In addition, 

two-way interaction of fmod − Dcycle2 is also effective to Cl. These results suggest that the circulation 

which creates aerodynamic lift around the model is decided by duty ratio PA on the lower side.

Figure 10(b) the main effects and the two-way interaction of the design variables for objective 

function for Cd. According to Fig. 10(a), fmod which defines the driving condition of each PA on the 

cylinder has a predominant influence on Cd. It is reasonable result because higher fmod create higher

volume force which can reduce the flow separation. As this result, the drag is affected by fmod.

Visualization of Design Problem by SPM

Figure 11 shows the visualization results obtained by SPM, which shows the scatter plot for all 

parameter combinations. Plots colored by red represent designs which achieve higher aerodynamic 

performance. According to Fig. 11, higher fmod and Dcycle2 are always required for higher Cl and 

lower Cd. In addition, Cd and fmod shows the high correlation (-0.882.) This result suggests that the 

lower Cd can be carried out with the higher fmod.

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

693



(a)

(b)                                                             (c)

Figure 9. Solutions of the design problems (a)Design result, (b)Progression of objective 

function with sample number for the Cd and (c)Progression of objective function with sample 

number for the Cd

(a)                                                           (b)

Figure 10. ANOVA results. (a)Effect of design variables of the design variables for Cl and 

(b)Effect of design variables of the design variables for Cd
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Figure 11. Visualization of the design problem using SPM

Conclusions

Aerodynamic control performance of plasma actuators was optimized using wind tunnel test-based 

EGO. In this study, the lift-creating cylinder using plasma actuators was considered. This problem 

was that the circulation around a circular cylinder model was controlled to maximize the lift around

the model. In addition, this study also considered the drag minimization around the cylinder, thus 

the design problem was formulated as the multi-objective problem. The optimization technique is 

firstly integrated in the operating system of the wind tunnel experiment to enable automation of the

data-acquisition/ optimization process. Using the developed system, multi-objective design problem 

(lift maximization/ drag minimization) was solved. After several additional samples are obtained, 

the analysis of variance and the scatterplot matrix is employed for the knowledge discovery. Using 

these techniques, it is found that duty ratio and modulation frequency for the plasma actuators 

installed on the lower surface have the dominant effect for this problem. It is also found that the 

higher modulation frequency is required for the plasma actuator to minimize the drag.
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Abstract 
As an efficient lightweight structure, composite honeycomb sandwich panel has been widely used 
in many industries. The composite honeycomb sandwich structure with stringer reinforcement is a 
new type of sandwich structure. This paper investigated the damage and failure behavior of 
composite honeycomb sandwich structure with stringer reinforcement under in-plane compression 
condition. Some critical damage modes and failure behavior of composite sandwich structure with 
stringer reinforcement were revealed. Three different kinds of debonding damage of interface 
between sheet and core were considered, the failure modes as well as the whole failure process were 
obtained by numerical simulation. 
Keywords: Sandwich structure, Stringer reinforcement, Composite, Interfacial Debonding, Failure 

Introduction 
Advanced sandwich structure is usually a large thickness of honeycomb core bonded with 
composite sheets. With larger in-plane stiffness and strength, the composite material faceplate is 
mainly used to bear the axial load, bending moment and shearing action, while the honeycomb core, 
subject to bending and shear load, is mainly used to maintain the stability the relative position of 
sheets and transfer lateral load. With the advantages of high specific stiffness and specific strength, 
the structure can get high flexural stiffness and compressive yield strength under the condition of 
low specific gravity[1]. 
 
The faceplate and core of advanced sandwich structure are anisotropic, which is a very important 
characteristic. Through the reasonable design of the composite faceplate or rational choose of the 
core structure, optimization sandwich structure can be designed and manufactured to meet the 
specific needs of various engineering applications[2]. The composite honeycomb sandwich structure 
with stringer reinforcement is a new type of sandwich structure, whose purpose is to further balance 
improve the axial and bending specific stiffness and specific strength of the structure, at the same 
time increase the reliability of the structure. 
 
Due to the characteristics of manufacturing technology and the intrinsic properties of the materials, 
the debonding defect is easy to occur in the interface between the core and the sheets during service 
life [3]. As a result, the strength under static load will be decreased. Moreover, the failure mode of 
the sandwich structure will be more complicated, and the defects will seriously affect the accuracy 
of strength prediction. For the composite honeycomb sandwich structure with stringer 
reinforcement, the effect of stiffener on the failure modes of sandwich structure is worth studying.  

The equivalent of the material parameters and numerical model 
There are two main simulation methods for the sandwich structure[4]. For hierarchical model, each 
single layer of the structure is considered respectively, and the constraints according to continuity 
for each interface also should be given appropriately to meet the requirements of stresses generality 
for adjacent layers. For the equivalent single-layer model, the sheet and core are replaced by a 
single-layer with certain thickness. The unified expression of displacement field is given along 
whole thickness direction by using the deformation theory of plate and shell. For the hierarchical 
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model, it has a large number of independent variables, while for the equivalent single-layer model, 
as the independent variables are less, it is commonly used in finite element method. 
To simplify the analysis, the equivalent single-layer model is adopted. The selected aluminum 
honeycomb core of the sandwich structure is transformed to homogeneous orthotropic material in 
finite element modeling. There are a variety of equivalent ways for the elastic parameters of 
honeycomb core[5]. The equivalent elastic parameters of hexagonal honeycomb core proposed by 
Zhao Jin-Sen[6] are adopted in this paper to derivate formula and calculate the equivalent material 
parameters of the simplified model. The equivalent formulas are as follows: 
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Where Es and Gs are elastic parameters of the honeycomb core, l and t are wall length and wall 
thickness of a unit cell of the honeycomb core.  
 
The equivalent properties of honeycomb core are given in Table 1 below. 
 

Tab.1  The equivalent properties of honeycomb core 

Elastic Parameter（Gpa）                      Poisson's ratio                                                     
1E  2E  3E  12G  13G  23G  12ν  

0.31 0.31 1003 0.078 189 189 0.99 
 
The traditional composite honeycomb sandwich structure consists of two composite sheets, 
adhesive layer and aluminum honeycomb core. For the stringer reinforced sandwich structure 
discussed in this paper, two buried aluminum stiffeners are contained. The adhesive layer is 
simulated by cohesive element in finite element analysis. 
The overall dimensions of the two kinds of sandwich structure are uniform, the length is 90 mm, the 
width is 50 mm, and the total thickness of 15 mm, among which, the thickness of the honeycomb 
core is 12 mm, the thickness of adhesive layer is 0.1mm, and both of the thickness of the upper and 
lower sheets are 1.4 mm. The components size meets the requirements of ASTM C364-99 standard. 
the upper and lower faceplates are composite laminates for the two kind of sandwich structure, 
whose length and width directions are defined as x and y axis, respectively. The composite 
laminates has a total of 10 layers, the thickness of each layer is 0.14 mm, and the stacking sequence 
is [0/0/45/-45/90]s . The material parameters of the composite laminates are shown in table 2. In 
addition, the two buried aluminium stiffeners are 90mm in length, 4mm in width, and 12mm in 
height. The distance from the two stiffeners to the center line of the sandwich structure is 12 mm. 
The material parameters of the aluminium stiffeners are shown in table 3. 
 
 
 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

697



Tab.2  Properties of T300/QY8911 

Elastic Parameter（Gpa） 
1E  2E = 3E  12G = 13G  23G  12ν  

126 10.7 4.47 3.57 0.33 
Strength Parameter（Mpa） 

TX    CX  TX  CY   S  
1548  1226 55.5 218 89.9 

 

Tab.3  Properties of the aluminum stringer 

Properties 
(units) 

Young's  modulus 
(GPa) 

Poisson's ratio 
12ν  

Aluminum stringer 69.5  0.33 

The failure analysis of the sandwich structure 

The linear buckling analysis 
Lanczos vector method is adopted to analyze and compare the linear buckling deformation 
characteristics of composite honeycomb sandwich structure without reinforcement and with stringer 
reinforcement, respectively. The main buckling modes of two kinds of sandwich structure are 
calculated, which are shown in figure 1. 
 
In figure 1, we can see that the mainly buckling modes of the two kinds of sandwich structure are 
different under in-plane compression condition. global buckling instability mainly occurs to the 
sandwich structure without reinforcement, while partial buckling mainly occurs to the sandwich 
structure with stringer near the free boundary on both sides. Due to the existence of the stiffener, the 
buckling deformation of the honeycomb core is inhibited, and the overall stiffness of the structure is 
enhanced effectively. What's more, the buckling load of the sandwich structure with stringer is 
525.71 KN, which is much higher than structure without reinforcement buckling load of 121.28 
KN. Therefore, the stringer Reinforcement significantly improves the buckling bearing capacity of 
the composite honeycomb sandwich structure. 
 

 
Fig.1  The first buckling mode of the composite honeycomb sandwich structure 

with and without stringer reinforcement 

 

The nonlinear failure analysis 
Figure 2 shows the load-displacement response of two different composite honeycomb sandwich 
structures under in-plane compression condition by nonlinear buckling analysis. Through 
observation, we know that the overall axial stiffness of the structure changed little, and axial 
compression stiffness approximate to linear under in-plane compression condition. After reaching 
limit loading points, failure damage occurs to both of the two kinds of sandwich structure, and the 
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continue carrying capacity losts quickly. Trough comparison, we know that the limit load of the 
sandwich structure with stringer reinforcement is 190.03 KN, which is much higher than that of the 
structure without reinforcement as 87.52 KN. Therefore, the stringer Reinforcement effectively 
improves ultimate bearing capacity of the composite honeycomb sandwich structure. In addition, 
the specific strength of sandwich structure with stringer reinforcement is 1.05 times bigger than 
without reinforcement, which further evidences that composite honeycomb sandwich structure with 
stringer reinforcement has excellent structural performance. 
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Fig.2  The load-displacement response of two different composite  

honeycomb sandwich structures 
 
Comparing the results of nonlinear failure analysis and the linear buckling analysis respectively, we 
know that the linear buckling load is greater than the limit load for both of the two kinds of 
sandwich structure. Accordingly, the overall stability of composite honeycomb sandwich structures 
under in-plane compression condition is high, and the stiffness of the structure is further enhanced 
through stringer reinforcement. Therefore, the buckling failure is not the main failure modes of the 
structure, strength and damage are the main factors dominate the failure modes of sandwich plate in 
general. 

The failure analysis of the sandwich structure with through interfacial debonding 
Considering a through-the-width sheet/core interfacial debonding  in middle area of the reinforced 
composite honeycomb sandwich structure, and the length of debonding is 30mm. Figure 3 shows 
the load-displacement response of reinforced sandwich structure with a through-the-width 
interfacial debonding by nonlinear analysis. Analysis shows that, the relationship between load and 
axial displacement keeps linear, and will lose load carrying capacity quickly when reaches the limit 
load. The limit load of the sandwich structure with stringer reinforcement and through interfacial 
debonding is 97.72KN, which is much lower than that of the perfect reinforced sandwich structure 
as 190.03 KN. Therefore, the through-the-width interfacial debonding reduces ultimate bearing 
capacity of the sandwich structure. 
 
Figure 4 shows the out-plane displacement of the sandwich structure with stringer reinforcement 
under the limit load. The result shows that local buckling occurred in the debonding area, and lead 
to the final broken. Also, because the stiffener improves the overall stiffness, local buckling only 
occurs at the debonded sheet near both sides of free boundary. 
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Fig.3  The load-displacement response of sandwich structure with stringer reinforcement  

and through-the-width interfacial debonding 

 
 
 

 
Fig.4  The out-plane displacement of the sandwich structure with stringer  

reinforcement under the limit load 
Figure 5 shows a symmetrical through-the-width interfacial debonding propagation behavior 
located at both side of the core. Under compression load, partial buckling occurs in the upper and 
lower sheets in the zone of debonding. With the increase of compression load, the lower sheet in 
debonding area contacts the core quickly thus inhibits the failure and propagation of the adhesive 
layer. At the same time, the upper sheet in debonding area bulges outward, free buckling occurs. 
Because the stiffness of the stiffener is higher than the honeycomb core, the debonding propagation 
starts at the interface between sheet and stiffener. With the increase of the compression loading, the 
displacement of bulging outward increasing gradually and the debonding propagation gradually 
extends to the interface of sheet/core near the initial debonding propagation of sheet/stiffener. 
 
 

 
Fig.5  The propagation of symmetrical through-the-width interfacial debonding in sandwich 

structure with stringer reinforcement  
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Conclusions  
Reinforced by stringer reinforcement, the overall stiffness of the composite Honeycomb Sandwich 
Structure with Stringer Reinforcement is enhanced effectively, the buckling and ultimate bearing 
capacity are improved. Under in-plane compression condition, the buckling failure is not the main 
failure modes of the structure, while strength conditions are main factors controlling the sandwich 
structure damage in general. Due to the existence of interfacial debonding, local buckling will occur 
in the debonding area, and lead to the final broken. With the increase of the compression loading, 
the displacement of bulging outward increasing gradually and the debonding propagation gradually 
extends to the interface of sheet/core near the initial debonding propagation of sheet/stiffener. 
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Abstract 

For a multi-story underground structure, distribution and amplitude of seismic earth 
pressure along its side wall depth during an earthquake are critical for seismic design 
and safety evaluation. In this paper, a series of 1-g shaking table tests were conducted 
on a four-story subway station firstly. Experimental results showed that the 
distribution of maximum lateral dynamic earth pressure appeared an “S” shape, which 
was distinguished from that of a single-story underground structure. In the latter case, 
it is generally in a form of a triangle distribution. Furthermore, parametric study was 
carried out through nonlinear dynamic time history analyses using the general 
purpose finite element code ABAQUS. Attention was paid on influences of types of 
soils, structural stiffness, and vertical earthquake component on the distribution of 
seismic earth pressure. Numerical results showed that structures surrounded by sand 
suffered larger dynamic earth pressure than that those surrounded by clay. Peak 
dynamic earth pressure of a flexible structure was a little smaller than that of a rigid 
one. And vertical earthquake component excited lateral dynamic earth pressure in 
some degree.  
Keywords: Seismic earth pressure, Multi-story underground structure, Shaking table 
test, Parametric study, Stiffness 

Introduction 

Nowadays, with the rapid development of economy and society modern underground 
transportation, represented by the subway, has become popular. In China under the 
current plan, 36 cities were approved to build rail transit, and it is planning to reach 
6000 km of rail transit by 2020 [Sun (2013)]. At the same time, the world has 
experienced a high incidence of earthquakes. The M 9.1 earthquake in Sumatra in 
2004, the M 8.0 earthquake in Wenchuan, China in 2008, and the M 9.0 earthquake in 
the northeast of Japan in 2011 all caused a great loss of human life and property. 
Obviously, strong earthquakes heavily threaten underground subways those are 
building or built. Typical lateral design of foundation systems and retaining structures 
often relies on static earth pressure theories and tends to neglect seismic effects 
frequently due to the lack of understanding thereof and the shortcoming of 
experimental data. While this assumption can be accurate for foundation systems 
exposed to small levels of seismic shaking, stronger accelerations due to larger 
magnitude earthquakes can cause significant damage to the foundations and 
superstructures [Luu (2013)].  
 
Hence, theoretical, numerical and experimental studies of seismic earth pressure on 
underground structures had been conducted in recent years. Wang et al. [2010] 
proposed a new method to calculate the seismic earth pressure of shallow buried 
underground structures by combining Xie theory and M-O formula. Ostadan [2005] 
conducted a series study on seismic soil structure interaction of building walls resting 
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on firm foundation materials and proposed a simplified method for predicting the 
maximum seismic pressures. Gazetas et al. [2004] carried out a numerical study of 
dynamic stresses imposed on a variety of retaining systems under short-duration and 
impulsive base excitation. Psarropoulos et al. [2005] developed a general finite-
element method that specifically focused on the distribution of dynamic earth 
pressures on rigid and flexible walls. Shaking table test and centrifuge test are popular 
to study the dynamic soil structure interaction. Yang et al. [2003] conducted shaking 
table tests on a double-story subway station and found that the dynamic lateral earth 
pressures were large at the middle part and small at the top and bottom. Madabhushi 
and Zeng [2007] conducted centrifuge tests to investigate the seismic response of a 
cantilever retaining wall under earthquake loading and pointed that the effect of an 
earthquake was more severe on a cantilever retaining with saturated backfill than that 
with dry backfill.  
 
However, amounts of studies are almost aimed at retaining structures. There are still 
some differences between retaining structures and underground subway structures, 
such as design structural parameters, boundary conditions, and stress conditions. 
Hence it is not appropriate to simply apply the computational methods for retaining 
structures to subway structures. Furthermore, most researches aimed at traditional 
subway structure, which was single story or double story. Owing to new requirements 
on functions of underground space, modern subway station developing towards 
having a multilevel and complex structural form. With the increase of layers, lateral 
stiffness of stations decreases significantly, which changes the distribution and 
amplitude of seismic earth pressures.  
 
In this study, a series of 1-g shaking table tests were conducted on a four-story 
subway station firstly. Due to the lacking of resources and time, many influence 
factors cannot be considered in tests. Thus, the experimental results are used to 
confirm the ability of the numerical technique to simulate the dynamic earth pressure. 
Then study was carried out through nonlinear dynamic time history analyses using the 
general purpose finite element code ABAQUS. Influences of types of soils, structural 
stiffness, and horizontal and vertical earthquake components on the distribution of 
seismic earth pressure were studied.  

Shaking table tests 

Experimental setup 

The shaking table test was carried out using the MTS Company shaking table facility 
at the State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji 
University. The table can be input with three-dimensional and six-degree-of-freedom 
motions. The dimensions of the table are 4 m × 4 m. The working frequency ranges 
from 0.1 to 50 Hz. The shaking table vibrates with two maximum horizontal direction 
accelerations of 1.2 g and 0.8 g, and a maximum acceleration of 0.7 g vertically. A 
flexible container was used in the test. The cylindrical soil container was 3000 mm in 
diameter. Figure 1 shows the shaking table and the soil container.  
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Figure 1.  Shaking table and soil container 

 
Scale factor design and materials 

The prototype design of the model structure is a modern subway station with height 
of 28.3 m. The station was designed originally to be a six-story island platform station, 
and then because of the need for parking, the first to third floors underground were 
merged into one layer to function as a stereo garage. The second floor is the lobby 
floor, the third is a floor that houses equipment, and the fourth is an island platform. 
The total length of the station is 155 m, and the width varies from 23.6 to 28.35 m.  
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Figure 2.  (a) The model structure and (b) its dimensions 
 
On account of the differences in dimensions between a modern subway station and 
typical station, the scale factor design should be based on the size and bearing 
capacity of the shaking table, size of the soil container, boundary effect, and 
convenience of model manufacturing. The geometric scale factor is set to 1:50. Figure 
2 shows the model structure and its dimensions. Scale factors among the physical 
quantities can be deduced using the Buckingham π law: 
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where avltE SSSSSS ,,,,,  denote the stress scale factor, elastic modulus scale factor, 
time scale factor, geometric scale factor, velocity scale factor, and acceleration scale 
factor, respectively. Table 1 shows the scale factors of the model structure. 
 

Table 1. Scale factors of the model structure 

Type Physical quantity Scale factor 
Material properties Stress 0.106 

 Strain 1.000 

 Elastic modulus 0.106 

 Poisson’s ratio 1.000 

 Equivalent density 1.765 
Geometry properties Length 0.020 

 Linear displacement 0.020 

 Angular displacement 1.000 

 Area 4.00 × 10–4 
Loading Force 4.24 × 10–5 

 Linear load 2.12 × 10–3 

 Area load 0.106 

 Moment 8.48 × 10–7 

Dynamic properties Mass 1.41 × 10–5 

 Stiffness 2.12 × 10–3 

 Duration 8.16 × 10–2 

 Frequency 12.253  

 Velocity 0.245  

 Acceleration 3.003  
 

Organic glass was chosen as the material of the model structure owing to its good 
homogeneity, high strength and low elastic modulus, providing flexibility to the 
design of the scale factor. This material is also suited to accurate manufacturing. The 
elastic modulus of three specimens were 3.60, 3.21, and 3.19 MPa, respectively. The 
average value was 3.33 MPa. 
 
The synthetic model soil was a mixture of sand and sawdust. According to trial tests, 
adding sawdust to sand can reduce both the density and dynamic shear modulus, 
which complies with similitude requirements. Employing the Buckingham π law, the 
scale factors of geometry, density, shear modulus, and inertial acceleration were 
selected as essential parameters and adjusted to satisfy 

aρlG SSSS =)•/(                               (3) 

where aρlG SSSS ,,,  denote the shear modulus ratio, geometry ratio, density ratio, and 
inertial acceleration ratio, respectively. The scale factors of soil are presented in Table 
2. 

Table 2. Scale factors of the model soil 

Physical quantity Symbols Scale factor 
Shear modulus GS  0.020 

Length LS  0.020 
Density ρS  0.333 

Acceleration aS  3.003 
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To satisfy the scale factor equation and taking the maximum dynamic shear modulus, 
ddd GG max/  curve, and d   curve into consideration, the most appropriate 

mass ratio of sawdust to sand was 1:2.5, where ddd γλGG ,,, max  denote the dynamic 
shear modulus, maximum dynamic shear modulus, damping ratio, and dynamic shear 
strain respectively. The density of the mixture was 0.7 kg/m3, the density scale factor 
was 0.39, the confining pressure ratio was 0.02, and the modulus obtained in the test 
was 1.81 MPa. The ddd GG max/ curve and d   curve obtained in a dynamic tri-
axial test are presented in Figure 3. 
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Figure 3.  Dynamic properties                           Figure 4.  Layouts of soil  

of the model soil                                           pressure meters  

 

Layout of sensors 

The layouts of ten soil pressure gauges attached at the side wall of the model structure 
are shown in Figure 4. Soil pressure gauges P1–P8 were arranged to explore the 
distribution of the dynamic earth pressure and P9 and P10 were used to check the 
dynamic earth pressure. 
 
Test schema 

For the purpose of investigating the dynamic earth pressure under different intensities 
and types of ground motions, the three ground motions were scaled to two levels, 0.2 
g and 0.6 g. Table 3 gives test cases.  
 

Table 3. Test program 

Case Test case Ground motion Horizontal peak 
acceleration (g) 

1 El-0.2g El Centro 0.2 
2 El-0.6g El Centro 0.6 
3 Chi-0.6g ChiChi 0.6 
4 Shw-0.6g Shanghai wave 0.6 

 
Results from shaking table tests 

For convenience, data obtained from tests were converted from model to prototype 
according to scale factors listed in Table 1. Figure 5(a) shows the peak dynamic 
lateral earth pressure along the side wall with different types of ground motions. It 
can be seen that, the amplitude of dynamic earth pressure closely related to ground 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

706



motions. Dynamic earth pressures amplitude under ChiChi ground motions were 
larger than the other. Specifically, the average peak dynamic earth pressure under 
ChiChi motion was 1.8 times the value under Shanghai wave. It is due to the pulse-
like effect [Chen et al. (2015)]. But the distribution patterns were similar. Under three 
ground motions, the distribution of peak lateral dynamic earth pressure appeared an 
“S” shape, which was distinguished from that of a single-story underground structure. 
In the latter case, it is generally in a form of a triangle distribution. This may be 
because of the large height of the structure.  
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Figure 5.  Peak dynamic lateral earth pressure (a) with different types of ground 

motions; (b) with different peak horizontal accelerations 

 
Figure 5(b) shows the influence of peak horizontal acceleration on the dynamic earth 
pressures. It is noted that the dash lines in the figure indicated the average values of 
pressures. It is found that with the increase of the magnitude of the earthquake, 
dynamic earth pressure increased remarkably. The average value of Case 3 was 2 
times the value of Case 1. The influence of peak horizontal acceleration on pressure 
was different in each measurement point. But whether under a small earthquake or a 
large one, the distribution both appeared an “S” shape.  

Nonlinear dynamic time history analysis model 

Due to the lacking of time and resources, it is difficult to identify many influences 
factors. For instance, the relative stiffness of soils to structures is an important factor 
in the soil-structure interaction, but during the test process it is hard to change overall 
soils or structures without disturbing the soils. Hence, experimental results were used 
to confirm the ability of the numerical technique to simulate the dynamic earth 
pressure. And numerical simulation can be used to study influences of the structural 
stiffness and types of surrounding soils on the distribution of seismic earth pressure. 
 
As shown in Figure 6, the plane strain model was chosen with dimensions of 1000 m 
long and 85 m high. In order to decrease the influence caused by seismic reflection, 
infinite element was imposed to the lateral boundaries. The horizontal and vertical 
displacements were fixed at the bottom. The structure was assumed to exhibit an 
elastic behavior throughout the entire analysis. Thus concrete in the structure was 
modeled as a linear elastic material, with unit weight 25kN/m3, Poisson’s ratio 0.15 
and Young’s modulus 24GPa. Actual spacing of the column was taken into 
consideration with the reduced stiffness. The Mohr-Coulomb model was adopted to 
simulate soils. Soils were divided into 14 layers and soil properties were obtained 
from geotechnical investigations. 4-nodes plane strain element (CPE4R) and 
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quadrilateral plane strain infinite element (CINPE4) were adopted for soil, and beam 
element (B21) for structure. The interface between structure and ground was modeled 
as a frictional surface whose contact was assumed to follow the Coulomb friction law. 
A coefficient of friction equal to 0.4 was assumed which corresponds to a friction 
angle of 22 degrees. 
 

 
Figure 6.  Numerical model of the four-story subway station 

 
El Centro record was used as the input ground motion, which was also the motion 
used in shaking table test. Figure 7 shows the motion and its Fourier spectrum. 
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Figure 7.  Acceleration time history and Fourier spectrum of El Centro record 

Parametric study  

Comparison between numerical and test results 

To verify the reliability and accuracy of the numerical model. A nonlinear dynamic 
time history analysis model was established in consistent with the dimensions of 
shaking table tests using the above-mentioned method. Figure 8 shows the 
comparison between numerical and test results in Case 3 (El-h0.6-v0.0). It can be 
seen that the distribution of dynamic earth pressure obtained from numerical results 
was also close to an “S” shape. The distributions were different in some degree. This 
may be due to the constitutive model of the model soil. The Mohr-Coulomb model is 
more appropriate for prototype soil rather than the synthetic model soil made of sand 
and sawdust. It is noted that the average dynamic pressure of numerical and test 
results were close. The error was 5.5%, respectively. Hence, the numerical model is 
able to investigate the amplitude of pressure in parametric studies.  
 

Ground motion 
 

Underground structures Infinite elem
ent 

Infinite elem
ent 
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Figure 8.  Comparison between numerical and test results in Case 3 

 
The ratio of dynamic earth pressure to static pressure 

Figure 9 shows the ratio of dynamic to static pressure under two levels of the 
earthquake. Firstly, it can be seen that with the increase of peak acceleration, dynamic 
earth pressure increased notably. Then the ratio at the top of the structure was much 
larger than that at the bottom. It is because the static earth pressure at top was much 
smaller than that at the bottom. It is worth noting that at the lower part of the structure, 
the degree of increase was close. Specifically, ratios under two levels were about 0.15 
and 0.27, respectively. It means that when the peak horizontal acceleration was 0.2 g, 
the lateral earth pressure increased nearly thirty percent, which needed attention in 
practice.  
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Figure 9.  The ratio of dynamic earth pressure to static earth pressure 

 
Soil types 

In order to study the influence of soil type, the second layer to the eighth layer of 
prototype soils were combines as one homogeneous soil layer. And this layer was 
defined as sand layer and clay layer in two models, respectively. Frictional angle and 
cohesion of clay were 16 degrees and 17 kPa, and values of sand were 35 degrees and 
0. Figure 10(a) shows the influence of soil type under two levels of the earthquake. It 
is seen that when the earthquake was small, distributions of dynamic earth pressure 
were close to linear one in most parts of the structure; when the earthquake was large, 
distributions in the sand tend to be the “S” shape. Structures surrounded by sand 
suffered larger dynamic earth pressure than that by clay. Specifically, when peak 
horizontal acceleration was 0.2 g in clay, dynamic earth pressure was very close to 
that in the sand when peak acceleration was 0.1 g.  
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Figure 10.  Influences of (a) soil type and (b) stiffness of structure  

 

Stiffness of the structure 

The diaphragm wall is 1.2 m wide. Dimensions of the inside wall vary from 0.4 m to 
0.8 m (from top to bottom). The original structure with diaphragm wall was defined 
as a rigid structure while the structure without diaphragm wall was regarded as a 
flexible one. The lateral stiffness of the wall consist of the diaphragm wall and the 
inside wall on the bottom story was about 16 times the stiffness of the wall of the 
flexible one. Figure 10 shows the difference between the rigid structure and the 
flexible structure. It is seen that peak dynamic earth pressure of the flexible one was a 
little smaller than that of the rigid one whether under a small or large earthquake. But 
the difference was small. Properties of soils had more influences on dynamic earth 
pressure than stiffness of the structure.  
 
Vertical earthquake  

To study influence of vertical earthquake component on the dynamic earth pressure, 
peak vertical acceleration was scaled to be 2/3 of peak horizontal acceleration. Figure 
11 presents the peak dynamic earth pressure under two levels of the earthquake with 
and without vertical component. Specifically, when peak horizontal acceleration was 
0.1 g, average values of peak dynamic earth pressure with and without vertical 
component were 13.93 kPa and 17.77 kPa, respectively. Values were 29.39 kPa and 
34.99 kPa when peak horizontal acceleration was 0.2 g. Hence, vertical earthquake 
component excited lateral dynamic earth pressure. 
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Figure 11.  Influences of vertical earthquake component 

Conclusions 

In this paper, to study distributions and amplitudes of dynamic earth pressure along 
the side wall of an underground subway station, a series of 1-g shaking table tests 
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were conducted on a four-story subway station firstly. Experimental results were used 
to confirm the reliability of the numerical technique. Then parametric study was 
carried out through nonlinear dynamic time history analyses using the general 
purpose finite element code ABAQUS. The following conclusions are drawn from the 
results of the study. 
 
(1) The distribution of peak lateral dynamic earth pressure appeared an “S” shape, 
which was distinguished from that of a single-story underground structure. Different 
type of ground motions had influences on amplitudes of pressure, but distribution 
shapes were similar. And with the increase of the magnitude of the earthquake, 
dynamic earth pressure increased remarkably 
 
(2) At the lower part of the structure, ratios of dynamic to static earth pressure were 
similar. Specifically, when the peak horizontal acceleration was 0.2 g, lateral earth 
pressure on the lower part of the structure increased nearly thirty percent, which 
needed attention in practice. And vertical earthquake component excited lateral 
dynamic earth pressure. 
 
(3) Properties of soils had more influences on dynamic earth pressure than stiffness of 
the structure. Structures surrounded by sand suffered larger dynamic earth pressure 
than that by clay. Peak dynamic earth pressure of the flexible structure was a little 
smaller than that of the rigid one whether under a small or large earthquake, but the 
difference was small.  
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Abstract 
The purpose of this paper is to investigate the general deformation pattern and stress 
field of a thin rectangular FGM plate for different property gradient directions, i.e. 
perpendicular and parallel to the loading direction, both analytically and numerically. 
The relevant governing equations of elasticity are solved with static analysis with 
power law distribution of volume fraction of constituents, and the analytical solutions 
for the displacements and stresses are derived. The resultant solutions are verified 
against numerical solutions obtained using the finite element method (FEM). The 
finite element (FE) solution is obtained using solid elements with spatially graded 
property distribution (at different gauss points), which is implemented by a user 
material subroutine (UMAT) in the ABAQUS FE software. The obtained results 
demonstrate that the direction of material property gradient and the nature of its 
variation have significant effects on the mechanical behavior of FGM plates. 
Moreover, the comparison between the exact solution and numerical simulation 
shows the efficiency of graded solid elements in modelling of thin FGM plate. 
Keywords: FGM, stress field, power-law distribution, finite element method, elasticity, graded 
solid elements. 
Introduction 

Functionally Graded Materials (FGMs) are advanced engineered materials whereby 
material composition and properties vary spatially in macroscopic length scales, 
which are created by specialized manufacturing processes. The main advantage of 
FGMs is the elimination of stress concentration and discontinuity in the interface due 
to the monotonous variation of volume fraction of the constituents. There are various 
mathematical models to describe distribution of volume fraction of constituents, i.e. 
power- law and exponential law. Some researchers used exponential function for 
defining material property variation (Guo & Noda, 2014; Z. Wang, Guo, & Zhang, 
2013). Another form of mathematical model using a power-law distribution has been 
widely used in a number of studies, especially for the mechanical engineering field 
(Cheng & Batra, 2000; Navazi, Haddadpour, & Rasekh, 2006; Sun & Luo, 2011). 
There are a significant growth in literatures corresponding to FGMs in the mechanics 
of FGMs (Chi & Chung, 2006; Thai & Choi, 2013; C. Wang & Xu, 2014), 
manufacture process (El-Desouky, Kassegneb, Moonb, McKittrickc, & Morsib, 2013; 
Kieback, Neubrand, & Riedel, 2003), crack growth and damage (Bocciarelli, Bolzon, 
& Maier, 2008; Eghtesad, Shafiei, & Mahzoon, 2012; Torshizian & Kargarnovin, 
2014) in last 10 years. 
One of the wide applications of FGM is in plate structures as thermal barriers. 
Therefore, understanding the mechanical behavior of an FGM plate is vital for 
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effective design of structures employing FGMs to meet desired and safety criteria. An 
exact solution for exponentially graded FGM plates with simply-supported boundary 
condition under a surface load was expanded by Pan (Pan, 2003). Further, Chi (Chi & 
Chung, 2006) derived an analytical formulation for three types of distribution 
function namely power-law, sigmoid and exponential based on classical plate theory 
(CPT) for rectangle simply supported FGM plate with transverse loading. They 
evaluated the exact solution with numerical simulation by MARC FE program with 
16 layers of different material properties in thickness direction. Recently, 
(Akbarzadeh, Hosseini zad, Eslami, & Sadighi, 2010) used the first-order shear 
deformation theory (FSDT) and the third-order shear deformation theory (TSDT) for 
FGM plate with the power- law distribution of the volume fraction. They obtained the 
natural frequencies and dynamic responses of the FGM plate analytically. All the 
mentioned studies have been carried out with regards to variation of material 
constituents through the thickness. However, no studies are known on distribution of 
volume fraction through the length of the plate. 
During manufacturing process of FGMs, the reliability requirements for the product 
should be considered to meet desired or application-specific performance criteria. 
One approach to produce FGMs is use of additive manufacturing (3D printing), 
which can control local composition and microstructure. Furthermore, the gradient 
distribution and its relationship with the loading direction will affect the macro 
stiffness and mechanical behavior.  
This paper presents the behavior of the thin rectangular FGM plate with CPT 
assumptions under transverse loading. The close forms solutions based on Fourier 
series expression for power- law distributions in two different gradient directions (the 
thickness direction and length direction) are obtained. Moreover, the analytical 
solutions are proved by the numerical simulation of the finite element method using 
ABAQUS. In numerical modelling, the graded solid elements are implemented in the 
user material subroutine (UMAT). These results will possibly enable us to understand 
the behavior of new materials with controlled macro properties. 
Analytical Solutions 
State I- Gradient distribution in thickness direction 
Let us consider an elastic rectangular plate. As shown in Fig. 1a, coordinates x and y 
define the plane of the plate, whereas the z-axis originated at the middle surface of 
the plate is in the thickness direction.  The Poisson ratio is assumed to be constant. 
However, the Young’s moduli in thickness direction vary with Eq. (1) and the elastic 
modulus can be determined by the rule of mixture: 
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Where n is the power-law index, h is the thickness of the plate, iE  and mE  are the 
Young’s moduli of inclusion and matrix, respectively. 
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Figure 1. a) The Geometry of FGM Plate. b) The distribution of volume fraction in Z 
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It is assumed that the deformations and the stresses of the thin FGM plate are based 
upon classical plate theory. So, the strain and stress fields are: 
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In this work, the thickness of thin plate is assumed to be in the range 1/ 20 1/100 of 
its length. So, the transverse shear deformations should be eliminated.   
The matrix formation of axial forces and momentum are: 
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The coefficients of above equations are depending on the material properties of FGM 
plate. So, for the above rectangular FGM plate we have: 
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With definition of the uniform distributed transverse loading by Fourier series, the 
equilibrium equation can be written as: 
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With definition of stress function ( , )x y  and
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, the strains at 

the middle surface are expressed in terms of the stress function and the deflection: 
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where:  
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In order to find the relation between stress function and deflection, we substitute the 
Eqs. (7a) and (7b) in Eq. (6): 
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A compatibility equation is then used to provide another governing equation. By 
using Eq. (7a), the compatibility equation 
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The stress function and deflection can be obtained by simultaneous solution of Eqs. 
(9) and (11). With definition of Fourier serious for ( , )x y and w  alongside 
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simultaneous solution of Eqs. (9) and (11), the stress function and deflection can be 
obtained. 
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So, the stress and strain fields for the rectangular FGM plate with the material 
gradation in thickness direction are: 
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State II- Gradient distribution in length direction 
Consider the rectangular FGM plate-Fig. 2- similar to state 1 while the Young’s 
moduli vary in length direction based on Eq. (14).  
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Figure 2. The distribution of volume fraction X direction : ( ) ( )n
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For this case, the coefficients become: 
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It can be seen that the axial forces and bending momentum are uncoupled. This 
phenomenon is different from the state 1. The equilibrium Eq. (6) becomes: 
 

24 4 4 3 3 2 2
11 11

11 4 4 2 2 2 3 2 2 22 2 2C Cw w w w w w w
C F

x y x y x x y x x x y


            
                          

   (16)   

In order to satisfy the equilibrium equation and boundary conditions, the deflection 
function w of FGM plate should be the form of: 
                    ( , ) sin sinmn
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By substituting in the equilibrium equation we can find mnw : 
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So, the stress and strain become: 
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Finite Element Models 
In the numerical simulation, a square FGM plate with a=50 cm, h=2 cm and material 
properties of metal and ceramic constituents-Table 1- is considered.  
 

Table 1. material properties 

Metal (Ti–6Al–4V) Ceramic ( 2ZrO ) 
66.2mE GPa 117.0iE GPa

0.33  0.33 
By applying the n=3, 2

0 1 /F N cm  and Fourier series coefficient (m= n =20), the 
theoretical results can be evaluated with numerical modelling. Graded solid elements 
are implemented by means of direct sampling properties at the Gauss points of the 
elements. The user material subroutine (UMAT) for modelling of FGM plate with 
graded elements is provided in ABAUQS. 
 
Results 
Fig.3 compares the deflection of the plate with different gradient variation 
(homogenous plate without variation and variation in Z and X direction, respectively). 
It can be seen that by applying the higher stiffness material (ceramic) as an inclusion 
in the metal matrix, the deflection of plate decrease significantly. Moreover, the FGM 
plate with variation of material constituents in thickness direction has the least 
maximum deflection with the symmetry parabolic shape. While the maximum 
deflection for FGM plate with X variation does not occur in the middle of the length. 
It happens in 0.4 times length. 
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Figure 3. The deflection of the plate 

Fig. 4 shows the theoretical and FE (both Shell and Solid elements) results for a 
square homogenous plate without variation. As revealed in Fig. 4, a good agreement 
is obtained in using solid elements with mesh size 0.25 with shell elements. So, the 
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solid elements can be used for modelling of a thin FGM plate instead of shell 
elements. 
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Figure 4. The deflection of the homogenous plate 

Figs. 5 and 6 represent the deflection of FGM plate for Z and X gradient variation 
analytically and numerically, respectively. The analytical and numerical results agree 
very well in Z and X variation with the maximum error less than 10%. As can be seen 
from the comparison of two graphs in Fig. 6, the changes between analytical and 
numerical solution after critical point-maximum deflection- is much pronounced 
compared to the ones before that. It could be caused by power-law index (n) effect. It 
can be observed from Fig. 7 that the jump of E occurs at the critical point for n=3 –
approximately 0.4 times of plate length-. Indeed, before this point there is a little bit 
variation in Young modulus and after that the considerable growth of E is obtained. 
Moreover, as n is raised the jump of E occurs in near the end of the plate (x=a). 
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Figure 5. The deflection of the FGM plate with variation of material properties through the 

thickness 

 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

721



 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-2.5

-2

-1.5

-1

-0.5

0x 10-7

x/a

w
/h

 

 

Analytical Modelling
FE Modelling-Solid Graded Element

 

 
Figure 6. The deflection of the FGM plate with variation of material properties through the 

length 
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Figure 7. The effect of power-law index in E(x) 

The variation of the stress in x direction at the center of the FGM plate along the 
thickness for state I and II is depicted in Figs. 8 and 9. The stress for FGM plate with 
Z gradient variation is a function of Z of order 4. This phenomenon coincides with 
the analytical formulation in Eq. (13d), in which the stresses are proportional 
to . ( )z E z . While for X gradient variation, the linear function of Z is presented (based 
on Eq. (20a)).The maximum tensile and compressive stress in the center of the FGM 
plate is at the bottom and top edge, respectively. In addition, the good agreement is 
obtained between analytical and numerical results with the maximum error less than 
15%.  
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Figure 8. The stress x  at the center of FGM plate for variation of material properties 

through the thickness 
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Figure 9. The stress x  at the center of FGM plate for variation of material properties 

through the length 

Conclusions 
In this study, the theoretical formulation of the simply- supported thin square FGM 
plate with power-law distribution of volume fraction through the thickness (state I) 
and length (state II) under transverse loading is derived. The analytical results are 
also validated by finite element analysis. The FE solution is obtained using solid 
elements with spatially graded property distribution, which is implemented by a user 
material subroutine (UMAT) in ABAQUS. The results lead to the following 
conclusions: 

1. Strain at middle surface and deflection for state I are coupled while this 
phenomenon is different from State II.  There is extra coefficient in strain 
equations in state II that is due to gradient variation in X direction and 
differentiation of deflection with respect to X. 
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2. Under the assumption of thin plate the theoretical results agree very well with 
those of FE simulation with solid graded element. 

3. There is not a linearly proportion between stress and thickness direction in 
state I. because the Young’s moduli of this state are functions of z of order n-
power law index-, so the stress indicates a function of z of order n+1. 

4. The maximum deflection occurs in the middle plate for sate I while it happens 
before that in state II-at nearby 0.4 times of length-. 

The approach outlined in this paper would be beneficial for the ideal FGM plate 
which variation of volume fraction of constituents is controlled and obey a specific 
function of distribution. This aim could be achieve with aid of 3D printing that can 
control local composition and microstructure.  
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Abstract 
 
This paper presents an uncertainty quantification study of the performance analysis of the high 
pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 
Multi-purpose Small Power Unit. A deterministic 3D volume-averaged Computational Fluid 
Dynamics (CFD) solver is coupled with a non-statistical generalized Polynomial Chaos (gPC) 
representation based on a pseudo-spectral projection method. One of the advantages of this 
approach is that it does not require any modification of the CFD code for the propagation of 
random disturbances in the aerodynamic and geometric fields. The stochastic results highlight 
the importance of the blade thickness and trailing edge tip radius on the total-to-static efficiency 
of the turbine compared to the angular velocity and trailing edge tip length. From a theoretical 
point of view, the use of the gPC representation on an arbitrary grid also allows the investigation 
of the sensitivity of the blade thickness profiles on the turbine efficiency. The gPC approach is 
also applied to coupled random parameters. The results show that the most influential coupled 
random variables are trailing edge tip radius coupled with the angular velocity. 
 
Keywords: Uncertainty Quantification, gPC, CFD, Radial Turbine 

Introduction 
In order to develop robust turbines’ design, it is critical to consider uncertainties in the 
optimization process. Turbine design is nowadays mainly achieved using Computational Fluid 
Dynamics (CFD) technique. However, the design is made at the optimal operating conditions 
and any likely variations in operations can dramatically alter the efficiency of the turbine 
[Odabaee et al. (2014); Sauret and Gu (2014)]. The concern is even greater while working with 
high-density fluids in low-temperature Organic Rankine Cycles (ORC) which have the potential 
to extract more energy from the high-density fluids. Due to the complexity of the geometry and 
computational cost associated with these geometries and fluids, no advanced uncertainty 
quantification (UQ) has been proposed so far for these ORC turbines and very little work has 
been done on the uncertainty quantification in turbomachinery in general. Relatively recently, 
Gopinathrao et al. [Gopinathrao et al. (2009)] and Loeven and Bijl [Loeven and Bijl (2010)] 
successfully performed non-intrusive Polynomial Chaos and Probabilistic Collocation 
respectively on a transonic axial compressor but no study has been found on radial turbines.  
UQ is a mathematical approach employed to determine the likely certain outcomes in an 
uncertain system. Any engineering system is subject to uncertainties, which can come from the 
random variation of geometric parameters and operating conditions for example. These 
uncertainties cannot be removed from the system and are called “aleatory” uncertainties 
[Faragher (2004)]. In addition, the numerical representation of this system also introduces 
uncertainties through the mathematical models and boundary conditions used. These “epistemic” 
uncertainties [Faragher (2004)], however, can be reduced as they are due to modelling errors. In 
the numerical simulations, all these parameters are constants, which make it impossible to isolate 
the influence of these parameters without using uncertainty quantification methods.  
So far, different approaches have been developed in order to quantify these uncertainties. Monte 
Carlo (MC) technique is a typical approach employed to perform probabilistic analysis. 
However, it is suffering from expensive computational cost and poor convergence rates, 
especially for complex geometries [Sankaran and Marsden (2011)]. To overcome such issue, 
other approaches have been developed, such as so-called Polynomial Chaos (PC) method based 
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on the spectral stochastic finite elements approach [Spanos and Ghanem (1989); Ghanem and 
Spanos (1991)], generalized Polynomial Chaos (gPC) as extended by Xiu [Xiu et al. (2002)], 
stochastic collocation method [Mathelin and Hussaini (2003)], and Multi-Element generalized 
Polynomial Chaos (ME-gPC) method [Wan and Karniadakis (2005); Kewlani and Iagnemma 
(2009)]. Non-intrusive methods are also becoming more popular as they don’t require the 
modification of the deterministic solver. A comparison between intrusive and non-intrusive 
methods is presented by Onorato et al. [Onorato et al. (2010)] while non-intrusive approaches are 
detailed in [Loeven et al. (2007)]. 
 
In this work, a generalized Polynomial Chaos (gPC) method is coupled to the deterministic CFD 
solver and applied to the performance analysis of a radial-inflow turbine. A uniform distribution 
of the random parameters associated with Legendre polynomials is chosen. Due to the curse of 
dimensionality the uncertain parameters are investigated separately with high-order spectral 
projections while the combined effect of the parameters is initially investigated using low-order 
polynomials. The impact of the variable input parameters are evaluated on the total-to-static 
efficiency of the radial turbine. The stochastic space of each random variable is correlated to the 
range of uncertainty of the physical input parameters. The sensitivity to the uncertain parameters 
and their potential coupled effects on the stochastic turbine efficiency are discussed in details.  

Generalized Polynomial Chaos Method 

In this study, the generalized Polynomial Chaos (gPC) framework proposed by Spanos and 
Ghanem [Spanos and Ghanem (1989); Ghanem and Spanos (1991)] is used. 
The gPC representation of a random process u is defined as:  

    ∑
∈

Θ=Θ
NN

)()(û),(
α

αα φxxu                                                     (1) 

where  { }N
jj 1

)(
=

Θ=Θ ω ,  N 𝜖𝜖 ℕN, is a ℝN valued random array on a probability space (𝛺𝛺, 𝓐𝓐, 𝓟𝓟) 
with probability distribution Pʘ(dθ) and dθ is the Lebesgue measure. )(Θαφ is the multivariate 
orthogonal polynomials, with total degree not greater than P. They are built as tensor products of 
orthogonal polynomials along each random dimension with respect to the probability measure 
Pʘ(dθ). The modal coefficients in Eq. (1) are determined by: 
 

{ } { })(E/)(),(E )(û 2 ΘΘΘ= ααα φφxux    for 𝛼𝛼𝜖𝜖 ℕN                                       (2) 
 

where E represents the expectation. The order P of the polynomial basis is chosen based on 
accuracy requirements.  
The modal coefficients can be re-written as:  

{ } ( )ΘΘ
Θ

= ∑ = j
Nq

i ij xuwx φ
φα 02 ),(

)(E
1)(û                                              (3) 

where the weights wi and nodes Θ of the Gauss-Legendre quadrature are determined by solving 
an eigenvalue problem based on the Golub-Welsch algorithm. 
Nq=(Nd+1)Nd-1 is the number of cubature points, with Nd, the number of random parameters. 

Interpolated gPC 
As demonstrated by Sauret et al. [Sauret et al. (2014)] interpolated gPC can provide useful 
approximations of the gPC approach. The method uses the existing deterministic solutions as an 
arbitrary grid on which preferably high-order interpolations are performed to carry out the 
stochastic projection. This is of particular interest for the blade thickness profiles evaluation for 
which re-creating the profiles for each quadrature point is extremely time consuming. Thus, this 
approach is used here despite the reduced accuracy as a preliminary estimation of the sensitivity 
of the turbine performance to the blade thickness profiles. 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

726



Statistical Post-Processing of the gPC Method 
Once the modal coefficients are determined using Eq. (1), the statistical properties of the random 
parameters are obtained thanks to the orthogonality of the polynomial basis. The mean μ and the 
variance σ2 are thus obtained by:  

0û=µ                                                (4) 

{ }∑
=

=
M

j
x

1

22
j

2 E)(û αφσ                                                (5) 

Then the standard deviation, σ=√(σ2) and the coefficient of variation, CoV= σ/μ are obtained 
from Eqs. (3) and (4). 

gPC-CFD coupling 
The gPC method used in this study is non-intrusive and thus doesn’t require any modification of 
the deterministic solver. The gPC method is implemented in Matlab and automatically coupled 
with the CFD solver ANSYS-CFX using Python scripting. The CFD results are then sent back 
into Matlab for the statistical post-processing.  

Radial-Inflow Turbine  
The radial-inflow turbine used in this work has been developed by Sundstrand and 
experimentally tested by Jones [Jones (1996)]. This geometry has become an open benchmark 
after the work of Sauret [Sauret (2012)] who reconstructed the geometry and provided initial 
CFD results.  
The test case at nominal conditions is a 120 kW, 5.7 pressure ratio turbine used in the Sundstrand 
Power Systems T-100 Multi-purpose Small Power Unit. However, only the rig conditions have 
been experimentally tested which have a lower rotational speed and lower inlet pressure but the 
same pressure ratio. The rig conditions are used in this study for validation and application of the 
gPC method. The geometry is presented below in Figure 1 and the full details are presented in 
Sauret [Sauret (2012)]. The turbine has 19 stator blades and 16 rotor blades. 
 

 
 

Figure 1.  Rotor and Stator geometry of the radial-inflow turbine 
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Deterministic volume-averaged CFD solver 
Three-dimensional geometry and mesh of one blade passage including stator, rotor and part of 
diffuser are reproduced in ANSYS turbomachinery package. Reynolds-Averaged Navier-Stokes 
equations are solved in this simulation using ANSYS-CFX version 15. The k-ω SST turbulence 
model is used for the simulations and high resolution schemes are used for both the advection 
and turbulence as recommended by [Louda et al. (2013)]. 

Boundary Conditions 
For the rig condition, the temperature of inlet of stator is 477.6 K and the outlet static pressure is 
72.4 kPa.  The mass flow rate at the inlet of the stator is Qm = 0.0173 kg/s. The working fluid is 
air, considered as ideal gas. The rotational speed is 71700 RPM. [Sauret (2012)]. 

Mesh 
The mesh is generated using ANSYS-TurboGrid for the flow passage for both rotor and stator. 
The non-dimensional grid spacing at the wall +

wy  ranges from 20 to 140, which is the 
recommended range as the log-law wall function is valid for +

wy values above 15 and under 100 
for machine Reynolds number of 1×105 where the transition affects the boundary layer formation 
and skin friction and up to 500 for Reynolds number of 2×106 when the boundary layer is mainly 
turbulent throughout [Manual (2000)]. The boundary layer refinement control is 4×106 with Near 
Wall Element Size Specification to reach the +

wy  (non-dimensional wall element size) 
requirement for the k-ω SST turbulence model. 
After a grid refinement study, the total mesh number is 712,082 including stator, rotor and part 
of diffuser.  The grid quality was checked using indicators such as orthogonality of the cells and 
aspect ratios. The converged mesh is presented in Figure 2. 
All of the computations were performed until full convergences of the flow variables were 
achieved. The residuals were dropped down below 10-6. 
 

   
 

Figure 2.  Three-dimensional view of the O–H grid at the rotor blade at the hub and 
shroud. 
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Figure 3.  Two-dimensional view of the O–H grid at the stator blade. 
 

Results 

Validation 

From Figure 4, three-dimensional CFD total-to-static efficiency is compared against the 
experimental data for the rig conditions. The results are in really good agreement with the 
experiments with a maximum difference less than 1%. 

 

 
Figure 4. Variation of total-to-static efficiency with rotational speed. 
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Parametric Study  
Four main parameters, angular velocity, TE (Trailing Edge) Tip Length, TE Tip Radius and 
blade thickness profiles (Table 1) have been initially investigated in order to identify a non-linear 
response surface on which the gPC method will be valuable to apply. 
 

Table 1. Characteristics of the studied uncertain parameters 

 

The TE Tip Length and TE Tip Radius are defined in Figures 5 and 6. The red point “A” in 
Figures 5 and 6 is the geometry changing point, corresponding to the TE position at the shroud. 
The arrows’ direction is the geometry changing direction. When “A” point is moving in 
horizontal direction, the TE tip length will vary. It is important to note that when “A” point is 
moving in the vertical direction (TE Tip Radius), the blade height will be modified and the tip 
clearance will be kept at the initial value.  

In Figure 7, six different rotor blade thickness profiles have been manually established for the 
parametric study. The maximum value of the blade thickness is kept constant while its location is 
moved along the tip length, thus modifying the profile curve shape. 

 

                                    
 
              Figure 5. TE Length geometric study.      Figure 6. TE Tip Radius geometric study. 

Uncertain Parameter μ Support 

Angular Velocity  ω (rev.min-1) 71700 [57360, 86040] 

TE Tip Length  L (mm) 35.0012 [33.1, 42 ] 
TE Tip Radius R (mm) 
Blade Thickness peak position along the meridional length (%) 

36.83 
41 

[31.1, 37] 
[21, 71] 
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Figure 7. Blade thickness profile geometric study. 

 

As shown in Figures 8-11, angular velocity, TE tip radius, TE tip length and blade thickness 
have non-linear response surfaces. One can also note that the maximum efficiency is obtained at 
values of the TE tip radius, TE tip length and blade thickness different from the initial Jones’ 
geometry, indicating that optimization of this turbine can be achieved.  Angular velocity, TE tip 
radius, TE tip length and blade thickness are thus used as random inputs for the application of 
the gPC method. 

 

          
Figure 8. Evolution of the total-to-static             Figure 9. Evolution of the total-to-static 

efficiency with the angular velocity.                         efficiency with TE tip radius. 
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Figure 10. Evolution of the total-to-static               Figure 11.  Evolution of the total-to-static 

efficiency with the TE tip length.                   efficiency with the blade thickness profiles. 
 

Uncertainty Quantification 
The mean and support for the 4 random parameters (angular velocity, TE tip radius, TE tip 
length and blade thickness) are summarized in Table 1.  

Convergence Study 
Figure 12 shows the CFD points and the gPC legendre quadrature points for P ranging is 1, 3, 5, 
7, 9, 11 respectively, when angular velocity is the random variable. 

     
 

Figure 12.  Legendre quadrature points and arbitrary support points for 
Angular Velocity for P=1, 3, 5, 7, 9, 11 
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Figure 13.  Convergence rates of the variance of the angular velocity in respect to the total-

to-static efficiency. 

In Figures 13, symbols represent simulations while lines are the corresponding linearly fitted 
decay rates. It can be seen that the error line trend decreases when the P-order is increasing, 
showing good convergence rates. Similar trends are observed for all uncertain variables. 

Statistical results 
In Table 2, ω, L and R refer to the angular velocity, TE tip length and TE tip radius respectively.  

Regarding each uncertain parameter, the mean value μ, the standard deviation σ, variance σ ʋ
2and 

the coefficient of variation CoV = σ/μ of the total to static efficiency with the gPC at P = 11 are 
presented in Table 2. It can be seen that the blade thickness profile has the most influential effect 
on the turbine total-to-static efficiency closely followed by the TE tip radius R while L doesn’t 
appear to be a critical geometric parameter in regards to the efficiency. The gPC method was also 
applied for coupled uncertain parameters with a lower polynomial order P=5 in order to 
minimize the computational cost. When parameters are coupled, the most influential coupled 
random variables on the total-to-static efficiency are R-ω. 
 
 

Table 2. Mean, standard deviation and CoV of the total-to-static efficiency for each 
individual uncertain parameter for P=11 and coupled parameters for P=5. 

            gPC 1D (P=11) gPC 2D (P=5) 
Variable ω L R Blade Thickness  R-ω  L-ω  R-L 
μ 85.09 86.72 85.65 85.5 83.27 85.34 81.68 
σ×10-3 13.409 1.720 16.611 17.400 25.360 14.971 13.102 
σ ʋ

2×10-3 0.180 0.003 0.276 0.303 0.643 0.224 0.172 
CoV×10-3 15.759 1.983 19.393 20.400 30.454 17.543 16.040 

Conclusion 
In this paper, a deterministic 3D CFD solver is coupled with gPC approach and successfully 
applied to investigate a complete 3D high-pressure ratio radial-inflow turbine. The uncertainty 
quantification has been applied to the performance analysis of radial turbine for the propagation 
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of various aerodynamic and geometric uncertainties. The convergence rate for each uncertain 
parameter has been investigated, showing that the stochastic spectral projection decreases 
dramatically with the increase of polynomial order. The initial deterministic study highlighted 
the non-linear response of the total-to-static turbine efficiency in regard to the variations of the 
angular velocity, TE tip radius, TE tip length and blade thickness. From the preliminary study, 
for the CoV of the total to static efficiency, the most influential uncertainty is the blade thickness 
closely followed by the TE tip radius. When the gPC approach is applied to coupled random 
parameters, the most influential coupled random variables are the trailing edge tip radius with the 
angular velocity. In future work, other parameters of radial turbine and more dimensional gPC 
will be investigated, such as maximum blade thickness. Then stochastic collocation method will 
be applied for the uncertainty quantification analysis of the radial turbine. 
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Abstract 

Colombia is a country where the benefits of wind power industry are barely used 
because of the geography in some areas does not allow the implementation of onshore 
horizontal axis wind turbines. Furthermore, exist rural areas without access to the 
electrical grid. Therefore, there is currently a deficit of energy supply in some towns. 
This research took place in one of those areas (i.e. Chicamocha Canyon-Santander) 
where the answer to the energy supply problems could be the use of vertical axis wind 
turbines, which can be used for turbulent flows. Hence, one task of this research is the 
analysis of the wind resources in the Chicamocha Canyon in order to implement the 
wind energy. The wind turbines must be designed in such a way that the blades take 
good advantage of the wind resources in the area of interest. Consequently, in the 
current research the analysis of two different airfoils (i.e. NACA0018 and DU 06-W-
200) through a 2D CFD simulation is carried out by means of a free-software 
(OpenFOAM). Predicted results using the “Spalart-Allmaras” turbulence model are 
similar to the wind tunnel data published in the literature. Moreover, global parameters 
such as dimensionless lift and drag coefficients were calculated. Finally, this research 
encourages VAWT studies under wind turbulent flows in order to achieve the best use 
of natural resources in Colombia.  

Keywords: aerodynamic, airfoil, blades, wind turbine, turbulence modelling, CFD. 

Introduction 

According to UPME*, the energy demand in Colombia in the industrial and residential 
sectors is going to duplicate in the next 40 years. Furthermore, 75% of the energy 
demand is supplied by hydroelectric power that has a negative impact on the 
environment [UPME (2014)]. Nowadays, there is only one wind farm that produces 
19.5 MW in the country [UPME (2014)]. Nevertheless, inside Colombia wind direction 
change constantly due to its topography and there is the need of developing wind power 
solutions capable to use this variant resource in order to fulfill Colombian energy 
demand. The 52% of Colombian territory is not connected to the local grid and 
according to the government [Olaya (2012)], more than 50% of 2012 resources were 
invested in maintenance, installation and adequacy of outdoor lighting for rural and 
urban locations in Santander. This high outgoings and the importance of preserve local 
environment stimulates alternative energy solutions that reduce expenses of local 
electricity. This research is the first one in analyzing wind power density at the “Cañón 
del Chicamocha”. It also determines the feasibility installation of Vertical Axis Wind 
Turbines (VAWT) at the place.  
 

* The Mining and Energy Planning Unit of Colombia, (Unidad de Planeación Minero-Energética). 
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The performance of a VAWT relies principally on its airfoil, which obtain lift or drag 
forces necessary to produce high efficient torque at its edge. Airfoil design and 
selection is an important task that depends on three main parts: wind flow conditions, 
airfoil shape and modelling.  
 
Currently, Darrieus (*) VAWT (based on lift aerodynamic force) uses the commercial 
NACA0018 (**) airfoil. In a previous research [Claessens (2006)], a new airfoil for 
these turbines is developed. He presents the DU06W200 airfoil, which improves the 
performance of the NACA0018. The research made experiments and modelling of the 
airfoil based on Blade Element Momentum (BEM) theory. After that, [Castelli et al. 
(2012)] compared the airfoils DU06W200 and NACA0021. He evaluated their energy 
performance and aerodynamic forces that interact between the three wind turbine 
blades. The analysis was done with the commercial CFD software “Fluent 6.3.26” (***) 
at wind speed of 9 [m/s] (much higher than the found at the “Cañón del Chicamocha”) 
under three different turbulence models: k-𝜔 SST, k-𝜀 Realizable and Spalart-
Allmaras. [Chandrala et al. (2013)] analyzed the NACA0018 airfoil for horizontal wind 
turbines at wind speed of 32 [m/s]. He used the commercial software “ANSYS CFX” 
with the standard “k-E” turbulence model. Finally, [Boutilier (2011)] developed an 
experimental investigation of transition over the NACA0018 airfoil at a Reynolds 
number of 1𝑥105. He focused the work specifically at the shear layer. 
 
This research determines experimentally the feasibility installation of VAWT at 

“Cañón del Chicamocha”. Furthermore, the research is centered in the analysis of the 

airfoils DU06W200 and NACA0018 under the wind flow conditions at “Cañón del 

Chicamocha”. The study uses CFD through the free software “OpenFOAM” (****) and 

the one equation turbulence RANS model developed by Spalart-Allmaras [NASA]. 

The difference between the airfoils can be seen at figure 1. 

 

 
Figure 1. Comparison between airfoils NACA0018 and DU06W200  

[Claessens (2006)] 
 
 

(*)  Darrieus VAWT´s consists of a number of curved airfoil blades mounted on a 
vertical rotating shaft or framework. The curvature of the blades allows the blade to be 
stressed only in tension at high rotating 
speeds[http://en.wikipedia.org/wiki/Darrieus_wind_turbine].  
(**)  The NACA airfoils are airfoil shapes for aircraft wings developed by 
the National Advisory Committee for Aeronautics (NACA). The shape of the NACA 
airfoils is described using a series of digits following the word "NACA". The 
parameters in the numerical code can be entered into equations to precisely generate 
the cross-section of the airfoil and calculate its 
properties.[http://en.wikipedia.org/wiki/NACA_airfoil]. 
(***)  ANSYS Fluent is a commercial software that contains the broad physical 
modeling capabilities needed to model flow, turbulence, heat transfer for industrial 
applications.[http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dyn
amics+Products/ANSYS+Fluent]. 
(****)  OpenFOAM is a free, open source CFD software package developed 
by OpenCFD Ltd at ESI Group and distributed by the OpenFOAM Foundation. It has 
a large user base across most areas of engineering and science, from both commercial 
and academic organizations [http://www.openfoam.com/]. 
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2. Methodology 
 
Figure 2 shows the research scheme applied in this work. As it can be seen, it has two 
main components: an experimental, with the purpose of finding out wind potential, and 
the other main component, aimed to establish the best airfoil for the site under 
consideration.  

 
Figure 2. Research scheme. 

 
2.1. Installation feasibility of VAWT´s at “Cañón del Chicamocha” 

 
      Wind flows properties at “Chicamocha Canyon” were collected for three years, 
since 2009, by “Parque Nacional del Chicamocha-PANACHI” [Panachi (2012)] three 
times per day at three different sites: “La Mesa de los Santos”, Chicamocha River and 
“PANACHI”. By using the collected data, the feasibility installation of VAWT was 
analyzed. Furthermore, wind flow conditions were established in order to realize a 
reliable aerodynamic research of the airfoils NACA0018 and DU06W200. 

 
Wind flow direction varies according to the topography of the selected location and 
VAWT does not need to be pointed towards the wind to be effective, therefore, they 
can be used on the sites with highly variable wind direction. Moreover, its structural 
and esthetic principles have improved power in turbulent flows [Castelli et al. (2012)] 
[Manwell et al. (2010)]. 

 
Starting from conservation of mass and the continuity equation principle, the wind 
potential was analyzed. The air flow as a function from air density (ρ) and its velocity 
(U) that pass through the swept area [A] of the turbine, can be expressed as: 

 
𝑑𝑚

𝑑𝑡
= ρ ∗ A ∗ U                                                  (1) 

Wind power potential can be expressed as kinetic energy in delta time:  

𝑃

𝐴
=

1

2
∗ ρ ∗ 𝑈3                                             (2) 

 
This research uses [Manwell et al. (2010)] criteria that establishes how significant wind 
power potential is at a selected location: 

 
Table 1. Wind power potential criteria [Manwell et al. (2010)]. 

𝑃/𝐴 < 100 𝑊/𝑚2 Poor 

𝑃/𝐴 ≈ 400 𝑊/𝑚2 Good 

𝑃/𝐴 > 700 𝑊/𝑚2 Excellent 
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2.2. Aerodynamic study 
 

      Wind flow incidence over the airfoil generates force distribution over its surface, 
where result decomposes into lift, drag and pitching momentum as figure 3 shows. 

 
Figure 3. Forces and Momentum over an airfoil, α angle of attack c, 

chord length. [Manwell et al. (2010)] 

These parameters are define dimensionless through its coefficients as: 

 

Lift Coefficient:                                𝐶𝑙 =
𝐿/𝑙

1

2
𝜌𝑈2𝑐

                                                         (3) 

Drag Coefficient:                             𝐶𝑑 =
𝐷/𝑙

1

2
𝜌𝑈2𝑐

                                                         (4) 

Pitching Momentum:                      𝐶𝑚 =
𝑀

1

2
𝜌𝑈2𝐴𝐶

                                                       (5) 

 

Dimensionless parameters analyze performance of airfoils under wind flow conditions 

of the location and through “Dynamic Similitude” concept. The mentioned parameters 

are function of attack angle, Mach and Reynolds number. 

 

2.3.CFD airfoil studies 

 

      Fluid Mechanics governing equations in turbulent flow do not allow general 

analytic solution. Its study is approached from testing, dimensionless reasoning or 

mathematical simplified analysis. CFD is a new analysis technique for solving these 

equations and its final task is the resolution of mathematical equations that express 

turbulent fluid flow laws through software usage [Fernández (2012)]. 

 

Nowadays, different researches are improving airfoils performance of wind turbines 

through wind tunnel tests and theoretical studies. Nevertheless, these efforts are time 

consuming and need high technology laboratories (costly). Wind turbines CFD 

modelling provides affordable solutions to analyze aerodynamic issues of the airfoil 

and offers unlimited information over the domain since each cell modelling equals a 

tiny sensor for measuring each flow variable. 

 

Governing equations in turbulent flow can be solved directly (DNS) or indirectly (INS). 

DNS solves each temporal and spatial fluctuation, meaning that high Reynolds 

numbers (105) require high-density meshing and short temporal steps for solving each 

flow vortex [Fernández (2012)], what demands high computational costs. Hence, 

indirect equations solving is the feasible road for problem solving. That solution has 

two options that employ a turbulence model for closing the equations system when a 

temporal average  (RANS) or a spatial filtering (LES) is applied. The research at hand 

uses RANS and “Spalart-Allmaras” one equation model to close the equations system 

(Equations 6-12). This model is selected due to it was developed to analyze turbulent 

flows around aerodynamic surfaces. In brief, analyzed cases were make under the 
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following conditions: incompressible, steady and turbulent flow, therefore solved 

equations are stationary.  

 

Conservation of Mass: 

 

(6) 

 

Conservation of Momentum: 

 
(7) 

 

Mean strain-rate tensor: 

 

(8) 

 

Reynolds stress tensor: 

 
(9) 

 

Kinetic turbulent energy: 

 

(10) 

 

Turbulence eddy viscosity: 

 (11) 

 

Spalart-Allmaras Model: 
𝜕�̂�

𝜕𝑡
+ 𝑢𝑗

𝜕�̂�

𝜕𝑥𝑗

= 𝑐𝑏1(1 − 𝑓𝑡2)�̂��̂� − [𝑐𝑤1𝑓𝑤 −
𝑐𝑏1

𝑘2
𝑓𝑡2] (

�̂�

𝑑
)

2

+
1

𝜎
[

𝜕

𝜕𝑥𝑗

((𝑣 + �̂�)
𝜕�̂�

𝜕𝑥𝑗

) + 𝑐𝑏2

𝜕�̂�

𝜕𝑥𝑖

𝜕�̂�

𝜕𝑥𝑖

]   

(12) 

 

2.4. OpenFOAM Modelling description 

 

According to the properties of the flow cases, velocity-pressure coupling was solved 

through SIMPLE (Semi Implicit Method for Pressure linked Equations) algorithm. The 

research analyze fluid flow over an airfoil. The domain splits into patches where 

boundary conditions are established as is shown in figure 4. 

 
Figure 4. Patches distribution over the domain. 
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The domain distribution was the same for every modelling developed. There were only 

variations of the geometry at the “obstacle” patch and incidence flow according to the 

problem studied. 

 

Previously modelling the airfoils under wind conditions from selected place, i.e. 

“Cañón del Chicamocha”, several tests were made and compared with published results 

in order to verify the selected mathematical model and ensure a good implementation 

of the software. 

 

2.5. Domain definition of the Airfoil 

 

      The appropriate domain definition ensure a develop flow downstream the airfoil 

and assures independence of the imposed boundary conditions. Therefore, three 

different domains were studied for the NACA0018 airfoil, which were implemented by 

[Cao (2011)], [Joukowski (2013)] and [Claessens (2006)], named hereafter as 1, 2 and 

3, respectively. Domains 1 and 2 represents boundaries as function of the chord length, 

while the domain 3 obeys to spatial ratio of wind tunnel. Each modelling was make 

with an 8-block domain as is shown in figure 5. 

 
Figure 5. Domain shaped blocks in OpenFOAM. 

Simulations were performed under Reynolds number of 3 ∗ 105, chord length of 60[cm], 

attack angle of 0° . Furthermore, different meshes were applied in order to study its 

influence. The main task is find the domain that under the same flow conditions 

presents less computational cost, more accurate results and  𝑦 + acceptable values. 

Figure 6 shows one of the analyzed grids in detail. 

 

 

Figure 6. Mesh detail around NACA0018 airfoil. 
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After simulations were done, the three domains gave us these conclusions: 

- Domain 1, showed convergence issues by using a high density mesh that decrease 

𝑦 + values. Furthermore, computational cost was high. These facts made harder the 

study of parameters variation. 

- Domain 2, allows the developing of the flow downstream at the airfoil, and its 

shorter dimensions reduced computational costs. Therefore, the meshing density 

and the 𝑦 + analysis were easier to run. 

-  Domain 3 gave a good flow resolution and its computational cost was less than 

domain 1. Nevertheless, wind flow direction could not be greater than 5° by the 

dimensions of the domain height. 

 

Consequently, the Domain 2 was chosen to perform the simulation of the airfoils. Its 

geometry is formed by 5 chord lengths distance from the leading edge to the top face, 

5.5 chord lengths to the bottom face, 5 chord lengths to the upwind face (inlet) and 6 

chord lengths to the downwind face (outlet). The boundary conditions used at the 

patches shown in figure 4 are shown in table 2. 

Table 2. Boundary conditions at the Patches. 

Inlet Patch 

Outlet Patch 

FrontandBack Empty 

obstacle Wall 

upanddown patch 

  

3. Discussion and analysis of results 

3.1. Wind power density analysis 

      Wind speed data collection from “Cañón del Chicamocha” was made with cup 

anemometers installed in three main parts of the location, i.e. “Mesa de los Santos”, 

Chicamocha river and “PANACHI”, above cableway supports with height of 20 [m] 

each. 

3.1.1. “Mesa de los Santos” wind speed measuring 

      Average wind speed velocity has values from 5 to 7 [m/s] per year, which gives a 

maximum wind power density of 450[𝑊/𝑚2] on February and minimum of 180 

[𝑊/𝑚2] on July. Minimum values were find between May and August as figure 7 

shows. 

 

   Figure 7. “Mesa de los Santos” wind power density per month. 
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3.1.2. Chicamocha river wind speed measuring 

 

      At this location, wind flow accelerates due to mountains that surrounds the river, 

which acts as a diffusor redirecting the wind to a smaller section as figure 8 shows. 

 
Figure 8. Wind speed increase due to canalization of prevailing winds 

from the mountain [Manwell et al. (2010)]. 

 

This phenomena effect is confirmed by wind speeds observed at the location, i.e. up to 

8.75[m/s]. Therefore, wind power density values were up to 770[W/𝑚2]. Furthermore, 

wind speed variations were higher, as figure 9 shows. 

 

 
Figure 9. Wind power density at Chicamocha River per month. 

 

3.1.3. “PANACHI” measurement 

 

Lastly, wind flow behavior was analyzed in PANACHI, where maximum wind speed 

value was find in January, i.e. 5.65 [m/s], with a wind energy density of 180[W/𝑚2]. 

Figure 10 shows monthly results. 

.  

Figure 10. Average wind power density at PANACHI per month.   
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Table 3 summarize the annual average wind speed and wind power density of the three 

locations. It is shown that the greatest and feasible place for VAWT locations is at 

Chicamocha River. 

Table 3. Wind power potential at “Cañón del Chicamocha” 

Place 
Annual average 

wind speed [m/s] 

Standard 

Deviation 

Annual average wind 

power density [W/𝒎𝟐] 

Mesa de los 

santos 
5.974 0.736 306.188 

Chicamocha 

River 
6.928 1.084 485.115 

Parque Nacional 

del Chicamocha 

(PANACHI) 

4.325 0.536 86.643 

 

 

3.2. Validation and verification 

 

Obtained numerical results are validated by the lift and drag coefficients comparison 

against wind tunnel data from [Claessens (2006)]. Three different angles of attack of 

0°, 10° and 20° were simulated for a chord length of c=0.25 [m], and Reynolds number 

of 3𝑥105 Results are shown in tables 4, 5 and 6, respectively. 

Table 4. 𝒚 + results for different angles of attack. 

𝜶 𝒚 +𝒎𝒊𝒏 𝒚 +𝒎𝒂𝒙 𝒚 +𝒎𝒆𝒂𝒏 

0° 1.614 15.979 10.775 

10° 0.636 16.436 9.58 

20° 0.922 18.456 8.222 

 

Table 5. Lift coefficients of the airfoil NACA0018 at different angles of attack. 

 
𝜶 𝑪𝒍𝒔𝒊𝒎𝒖𝒍𝒂𝒄𝒊𝒐𝒏 𝑪𝒍𝒕ú𝒏𝒆𝒍 %𝑬𝒓𝒓𝒐𝒓 

0° 0.0204 0.0193 5.7 

10° 0.664 0.803 17.31 

20° 0.769 0.615 25 

 

Table 6. Drag coefficients of the airfoil NACA0018 at different angles of attack. 

 
𝜶 𝑪𝒅𝒔𝒊𝒎𝒖𝒍𝒂𝒄𝒊𝒐𝒏 𝑪𝒅𝒕ú𝒏𝒆𝒍 %𝑬𝒓𝒓𝒐𝒓 

0° 0.0379 0.0324 16.97 

10° 0.0646 0.059 9.49 

20° 0.206 0.243 15.22 

 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

744



According to these results, the accuracy of the implemented turbulence model is 

accepted.  Its maximum variation was of 17% and minimum of 6% in comparison to 

the wind tunnel tests. The best performance of the airfoil was found at 10°, where the 

lift and drag coefficients ratio is the greatest, 10.3 approximately. Wind flow behavior 

of the airfoil NACA0018 is shown at figure 11. 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Wind velocity vectors over the airfoil at different angles of attack: 

 (a) 0°, (b) 10°, and (c) 20° 

 

As figure 11 shows, during an angle of attack of 0° a greater acceleration of the flow is 

produced around the airfoil. Whereas angles of attack lower than 20° the vortex 

generation is not perceivable at the trailing edge.   

 

3.3.Analysis of the airfoils NACA0018 and DU06W200 

 

3.3.1. Airfoil performance analysis for Reynolds numbers between 2𝑥105 and 

3.4𝑥105 
      

      In order to analyze the finite volume method accuracy under Spalart-Allmaras 

turbulence model, simulations were carried out for the Reynolds number presented by 

[Claessens (2006)]. Its modelling conditions are: 

 

 Angle of attack of 10° 

 Chord length of 0.25[m]. 

 Fluid properties as follows: 

 

 Re 𝟐𝒙𝟏𝟎𝟓 Re 𝟑𝒙𝟏𝟎𝟓 Re 𝟑. 𝟒𝒙𝟏𝟎𝟓 

Wind Speed[m/s] 7.5 18 20 

ṽ 0.0107 0.0276 0.0306 

𝝂 0.0107 0.0276 0.0306 
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A drag polar (*) was used in order to analyze the ratio between the drag and lift 

coefficients. Its values are show at table 7. 

 

Table 7. Lift and drag coefficients from the airfoils NACA0018 and DU06W200 

under different Reynolds numbers. 

Reynolds 

Number 

NACA0018 DU06W200 

Cd Cl Cd Cl 

200000 0.08 0.707 0.085 0.876 

300000 0.065 0.664 0.075 0.884 

340000 0.07 0.687 0.077 0.926 

As it is shown, for the same Reynolds number the lift coefficients of the DU06W200 

airfoil overcome in 23.3% the ones from NACA0018 airfoil. Furthermore, as Reynolds 

number increases the lift coefficient increases as well. Finally, as lift coefficients from 

DU06W200 airfoil are greater than NACA ones, [Claessens (2006)] results are 

confirmed. 

   

3.3.2. Airfoils modelling under “Cañón del Chicamocha” wind flow 

Parameters and conditions: 

 Wind speed at the entrance is the highest found at the selected location. 

 Steady state regime. 

 Angle of attack of 10°. 

 c=0.25[m] and  𝑅𝑒 = 1.19𝑥105.  

 

Predicted results are shown in figures 12 and 13. 

 

(a)       (b) 

Figure 12. Wind speed average magnitude: (a) NACA0018 and (b) DU06W200 

 

 
(a) 

 
(b) 

Figure 13. Pressure distribution at airfoils (a) NACA0018 and (b) DU06W200. 

(*) The Drag Polar is the relationship between the lift and the drag coefficient. 
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As it is shown in figure 12, the wind speed at the leading edge of the airfoil DU06W200 

is greater than that for the NACA0018. This effect shows the design optimization of 

the airfoil developed by [Claessens (2006)]. Therefore, the cambered airfoil 

DU06W200 generates a high-pressure peak followed by a sharp fall of its values, as 

figure 13 shows. This phenomenon generates turbulent flow in advance quickly since 

the boundary layer cannot follow this pressure increase [Claessens (2006)]. 

 

On the other hand, simulation results show that NACA0018 separation bubbles at the 

leading edge is greater than at DU06W200 airfoil. The increase of the laminar 

separation bubbles leads to develop a longer wake, which is directly linked to noise 

production from the blades [Claessens (2006)]. 

 

The effects of these airfoils characteristics are represented by the lift and drag 

coefficients, which are presented in table 8. 

 

Table 8. Lift and drag coefficients of the airfoils NACA0018 and DU06W200 

under “Cañón del Chicamocha” wind flow 

AIRFOIL Cl Cd 

NACA0018 0.707 0.0801 

DU06W200 0.876 0.0853 

 

The results show a 20% increase of the lift coefficient generate by DU06W200 airfoil, 

at cost of a 6% increase at its drag coefficient. Thus, the airfoil DU06W200 has a better 

performance than the airfoil NACA0018 under feasible wind flow conditions of the 

location, i.e. Chicamocha River.  

 

 

Conclusions 

 

 The implementation of Vertical Axis Wind Turbines is feasible at Chicamocha 

river, where average wind speed is 7 [m/s] and average wind power density is 

485.115[W/𝑚2]. 

 An airfoil domain with 5 chord lengths distance from the leading edge to the top 

face, 5.5 chord lengths to the bottom face, 5 chord lengths to the upwind face (inlet) 

and 6 chord lengths to the downwind face (outlet), allows a proper development of 

the wake using the Spalart-Allmaras turbulence model. 

 Contrasted to the airfoil NACA0018, the new airfoil DU06W200 presented this 

results: 

 It has a lift coefficient increase of 20% with the same drag loses for 

NACA0018 at Chicamocha River wind speed. 

 There is a less wind flow recirculation at the trailing edge, which confirmed 

noise reduction of the DU06W200 airfoil. 

 Lift coefficients for the DU06W200 airfoil at Reynolds numbers between 

2𝑥105 and 3.4𝑥104, are 23% greater than the NACA0018 ones. 

 Therefore, the most appropriate airfoil for blades of a vertical axis wind 

turbines under wind flows of Chicamocha’s canyon is the DU06W200. 
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Introduction 

Different facilities for hadron therapy have been built or designed in the recent past and 
Italy is present in the field either with synchrotron-based and with cyclotron-based 
facilities. For both types of accelerators the availability of high brightness multiply 
charged ion beams is essential and R&D efforts in this subject are increasing. In order 
to cope the stringent requests of a hospital environmental at INFN-LNS a new ion 
source called AISHa is under realization exploiting all the knowledge acquired in last 
decades in the ion source design and realization. 
Therefore, the AISHa source has been designed by keeping in mind the typical 
requirements of hospital-based facilities, where the minimization of the mean time 
between failures (MTBF) is a key point together with the maintenance operations, 
which should be fast and easy. Some critical parts of the body source, in particular the 
plasma chamber and the hexapole containment chamber, have been studied and 
optimized with FEM softwares. 
In the paper, the entire structure will be described, with a particular attention to thermo-
mechanical simulations of the plasma chamber and the electrostatic and structural 
simulation of the hexapole containment chamber. 
 
Keywords: Computation, Hadron Therapy, Ion Source, FEM, CFD 

Introduction 

The INFN-LNS has a broad experience in the design, construction and commissioning 
of ECR and microwave ion sources. In particular, since the ‘90s two sources for highly 
charged ion beam production, named SERSE and CAESAR, are operational to provide 
the heavy ions to be accelerated by the LNS K-800 Superconducting Cyclotron 
[1,2]The AISHa ion source has been designed by taking into account the typical 
requirements of hospital-based facilities, where the minimization of the mean time 
between failures (MTBF) is a key point together with the maintenance operations 
which should be fast and easy. [1,2]Therefore, a so called 3rd generation ECR ion 
source is not suitable, being quite complex for unskilled operators. 
The new AISHa source is designed to be an intermediate step between the 2nd 
generation ECRIS (unable to provide the requested current and/or brightness) and the 
3rd generation ECRIS [1] (too complex and expensive). It is intended to be a 
multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. 
It should provide enough versatility for future needs of the hadron therapy, including 
the ability to run at larger microwave power to produce different species and highly 
charged ion beams. At the same time, the electrical power to be installed for its 
operation will be kept below 50 kW. This demand implies also the simplification of all 
ancillary systems including an oven for metallic ion beams, which permits the 
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production of new beams for hadron therapy and for other applications.[2,3] The 
AISHa source (figure 1) is funded within the framework of the program of Sicilian 
Government named PO FESR 2007-2013 and a pool of Sicilian SME is associated with 
INFN for this project. The source is potentially interesting for any hadrontheraphy 
center using heavy ions. 
 

  
Figure 1: Layout of the AISHa source 
 

Mechanical development 

In order to minimize the maintenance operations, the development of this new source 
involved some mechanical and structural improvements  with respect to similar 
devices. In particular hereinafter the optimization of the hexapole containment chamber 
and of the source plasma chamber are described.  

Use of COMSOL Multiphysics 

The Finite Element Method approximates a Partial Differential Equations problem with 
a discretization of the original problem based on a mesh, which is a partition of the 
geometry into small units of simple shape called mesh elements. The PDE method 
looks for a solution in the form of a piecewise polynomial function, each mesh element 
defining the domain for one “piece” of it. Such a piecewise polynomial function will 
be expressed as a linear combination of a finite set of predefined basis functions. Let us 
consider for example a 2-dimensional problem with a single dependent variable p(x,y). 
The solving method implemented in this code is based on a mesh with quadratic 
triangular elements. The expression “quadratic elements” refers to the fact that on each 
mesh element the sought piecewise polynomial function p∗(x,y) is at most a quadratic 
polynomial. In this case, the solution is expressed as: 

𝑝(𝑥, 𝑦) ≅ 𝑝∗(𝑥) =  ∑𝑝𝑖𝜑𝑖(𝑥, 𝑦)

𝑛

𝑖=1

  

where i refers to a node of the mesh, pi are the degrees of freedom, φi(x,y) are the basis 
functions and n is the total number of nodes, under the assumption that each triangle of 
the mesh possesses six nodes: three corner nodes and three mid-side nodes [4]. A basis 
function φi(x,y) has here the restriction to be a polynomial of degree at most 2 such that 
its value is 1 at node i and 0 at all other nodes [5]. The degree of freedom pi is thus the 
value of p∗(x,y) at node i. The definition of the basis function associated to each node 
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of the mesh can be derived using for example a general method introduced by Silvester 
in 1969 [6].  

COMSOL’s Thin-Film Flow Model for optimitation plasma chamber  

All of COMSOL’s single-phase fluid flow interfaces are based on the three fluid 
dynamics conservation equations known as the Navier-Stokes equations [4], 
concerning the conservation principles of mass, momentum and energy (Figure 2): 

 
Figure 2. Schematic diagram of the situation to which the thin-Film Flow Model 

applies 

 
The model that has been used in our simulations is the Thin-Film Flow Model [7] and 
belongs to the Computational Fluid Dynamics (CFD) module. The Thin-Film Flow 
Model can be used to model a thin channel fluid located between two moving 
structures, as schematized in Figure 2. The upper structure is referred to as the moving 
structure and the lower one as the channel base. Initially, both structures are surrounded 
by gas with a constant pressure pa and the fluid can freely move into and out of the gap. 
Due to the movements of the structures, an additional and usually time-dependent 
pressure pf appears in the gas inside the gap, which produces a normal force 𝐹𝑛⃗⃗  ⃗ on the 
structures. Also a viscous drag force 𝐹𝑡

⃗⃗  ⃗ is created which resists the tangential 
movement of the structure. In the Thin-Film Flow Model, it is however assumed that: 

 The film thickness h remains always very small with respect to the dimensions 
of the solid structures. 

 The channel curvature is small. 
Also the following assumptions are made: 

 The inertial effects in the fluid are negligible compared to the viscous effects, 
thus the flow is laminar. 

 The pressure p = pa + pf  is constant over the film thickness h. 
 The velocity profile over the film thickness is parabolic. 
 The fluid is isothermal. 

Given these assumptions, solving the fluid flow problem with the Navier-Stokes 
equations reduces to solving the following equation, called the Reynolds equation: 
 

𝜕(𝑝ℎ)

\
+  ∇⃗⃗ 𝑡𝑔 ∙ (𝜌ℎ�⃗⃗� ) −  𝜌(∇⃗⃗ 𝑡𝑔 ∆ℎ𝑚 ∙ 𝑢𝑚 − ∇⃗⃗ 𝑡𝑔 ∆ℎ𝑏 ∙ 𝑢𝑏⃗⃗⃗⃗ ) = 0 

 
where ρ is the density, h = h0 + ∆hm + ∆hb is the film thickness, t is the time, ∇tg is a 
gradient computed only with the tangential derivatives along the channel boundaries, 
U is the mean film velocity, ∆hm and um are the normal displacement and the tangential 
velocity of the so-called “moving structure”, respectively, and ∆hb and ub are the 
normal displacement and the tangential velocity of the “channel base”, respectively. 
The mean film velocity U is actually a function of the pressure p, the dynamic viscosity 
μ, the film thickness h, the tangential velocities um and ub of the solid structures and the 
relative flow rate function Qch that accounts for possible rarefied gas effects: 
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�⃗⃗� =  
∇⃗⃗ 𝑡𝑔 𝑝

12𝜇
ℎ2𝑄𝑐ℎ + 

𝑢𝑚 + 𝑢𝑏

2
 

Permanent water flow in the plasma chamber is required to provide the expected low 
temperature. [9] Therefore, the goal of our study was to optimize the design of the 
groove. This optimization of the particular was done starting from a model of the 
chamber used in other sources. The model was designed considering four cylinders: φ 
= 92 mm (chamber inner diameter), φ = 94 mm (water flow internal diameter), φ = 102 
mm (water flow outside diameter) and φ = 104 mm (chamber external diameter), each 
divided in two half cylinders. For each of the two half-cylinders an input, an  output 
and three septa were designed. The domains considered were two, one for water and 
one for the metal (AISI 316L and aluminum 3003-H18) (Figure 3). 

 

Figure 3. The first model, in gray the metal domain and in purple the water 
domain. 
 
For the inlet an initial velocity of the water has been determined by requiring a flow 
rate of 3 liters / minute (0.00005 m3/s) and calculating the section of the input (the input 
to the diameter is 4 mm so the area is 0.0000502 m2). From the relation: 

𝑣 =
𝑄

𝐴
      (1) 

by substituting the calculated values we obtain that the initial speed has to be 1 m/s. 
The initial water temperature was set at 20 ° C.  
Concerning the  mesh, for both domains we have chosen a tetrahedral mesh. In the 
domain of the water the choice was to use a mesh more dense than in the domain of the 
metal. The results obtained in the case of aluminum 3003-H18 show that the 
temperature reaches the maximum value of about 300 °K at the output of water, that is, 
after the water has traveled the half cylinder, it is heated and has lost in part its cooling 
capacity. Nevertheless, this temperature is satisfactory, as we must have a maximum 
surface temperature of the lower chamber of 50°C in order not to damage the magnets 
that are in contact with it. The flow obtained is substantially laminar. Calculating the 
Reynolds number with the expression: 

Re =
v ∗ D

µ
  (2) 

and assigning the values: v=0.35 m/s (the highest in the flow), D = 0.004 mm and 
assuming the value 1.01 *10-6 m2/s for the kinematic viscosity μ of the water, we get a 
Reynolds number equal to 1386 so we are in the field of laminar flow (Re less than 
2300 is laminar flow) (Figures 4 and 5). 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

752



 

 

Figure 4. Velocity speed in the aluminum case. 
 

 

Figure 5. Temperature in the aluminum case. 
Subsequently the simulation has been developed using the AISI 316L steel as metal 
material. The results obtained for the velocity of the water are similar to the case of 
aluminum, while the maximum temperature reached is lower than in the previous case 
(Figure 6 and 7). 

  

Figure 6. Velocity speed in the aluminum case. 
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Figure 7. Velocity speed in the aluminum case. 
 
This temperature decrease is due to the characteristics of the two materials: in fact the 
thermal conductivity of steel (14.6 W/m*K), is lower than that of aluminum (155 
W/m*K); it is a measure of the ability of a material to transmit heat (i.e. the lower the 
value of k, the more insulating is the material). 
The first step has been developed using the COMSOL code, considering a length of the 
chamber of 155 mm. Then the simulation was performed for the actual size of the 
chamber,  that is 655 mm, but as the plasma formation takes place within 360 mm it 
has been decided to simplify the simulation, and then the calculations, considering a 
total length of 360 mm. Another simplification was to divide the plasma chamber into 
4 equal sectors each with an input and an output  (Figures 8, 9, 10). 

 
Figure 8. The mesh in the new model 
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Figure 9. The temperature values in theAISI 316L case. 

 

 
Figure 10. The temperature values in the aluminum 3003-H18 case 
 
An interesting detail is that the Dt between a point near the entrance and a point near 
the water outlet is about 4°C and the average temperature is 24 °C. The maximum 
temperature of 38 °C is on edge (not influential value) as shown in Figure 11a and 11b. 

   
Figure 11a and 11b. The temperature edge. 

 
As in step 1, we have developed the same simulations in the case of another metal 
material, aluminum 3003-H18.  
The results obtained for the water velocity are quite similar to each other (Figure 12). 
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Figure 12. The water velocity values in the aluminum 3003-H18 case 

 
In the plasma chamber the speed values are on average equal to 0.5 m/s and therefore 
we are in laminar regime as the Reynolds number is about 2000. 
Pressure drop was calculated using the expressions of both the distributed and 
concentrated losses. The former is:  

Δp = ρ ∗ ξ ∗
L

D
∗

v2

2
            (3) 

where ρ is the density of water, ξ is the friction factor calculated by means of the Moody 
(using the Reynolds number and the roughness of the material), L is the length of the 
chamber, D the diameter of the duct of water (assumed in this case a size of the water 
domain equal to 4 mm) and v the velocity of water (assumed an average speed of 0.5 
m/s from the simulation): the calculation leads to a Dp of about 0.01 bar.  
For concentrated losses the expression is:  

Δp = β ∗ ρ ∗
v2

2
       (4) 

where ρ is the water density, β is the coefficient of friction equal to 0.5 for the 90-
degree elbow and v is the velocity of the water in different cases. The calculation leads 
to a Dp of about 0.01 bar to the entrance (v = 2 m/s); Dp of about 0.002 bar for the 
output (v = 0.9 m/s) and Dp of about 0.0006 bar in the elbows due to the septum (v = 
0.5 m/s): the sum of all the losses yields a loss of load of 0.023 bar.  

Minimization of the stray magnetic field in the extraction area. 

 
The AISHa magnetic field is provided by a set of four superconducting coils able to 
create a mirror field as shown in fig. 13  with respectively 2.7 T and 1.7 axial field at 
injection and extraction. The forces between the coils have been decreased to 30 tons 
for safe operation at maximum field, in this operating conditions different calculations 
have been performed to minimize the field in the extraction area to avoid unwanted 
effects on beam optics and to minimize sparks in the extraction gap. 
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In order to decrease the magnetic field in this area where the beam is formed an iron 
piece  suitably shaped (see Figure 13) anchored to the extraction flange has been added. 
As you can see from Figure 14 the introduction of such workpiece produces a 
considerable increase of the gradient of the magnetic field which therefore decreases 
significantly in the extraction area for z> 240 mm.  

Figure 13. Iron add dimension 
 

Figure 14.  
 
The presence of the added iron produces a negligible effect both to the hexapole 
magnetic field and to the force acting on the extraction coil . However, it is subject to 
a force superior to 6 tons and this can create problems anchoring, Figure 15 shows the 
force acting on the iron depending from its longitudinal direction, a possible choice 
was therefore to remove 25 mm of iron to achieve  a force of 4.46 tons that can be 
easily contained.  

                                                                                                                                                                                                                                                                                                                                                         
Table 1 
 
Subsequently to further decrease both the weight and the force it was decided to remove 
up to 40 mm from the original part and arrive in this way to 3.3 tons of force, which 
decrease up to 2.2 ton increasing the holes diameter from 104 mm to 164 mm. (tab. 2 
and fig 16). 
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Iron Add -40 mm Force (ton.) 

фint = 104 mm 3.29 
фint = 114 mm 3.18 
фint = 124 mm 3.07 
фint = 134 mm 2.92 
фint = 144 mm 2.72 
фint = 154 mm 2.49 
фint = 164 mm 2.20 
фint = 174 mm 1.89 
фint = 184 mm 1.52 

Table 2.  Force variation function of the diameter variation. 

Figure 15. Force variation function of the diameter variation. 
 
This configuration, albeit even if mechanically valid, was discarded due to static 
problems, in fact there discharges may occur due to the iron shape, therefore it was 
decided  to change their profile (figure 16) and see the table 3.  

Figure 16a and 16b. New profile and iron parte in loco 
 
 

 d Rint R1 R2 Rest 
Fe1 64 81 85 106 124 
Fe2 74 81 85 106 124 
Fe3 84 81 85 106 124 
Fe4 94 81 85 106 124 

Table 3.  Size variations of particular "added iron" 
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In the framework of pressure vessels, the threaded connections are used to connect the 
cover to the body of the containers, or to connect two pipe sections etc. However, the 
speech fact also applies to other cases. On the two the endpoints of the pipe to be 
connected are welded two flanges between which is interposed a more yieldable gasket 
material which serves to ensure the sealing.  
At first the screw are tightened to ensure sealing; then the container is pressurized. To 
effect of the pressure screws are stretched further, while the gasket is download. 
However, a certain load must stay on it to prevent leakage. 
In the phase of pre-tensioning the bolts are stretched by a total force W1 and 
correspondingly the seal is compressed by a force -W1. 
In the step of pressurizing the internal pressure p causes the onset of the force 𝑊2 =

 
𝜋𝐺2𝑝

4
 where G is the mean diameter of gasket; this causes a shift δ2 upwards cover 

compared to the coat. Correspondingly, screws stretch of δ2 and gasket it increases its 
thickness δ2. 
Kb are the force that causes a lengthening unit of the screws (stiffness of the screws) -
kg the force which causes a decrease of unitary gasket thickness (stiffness of the 
gasket).  

 
Figure 17. Flange connection between mantle and cover 
 
To create the screws axial load W1 calculated in the previous section (ie a load of W1/N 
on each screw) must tighten the nuts with the proper tightening torque (popularly called 
tightening torque). 
To calculate this we observe that the torque screw-nut screw is dynamically equivalent 
to a inclined plane. When the nut rotates in the the screwing element is brought from 
the position 1 to position 2 for example. To make this shift must be a force dT 
perpendicular to the axis screw. 

For the balance, and considering that all elements are in the same condition 

𝑇 = 
𝑊1

𝑁
tan( 𝛼 +  𝜑)  

Where the a helix angle of the thread for a screw with pitch p and f friction angle. 
So 

𝑀𝑡 = 
𝐷𝑚

2
 
𝑊1

𝑁
tan𝜑′ 

where f’ angle of friction between the nut and the bearing surface and Dm is the mean 
diameter of the nut (average width between key and nominal diameter).The tightening 
torque is given by the sum of these two partial moments of which the second is 
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completely lost, while the first remains stored in screw as torque. Applying these 
calculations to our system, or the closing flange between the yoke and the plasma 
chamber and considering our values namely a diameter of 250 mm we obtain that the 
minimum number of screws is 12 and with a pressure of 30000 N/cm it is obtained that 
the minimum diameter of the life to be applied is a M14 with a minimum length of 35 
mm. It was subsequently also set a finite element simulation to check the tightness of 
the flange with the assumptions made and the results obtained show that the theoretical 
calculations made were correct and the maximum displacement is 1.08x10-5 m (figure). 

 
Figure 18. Connection flange FEM analisys 
 
 

Conclusions 
 
The optimization of the AISHa plasma chamber design and all mechanical parts have 
been pursued with FEM codes.[8] The parts are currently under construction and the 
source will be assembled in next September at INFN-LNS. 
 
References 

 
[1] L. Celona, G. Ciavola, S. Gammino, L. Andò, D. Mascali - DESIGN OF THE AISHA ION SOURCE 
FOR HADRON THERAPY FACILITIES - Proceedings of ECRIS2012, Sydney, Australia, ISBN ISBN 
978-3-95450-123-654 
[2] S. Gammino et al., Rev. Sci. Instrum. 70, 9 (1999), 3577 
[3]. S. Gammino, G. Ciavola, Rev. Sci. Instrum. 71, 2 (2000), 631 
[4] Felippa C.A., Introduction to Finite Element Methods, lecture notes, Department of aerospace 
engineering sciences of the University of Colorado, Boulder, 2004. 
[5] COMSOL Multiphysics User’s Guide v4.1, COMSOL A B, 2010. 
[6] Lewis R.W., Nithiarasu P. & Seetharamu K.N., Fundamentals of the Finite Element Method for Heat 
and Fluid Flow, New York, John Wiley & Sons, 2004. 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

760



[7] CFD Module User’s Guide v4.1, COMSOL AB, 2010. 
[8] L. Celona et al.  ECR IONS SOURCE DEVELOPMENT AT INFN-LNS – Proceedings of 
ECRIS2014 
[9] F. Noto et al, Optimization of the gas flow in a GEM Chamber and development of the GEM foil 
Stretcher – Nuclear Technology & Radiation Protection, 2014, vol.29 suppl, pp s0-s0,  DOI: 
10.2298/NTRP140202?N 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

761



Entropically Damped Artificial Compressibility for SPH

Prabhu Ramachandran ∗

Department of Aerospace Engineering, IIT Bombay
Powai, Mumbai 400076
prabhu@aero.iitb.ac.in

Kunal Puri
Department of Aerospace Engineering, IIT Bombay

Powai, Mumbai 400076
kunal.r.puri@gmail.com

March 31, 2015

Abstract

The Entropically Damped Artificial Compressibility (EDAC) method of Clausen [2013] is an
interesting alternative to the traditional artifical compressibility technique. We apply the EDAC
method in the context of Smoothed Particle Hydrodynamics. In this work we present preliminary
results for this method. The method is easy to implement in a standard SPH framework. Our
simulations are compared with those of the Transport Velocity Formulation of Adami and Hu
[2013] as well as a standard SPH formulation where necessary.

The results appear very promising and seem comparable to those of the TVF method. Like the
TVF, it does not produce spurious pressure oscillations. Unlike the TVF, which cannot be directly
applied to free-surface problems, the new method has no such difficulty.

Keywords: SPH, Incompressible flow, Artificial compressibility, Entropically Damped Artificial
Compressibility

1 Introduction
The Smoothed Particle Hydrodynamics method has been applied to a wide variety of problems in-
cluding elastic dynamics, compressible fluid flow, viscous incompressible fluid flow, multi-phase
problems etc. For incompressible flows, SPH implementations either resort to a weakly-compressible
formulation using the artificial compressibility technique or use a pressure-based approach as seen
in several incompressible SPH schemes. The difficulty with the incompressible projection based
schemes is the need to solve an implicit problem which poses computational challenges when scaling
up problems to larger sizes and involves increased complexity. The weakly-compressible formulation,
while explicit, faces problems related to unphysical pressure oscillations. The pressure oscillations
are reduced greatly when the Transport Velocity Formulation of Adami et al. [2013] (TVF) is used.
The method introduces a background pressure that serves to reduce tensile instability and reduces
pressure oscillations. In the words of the authors, the method produces “unprecedented accuracy and

∗Address all correspondence to this author.
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stability”. The difficulty with the TVF formulation is that it cannot handle free-surface problems di-
rectly on account of the background pressure. The ability to naturally capture free-surface problems
is a desired feature of the SPH method.

Recently, the Entropically Damped Entropically Damped Artificially Compressible method of
Clausen [2013a,b] (EDAC) has been applied to finite-difference and finite-element schemes. The
method employs a new approach and evolves the pressure in time. This evolution equation eliminates
the need to use the stiff equation of state that is usually employed.

In the present work, we combine the Entropically Damped Artificially Compressible method with
the SPH formulation and the boundary condition of Adami et al. [2012]. This results in a simple set
of equations and produces results that are roughly comparable to that of the TVF. The method can
also handle free-surfaces as it does not require a background pressure. The results for the dam break
problem appear to be good.

We perform simulations for a few classic problems and show that the method produces stable and
accurate results comparable to the best available SPH schemes albeit with much simpler equations
and no additional corrections. To our knowledge this is the first time that this technique has been
applied to the SPH.

2 The Numerical Method
As discussed in Clausen [2013a], the basic idea behind the EDAC method is to introduce an evolution
equation for the pressure, p, instead of an equation of state. The evolution equations for momentum
and pressure are written as,

∂u

∂t
+ u · grad(u) = −1

ρ
∇p+ div(σ), (1)

∂p

∂t
+ u · grad(p) = −ρc2sdiv(u) + ν∇2p (2)

In the equations above, u is the velocity of the fluid, p is the pressure σ represents the deviatoric
part of the stress tensor, cs is the speed of sound (which is set to be a multiple of the maximum speed
of the fluid). ν is the kinematic viscosity of the fluid. The density, ρ is held constant. We start with a
zero pressure and the pressure evolves naturally from the equation (2) above.

3 Numerical Implementation
In order to simulate the equations above with the SPH, the following SPH discretizations are used. The
density, ρ is held constant. The momentum equation is discretized using the standard SPH approach
using Monaghan’s original formulation but without any artificial viscosity,

dui

dt
= −

∑
j

mj

(
pj
ρ2j

+
pi
ρ2i

)
∇Wij (3)

We add a real viscosity based on the Morris formulation. For equation (2) we use the following,

dpi
dt

=
∑
j

mjc
2
s uij · ∇Wij +

mj

(ρi + ρj)

4νpij
(r2ij + ηh2ij)

rij · ∇Wij, (4)

For the boundary conditions, we employ the formulation of Adami et al. [2012].
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4 Results
Using the equations above, we simulate a few standard problems and present the results as compared
with other SPH formulations.

4.1 Dam break
The first test case we consider is the traditional two-dimensional dam-break problem.

Figure 1: Two-dimensional dam-break problem solved with the EDAC-SPH method.

As can be seen, there is much less fluid sticking to the walls on the side and the results are
comparable to those produced by the traditional SPH technique.

We have obtained good results for a variety of other problems like Couette flow, Poiseuille flow,
Lid-Driven-Cavity and the Taylor Green vortex. We are in the process of comparing these results with
other SPH schemes.

5 Conclusions
We have shown preliminary results of a new scheme that combines the EDAC method with SPH.
The resulting formulation is very simple, does not display spurious pressure oscillations, does not
require a background pressure and seems to produce good results for a few test problems. We will
be performing more rigorous tests and will compare the new method carefully with results using the
TVF and the standard SPH.
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Figure 2: Two-dimensional dam-break problem solved with the traditional SPH.
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Abstract 

Different human activities like combustion of fossil fuels, biomass burning, industrial 
and agricultural activities, emit a large amount of particulates into the atmosphere. As 
a consequence, the air we inhale contains significant amount of suspended particles, 
including organic and inorganic solids and liquids, as well as various microorganism, 
which are solely responsible for a number of pulmonary diseases. Developing a 
numerical model for transport and deposition of foreign particles in realistic lung 
geometry is very challenging due to the complex geometrical structure of the human 
lung. In this study, we have numerically investigated the airborne particle transport 
and its deposition in human lung surface. In order to obtain the appropriate results of 
particle transport and deposition in human lung, we have generated realistic lung 
geometry from the CT scan obtained from a local hospital. For a more accurate 
approach, we have also created a mucus layer inside the geometry, adjacent to the 
lung surface and added all apposite mucus layer properties to the wall surface. The 
Lagrangian particle tracking technique is employed by using ANSYS FLUENT 
solver to simulate the steady-state inspiratory flow. Various injection techniques have 
been introduced to release the foreign particles through the inlet of the geometry. In 
order to investigate the effects of particle size on deposition, numerical calculations 
are carried out for different sizes of particles ranging from mm  10to1 . The 
numerical results show that particle deposition pattern is completely dependent on its 
initial position and in case of realistic geometry; most of the particles are deposited on 
the rough wall surface of the lung geometry instead of carinal region.  
 
Keywords: Particle Transport, Particle Deposition, Realistic Lung Airway, Mucus 
Layer, Pollutant Particles. 

1.0 Introduction 

As a result of industrialization and human activities, especially in the developing 
countries, air pollution has significantly increased over the last and current century.  . 
Inhalation and exhalation, either by nose or mouth, are an essential part of the human 
body mechanisms. During the breathing process, we inhale pollutant particulates mix 
with air that can cause fatal disease. In the case of inhalation, our nasal cavities and 
oral airways act as a filter. Most of the inhaled micron particles basically deposit in 
the nasal cavities and oral region during the inhalation process due to inertial 
impaction and strong turbulent dispersion [Feng and Kleinstreuer (2014)]. The 
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remaining particle passes through the trachea and deposit in the bronchi and alveoli 
[Tena and Clarà (2012)].  

Inhalation and exhalation processes have attracted considerable attention to the 

researchers in recent years. Investigation the deposition pattern of inhaled particles 
in the human lung is very challenging due to the complex geometrical structure of the 
human lung [Kumar et al. (2009); Soni and Aliabadi (2013); Weibel (1963b)]. 
According to the Weibels’s book, most likely in 1731, Rev. Stephen Hales first 
studied the elasticity of the air in human lung and proposed a dimension for the 
surface of the human lung [Weibel (1963a)]. The most comprehensive and simple 
human lung geometry was defined by Weibel’s (1963). In case of modelling and 
simulation of particle transport and deposition in the human lung, Weibel’s [Weibel 
(1963b)] lung model is still being used due to its geometric simplicity. Some 
geometrical developments of the idealized lung model have been conducted to 
overcome its complexity [Finlay (2001); Horsfield et al. (1971); Raabe et al. (1976a); 
Raabe et al. (1976b)]. The most commonly used model for foreign particle movement 
and detention in the human respiratory tract is that distinguished by a regular and 
irregular bifurcation pattern [Nowak et al. (2003); Zhang and Kleinstreuer (2004)]. 
As the Weibel’s based human lung geometry model is not realistic. Therefore, in 
order to obtain the appropriate numerical results for particle transport and deposition, 
the CFD analysts now focus on realistic airway models [Ma and Lutchen (2006); Ma 
and Lutchen (2009); Wall and Rabczuk (2008)]. The anatomical based human airway 
models like Computerized Tomography (CT) scan or Magnetic Resonance Imaging 
(MRI) geometrical models are becoming more popular in the current literature.  
 
Inhaled particle deposition in the human lung is mainly caused by inertial impaction, 
Brownian diffusion, gravitational sedimentation and interception [Choi and Kim 
(2007)]. The airborne particle deposition in human respiratory tract is principally 
governed by its shape [Hofmann et al. (2009); Kasper (1982)] and size [Hofmann 
(2011)]. Submicron-particles, which are less than 0.5 µm are initially deposited in the 
human lung by Brownian diffusion [Hofmann (2011)], while larger particles are 
deposited by sedimentation and inertial impaction. Breathing pattern is also 
responsible for particle deposition in human airways. Due to the long residence time 
slow breathing patterns are more effective for sedimentation and Brownian diffusion, 
whereas impaction is favoured by fast breathing pattern[Hofmann (2011)]. [Zhang 
and Kleinstreuer (2002)] have investigated the air flow structure for nanoparticle in 
the upper airway. They have investigated the turbulent effect on the tracheobronchial 
area. Cebral and Summers (2004) have investigated the pressure and flow pattern for 
tracheal and central bronchial in anatomically realistic model and their investigation 
concluded that decreased pressure and increased shear stress in the stenosis part. 
Taherian et al. (2011) have performed the unsteady air flow simulation for a CT scan 
based realistic geometry and have shown the velocity distribution and variation of the 
vorticity in the lung. Farkas and Szöke (2013), first time created the mucus layer on 
their non-realistic geometry to simulate the particle deposition. However, they have 
considered a constant thickness of mucus for all generations which are not 
physiologically correct. From the above review, most of the above work has been 
conducted for non-realistic lung geometry. Moreover, none of them investigated the 
realistic injection properties. 
 
In the present study, we have developed a model for realistic particle transport and 
deposition in human lungs by creating lung geometry directly from the CT scan 
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image obtained from an adult healthy patient. We have also applied realistic injection 
properties to release particles from the inlet and studied the effect of particles’ sizes 
on the deposition.   
 
2. Geometry Generation 

 

In the present study, we have generated the realistic geometry of the human airway. 
There are several steps to generate the geometry from CT scan or MRI data. First, we 
have collected the CT image data from a radiologist from a local hospital and the data 
format is DiCom. The second step is to use AMIRA, the geometry generation 
commercial software to create the 3D geometry. Then, we have imported the 3D 
geometry into another software, GEOMAGIC for surface construction. Finally, 
SOLIDWORKS was used to create the mucus layer inside the geometry.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      
 
 
 
 
 
 
 
 
 
 
 
 
  
Fig. 1(a) CT scan data visualization, (b) Surface rendering and airway visualization, 

(c) 3D geometry of human lung, and (d) mucus layer of the geometry. 
 

Fig. 1(a) represents the visualization of CT scan data and Fig. 1(b) represents the lung 
airway geometry after clearing the raw materials from the geometry. Fig. 1(c) 
represents the 3D human lung geometry and Fig. 1(d) represents the geometry with 
the mucus layer. As we know the mucus layer thickness varies from generation to 
generation, thus we have generated a multi-thickness mucus layer on our geometry.    

(c) (d) 

(a) (b) 
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2. Numerical Methods 

 

The complete 3D geometry is imported in ANSYS 15.0 software for simulation 
purpose. The computational mesh was generated in ANSYS Workbench. A good 
quality unstructured mesh is generated for the geometry with some inflation layers to 
correctly capture the boundary layer. Dense mesh has been created on the bifurcation 
zone where higher velocity gradients are expected. The orthogonal quality of the 
mesh is calculated as 0.61 above the recommended 0.2 value [put ANSYS manual as 
reference]. We have generated an unstructured mesh with 1500000 nodes. The grid 
refinement test is also conducted to obtain the grid independency on numerical 
solution. The numerical solution of particle transport and deposition are carried out 
by Lagrangian particle tracking method. We have used the Lagrangian based Discrete 
Phase Model (DPM), where the air is treated as continuum phase and particle is 
treated as disperse phase. The continuum phase is governed by the Navier-Stokes 
equations and the disperse phase can exchange mass, momentum and energy with the 
continuum phase. In the DPM, the interaction with the continuous phase is 
considered. We have set the mucus layer properties with the density, 998.2 kg/m

3 and 
the viscosity, 0.89 kg/ms. The pressure-velocity coupling and second order pressure 
spatial discretization have been used. The residual convergence criteria are set to 10-

06. Different injection properties have been used to release the particle from the inlet 
surface. The boundary conditions used in FLUENT to solve the particle transport and 
deposition are; the velocity inlet and pressure outlet. The velocity magnitude at inlet 
is considered as 1 m/s and the zero pressure at pressure outlet. A no slip condition is 
set at the wall. The discrete phase model conditions are used as trap as the boundary 
condition type. The boundary condition trap means as soon as the particle will touch 
the wall, it will capture at the wall. 
 
3. Results and Discussion 

3.1 Simulation without Mucus Layer 

In order to investigate the foreign particle transport and deposition, at first we have 
simulated the model without any mucus layer inside the geometry. The simulations 
are carried out for three different particles sizes, m1 , m5  and m10 . The effects of 
particle size on respiratory deposition have been obtained. According to the physics 
behind deposition, larger particle should deposit in the upper airway. Fig. 2(a) 
represents the particle deposition comparison for the three different particles’ sizes. 
One thousand and sixteen particles are released in this simulation and it is observed 
that in the case of m10 particles, 428 particles are deposited in the first generation 
and the rest of the particles have escaped from the simulations. Among the 428 
deposited particles, 159 particles are deposited within the first 100 iterations, which 
represents that most of the particles are deposited in the upper portion of the 
generation. In case of m5  particles, 358 particles are deposited among the 1016 
particles, which is less than m10 particles and the same scenario can be observed for 
the m1 particles. 
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                                       (a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 (c) (d) 
Fig. 2(a): Particle deposition comparison for different sizes of particles, particle 
transport comparison for 2(b) m10 , 2(c) m5 and 2(d) m1 .  
 
Fig. 2(b) represent the particle transport scenario for m10 particles though the two 
daughter branches of the first generation. The diameter of the two daughter branches 
is different and the diameter of the zone 6 is much larger than zone 7. It will be 
almost 1.5 times larger than zone 7. An interesting scenario is that the branching 
pattern of the zone 7 is more vertical than zone 6. As the diameter of zone 6 is greater 
than zone 7, in general, most particles should escape through zone 6. However, 
realistically most of the particles have escaped through zone 7 despite its lower 
diameter. The reason for that is that zone 7 is much more vertical compared to zone 6. 
That is why, larger particle choose this way due to their larger size and inertia. Fig. 
2(c) and Fig. 2(d) exhibit the same scenario for particle transport through the two 
daughter branches.  
In order to get a clear idea about the inspiratory deposition pattern, the deposition 
scenarios for m10  particle are visualized. Fig. 3(a) represents the particle deposition 
pattern for m10 particles. However, for the realistic geometry, we observed that 
most of the particles are deposited in the wall surface instead of carinal region. It 
should be noted that the particles have been released by using the inlet surface nodes. 
The geometrical structure of human lung is not symmetrical and due to its uneven 
surfaces, the geometrical shape is very complex. On the other hand, non-realistic 
geometry is symmetrical in shape and it does not have any curve, bends or wave on 
its wall surface. Moreover, in case of non-realistic geometry, the carinal angle is 045 . 
On the other hand, for the realistic geometry, the carinal angle is found to be more 
than 090 . As we know, large particle are deposited in the upper portion of the lung 
airway and inertial impaction is the main mechanism for large particle deposition. In 
general, all the particles we inhale from the atmosphere follow the air streamline. 
However, during their movement, when any curve, bends or uneven surface appears 
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in front of them, they can’t follow the air stream due to its large inertia. As a result, 
those particles are captured by the wall surface.  

 
 
 
 
 
 
 
 
 
 
                                                                                                                                                  

                                     (a) (b) 
Fig. 3: Inspiratory deposition pattern of m10 particles (a) Injection-I (b) Injection-II 

Fig. 3 (a) shows that a large number of particles is deposited at the very upper portion 
of the trachea. Fig. 3 (b) depicts that less particles are deposited at the upper portion 
of the trachea. Two different injection properties have been used for these two cases 
and the deposition pattern is different for individual injection. The injection-I and 
injection-II contains 1016 and 800 particles respectively and the initial positions of 
the particles are different.  
 
Fig. 4 (a) and Fig. 4 (b) represent the respiratory particle deposition pattern for m5  
particles for different injection. The deposition pattern shows that a large number of 
particles deposited at the two daughter bronchiole as well the parent bronchiole. We 
can clearly see that fewer particles are trapped in the right bronchiole compared to 

m10  particle. If we compare the two daughter bronchioles, then of course larger 
particles are deposited at the right bronchiole i.e. zone 7. In case of realistic lung 
geometry, right branch of the geometry is more vertical than left one. That is why 
most of the particles have a tendency to go through the right bronchiole. As a result, a 
large number of particles are deposited at the right bronchiole. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Inspiratory deposition pattern of m5 particles (a) Injection-I (b) Injection-II 

The inspiratory particle deposition scenario for m1 particles is shown in Fig. 5(a). 
From this figure we can clearly observe that very few numbers of particles are 
deposited at the left bronchiole. The deposition pattern for parent bronchiole is also 
different compare to larger particle deposition. It is interesting to mention that a good 
number of particles are deposited in the upper section of the parent bronchiole. Fig. 

(a) (b) 
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5(b) depicts the particle deposition pattern for different injection. This figure shows 
that fewer numbers of particles are deposited at the upper portion.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Inspiratory deposition pattern of m1 particles (a) Injection-I (b) Injection-II. 

3.2 Simulation with Mucus Layer 

We have also investigated the particle transport and deposition for our lung geometry 
with mucus layer. The particle transport and deposition pattern have been investigated 
for m10 , m5  and m1 particles. We have injected the particles by using the nodes of 
the inlet surface and the numbers of injected particles are 1054. All appropriate 
mucus layer properties have been added to simulate the particle transport and 
deposition. In order to show the deposition pattern, we have collected the trapped 
particle coordinates on the lung wall. After creating the mucus layer inside the 
geometry, the diameter of the inlet surface reduces. As a result, the deposition pattern 
shows a significant difference compared to the case without mucus layer. Fig. 6(a) 
represents the inspiratory particle deposition pattern for three different sizes of 
particles. Fig. 6(a) shows that there is a significant difference between the particle 
depositions for the three different sizes of particles. The graph for m10 particle 
shows that a large number of particles is deposited in the first generation compare to 
two other size particles. 
 
 
 
 
 

 
 
 
 
 
 

(a)                                                        (b) 
 
 
 
 
 
 
 

(a) (b) 
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                                 (c)                                                                (d) 
Fig. 6(a): Particle deposition comparison for different size particle, particle transport 
comparison for 6(b) m10 , 6(c) m5 and 6(d) m1 particle.  
 
Fig. 6(b) represents the particle transport scenario for m10  particles. From the 
figure, we can clearly see that a large number of particles are escaping through zone 
7. As we explained earlier, two daughter bronchioles are not symmetrical and their 
diameters are also different. In this case, zone 7 is the smaller daughter bronchioles 
with small diameter compare to zone 6. In general, due to the large diameter of zone 
6, most of the escaped particle should go through the zone 6. But, in this case, most of 
the particles are escaping through the zone 7 because this bifurcation is more vertical. 
Fig. 6(c) and Fig. 6(d) represents the particles transport scenario for m5  and 

m1 particle respectively.  
 
                                                (b) 

 

 

 

 

 

 

Fig. 7: Inspiratory deposition pattern of m10 particles (a) Injection-I (b) Injection-II 

Fig. 7(a) and Fig. 7(b) represent the respiratory particle deposition scenario for two 
different injection properties. From the above figure, we can clearly see that the 
deposition pattern is different for different injection. Fig. 7(a) shows that a good 
number of particles are deposited at the top of the carinal angle. On contrary, Fig. 7(b) 
shows that only couple of particles is deposited at the top of the carinal angle.  
 
4. Conclusion 

 

In order to obtain the accurate numerical results of particle transport and deposition in 
human lung, it is really important to carry out numerical simulations for realistic lung 
geometry. To investigate the effects of the particle initial position on deposition, 
different injection techniques have been used and our results suggest that particle 
deposition is completely dependent on its initial position. The numerical simulations 
also suggest that the complex geometry of the airway plays an important role in the 
respiratory deposition. The numerical results also conclude that most of the particles 
are escaping through the right daughter bronchiole. In order to obtain the effects of 
mucus layer on deposition, we have carried out the simulation for two cases- with 
mucus layer and without mucus layer. We have drawn the deposition graph based on 
number of iterations. The particle deposition comparison graph shows a significant 
difference between these two cases. The deposition efficiency noticeably increases 
for m10 particle in case of mucus layer. The following conclusion can be drawn 
from the above simulations: 

i) The particle deposition pattern is dependent on its initial injection position.  

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

773



 
 

ii) Respiratory geometry plays an important role in case of deposition and the 
deposition pattern is dependent on lung geometry.  

iii) Most of the larger particles have escaped through the right bronchiole in spite 
of its small diameter.  

iv) The deposition efficiency significantly increased for larger particle in case 
mucus layer.  

References 
 
Choi, J.-I. & Kim, C. S. 2007. Mathematical Analysis of Particle Deposition in Human Lungs: An Improved 

Single Path Transport Model. Inhalation toxicology, 19, 925-939. 
Feng, Y. & Kleinstreuer, C. 2014. Micron-Particle Transport, Interactions and Deposition in Triple Lung-Airway 

Bifurcations Using a Novel Modeling Approach. Journal of Aerosol Science, 71, 1-15. 
Finlay, W. H. 2001. The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction, Academic Press. 
Hofmann, W. 2011. Modelling Inhaled Particle Deposition in the Human Lung—a Review. Journal of Aerosol 

Science, 42, 693-724. 
Hofmann, W., Morawska, L., Winkler-Heil, R. & Moustafa, M. 2009. Deposition of Combustion Aerosols in the 

Human Respiratory Tract: Comparison of Theoretical Predictions with Experimental Data Considering 
Nonspherical Shape. Inhalation toxicology, 21, 1154-1164. 

Horsfield, K., Dart, G., Olson, D. E., Filley, G. F. & Cumming, G. 1971. Models of the Human Bronchial Tree. 
Journal of Applied Physiology, 31, 207-217. 

Kasper, G. 1982. Dynamics and Measurement of Smokes. I Size Characterization of Nonspherical Particles. 
Aerosol Science and Technology, 1, 187-199. 

Kumar, H., Tawhai, M. H., Hoffman, E. A. & Lin, C.-L. 2009. The Effects of Geometry on Airflow in the Acinar 
Region of the Human Lung. Journal of biomechanics, 42, 1635-1642. 

Ma, B. & Lutchen, K. R. 2006. An Anatomically Based Hybrid Computational Model of the Human Lung and Its 
Application to Low Frequency Oscillatory Mechanics. Annals of biomedical engineering, 34, 1691-
1704. 

Ma, B. & Lutchen, K. R. 2009. Cfd Simulation of Aerosol Deposition in an Anatomically Based Human Large–
Medium Airway Model. Annals of biomedical engineering, 37, 271-285. 

Nowak, N., Kakade, P. P. & Annapragada, A. V. 2003. Computational Fluid Dynamics Simulation of Airflow and 
Aerosol Deposition in Human Lungs. Annals of biomedical engineering, 31, 374-390. 

Raabe, O., Yeh, H., Schum, G. & Phalen, R. 1976a. Tracheobronchial Geometry: Human. Dog, Rat, Hamster. 
Raabe, O. G., Yeh, H.-C., Schum, G. & Phalen, R. F. 1976b. Tracheobronchial Geometry: Human, Dog, Rat, 

Hamster. 
Soni, B. & Aliabadi, S. 2013. Large-Scale Cfd Simulations of Airflow and Particle Deposition in Lung Airway. 

Computers & Fluids, 88, 804-812. 
Tena, A. & Clarà, P. 2012. Deposition of Inhaled Particles in the Lungs. Archivos de Bronconeumología (English 

Edition), 48, 240-246. 
Wall, W. A. & Rabczuk, T. 2008. Fluid–Structure Interaction in Lower Airways of Ct‐Based Lung Geometries. 

International Journal for Numerical Methods in Fluids, 57, 653-675. 
Weibel, E. R. 1963a. Chapter I - Introduction. In: WEIBEL, E. R. (ed.) Morphometry of the Human Lung. 

Academic Press. 
Weibel, E. R. 1963b. Morphometry of the Human Lung. 
Zhang, Z. & Kleinstreuer, C. 2004. Airflow Structures and Nano-Particle Deposition in a Human Upper Airway 

Model. Journal of computational physics, 198, 178-210. 
Zhang, Z. & Kleinstreuer, C. 2002. Transient Airflow Structures and Particle Transport in a Sequentially 

Branching Lung Airway Model. Physics of Fluids (1994-present), 14, 862-880. 
 
 
 
 
 
 
 
 
 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

774



The influence of the parameter h and a new modified method of Homotopy

analysis method for initial value problems

†Z. Wang¹, *L. Zou2,3, and Y.P. Qin1

1School of Mathematical Sciences, Dalian University of Technology, China.
2School of Naval Architecture, Dalian University of Technology, China.

3State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, China.

*Presenting author: lizou@dlut.edu.cn
†Corresponding author: wangzhen@dlut.edu.cn

Abstract
In this paper, we pay more attention to the embedding parameter h, which has an influence on the
convergence region of solution series in Homotopy analysis method (HAM). We use some
theorems to give the concrete influence and proof. Then we introduce a new modified method of
HAM called the Piecewise homotopy analysis method (PHAM). Futhermore, examples such as
NLS equation, Ricatti equation and Duffing equation are presented to illustrate the main results.
Keywords: Homotopy analysis method; the convergence region; Cauchy-Kowalevskaya theorem;
Piecewise homotopy analysis method

Introduction
In 1992, Liao [1] introduced a powerful method known as the Homotopy analysis method (HAM)
to solve the nonlinear problems. Compared with perturbation techniques, on one hand, the validity
of HAM is independent of whether or not there exist small parameters in the considered equation.
And on the other hand, HAM has an embedding parameter to control the convergence region of the
series, namely convergence-control parameter. That is to say, we can adjust and control the
convergence region of the series by assigning the convergence-control parameter a proper value. In
recent 20 years, this method has been successfully applied to solve many types of nonlinear
problems [2-6]. In these papers, absolutely all of them note that the convergence region of solution
series depend upon the convergence-control parameter [7]. For some special cases, Liao only shows
some special equations' convergence region, such as Ricatti equation, Blasius equation [2] and so
on. Liu [8] make contributions to giving the essence of the generalized Taylor theorem, which is
the key of HAM. However, the influence that the closer the value of the convergence-control
parameter is to zero, the larger the convergence region is to infinite usually known as one common
things without giving a strict proof.

Inspired by Abdelrazec's [9] idear to prove the convergence of the Adomian decomposition method,
we aim to the convergence-control parameter to show the detail influence and verify it on the NLS
equation with cubic nonlinearity. On the basis of the convergence of HAM, we propose a new
analysis method called Piecewise homotopy analysis method. To our surprise, this method has a lot
of benefits than HAM under the application of some examples.

Mathematical Formulation

Consider the abstract initial-value problem








fu
tqtNqtLthqHtuqtLq

)0(
,0))],,(()),(()[()](),([)1(

0

0 
(1)

where the operator L is linear and N is nonlinear, N(u) is analytic near the initial data f . Without

loss of generality, we take
t

= L

 , f = (t)u0 , 1- = H(t) , the part of 0 >t in formula (1) could be

transformed into
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Simplify the above formulation, we have
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with fq ),0( , where
1


qhq
hqm . Moreover, Eq. (2) could be reformulated as
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with fq ),0( .

Convergence Analysis

Lemma (Cauchy’s estimate). Suppose that )(t is differentiable in Tt:R 0＜ tt , and

to any  T0,t̂ , there exist a 0 > M , such that Mt )( on tttC ˆ: 0  , then
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Proof. From the Cauchy integral formula, we obtain
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Theorem 1 (Cauchy-Kowalevskaya). Suppose )(t is the exact solution of Eq.(2), < m , then
there exists a  0 > τ such that R → τ][0, :u is also an analytic real function.
Proof. As )N( is analytic near f , < m , so )(2 Nm is also analysis near f . By Cauchy’s
estimate, there exist 0 > ba, such that

0,)(
!

12  k
a
bf

k
m k

k , (4)

where )(N
k make the sense of the Fréchet derivative, it means that )(')(  NN  ,

)('')(2  NN  , ... The taylor series of )N( at f converges when a < |-| f . What’s more, if
 |-|r f ,we have
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  .

Consider the majorant function g(r) , it is obviously that

0),0(
!

1)(
!

1
 kg

k
mfN

k
m k

r
k
 . (5)

We get the initial-problem (2)’ majorant problem which is given by
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where 0 >r . The majorant problem (6) is a simple ODE with the exact solution

t
m
abaatr 2)( 2  .

It is clear that r(t) is analytic on )
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 . According to the comparison principle, if (t) suit Eq.

(3), then
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The taylor series of the majorant problem’s solution r(t) absolutely converges for all m
2b
a< |t| . In

order to prove  (t) is also analytic in τ)[0, t  , where
122 


qhq
hq

b
am

b
a , we must to prove

1),0()0(  krkt
k
t  .

Suppose that’s right, then the taylor series for  (t) has the majorant series. According to
Weierstrass M-test, consequently, it converges. First we prove the bound above by computing the
following formulas for k = 1,2,3,
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As a result,

),0())0(())0(('))0(('))0(())0(())0((''

))0(())0(('))0(('))0(())0(())0(('')0()0(

),0())0(())0(('))0(())0((')0(

),0())0(())0(()0(

3

33

22

rrgrgrmgrgrgrmg

NNNmNNNm

rrgrmgNNm

rrmgNm

t

tt

tt

tt















Generally speaking, for all 0 k  ,
)))((()()1( tNmPt k

k   ,
where )))((( tNPk  is a polynomial of N , and its Fréchet derivatives up to the kth-order with
positive coefficients. In consequence, we have

),0()))0((()))0((()0( )1()1( rNmPNPm k
tkk

k
t

  
So far, this bound have already concluded the proof.

Theorem 2. For the formula

12
)(




qhq
hq

b
ah , (7)

the closer the value of h is to zero, the larger the convergence region τ(h) is to  .
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Proof. As 0 > τ(h) , we have

)(0, ∪ )
q
1- ,1( h  .

Eq. (7) equivalent to

)11(11

1
2

)(

qh
b
ah


 , (8)

From Eq. (8), we have the conclusion for the convergence region τ .

(i) the closer the value of h is to  , the closer the convergence region τ is to
b
a
2

.

(ii) the closer the value of h is to
q
11 , the larger the convergence region τ . Eespecially,

when -1 → q , that is, -0 →h and  → τ .
The proof has been finished in (ii) and the conclusion can be showed in Figure 1.

Figure 1. Take different value of 0.8 0.4,=q with 1,=b2,=a we find the closer thecorresponding

value of
q
11 is to 0.25- 1.5,- , the closer τ is to  .

HAM for NLS Equation

Some nonlinear equations are often presented as








.)0(
,0),()(

fu
tuNuL

(9)

For example, consider the following continuous NLS equation

,0,
2
1)( 2  tuuutiu xx (10)
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where  t)u(x, is an amplitude function with the property of u u =u 2 , this equation
usually called NLS equation with cubic nonlinearity. Obviously, the equation fits to the
above abstract formulation (9) with

uuiuiuN x
22

2
1)(  .

Do the transformation itF(x)e = t)u(x, , then use u(t) instead of F(x) . Moreover, take
the initial data 0 = (0)u 1, = u(0)  , we obtain
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The exact solutionof (11) is  sech(t) . It is straightforward represent
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under the set of base functions
.0,2,4,...} =k ,{t k

With the aid of the Eq. (11) and under the rule of solution expression,we choose the initial
approximation

1, = (t)u0

and the auxiliary linear operator
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with 1 = q)(0, . According to the above conditions, we have the zeroth-order deformation equation
)),(()()](),([)1( 0 qtthqHtuqtLq   (13)

From Eq. (13), we know (t)u = (t,0) 0 and u(t) = (t,1) when q = 0 and q = 1. With respect to the
embedding parameter q, we define
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and q)(t, can be expanded in Taylor series
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Define the following vector
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Differentiating Eq. (13) k times with respect to q, then take q = 0 and dividing by k!. At
last, we get the kth-order deformation equation
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with the initial condition 0),(k 0= (0)u1, = (0)u k0  where
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According to the both of the rule of solution expression and the coefficient ergodicity, the
corresponding auxiliary function should be determined uniquely

1. = H(t)
Then we successively have
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According to the formula 





0

)()(
k

k tutu , u(t) could be obtained and as is shown in Figure 2.

Figure 2. Take different value of 0.25- 0.5,- 0.75,- -1,=h , we find the value of h is closer to 0, the
corresponding graph is more fit with the graph of the exact solution.

Piecewise Homotopy Analysis Method

Considered the graph of h = −1 from Figure 2, we find the homotopy analysis solution are very
closed to the exact solution in [0,1] but away from the exact solution in [1,4]. In generally,compare
the approximate solution with the exact solution for any given value of h, we can choose a t0, such
that the homotopy analysis solution and the exact solution be overlap for any  ]t[0, t 0 in an
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negligible error, but be away for ],[t t 0  . Now, conclude the idear of Piecewise homotopy
analysis method: First, we can get the homotopy analysis solution of one nonlinear equation with
the initial guess solution (t)u0 , here we assume the approximate solution is (t)a0 with the starting
point (0, (t)u0 ), then we can obtain the graphs of the homotopy analysis solution (t)a0 and the exact
solution. Second, we can choose a point 0t on the overlap section, the part  ]t[0, t 0 is to be
preserved because the homotopy analysis solution (t)a0 is absolutely equal to the exact for any

 ]t[0, t 0 in an negligible error. Third, we choose the point ))(ta,(t 000 as the starting point and use
HAM to the nonlinear equation again to get a new analysis approximate solution (t)a1 and its graph.
We can find a point ) t(>t 01 on the overlap section between the new approximate (t)a1 and the
exact solution’s graphs, then keep the part ]t,(t t 10 for the same reason.

), t(>t), t(>t), t(>t 342312 ... and (t),a(t),a(t),a 432 ...would be find after repeat the above step again
and again, where 0,1,2,...} =k |{t k is not unique. At last, the Piecewise homotopy analysis solution

 a(t) could be obtained as the following form.
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To calculate conveniently, we often choose the distance of  t k and 1+kt as a small and
constant real number, and this number is called the tep size, d. That is, 0,1,2,....=k ,t- t= d k1+k The
detail answer is that, 1)d +(k  =t2d,..., =td, =t k10 ,.... In this case, the Piecewise homotopy analysis
solution a(t) could be represented as
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Piecewise Homotopy Analysis Method for Ricatti Equation

Consider the Ricatti equation,
,0),(1)( 2  ttutu (14)

with initial condition u(0) = 0. The exact solution of (14) is u(t) = tanh(t).

For simplicity, we let h = −1 and just take 4th-order homotopy analysis solution 3

3
1- t ≈ u(t) t after

using the HAM to Eq.(14) with  t= u0 , because the graph of the approximate solution 3

3
1- t t and
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the exact solution tanh(t) has already overlap in [0,0.5] , that is to say, [0,0.5] is a valid interval for
Ricatti equation. As is showed on Figure 3(a).

Figure 3. (a-f): the red line is the figure of tanh(t), 3 ≤ t ≤ 0 . (g):the point of circle is the exact
solution tanh(t), the blue and green line is the 4-th order approximate solution a(t) on divided
sections with 3.0 =t2.5, =t2.0, =t1.5, =t1.0, =t0.5, =t 543210 .

In generally, use the HAM, from Liao’s book [2], we know the kth-order deformation equation ,

])1()[(
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0
111 




 

k

j
kjkjkkkk uuuthHuu  

we can get u(t)’s 4th-order homotopy analysis solution under the initial data 0u .
4
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32
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2
000 )tu

3
2+u

3
5-(u +)t

3
1-u

3
4+(-u +)tu -(u +)t u - (1 +u  (t)a  (15)

with h = −1, H(t) = 1 near t = 0. Note that u0is an undetermined initial data. It can be easily find that

0a (t) = 3

3
1- t t when 0 =u0 . Then we use the Piecewise homotopy analysis method.

Take 0.5 = t0 , we know the 4th-order Piecewise homotopy analysis solution is (t)a 0 on [0,0.5];
take 1.0 =t1 , the 4th-order Piecewise homotopy analysis solution is (0.5)a=u01 00

| 0.5)-(ta = (t)a on
(0.5,1]. In generally, take 1)+0.5(k =t k , we can get the 4th-order Piecewise homotopy analysis
solution (t)a k on (0.5k,0.5(k + 1)].
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By the Piecewise homotopy analysis method, u(t)′ s 4th-order Piecewise homotopy analysis
solution a(t) is
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The figure could be obtained in ][0, t  with the values of 1) +0.5(k =t1.0,..., =t0.5, =t k10 ,... as
showed on Figure 3(g).

Table 1. Comparisons of t)a(t)/tanh( , (t)'(t)/tanh'a and (t)''(t)/tanh''a with different
values of t.

Error analysis: We know that the solution of HAM is analytic and the Piecewise homotopy analysis
solution a(t)’s accurate is  )O(0.54 when 0 =u0 , or  )O(0.53 when 0 =u0 . The first-order
derivative of the approximate solution a(t)’s accurate is  )O(0.53 . when 0 u0  , or  )O(0.52 when
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0 =u0 . The second-order derivative of the approximate solution a(t)′s accurate is  )O(0.52 when
0 u0  , or  )O(0.51 when 0 =u0 . All of those is showed on Figure 4, and the graphs of

(0.5,1.0] t (t),''a(t),'aa(t),  are showed on Figure 4.

Table I shows that the error of a(t) is satified with the conjecture. For instance, when -0.5 =t , the
error between a(t) and tanh(t) is )0.5 ≤0.003784( 3 , the error between a(t) and tanh(t) is

)0.5 ≤0.036448( 2 , the error between a(t) and tanh(t) is )0.5 ≤0.273138( 1 ; when -1.0 =t , the error
between a(t) and tanh(t) is )0.5 ≤0.0006476( 4 , the error between a(t) and tanh(t) is

)0.5 ≤0.017533( 3 , the error between a(t) and tanh(t) is )0.5 ≤0.119422( 2 , and so do the others value
of t. Moreover, the errors of 0,1,2. =n ),(ta (n)  is smaller than the errors of 0,1,2. =n ),(ta -(n)

Figure 4 shows the errors in (0.5,1.0]. From the graph, we find that the larger value of t, the bigger
error of every (t)''a(t),'aa(t), . And of course, to any (0.5,1.0] t  , the error of a(t) is smaller than
the error of (t)'a and the error of (t)'a is smaller than the error of (t).''a

Figure 4. From left top to bottom, the middle two lines is the exact solution and the approximate
solution, whose precision is 40.5 ; the first two lines is the first-order derivative of the exact solution
and the approximate solution, whose precision is 30.5 ; the last two lines is the second-order
derivative of the exact solution and the approximate solution, whose precision is 20.5 .

Piecewise Homotopy Analysis Method for Duffing Equation

Let’s consider the following Duffing equation as an example,

,0,0
1 2

3




 t
u
uu

(16)
with initial conditions A = u(0)0, = (0)u  . Clearly, Eq.(16) can be deformed into

0, =u +uu + u 32 (17)
In order to use the Piecewise homotopy analysis method, we should apply the HAM to Eq.(17) in
the first place.

The zeroth-order homotopy equation is
q)](t,hqH(t)N[ = (t)]u - q)(t,q)L[- (1 0  (18)

with A = q)(0,0, = q)(0,  ,where
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q).(t, + q)(t,q)(t,+ q)(t,= q)](t,N[ 32  
Take

1 = H(t)1,- =h ,
t

= L,(t)qu+ (t)u = q)(t, 2

2

0k

k
k0 








into Eq. (18), then differentiating the Eq. (18) k times with respect to q and dividing by k! at last,
we obtain the kth-order deformation equation


1-k

0j=

j

0=i
kj-1-ki-jii1-k1-kkk ).χ - (1 +u)uu +u(-u - =u χ -u 

u(t)’s mth-order homotopy analysis solution is





m

k
k tuta

0
0 ).()(~

Figure 5. The rhombus points are Eq.(16)’s 4th-order Piecewise homotopy analysis solution (t)a~0 ,
the red line is the 4th-order homotopy analysis solution (t)a~0 ); the cycle points are the first-order
derivative of (t)a~0 , the green line is the first-order derivative of (t)a~0 . From the above equations,
we know (t)a~0 is only based on  (t)u0 and m . Of course, we always want to take a big value of m
to get a better (t)a~0 . Due to the limitations of the paper, we get the 4th-order (t)a~0 with initial data

bt + a =u0 .

4th-order (t)a~0 homotopy analysis solution with the initial data bt + a =u0 is

17916815927

642829735
0

t)b
56576000

211( +atb
3328000

211 +)tb
1108800

271 +ab
416000

211( +          

......+           

b)t3a
6
7- ba

6
5 + ba

2
1 - ba

2
3( +)ta

2
1 +a

2
1 -a

2
1 -a

2
1( +bt  + a = (t)a~

.

The first initial data A = u(0)0, = (0)u  can be obtained when a = 0,b = A, and in this situation,

1791591379

11979757553
0

tA
56576000

211+tA
108800

271+)tA
124800

11-A
3360

11(+  

)tA
110

1+A
3080

9(-+)tA
72
1-A

480
1(+tA

42
1+tA

20
1-At = (t)a~

(19)

According to the above 4th-order homotopy analysis solution (t)a~0 , we can use the Piecewise
homotopy analysis method to solve Eq. (16). Here we also take 1)+0.5(k =t1.0,...,=t0.5, =t k10 ,...
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to get the different initial data of the corresponding intervals, then we can obtain the 4th-order
Piecewise homotopy analysis solution (t)a~0 of the corresponding intervals. As is showed in figure 5.

Figure 5 shows the comparison of Eq.(16)’s 4th-order Piecewise homotopy analysis solution (t)a~0

and 4th-order homotopy analysis solution (t)a0 on [0,100], and the comparison of the two
solution’s first-order derivative on [0,100] when A=0.5.

Conclusions

In this paper, we first prove that the closer the value of h(< 0) is to zero, the larger the convergence
region is to  for initial-value problems. Based on the convergence, another analysis method
called Piecewise homotopy analysis method is proposed to solve nonlinear equations.

Compared HAM with Piecewise homotopy analysis method through two examples, we find the
latter has the following characteristics: First of all, Piecewise homotopy analysis method has all the
characteristics that HAM has. Second, Piecewise homotopy analysis method could get a better
solution with a relatively small value of m than HAM for large t , it over comes a shortcoming in
HAM that the farther point’s approximation effect is not as good as the point near the initial point,
and for this reason the calculations are reduced to get the same accuracy of large t. Moreover,
Piecewise homotopy analysis method not only has a higher accuracy than HAM, but its derivatives
have an acceptable accuracy. In addition, Piecewise homotopy analysis method can solve equations
with arbitrary initial data, which is depend on the step size. At last, a higher accuracy can get by
shortening the tep size.
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A new Large-Acceptance Forward Angle Spectrometer (Super BigBite) is under development at 
JLab/Hall A to optimally exploit the exciting opportunities offered by the 12 GeV upgrade of the 
electron beam. The tracking of this new apparatus is based on the Gas Electron Multiplier (GEM) 
technology, which has been chosen to optimize cost/performance, position resolution and meet the 
high hits rate (>1 MHz/cm2). 
The first GEM detector were designed, built and tested, during different periods, at the DESY test 
beam facility in Hamburg, by using an electron beam with an energy from 2.0 to 6.0 GeV. In 
particular, different chambers, with a dimension of 40x50 cm2, were equipped with a new 
implementation of the APV25 readout chip. Measurements were performed at different impact 
points and angles between the electron beam and the plane of the GEM chambers. 
In this report we present the technical characteristics of the detector and comment on the presently 
achieved performance. 
Keywords: GEM Detector, Tracker. 
 
 
INTRODUCTION 
The Jefferson Laboratory [1] (JLab) is one of the most important experimental facility providing a 
multi GeV, high intensity, longitudinally polarized, electron beam. The laboratory is undergoing a 
major upgrade of its CEBAF electron beam and experimental halls. In late 2013, CEBAF will 
deliver electron with energy up 12 GeV (twice the present limit) with excellent intensity (up to 100 
µA) and longitudinal polarization (up to 85%). In order to take advantage of the new scenario, the 
equipments of the 3 existing experimental Halls are under upgrading to optimally exploit the 
opportunities of the new beam. In particular members of Hall A collaboration are developing a new 
reconfigurable spectrometer, the Super BigBite (SBS [2], Fig. 1), featuring very forward angle 
(down to 7 degree), large momentum (2-10 GeV/c) and angular (64 mrad) acceptance, high rate 
capability (1 MHz/cm2) and very high luminosity environment (up to 1039/(s·cm2)). The new 
spectrometer will consist, in its full configuration, of a dipole magnet with field integral up to 3 T·m 
(it will operate at about 2 T·m), a primary charged particle tracker (first tracker), 2 identical proton 
polarimeters (made of a Carbon analyzer and large tracker), and an hadron calorimeter. SBS will 
initially serve 4 experiments [3] dedicated to the study of the nucleon structure in terms of elastic 
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electromagnetic form factors at high 4-momentum transfer Q2 up to 15 GeV2 and of transverse 
momentum distributions of the quarks in the SIDIS (Semi Inclusive Deep Inelastic Scattering) 
region. The tracking systems of SBS will be mainly based on GEM chambers. In the next section 
the main features of the SBS tracker and of the GEM detector will be presented and finally the 
preliminary results of the test performed at DESY will be discussed. 
 

 
Figure 1. Schematic layout of the SBS Spectrometer. 
 
SBS TRACKER AND GEM DETECTOR 
 
The SBS tracking system is made of three stations. The primary (front) tracker, placed just after the 
dipole momentum analyzing magnet, will consist of six large area (40x150 cm2) and high resolution 
(~70 µm) GEM chambers, for a total tracker length of about 50 cm. Each chamber is made by 3 
adjacent GEM modules of 40x50 cm2 active rectangular area, for a total  of 18 modules. It is 
designed to be capable to track accurately particles emerging from the electron scattering in a large 
background of soft photons (~0.5 MHz/cm2) and MIPs (~0.2 MHz/cm2). The primary tracking will 
be reinforced by combination with two small (10x20 mm2) planes of silicon µstrips placed in 
proximity of the target. The other stations are meant to track particles after a polarization analyzer 
wall and will require less accuracy. The primary tracker is under the responsibility of INFN groups. 
GEM technology [4] has been chosen to optimize cost/performance, position resolution and meet 
the high rate (>1 MHz/cm2)[5]. The single module is made of 3 GEM foils and double layer x/y 
strips readout with 400 µm strip pitch (figure 2). The 8 mm wide mechanical frame incorporates 
high voltage feeding protection resistors and gas inlet/outlet holes. The signals from each triple 
GEM module are read out in two coordinates through COMPASS-like [6] strip conductors planes. 
The front-end electronics [7] (FE) for the ~100K channels of the tracker is based on the APV25 [8] 
chip, successfully used in the LHC experiment CMS. The APV25 is a serial output analogue ASIC 
running at 40 MHz. The FE cards, each with 128 channels, are placed around the GEM module. 
Custom backplanes are used to distribute power and control to the FE cards and to collect the 
analogue outputs. 
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Figure 2. Fully equipped GEM module. 

 

In Figure 2 a fully equipped 40 x 50 cm2 GEM module prototype setup under test at DESY is 
shown. The module is equipped with the APV25 electronics and 18 front-end cards are located 
behind the 4 rectangular backplanes that sit along the 4 sides of the module. During the test, a gas  
mixture of Ar (70%) and CO2 (30%) has been used and HV has been powered by the first version of 
the HV-GEM system [9] providing 7 independent HV levels. Moreover, precise tracking has 
performed by small silicon strip detectors located before the GEM. 
The test has been performed in the T22 DESY Test electron/positron beam area [10]. The test beam 
is originated from the lepton synchrotron DESY II by converted bremsstrahlung on carbon fiber 
target. The energy of the beam varies between about 1 and 6 GeV/c with typical intensity of 1000 
particle/( s·cm2) (divergence is about 2 mrad).  
 
 
DATA ANALYSIS AND DISCUSSION 

 

In this section we present preliminary results of data analysis performed on about hundreds of beam 
runs obtained by using three GEM chamber prototypes with a dimension of two of 40x50 cm2. All 
chambers were readout by the APV electronics which were under development at the same time. 
During the test, different configuration have been used: energy of the electron beam (from 2.0 to 6.0 
GeV), HV settings, angle between the beam and the plane of the chamber and position of the 
chamber with respect to the beam. Moreover, in order to have pedestals, without beam runs were 
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acquired. 
 

  

 
Figure 3. Single electron signal in the x-direction. 

 

A single signal in the x-direction is shown in figure 3: it is clearly visible at about strip #400 and it 
is obtained after the pedestal subtraction. By using APV 25 chips, it is possible to register different 
parts of the signal (every 25 ns), event by event. The shape of the signal was fitted by using the 
formula: 
 
   
    
 
 
in which τ1 and τ2 are the slope and falling time of the signal, respectively, t0 is the stop time and  
A is the Amplitude (see figure 4). 
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Figure 4. Signal shape: time is in the x-direction and ADC in the y-direction, respectively. 
 
Adjacent firing strips are grouped in clusters and both number of clusters (figure 5) and number of 
strips (figure 6) of each cluster was evaluated. In both cases, distributions are consistent with the 
data from COMPASS GEM characterization [11]. 
 

 

 
Figure 5. Number of clusters. 

 

 

 
Figure 6. Number of strips on each cluster. 
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Figure 7. Schematic layout of the 3 chambers. 

 

The schematic layout of the 3 chambers during the test is shown in figure 7, in which chamber #0, 
#1 and #2 have an area of 40*50 cm2.  In order to select the single events of a run, we check if there 
is a cluster on each chamber in the x-direction. Each cluster provides the hit position Pn(Zn,Xn) and 
sigmaN, where n is the index of the chamber. By using two points, for example P0(z0,x0) and 
P1(z1,x1), a straight line X = a*Z + b is reconstructed in the two-dimensional space (a and b are 
obtained by a linear fit). Finally, we consider P2 (x2,y2) and if  lx2 –az2 –bl<σ2 than the signal of the 
3 chambers belongs to the same particle otherwise it is rejected. As told before, we have used 3 
chambers and an event is good if there is a cluster in all chambers otherwise it is rejected. Finally 
we define efficiency the ratio between the number of good events and the total number of events 
given by the trigger. In particular we have found an efficiency of about 90%. 
 
CONCLUSIONS 
 
The main purpose of the test was to verify the overall functionality of the main solution adopted in 
the first GEM prototype under simplified beam conditions. Both GEM hardware and readout 
electronics were under early development and therefore final results on efficiency and chamber 
resolution were not very indicative. Anyway, the GEM chambers operated fairly stably during the 
test and the preliminary results show reasonable indications of the general validity of the adopted 
solutions for the distribution of the collected charge. The data analysis also pointed out some critical 
aspects to be further investigated.  
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ABSTRACT 
A probabilistic structural analysis of an experimental Composite Crew Module (CCM) has been 
performed using the most current Orion Crew Module design loads. The purpose of the analysis was to 
quantify the risk of failure for different factors of safety in response to uncertainties in the design 
variables.  
 
The CCM was found to be very safe with ample margin of safety and a low probability of failure.  As a 
further analysis activity, the loads were scaled up and the composite material’s strength was scaled down 
to assess a bounding scenario; still the design was found to be safe. 
 
This analysis shows that for given factor of safety and uncertainty in the design space, the probability of 
failure associated with the design can be significantly different. Further, designing structures based on 
factor of safety without quantifying the influence of uncertainties in the design variables can lead to 
structures with unknown risk.  
 
KEY WORDS:  Composite Analysis, Probability of Failure, Composite Crew Module, Space Vehicle, 
Composite Failure Theories Applications 

 
INTRODUCTION 
NASA is evaluating the use of composite materials for building its next generation crew exploration 
vehicle (CEV) [Kirsch 2011]. In addition, NASA is interested in assessing the applicability of 
probabilistic methods for developing reliability based designs of components, structures and systems 
made from composite materials. For these two reasons, NASA initiated a task to probabilistically analyze 
the composite material that was developed for the new crew module. This paper describes a procedure for 
estimating the reliability of the CCM structure given various missions.  
 
Most design practices use deterministic analysis combined with factors of safety (FOS) to provide a 
margin between the assumed peak load and a mean failure point. Unfortunately, this approach does not 
provide any information on the potential failure rate or reliability of the system. Factors of safety do not 
provide any information which relates the loading range relative to the structural allowable range. In 
reality, there is statistical scatter in both the loading variables and the structure’s ability to resist those 
loads. Hence designs using deterministic analysis combined with FOS can lead to an overly conservative 
design with excess weight and cost or under design with unknown magnitude of risk.  
 
Probabilistic analyses quantify the effect that uncertainties in the input variables have on the response 
variables. As a result, the probabilistic analyses provide quantitative information to enable designers to 
either calculate a realistic risk or the actual FOS in an existing design. Thus the designer can improve the 
design by either selecting a predetermined risk or adjusting the FOS to meet the predetermined risk.  The 
authors [Nagpal et al 2010 and Pai 2008] have used probabilistic approaches in quantifying probability of 
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failure and performing sensitivity analyses of different structural problems and furthermore demonstrated 
its application to improving design practices.  
 
The probability of failure, a measure of reliability, is critical for determining the structural integrity of the 
vehicle under the various flight and ground loads encountered during operation.  Performing an accurate 
estimation for the probability of failure is more critical now than before because of recent changes in 
NASA’s requirements. The objective is to reduce the loss-of-crew/loss-of-vehicle rate by a factor of 2 to 3.  
In addition, the cost/pound of payload is also to be reduced by the same factor.  These requirements 
present a formidable challenge given the rigors and uncertainties of space flight coupled with possible 
future budget constraints.   
 
The use of Polymer Matrix Composite (PMC) materials for structural components is steadily increasing 
particularly for aerospace applications [Harris et al, 2008]. The key advantages of using composite 
materials are that they are light weight and can be manufactured with desired properties [NASA SP-8108].  
However, the fabrication process of a component made from composite materials is quite complex and 
uniquely developed specifically for a given structural component [NASA PD-ED-1217]. This complexity 
in the fabrication process is due to a large number of variables such as fiber volume ratio, ply orientation, 
density, type and strength of fibers and other variables.   
 
Designing, components made from composite materials using probabilistic methods requires the 
characterization of uncertainties in the material properties, fabrication processes and loading variables. In 
addition, there are further uncertainties associated with the degradation of composite materials in a space 
environment.   
 
Probabilistic methods using physics-of-failure approaches provide valuable quantitative information 
which is not only used to develop a risk-based design, but also provides the probability of failure for a 
design which has been developed using a factor of safety, Figure 1. This figure displays the relationship 
between this CCM model’s factor of safety and the probability of failure.  There is an inverse relationship 
between the probability of failure and the factor of safety. That being, demanding a larger factor of safety 
leads to a decrease in the probability of failure. For human rated systems NASA HQ requires that the 
probability of failure be no greater than 1.0E-04.  Due to the safe nature of this design, this study 
estimates that one could relax the safety of factor to just below 1.4 and still satisfy the risk requirement.  
Figure 1 assumes that the uncertainties in the design variables are known to some extent.  Later it will be 
shown how to deal with the situation when the design variables have a large amount of variance. 
 
Inherent uncertainties in material properties, loads and geometry complicate the design process [Andrzej, 
Nowak, and Collins, 2000] and affect safety, performance and cost.  Traditionally, factors of safety (FOS) 
have been developed empirically based on years of engineering experience and are assumed to account for 
these uncertainties [Melchers 1999]. Any design based on the FOS lacks quantitative information on risk 
of failure, consequently it remains unknown whether the design is within the acceptable risk limits or not.  
 
In the absence of expensive-to-acquire experimental data, a probabilistic approach provides extremely 
valuable quantitative information for generating cost effective risk-based design and additionally provides 
precise direction for further resource investments. Uncertainties in the design variables are defined 
through probability distributions which are used in conjunction with a probabilistic methodology to 
propagate these uncertainties up to a probabilistic system response. Figure 2 shows a family of curves that 
relate the probability of failure with an assumed uncertainty in the design variables. As the uncertainty in 
the design variables increase, for a given factor of safety, the probability of failure also increases.  The 
probabilistic analysis was first conducted assuming that all the material properties had 5% uncertainty, for 
which a probability of failure is then produced. The full probabilistic analysis is again conducted for each: 
10%, 15%, 18%, 20%, and 40% uncertainty in the design variables.  The 5% and 10% cases are 
considered to represent realistic scatter in the material properties, due to fabrication issues, whereas the 
other cases represent an attempt to envelope the design space to find cost savings based on less stringent 
manufacturing quality controls.  All six test cases were used to generate the curve named “NO Cov”, 
where all the design variables were assumed to be independent random variables.  The entire procedure 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

795



  

described above is repeated. This time assuming that the design variables are not fully independent but 
have 10% and 30% mutual correlation.   
 
Technical Approach 
The following procedure was used to quantify the probability of failure.  First to be discussed is the 
deterministic finite element model; its material properties and the loads that were analyzed in this study.  
Next, several probabilistic analyses of the finite element model is presented, each case assuming different 
levels of uncertainty in the design variables. Each probabilistic analysis generates a distribution for the 
stresses or strains in a region of interest to the designer.  These stress/strain distributions are input into the 
reliability calculation, which is used to determine a probability of failure.  The probability of failure is 
estimated by considering the area under a material level limit state equation such as (1 - the 
stress/strength). This type of the limit state equation is more realistic when the stresses and the material 
properties’ allowables are not statistically independent, as can be explicitly seen in the Hoffman’s failure 
criterion.   
 
Finite element model 
The finite element model analyzed was provided by the NASA Langley Research Center, Figure 3. The 
ANSYS workbench translator was used to convert the model from a NASTRAN format. The translated 
model was then verified for its accuracy of translation by comparing results of the original model obtained 
using ANSYS and NASTRAN. This comparison showed that the values of the maximum stress from the 
two analyses were within 0.25%.  
 
The model was of the CCM pressure vessel’s outer structure and included the mass of the secondary 
structure. This ensured that the loads were accurate for the mass and center of gravity of the CCM with a 
payload.  A preliminary global analysis was performed using the material properties provided by NASA. 
From the results of this analysis, regions of high stresses, also called critical regions, in the structure were 
identified. The finite element meshes in these regions were further refined to perform high resolution 
analysis 
 
Composite shell elements with orthotropic material properties were used to model the structure. The 
properties indicating the thickness of each ply, fiber angle and materials in the refined mesh area are given 
in Table 1. The CCM wall is made of 10 composite material plies and one aluminum honeycomb layer 
(“Shapegrid” TradeMark). The honeycomb layer, numbered as 6, is sandwiched between layers of 
composite plies numbered 1-5 and 7-11, as listed in Table 1. The composite plies are made of two 
different materials; plies 3 and 9 are made of one type of material, labeled as 1, and plies 1, 2, 4, 5, 7, 8, 
10 and 11 are made of another type of material, labeled as 2. The composite plies are designed using high 
strength carbon fiber, IM7 and Cytec’s 977-2 epoxy. Properties for both types of materials 1 and 2 
including their elastic properties and allowable strengths are listed in Table 5. From these properties, it is 
obvious that material 1 is considerably stiffer and stronger than material 2. The honeycomb material, 
labeled as material 6, is a filler material and it doesn’t have appreciable stiffness and strength properties.  
 
Loading and boundary conditions  
The CCM is subjected to three different loading conditions during its flight and landing. The loadings 
were provided by the NASA Johnson Space Flight Center as adaptations of the Orion Crew Vehicle 
loadings. In all cases the CCM is subjected to 15.2 psi internal pressure. This analysis considers only the 
first two of the three loading conditions, see Table 2. Since the original FE model was designed for the 
launch abort and docking load conditions. For these two loading conditions, the analysis includes 5 sub-
loading conditions for abort loads and 8 sub-loading conditions for docking loads. The sub-loadings 
represent different variations in the two loadings. The two loading conditions considered are: 
 

1. High altitude abort loads with five (5) sub-load conditions. 
2. On-orbit docking loads with eight (8) sub-load conditions. 
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Both the abort and docking load conditions include acceleration loads.  Where Ax, Ay and Az are 
accelerations in x (along the height), y (perpendicular to the paper) and z (horizontal in the plane of the 
paper) directions. 
 
Deterministic analyses 
Deterministic structural analyses were performed to identify the most critical regions with high stresses in 
the crew module, see Table 3. The high stress region is in the cylinder near its interface with the cone 
shape structure near one of the door openings, Figure 4.  
 
Of the thirteen different load cases analyzed only two loads, high altitude abort loads and on-orbit docking 
loads were found to be the most critical loads. The most critical regions were identified using these two 
loads. A high resolution analysis at the ply level was conducted to determine peak stresses and identify 
potential failures.  
 
Overall, the high altitude abort sub-load conditions resulted in higher stresses than the on-orbit docking 
sub-loading conditions. Since all high altitude abort sub-loading conditions are very similar in loading, 
variations in stresses among these sub-loading conditions are insignificant. Out of all the thirteen sub-
loading conditions, the maximum stresses occurred in ply 3 under the fourth case, which was a high 
altitude abort sub-loading.  Therefore this loading case was selected to perform the subsequent 
probabilistic analyses. The peak stress and type of ply failure were used in performing probabilistic 
structural analyses for several different levels of assumed uncertainties in the design variables.  Ply 3 is 
the stiffest of all plies found in the critical stress region.  Figure 4 illustrates stress distribution in ply 3, for 
the fourth high altitude abort load, without external and internal connections with the aero-shell and 
payloads.  
 
Failure criteria  
The probability of failure was estimated from the area which is both under a given failure criteria’s PDF 
and to the left of the failure criteria limit of 0.0.  A distribution for each of the following three ply level 
failure criteria was constructed from the probabilistic analysis: (1) inter-ply delamination criterion, 
(DELFC), (2) Hoffman’s failure criterion (HFC) and (3) modified distortion energy criterion (MDE) 
[Robert Aiello, 1989], see Appendix A.  
 
The MDE and HFC criteria have been expressed in terms of actual and allowable stresses and the DELFC 
has been expressed by actual and allowable strains. Allowable strain for DELFC is the shear strain 
between two plies. Plies 2, 3 and 5 are identified to have the most probable failures based on a 
deterministic analysis and thus selected for the probabilistic analyses, Table 4. The three ply level failure 
criteria were used to define the limit state equation in a “stress-strength formulation”.   
 
All three failure criteria have been calculated independently to estimate a probability of failure in the 
critical regions based on uncertainties in ten input design variables; three material properties and strengths 
(limiting stress) for each of materials 1 and 2 and the pressure and acceleration loads.  There are five 
limiting stresses (σxt, σxc, σyt, σyc and σxy) for both material 1 and material 2.  σx, σy and σxy are the 
allowable stresses in both the x and  y directions respectively. Further, the subscript (t) represents the 
materials’ allowable in tension and (c) is the material’s allowable in compression.   The allowable with 
respect to shear stresses is denoted by σxy.   
 
The DELFC is based on strains; εx, in the x direction, and εy, in the y direction, and shear strain, εxy and 
shear strength of the epoxy which holds the plies together. DELFC will occur only if the actual shear 
strain in epoxy is more than allowable shear strain. The allowable shear strain is calculated from allowable 
shear stress, (Sxy = 7,000 psi), Elastic Modulus (Ex = 500,000 psi) and Poisson’s ratio (ν = 0.41) using the 
relations Gxy = Ex / 2(1+ν) and Phi (Allowable) = Sxy/Gxy. This allowable shear deformation is calculated 
as 0.0395.  
 
Table 4 shows the deterministic results for all three failure criteria for each ply in the critical region. For 
the HFC and MDE criteria, plies 2 and 3 have the lowest of the Failure Criteria (FC) values for both first 
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and second cases.  On a scale from zero to one the MDE for ply 2 is 0.663. For the DELFC criterion, plies 
2 and 5 have the lowest FC values. Since plies 3 and 9 have a zero fiber angles and are sandwiched 
between plies which also have a zero fiber angle, they have no response for DELFC. Ply 2 is next to ply 1 
which has fiber angle of 45, and ply 5 has fiber angle of 45, they show the lowest FC values for DELFC 
response. Again low FC is more likely to fail than the plies with higher FC values.  
 
Note at this stage, Table 4 gives point values for the three failure criteria.  In the next section the 
probabilistic analysis will fit distributions to these criteria to quantify the expected scatter in the failure of 
the plies.   
 
Probabilistic analyses 
All design variables including material and geometric properties, boundary conditions and applied loading 
variables were selected as input variables for the probabilistic analysis.  The input variables’ inherent 
uncertainties are represented by a standard deviation. The design variables’ uncertainties are then 
propagated through the finite element model of the CCM. The resulting response function, such as elastic 
stress, is then fit to a distribution. The distribution of the uncertainties in the peak stresses given 
systematic perturbations to all the relevant design variables are then inputted into the reliability 
calculations.  A distribution for each failure criteria was generated based on the stress distribution in the 
critical region. 
 
The analyses began by introducing uncertainty into the relevant state variables. A probabilistic 
discretization of the design space is created by assigning a probability distribution function (PDF) to each 
design variable, see Table 5.  On successive sample runs of the finite element model, one uses these PDFs 
to determine the numerical values that the design variables take on. PDF and cumulative distribution 
function (CDF) for the response function are then constructed.  This is accomplished by fitting a response 
surface, via a least squares methodology, through both the perturbed basic variables and the subsequent 
structural response.  
 
This technique permits the entire spectrum of system response for the structure under uncertain loading 
conditions to be discovered. To arrive at this information traditional deterministic solution techniques 
were used, only the basic variables were modified to permit uncertainty in the model's design variables 
[Miller 2006].  
 
Results of probabilistic analyses 
The deterministic stress analysis results together with mean strengths and uncertainties of input variables 
were used to perform probabilistic structural analyses using FPI (Fast Probability Integrator) module of 
the NESSUS code.  FPI determines the PDF of the response variable, stress, based on the uncertainties of 
the input variables and subsequently conducts the reliability analyses using the limit state function for all 
the failure criteria.   
For the sake of the probabilistic analysis the material’s components of strength (σxt, σxc, σyt, σyc and σxy) 
were considered to be one variable for each constituent ply material; they were perturbed concomitantly.  
All three components of the acceleration vector also increase or decrease simultaneously by the same 
proportion. 
 
For the first probabilistic analysis, Table 5, all input variables were assumed to have uncertainties with 
standard deviations of 5%; the NASA experts concurred with this level of uncertainties. These standard 
deviations are considered realistic and represent a high quality fabrication of composites. The results for 
this level show that the PDF of the failure criteria does not overlap a limit state value of zero, see Figures 
5-10. This means that there is practically no risk of failure. Hence, the design is found to be completely 
safe with respect to all three criteria of failure. 
 
In the second probabilistic analysis, Table 5, the uncertainties standard deviations are doubled to 10% for 
all variables, twice the magnitude of uncertainties of those in the first scenario. This case represents a 
lower quality fabrication of composites. The uncertainties in this scenario are exaggerated intentionally in 
order to demonstrate the reserved safety of the current design. The HFC failure criterion PDF for ply 2 
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approaches the limiting value but does not cross it; once again implying a completely safe design. Figures 
for this scenario are not shown because of the page limitations. 
 
Based on several scores of stress analyses for both the 5% and 10% uncertainty  scenarios, normalized 
CDF and PDF using all three failure criteria for all the plies have been generated, more than 30 plots were 
created. These plots show the CDFs and PDFs of the three failure criteria (HFC, MDE and DELFC) along 
with their limit states for ply 2 for 5% uncertainties in the input variables. The limiting value of 0.0 for all 
the failure criteria is also shown in the PDF plots only. However, only three of these plots are shown here 
in Figures 5-10. These Figures are representative of the other 30 results which are not shown here to avoid 
repetitiveness of discussion. The results for all cases are shown in an unpublished report [N&R 
Engineering 2011] submitted to NASA. 
 
Trade study for reliability and cost effectiveness 
Since the analyses for both scenarios yield safe designs, the next natural step is to conduct a trade study 
with the objective of finding a lower cost composite material. In the trade study uncertainties in the design 
were systematically increased in set bounding scenarios: 15%, 18%, 20%, and 40%. This was done to 
provide guidelines for key managers on how they might be able to reallocate their resources more cost 
effectively. The uncertainties in these analyses have been highly exaggerated to show their quantitative 
impact on reliability and cost of a design. These analyses illustrate how probabilistic methods can assist 
the designer in selecting a lower cost composite i.e. composite fabricated using lenient tolerances while 
maintaining the desired level of reliability. Figure 2, discussed earlier shows a summary of results from 
the first two scenarios and this trade study. 
 
Simulating a fabrication processes for composites  
It is important to quantify the impact that the quality of a fabrication process can have. The next example 
demonstrates that for a given reliability a designer can select the appropriate tolerance level and 
corresponding cost for the design. 
 
In this scenario, consider the case of three composites with same mean strength but fabricated with 
different quality standards; high, medium and low. A high quality composite implies tight-tolerances 
fabrication process, poor quality composite implies lenient-tolerances fabrication process and medium 
quality composite implies composite fabrication process with tolerances in between the two. 
 
A graphical comparison of the composites with the same mean values of and hypothetically large 
uncertainties in all the input variables is shown in Figure 11. In this figure, there are 3 PDFs with the same 
mean value, a normalized mean of 0.588. The one with tightest scatter, green color, represents the case of 
tight and most expensive fabrication tolerances, and the one with widest scatter, blue color, represents the 
case of most lenient and inexpensive of the three cases fabrication tolerances. The third PDF, purple color, 
represents the case of tolerances in between the other two.  
 
The three tolerances cases are represented by three standard deviations (SD); SD of 0.207 represents the 
case of tightest tolerance and SD of 0.287 the most lenient tolerance and SD of 0.239 the in-between 
tolerance. The quantified risk is area under the PDF to the left of the red vertical line.  For the tightest 
tolerance case the risk is 0.0225%, most lenient tolerance case is 2.204% and for the in-between tolerance 
case is 0.696%.  
 
This figure shows that for the same factor of safety, the risk in the design is significantly different and it 
illustrates that designing based on factor of safety without quantifying the influence of uncertainties could 
lead to a design with unknown risk. The factor-of-safety for all three tolerance cases is the same, 2.427. It 
is obvious from this demonstration that the level of risk would have been unknown if the probabilistic 
method was not used to quantify it. 
 
Figure 12 illustrates a graphical comparison of the three PDFs representing three composite fabricated 
using the same tolerances.  This example demonstrates how probabilistic structural analysis is used for 
accurately selecting an appropriate material for design.  The analysis was performed using the same 
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magnitudes of uncertainties but with different mean values for the input variables.  All three PDFs overlap 
the failure-criteria limit of zero, thereby allowing one to find the lower bound on acceptable materials. 
Such a study provides the relationship between the probability of failure and a factor of safety. Thus an 
analyst has more control over the amount of risk involved with the choice of a given factor of safety.   
 
Also, this scenario demonstrates how probabilistic methods can be used in making key decisions such as 
setting cost-saving fabrication tolerances in addition to providing a quantitative estimate of the risk for a 
given factor of safety.  
 
Summary 
A probabilistic structural analysis of an experimental Composite Crew Module (CCM) of the future 
spacecrafts has been performed using the most current Orion Crew Module design loads obtained from 
the NASA Johnson Space Center. The purpose was to quantify the probability of failure for different 
factors of safety in response to uncertainties in the design variables. The results of these reliability 
calculations provide a quantitative means for selecting appropriate composite materials. An additional 
purpose was to demonstrate how probabilistic methods provide cost savings by allowing a reliability 
manager the ability to select proper factors of safety for predetermined risk.    
 
Structural analyses were performed for 13 different load cases and the most critical load condition and the 
corresponding critical regions of high stresses were identified. A high resolution analysis at ply level was 
conducted in that region to determine peak stresses and identify potential failures. The peak stress and 
type of failure were then used in performing the probabilistic structural analyses.  
 
Based on probabilistic structural analysis, the CCM is found to be very safe with ample margin of safety 
and a low probability of failure.  As a further analysis activity, the loads were scaled up and the composite 
material’s strength was scaled down to assess a bounding scenario. Still the design is found to be safe. 
 
Probabilistic methods demonstrate how to select materials for the structure based on setting tolerances 
(cost) and factor of safety for predetermined risk.  Without using probabilistic methods, the reliability of 
the design remains unknown; in contrast to using a Factor of Safety method alone.  
 
Finally probabilistic methods provide one more important piece of information for the key managers when 
optimizing the use of the critical resources. This information consists of sensitivities of the input variables 
such as geometry, material properties, etc., on the response variables such as stress. For improving the 
quality of the end products, managers need to know which resources have high sensitivities, and thus are 
controlling the structures’ performance or safety. 
 
 

Table 1: Section Properties and Materials 
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Table 2: Composite Crew Module Loading Conditions 

 
 
 

Table 3: Typical Stress Distribution 11 plies  
 
 
 
 

Table 4: Failure Criteria, calculated stresses and strains at the ply level for mean design values (5% 
uncertainty case) 
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Table 5: Material Properties, Loads and Standard Deviations used in the Probabilistic study 

 
 
 
 
 
 

 
Figure 1: Probability of Failure vs. Factor of Safety 
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Figure 2: Probability of Failure as a function of the amount of uncertainty in the design space 

 

 
Figure 3: Refined Mesh for High Stress Location 

 

 
Figure 4: High Stress Plot for Maximum Principal Stress in Ply 3 
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Figure 5: Cumulative Density Function (CDF) of Failure Criterion, HCF Ply 2 

 

 
Figure 6: HCF Failure Criterion with Failure Criterion Limit for Ply 2 (5% uncertainties in the input 

variables) 

 
       Figure 7: CDF of Failure Criterion, MDE Ply 2 
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Figure 8: MDE Failure Criterion with Failure Criterion Limit for Ply 2 (5% uncertainties in the input 

variables) 
 

 
Figure 9: CDF of Failure Criterion: DELFC Ply 2  

 
Figure 10: DELFC Failure Criterion with Failure Criterion Limit for Ply 2 (5% uncertainties in the input 

variables) 
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Figure 11: Probability of Failure due to Uncertainties in Design Variables. Factor of safety alone is not 
enough to properly assess risk. 

 
Figure 12: Probability of Failure (POF) vs. Factor of Safety (FOS) due to variation in the 

Uncertainties in the Design Variables 
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ANNEX A 
Failure Criteria equations and nomenclature  

 
 
 

Delamination criterion: 

 

 

 
Hoffman’s criterion: 

 
Modified distortion energy criterion: 
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Abstract 
Investigation of crime requires rigorous testing and sound scientific understanding of the evidence 
to assist with the reconstruction of the criminal event. From the multitude of forensic specializations, 
bloodstain pattern analysis evidence from cranial gunshot wounding is of particular interest because 
of the high mortality rate resulting from head wounding compared to other body parts. Traditionally, 
animal models and physical models of the human anatomy have been used to study the mechanism 
and extent of ballistic spatter, including backspatter. Backspatter is a retrograde spattering of the 
target material from the entry wound. The reverse directionality of backspatter has specific 
evidential value, as it may establish a link between the victim and the shooter via transfer of 
biological matter. Backspatter evidence has also been used in courts to distinguish between a 
homicide and a suicide. Despite the importance of backspatter, the understanding of its mechanism 
has remained inadequate due to ethical issues, difference in anatomical geometry associated with 
various animal samples, or material property difference among biological and synthetic materials 
used in physical models. Hence there is a need to develop simulation tools that will use 
computational models of cranium geometry and configurations relatively similar to those of humans. 
Such computational models can act as alternatives to animal or physical models for the 
investigation of backspatter in a variety of situations.  
 
In this study, a mesh-free method called Smoothed Particle Hydrodynamics (SPH) is used to 
develop a computational model to simulate high speed ballistic impacts. The complex geometry of 
the human cranium was reduced to a simplified box model equivalent to average female anatomical 
internal volumes. The inhomogeneous and anisotropic behaviours of the biological materials in a 
cranium (skin, skull and brain) were simplified to homogeneous and isotropic materials for each 
component. A physical equivalent model was manufactured and tested under the same ballistic 
conditions, for computational model validation. The computational model matched well with its 
physical equivalent experimentation in both material deformation characteristics and the timing of 
key events. This demonstrated the potential of the simulation models as a better alternative to 
animal and physical models. The simulation captured the temporary cavity development in the brain 
simulant well, as well as showing realistic fragmentation, including backspatter. The temporary 
deformation of the skin entry wound was also a good match to the physical experimentation. The 
simulation also helped identify the most suitable material models to simulate ballistic impact of the 
brain simulant. This work provides the basis for a more complex, anatomically accurate geometric 
cranium model to further develop reliable and robust simulation of cranial ballistic impact. 
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Introduction 

One of the most important aspects of crime investigation is to determine the causal event from the 
evidence found. With the growing number of incidents involving firearms every year, the 
importance of establishing links between ballistic evidence and its causal parameters has been 
increasing. This research focuses on retrograde spatter ejected from the entry wound called 
‘backspatter’. Due to its directionality, backspatter may provide an evidential link between the 
victim and the assailant (Karger 2008). It can also help distinguish the difference between a 
homicide from a suicide (Yen, Thali et al. 2003). Backspatter evidence has also been used in court 
to determine firing distance and positions of the persons involved (Kleiber, Stiller et al. 2001). The 
most valuable backspatter evidence is a cranial backspatter. This is because 1) the backspatter 
phenomenon is most pronounced when a near-water density organ such as brain is impacted 
(Karger 2001); and 2) the human cranium is the most fatal site on the human body for ballistic 
impact. While the human head represents only 9% of the body, 50% of combat death has been 
attributed to cranial impact (Michael E. Carey 1989).  
 
There are four possible ways to form a more detailed understanding of backspatter: 1) human 
research; 2) animal models; 3) physical (man-made) models; or 4) computational models. For 
ethical reasons, direct backspatter experimentation on human subjects is not an option. Therefore, 
the use of reliable models is crucial for backspatter research.  Such models must be accurate and 
reliable if valid inferences are to be drawn. Animal models used to date, such as swine or bovine 
samples (Burnett 1991, Karger, Nusse et al. 1996, Karger, Nusse et al. 1997, Radford 2009), have 
been limited by the differences in anatomical proportions, with the animal samples featuring a 
smaller cranial cavity and thicker bone compared to that of a human. As with human testing, animal 
models also carry significant ethical concerns. To counter the problem, physical models have been 
developed using synthetic materials and simplified or anatomically realistic geometries (Stephens 
and Allen 1983, Pex and Vaughan 1987, Radford 2009, Foote 2012, Kwon 2014). The physical 
models successfully eliminated the ethical issues and more recent models have resolved the 
anatomical geometry problem (Foote 2012, Carr, Lindstrom et al. 2014, Kwon 2014). However, 
physical models also have major shortcomings. The cost of the model manufacturing and 
experimentation is still high and there is limited control over experimental variables and a lack of 
structural complexity as compared to biological materials. These limitations have promoted 
research into computational models to simulate cranial ballistic impact and the associated 
backspatter generation. The ease of model modification, experimentation, and analysis, combined 
with the low cost, makes the computational model a worthy, if not critical, research topic.  
 
There are two computational methods that have been used to study ballistic impacts: 1) Finite 
Element Method (FEM) and 2) Smoothed-Particle Hydrodynamics (SPH). FEM is a widely 
recognised computational method to simulate ballistic impact. The FEM method has been utilised to 
successfully simulate impacts on ballistic helmets (Aare and Kleiven 2007, Yang and Dai 2010), 
ballistic gelatine (Datoc 2010), human mandible (Tang, Tu et al. 2012), human brain (Raul, Deck et 
al. 2007) and human frontal bone (Pinnoji and Mahajan 2007). However, due to its Eularian 
approach, FEM cannot handle fragmentation, large deformation and high speed impact very well. 
This makes FEM unsuitable for backspatter research where the focus is on the fragmented particles 
produced from a high speed impact. Therefore, this research focussed instead on SPH, using it to 
obtain approximate numerical solutions of the ballistic impact simulation on human cranial model. 
The SPH is a Lagrangian computational method, using equations of fluid dynamics, by replacing 
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the body of fluid with a set of particles. SPH was originally invented to deal with problems in 
astrophysics; involving fluid masses moving arbitrarily in three dimensions in the absence of 
boundaries (Monaghan 2012). The mesh-free SPH technique simulates the gunshot wound 
appropriately and can handle large deformation and fragmentation (Monaghan 2012). SPH has been 
successfully used to model ballistic impact onto a variety of targets (Das, Collins et al. 2015).  
 
In this research, the complex geometry of the human cranium was reduced to a simplified box 
model equivalent to average female anatomical internal volumes. The inhomogeneous and 
anisotropic behaviours of the biological materials in a cranium (skin, skull and brain) were 
simplified to homogeneous and isotropic materials for each component. As a validation method for 
the SPH computational model, a physical equivalent model of identical geometry and simulant 
materials has been manufactured and tested under the same ballistic conditions.  

Methods 

Computational Model Development 
The scalp and the skull layers were represented by a 100 x 100 mm square. The scalp layer 
thickness was set to 3 mm, while the skull layer thickness was 5 mm. The thickness values were 
determined based on measurements of 114 MRI scan images acquired from the Centre of Advanced 
MRI, University of Auckland. The length of the brain layer was fixed to 140 mm so the internal 
volume of the brain layer was close to 1130 cm3, the average brain volume of a human female 
(Cosgrove, Mazure et al. 2007). The geometry of the model is shown in Figure 1 (a), while Figure 1 
(b) shows the SPH model of the same geometry.  

 
 

Figure 1. (a) Geometry of the simplified computational model, complete with the bullet 
(brown), scalp (dark grey), skull (black) and the brain (light grey) layers (b) the SPH model of 

the same geometry 
  
Gravity and air resistance were assumed to be negligible for the purposes of the simulation. The 
model had a pinned boundary condition (no translation in x, y and z directions, while rotation is 
allowed) applied to the outside surfaces except the entry and exit side. 
 

(a) (b) 
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To match the experimental ballistic conditions, computational representation of a 9 mm Luger 
projectile was used to impact the computational model (Figure 2). The bullet was set to impact the 
model perpendicular to the scalp surface centre as shown in Figure 1 (a), with an initial speed of 
~350m/s, which is the average bullet speed (MidwayUSA). 
 

Figure 2. Physical (left) and computational (right) bullet geometry comparison of the 
projectile part of the 9 mm Luger bullet 

 
The computational model used a hyperelastic failure model for the scalp and an isotropic-elastic 
model for the skull, based on a previous research (Kwon 2014, Das, Collins et al. 2015). The brain 
was modelled using either a viscoelastic model or the Plastic-Kinematic model to identify the most 
suitable material constitutive model to describe the ballistic deformation of a human brain.  
 
The material properties of the scalp and skull simulants were measured in the University of 
Auckland Centre of Advanced Composite Materials laboratories. The scalp simulant was a Room 
Temperature Vulcanising (RTV) Silicone, a polyurethane resin was used as the skull simulant, and 
the brain was modelled using 10% gelatine. The material properties of the 10% gelatine were 
obtained from the literature (Kelager 2006, Cohen, Cleary et al. 2009). 
 
Physical Equivalent Model 
Manufacturing of the physical model was carried out using a casting method. The skin layer was 
manufactured from curing RTV silicone with a cotton-cellulose sponge insert as the blood reservoir. 
The bone layer was made from a homogeneous cast of polyurethane. The brain layer was cast using 
a 10% gelatine solution. The quality of the gelatine was crucial in bullet trajectory visualization. To 
achieve the desired transparency, a few drops of cinnamon oil were added to the gelatine-water 
mixture.  
 
The ballistic experimental setup for the physical model was carried out at the Firearms Testing 
Laboratory in the Mount Albert Science Centre of Environmental Science and Research. A sample 
was first secured on a holder. The target surface was set perpendicular to the bullet trajectory. A 
white surface was placed horizontally in front of the sample to capture any backspatter. A high 
speed camera, Photron Fastcam SA1, was positioned at an angle of approximately 30° to the 
surface. This oblique angle was used to capture both the scalp and the brain layer surface 
deformation at the same time. The frame rate was set to 30,000 frames per second to capture the 
details of the dynamic deformations and backspatter generation. The experimental setup schematic 
is shown in Figure 3. 

15 mm 

9 mm 9 mm 
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The samples were shot using a federal brand American Eagle 9 mm Luger calibre bullet fired from 
a Glock, Model 17 semi-automatic pistol. The bullet used was a 115 grain Full Metal Jacket (FMJ) 
projectile, which has a solid lead core with a copper material coating. The bullet was fired with a 
muzzle to target distance of approximately 1 m to minimize the effect of the muzzle gas on the 
ballistic response of the sample (Taylor, Laber et al. 2010). After each shot, the samples were 
photographed and archived with the collected backspatter for subsequent analysis.  
 

 
Figure 3. Experimental setup schematic 

Results and Discussion 

The high speed footage of the experimental results was visually compared to the simulation results. 
An image of the simulation result was extracted for each key stage of the ballistic deformation. The 
images were set to be of the same view angle and magnification, and had 50% transparency. The 
conditioned images were then overlayed onto the high speed footage for comparison. An excerpt of 
the key deformation stages for both physical and computational model is shown in Figure 4. 
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Figure 4. Chronological comparison between the physical and computational model results 

 
The sequence of events observed from the physical model was highly comparable to that of 
simulation result, in both the spatial dimensions and the timing. For both the physical and the 
computational models: 1) at 3 ms it was observed that the maximum surface displacement and blow 
out diameter had been reached; 2) at 3.75 ms, the edges of the blow out are observed to be 
retracting, but the uniform cylindrical shape still remains; 3) at  6 ms the cavity of the blow out 
began to collapse while the brain temporary cavity is still expending; 4) after the initial 
subcutaneous temporary cavitation,  the scalp layer recovered its original position without any 
subsequent oscillatory motion.  
 
Throughout the entire ballistic event, the temporary cavity in the computational model brain layer 
developed in similar size and speed to the physical equivalent as illustrated in Figure 4. The general 
tapered shape of the cavity is also replicated throughout the simulation result. Also, backspatter 
generation from both models was observed.  
 
Of the two material constitutive models, the viscoelastic failure model was unsuccessful at 
simulating a realistic result. Under this simulation, the bullet stopped in the midst of the brain layer, 
losing its kinetic energy completely to the brain layer. This was different from the physical model 
experimental result. On the other hand, the Plastic-Kinematic model produced a simulation result 
that successfully goes through the computational model, mimicking the experimental result well. 

Conclusions 

The computational model matched well with its physical equivalent experimentation in both 
material deformation characteristics and the timing of key events, demonstrating the potential of the 
simulation models as a better alternative to animal and physical models. The simulation 
successfully captured the temporary cavity development in the brain simulant, as well as showing 
realistic fragmentation, including backspatter. The temporary deformation of the skin entry wound 
was also a good match to the physical experimentation. The simulation also identified the most 
suitable material constitutive model to simulate ballistic impact of the brain simulant to be the 
Plastic-Kinematic mode.  
 

t = 0 ms t = 0.2 ms t = 0.75 ms t = 6 ms 
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As the first skin-skull-brain computational model of human cranium for ballistic backspatter 
research, this work provides the basis for a more complex anatomically accurate geometric cranium 
model to further develop reliable and robust simulation of cranial ballistic impact. 
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Abstract
In this paper, we propose a fully coupled flow-geomechanics simulator using the mixed
finite element method. The mathematical model, including mass conservation of fluid,
Darcy’s law for velocity, and force equilibrium of solid skeleton, is derived in the frame-
work of Biot’s consolidation theory. Pore pressure, fluid velocity and solid displace-
ment are chosen as primary variables. This has the advantage of satisfying element-
wise mass conservation and describing the velocity in a continuous way, instead of as a
derived value of pressure, as in traditional simulators. The mathematical model is then
discretized in appropriate finite element spaces. Specifically, we use the constant Dis-
continuous Galerkin space for pressure, the lowest order Brezzi-Douglas-Marini space
for fluid velocity, and the linear Continuous Galerkin space for solid displacement.
The system of equations is solved in a fully coupled manner, which ensures second
order convergence and stability. Afterwards, the resulted model is validated using a
wide range of benchmark problems, including the consolidation problems of Terzaghi,
Mandel and Cryer. In all cases, our numerical results are in good agreement with the
analytical solutions, which illustrates the effectiveness of our simulator, especially in
capturing the Mandel-Cryer effect accurately.
Keywords: Mixed finite element, Poro-elasticity, Consolidation, Fully-coupled model,
Porous media

Introduction

In many applications involving porous media, it is of paramount importance to model
the interaction between fluid flow and solid deformation in a tightly coupled manner
to make accurate predications [Gambolati et al., 1991; Pao et al., 2001; Teatini et al.,
2006; Yin et al., 2009]. This paper will focus on developing an alternative simulator to
accurately describe this coupled process.

From the mathematics point of view, the mutual coupling between fluid flow and solid
deformation leads to a complex initial-boundary-value problem. Over the past decades,
a lot of researchers have studied this problem through different numerical methods,
namely the finite difference method [Lee et al., 1998; Masson and Pride, 2007; Yanosik
et al., 1979], the finite element method [Edwards, 2002; Lewis and Schrefler, 1987;
Panneton and Atalla, 1997; Wheeler et al., 2014], and the finite volume method [Jenny
et al., 2005; Mosharaf Dehkordi et al., 2014; Rozon et al., 1989]. Compared with the
finite difference method and the finite volume method, not only could the finite element
method handle well complex geometries, which is common in reservoir simulations, it
is also good at multiple field problems [Fortin and Brezzi, 1991; Hesthaven and War-
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burton, 2007].

In the literature, there are three coupling approaches (explicitly coupled, iteratively cou-
pled and fully coupled) to study the fluid-solid interaction problem. In the explicitly
coupled approach [Longuemare et al., 2002; Minkoff et al., 2003], the flow variables
are assumed constant when solving the force equilibrium equation, and vice versa. This
method requires relatively small time steps to ensure a physical solution. In the itera-
tively coupled scheme [Mikelić and Wheeler, 2013; Tran et al., 2004], each simulator
solves its own governing equation and uses some correction terms to make sure that
the equations are solved at the same time step. Since the coupled problem is split into
a flow problem and a solid deformation problem, it results in two much smaller prob-
lems and saves computational time. Although an iterative method has the advantage
of efficiency, the disadvantage is that it may introduce splitting errors. Especially in
gas flow cases, splitting error may lead to unphysical solutions [Aarnes et al., 2007].
A third method is to solve the coupled flow and solid system simultaneously, which is
referred to as the fully coupled approach [Khoshghalb and Khalili, 2010; Settari et al.,
1998; White and Borja, 2011]. In this approach, each equation is discretized implicitly,
which guarantees its robustness. However, the disadvantage is also obvious: it results
in a larger system of equations and may require more computational time.

In this work, we present a fully coupled solver to account for the interaction between
fluid flow and gemechanics by the finite element method. The mathematical model is
proposed based on Biot’s theory in poromechanics, and a subsequent numerical model
is implemented by the mixed finite element techniques. Specifically, we use the lowest
order Brezzi-Douglas-Marini function space (BDM1) and the constant Discontinuous
Galerkin function space (DG0) for the fluid velocity and pressure field, respectively.
This pair of function spaces ensures local mass conservation, which is relatively im-
portant in flow related problems. As to the solid displacement field, the standard linear
Continuous Galerkin interpolant is used. The related system is then solved in a fully
coupled manner, which ensures second order convergence.

In the following sections, we will show all the aspects in developing the flow-geomechanics
simulator. Specifically, in Section 2 we briefly outline the mathematical equations used
is this coupled problem. Section 3 discusses the weak form derivation, space and time
discretization and finite element implementation. Section 4 examines the correctness of
the developed solver by comparing the numerical results with some classic benchmark
problems. Finally in Section 5, we draw conclusions.

Mathematical Model

Governing equations

As in classic continuum mechanics, the whole system is viewed as a number of overlap-
ping continua representing the corresponding phase, namely solid skeleton and fluid.
The representative elementary volume (REV) is large enough to preserve the physical
properties, like porosity and permeability. On the other hand, the REV must be suffi-
ciently small to be considered as a point in the macroscopic scale.

In the framework of Biot [1941] poromechanics, we make the following assumptions:
(1) the pore water is incompressible, (2) the solid grains are incompressible, (3) small
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strain theory is applicable, (4) the soil as a whole exhibit linear elastic deformation, and
(5) the system is isothermal.

The flow of fluid through the porous medium is described by the mass conservation
equation as:

∂

∂t
(O · us) + O · u = ff , (1)

where us is solid skeleton displacement, u is fluid velocity relative to solid skeleton,
and ff is fluid source term.

The relative velocity of fluid u is usually governed by the Darcy’s law as:

u+
k

µ
Op = 0, (2)

where p is fluid pressure, and k is permeability tensor, and µ is dynamic viscosity.
In simplified cases, isotropy can be assumed in porous media, and the corresponding
permeability tensor is a diagonal one. By nature, most porous media systems are direc-
tionally dependent, and thus a full tensor permeability is usually more appropriate to
accurately describe the flow path.

As we assume the system is quasi-static, the equation of force equilibrium can be ex-
pressed in terms of the total stress as:

Oσ + fs = 0, (3)

where σ is total stress, and fs is body force, i.e. gravity. The relation between total
stress σ, effective stress σe, and fluid pressure p is given as:

σ = σe − αpI, (4)

where I is the identity matrix, and α is the Biot coefficient. The sign convention,
namely that positive stress is taken as tension and negative compression, is applied here.

The constitutive equation relating the effective stress to strain ε reads:

σ = 2Gε+ λεvI, (5)

where εv is the volumetric strain, G and λ are Lame constants.

By applying the small strain theory, strain is related to the solid skeleton displacement
as:

ε =
1

2
[∇us + (∇us)

T ]. (6)

Initial and boundary conditions

In order to complete the coupled equation system, we need to apply suitable initial and
boundary conditions for both the fluid and solid part.
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Initially, we assume that fluid pressure, fluid velocity, and solid displacements are
known values as: 

p = p0

u = u0

us = us
0

in Ω, (7)

at t = 0.

When t > 0, we consider the following boundary condition for the solid problem:{
us = us

b, on Γus
σn = g, on Γσ

, (8)

where n denotes unit outward normal vector of the boundary, and g is boundary force.
As to the fluid flow part, the following boundary conditions are applied:

{
p = pb, on Γp
u = ub, on Γu

. (9)

Γp, Γu, Γus and Γσ are corresponding pressure, velocity, displacement and exterior
stress boundaries.

Before concluding this section, we summarize the three governing equations described
above:

∂

∂t
(O · us) + O · u = ff , (10)

u+
k

µ
Op = 0, (11)

Oσ + fs = 0. (12)

Numerical Implementation

Weak form derivation

We consider this problem posed on the physical domain Ω with boundary ∂Ω. Let
triangulation Th = {K} be a partition of the domain Ω, and K is a subset of Ω. In order
to perform finite element discretization, we need to introduce suitable function spaces
for the test and trial functions. We set

L2(Ω) = {p :

∫
Ω

|p|2dx < +∞}, (13)

H1(Ω) = {u : u ∈ L2(Ω), Du ∈ L2(Ω)}, (14)

H(div,Ω) = {v : v ∈ L2(Ω)d,O · v ∈ L2(Ω)}. (15)
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Fluid pressure must belong to L2(Ω), fluid velocity belongs to H1(Ω)d and solid dis-
placement belongs to H(div,Ω), respectively. d denotes the number of space dimen-
sions.

Multiplying Equation (10), Equation (11), Equation (12) by test functions q, v and vs,
respectively, and integrating by parts on Ω, we get the following residual formulation:
Find p ∈ L2(Ω), u ∈ H1(Ω) and us ∈ H(div,Ω) such that we have

Rp =

∫
Ω

∂

∂t
(Ous)qdx +

∫
Ω

O · uqdx−
∫

Ω

ffqdx = 0, (16)

Ru =

∫
Ω

u · vdx−
∫

Ω

k

µ
pO · vdx +

∫
Γ

k

µ
pv · nds = 0, (17)

Rus =

∫
Ω

σO · vsdx−
∫
Γ

n · σvsds−
∫

Ω

fsvsdx = 0, (18)

for all q ∈ L2(Ω), v ∈ H1(Ω) and vs ∈ H(div,Ω). The symbolR refers to residual.

Space and time discretization

Fluid pressure p, fluid velocity u and solid displacement us are chosen as primary
variables, as indicated earlier in this paper. In order to make the problem well-posed,
the function spaces and the polynomial degrees of shape functions for the pressure and
the velocity can not be chosen arbitrarily [Fortin and Brezzi, 1991]. Instead, a pair
of finite element spaces that satisfy the in-sup condition is required. In this study, we
choose the elementwise constant space (DG0) for pressure, the lowest order Brezzi-
Douglas-Marini space (BDM1) for fluid velocity, and the linear Continuous Galerkin
space (CG1) for solid displacement.

Compared with the standard finite element method, the advantages of this mixed form
are: (1) it satisfies element-wise mass conservation, (2) the stability and convergence
are ensured, (3) it avoids the numerical diffusion in standard finite element method,
and (4) the velocity is described in a continuous way, instead of as a derived value of
pressure.

We interpolate pressure, velocity and displacement in the discretized space as:

ph =

nelem∑
i=1

φiPi (19)

uh =

nface∑
i=1

φiU i (20)

ush =

nnode∑
i=1

φiUsi (21)

where ph, uh and ush are discrete variables, φ is shape function, and P , U and Us are
values at corresponding elements, faces and nodes. nelem, nface and nnode are respec-
tive numbers of elements, faces and nodes.
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As for time discretization, we apply the conventional backward Euler scheme, which
ensures first order accuracy:

∂

∂t
(Ous) =

Ous − Ous0

4t (22)

where4t is time step.

Coupling scheme

As declared in the introduction section, the fully coupled scheme has the advantage of
ensuring stability and avoids convergence issues. Therefore, the fully coupled approach
is employed in our model. Specifically, all the three equations are solved simultane-
ously at each time step, and the implicit Newton-Raphson method is used to update the
solution. At time step (n + 1), the solution at (k + 1)th iteration is updated by adding
the correction terms to the solution at kth iteration as: pn+1

un+1

us
n+1


k+1

=

 pn+1

un+1

us
n+1


k

+

 δpn+1

δun+1

δus
n+1

 , (23)

where the correction comes from solving the following linear system:
∂Rp

∂p
∂Rp

∂u
∂Rp

∂us

∂Ru
∂p

∂Ru
∂u

∂Ru

∂us
∂Rus
∂p

∂Rus
∂u

∂Rus

∂us


 δpn+1

δun+1

δus
n+1

 =

Rp

Ru

Rus

 , (24)

and the symbol δ denotes correction.

Implementation in FEniCS

We create our code based on the recently developed open source project, FEniCS [Logg
et al., 2012], which is a collection of libraries to facilitate the automated solution of
partial differential equations using finite element method.

Numerical Tests

In this section, we test the performance of the developed solver by solving a series of
benchmark problems.

Terzaghi’s 1D problem

The first example involves the consolidation problem from Terzaghi [1996], as illus-
trated in Figure 1. In this 1D problem, the top surface is assumed to be fully drained,
while the bottom surface is impermeable. As for the solid part, the top surface is ex-
posed to a constant vertical load and the bottom face is fixed. The length of the beam
is taken as L = 15 m, and other parameters are summarized in Table 1.
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Figure 1: Sketch of Terzaghi’s 1D problem.

Table 1: Parameters in Terzaghi’s problem

Parameter Value
Young’s modulus 100.0MPa
Poisson’s ratio 0.25
Biot coefficient 1.0
Overload 1000.0Pa
Permeability 1.0e−14m2

Dynamic viscosity 1.0e−5 m2/sec
Time step length 1.0 e−3sec
Column length 15.0m

The analytical solution is given by Verruijt [2013] through Laplace transformation:

p =
4

π

∞∑
k=1

cos[(2k − 1)
π

2
x] exp[−(2k − 1)2π

2

4
t], (25)

where p is normalized pressure
p

p0

, x is normalized distance
x

L
, t is normalized time

cvt

h2
, and cv is consolidation coefficient.

Our numerical results are shown in Figure 2 and Figure 3. It can be observed from
Figure 2 that the agreement between our numerical result and the analytical solution
appears excellent. At time t = 0, a constant load is applied to the top surface. This
sudden increase in load will be initially suffered by the water, and thus the water pres-
sure goes up everywhere in the beam. The pore pressure then gradually vanishes, since
the top surface is fully drained. This dissipation process may take considerable time,
depending on the permeability value.
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Figure 2: Comparison of the numerical and analytical solutions of Terzaghi’s
problem: excess pore pressure at different normalized time.
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Figure 3: Normalized pressure distribution of Terzaghi’s problem at different nor-
malized time

Mandel’s 2D problem

In this example, we consider the 2D consolidation problem from Mandel [1953]. As il-
lustrated in Figure 4, a rectangular soil sample is sandwiched between rigid frictionless
plates at its top and bottom. The top and bottom surface are impermeable and the lateral
surfaces are allowed to drain freely. The length and width of the sample are 2L1 = 2 m
and 2L2 = 2 m, respectively. Other physical and computational parameters are given
in Table 2.

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

823



F

−F

2L1

2L
2

Figure 4: Sketch of Mandel’s problem.

Table 2: Parameters in Mandel’s problem

Parameter Value
Young’s modulus 100.0MPa
Poisson’s ratio 0.25
Biot coefficient 1.0
Overload 1000.0Pa
Permeability 1.0e−14m2

Dynamic viscosity 1.0e−5m2/s
Time step length 1.0e−3 s
Plate length 1.0m
Plate width 1.0m

The analytical solution is given by Abousleiman et al. [1996] and Coussy [2004] as:

p = 2
∞∑
k=1

cos(αkx)− cosαk
αk − sinαk cosk

exp(−α2
nt), (26)

where αk is the solution of:
tanαk
αn

=
1− υ
υn − υ

, (27)

and υn and υ stands for undrained and drained Poisson ration, respectively. For incom-
pressible constituents, υn is 0.5.

The numerical results in terms of normalized pressure versus normalized time are pre-
sented in Figure 5 and Figure 6. Similar to Terzaghi’s 1D problem, the pressure jumps
to some value and then gradually dissipates. It is important to note that the pressure at
the centre of plate continues to increase after its initial creation by the Skempton effect
[Skempton, 1954]. This is due to the fact that the generation of pore pressure is imme-
diate, but the dissipation caused by the fluid flow is delayed by the small permeability
and the flow path to escape from the lateral boundaries.
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Figure 5: Comparison of the numerical and analytical solutions of Mandel’s prob-
lem: excess pore pressure at different normalized time.
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Figure 6: Normalized pressure distribution of Mandel’s problem at different nor-
malized time

Cryer’s 3D problem

Finally, we consider the sphere from Cryer [1963], a classic 3D consolidation problem.
In this case, a 3D spherical soil sample, of radius a = 1.0m, is loaded on its outer
boundary by an instantaneous uniform confining pressure of magnitude F , see Figure 7.
Table 3 summarizes all the useful parameters.
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Figure 7: Sketch of Cryer’s problem.

Table 3: Parameters in Cryer’s problem

Parameter Value
Young’s modulus 10.0MPa
Poisson’s ratio 0.33
Biot coefficient 1.0
Overload 1000.0Pa
Permeability 4.95e−14m2

Dynamic viscosity 1.0e−5m2/s
Time step length 1.0e−2 s
Sphere radius 1.0m

We are interested in the pressure evolution at the centre of the sphere and the analytical
solution is given by Verruijt [2013] as:

p = η

∞∑
k=1

sinαk − αk
ηαk cosαk/2 + (η − 1) sinαk

exp(−α2
kt), (28)

where αk is the positive roots of the equation:

(1− ηα2
k) tanαk = αk, (29)

where η is defined as
λ+ 2G

2G
.

We show the numerical results in Figure 8 and Figure 9. Initially when t = 0, the
pressure at the centre jumps by an amount, and then continues to rise for a while be-
fore declining, as in the case of Mandel’s problem. This non-monotonic pore pressure
response, a rise in interior fluid pressure and the subsequent decaying to zero value, is
referred to as the Mandel-Cryer effect. This is a distinctive phenomenon of Boit’s con-
solidation, which is not observed by the traditional uncoupled theory [Terzaghi et al.,
1943]. As shown in Figure 8, our model greatly captures the Mandel-Cryer effect.
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Figure 8: Comparison of the numerical and analytical solutions of Cryer’s prob-
lem: excess pore pressure at the center.
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Figure 9: Normalized pressure distribution of Cryer’s problem at different nor-
malized time

Conclusion

In this work, we have developed a fully coupled 3D model for flow-geomechanical sim-
ulation in porous media. By choosing fluid pressure, velocity and solid displacement as
primary variables, the proposed mixed finite element formulation is able to ensure local
mass conservation and express the velocity and displacement in a continuous way. The
fully coupled approach is unconditionally stable, and eliminates the convergence issues
encountered in explicit scheme and iterative coupled scheme. The performance of the
resulting numerical model is validated according to Terzaghi’s 1D problem, Mandel’s
2D problem and Cryer’s 3D problem. In all cases, our numerical results show good
agreement with the analytical solutions.
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Abstract 
This paper presents a description of a 3D adaptive combined DE/FE algorithm which 
can automatically convert the distorted finite elements into the spherical discrete 
elements during simulating the impact fracture of laminated glass. In this method a 
system is completely discretized into the finite elements at the initial moment without 
any discrete element existing until part of the finite elements becoming severely 
deformed. Subsequently each finite element, whose maximum tensile stress exceeds a 
user-specified conversion criterion, is converted into eight spherical discrete elements. 
At the same time the system is fragmented into two subdomains, the finite element 
(FE) and the discrete element (DE) subdomains. The impact fracture of a glass beam 
is simulated by the adaptive algorithm and the discrete element method, respectively. 
A satisfactory agreement of the simulation results is observed which validates the 
feasibility of such an adaptive algorithm; however, the computational efficiency of 
the adaptive algorithm is much higher than that of latter.  
 
Keywords: Combined algorithm; Brittle fracture; Cohesive model; Discrete element 
method; Laminated glass 

Introduction 
Laminated glass generally consists of two or more layers of glass sheets combined by 
the elastomeric interlayers of Polyvinyl Butyral (PVB) under heat treatment and has 
been wildly used in automobile windshields, modern buildings, etc. thanks to its 
security and durability performance. The mechanical properties of laminated glass are 
more complicated than those of single glass due to the brittleness of glass, the 
hyper-elasticity of PVB interlayer and the coupled influence of both formers. 
 
The fracture behavior and the flexural strength of laminated glass were not only 
influenced by the flexural stiffness of each layer but also by their interfacial bonding 
strength. A parametric study was carried out by Hidallana-Gamage et al. to investigate 
the influence of structural sealant joints on the mechanical properties of laminated 
glass panels under blast loading, the information in which might be employed to 
complement the guidance in the existing design standards [Hidallana-Gamage et al 
(2014)]. Foraboschi implemented the sacrificial ply design concept to design 
laminated glass in which the outer glass as a sacrificial ply was permitted to damage 
under small impact while the inner was designed to remain unbroken [Foraboschi 
(2007; 2013)]. The fracture behaviors of laminated glass windows subjected to 
impulsive and blast loadings were experimentally studied with the laboratory airbag 
pendulum impact tests and the full-scale field blast tests, respectively [Zhang et al 
(2015)]. The responses of laminated glass in the lab and field tests, such as failure 
process, applied pressure and deflections, were used to validate the accuracy of the 
design standards predictions. 
 
Most of numerical studies mentioned above were preceded in the framework of the 
finite element method (FEM). The contact problem over the crack surfaces and the 
fragments dispersion might be present, which were of great importance for the 
fracture of laminated glass. The essence of material fracture was a complicated transi-
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the DE model in Figure 5. The differences are small; however, one more important 
characteristic of the 3D adaptive algorithm is the higher computational efficiency. 

Conclusion 
(1) A 3D adaptive combined DE/FE algorithm is proposed to analyze the impact 
fracture problem with a higher computational efficiency. 
 
(2) The impact fracture of a glass beam is simulated with a higher efficiency by the 
3D adaptive algorithm than the DEM. Furthermore, almost the same crack patterns 
are captured with both numerical methods. 
 
In this work, the same time step is adopted in the FE and the DE subregions and only 
the cubic FEs can be converted into the spherical DEs. In the future we will overcome 
these obstacles for more efficiently analyzing the impact fracture of laminated glass 
with an irregular geometry. 
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Abstract 
Laminate structures composed of fibre-reinforced plies typically are prone to the formation of inter-
fiber cracks because of the given strongly anisotropic stiffness and strength properties. These inter-
fiber cracks commonly run through complete plies but are stopped at the ply interfaces. Equally, 
such laminate structures are prone to the formation of delaminations, e.g. due to the free-edge 
effect. An inter-fiber crack meeting a delamination forms a non-standard three-dimensional crack 
configuration with a locally singular stress field that should be investigated in regard of its 
criticality.  
For that purpose, the Scaled Boundary Finite Element Method turns out to be an appropriate and 
effective analysis method that permits solving linear elastic mechanical problems including stress 
singularities with comparably little effort. Only the boundary is discretized by two-dimensional 
finite elements while the problem is considered analytically in the direction of the dimensionless 
radial coordinate ξ. A corresponding separation of variables representation for the displacement 
field employed in the virtual work equation leads to a system of differential equations of Cauchy-
Euler type. This differential equation system can be converted into an eigenvalue problem and 
solved by standard eigenvalue solvers for non-symmetric matrices. 
By this kind of analysis, it is revealed that the considered three-dimensional crack configurations 
may go along with various unexpected non-standard stress singularities, namely singularities that 
are weaker than the well-known square root stress singularity in linear elastic fracture mechanics, 
but also singularities that are stronger and which may be called hypersingularities.  
Keywords: Scaled Boundary Finite Element Method, laminate, inter-fiber crack, delamination, 

stress singularity 

Introduction 
Unidirectionally fiber-reinforced materials as they are used in structural components, exhibit a 
strongly anisotropic material behavior. They offer very high stiffness and strength properties in the 
fiber direction but low values in the transverse directions. This makes them prone to the formation 
of matrix cracks between the fibers, so-called inter-fiber cracks. In a laminated structure of 
unidirectionally fiber-reinforced plies, these inter-fiber cracks, at first, only lead to some stiffness 
degradation but also to locally new structural situations with a highly complex failure evolution (see 
e.g. [Leguillon and Martin (2012)]). Because of this complexity and moreover the lack of 
predictability of the failure evolution, it is still common practice in industrial composite design to 
assume laminate failure when the so-called First-Ply-Failure occurs, i.e. when the first inter-fiber 
cracks emerge. Especially for quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates with 
a ply lay-up of the kind [ 45 / 0 / 90 ]S° ° °±  as they are almost exclusively used in the aircraft industry, 
this assumption dramatically underestimates the true load bearing capacity of such a composite 
laminate. To achieve further progress in this field, it is crucial to gain a proper understanding of 
these structural situations and their possible interactions with other defects. Such other defects are 
e.g. delaminations which commonly occur due to impact loads or also as a consequence of the 
laminate free-edge effect. A delamination meeting a transverse inter-fiber crack is, thus, a possible 
crack configuration that needs closer investigation.  
 
A special challenge of such structural situations within the framework of linear elasticity theory is 
the occurrence of theoretically infinite stresses. Stress singularities typically occur at discontinuities 
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of geometry and material. The near-field solution at a singular point for the displacements and 
stresses respectively is usually represented by a power law function series of the kind 
 
 1

1 1
( , , ) (ln ) ( , ) , ( , , ) (ln ) ( , )j jk k

uj uj j j
j j

u r c r r r c r rl l
σ σj ϑ j ϑ j ϑ j ϑ

∞ ∞
−

= =

= Φ =∑ ∑σ Φ


   (1) 

 
given in spherical coordinates , ,r j ϑ . Here, jl  are complex numbers and ujΦ



 and jσΦ  are vector and 
tensor functions of the angle coordinates j  and ϑ . For Re( ) 1 0jl − <  and 0r → the stress tensor 
becomes singular and the quantities Re( ) 1jl −   are called stress singularity exponents. The free 
constants ujc and jcσ are not independent of each other and need to be determined from the boundary 
conditions. However, this means that it depends on the boundary conditions whether a stress 
singularity actually occurs. The exponent k  depends on the geometrical multiplicity of jl  and is 
zero in most cases. 
 
Stress singularities can be classified into weak and strong singularities between which the classical 
crack singularity of Re( ) 1 0.5jl − = −  constitutes the threshold value. [Leguillon and Sanchez-
Palencia (1999)] showed that for 2D as well as 3D situations, weak singularities yield a differential 
energy release rate of 0= .This means that crack configurations evolving towards a structural 
situation with a weak stress singularity tend to a crack arrest. This, for example, is the case for a 
crack under mode I loading growing perpendicularly towards an interface with a stiffer material 
(e.g. [Leguillon and Martin (2012; 2013)]). On the contrary, strong singularities, which also may be 
called hypersingularities, are characterized by a differential energy release rate which tends to 
infinity → ∞ . This means that structural situations under a loading producing a hypersingularity, 
but also neighboring crack configurations evolving towards such a structural situation, tend to a 
further, instable crack growth. This, for example, is the case for a crack under mode I loading 
growing perpendicularly towards an interface with a less stiff material. In conclusion, weak 
singularities can be classified as less critical and hypersingularities as more critical than the 
classical crack singularity. 
 
An appropriate method for linear elastostatic problems, which is capable of both resolving the 
singularities in 3D structural situations and taking into account different anisotropic materials and 
interfaces, is the Scaled Boundary Finite Element Method (SBFEM). Its suitability for 2D problems 
has been demonstrated e.g. by [Song (2006)] and for 3D problems e.g. by [Mittelstedt and Becker 
(2005)] and [Goswami and Becker (2012)]. In a former work, the SBFEM has furthermore been 
successfully used by [Hell and Becker (2014)] for the analysis of two meeting transverse inter-fiber 
cracks in a composite laminate. A very similar method based on an FEM eigenanalysis has also 
proven to be adequate: [Bažant and Estenssoro (1979)], [Somaratna and Ting (1986)], [Gharemani 
(1991)], [Dimitrov et al. (2001)], [Koguchi and da Costa (2010)], [Korepanova et al. (2013)] are 
only a few authors who employed that method.  
 
In the following, a brief description of the SBFEM is given before it will be employed for the 
analysis of a delamination meeting a transverse inter-fiber crack. 

The Scaled Boundary Finite Element Method 

The Scaled Boundary Finite Element Method (SBFEM) ([Deeks and Wolf (2002)], [Song and Wolf 
(1997)], [Wolf (2003)] is a semi-analytical method which combines the advantages of the Boundary 
Element Method (BEM) and the Finite Element Method (FEM). Comparable to the BEM, only the 
boundary, or in some cases even only parts of the boundary, need to be discretized. At the same 
time, the problem of strongly singular integrands, present in the BEM-approach, does not exist in 
the SBFEM. This is because the SBFEM is based on a variational principle and does not need any 
fundamental solutions. As a further consequence of this, arbitrary linear elastic material behavior in 
three dimensions can be taken into account in a Scaled Boundary Finite Element. This makes the 
SBFEM a powerful tool for a variety of linear elasticity problems, which has lately also been 
extended to nonlinear analyses (e.g. [Behnke et al. (2014), Ooi et al. (2014)]).  
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The geometrical scalability is a fundamental requirement of the SBFEM. It requires that the 
connection of any point on the boundary with the scaling center by a straight line must be possible 
without any further intersections. Accordingly, a scaled boundary coordinate system is defined 
having its origin at the scaling center with the coordinates 0 0 0( , , )x y z in a Cartesian coordinate 
system. The scaling coordinate ξ  runs from the scaling center 0ξ =  to the boundary 1ξ = . In case 
of a 2D problem, a boundary coordinate η  runs along the boundary. In case of a 3D problem, two 
boundary coordinates 1η  and 2η  describe the surface of the body. Figure 1 illustrates this procedure 
for the example of an arbitrarily shaped 2D domain and how it can be extended to 3D domains. The 
Cartesian coordinates are expressed in terms of the scaled boundary coordinates: 
 
 0 1 2 0 1 2 0 1 2· ( , ) , · ( , ) , · ( , ).x x x y y y z z zη η ηξ η η ξ η η ξ η η= + = + = +   (2) 
  
The partial differential operators are calculated by the use of the Jacobian matrix J : 
 

 1 1 1

2 2 2

, , ,
1 1 1 1 , , ,

2 2 2 2

x y z
x x xx y zx y z x y z
y y yx y z

x y z
z z z

η η η
η η η η η η
η η η η η η

ξ ξ ξ ξ

ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η

   ∂ ∂ ∂ ∂    ∂ ∂ ∂
       ∂ ∂ ∂ ∂ ∂ ∂ ∂        ∂ ∂ ∂ ∂ ∂ ∂ ∂   = = =    
∂ ∂ ∂ ∂ ∂ ∂ ∂         ∂ ∂ ∂ ∂ ∂ ∂ ∂       

       ∂ ∂ ∂ ∂ ∂ ∂ ∂      

J .

 
 
 
 
 
 
  

  (3) 

 
The notation 1,(·)η is to be read as the partial derivative 1(·) / η∂ ∂ . Please note that in this notation the 
Jacobian 1 2( , )η ηJ  is only a function of the boundary coordinates so that the volumetric differential 
can be written as  
 2

1 2 1 2d || ( , ) || d d d .V η η ξ ξ η η= J   (4) 
 
A separation of variables ansatz is made for the displacements and separates dependences of the 
boundary coordinates 1 2,η η  from dependences of the scaling coordinate ξ . However, the resulting 
equations still cannot be solved analytically so that an approximative approach is needed. Only the 
boundaries Sξ  where ξ = const, are discretized using isoparametric finite elements and shape 
functions 1 2( , )jN η η . This sub-divides the body into a number of wedge-shaped domains which are 
denoted Scaled Boundary Finite Elements (Figure 1). The problem is still considered analytically in 
the scaling coordinateξ . Thus, vector functions ( ) ( )e

ju ξ
  are introduced for the displacements on rays 

pointing from the scaling center to the finite element nodes on the boundary. The superscript ( )(·) e  

Figure 1: Scaled Boundary Coordinate System and discretization scheme in a (a) 2D and a (b) 3D example. 
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denotes the formulation within a Scaled Boundary Finite Element e  where the shape functions are 
combined to the matrix 1 2( , )η ηN and the vector functions ( ) ( )e

ju ξ
  to ( ) ( )$.eU ξ



 A similar approximative 
approach is chosen for the virtual displacements: 
 
 ( ) ( ) ( ) ( )

1 2 1 2 1 2 1 2( , , ) ( , ) ( ) , ( , , ) ( , ) ( ).e e e eu U u Uξ η η η η ξ δ ξ η η η η δ ξ= =N N
 

 

    (5) 
 
Like the FEM, the SBFEM is based on the principle of virtual work 
 
 

!
*: d · d · d

t
i a

V V S
W V f u V t u A Wδ δ δ δ δ= = + =∫ ∫ ∫σ ε

 

   (6) 

 
where *, , , ,f u tδ δσ ε

 

  are the stress tensor, the virtual strain tensor, body forces, virtual displacements 
and prescribed boundary tractions respectively. iWδ  is the internal and aWδ  the external virtual 
work. V is the volume of the considered domain and tS the part of the domain surface with 
prescribed traction boundary conditions. 
 
We use the vector notation for stresses and strains and introduce a differential operator L   
 

 

0 0 0

0 0 0

0 0 0

T

x z y

y z x

z y x

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ =

∂ ∂ ∂ 
∂ ∂ ∂ 

 ∂ ∂ ∂ 

L   (7) 

 
which is used in the equilibrium equations and strain-displacement relations. This differential 
operator L  is then transformed into scaled boundary coordinates. To this end, L  is decomposed into 
three matrices , ,x y zL L L  each associated to one partial differential operator in the Cartesian 
coordinate system. Then, each partial differential operator can be replaced by its respective 
counterpart in the scaled boundary coordinate system which yields 
 

 1 2

1 2

1 1 .x y z
x y z

ξ η η
ξ ξ η ξ η

∂ ∂ ∂ ∂ ∂ ∂
= + + = + +

∂ ∂ ∂ ∂ ∂ ∂
L L L L b b b   (8) 

 
Employment of the differential operator L (7) and the separation of variables ansatz (5) in the strain-
displacement relations in vector notation yields: 
 

 


[ ]1 1 2 2

1 2 1 2

1 2 , ,

( , ) ( , )

( ) ( )[ ] ( , ) ( ) .U UU
ξ η

ξ η η η η

η η η η

ξ ξε η η ξ
ξ ξ

∂
= = + +

∂
B B

L N b N b N b N
 



((((((

  (9) 

 
Additionally, Hooke's law [ ] [ ]σ ε= C  (linear elastic material behavior) with the elasticity matrix C  is 
used in the virtual work balance (6). Assuming that the relations for the real quantities are also valid 
for the virtual ones leads to the virtual work balance in terms of the displacements and virtual 
displacements in scaled boundary coordinates. 
 

 
!

*
,,

1 1 d d d
t

T T T T T T T T
V V S

U U U U V U f V U t Aη ξ ξ ηξ ξδ δ δ δ
ξ ξ

   
+ + = +   

   
∫ ∫ ∫B B C B B N N

      

  (10) 
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Expansion of the product and integration by parts over ξ  in the internal virtual work term iWδ  
yields an arithmetic expression containing factors which are either dependent of the scaling variable 
ξ  or of the boundary coordinates 1 2,η η . Hence, the integration can be performed separately. The 
dependence of 1η  and 2η  actually is one of the introduced shape functions 1 2( , )η ηN  so that numerical 
integration over the boundary coordinates can be used. This yields the following matrices within 
one Scaled Boundary Finite Element e : 
 

 
( )

( )

( )

( ) ( )
1 2 1 2 1 2 1 20

( ) ( )
1 2 1 2 1 2 1 21

( ) ( )
1 2 1 2 1 2 1 22

E ( , ) ( , ) || ( , ) || d d ,

E ( , ) ( , ) || ( , ) || d d ,

E ( , ) ( , ) || ( , ) || d d .

e

e

e

e T e
S

e T e
S

e T e
S

ξ

ξ

ξ

ξξ

η ξ

η η

η η η η η η η η

η η η η η η η η

η η η η η η η η

=

=

=

∫
∫
∫

B C B J
B C B J
B C B J

  (11) 

 
In numerical integration, attention must be paid to the Jacobian determinant when the discretized 
body surface is curved. Then, the numerical integration error needs to be monitored.  
 
The matrices ( ) ( ) ( )

0 1 2E ,E ,Ee e e are similarly assembled like in the standard Finite Element Method. This 
yields the following form of the virtual work balance for the case of a 3D bounded domain 0...1ξ =  : 
 

 
[ ] [ ]1

2
0 , 0 1 , 21 10

!1
2

0 , 1 0

( ) ( ) 2 ( ) ( ) d

( ) ( ) ( ) .

T TT
i

TT
a

W U U U U

U U U W

ξξ ξ
ξ

ξ
ξ

δ δ ξ ξ ξ ξ ξ ξ ξ

δ ξ ξ ξ ξ ξ δ
=

=

 = − + + − + − + 
 + = 

∫ E E E E E E

E E

   

  

  (12) 

 
This equation contains one integral term and two boundary terms ( 0,1ξ = ). The boundary terms 
represent the forces which the continuum exerts on the boundary Sξ . Assuming the absence of side 
face loads, i.e. tractions at the side faces Sη  where either 1η  or 2η  are constant, and that body forces 
are negligible, the virtual external work can be reduced to 1(1)T

aW U pξδ δ ==


 . The assembled nodal 
loads vector 1pξ =

  gives a contribution to the boundary term in eq. (12). The resulting virtual work 
balance is valid for arbitrary virtual displacements if and only if the integrand in eq. (12) and the 
boundary terms are zero each. This yields a homogeneous system of differential equations of 
Cauchy-Euler type and a linear equation system. A solution fulfilling the homogeneous differential 
equation system is only approximated over the body surface but analytic inξ . The system of linear 
equations serves for enforcing the boundary conditions on the discretized body surface Sξ . 

Solution of the homogeneous differential equation system 

By application of a variable transformation lnt ξ= , a differential equation system of Cauchy-Euler 
type can be transformed into an ordinary one with constant coefficients. The introduction of the 
vector function ,( ) ( ) tV t U t=

 

 then allows the further transformation of the differential equation system 
of second order into one of first order but at the cost of doubling the number of degrees of freedom. 
 

 

,

1 1 ( )1 2, 0 1 0 1
( ),

( ) ( )

( )
( )

t

T T tt
tt

W t W t

V t V
U t U

− −       − − − − −   =        
κ

E E E I E E E
I 0

 

 

 

(((((((((((((((( 

  (13) 

 
The fundamental solution solving this type of differential equations converts the differential 
equation system into an eigenvalue problem. 
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 ( ) j tj j j j jW t el l⇒= Φ Φ = Φκ


  

  (14) 
 
By application of established numerical algorithms, even non-symmetric and rather large 
eigenvalue problems can be solved. Unfortunately, these algorithms suffer from numerical errors, 
which are not negligible any more if the magnitudes of neighboring eigenvalues move closer 
together. Nevertheless, small eigenvalues close to zero and associated eigenvectors generally are of 
good quality and converge appropriately with a discretization refinement. 
 
The backtransformation of the fundamental solution ( : ( ) jj jt W lξ ξ ξ→ = Φ




) reveals that the eigen-
vectors can be interpreted as deformation modes and that the eigenvalues are their associated decay 
(Re( ) 0)jl <  or growth rates (Re( ) 0)jl > . In fact, only the lower half of the eigenvector ujΦ



 
represents a deformation mode while the upper half is simply given by vj uj jlΦ = Φ

 

. The eigenvalue 
spectrum in the 3D case is symmetric to 0.5− , which also marks the value of a bounded domain for 
which the strain energy density tends to infinity. Complex eigenvalues always appear as conjugate 
pairs il α β= ± . In the case of geometric multiplicity, i.e. for a given number of equal eigenvalues, 
not the same number of linearly independent eigenvectors exists, additional generalized 
eigenvectors have to be generated resulting in logarithmic deformation modes to complete the 
solution. Hence, the general solution of the differential equation system with N different eigenpairs 
of geometric multiplicity jn is 
 

 ( ) ( )
1

ln ln
1 2

1 0
( ) Re Im (ln ) .

j

j j j

nN
i i k

jk jk jk jk
j k

W e c e cβ ξ β ξ αξ ξ ξ
−

= =

 = Φ + Φ ∑∑


 

  (15) 

 
Here, 1jkc  and 2jkc  are free constants. In sum, they are of the number of twice the number of degrees 
of freedom of the approximated boundary value problem. These free constants are determined from 
regularity and boundary conditions.  

Delamination Meeting a Transverse Inter-Fiber Crack in a Composite Laminate 

The 3D structural situation of a delamination meeting a transverse inter-fiber crack which runs 
through the complete ply can more generally be described as two plane cracks with straight crack 
fronts meeting each other at an interface. But in contrast to the structural situation studied in [Hell 
and Becker (2014)], where the mode I crack growth directions of the two cracks point towards each 
other representing the situation of two meeting transverse inter-fiber cracks, the mode I crack 
growth directions here are assumed to be perpendicular to each other. This also implies that the 
transverse inter-fiber crack can, in a way, be seen as dividing the delamination crack in two parts. 
Configurations with angles between the crack fronts 15 90ϑ° °< <  and concurrent ply lay-ups 
[(90 )/90 ]ϑ° °−  are considered (cf. Figure 2). The stress singularity exponents ( ) 1jRe l −  and their 
associated deformation modes 1 2( , )uj η ηΦ



 are calculated by means of the SBFEM using a spherical 
boundary mesh for a minimum numerical effort. Between 931 and 1406 bilinear isoparametric 
SBFEs for the angles 60ϑ °= and 35ϑ °= , respectively, are used for the boundary mesh, which is in 
each case appropriately refined at the crack fronts. The results for the absolute values of the stress 
singularity exponents 1 ( )jRe l−  are presented in Figure 3 and Figure 4. 
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Figure 3 gives the results for a T800/epoxy (a carbon fiber reinforced plastic) laminate revealing 6 
stress singularities. The 6 associated deformation modes are shown in Figure 2 for the example 
of 90ϑ °= . For an easier identification, they are presented for a cubic boundary mesh where the 
cracks implemented as double nodes are marked in red. The upper half (dark shading) represents the 
upper ply with a 0°-orientation and contains the correspondingly aligned transverse inter-fiber 
crack. The lower half (light shading) represents the lower ply with 90°-orientation. The 
delamination crack is located at the interface, which obviously coincides with the plane defined by 
the present crack fronts. The deformation mode co1 corresponds to a simultaneous crack opening of 
the delamination and the inter-fiber crack. On the other hand, deformation mode co2 corresponds to 
a crack opening of only one of the cracks and a crack closing of the other. The deformation mode 
cs1 corresponds to a crack shearing of the inter-fiber crack, which implies a simultaneous crack 
opening respectively closing of the delamination crack faces. A crack shearing of the delamination 
crack can be identified for deformation mode cs2. The deformation mode ct1 corresponds to a crack 
twisting of the inter-fiber crack, which implies a simultaneous counter-directional crack shearing of 
the delamination crack. A kind of crack twisting of the delamination crack can be identified for the 
deformation mode ct2. Although these deformation modes actually only correspond to the particular 
case of 90ϑ °= , the wording is kept for all configurations studied. Other crack configurations with 
different angles ϑ  between the crack fronts produce different deformation modes for which the 
individual crack deformations cannot be assigned equally clearly to the classical single-crack 
deformation modes any more. Please note that deformation mode cs2 is an exception and 
constitutes the only deformation mode remaining widely unchanged for all configurations presented 
in this work. At the same time, cs2 is the deformation mode most closely related to a pure single-
crack deformation mode, namely mode II of the delamination crack. This makes, indeed, perfectly 
sense as a corresponding mode II delamination crack loading does not require an exchange of forces 
through the inter-fiber crack faces. In fact, its corresponding stress singularity exponent remains 
close to the classical crack singularity exponent of 1 ( ) 0.5Re l− =  for all angles ϑ  and material 
combinations considered.  

 
 

Figure 2: Delamination crack meeting transverse inter-fiber crack in a fiber-reinforced composite laminate with 
angle ϑ between the crack fronts and used boundary mesh. 6 singular deformation modes for ϑ=90°: crack 

opening (co1/2), shearing (cs1/2) and twisting (ct1/2). 
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The classical crack singularity 
value, marked by a red line in 
Figure 3 and Figure 4, separates 
weak singularities from strong 
singularities, which we also call 
hypersingularities. It is again 
emphasized that weak singularities 
can be classified as less critical than 
the classical crack singularities, as 
they yield a differential energy 
release rate of 0=  and, therefore, 
favor a crack arrest. On the other 
hand, hypersingularities yield a 
differential energy release rate of 
→ ∞ , which obviously favors 

crack growth. For all crack 
configurations studied, only two 
stress singularities are weak, which 
are the ones associated to 
deformation modes co2 and ct2. In 

contrast, always three hypersingularities are present, namely those associated to deformation modes 
co1, cs1 and ct1. Moreover, it can be stated that strong singularities become even stronger with 
decreasing angle ϑ  while the weak singularities decline or at least remain weak. Please also note 
that the real part of the stress singularity exponents associated to the deformation modes cs1 and ct1 
are the same for angles 60ϑ °  . This is because they constitute a pair of complex conjugated stress 
singularity exponents which makes them occur strongly interconnected (cf. eq. (15)). However, all 
other stress singularities found for the considered T800/epoxy laminate configurations are not 
complex. 
 
For comparison, configurations with less anisotropic ply materials were studied: a delamination 
meeting a transverse inter-fiber crack in a typical [(90 )/90 ]ϑ° °− glass fiber reinforced plastics 
(GFRP) laminate and the same geometrical setup but in a homogeneous isotropic body (Figure 4). 
The material data are given in the figures while the stress singularities present in a homogeneous 
isotropic body only depend on Poisson's ratio but not on Young's modulus. Here again, all 

 

 

 

 

Figure 4: Stress singularity exponents for two meeting cracks with perpendicular mode I crack growth 
directions in a (a) typical GFRP laminate with ply-layups [(90°-ϑ)/90°] and a (b) homogeneous isotropic body. 

 

Figure 3: Stress singularity exponents for a delamination crack 
meeting a transverse inter-fiber crack in a T800/epoxy CFRP 

laminate with ply-layups [(90°-ϑ)/90°]. 
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configurations considered go along with 3 hypersingularities, 2 weak singularities and one 
singularity approximately matching the classical crack singularity. From Figure 3 and Figure 4 it 
can be seen that the material properties mainly affect deformation mode co1. Its dependence on the 
elastic contrast between the upper and the lower ply is expected as it also plays a major role for the 
stress singularity exponent of the crack opening mode of a single crack impinging an interface (e.g. 
[Bogy (1971); Ting and Hoang (1984)]). The other deformation modes seem to be hardly or only 
moderately affected by the material properties. Finally, complex singularities can also be found for 
GFRP laminates and homogeneous isotropic materials. The considered GFRP laminate exhibits 
complex singularities for angles between the crack fronts of 50 65ϑ° °   and the homogeneous 
isotropic configuration with a Poisson's ratio of 0.3ν =  for angles 60ϑ ° . Although the magnitude 
of the imaginary part of the stress singularity exponent is always rather small with 
| Im( ) 1| 0.045l − < , it is remarkable that, here, a complex singularity can also occur in the 
homogeneous isotropic case. 

Conclusion  

The SBFEM has been used to solve boundary value problems of linear elasticity which contain 
singular points. Even 3D anisotropic structural situations involving interfaces are treated accurately 
and efficiently. Such a structural situation is the one of a delamination crack meeting a transverse 
inter-fiber crack, which has been treated in this contribution. It has been shown that this is a highly 
critical structural situation involving up to 3 hypersingularities. This strongly motivates a further 
investigation. It is worth pointing out that the hypersingularities found can be complex singularities 
- even in the simplified homogeneous isotropic case of this geometrical setup. 
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Abstract 
Aerosol deposition in cylindrical tubes is a subject of interest to researchers and 
engineers in many applications of aerosol physics and metrology. Investigation of 
nano-particles in different aspects such as lungs, upper airways, batteries and vehicle 
exhaust gases is vital due the smaller size, adverse health effect and higher trouble for 
trapping than the micro-particles.tt The Lagrangian particle tracking provides an 
effective method for simulating the deposition of nano-particles as well as micro-
particles as it accounts for the particle inertia effect as well as the Brownian 
excitation. However, using the Lagrangian approach for simulating ultrafine particles 
has been limited due to computational cost and numerical difficulties. 
In this paper, the deposition of nano-particles in cylindrical tubes under laminar 
condition is studied using the Lagrangian particle tracking method. The commercial 
Fluent software is used to simulate the fluid flow in the pipes and to study the 
deposition and dispersion of nano-particles. Different particle diameters as well as 
different flow rates are examined. The point analysis in a uniform flow is performed 
for validating the Brownian motion. The results show good agreement between the 
calculated deposition efficiency and the analytic correlations in the literature. 
Furthermore, for the nano-particles with the diameter more than 40 nm, the calculated 
deposition efficiency by the Lagrangian method is less than the analytic correlations 
based on Eulerian method due to statistical error or the inertia effect.  
 
Keywords: Nano-particle, Two phase flow, Deposition, Lagrangian particle tracking 
method, Cylindrical tubes 
 
Introduction 
 
Aerosol deposition in cylindrical tubes is a subject of interest by researchers and 
engineers in many applications of aerosol physics and metrology. Studies on 
deposition efficiency in lungs, upper airways, batteries and vehicle exhaust gases are 
some examples of particle deposition in cylindrical tubes. In studying particle 
deposition in cylindrical tubes, deposition of nano-particles or ultrafine particles 
(diameter<100nm) are more important among all range of particle diameters. For 
example, in oral airways, most of particles with the diameter above 1µm are 
deposited in the nose and respiratory organ walls; however, nano-particles can pass to 
the lung airways and compromise the human health (Malet, Alloul et al. 2000). 
In the literature, numerous studies have developed theoretical expressions for the 
particle deposition through a smooth tube in laminar flow. Ingham in 1975 and 1991 
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developed a model for calculating the deposition efficiency in a fully developed flow 
in cylindrical tube and in the entrance region of a cylindrical tube, respectively 
(Ingham 1975, Ingham 1991). Cohen and Asgharian in 1990 developed an empirical 
expression for the deposition efficiency of particles larger than 10nm (Cohen and 
Asgharian 1990). Most of these studies are used the mass diffusion equation 
governing the concentration of particles to find an analytic correlation for the 
deposition efficiency. Therefore, these models often ignore particle inertia effect for 
aerosols smaller than 200 nm. 
In the absence of inertial effects, a highly efficient Eulerian transport model can be 
applied that treats the particle phase as a dilute chemical species (Longest and Xi 
2007). However, the effects of inertia have not been fully quantified for aerosols in 
the fine and ultrafine ranges (Longest and Xi 2007). Direct Lagrangian particle 
tracking may provide an effective method for simulating the deposition of nano-
particles which can account particle inertia effect. Furthermore, it has the ability to 
resolve additional body forces that are applicable to each individual particle (Longest 
and Xi 2007, Tu, Inthavong et al. 2012). 
In this study, direct Lagrangian particle tracking method is used to calculate the 
deposition of nano-particles in cylindrical tubes under the fully developed laminar 
condition flow. The deposition efficiency is calculated for different flow rates, 
different tube lengths and different particle diameters. 
 
Mathematical modeling 
 
In this paper, the commercial Ansys-Fluent software is used for solving the governing 
particle equation of motion. For the fluid flow, the exact solution for laminar pipe 
flow is used for the fluid velocity as a profile at the inlet of the tube and then the fully 
developed laminar flow is simulated for the entire cylinder. The exact solution for the 
laminar flow in the cylinder is a parabolic profile for the velocity which is defined as 
(Longest and Xi 2007): 

(1) 
)

R
r(u)r(u in 2

2

12 −=  

where R  is the pipe radius and inu is the inlet velocity. 
Then, one-way coupled trajectories of mono-disperse submicron particles ranging in 
diameter from 5 nm to 100 nm have been calculated based on Lagrangian method by 
integrating an appropriate form of the particle trajectory equation. In this range of 
particle diameter, transport of nano-particles is mainly attributed to the Brownian 
force, therefore, the appropriate equations for spherical particle motion can be 
expressed as (Wen, Inthavong et al. 2008, Inthavong, Tu et al. 2009): 
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where p
iu  and g

iu are the components of the particle and local fluid velocity, 
respectively. µ is the fluid viscosity and pr  is the particle density. cC  is the 
Cunningham correction factor to Stokes’drag law which can be calculated as 
(Zamankhan, Ahmadi et al. 2006, Inthavong, Zhang et al. 2011): 
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where λ is the mean free path of air which is equal to 65 nm. 
The amplitude of the Brownian force is defined as (Wang, Inthavong et al. 2009): 

(4) 
t

SFBrownian ∆
π

ζ 0=
 

where ζ  is a zero-mean, unit-variance independent Gaussian random number, t∆  is 
the time-step for particle integration and 0S  is a spectral intensity function defined as 
(Tian and Ahmadi 2007): 
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T  is the absolute temperature of the fluid, ν  is the kinematic viscosity, Bk  is the 
Boltzmann constant and gr is the gas density.  
Therefore, the Brwonian force can be obtained as (Inthavong, Tu et al. 2009): 

(6) 
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where dm  is the mass of the particle and D~  is the diffusion coefficient which is 
determined as (Tu, Inthavong et al. 2012): 

(7) 
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Geometry and mesh structure 
 
A straight pipe is created in Gambit software in this paper as the studied geometry. 
The diameter of the pipe is 0.45 cm (Longest and Xi 2007). Two different lengths are 
considered: 3, 5 cm. The structure of the mesh is an important issue for simulating 
particle deposition. Fig. 1 displays the created mesh at the inlet of the tube. 
 

 
Figure 1. Mesh structure on the pipe inlet 

 
As shown in the figure, dense mesh near the wall is necessary to determine the 
deposition efficiency correctly (Longest and Vinchurkar 2007). Note that the total 
number of nodes is almost 900,000. 
 
Boundary conditions 
 
As mentioned before, the deposition efficiency is calculated in a fully developed flow 
in this paper. Boundary conditions for the particles were set up as a circular particle 
release entrained in the flow field. Particles were released from 0.01m from the inlet 
to prevent any spurious data exiting the inlet upon immediate release. In addition, the 
radial distance at which a particle was located was not less than 0.1 mm away from 
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the wall to eliminate artificial immediate deposition on the walls (Wen, Inthavong et 
al. 2008). Note that 70000 particles are created randomly in order to have the 
deposition efficiency independent from the particle number. Furthermore, 10 
integration steps for Brownian motion is considered as the time step size (Wen, 
Inthavong et al. 2008). Note that the considered flow rates are 1 and 2 lit/min. 
 
Results and discussion 
 
Deposition results for the Brownian motion models are first verified by comparing the 
results with the Ingham equation which proposed an analytic deposition efficiency 
correlation based on the diffusion parameter. This correlation is defined as (Ingham 
1975): 

(8) ( )32912522822896314 05090032500976081901
/... e.e.e.e.DE ∆∆∆∆ −−−− +++−=  

where ∆  is the dimensionless diffusion parameter defined as (Ingham 1975): 
(9) 

24 RU

LD~

in

pipe=∆  

where Lpipe is the pipe length. 
Fig. 2 displays the deposition efficiency calculated in this paper and by Ingham 
equation for a pipe with the length of 2 cm and the constant inlet velocity of 1 m/s. 
 

 

Figure 2. The deposition efficiency for the cylinder with the length of 2cm and  
the constant inlet velocity of 1m/s 

 
As shown, the results have a good agreement with the Ingham equation. It should be 
noted that for large particles (40 and 100 nm), due to the inertia effect, the deposition 
efficiency decreases especially for 100 nm particles (Longest and Xi 2007). As 
mentioned before, the inertia effect cannot be considered in the Eulerian method or 
mass diffusion equation and this is another advantage of direct Lagrangian method 
(Longest and Xi 2007). 
Fig. 3 displays the deposition efficiency for both present study and Ingham equation 
for a 4 cm cylinder with the constant inlet velocity of 1 m/s. As shown, again for 
100nm particles, due to the inertia effect, the calculated deposition efficiency is less 
than the value calculated from Ingham equation. 
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Figure 3. The deposition efficiency for the cylinder with the length of 4cm and  
the constant inlet velocity of 1m/s 

 
Fig. 4 shows the calculated deposition efficiency in this paper in compare with the 
Ingham equation for different particle diameter for both tube lengths of 2 and 4 cm 
for the constant inlet velocity of 2 m/s. As shown, by increasing the inlet velocity, the 
inertia effect is more effective and for 40 nm particles, the difference between the 
calculated deposition efficiency and Ingham equation can be seen (Longest and Xi 
2007). 
 

 

Figure 4. The deposition efficiency for cylinders with the lengths of 2 cm and 4 
cm and  the constant inlet velocity of 2 m/s 

 
 
Conclusion 
 
In this paper, the direct Lagrangian particle tracking method was employed to 
determine the deposition efficiency of nano-particles in cylindrical tubes. Different 
particle diameters, different flow rates and various pipe lengths were examined. The 
results showed a good agreement with the existed analytic correlations in the 
literature. Furthermore, by increasing the particles diameter and inlet velocity, due to 
the inertia effect, a difference in the calculated deposition efficiency by the 
Lagrangian method and by the analytic correlation based on diffusion can be seen.  
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Abstract 
Reducing the failure probability is an important task in the design of engineering 
structures. In this paper, a reliability sensitivity analysis technique, called failure 
probability ratio function, is firstly developed for providing the analysts quantitative 
information on failure probability reduction while one or a set of distribution 
parameters of model inputs are changed. The proposed failure probability ratio 
function can be especially useful for failure probability reduction, reliability-based 
optimization and reduction of the epistemic uncertainty of parameters. The Monte 
Carlo simulation (MCS), Importance sampling (IS) and Truncated Importance 
Sampling (TIS) procedures, which need only a set of samples for implementing them, 
are introduced for efficiently computing the proposed sensitivity indices. A numerical 
example is introduced for illustrating the engineering significance of the proposed 
sensitivity indices and verifying the efficiency and accuracy of the MCS, IS and TIS 
procedures.  
Keywords: Sensitivity analysis; Failure probability ratio function; Importance 
sampling 
 
1. Introduction 
In design of engineering structure, the analysts often build a lot of computational 
models (e.g. finite element model, FEM) for simulating the behavior of real structures. 
However, due the extensively existing uncertainty (aleatory or epistemic), the 
performance of the structure turn out to be unsteady, which often prevents the 
analysts from understanding the behavior of structure. In the probabilistic framework, 
the model inputs are often treated as random variables and represented by probability 
density function (PDF). The distribution parameters are either fixed at constant value 
(only aleatory uncertainty is presented) or characterized by confidence interval (due 
to epistemic uncertainty). Under these assumptions, the analysts' two main concerns 
are reliability analysis and safety improvement. 
 
The reliability analysis aims at assessing the failure probability of existing structure. 
During the past several decades, many methods have been developed by researchers 
for this purpose such as the Monte Carlo Simulation (MCS), First-order 
Second-moment (FOSM) method [Hasofer and Lind (1974)], Importance Sampling 
(IS) [Au and Beck (2002); Harbitz(1986); Melchers(1989); Melchers(1990);], Subset 
Simulation (SS) [Au and Beck (2001)], Line Sampling (LS) [Schuëller et al. (2004)], 
directional sampling [Ditlevsen et al. (1990)] response surface method [Faravelli 
(1989)]. However, analysts still find it difficult to employ these methods especially 
when the epistemic uncertainty is presented in model inputs. 
 
Safety improvement focuses on reducing the failure probability of existing structure 
via selecting optimal values for distribution parameters (if possible). This is often 
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dealt with in two ways: reliability-based optimization (RBO) and sensitivity analysis. 
Up to now, three groups of methods are available for RBO: double-loop method 
[Enevoldsen and Sorensen (1994); Tu et al. (1999)], single-loop method [Chen et al. 
(1997); Kuschel and Rackwitz (1997)], decoupling method [Au (2005); Royset et 
al.(2001); Zou and Mahadevan (2006)]. Compared with the methods for reliability 
analysis, these RBO methods are generally more time-consuming. One can refer to 
Schueller and Jensen (2008) and Valdebenito and Schuëller (2010) for overviews of 
the RBO methods. Sensitivity analysis techniques for safety improvement can be 
divided into three groups: local, global and regional sensitivity analysis. 
 
Local reliability sensitivity analysis indices are generally defined as the partial 
derivatives of failure probability or reliability index with respect to distribution 
parameters [Bjerager and Krenk (1989); Lu et al. (2008); Melchers and Ahammed 
(2004); Wu and Mohanty (2006)]. These indices measure the change on failure 
probability while the parameters are perturbed at one given point. If the sensitivity 
index of one parameter is positive, then the failure probability tends to decrease if one 
reduces this parameter at the given point, otherwise, if the index is negative, then the 
failure probability tends to increase. The higher the absolute value of the local 
sensitivity index is, the more dramatically the failure probability will change. 
Theoretically, a parameter has significant effect on failure probability at one point 
doesn't mean that it is influential at each point, similarly, although the index of one 
parameter is close to zero at one point, one cannot think that this parameter is 
non-influential anywhere. Therefore, the local reliability sensitivity indices cannot tell 
the analysts the global sensitivity information of the distribution parameters of model 
inputs to the failure probability. 
 
The global reliability sensitivity indices, which aims at measuring the contribution of 
individual or a set of inputs to the failure probability by investigating their full 
distribution ranges, are developed by Wei et al. (2012) based on Sobol's indices 
[Homma and Saltelli (1996) and Sobol’ (1993) ]. The higher the main effect index of 
one inputs is, the more reduction of failure probability can be obtained while one 
reduce the uncertainty of this input, otherwise, as the total effect index is close to zero, 
the failure probability will not change obviously while one reducing the uncertainty 
of this input. The global reliability sensitivity indices can be estimated by the methods 
developed for Sobol's indices such as MCS [Saltelli (2002); Saltelli et al. (2010); 
Sobol’ (2001)], Fourier Amplitude sensitivity Test (FAST) [Xu and Gertner (2008)] 
and meta-modelling method [Ratto (2007)], thus can be easily implemented. The 
global reliability sensitivity indices can only tell the analysts which inputs to focus on 
so that the failure probability can be reduced efficiently and cheaply, but cannot tell 
the analysts the amount of failure probability reduction due to specific reduced 
uncertainty of model inputs. 
 
In this paper, the failure probability ratio function is introduced for measuring the 
change on failure probability while the distribution parameters of model inputs vary 
in intervals. The proposed sensitivity index is similar to the function of failure 
probability developed by Au (2005) to some extent. The failure probability ratio 
function has important significance in many engineering application. Firstly, it can 
tell the analysts the amount of failure probability reduction while one change the 
distribution parameters of inputs to any specific ones, thus can help the analysts 
reducing the failure probability efficiently and quantitatively. Second, it can provide 
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plenty of information for RBO. After the failure probability ratio function been 
obtained, the RBO problem can be transformed to a deterministic one. Third, for 
model with epistemic uncertainty (due to lack of information (data), the distribution 
parameters of model inputs are represented by an confidence interval), it is helpful for 
selecting the inputs distribution parameters which are most valuable for collecting 
more information. 
 
For numerically estimating the failure probability ratio function, the MCS procedure, 
which needs only a set of samples for implementing it, is firstly introduced. For 
problem with relatively large failure probability, the MCS procedure is accurate and 
efficient. For problem with small failure probability, we suggest using the Importance 
Sampling (IS) and Truncated Importance Sampling (TIS) procedures for reducing the 
computational burden. 
 
2. Failure probability ratio function 
Let ( )Y g= X  denote the limit state function of the structure under investigation, 
where ( )1 2, , , nX X X=X   is the n -dimensional inputs vector. The joint PDF of the 
input vector X  is given as ( )fX x , and the marginal PDF of the input iX  is 
denoted by ( )i if x . In this paper, we assume that the failure of structure happens when 
the model output Y  is less than zero, thus the failure domain F  is defined as: 
 ( ){ }: 0F g= <x x  (1) 
and the failure probability fP  of the structure can be derived as: 

 ( ) ( ) ( ) ( ) ( )( )d df F f FF
P P F f I f E I= = = =∫ ∫X Xx x x x x x  (2) 

where ( )P ⋅  denotes the probability measure, ( )fE ⋅  indicates the expectation with 
respect to the joint PDF ( )fX x  and ( )FI x  stands for the indictor function of the 
failure domain, which is given as: 

 ( )
1
0F

F
I

F
∈

=  ∉

x
x

x
 (3) 

 
Generally, the failure probability is related with the distribution parameters of model 
inputs such as the mean, variance and correlation of multivariate normal distribution. 
If one of these distribution parameters is changed, then the failure probability will 
also be changed. Let p  denote one of these parameters, e.g., variance. Suppose now 
the parameter p  varies in the interval ( ) ( ),l up p 

  , then let ( ) ( )( ) ( )u l lp p p q p= − + , 

where q  is a variable. While the parameter p  varies in the interval ( ) ( ),l up p 
  , q  

varies in the unit interval [ ]0,1 . If we keeps all the other parameters of model inputs 
constant, then denote the updated joint PDF of model inputs due to changed p  as 

( )* ;f qX x . For example, suppose the n -dimensional inputs vector follows independent 

normal distribution, i.e., ( ) ( )1

n
j jj

f f x
=

=∏X x , where ( )
( )2

22 22
j

j

x

j j jf x e
µ

σ πσ
−

−

= . Let p  

denote the variance 2
iσ  of iX  and p  varies in the interval 20, iσ   , then the joint 

PDF ( )fX x  can be updated as: 
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 ( )
( ) ( )

[ ]

22

22 22*
1,2 2

1 1; , 0,1
2 2

ji

ji

xx
n

j j i
i j

f q e e q
q

µµ
σσ

π σ πσ

−− −−

= ≠
= ∈∏X x  (4) 

      
The failure probability with respect to the updated joint PDF ( )* ;f qX x  is computed 
as: 
 ( ) ( ) ( ) [ ]* * ; d , 0,1f FP q I f q q= ∈∫ Xx x x  (5) 
The univariate failure probability ratio function ( )pRPF q  is defined as: 

 ( ) ( )*
f

p
f

P q
RPF q

P
=  (6) 

By definition, ( )pRPF q  measures the ratio between residual and total failure 

probabilities while the parameter p  is changed to ( ) ( )( ) ( )u l lp p q p− + , where 

[ ]0,1q∈ .   
 
Similarly, we can develop the multivariate failure probability ratio function for 
measuring the reduction of failure probability while multiple distribution parameters 
of model inputs are changed. Suppose now we have m  distribution parameters kp  
( 1,2, ,k m=  ) of model inputs, each of which varies in a interval ( ) ( ),l u

k kp p 
  . Let 

( ) ( )( ) ( )u l l
k k k k kp p p q p= − + , where [ ]0,1kq ∈ . Then, similarly, we can obtain the updated 

joint PDF ( )*
1 2; , , , mf q q qX x  , and define the failure probability ( )*

1 2, , ,f mP q q q  with 
respect to ( )*

1 2; , , , mf q q qX x   as: 
 ( ) ( ) ( ) [ ]* *

1 2 1 2 1 2, , , ; , , , d , , , , 0,1f m F m mP q q q I f q q q q q q= ∈∫ Xx x x    (7) 
The m -dimensional failure probability ratio function ( )

1 2, , , 1 2, , ,
mp p p mRPF q q q



  is 
defined as 

 ( ) ( )
1 2

*
1 2

, , , 1 2

, , ,
, , ,

m

f m
p p p m

f

P q q q
RPF q q q

P
=





  (8) 

    
The local reliability sensitivity index pS  of the parameter p  is defined as the 
derivative of the failure probability with respect to p  [Wu and Mohanty (2006)]: 

 
* *

f f f
p

fp p p p

P P PpS
p p P p

= =

∂ ∂
= =

∂ ∂
  (9) 

where *p  is a constant value (often chosen as the true value of the parameter p ). 
The partial derivative *f p p

P p
=

∂ ∂  indicates the change of failure probability while 

one perturbing the parameter p  at point *p . fp P  is a normalization factor that 
makes the sensitivity index dimensionless. 
    
Then it can be proved that (see Appendix for proof):   

 ( ) ( ) ( )

*
*

u l
p

p

q q

RPF q p p S
q p

=

∂ −
=

∂
 (10) 

where ( ) ( )( ) ( )* *u l lp p p q p= − +  is a constant. Eq. (10) indicates that the derivative of 
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the probability ratio function with respect to the parameter p  is proportional to the 
local reliability sensitivity index of p . The local sensitivity index pS  only reflect 
the sensitivity information of the parameter p  at one given point *p , whereas, the 
failure probability ratio function ( )pRPF q  measures the reduction of failure 
probability when the parameter p  is fixed at any point, thus it provides much more 
information on failure probability reduction than the local sensitivity index. 
 
3. Estimators for Failure probability ratio function 
3.1 Monte Carlo simulation 

By definition 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

* *
1 2 1 2*

1 2

; , , , ; , , ,
, , , dm m

f m F f F

f q q q f q q q
P q q q I f E I

f f
 

= =   
 

∫ X X
X

X X

x x
x x x x

x x
 

  (11) 

Eq. (13) indicates that ( )*
1 2, , ,f mP q q q  can be expressed as the expectation with 

respect the original joint PDF ( )f X x , thus can be estimated by MCS procedure using 
one set of samples. The Monte Carlo estimator is given as: 

 ( ) ( )( )
( )( )

( )( )
*

1 2*
1 2 1

; , , ,1ˆ , , ,
j

mN j
f m Fj j

f q q q
P q q q I

N f=
= ∑ X

X

x
x

x



  (12) 

where ( )jx  ( 1,2, ,j N=  ) stands for the j th sample of model inputs generated by 
using the original joint PDF ( )f X x .  
 
Apparently, ( )*

1 2
ˆ , , ,f mP q q q  is an unbiased estimator of  ( )*

1 2, , ,f mP q q q . In this 
paper, we use the mean square error (MSE) for quantifying the error of the estimate. 
Take the univariate failure probability ratio function ( )pRPF q  as an example, the 
MSE of the estimate  ( )pRPF q  is given as: 

  ( ) ( )( )21

0
dpp pMSE RPF q RPF q q= −∫  (13) 

where ( )pRPF q  is the reference result. In this paper, the MSE is estimated via 
bootstrap, thus the reference result ( )pRPF q  is computed by averaging the repeated 
estimates. 
   The samples can be generated using many methods such as simple random 
sampling, Latin-hypercube sampling [Helton and Davis (2003); Loh (1996)] and 
Sobol's sequence [Sobol’ (1976)]. In this paper, the Sobol's sequence is recommended 
since it leads to better convergence rate and lower discrepancy of estimates especially 
for input dimension less than a few hundred [Sobol’ (1976); Varet et al. (2012)].  
   The above MCS procedure needs only a set of sample for estimating the failure 
probability ratio function. For structure with relative large failure probability, it is 
efficient and accurate. However, for small failure probability (<10-3), the MCS 
procedure need more samples for promising some of them dropping in the failure 
domain so that the failure probability can be correctly estimated, thus the 
computational cost increases heavily.  
3.2 Importance Sampling 

To reduce the computational burden of simulation method for computing the small 
failure probability, many researchers have suggested using the IS procedure [Harbitz 
(1986); Melchers (1989); Melchers (1990)]. The basic idea of the IS procedure is 
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choosing an importance sampling density (ISD) for generating samples so that more 
samples drop into the failure domain.  
 
Denote the ISD as ( )hX x , then Eq. (13) can be written as: 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

* *
1 2 1 2*

1 2

; , , , ; , , ,
, , , dm m

f m F h F

f q q q f q q q
P q q q I h E I

h h
 

= =   
 

∫ X X
X

X X

x x
x x x x

x x
 

  (14) 

where ( )hE   is the expectation operator taken with respect to the ISD ( )hX x . Eq. 
(16) indicates that ( )*

1 2, , ,f mP q q q  can be expressed as an expectation with respect to 
( )hX x , thus can be estimated by using the sample mean, i.e., 

 ( ) ( )( )
( )( )

( )( )
*

1 2*
1 2 1

; , , ,1ˆ , , ,
k

mN k
f m Fk k

f q q q
P q q q I

N h=

 
 =
 
 

∑ X

X

x
x

x



  (15) 

 
Similarly, one can verify that Eq. (17) provides an unbiased estimator for the failure 
probability ratio function ( )*

1 2, , ,f mP q q q . The efficiency of the IS procedure is 
greatly affected by the choice of the ISD ( )hX x . Theoretically, the optimal ISD can 
be identified by minimizing the variance of the estimator in Eq. (17), i.e.,  

 ( ) ( )
( )

*
1 2; , , ,

min m
h F

h

f q q q
V I

h
 
  
 

X

X

x
x

x
  (16) 

where the subscript in ( )hV   indicates that the variance is computed with respect to 
( )hX x . It can be proved that the solution of the optimization problem is Eq. (18) is 

[Au and Beck (2002)]: 

 ( ) ( ) ( )
( ) ( )

( ) ( )
( )

* *
1 2 1 2

, **
1 21 2

; , , , ; , , ,
, , ,; , , , d

F m F m
opt

f mF m

I f q q q I f q q q
h

P q q qI f q q q
= =
∫

X X
X

X

x x x x
x

x x x
 





 (17) 

By using the optimal ISD in Eq. (19), the variance of the estimates in Eq. (17) can be 
derived as: 

 ( )( ) ( ) ( )
( ) ( )( )

*
1 2* *

1 2 1 2
,

; , , ,1 1ˆ , , , , , , 0
opt opt opt

m
h f m h F h f m

opt

f q q q
V P q q q V I V P q q q

N h N
 

= = =  
 

X

X

x
x

x


  (18) 

Although the optimal ISD ( ),opthX x  can be derived by Eqs. (18) and (19), it is not 
available in practical application. One reason is that the identification of ( ),opthX x  
involves the information of the failure probability ( )*

1 2, , ,f mP q q q , which is what to 
be estimated from the simulation. Another reason is due to the fact that the indicator 
function ( )FI x  is unknown in advance. Even though the optimal ISD ( ),opthX x  can 
be constructed via some numerical method, it is often a complicated and 
time-consuming task to generate samples from the constructed ISD especially for 
high dimensional ISD [Au and Beck (2002)]. 
 
In practical application, researchers often attempt to construct the approximate 
optimal ISD under some assumptions. One of the most common used methods is 
assuming the ISD belongs to one family of distribution, and then choosing the 
optimal ISD via optimizing the distribution parameters. Au and Beck (2002) use the 
cross-entropy for searching the optimal distribution parameters of ISD belongs to 
assumed distribution family. Others suggested generating the ISD by shifting the 
center of the original joint PDF ( )f X x  to the design point *x  with the highest 
probability density in the failure region [Harbitz (1986); Melchers (1989)]. In the 
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examples of this paper, for simplicity, the later method is used. For problem with 
multiple failure modes, the ISD can be constructed by mixing multiple PDFs, each of 
which is centered at one design point. The design points can be identified by using 
many optimization algorithms such as FOSM [Hasofer and Lind (1974)] and genetic 
algorithm [Obadage and Harnpornchai (2006)]. 
    
Compared with the MCS procedure, the above IS procedure is more suitable for 
problem with small failure probability since the ISD ( )hX x  allows more sample 
drop into the failure domain. One note that, as the distribution parameters vary, the 
failure domain will not change since the limit state function remains unchanged. 
Those samples within the failure domain will always stay in the failure domain no 
matter how the distribution parameters change. Therefore, one need only one set of 
samples generated by one pre-identified ISD ( )hX x  for computing the failure 
probability ratio function ( )

1 2, , , 1 2, , ,
mp p p mRPF q q q



  at any points. 
    
The main drawback of the above IS procedure is that it may not always be suitable for 
high-dimensional (up to a few hundred) nonlinear problems since that the 
identification of an approximate fixed ISD is practically impossible [Katafygiotis and 
Zuev (2008)].    
3.3 Truncated Importance Sampling 

In subsection 3.2, the introduction of the ISD constructed using the design point has 
substantially reduced the computational burden for computing the failure probability 
ratio function. In fact, the computational cost can be further reduced by using the TIS 
procedure [Grooteman (2008)]. 
 
In a standard Gaussian space, the reliability index β  is in fact the distance from the 
from the design point *x  to the origin of coordinate, as shown by Figure 1. Then a 
hypersphere with radius β  can be obtained. We denote this hypersphere as β

-sphere. Define the indictor function ( )Iβ x  of the β -sphere as: 

 ( )
2

2

1

0
Iβ

β

β

 ≥= 
<

x
x

x
 (19) 

It is shown in Fig. 1 that the failure region outsides the β -sphere, and there is no 
failure point drop in the region of β -sphere, then the failure probability 

( )*
1 2, , ,f mP q q q  can be further derived as: 

 
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( )

*
1 2*

1 2

*
1 2

; , , ,
, , , d

; , , ,

m
f m F

m
h F

f q q q
P q q q I I h

h

f q q q
E I I

h

β

β

=

 
=   

 

∫ X
X

X

X

X

x
x x x x

x

x
x x

x







 (20) 

Then ( )*
1 2, , ,f mP q q q  can be estimated by: 

 ( ) ( )( ) ( )( )
( )( )

( )( )
*

1 2*
1 2 1

; , , ,1ˆ , , ,
j

mN j j
f m Fj j

f q q q
P q q q I I

N h
β=

 
 =
 
 

∑ X

X

x
x x

x



  (21) 

In Eq. (23), if the sample point ( )jx  drop into the β -sphere, then ( )( ) 0jIβ =x , 

further ( )( ) ( )( ) ( )( ) ( )( )*
1 2; , , , 0j j j j

F mI I f q q q hβ =X Xx x x x , thus one needs not to compute 

the value of limit state function at the point ( )jx . By this way, the computational 
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burden is further reduced. 
 
The above TIS procedure can further reduce the computational cost by introducing 
the β -sphere. However, since the design point *x  is computed numerically, as 
some computational error exists, the β -sphere may include some non-negligible part 
of the failure region. This will further leads to computational error of the estimate of  

( )*
1 2, , ,f mP q q q  [Wei et al. (2012)].   

 

( )g x
β

*x

 

Figure 1. Schematic illustration of the β -sphere. 
 
4. Numerical test case 
In this section, we use a numerical example for illustrating the engineering 
significance of the failure probability ratio function, and verifying the efficiency and 
accuracy of the proposed numerical methods. The limit state function of the structure 
is represented by 
 ( ) 1 2 1 34Y g X X X X= = − − −X  (22) 
where ( )1 2 3, ,X X X=X  is a vector including three inputs, which are assumed to 
follow standard normal distribution, i.e., ( )0,1iX N  for 1,2,3i = .  
 
In this test case, we consider the sensitivity of the mean and variance of the model 
inputs to the failure probability. We assume that the means and variances of the three 
inputs vary in the interval [ ]0.1,0.1−  and [ ]0,1  respectively. Then the mappings from 
q  to the mean µ  and variance 2σ  are given as 0.2 0.1qµ = +  and 2

i qσ = , where 
[ ]0,1q∈ .  

 
The univariate failure probability ratio functions with respect to the means and 
variances of the three inputs are computed by MCS, IS and TIS procedures using one 
set of sample, and the estimates are plotted in Figures 2-4. The total number of 
function evaluations of the MCS, IS and TIS procedure are 106, 1022 and 719, thus 
the estimates of the MCS procedure can be regarded as the exact solution. It is shown 
that the estimates of the IS and TIS procedures are in good agreement with their exact 
solutions. Compared with the MCS procedure, the computation burden of the IS 
procedure is sufficiently reduced, and due to the introduction of the β -sphere, the 
computational cost is further reduced without affecting the accuracy of estimates. For 
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further investigating the convergence of the IS procedure, we plot the MSEs of the 
estimates with respect to the sample size in Figure.5. It can be seen that the MSE of 
each estimate tends to zero as the sample size increases.  
 
It is shown by Fig.2(a) that, the failure probability increases monotonically and 
linearly with respect to the means of the three inputs. As one decrease the means of 
the model inputs, the failure probability tends to reduce linearly, and the slopes of the 
failure probability ratio functions in Fig.2(a) indicate the rate of reduction. As can 
been, as reducing the same amount of means, 1X  leads to the most reduction of 
failure probability, followed by 3X , and then 2X .  
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Figure 2. Univariate failure probability ratio functions computed by MCS 
procedure: (a) with respect to means of inputs; (b) with respect to variances of 

inputs. 
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Figure 3. Univariate failure probability ratio functions computed by IS 
procedure: (a) with respect to means of inputs; (b) with respect to variances of 

inputs. 
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Figure 4. Univariate failure probability ratio functions computed by TIS 
procedure: (a) with respect to means of inputs; (b) with respect to variances of 

inputs. 
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Figure 5. Convergence plots of the univariate failure probability ratio functions 
with respect to (a): mean of inputs; (b) variance of inputs. 

 
In many engineering application, the failure probability is reduced via decreasing the 
dispersion (variance) of model inputs. Suppose now our target is to reduce the failure 
probability by 80%. As one can see in Figure.2(b), the failure probability tends to 
decrease as the variances of inputs are reduced. It can be read from Figure.2(b) that, 
to achieve our targeted reduction of failure probability, one need to reduce the 
variance of 1X  by 63% or that of 3X  by 94% individually. It is possible to achieve 
our target by reducing the variance of 2X . 
 
In most cases, it is difficult to reduce the variance of one input by 63%. For reducing 
the failure probability by 80%, one needs to use the bivariate failure probability ratio 
function. Since that reducing the variances of 1X  and 3X  leads to more failure 
probability reduction that reducing the variance of 2X , we plot the bivariate failure 
probability ratio function (computed by MCS procedure) with respect to the variances 
of 1X  and 3X  in Figure.6. The diagonal line of this bivariate failure probability 
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ratio function measures the ratio between the residual and total failure probability 
while both the variances of 1X  and 3X  are reduced to q , thus we plot it in Figure 7. 
As can be seen that, by reducing the variances of 1X  and 3X  by 48% 
simultaneously, we can achieve our targeted reduction of failure probability. 
 

 

Figure 6. 3D plots of the bivariate failure probability ratio function with respect 
to the variances of the pair ( )1 3,X X , where 1q  and 2q  indicate the variance 

reduction of 1X  and 3X  respectively 
 

 

Figure 7. Diagonal line of the failure probability ratio function with respect to 
the variance of the input pair ( )1 3,X X  
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Abstract 
Isogeometric analysis (IGA) is a relatively new method and receiving much attention 
recently, the efficient quadrature in which is an important branch far from mature. We 
introduce the Clenshaw-Curtis quadrature into IGA and give the corresponding 
algorithms. The estimated computation cost for both rules and of the whole 
isogeometric approximation are proposed, and through which we compare it with the 
optimal standard Gauss rule. It is found that the Clenshaw-Curtis rule have better 
efficiency than the Gauss for spline degree of 2. Better accuracy of CC than Gauss for 
low spline degrees are also found through the applications of both rules in the 
boundary value problems.  

Keywords: isogeometric analysis, quadrature, Clenshaw-Curtis, Gauss, NURBS 

1 Introduction  

Isogeometric analysis (IGA) is a recently proposed subject which is receiving a great 
deal of attention amongst the computational mechanics community. isogeometric 
analysis is a technique of numerical analysis that uses the same basis functions 
commonly found in description of Computer Aided Design (CAD) geometries to 
represent both geometry and physical fields in the solution of problems governed by 
partial differential equations (PDE)[Hughes et al. (2005); Cottrell et al.(2009)]. Based 
on its initial intends of bridging the gap between the CAD and the Finite Element 
Analysis (FEA), IGA has the potential to have a profound effect and the promise of 
overcoming some bottleneck issues that plagued computer aided engineering for 
decades. 
 
The use of the most popular Non-Uniform Rational B-Spline (NURBS) basis function 
applied for the geometry description in the solution field therefore leads to 
elimination of geometric-approximation error in even the coarsest mesh. In this way, 
the isoparametric concept is maintained but more significantly, the geometry of the 
problem is preserved exactly. The increased continuity of the NURBS basis has led to 
significant numerical advantages over traditional Lagrange polynomials and other C0 
inter-element continuity based FEA, e.g. it can possess high regularity across mesh 
elements, leading to a higher accuracy per degree-of-freedom (DOF) basis [Cottrell et 
al.(2009)]; it also has better robustness and system condition number than FEA 
[Bazilevs et al.(2006)]. Many researchers have applied B-splines and NURBS as the 
basis for IGA applications such as fluid dynamics [Bazilevs et al.(2006); Bazilevs et 
al.(2012)], structural mechanics [Kiendl et al.(2009); Lipton et al.(2010); Benson et 
al.(2011)], thermal analysis [Anders et al.(2012)], shape optimization [Qian (2010)], 
electromagnetics [Buffa and Sangalli (2010)] and so on.  
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However, several challenges remain for IGA to be fully accepted as industrial-
strength analysis technology. One of them is the design of efficient and adaptive 
quadrature rules. The quadrature scheme of the IGA is accomplished over individual 
non-zero knot spans of the underlying B-spline based geometry, which is different 
from performing the numerical quadrature on individual finite elements in the FEA. 
In fact, the widely used Gauss quadrature on each element in the IGA computation is 
a choice far from being optimal [Auricchio et al. (2012)]. An optimal quadrature rule 
which exactly integrates B-spline basis functions with the minimum number of 
function evaluations for IGA was initially constructed in [Hughes et al. (2010)]. It 
significantly improves the computational efficiency despite that sometimes it is 
difficult to solve for high polynomial degrees and numbers of elements due to a 
global ill-conditioned equation system. [Auricchio et al. (2012)] developed an 
efficient algorithm through which can obtain nearly optimal rules. That algorithm is 
proved to be much easier to construct.  
 
In this paper, we discuss the quadrature in IGA from another aspect. As mostly used 
rules are commonly Gaussian, we introduced an existing non-Gaussian rule named 
Clenshaw-Curtis into IGA and explored its new features. The Clenshaw-Curtis rule 
uses Chebyshev points instead of optimal nodes of Gauss quadrature. The 
computation of a cosine transformation and the arithmetic cost of this were 
prohibitive and thus limited the use of this rule before the FFT transformation was 
used. It has particular advantages such as easier implementation [Gentleman (1972a; 
1972b)], most similar convergence rate [Calabrò and Esposito (2009)] and in fact, for 
most integrands, about equally accurate [Trefethen (2008)] compared to the Guass 
quadrature. We know its own merits, but how it performs in IGA – this is what we 
discuss in this paper. We discuss its convergence and efficiency through comparisons 
with standard Gauss rule and find some interesting points. Note that, there are several 
variations on this theme (see [Trefethen (2008); Clenshaw and Curtis (1960)]). What 
we use in this paper is commonly called “practical” Clenshaw-Curtis formula.  
 
The paper is organized as follows. Section 2 gives some of the preliminaries on IGA 
and Clenshaw-Curtis rules. Section 3 studies the integration of quadrature rules into 
IGA and makes discussions on computational cost of both rules. Section 4 exploits 
the Clenshaw-Curtis rules to numerically solve boundary value problems in Poisson’s 
and elasticity problems and makes verifications of Section 3. In this paper, we took 
advantage of the open-source codes of GeoPDEs (http:// geopdes.sourceforge.net) 
and modified the corresponding parts. 

2. Preliminaries on IGA 

We start with a brief review of some technical aspects of B-spline and NURBS bases 
for IGA. More detailed introduction can be found in the fundamental works proposed 
by [Hughes et al. (2005); Cottrell et al.(2009)]. 
 
As aforementioned, similar with the isoparametric concept of standard FEM, 
isogeometric analysis uses higher degree smooth spline functions, in particular B-
splines and NURBS. A univariate B-spline function of polynomial degree m is 
specified by n basis functions Ni,m(ξ)(Ni,m, for short), (i=1,…,n) in the parametric 
space ξ. The non-decreasing set of (n+m+1) coordinates ξi are so-called knots and 
subdivide the parametric space into (n+m) knot spans forming a patch [Hughes et al. 
(2005); Cottrell et al.(2009)]. 
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1 2 1{ , ,..., }n mξ ξ ξ + +Ξ =                                                      (1) 
Piecewise polynomial B-spline functions are defined over m+1 knot spans with Cm-1 
continuity between the spline elements. Repeated knots decrease the continuity 
between the knot spans and make the B-splines interpolatory at the knots. For a 
repetition of the first and last knot the knot span is said to be open. Knot spans with 
non-zero extension will in the following be referred to as knot-span elements. The 1D 
patch of Figure 1 consists of four knot-span elements. The B-spline basis functions 
are constructed recursively by the Cox-de Boor formula [Piegl and Tille (1997)] 

 
Figure1. 1D non-uniform NURBS patch. 

 
NURBS basis functions and geometric entities are then immediately obtained from 
the previous B-Spline spaces. In brief, a positive weight ωi can be associated to each 
B-Spline basis function Ni,m, and the corresponding NURBS basis function is defined 
as  

,
,

,1

( )
( )

( )
i i m

i m n
j j mj

N
R

N

ω ξ
ξ

ω ξ
=

=
∑

                                                (2) 

Such a definition is easily generalized to the two- and three-dimensional cases by 
means of tensor products. For instance, in the trivariate case, given the degrees pd, the 
integers nd and the knot vectors Ξ, Η and Γ, the corresponding B-spline and NURBS 
basis functions are  

, ,
, , , , ,( , , ) ( ) ( ) ( )p q r

i j k i p j q k rB N M Lξ η γ ξ η γ=                                    (3) 
and 

, ,
, , , ,, ,

, , , ,
ˆ ˆˆ ˆ ˆ ˆ ˆˆ̂ , , , ,

( , , )
( , , )

( , , )

p q r
i j k i j kp q r

i j k p q r
i j k i j kijk

B
R

B
ω ξ η γ

ξ η γ
ω ξ η γ

=
∑

                                 (4) 

B-spline or NURBS curves, surfaces and volumes are then defined as 
, ,

, ,( , , ) ( , , )p q r
ijk i j kRξ η γ ξ η γ= ∑C P                                       (5) 

3. Clenshaw-Curtis Quadrature in the element of IGA 

Let n>1 be a given fixed integer, and define n+1 quadrature nodes on the standard 
interval [−1, 1] as the extremes of the Chebyshev polynomial Tn (x), augmented by 
the boundary points, 

: cos , : , 0,1,... .k k kx k k n
n
πϑ ϑ= = =                                      (6) 
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Given a spline function f, an n-point interpolatory quadrature rule is a choice of n 
ordered points and weights such that 

1

1
0

( ) ( )
n

k k n
k

f x dx f x Rω
−

=

= +∑∫                         (7) 

where Rn is the approximation error, and ωk are the quadrature weights, which can be 
obtained by integrating the n-th-degree polynomial interpolating the n+1 discrete 
points (xk, f(xk)). Applying this procedure to the nodes eq.(6) directly yields the 
Clenshaw-Curtis rules. [Davis and Rabinowitz (1984)] summarized the explicit 
expressions for the Clenshaw-Curtis weights cc

kω  
[ /2]

2
1

1 cos(2 ) , 0,1,... ,
4 1

n
jcc k

k k
j

bc j k n
n j

ω ϑ
=

 
= − = − 

∑                         (8) 

where the coefficient bj, ck, are defined as  
1, / 2 1, 0 mod
2, / 2, 2,j k

j n k n
b c

j n otherwise
= = 

= = < 
                           (9) 

Eq. (8) holds for every even or odd integer n>1, which together with the definition (9) 
of ck implies  

0 2

1
1 mod( ,2)

cc cc
n n n

ω ω= =
− +

                                            (10) 

 
We give the detailed constructions proposed in [Waldvogel (2006)], which are given 
by the inverse discrete Fourier transform of the vector v + g, where v and g is 
defined in eq.(11) and eq.(12), respectively. The evaluation is particularly fast if n is a 
power of 2. 

2

2 , 0,1,..., 1,
1 4 2k

nv k
k

 = = − −                                                   

2

3 1,
2 1

2

n

nv
n 

  

−
= −

  −  
                                                             

1, 1, 2,..., ;
2n k k

nv v k−

− = =                                                (11)  

0 , 0,1,..., 1,
2

cc
k

ng kω  = − = −                                                       

2
0 [(2 mod( ,2)) 1],n
ccg n nω 

  

= − −
                                                    

1, 1, 2,..., .
2n k k

ng g k−

− = =                                                (12) 
where 0

ccω  is defined in eq.(10) with cc
nω := 0

ccω . The superscripts in defining vn-k and 
gn-k refer to complex conjugation.  

We take one-dimensional parametric domain as an example, two and three-
dimensional can be easily obtained by means of tensor product. We assume the 

interval [0,1] with a uniform subdivision into l unitary elements [ 1i
l
− , i

l
 ], where i 

=1,…, l.  
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Remark 3.1: We call m
qS the space spanned by the B-spline basis functions with 

global Cq-continuity, which is associated with a knot vector having internal knots 
with multiplicity r = m - q. 

Given a spline function m
qf S∈ , which is a polynomial of degree m in each 

element [ 1i
l
− , i

l
 ] with qf C∈ ([0,1]). In the computation, m+1 coefficients on each 

of the l elements with q+1 continuity requirements on the n-1 internal points need to 
be assigned. The dimension of the space m

qS  is therefore l(m-q)+q+1, where -1≤q≤
m-1 as q= -1 refers to the discontinuous case. In particular, q=0 refers to the case of 
functions continuous on the whole parametric domain and piecewise polynomial on 
each single element, which is similar to the FEA approximation.  

In the elements defined above, Gauss quadratures are commonly used in 
numerical integration of functions in m

qS . Compared with the standard Gauss rule, 
which has its quadrature points totally implemented within each element boundaries, 
the Clenshaw-Curtis have points at element boundaries. We apply Clenshaw-Curtis 

quadrature points eq.(6) to each element (i.e. subinterval) [ 1i
l
− , i

l
 ] and thus the first 

and the last quadrature points are exactly the 1
1i ix

l
−

=  and 1
i
m

ix
l− = . If there are same 

integration points number nI in each element, the translation and scaling method 
[ 1,1] 1 1( ) , 1,...,i i i i

k k k k k Ix x x x x k n− − −= ⋅ − + =                                   (13) 
are always used to save the computation, see Figure 2a; where i

kx is the unknown 
quadrature point; [ 1,1]

kx − is the k-th point in the biunit interval [-1,1]; i
kx  is the k-th point 

in the i-th element. Sometimes quadrature points need to be enriched in certain 
elements or parametric direction in the sense of product tensor, as we need high 
accuracy there than the acceptable general accuracy of the whole domain. For this 
case, different point numbers are implemented and the corresponding weights are 
usually evaluated separately. Figure 2b shows that the quadrature points are added to 
4 in the subinterval [0.125, 0.625] where only 2 Gauss points are needed to obtain the 
exact integration for the basis functions of degree 2. A pseudo-code for 
implementation of the standard Clenshaw-Curtis quadrature points is proposed below 
according to the two cases aforementioned, which are the respective using of uniform 
quadrature points and different quadrature points in subintervals. We fix the spline 
degree and full regularity for simplicity. The computational domain is considered k-
dimensional. 

Input: 1 k integer array: spline_degree 
for parametric direction: idir=1,…,k 

﹥find out the unique knots: uniq_knots(1:n); 
﹥record the first n-1 elements of uniq_knots(1:n): uniq_knots_el(1:n-1); 
﹥calculate the differences adjacent elements of uniq_knots(1:n): du(1:n-1); 
if case 1, then 

﹥calculate quadrature points in unit interval [-1,1]: q_points_temp(idir, 
points, weights) = CC(spline_degree(idir)); 

for the i-th node, inode = 1:n-1 
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        ﹥calculate quadrature points in current parametric direction: q_points(idir, 
inode) = (q_points_temp(idir,:,weights) +1) / 2 * du(inode) + 
uniq_knots_el(inode); 

﹥ calculate quadrature weights in current parametric direction: 
q_weights(idir,inode)=q_points_temp(idir,points,:); 

     endfor 
elseif case 2, then 

for the i-th node, inode = 1:n-1 
        ﹥calculate quadrature points in unit interval [-1,1]: q_points_temp(idir, 

inode, points, weights) = CC(spline_degree(idir, inode)); 
﹥ calculate quadrature points in current parametric direction: 

q_points(idir, inode) = (q_points_temp(idir, inode, : ,weights) +1) 
/ 2 * du(inode) + uniq_knots_el(inode); 

﹥ calculate quadrature weights in current parametric direction: 
q_weights(idir,inode)=q_points_temp(idir,points,:); 

     endfor 
endif 

endfor 
Return: n-points quadrature rule (xn,ωn) in the whole parametric direction. 

in which the subroutine CC is used for evaluation of the Clenshaw-Curtis points and 
weights in the unit interval. A pseudo-code for subroutine CC is listed below. 

Input: number points minus 1: n-1 
﹥calculate quadrature points xk defined in eq.(6); 
﹥calculate the vector v and g defined in eq.(11) and eq.(12); 
﹥perform the inverse discrete Fourier transform of the vector v + g ; 
Return: n-points quadrature rule ( [ 1,1]

nx − , [ 1,1]
nω − ) in biunit interval[-1,1]. 

 

 
Figure 2a. Uniform quadrature points (red circles) used in subintervals, which 

are implemented by the translation and scaling method. 

 
Figure 2b. Different quadrature points (red circles) used in subintervals, where 

the translation and scaling method are invalid. 
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For m-degree basis functions, 1
2

m + or 2
2

m +   (for m is odd or even, respectively) 

quadrature points for Gauss rules and m+1 for Clenshaw-Curtis rules per element are 
needed in order to exactly integrate functions in space. Note that, for Gauss rules, all 

the 1
2

m + or 2
2

m +  points are within each knot span; while for Clenshaw-Curtis, there 

are m-1 rather than m+1 points within each element as the two boundary points are 
the knots themselves (Figure 3). Here we denote the minimum number of the 
quadrature points needed in Clenshaw-Curtis and Gauss by 

min

CC
In and 

min

G
In respectively, 

which expressed as, 

min min

( 1) / 2
1,

( 2) / 2
CC G
I I

m for m odd
n m n

m for m even
+ =

= − =  + =                          
(14)  

 
Fig.3 Setting the quadrature points (red circles) using Clenshaw-Curtis rules in 

one parametric direction. 
 

For smaller values of quadrature points number nI, the well known Gauss efficiency 
of the factor of 2 cannot be achieved (i.e., size of nI needed to achieve a certain 
accuracy). [Trefethen (2008)] pointed out that, for functions that are not analytic in 
stable neighborhood of [−1,1], the Clenshaw-Curtis rule too comes close 
to *

2 1I In nI I E +− ≈ , see Remark 3.2. Accordingly, for common low-degree (m≤4) 

spline functions in IGA, the minimum number of the quadrature points 
min

CC
In  needed in 

Clenshaw-Curtis rule can be decreased. Furthermore, in the lower degree case that the 
quadrature points and weights need to be calculated in each element, Clenshaw-Curtis 
rule should be more efficient than Gauss rule in a literal sense; as the former can be 
done in O(nIlognI) operations comparing with operations in O(nI

2) for the latter. For 
simplicity, we assume an open knot vector with the form 

     
1 1

1 1

{ , , , , , , , , }m l m
m m

U a a b bξ ξ+ − −

+ +

=   

 

                                        
(15)

 
where the first and the last knots have a multiplicity of m+1 and 1 for other knots, m 
is the spline degree, l+1 is the knot number, thus the element number ke is 

2ek l m= −
                                                         

(16) 
and the basis function number is 

Bn l m= −
                                     

                   (17a) 
or  

B en k m= +
                                    

                  (17b) 
The estimated operations needed in IGA for these two rules are 

{ }min min min
: logCC CC CC

I I I B opfor CC O n n n n n+                               (18a) 

{ }min min

2: G G
I I B opfor Gauss O n n n n+                                  (18b) 
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where nop is the times of evaluations of basis functions at quadrature points, which is 
determined by the feature of the problem and the experience of the programmer. The 
first terms of these two equations are related to the evaluations of quadrature points 
and weights in non-uniform case; the second terms are related to the evaluations of 
basis functions of the discrete space at quadrature points computed above. Substitute 
eq.(17a) and eq.(17b) into eq.(18a) and eq.(18b) yield the estimated operations 
needed in IGA for this two rules, 

[ ] [ ] [ ]{ }: ( 1) 1 log ( 1) 1 ( 1) 1 ( )e e e e opfor CC O k m k m k m k m n− + − + + − + +
  
(19a) 

2

2

1 1 ( )
2 2

:
2 2 ( )

2 2

e e e op

e e e op

m mO k k k m n for m odd

for Gauss
m mO k k k m n for m even

   +   +      + + =                 


   +   +     + + =                 

  (19b) 

 
We give the estimated results in Figure 4a - Figure 4c for nop equaling to 1×101~3 

respectively. In each figure the variations of computational cost (operation times) 
with the spline degree is plotted. We find that the CC rule has higher efficiency for 
spline degree of 2 than Gauss, which is applicable for all of three cases. However, the 
Gauss rule is faster for degrees larger than 3 with a larger nop (for nop of significantly 
greater than 10, e.g.100 and 1000 as shown in figure, the Gauss needs less operations; 
for nop of near 10, both are almost the same). Another surprising finding about CC 
rule in IGA for the spline degree of 2 will be elaborate in section 4.The minimum 
numbers of the quadrature points for all cases of 1D are shown in table 1. The 
interesting observation about 

min

CC CC
I In n≤ will be shown in section 4. 

Remark 3.2: We use the definition of *
InE in [Trefethen (2008)]: Given [ 1,1]f C∈ −   

and nI≥0, let *
Inp be the unique best approximation to g on [−1,1] of degree ≤n with 

respect to the supremum norm ∞=  ，and define * *
I In nE f p= −  . 

Table 1. Minimum number of points for exact integration for standard Gauss rule vs. 
Clenshaw-Curtis rule. 

Degree 
m 

2 elements  3 elements  4 elements 
Gauss  CC Gauss  CC Gauss  CC 

1 2       3  3       4  4       5 
2 4       5  6       7  8       9 
3 4       7  6      10  8      13 
4 6       9  9      13  12     17 
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Figure 4a. 

 
Figure 4b. 

 
Figure 4c. 

Figure 4 The computational cost (operation times) of CC and Gauss versus the 
spline degree in cases of different nop: a, nop=10; b, nop=100; c, nop=1000. 
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4. Numerical applications and results 

To verify the rules presented in the previous section, the Poisson’ problem and 
plane strain elasticity are numerically solved. NURBS based physical domains used 
as test samples to investigate the applicability, accuracy and efficiency of Clenshaw-
Curtis rules in IGA. The geometric parameterization P is defined as  

P : Ω̂ → Ω ,   ,ˆ ˆ ˆ( ) : ( )i p i
i

F N C
∈

→ = = ∑
I

x x x x                              (20) 

where Ω̂  is the parametric domain described through the parameterization F, Ω  is 
the physical domain. , ˆ( )i pN x is the NURBS basis function; Ci is the corresponding 
control points. 

4.1 Poisson’s problems on a quarter of annulus with Dirichlet boundary conditions 

A Poisson’s problem is defined in a single 2D NURBS patch which forms a 
quarter of annulus (see Figure 5). The domain has an internal radius of 1 and an 
external radius of 2. For simplicity, homogeneous Dirichlet boundary conditions are 
imposed on the whole boundary. The problem in their variational formulation with 
the source term read as 

1
0,

2 2

2 2
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0
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D
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u vdx fvdx gvd v H

u on
ywith x y
xf

x y

ΓΩ Ω Γ
∇ ∇ = + Γ ∀ ∈ Ω

= Γ


− +
 =

+

∫ ∫ ∫

                      (21) 

 

 
Figure 5. Solution of the Poisson’ problem with Clenshaw-Curtis rules. On the 
left: geometry sketch (with elements) of the domain Ω. On the right: contours of 
the solution. 

 
In this case, the exact solution is given by  

2 2 2 2( 3 2)sin(2arctan )yu x y x y
x

= + − + +                            (22) 
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Such a problem is approximated by a standard isogeometric Galerkin method for 
basis function degrees m ranging from 2 to 4 in both parametric directions. In each 
direction, the higher regularity q of m-1 is used.  
 
The Clenshaw-Curtis (CC for short in figures and tables) rule is compared with a 
standard element-wise Gauss quadrature in Figure 6 by giving the convergence 
curves for the L2-norm of the relative error with respect to (w.r.t.) the exact solution. 
Such convergence curves are plotted with control points (or degree of freedoms) 
varying from 20 to 140 in each parametric direction and full quadrature is used. It can 
be seen that differences between the two kinds of errors are negligible w.r.t. the 
approximation error. The convergence rate of the Clenshaw-Curtis is almost the same 
as the Gauss. Besides, the order of accuracy increases evidently with the increment of 
the degree. The detailed error information is listed in Table 2.  

Table 2. The results of the Poisson’s problem: L2-norm of the relative error 
w.r.t. the exact solution in the case of different number of control points for the 
Clenshaw-Curtis and standard element-wise Gauss quadrature. Full 
quadratures are evaluated. See section 4.1 for detailed computation setup. 

DOF number per 
direction 

Rule Spline degree of 2 Spline degree of 3 Spline degree of 4 

20 
CC 5.431343771566488e-06 1.894233786199076e-07 9.430382212269052e-09 

Gauss 3.572914474223246e-06 1.680628530304760e-07 9.366661545768601e-09 

60 
CC 1.613192377810281e-07 1.471198622014350e-09 1.742675787352948e-11 

Gauss 1.054458637452052e-07 1.299645295684350e-09 1.678912535123116e-11 

100 
CC 3.342719810125322e-08 1.752487255178711e-10 1.203087010291692e-12 

Gauss 2.183982466163931e-08 1.547715389168774e-10 1.130145581122103e-12 

140 
CC 1.196987407020663e-08 4.403201788880789e-11 2.157064347426942e-13 

Gauss 7.819640850756566e-09 3.888441670882580e-11 1.978973380670083e-13 

 

 
Figure 6. Convergence curves in solving the Poisson’s model for the L2-norm of 
the relative error (double log-scale). Full regularity is assumed and minimum 
numbers of quadrature points for exact integration are used. 
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The comparison between the convergence rate w.r.t. the number of quadrature points 
of the Clenshaw-Curtis and that of Gauss rules is plotted in Figure 7a- Figure 7c. In 
these three figures, convergence curves of the relative error w.r.t. the exact solution is 
considered with the control nets fixed at 20 20 and basis function degrees varying 
from 3 to 5 respectively. It can be found that the Gauss converges faster than CC 
w.r.t. the same number of quadrature point. For higher degrees it is more evident. In 
other words, to converge to certain accuracy, the Gauss needs less quadrature points 
due to the “factor of 2”.  

 
Fig.7a 

 
Fig.7b 

 
Fig.7c 
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 Figure 7. The computational cost of the Clenshaw-Curtis rule vs. that of Gauss 
rules. a. with a spline degree of 3; b. with a spline degree of 4; c. with a spline 
degree of 5. 
 
The number of quadrature points for each whole parametric direction and averaged in 
each element (in brackets) are shown in Table 3, respectively. The bold data is the 
minimum point number for exact quadrature, corresponding to Table 1. Given spline 
degree of 3, the minimum point number needed in Gauss and CC for exact integration 
are 2 and 4 respectively, corresponding total number are 34 and 52. However, the 
accuracy has already been achieved by 3 CC points (35 in total, which is 1 point more 
than the optimal Gauss.), rather than the 52 points required. Given spline degree of 4, 
the CC has a better accuracy than Gauss if the functions are under integrated (the 
point number used is less than the minimum, and thus the exact quadrature is not 
achieved), which can be seen from the case of 3 and 2 points for CC and Gauss, 
respectively. Besides, the Clenshaw-Curtis essentially never requires many more 
function evaluations than Gauss to converge to a prescribed accuracy [Trefethen 
(2008)]. In the plane strain problem which will be presented at section 4.2, we will 
report the similar results. 

Table 3. The results of the Poisson’s problem: L2-norm of the relative error 
w.r.t. the exact solution in the case of different quadrature points for the 
Clenshaw-Curtis and standard element-wise Gauss quadrature. See section 4.1 
for detailed computation setup. Integers before and in bracket refer to the 
number of quadrature points in each parametric direction and in each element, 
respectively. The bold data relates to the minimum points for exact quadrature, 
corresponding to Table 1. 

Rule 
Number of 
quadrature 

points 
Spline degree of 2 

Number of 
quadrature 

points 
Spline degree of 3 

Number of 
quadrature 

points 
Spline degree of 4 

CC 37(3) 5.810937748390370e-07 35(3) 3.507832956193244e-06 33(3) 4.815269168741496e-05 

Gauss 36(2) 5.910381033719918e-06 34(2) 3.237004970763237e-06 32(2) 1.883677307485299e-04 

CC 55(4) 5.431343771566488e-06 52(4) 1.076046179389082e-06 49(4) 2.267120441916495e-05 

Gauss 54(3) 3.572914474223246e-06 51(3) 2.043586698351132e-07 48(3) 2.487016794552956e-08 

CC 73(5) 3.984412401849476e-06 69(5) 1.894233786199076e-07 65(5) 1.242345091306609e-08 

Gauss 72(4) 4.254679062985767e-06 68(4) 1.680628530304760e-07 64(4) 9.726530536491443e-09 

CC 91(6) 4.221771456414136e-06 86(6) 1.719740835113939e-07 81(6) 9.430382212269052e-09 

Gauss 90(5) 4.254426013745271e-06 85(5) 1.720555724776312e-07 80(5) 9.366661545768601e-09 

CC 109(7) 4.254443331292910e-06 120(7) 1.719868621478127e-07 97(7) 9.400145380498706e-09 

Gauss 108(6) 4.254426057907695e-06 102(6) 1.720541618939914e-07 96(6) 9.386569470718392e-09 

CC 127(8) 4.254430377691922e-06 137(8) 1.720541968799450e-07 113(8) 9.390607008627601e-09 

Gauss 126(7) 4.254426057908292e-06 119(7) 1.720541622130770e-07 112(7) 9.386561687283082e-09 
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Table 4. The results of the plane strain problem: L2-norm of the relative error w.r.t. 
the exact solution in the case of different number of control points for the Clenshaw-
Curtis and standard element-wise Gauss quadrature. Full quadratures are evaluated. 
See section 4.1 for detailed computation setup. 

DOF 
number per 

direction 
Rule Spline degree of 2 Spline degree of 3 Spline degree of 4 

20 
CC 7.580838422425806e-05 5.709802889966272e-05 1.473215457485271e-06 

Gauss 3.486429685645471e-04 1.721340273127870e-04 2.049928251576902e-06 

60 
CC 6.898433383401487e-07 7.835584539592522e-07 3.435163758080126e-09 

Gauss 1.021598276698650e-05 2.387179634052311e-06 6.585591990210384e-09 

100 
CC 8.431769959773612e-08 1.206946575532456e-07 2.774539343390426e-10 

Gauss 2.114898963028304e-06 3.686934132431995e-07 5.763877757080713e-10 

140 
CC 2.140789685445826e-08 3.590101948398621e-08 5.551247202533930e-11 

Gauss 7.571314444567726e-07 1.098048534810133e-07 1.197411811057983e-10 

 
Another finding is that the minimum CC points needed in exact quadrature lead 

to the highest accuracy for the degree of 2. It can be seen from Table 3 that the 
minimum error is obtained when the CC points number is 3, which is about 10 to the -
7; however, for the increased number of quadrature points, all the errors are about 10 
to the -6 including those reaching steady state. We can also see from this column of 
data that, the minimum CC points for degree of 2 still yield a better result than each 
point number case of Gauss rule, which has a power of -6 without exception. This 
phenomenon reappeared in the benchmark problem of plane strain problem (in 
section 4.2). 

4.2 Plane strain problem with Dirichlet boundary conditions 

As another example, we define a plane strain problem which is linear elastic and 
isotropic in a two dimensional square (1×1) region. For comparison, both of the 
quadrature methods are used in the solution of the problem. The problem in its 
variational formulation is expressed in eq.(23). Again for simplicity, homogeneous 
Dirichlet boundary conditions are imposed on the whole boundary and the external 
force term f is defined in eq.(23). 

( )
( )
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2
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( ) ( ) 2 ( ) : ( )
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 = = − − +
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∫ ∫ ∫

u

u v u v f v g v v

u

           (23) 

where µ and λ are the Lamé parameters of the material. The geometry of the domain 
and the displacement magnitude for a material with Young modulus E = 1 and 
Poisson ratio ν = 0.3 is plotted in Figure 8 The exact solution of this model is shown 
in eq.(24) 
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sin(2 )sin(2 )x yu u x yπ π= =

                                     

(24) 
In order to compare it with the presented Poisson’s equation, this problem is still 
approximated by a standard isogeometric Galerkin method for basis function degrees 
m ranging from 2 to 4 in both parametric directions. In each direction, the higher 
regularity q of m-1 is used.  

 

 
Figure 8. Solution of the plane strain problem. The geometry sketch of the 
domain with element (top) and the contour plot of displacements (bottom). 

 
The convergence curves for the L2-norm of the relative error with respect to (w.r.t.) 
the exact solution for both rules are shown in Figure 9. Similar to the conclusion 
aforementioned, the Clenshaw-Curtis has almost the same convergence rate as the 
Gauss rules. The comparison between the convergence rate w.r.t. the number of 
quadrature points of the Clenshaw-Curtis and that of Gauss rules is showed in Table 5 
and not plotted. Similarly, the Gauss’s convergence is faster than CC w.r.t. the same 
number of quadrature point and more evidently for higher degrees; it not necessarily 
needs 4 CC points (52 in total) for a degree of 3, actually, 3 points (35 in total) are 
enough for exact quadrature; the 3 points CC has a better accuracy than 2 points 
Gauss for degree of 4. From the column of degree 2, the identical conclusion that 
minimum 3 CC points for exact quadrature lead to the highest accuracy has been 
found. 

Table 5. The results of the plane strain problem: L2-norm of the relative error 
w.r.t. the exact solution in the case of different quadrature points for the 
Clenshaw-Curtis and standard element-wise Gauss quadrature. See section 4.2 
for detailed computation setup. Integers before and in bracket refer to the 
number of quadrature points in each parametric direction and in each element, 
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respectively. The bold data relates to the minimum points for exact quadrature, 
corresponding to Table 1. 

 

Rule 
Number of 
quadrature 

points 
Spline degree of 2 

Number of 
quadrature 

points 
Spline degree of 3 

Number of 
quadrature 

points 
Spline degree of 4 

CC 37(3) 7.580838422425806e-05 35(3) 1.856112366410516e-04 33(3) 7.889085258275995e-04 

Gauss 36(2) 3.486429685645471e-04 34(2) 1.721340273127870e-04 32(2) 0.002869708867170 

CC 55(4) 3.213220416249692e-04 52(4) 5.709802889966272e-05 49(4) 3.905908393191598e-04 

Gauss 54(3) 2.159149300119856e-04 51(3) 2.122049676131301e-05 48(3) 2.049928251576902e-06 

CC 73(5) 2.391125067420231e-04 69(5) 1.973816028233426e-05 65(5) 1.473215457485271e-06 

Gauss 72(4) 2.544164579534698e-04 68(4) 1.763946743470982e-05 64(4) 1.508026371023410e-06 

CC 91(6) 2.525513107997929e-04 86(6) 1.802195523770241e-05 81(6) 1.474188307465811e-06 

Gauss 90(5) 2.544061479534598e-04 85(5) 1.802810705630391e-05 80(5) 1.458299097251400e-06 

CC 109(7) 2.544068533940345e-04 103(7) 1.800176949085848e-05 97(7) 1.463032143415990e-06 

Gauss 108(6) 2.544061494631728e-04 102(6) 1.802801880799568e-05 96(6) 1.461314539284407e-06 

CC 127(8) 2.544063254948461e-04 120(8) 1.802145721232466e-05 113(8) 1.461841366010776e-06 

Gauss 126(7) 2.544061494630725e-04 119(7) 1.802801881926631e-05 112(7) 1.461313960405898e-06 

 

 
Fig.9 Convergence curves in solving the plane strain model for the L2-norm of 
the relative error (double log-scale). Full regularity is assumed and minimum 
numbers of quadrature points for exact integration are used.  
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5. Conclusions 

We introduced the Clenshaw-Curtis quadrature into the IGA scheme and 
compared its accuracy and efficiency with that of the optimal standard Gauss rule. 
We found that for exact quadrature and higher spline degrees (m 3), the Gauss has 
advantages in both accuracy and efficiency due to its “factor of 2”; while for under 
integration (points number is less than the minimum required), the Clenshaw-Curtis is 
better. For lower spline degrees (m 3), the exact quadrature can be achieved for the 
Clenshaw-Curtis rule when the functions are under integrated and thus it has an 
improved efficiency. Moreover, the degree of 2 requires the least points to obtain the 
highest accuracy for Clenshaw-Curtis rule. 

Considering the overall operations needed in isogeometric approximation 
(Galerkin method is used in this paper), the Gauss also proves its higher efficency in 
solving problems with high spline degrees. Considering all the indefinite factors due 
to the externals (such as PDE types, the programmer’s experience, etc.), we quantify 
those factors as a coefficient nop and take values from 10 to 1×103. However, all 
these values yield a same result: for lower spline degrees (m≤3), the Clenshaw-
Curtis has a better efficiency than the Gauss rules. 
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Abstract

Fluid models were developed as an alternative to the Navier-Stokes equations to
avoid computational complexity especially in case of turbulent flows. Model errors due
to the sensitivity of a model to user-elected parameters become an immediate concern.
Quantifying this error and assessing the reliability of the model given a parameter value
are essential to understanding and using model predictions within an engineering design
process. This paper presents an overview of sensitivity computations of three fluid models
namely the Eddy Viscosity Model, the Leray-Alpha Model, and the Time Relaxation
Model to the variations of different model parameters. The 2D Cavity problem is used to
numerically illustrate the application of sensitivity computations in identifying the range
of parameter values for which the fluid model can be considered a reliable approximation.
In addition, testing on the 2D flow around a cylinder, our numerical results support the
idea that sensitivity information can incorporate the effects of unresolved scales on flow
functionals that leads to an improved estimation. Investigations of flow sensitivity for
non-isothermal Stokes flow are presented as well.

1 Introduction

Numerous types of fluid flows are formulated by Navier-Stokes Equations (NSE) based on
the fluid velocity and pressure. When we solve these equations numerically, the flow velocity
consists of different scales and eddies. Numerical simulations of NSE are used for two major
purposes. One is to understand the physical mechanism of the fluid and the other is to
predict the flow characteristics in applications. Both cases require a numerical simulation
producing data of very high accuracy. Since the precision of generated data depends on the
level of selected resolution, for the best possible numerical result the simulation has to take
into account all the space-time scales in the fluid dynamics. As known by Kolmogorov’s law,
the required number of mesh points in space per time step in a three dimensional flow is
related to the Reynolds number, Re, and it is O(Re9/4). This leads to the fact that fluid flows
with large enough Re are expensive simulations regarding both the required storage and the
running time. Technically, Direct Numerical Simulation (DNS) is computationally infeasible
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especially in the case of turbulent flows when the range of velocity scales is very large. As an
alternative, regularization models of NSE were developed to allow for computational efficiency
in case of high Re numbers. These models are mostly based on a technique that uses a
filtering procedure on NSE, ultimately solving the equations for only large scale velocities.
Removing some scales from the fluid system not only affects the accuracy of the numerical
data but also their reliability leading to the major issue of model errors and uncertainty in
model predictions. This raises concerns particularly in applications where important decisions
are made; see [34, 21, 32, 3]. The model reliability becomes an issue especially when the fluid
model is sensitive with respect to the variation of a user-elected parameter. Such parameters
appear to be inevitable in the process of modeling. Filter length scale is a simple example
to be named. To this end, parameter sensitivity analysis is considered a technique to asses
the reliability of the computed flow solution using a fluid model. Sensitivity analysis of a flow
system is defined as the computation of the derivative of flow variables with respect to model
parameters upon which the response of the flow system explicitly and/or implicitly depends
[5, 17]. A natural approach to obtain flow sensitivity known as Continuous Sensitivity Equation
Method (CSEM) is to form a continuous equation for the designated sensitivity and then to
numerically solve it. CSEM has been used in sensitivity calculations of flows with respect to
various flow-related parameters; see for example [4, 6, 15].

This paper provides a summary first on the use of CSEM in computing sensitivity of three
specific fluid models, namely a subgrid Eddy Viscosity Model (EVM), Leray-Alpha Model
(LAM), and Time Relaxation Model (TRM) with respect to a model parameter, second the
use of sensitivity information in quantifying the model reliability, and last on the application
of the sensitivity computation in improving flow functionals. An extensive study of these
topics are presented by authors in [31, 28, 29]. Herein, we also present the investigations of
flow sensitivity of the time relaxation parameter for the incompressible non-isothermal Stokes
equations.

2 Continuous Sensitivity Equation

In this section we introduce the equations for EVM, LAM, and TRM, and derive the sensitivity
equations with respect to variations of a model parameter for each. In the first two models, the
parameter of consideration is the filter length scale and in the latter, it is the time relaxation
coefficient whose value specifies how strongly the growth of fluctuations are truncated.

The discussed subgrid EVM in this paper was first introduced by Layton [23]. The analysis
and numerical computations of two first-order semi-implicit schemes for EVM and NSE are
persented in [10]. An error analysis of this model using discontinuous polynomial approxi-
mations can be found in [22]. An explicit sensitivity study of this model with application to
quantifying model reliability is given in [31].

In 1934, for the first time Leray introduced a regularization of NSE on the nonlinear term
using a Gaussian filter and proved the existence and uniqueness of strong solutions to his
model [26, 27]. In a reexamination of the Leray model, the Gaussian filter was replaced by a
differential filter and the theory and computations of this new model, LAM, were studied by
different group of scientists [8, 9, 19, 36, 25, 7]. A computational study on the sensitivity of
LAM with respect to the filter width is presented in [28].

TRM was originally developed from regularized Chapman-Enskog expansion of conserva-
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tion laws by Rosenau [33], Schochet and Tadmor [35]. The given TRM in this paper uses the
van Cittert deconvolution (in the regularization term) proposed by Stolz, Adams and Kleiser[1]
who also extensively tested the model on compressible flows with shocks and turbulent flows
[1, 2, 13]. An analysis of a discrete numerical scheme using a continuous finite element method
can be found in [13]. Both EVM and TRM regularize the NSE by adding a stabilization term;
however, LAM applies a regularization to the non-linear term in NSE. EVM is obtained by
applying a filtering operator to the NSE that is an L2-orthogonal projection while the other
two fluid models use a differential filter.

In the following equations for EVM, LAM, and TRM, u and p represent velocity and
pressure respectively, f is the body force, and ν > 0 is the kinematic viscosity, which is inversely
proportional to Re. In the corresponding sensitivity equations for all models, s and r represent
the velocity and pressure sensitivities with respect to the designated parameter, and u stands
for the average velocity with w being its sensitivity. In all the equations, Ω is considered to be
a bounded, simply connected two- or three-dimensional domain with polygonal boundary ∂Ω.

Definition 2.1. Let u, u, and p be the flow variables as velocity, average velocity, and pressure,
respectively. The sensitivity of these variables to variations of a designated model parameter η
is defined to be the flow variable derivative with respect to η.

s =
∂u

∂η
,w =

∂u

∂η
, and r =

∂p

∂η

Note that all the models are for incompressible flows with zero boundary condition and
initial condition given as,

∇ · u = 0, in Ω× [0, T ]

u = 0, on ∂Ω× [0, T ]

u(x, 0) = u0(x), in Ω.

Assuming that the velocity initial condition is independent of the designated model param-
eter, the sensitivity of the above equations appears as the following,

∇ · s = 0, in Ω× [0, T ]

s = 0, on ∂Ω× [0, T ]

s(x, 0) = 0, in Ω.

In the following, we introduce the equations for EVM, LAM, and TRM.

2.1 Eddy Viscosity Model

The EVM over the time interval [0, T ] is outlined as following

ut + u · ∇u− ν∆u+∇p− α∇ · (∇u− u) = f , in Ω× (0, T ]. (2.1)
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Here for any v ∈ (L2(Ω))d, d = 2 or 3, v = P (∇v), where P : L2(Ω) → L is an L2-
orthogonal projection, defined on a chosen subspace of L2(Ω) [23], denoted by L. The param-
eter α known as the eddy viscosity coefficient, corresponds to the filter length scale. Therefore
its values vary between 0 and 1 with α = 0 corresponding to the Navier-Stokes equations.

For simplicity, it is assumed that the L2-orthogonal projection P is differentiable with
respect to parameter α. Since this operator is a linear operator, using the chain rule, it can be
easily shown that the operator P commutes with differentiation with respect to α. Implicitly
differentiating (2.1) with respect to α produces the following sensitivity equation,

st + u · ∇s+ s · ∇u− ν∆s+∇r − α∇ · (∇s− s) = ∇ · (∇u− u), in Ω× (0, T ]. (2.2)

2.2 Leray-Alpha Model

The regularization of the NSE by LAM is formulated as follows

ut + u · ∇u− ν△u+∇p = f , in Ω× (0, T ] (2.3)

where u is obtained from the differential filter,

−α2△u+ u = u, in Ω

u = 0, on ∂Ω. (2.4)

Sensitivity equations of LAM with respect to variations of parameter α are given as

st +w · ∇u+ u · ∇s+∇q − ν△s = f , in Ω× (0, T ] (2.5)

In (2.5), w is obtained from the sensitivity equation of the differential filter (2.4),

−α2△w +w = − 2

α
(u− u) + s, in Ω

w = 0, on ∂Ω (2.6)

2.3 Time Relaxation Model

Similar to EVM, TRM consists of the Navier-Stokes equations with the addition of a stabi-
lization term to the momentum equation and it is defined by

ut + u · ∇u+∇p− ν△u+ χ(u−GNu) = f , in Ω× (0, T ] (2.7)

Here, u stands for an averaged function of u by filter width α satisfying the differential filter
given in (2.4). The operator GN is the continuous van Cittert deconvolution operator, where
N denotes the deconvolution order, and for any v ∈ H1

0 (Ω) is defined as following [24],

GNv :=
N∑

n=0

(I −G)nv.

For the zeroth and first order of deconvolution, we have the van Cittert deconvolution as
G0v = v, and G1v = 2v − v, respectively. As discussed in [12], higher order of deconvolution
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produces more accurate approximations but it becomes costly in terms of computational time.
All the studies in this paper are carried out for the fundamental case when the order of
deconvolution is zero, i.e. N = 0. The action of the term χ(u−GNu) is to drive fluctuations
of size lower than O(α) to zero as t → ∞.

Differentiating TRM implicitly with respect to the parameter χ gives the following equation
for sensitivity,

st + u · ∇s+ s · ∇u+∇r − ν△s+ (u− u) + χ(s−w) = 0, in Ω× [0, T ] (2.8)

where w is the solution of the following sensitivity equation obtained by differentiating (2.4)
with respect to parameter χ,

−α2△w +w = s, in Ω,

w = 0, on ∂Ω. (2.9)

3 The Algorithms and Discretizations

This section is devoted to introducing the basis for deriving a finite element approximation
of u in (2.1), (2.3)-(2.6), and (2.7) as well as s in (2.2), (2.5)-(2.6), and (2.8)-(2.9). As it
can be seen in (2.2), (2.5)-(2.6), and (2.8)-(2.9), velocity u, and its average u appear in the
sensitivity equations. Therefore in computing sensitivities one needs to couple the sensitivity
equations with the corresponding model. Given u, and u the sensitivity equations are linear
equations. Therefore sensitivity can be calculated in a very inexpensive manner once the
numerical method for computing u in each model is constructed. The bulk of the work for
the computation is in the implementation of equations (2.1), (2.3), and (2.7). Once that is
accomplished, the incorporation of the sensitivity equations in (2.2), (2.5), and (2.8) into a
numerical algorithm that computes both u and s is straightforward. As one can easily observe,
all the sensitivity data structures are virtually the same or very similar to one computed from
the fluid model.

Next we introduce the notation for function spaces used in finite element theory,

Xh ⊂ X = H1
0 (Ω) := {v ∈ H1(Ω) : v|∂Ω = 0},

Qh ⊂ Q = L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω

q = 0}.

For the treatment of convective and diffusive terms in the variational formulation of equations,
we use the following bilinear and trilinear forms.

a(u,v) = (∇u,∇v))

b(u,v,w) = (u · ∇v,w)

b∗(u,v,w) =
1

2
(u · ∇v,w)− 1

2
(u · ∇w,v).

Next we apply the following classical steps to EVM, LAM, TRM, and their sensitivity equa-
tions.
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• Variational Formulation: The equations (2.1)- (2.2), (2.3)-(2.6), and (2.7)-(2.9) are refor-
mulated in a weak form after multiplication by a suitable set of test functions, v ∈ X and
λ ∈ Q, and performing an integration upon the domain. At this stage, the integration
by parts is used to reduce the order of differentiation for solutions, u and s.

• Discretization in Space: Let h ∈ (0, 1], tending to zero, be the spatial mesh size, then
V h = {v ∈ Xh : (λ,∇ · v) = 0, for all λ ∈ Qh} is a finite dimensional subspace of Xh.
Since (V h, Qh) fulfills the inf-sup or Babuska-Brezzi stability condition, by selecting the
test functions from these spaces the pressure ph can be eliminated from the system in its
discrete form; see [16].

• Discretization in Time: We start with partitioning the time interval [0, T ] into N subin-
tervals [tn, tn+1] of length ∆t = T

N
. Then at each time level tn, an approximation to u

and s, denoted by un
h and snh respectively, are obtained.

In the resulting equations, uh and sh, i.e. the velocity variables, are solved in V h and
their test functions belong to that space as well, while the pressure variables with their test
functions are in Qh.

3.1 Eddy Viscosity Model

Here we specifically explain how the stabilization term in EVM and its sensitivity are estimated
in our calculations. By definition v is an L2-orthogonal projection of ∇v onto L, therefore it
can be obtained by the following equation

(∇v − v, l) = 0, ∀v ∈ (L2(Ω))d, l ∈ L. (3.1)

In the spatial discretization form of (3.1), a multiscale spatial discretization is applied. Let h
and H denote two different mesh widths (h < H). Then the space LH ⊂ L2(Ω)d×d, d = 2 or
3, is considered as the space of large scales of the velocity that are numerically solved by EVM
since H represents the coarse mesh size.

In the fully discrete form of EVM, a semi-implicit numerical scheme is applied. The con-
vective term is computed using a backward-forward time-stepping method. Thus the equation
reads as: Given un

h, we seek un+1
h satisfying

(∇un
h − un

H , l) = 0,

1

∆t
(un+1

h − un
h,v) + (ν + α)a(un+1

h ,v) + b(un
h,u

n+1
h ,v)− α(un

H ,∇v) = (fn+1,v). (3.2)

Similarly, given snh, we find sn+1
h such that

(∇snh − snH , l) = 0,

1

∆t
(sn+1

h − snh,v) + (ν + α)a(sn+1
h ,v) + b(sn+1

h ,un+1
h ,v) + b(un+1

h , sn+1
h ,v)

−α(snH ,∇v) = (un
H −∇un

h,∇v). (3.3)

An extensive numerical analysis of EVM given in (3.2) and its sensitivity equation in (3.3)
with further numerical tests can be found in [10, 31].
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3.2 Leray-Alpha Model

In the discretization of the time derivative of LAM, the Crank-Nicolson method is used. For
clarity in notation, we let v(tn+1/2) = v((tn+1+tn)/2) for the continuous variable and vn+1/2 =
(vn+1 + vn)/2 for both, continuous and discrete variables.

Discrete approximation solutions of LAM, given by (2.3)-(2.4), on the time interval (0, T ],
is to find un+1

h and un
h such that

α2(un
h,∇v) + (un

h,v)− (un
h,v) = 0,

1

△t
(un+1

h − un
h,v) + νa(u

n+1/2
h ,v) + b∗(u

n+1/2
h ,u

n+1/2
h ,v) = (f

n+1/2
h ,v). (3.4)

Discrete approximation to the sensitivity equations (2.5) and (2.6) on the time interval (0, T ],
is to find sn+1

h and wn
h such that

α2(∇wn
h,∇v) + (wn

h, v)− (snh,v) +
2

α
(un

h − un
h,v) = 0,

1

△t
(sn+1

h − snh,v) + νa(s
n+1/2
h ,v) + b∗(w

n+1/2
h ,u

n+1/2
h ,v) + b∗(u

n+1/2
h , s

n+1/2
h ,v) = 0. (3.5)

The numerical analysis of (3.4) can be found in [25].

3.3 Time Relaxation Model

Similar to LAM, the Crank-Nicolson numerical scheme is applied to TRM and its sensitivity
equations. Therefore we obtain the following discretized finite element variational formulations.

Find un+1
h and un

h satisfying:

α2(∇uh
n,∇v) + (uh

n,v) = (un
h,v),

1

△t
(un+1

h − un
h,v) + νa(u

n+1/2
h ,v) + b∗(u

n+1/2
h ,u

n+1/2
h ,v),

+χ(u
n+1/2
h − uh

n+1/2,v) = (fn+1/2,v), (3.6)

and for the sensitivity solution, find sn+1
h and wn

h satisfying:

α2(∇wn
h,∇v) + (wn

h,v) = (snh,v),

1

△t
(sn+1

h − snh,v) + νa(s
n+1/2
h ,v) + b∗(s

n+1/2
h ,u

n+1/2
h ,v) + b∗(u

n+1/2
h , s

n+1/2
h ,v),

+(u
n+1/2
h − uh

n+1/2,v) + χ(s
n+1/2
h −w

n+1/2
h ,v) = 0. (3.7)

The numerical analysis of (3.6) and (3.7) can be found in [11, 29].

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

890



4 The Interval of Reliability

In this numerical study, we aim to show that the flow sensitivity calculated from sensitivity
equations (3.3), (3.5), or (3.7) can be used to quantify the reliability of the flow solution
computed using (3.2), (3.4), or (3.6) respectively as the user-elected model parameter takes
different values. Let η be the designated model parameter, then one can look at the following
difference quotient for the sensitivity,

s =
∂u

∂η
≈ u(η)− u(0)

η
(4.1)

Considering u as an implicit function of parameter η, u(0) indicates the true solution of Navier-
Stokes equations while u(η) for η > 0 denotes the corresponding flow model approximation.
In all the discussed fluid models in this paper, EVM, LAM, and TRM, the flow solution is
an accurate approximation to the Navier-Stokes solution when ∥u(η)− u(0)∥ is small, and
according to (4.1) the accuracy of the model approximation can be estimated by measuring
η ∥s∥. As noted in Section 3, the sensitivity calculation can be coupled with that of the
original fluid model simulation. The computations for sensitivity equations are easily added as
all of the data structures and filter calculations are very similar to that of the corresponding
fluid model. Thus after computing a model simulation with a given set of parameters, the
sensitivity computation can be done with only a nominal extra cost and a quantitative measure
of reliability can be then calculated. All the programs have been implemented using the
software package FreeFem++; see [18] for details and examples.

Note that in cases where the model parameter η corresponds to the filter width e.g. EVM
and LAM, then 0 < η ≤ 1, by selecting larger values of η, a larger set of velocity scales is
removed. Hence, an approximated flow solution corresponding to large values of η may not
be considered to be a reliable approximation to a solution of the Navier-Stokes model because
too much of the small scale structure could be lost. This situation is especially tenuous for
the case of high Reynolds numbers where the velocity contains a large number of small scales.
Therefore, it is crucial to find the optimal balance between choosing a value of η that is small
enough to provide a reliable approximation to the Navier-Stokes flow while choosing a value
of η that is large enough so that the computation of the large scale velocity u is feasible. This
leads us to identify a range of η values for the interval of reliability for which both η and η||s||
are small. With η as the parameter corresponding to filter width to determine the upper end
of the interval of reliability, one can use the Taylor expansion taking η values so that O(η2) is
of a certain precision,

u(0) = u(η)− ηs+O(η2). (4.2)

Next we present two numerical experiments with 2D Cavity problem where we specify reliable
parameter values for LAM and TRM using the sensitivity computations as discussed in this
section.

4.1 2D Cavity Problem

In the following experiments, two fluid models, LAM and TRM, and their sensitivity equations
are numerically solved on the domain defined by Ω = [0, 1] × [0, 1]. The upper boundary

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

891



condition is chosen to be u = (16x2(1− x)2, 0)T and zero everywhere else. The initial data is
u(0, x, y) = (3y2 − 2y, 0)T in Ω. Since initial and boundary conditions are independent from
the model parameter η, they are set to zero for the sensitivity s.

All the computations are carried out with a fixed mesh size h = 1
36
, and a uniform time step

△t = 0.01 using the Taylor-Hood finite elements. Note that in the following computations,
the sensitivity of the approximated velocity u with respect to the variations of the model

parameter is tested by computing ∥s∥l2(0,T ;L2) (where ∥v∥l2(0,T ;L2) =
[
△t

∑N
i=0 ∥v(i△t)∥qLp

]1/q
)

for final time T = 1.

4.1.1 Leray-Alpha Model

The sensitivity computations in this section are performed for different viscosities correspond-
ing to Reynolds numbers of 5000, 10000, and 50000. In addition for each tested Re value,
computations are carried out for variations of filter width α, where the values are chosen based
on the spatial mesh size as α = kh, for k = 1

4
, 1
2
, 1, 2, 4.

The numerical results obtained from these computations are shown in Figure 1. Note that
by selecting large values for the parameter α, e.g. larger than 4h, all the velocity scales that
are less or equal to α are filtered. Using (4.2), the reliable α values are restricted to values
with O(α2) less than 0.01. Considering the fact that a higher sensitivity for smaller values of
parameter α indicates the rise of computational complexity, the numerical results in Figure
1 suggest the following interval of α values as the optimal choice for the tested Reynolds
numbers. As indicated in Table 1, the interval of optimal values of α for the best accuracy
and computational complexity is smaller for higher Reynolds number.

k
0 0.5 1 1.5 2 2.5 3 3.5 4

||s
||

l2
(L

2
)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ν=0.0002; Re=5000
ν=0.00001; Re=10000
ν=0.00002; Re=50000

Figure 1: Sensitivity over the time interval of [0, 1]

Furthermore we present the sensitivity computations using the Forward Finite Difference
(FFD) quotient u(α+△α)−u(α)

△α
, by computing u from (3.4) for two inputs α +△α and α. The

goal is to illustrate a comparison of the sensitivity values obtained from FFD vesus that from
sensitivity equation in (3.5) denoted by SEM for simplicity. The computations for sensitivity
norm via both methods, ∥sSEM(t)∥L2(Ω) and ∥sFFD(t)∥L2(Ω), are performed for different α
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Table 1: The interval of optimal values for parameter α

Re Interval of α values
5000 1

4
h ≤ α ≤ 4h

10000 1
2
h ≤ α ≤ 4h

50000 h ≤ α ≤ 4h

values with △α = 0.001 at times t = 0.1, and 1. Figures 2-4 display these computational
results.

Note that for all α, sensitivities computed via FFD is overall larger than the one computed
via SEM in all the tested Reynolds numbers. Sensitivity norm in both methods increases as α
takes on values closer to 0 demonstrating a higher sensitivity of the approximated velocity u
with respect to smaller values of α. One also observes that as time has progressed from t = 0.1
to t = 1, sensitivities become larger in scale. In addition, larger Reynolds numbers show larger
sensitivities especially at the final time.

The difference between ∥sSEM∥L2(Ω) and ∥sFFD∥L2(Ω) for different values of Reynolds num-
ber at t = 1 is presented in Table 2. Sensitivity values for α = 2h, and 4h are apart up to 0.25
in all cases and there is an increase in the difference as α decreases. For high Reynolds number,
i.e. Re = 10000, and 50000, the difference in sensitivity norms is noticeable for α = 1

2
h, and

1
4
h.

Table 2: Difference between ∥sSEM∥ and ∥sFFD∥ at t = 1 with h = 1
36

α Re = 5000 Re = 10000 Re = 50000
4h 0.1586 0.1603 0.1586
2h 0.2458 0.2335 0.1955
h 0.4118 0.4315 0.3685
1
2
h 0.4732 0.6689 0.9310

1
4
h 0.4394 0.7133 1.4550

4.1.2 Time Relaxation Model

In this experiment, tested Reynolds numbers are 1000, 5000, and 10000, for different values of
time relaxation parameter χ = 0.01, 0.1, 1, and 10. As seen in Table 3, χ||s||l2(0,1;L2(Ω)) values
via both methods take larger values for larger Re with any selected value of parameter χ. For
Re = 1000, we suggest χ ≤ 1 as the best choice of accuracy while for larger Re values, we
select a smaller interval of χ values, that is χ ≤ 0.1.

Remark 4.1. In this experiment, we chose χ values for which χ||s||l2(0,1;L2(Ω)) ≤ 0.01 for
the best accuracy. The smaller the χ value becomes, the more accurate the calculation of
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Figure 2: Sensitivity norms via SEM and FFD for Re = 5000
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Figure 3: Sensitivity norms via SEM and FFD for Re = 10000

Table 3: Sensitivity values χ ∥s∥l2(0,1;L2)

χ Re = 1000 Re = 5000 Re = 10000
0.01 0.000106756 0.000191289 0.0002248
0.1 0.00103614 0.00184001 0.00215508
1 0.00803338 0.0131381 0.0149263
10 0.0503827 0.060064 0.0621485
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Figure 4: Sensitivity norms via SEM and FFD for Re = 50000

approximated velocity u becomes. However very small values of the parameter χ result in
increasing the complexity of flow structures/scales that cannot be supported by the grid/mesh
and thus numerical pollution of the computed velocity begins. Therefore, the user must consider
the trade-off between increased accuracy and computational flow complexity when choosing the
χ value.

The data listed in Tables 4-5 displays the maximum sensitivity values, i.e. ||s||L∞(0,1;L2(Ω)),
over the time interval [0, 1] for both Re = 1000 and Re =10000 with different χ values as
the spatial mesh size is refined. It is worth mentioning that the maximum sensitivity norm
happens at the final time for any mesh size as well as any selected χ values. One observes
a decrease in ||s||L∞(0,1;L2(Ω)) as the spatial mesh size is refined for χ ≤ 1. In both tables,
||s||L∞(0,1;L2(Ω)) values for χ = 10 stay close through the mesh refinement.

Table 4: Sensitivity computations for Re = 1000 with mesh refinement

χ h = 1
9

h = 1
18

h = 1
36

0.01 0.0586237 0.035002 0.0157713
0.1 0.0541932 0.0330563 0.0151647
1 0.0250335 0.0199503 0.0110461
10 0.00893807 0.00966404 0.00747537

Overall, for the 2D cavity problem, both models share stronger sensitivity at higher Re and
at lower values of the elected parameter α for LAM and χ for TRM. Sensitivities can provide
useful information for other modeling needs such as in the following section where it is shown
that sensitivities can improve some essential flow functionals such as drag and lift.
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Table 5: Sensitivity computations for Re = 10000 with mesh refinement

χ h = 1
9

h = 1
18

h = 1
36

0.01 0.0808053 0.0595574 0.0363773
0.1 0.0747136 0.0557121 0.0344382
1 0.0347436 0.0307948 0.02162
10 0.0094678 0.0106285 0.0090533

5 Improving Flow Functionals

The standard procedure of computing a flow functional is to first compute the approximated
flow velocity u from the fluid model, then use u as the fluid velocity input into the given flow
functional. Let η be the model parameter upon which u depends implicitly with property
that u(η) → u(0) as η → 0. Let J(u(0)) = J(u) be a flow functional and that u(0) is
extremely computationally expensive to obtain directly. The natural approach to compute
a less expensive approximation of J(u) is to calculate J(u(η)) for a non-zero η. Note that
J(u(η)) is a good approximation provided that u(η) is an acceptable approximation and that
the unresolved scales do not influence the functional. In this section, we discuss how the
approximation of J(u) can be improved by integrating sensitivities into the computations of
the flow functional. The idea is simply based on the first order Taylor expansion of the flow
functional around a non-zero η value. Expanding J(u) around a non-zero η implies that

J(u) ≈ J(u(η))− ηJ ′(u(η)) · s (5.1)

Replacing J ′ by J , given J ′ = J for linear functionals, and incorporating the pressure into the
above formula, the approximation (5.1) is rewritten as

J(u, p) ≈ J(u(η), p(η))− ηJ(s, r) = J(u(η)− ηs, p(η)− ηr) (5.2)

By (5.2), a flow functional can be approximated using sensitivities as the first order correction
term for both the velocity and pressure. This idea was proposed by Anitescu and Layton for
LES models and was tested on the Smagorinsky model in [3]. Next we provide a numerical
support for the idea that uses drag computations in a channel with a cylinder.

5.1 2D Flow around Cylinder

In this numerical experiment, we consider estimating the drag functional using EVM on the
standard test problem of two-dimensional flow in a channel around a cylinder. The lift and
drag functional for Navier-Stokes equations is given by

J(u, p) =

∫
D

n̂ · (pI − 2ν∇su) · âds (5.3)

where n̂ denotes the normal vector on the cylinder boundary D directing into the channel,
∇su presents the deformation tensor and is 1

2
(∇u + ∇uT ), the unit vector â in the positive

direction of x-axis or negative direction of y-axis yield the drag or lift flow functional.
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Figure 5 displays the geometry of the channel with the cylinder. The channel is a rectangle
with height and width as 0.41m and 2.2m respectively. The cylinder, denoted by D, is of
radius 0.05m, and its center is placed at (0.2, 0.2).

inlet outlet

D

(0,0.41)

(0,0) (2.2,0)

(2.2,0.41)

Figure 5: Geometry of 2D-flow around cylinder

The numerical approximation to the solution of EVM in (2.1) are computed for 0 ≤ t ≤ 4 with
the inflow conditions given below that are parabolic in space and periodic in time

u1(t, 0, y) =
6

(0.41)2
y(0.41− y) sin(πt) (5.4)

u2(t, 0, y) = 0.

A ”do-nothing” condition is used for the outflow boundary condition, and the remaining bound-
ary and initial conditions are given by

u1(t, x, 0) = u2(t, x, 0) = 0

u1(t, x, 0.41) = u2(t, x, 0.41) = 0

u1(t, x, y) |∂D= u2(t, x, y) |∂D= 0

u1(0, x, y) = u2(0, x, y) = 0.

5.1.1 Eddy Viscosity Model

A non-uniform mesh that is finer around the cylinder D is used for the triangulation of the
domain in Figure 5. A given mesh is constructed using two sizes, h1 for the sides of the channel,
and h2 for the boundary of D. Therefore the mesh is identified using the ordered pair (h1, h2).
For the numerical computation of the projection operator in (3.2) and (3.3), the applied coarse
mesh has the same structure and is always chosen as (H1 =

√
h1, H2 =

√
h2). An example of

a mesh of size ( 1
36
, 1
49
) is indicated in Figure 3.

Figure 6: Mesh in a channel of size ( 1
36 ,

1
49)
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The reference value of drag for this test problem is calculated using the DNS method on
a fine mesh of size ( 1

100
, 1
121

) for 0 ≤ t ≤ 4. Figure 7 presents a sample of the scaled velocity
vector field for the case when Re = 1000 and α = 0 at t = 0.5. Note that this graph contains
only the portion of the domain surrounding the cylinder where the interesting flow behavior
occurs.

Vec Value
0
0.0901998
0.1804
0.270599
0.360799
0.450999
0.541199
0.631399
0.721599
0.811798
0.901998
0.992198
1.0824
1.1726
1.2628
1.353
1.4432
1.5334
1.6236
1.7138

Figure 7: Velocity vector field for Re = 1000 and α = 0

Table 6 lists the reference values of maximum drag, and the error in its estimation using
the approximated large eddy velocity and pressure (u(α), p(α)) and (u(α)− αs, p(α)− αr) in
drag calculation by (5.3) for different values of Re. In this experiment, the approximated flow
variables and their sensitivities are obtained from (3.2) and (3.3) with α = 0.00125 and a mesh
size of ( 1

49
, 1
64
). As indicated in this table, computed drag values by (u(α) − αs, p(α) − αr)

are more accurate for all Re, especially for Re ≥ 100. In addition the computed drag values
using (u(α)− αs, p(α)− αr) shows only a small improvement in comparison to the ones com-
puted using (u(α), p(α)) when Re ≤ 10 . However, for Re ≥ 100, the errors incurred by using
(u(α)− αs, p(α)− αr) improve significantly and decrease by a full order of magnitude.

Table 6: Maximum drag values and the errors

Max. Drag Error using (u(α), p(α)) Error using (u(α)− αs, p(α)− αr)
Re J(u, p) |J(u, p)− J(u(α), p(α))| |J(u, p)− J(u(α)− αs, p(α)− αr)|
1 63.7703 0.4037 0.3702
10 41.1958 0.3628 0.3555
100 36.0677 0.389 0.0152
1000 35.29035 0.28095 0.02095
10000 35.1186 0.4354 0.0154

We examined the norm of the sensitivity quantities for the same range of Re values in
Table 6. The sensitivity norms in Table 7 are negligible for Re ≤ 10 indicating that the ap-

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

898



proximated flow solution is accurate for that range of Re values. As also reflected in Table 6,
there is a nominal error in the drag value approximations using (u(α), p(α)) for Re ≤ 10. Ac-
cording to Table 7, for large values of Re, i.e. Re ≥ 100, the flow becomes more sensitive, and
using sensitivity information improves the estimated values of the drag functional significantly.

Table 7: Sensitivity for different values of ν

Re α ∥s∥L∞(0,T ;L2)

1 7.19057e-06
10 2.88244e-04
100 0.00483735
1000 0.0155576
10000 0.0201101

5.1.2 Time Relaxation Model

Lift and drag computations were also performed with the same channel geometry using TRM.
These calculated computations use the improved velocity and pressure values by their improved
sensitivities, i.e. J(u(χ) − χs, p(χ) − χr) in (5.3). The inflow follows a scaled form of (5.4)
given as

u1(t, 0, y) =
6

(0.41)2
y(0.41− y) sin(

πt

8
)

The numerical approximations are obtained for Re = 1000, and 0 ≤ t ≤ 8 for different
values of parameter χ = 0.1, 0.01, and 0.001. Delaunay triangulation is used to create the
mesh with mesh size h such that 0.00650741 < h < 0.0340958. Figure 8 illustrates the correct
development of lift and drag values over the time for the tested parameter values. The velocity
streamlines at different time steps for χ = 0.01 are shown in Figure 9 and its sensitivity in
Figure 10. As it can be seen in the figure, the velocity is most sensitive around the cylinder,
and this conclusion is the same for all the tested χ = 0.1, 0.01, and 0.001 values.

6 Non-isothermal Stokes Sensitivity

Non-isothermal stokes flow is another interesting problem to test for sensitivity, [20, 14, 30].
This differentially heated cavity is defined on the unit square with no slip boundary conditions
for the velocity and mixed Dirichlet/Neumann conditions for the temperature and Prandtl
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Figure 8: The development of drag and lift (left to right from t ∈ [0, 8] with DOF=16K, dt = 0.01,
and χ = 10−3, 10−2, 10−1 (top to bottom).
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Figure 9: The velocity field at t = 2, 4, 5, 6, 7, and 8 with DOF=16K, dt = 0.01, and χ = 10−2.
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Figure 10: The velocity sensitivity at t = 2, 4, 5, 6, 7, and 8 with DOF=16K, dt = 0.01, and χ = 10−2.
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0

0.5

1

T=1
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T=0

u=0, (  T  n)=0

u=0, (  T  n)=0

Figure 11: The domain and boundary conditions for the natural convection problem.

number Pr = ∞. The system of equations governing this flow is given by

−ν△u+∇p = (0, RaT )T , in Ω,

∇ · u = 0, in Ω,

−△T + u · ∇T = 0, in Ω

u = 0 on ∂Ω,

T = 0 on ΓD,

∇T · n = 0 on ΓN ,

with ∂Ω = ΓD ∪ ΓN , and Ra is the Rayleigh number. The domain and boundary conditions
are given in Figure 11.

Modeling this system using TRM, we get

−ν△u+ χ(u− u) +∇p = (0, RaT )T , in Ω,

∇ · u = 0, in Ω,

−△T + u · ∇T = 0, in Ω, (6.1)

with the above boundary conditions. The corresponding sensitivity equations are listed as

−ν△s+ χ(s− s) + (u− u) +∇r = (0, Ra k)T , in Ω,

∇ · s = 0, in Ω,

−△k + s · ∇T + u · ∇k = 0, in Ω, (6.2)

where k is the temperature sensitivity, i.e. k = ∂T
∂χ
. In equation (6.1), the computations are

carried out on a fixed mesh h = 1
36

that uses (P2, P2, P1) Taylor-Hood elements for velocity,
pressure and temperature, of which the nonlinearity is resolved using Newton’s method with a
continuation method on Ra to get convergence. The same method is applied in computations
of s, r, and k from (6.2).
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Tables (8)- (10) list velocity and temperature sensitivities with respect to χ for Ra=104,
105 and 106. As one can observe from the content of tables, sensitivity values decrease as χ
values increase.

Velocity streamline and the temperature contour plot for Ra = 105 and χ = 103 are shown
in Figures 12. Sensitivity plots for velocity, Figures 13-15, illustrate a higher sensitivity areas
on the outer left and right area near the boundary than the center, while sensitivity plots for
temperature, Figures 16-18, show higher sensitivity areas on the left than right wall of the
domain where the temperature is higher. These sensitivity areas elongate and become thinner
as Ra number is increased.

Table 8: Sensitivity computations for Ra=104 with different χ

χ Velocity Sensitivity Temperature Sensitivity
10−1 0.00454608 3.98462e-05
1 0.00454216 3.98278e-05
10 0.00450418 3.96366e-05
102 0.0041456 3.7878e-05
103 0.00217831 2.66418e-05
104 0.000149187 4.44796e-06

Table 9: Sensitivity computations for Ra=105 with different χ

χ Velocity Sensitivity Temperature Sensitivity
10−1 0.00946049 2.33035e-05
1 0.0094524 2.32945e-05
10 0.00938285 2.319e-05
102 0.00873504 2.22121e-05
103 0.00497591 1.5945e-05
104 0.000624519 4.98162e-06

Table 10: Sensitivity computations Ra=106 with different χ

χ Velocity Sensitivity Temperature Sensitivity
10−1 0.0170702 1.58207e-05
1 0.0170612 1.58158e-05
10 0.0169329 1.56251e-05
102 0.0160371 1.50129e-05
103 0.0101746 1.03233e-05
104 0.00158146 3.19721e-06
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Figure 12: Shown above are velocity streamlines plots (left) and temperature contour (right) for
Ra=105 and χ = 103.
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Figure 13: Sensitivity plots for velocity with respect to χ = 1, χ = 10, χ = 102, and χ = 103 (from
left to right and top to bottom) for Ra=104.
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Figure 14: Sensitivity plots for velocity with respect to χ = 1, χ = 10, χ = 102, and χ = 103 (from
left to right and top to bottom) for Ra=105.
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Figure 15: Sensitivity plots for velocity with respect to χ = 1, χ = 10, χ = 102, and χ = 103 (from
left to right and top to bottom) for Ra=106.
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Figure 16: Sensitivity plots for temperature with respect to χ = 1, χ = 10, χ = 102, and χ = 103

(from left to right and top to bottom) for Ra=104.
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Figure 17: Sensitivity plots for temperature with respect to χ = 1, χ = 10, χ = 102, and χ = 103

(from left to right and top to bottom) for Ra=105.
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Figure 18: Sensitivity plots for temperature with respect to χ = 1, χ = 10, χ = 102, and χ = 103

(from left to right and top to bottom) for Ra=106.

7 Concluding Remarks

In this paper, three fluid models, EVM, LAM and TRM and their corresponding sensitivity
equations are presented. This is followed by the numerical schemes for simulating the fluid
models and their corresponding sensitivity. Once the numerical algorithm for solving each fluid
model is implemented, the sensitivity calculations can be easily added due to the similarity
in data structure. Our numerical experiments illustrate the application of sensitivities in
quantifying model error arising from the choice of various parameter values and identifying
those values that produce a reliable approximated velocity. The numerical results show that
a smaller interval of reliable parameter values is obtained for larger values of Re. In addition,
the sensitivity information is shown to be useful in increasing the accuracy of flow functionals
for a nominal amount of effort in calculating sensitivities. Future studies can include stochastic
finite element discretization that should give more insights into the parameter sensitivity.
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Abstract 
A simple lumped mass-damper idealization of impounded reservoir water is suggested in this paper. 
The effect of impounded reservoir water was modeled as virtual lumped mass which simulates the 
hydrodynamic pressure according to Westergaard (1933), but the lumped mass approach does not 
consider the surface wave generation and wave transmission through the boundaries. On the other 
hand, acoustic/ water elements can be employed to model the dam-reservoir interaction which can 
capture the above mentioned effect, but that needs more computational effort and expertise. In this 
paper, equivalent dampers together with the virtual mass are lumped at the upstream face to 
simulate the effect of the impounded reservoir water on the dam. A simplified procedure is 
proposed for calculating the coefficient of dampers using the geometry of the reservoir and 
impedance of the foundation and dam materials. A comparison of response of lumped mass-damper 
model with acoustic water model is also presented.  

Keywords: Lumped Damper approach; Dam-foundation-reservoir interaction; Concrete gravity 
dams; Compressible fluid element; Incompressible fluid; Absorbing boundary; Seismic analysis 

Introduction 

Concrete gravity dams are one of the most important civil engineering structures.  Gravity dam 
stores a large amount of water in the reservoir, which contributes to the destabilizing forces on the 
dam. That is why, the modeling of the impounded reservoir water and its interaction with the dam 
and foundation attracts the attention of many researchers.  
 
Reservoir considerably affects the earthquake response of the gravity dam. There are three ways to 
consider the reservoirs effect in the seismic response analysis of the dam system, for example, 
Westergaard, Lagrangian and Eularian approaches. Westergaard approach considers the virtual 
lumped mass on the wet surface which stimulates the hydrodynamic effect on the upstream face of 
the dam [Westergaard, 1933; Zanger, 1953]. In Lagrangian Eulerian approach [Bayraktar et al., 
2011; Bleich and Sandler, 1970; Calayir et al., 1996; Dunger, 1978; Kalateh and Attarnejad, 2011; 
Ross et al., 2009; Zienkiewicz et al., 1983] displacements are the variable in structure and pressures 
are the variable in the fluid. Special compatibility equation is required to establish the compatibility 
between the reservoir water and the dam-foundation system. In Lagrangian approach displacement 
is the variable for both impounded reservoir water and the dam-foundation system. No 
compatibility equation is required for Lagrangian approach [Hamdan, 1999; Wilson and Khalvati, 
1983]. On the other hand, the performance of Westergaard model (incompressible water) and 
Acoustic water (compressible water) model were compared [Banerjee et al., 2014]. It is observed 
that when the water is considered incompressible, the response is much higher as compared to when 
the water is considered compressible. To improve the results of Westergaard model, a simple 
lumped mass-damper model is proposed. A simplified lumped mass-damper model 
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From the results of dam response considering incompressible reservoir water  and compressible 
water [Banerjee et al., 2014], it is clear that the lumped mass model (Westergaard model 
considering water as incompressible) gives almost 18-20% higher response than considering the 
reservoir  water as compressible allowing for  wave propagation and transmission of waves through 
the radiating boundary. Actually, p-waves propagated through the impounded reservoir water from 
the vibrating dam. As the ratio of energy transmission from one layer to another depends on the 
impedance (Z) of the layers, so the transmitted energy from the reservoir by different boundaries 
also depends on the shape of the reservoir and the impedance of the boundary. That is why, the 
wave propagation phenomena can be considered in the model by multiplying the impedance of 
water with the ratio of energy transmitted from the impounded water with the energy transmitting at 
the dam-reservoir interface. 
 
Dam sections 
Two high dams of different heights are designed using Optidam software [Banerjee et al., 2015] are 
taken as examples. One is on the varying rock strata and another is on the single rock profile. The 
two dams are shown in Figure.1. 
 

 
(a) Dam section-A 

 
(b) Dam section-B 

 
Figure.1 Two dam sections 

 
 
The geometrical properties of the dams are given in Table-1. 
 

Table-1 Geometric properties 
 Height Base width Upstream slope Downstream slope 

Dam-A 235 260 1:0.625 1:0.9 
Dam-B 160 145 1:0.360 1:0.8 

 
The peak ground acceleration at the site is taken as 0.2g. The dam section –A is assumed to be on 
the layered rock strata. But the dam section-B is taken on single layer of rock. The property of 
concrete is given in Table-2.  
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Table-2 Property of Concrete 
 Young Modulus (GPa) Poisson Ratio Density (kg/m3) 
Dam –A 30 0.15 2500 
Dam –B 22 0.15 2400 

 
The geotechnical data taken in the analysis is tabulated in Table.3. 
 
 

Table-3 Geotechnical data 
Dam Section Rock layer Depth 

(m) 
Young 

Modulus 
(GPa) 

Poisson 
Ratio 

Density 
(kg/m3) 

 Alluvium/Boulder 0-5 2 0.30 1800 
Dam –A Fragmented Rock 5-20 7 0.32 2400 

 Rock 20-250 10 0.32 2600 
Dam –B Rock 0-250 17 0.16 2000 

 
There are two Philite strips of 10m width present at 60m and 160m from the upstream face of the 
dam. The two strips are parallel to each other making 220 with the horizontal. The property of 
philite strips is same as the fragmented rock layer for Dam-A. Bulk modulus and density of water is 
taken 2.07 GPa and 1000 kg/m3. Damping values of the different material are tabulated in Table-4. 
 
 

Table.4 Damping Value (%) 
Material Concrete Alluvium/Boulder Intact Rock Fragmented Rock 
Dam-A 5 10 7 10 
Dam-B 5 - 7 - 

Computation of dampers coefficient 

The energy loss from the non-reflecting boundary of the reservoir is not considered in Westergaard 
lumped mass model if the mass distribution is as per Eq(1).  
 

 

 1

2 2
2

m
w

i w w i i

C y y y y
C

h h h h

M C hb y y 

            
     

 

 (1) 

 
To consider the energy loss, lumped dampers are attached at the upstream face of the dam along 
with the virtual mass due to incompressible water. The coefficient of the damper is calculated based 
on the energy transmission from different boundaries (except the dam-reservoir interface). Actually, 
the dampers are used to consider the ratio of energy going out from the radiation boundary and the 
energy impinging on the dam-reservoir interface.  To compute the transmitted energy the following 
procedure as shown in Fig.2 is adopted.  
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Figure.2 process to calculate the damping coefficient 

 
 
The ratio of energy transmitted from one medium to the other is computed by  
 

     
2

2 1

2 1

1
Z Z

TR
Z Z

 
    

     (2) 

 
where, Z is the impedance of a medium depends on the p wave velocity (Vp) and the density (ρ) of 
the layer. Here s- wave velocity is not considered because s wave cannot propagate through the 
water. 
 
     pVZ        (3) 

 
The impedance of various layers are tabulated in Table-5 according to Eq (3) for two dams A & B. 
  

Table-5 Impedance of different layers 
 Dam-A Dam-B 

Material Density 
(ρ) 

(kg/m3) 

P wave 
velocity (Vp) 

(m/s) 

Impedance (Z) 
(kg m-2 s-1) 

x106 

Density 
(ρ) 

(kg/m3)

P wave 
velocity (Vp) 

(m/s) 

Impedance (Z) 
(kg m-2 s-1) 

x106 
Concrete 2500 3500.0 8.75 2400 3133 7.52 

Rock 2600 2342.3 6.09 2000 3010 6.02 
Water 1000 1440.0 1.44 1000 1440 1.44 

 
The ratio of total energy transmitted from dam to reservoir r-dR  and the total energy impinges on 

the interface (TRin) should be equal, i.e.  

The ratio of energy coming 
from dam to reservoir with 

the energy fallen on the 
interface

The transmission 
coefficient from dam to 

reservoir Eq‐4

The ratio of energy going 
out from the different 

boundaries of reservoir 
with energy in reservoir

The average transmission 
coefficient from reservoir 

to other medium Eq‐5

The ratio of energy going 
out from the different 

boundaries of reservoir 
with energy fallen on the 

interface

Multiply the two 
coefficient to get the 

viscous damper 
coefficient Eq‐6
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The ratio of average energy transmitted out (TRout) from the different boundaries of the reservoir is 
calculated as: 

      1
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     (5) 

 
So, the ratio of energy transmitted from different boundaries of the reservoir and the total energy 
impinges on the interface of the dam reservoir system (λ) is calculated by  
 
     .in outTR TR        (6) 

 
The length and ratio of transmitted energy from different boundaries of reservoir are tabulated in 
Table.6. 
 

Table-6. Properties of boundary 
 

 Reservoir Boundaries 
Z1 (kg m-2 s-1) 

x106 
Z2 (kg m-2 s-1) 

x106 
TR 

length 
(m) 

TR. l 

D
am

-A
 Free surface 1.44 0.00 0.00 550 0.0 

Infinite boundary 1.44 1.44 1.00 215 215.0 
Reservoir- Dam 1.44 8.75 0.48 230 110.4 
Reservoir- Foundation 1.44 6.09 0.61 512 312.3 

D
am

-B
 Free surface 1.44 0.00 0.00 320 0.0 

Infinite boundary 1.44 1.44 1.00 140 140.0 
Reservoir- Dam 1.44 7.52 0.53 150 79.5 
Reservoir- Foundation 1.44 6.02 0.61 300 183.0 

 
Where Z1  and Z2  are the impedances before and after a boundary. The co-efficient of virtual lumped 
damper at the upstream face is calculated by 
 
       AcC w       (7) 

 
where, C is the coefficient of a damper, c is the velocity of sound in water, w is the density of 

impounded reservoir water, and A is the tributary area of single damper. The evaluation of C is 
worked out in Table 7. 
 

Table.7 Coefficient of dampers 
Dam TEin TEout λ A (m2) C (N s m-1) x106

Dam-A 0.48 0.42 0.20 75 21.60 
Dam-B 0.53 0.44 0.23 75 24.84 

Different dam models  

The seismic response obtained by the proposed simplified method is compared with that of the 
compressible water model as well as incompressible water model. The three dam-reservoir models 
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are (i) with incompressible reservoir water (Westergaard lumped mass idealization, Fig. 3(a)), (ii) 
with compressible reservoir water (exact numerical model, Fig. 3(b)) and (iii) lumped mass-damper 
model (Fig.3(c)), are shown below.  In the lumped mass-damper model, the virtual mass of the 
water is lumped on the wet surface in a similar fashion as if the reservoir water is treated 
incompressible and the energy used in surface waves and the radiation damping is replaced by 
equivalent dampers lumped on the wet surface. 
 

 
Figure-3 Different dam models 

Response of dams 

Baseline corrected deconvoluted accelerogram is applied at the base of the considered foundation. 
The stresses at the heel of the two dam models are plotted in Fig.4.  
 
In Model-1, the incompressible water is replaced by virtual added mass on the wet surface where no 
radiation damping is considered at the truncated reservoir boundary. In Model-2 surface waves can 
be generated and the energy loss due to the outgoing waves at the truncated reservoir boundary 
attributes for lesser response when water is considered compressible. In Model-3 impounded 
reservoir water is replaced by lumped mass to consider the inertia of the water and lumped dampers 
to stimulate the energy dissipation from the reservoir. The principal stresses at the dam heel and u/s 
slope change for the Model-3 are comparable with Model-2.   
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(a) Dam-A, Model-1 (Max 10.10 MPa) 
 

(b) Dam-B, Model-1 (Max 6.85MPa) 

(b) Dam-A, Model-2 (Max 8.90MPa) 
 

(d)  Dam-B, Model-2 (Max 4.90MPa) 

(e) Dam-A, Model-3 (Max 8.40MPa) (f) Dam-B, Model-3 (Max 4.30MPa) 
 

Figure-4 Principal stresses at heel 
 
 
The maximum stresses at the heel and u/s slope change are reduced by 10-15% due to the fluid 
compressibility and energy dissipation through the boundaries. But the stress at the toe is not so 
much affected due to the compressibility of impounded water. Plot of dam crest acceleration for 
different models are plotted in Fig.5. 
 
 
 

(a) Dam-A, Model-1 (Max acceleration 1.69g) (b) Dam-B, Model-1 (Max acceleration 2.90g) 
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(c) Dam-A, Model-2 (Max acceleration 1.27g) (d) Dam-B, Model-2 (Max acceleration 1.80g) 

(e) Dam-A, Model-3 (Max acceleration 1.29g) (f) Dam-B, Model-3 (Max acceleration 2.10g) 
 

Figure.5 Crest acceleration for different cases 
 

Crest acceleration for Model I is higher but it is almost same for the Model-2 and Model-3. The 
peak acceleration at different locations of the dam-foundation-reservoir system due to compressible 
and incompressible water models are tabulated in Table-8. 
 

Table.8 Maximum acceleration and stresses at different locations of dam 

Dam model Model no. 
Crest Upstream slope Heel 

Acceleration 
(g)

Acceleration 
(g)

Stress 
(MPa)

Acceleration 
(g) 

Stress 
(MPa)

 Model-1 1.69 0.40 4.3 0.30 10.1 
Dam-A Model-2 1.27 0.33 2.3 0.26 8.9 

 Model-3 1.29 0.32 1.8 0.26 8.4 

Dam-B 
Model-1 2.90 0.70 4.0 0.43 6.8 
Model-2 1.75 0.28 2.0 0.24 4.9 
Model-3 1.80 0.30 1.9 0.28 4.3 

 
Acceleration at crest, heel and upstream slope change location are reduced almost 18-24% due to 
the influence of compressibility of water. The virtual lumped mass model (Model I) gives result on 
a conservative side. The stress computed at the heel of the dam in Model-3 is slightly less than the 
stress calculated in Model-2 whereas acceleration and stresses at the u/s face are comparable with 
Model-2. 

Conclusions  

In this paper, an approach for approximation dam-reservoir system using a simplified lumped mass-
damper model is suggested, where the energy loss due to radiation is modelled as lumped dampers 
on the upstream wet surface. Radiation damping due to outgoing waves is stimulated by lumping 
virtual dampers. The computation for the coefficient of lumped dampers depends on the density of 
water, sound wave velocity through water, tributary area of a single damper and the ratio of 
incoming energy and outgoing energy from the reservoir.  The virtual lumped mass-damper 
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approach is applicable for both the layered media and homogeneous rock profile. The stresses and 
accelerations of the compressible water model and virtual lumped mass-damper model are 
comparable. The wave propagation is considered only in perpendicular to the boundary for the 
analysis. The simplified virtual lumped mass-damper model is found to be a good approximation 
for the response of dam reservoir foundation system for preliminary design of dam. 
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Abstract 

A set of non-linear algebraic equations, which must to be solved using a numerical 
procedure, for ball’s motion, sliding friction and internal loading distribution 
computation in a high-speed, single-row, angular-contact ball bearing, subjected to a 
known combined radial, thrust and moment load, which must be applied to the inner 
ring’s centre of mass, is introduced. For each step of the procedure it is required the 
iterative solution of 9Z + 3 simultaneous non-linear equations – where Z is the number 
of the balls – to yield exact solution for contact angles, ball attitude angles, rolling radii, 
normal contact deformations and axial, radial, and angular deflections of the inner ring 
with respect the outer ring. The focus of this work is obtaining the steady state forces 
and moments equilibrium conditions on the balls, under the selected external loading, 
and to describe the numerical aspects of the procedure. The numerical results derived 
from the described procedure shall be published later. 

Keywords: ball, bearing, high-speed, load, distribution 

Introduction 

Ball and roller bearings, generically called rolling bearings, are commonly used 
machine elements. They are employed to permit rotary motions of, or about, shafts in 
simple commercial devices such as bicycles, roller skates, and electric motors. They are 
also used in complex engineering mechanisms such as aircraft gas turbines, rolling 
mills, dental drills, gyroscopes, and power transmissions. 
 
The standardized forms of ball or roller bearings permit rotary motion between two 
machine elements and always include a complement of ball or rollers that maintain the 
shaft and a usually stationary supporting structure, frequently called housing, in a 
radially or axially spaced-apart relationship. Usually, a bearing may be obtained as a 
unit, which includes two steel rings each of which has a hardened raceway on which 
hardened balls or rollers roll. The balls or rollers, also called rolling elements, are 
usually held in an angularly spaced relationship by a cage, also called a separator or 
retainer. 
 
There are many different kinds of rolling bearings. This work is concerned with single-
row angular-contact ball bearings – see Fig. 1 – which are designed to support 
combined radial and thrust loads or heavy thrust loads depending on the contact angle 
magnitude. The bearings having large contact angle can support heavier thrust loads. 
The figure 1 shows bearings having small and large contact angles. The bearings 
generally have groove curvature radii in the range of 52-53% of the ball diameter. The 
contact angle does not usually exceed 40

o
. 

 
This work is devoted to study of internal load distribution in a high-speed angular-
contact ball bearing. Several researchers have studied the subject of internal load 
distribution in a statically loaded angular-contact ball bearing (see [Stribeck (1907); 
Sjoväll (1933); Jones (1946); Rumbarger (1962); Ricci (2009; 2009a; 2009b; 2009c; 
2009d; 2010)]). The methods developed by them to calculate distribution of load among 
the balls and rollers of rolling bearings can be used in most bearing applications because 
rotational speeds are usually slow to moderate. Under these speed conditions, the effects 
of rolling element centrifugal forces and gyroscopic moments are negligible. At high 
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speeds of rotation these body forces become significant, tending to alter contact angles and 
clearance. Thus, they can affect the static load distribution to a great extension. 
 

 
Figure 1. Angular-contact ball bearing 

 
[Harris (2001)] described methods for internal loading distribution in statically loaded 
bearings addressing pure radial; pure thrust (centric and eccentric loads); combined 
radial and thrust load, which uses radial and thrust integrals introduced by Sjoväll; and 
for ball bearings under combined radial, thrust, and moment load, initially due to Jones. 
 
When an external load is applied to one of the rings of a rolling bearing it is transmitted 
through rolling elements to the other ring. Because the internal load distribution on the 
rolling elements is an important operating characteristic of a bearing a great number of 
authors have addressing the problem. A literature review on the subject can be found in 
[Tomović (2012; 2012a)], in which a mathematical model for necessary radial 
displacement between rings, and a mathematical model for external radial load, so that 
the q-th rolling element passes to participate in the load transfer were presented. 
 
In [Tomović (2013)], a model was developed, which enables a very simple 
determination of the number of active rolling elements participating in an external load 
transfer, depending on the bearing type and internal radial clearance. 
 
In [Tudose et al. (2013)], the theoretical analysis of a single-row radial bearing with 
radial clearance under constant external radial load was presented. The analysis was 
focused on finding the rolling element deflection that allows determining the number of 
active rolling elements that participate in the load transfer. Taking into account the 
bearing internal geometry, a mathematical model to calculate the rolling elements 
deflections during the bearing rotation has been derived. 
 
In [Rasolofondraibe et. al. (2012; 2013); Murer et al. (2015)], capacitive probes were 
inserted into the fixed ring of the bearing such that forms with the raceway a capacitor 
with variable gap that depends on the transmitted load by the rolling element. A 
numerical model of this capacitor’s capacitance as a function of transmitted load by the 
rolling element has been established. An experimental prototype has been established in 
order to precisely measure the probe’s capacitance. Finally, this technique has been 
generalized with a capacitive probe in front of each rolling element. Thus, knowing the 
load transmitted by each of the rolling elements, the external load on the bearing of the 
rotating machine can be easily reconstructed. 
 
The evaluation of change in contact angle due to applied load is vital in order to study 
the load carrying capacity of large diameter bearings. Analytical and numerical 
procedures have been developed to calculate various design factors such as contact 
angle, contact stress and deformation. In [Starvin et al. (2011)] the change in contact 
angle of balls was determined by using FEA. The change in contact angle was 
compared with analytical, FEA and the Newton-Raphson method. The results show a 
good agreement with the values calculated using Hertz’s relations for deformation. The 
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FEA method was used to get the nodal solution of contact angle, contact Stress and 
deflection for various loading conditions. 
 
In [Rajasekhar et al. (2013)] the dynamic modeling of a centrally supported symmetrical 
disk-shaft bearing system has been analyzed using Timoshenko beam elements. 
Intermittent ball bearing contact forces and Muszynska’s force [Muszynska (1986)] at 
seal-disk interface were considered in the model to simulate a real-time system. Results 
show that there was a marked effect of each type of nonlinear excitation on the overall 
system response. 
 
In [Seong et al. (2014)] a wheel bearing life prediction method, which considers the 
bearing dynamics characteristics, was proposed. The results were compared with 
existing formulas and static analyses results from structural dynamics commercial 
software. 
 
In [Zhenguo et al. (2011)] a unidirectional compression spring was used to model the 
contact between a rolling element and the raceway of a heavy-duty slewing bearing 
accounting for the supporting structure flexibility and the plastic deformation of the 
bearing. The spring constant was determined by the load against elastic-plastic 
deformation relationship of a single rolling element, which was obtained by finite 
element contact method. The difference between the traditional Hertz contact results 
and the FEM results is very obvious for the slewing bearings with plastic deformation, 
such as contact deflection of the rolling elements and the raceway, load distribution on 
the rolling elements, stress in the raceway and contact pressure between the rolling 
elements and the raceway. Therefore, the method based on the Hertz contact mechanics 
theory is not applicable for the performance analysis of the heavy-duty slewing bearing. 
 
The first great contribution to the study of ball motion, sliding friction and internal load 
distribution in a high-speed angular-contact ball bearing must be credited to A. B. Jones 
[Jones (1959; 1960)]. Harris describes the orbital, pivotal and spinning ball’s motions 
and load distribution in ball bearings, in general reproducing the Jones’s developments. 
In this work the Jones’s works is revisited and differences are introduced under the yoke 
of critical analysis, which will be detailed. Then, particularly, in this work, a set of non-
linear algebraic equations, which must to be solved using a numerical procedure, for 
ball’s motion, sliding friction and internal loading distribution computation in a high-
speed, single-row, angular-contact ball bearing, subjected to a known combined radial, 
thrust and moment load, which must be applied to the inner ring center of mass, is 
introduced. For each step of the procedure it is required the iterative solution of 9Z + 3 
simultaneous non-linear equations – where Z is the number of the balls – to yield exact 
solution for contact angles, ball attitude angles, rolling radii, normal contact 
deformations and axial, radial, and angular deflections of the inner ring with respect the 
outer ring. The focus of this work is obtaining the steady state forces and moments 
equilibrium conditions on the balls, under the selected external loading, and to describe 
the numerical aspects of the procedure. The numerical results derived from the 
described procedure shall be published later. 

Mathematical model 

Having defined in other works analytical expressions for bearing geometry and the contact 
stress and deformations for a given ball or roller-raceway contact (point or line loading) 
in terms of load (see, e.g., [Harris (2001)]) it is possible to consider how the bearing 
load is distributed among the rolling elements. In this section a specific internal loading 
distribution resulting from a combined radial, thrust, and moment external load, which 
must be applied to the center of mass of the inner ring of a high speed ball bearing, is 
considered. 
 
The Fig. 2 shows the displacements of an inner ring related to the outer ring due to a 
generalized loading system including radial, axial, and moment loads. The Fig. 3 shows 
the relative angular position of each ball in the bearing. 
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Let a ball bearing with Z balls, each with diameter D, symmetrically distributed about a 
pitch circle according to Fig. 3, to be subjected to a combined radial, thrust, and 
moment load applied to the inner ring’s center of mass. Then, a relative axial 
displacement, δa, a relative angular displacement, θ, and a relative radial displacement, 
δr, between the inner and outer ring raceways may be expected according Fig. 2. Let ψ = 
0 to be the angular position of the maximum loaded ball. 
 

 

 

 

Figure 2. Displacements of an 

inner ring (outer ring fixed) 

due to a combined radial, axial, 

and moment external loading 

 Figure 3. Ball angular positions in the radial 

plane that is perpendicular to the bearing’s 

axis of rotation, ∆ψ = 2π/Z, ψj = 2π(j−1)/Z, j = 

1…Z, in which Z is the number of balls 
 
Under zero load the centers of raceway groove curvature radii are separated by a 
distance A given by � � ��� � �� � 1
�,      (1) 
 
in which fo, fi are the conformities for outer and inner raceways, respectively. 
 
Under an applied static load, the distance s between centers will increase from A to A 
plus the amount of the contact deformation δi plus δo, as show by Fig. 4. The line of 
action between centers is collinear with A. If, however, a centrifugal force acts on the 
ball, then because the inner and outer raceway contact angles are dissimilar, the line of 
action between raceway groove curvature radii centers is not collinear with A, but is 
discontinuous as indicated by Fig. 5. It is assumed in Fig. 5 that the outer raceway 
groove curvature center is fixed in space and the inner raceway groove curvature center 
moves relative to that fixed center. Moreover, the ball center shifts by virtue of the 
dissimilar contact angles. 
 
The Fig. 5 when compared with similar figures in [Harris (2001)] and [Jones (1960)] 
shows minor differences. The inner contact angle must be βij + θcosψj rather than βij, to 
take into account the tilting of the rigid inner ring with respect the rigid outer ring, 
during the external loading application. Furthermore, since the problem is to be solved 
numerically, no makes sense to linearize the distances between the final and initial inner 
raceway groove curvature center positions, as done in previous works. 
 
In accordance with Fig. 5 the distance between the fixed outer raceway groove 
curvature center and the final position of the ball center at any ball location j is 
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 ∆�� �� � �� � ��.      (2) 

Since ro = foD, ∆�� ��� � 0.5
� � �� .     (3) 

 

Figure 4. (a) Ball-raceway contact 

before loading; (b) Ball-raceway 

contact under load. 

 Figure 5. Positions of ball center and 

raceway groove curvature centers at 

angular position ψj with and without 

applied load. 
 
Similarly, the distance between the moving inner raceway groove curvature center and 
the final position of the ball center at any ball location j is 
 ∆�� ��� � 0.5
� � ��,     (4) 

 
in which δoj and δij are the normal contact deformations at the outer and inner raceway 
contacts, respectively. 
 
In accordance with the relative axial displacement between inner and outer rings mass 
centers, δa, and the relative angular displacement θ, the axial distance between inner and 
outer raceway groove curvature centers at ball position j is 
 

sxj = Asinβf + δa + Risinθcosψj,     (5) 
in which 

Ri = ½de + (fi – ½)Dcosβf      (6) 
 
is the radius to locus of inner raceway groove curvature centers, de is the unloaded pitch 
diameter, and βf is the unloaded contact angle. Further, in accordance with the relative 
radial displacement between inner and outer rings mass centers, δr, and the relative 
angular displacement θ, the radial distance between inner and outer groove curvature 
centers at each ball location j is 
 

szj = Acosβf + δrcosψj – Ri(1 – cosθ)√cos
2ψj.    (7) 

 
Since the iterative techniques of the Newton-Raphson method will be used to solve the 
associated nonlinear equations, the angles βoj and βij are best stated in terms of the co-
ordinates V and W, in Fig. 5. Then 
 sin�� � �������.�
� !��,       (8) 
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cos�� � $������.�
� !��,      (9) 

sin%�� � &cos'( � )*������+��.�
� !+�,     (10) 

cos%�� � &cos'( � ),��$���+��.�
� !+�.     (11) 

 
Similarly, the ball angular speed about its own center pitch and yaw angles, αj and α’j, 
are best stated in terms of the ball angular velocity components: ωx’j, ωy’j, and ωz’j; in 
which x’, y’, and z’ are the axes of the coordinate frame whose origin is at the ball 
center; x' is parallel to the longitudinal axis of the bearing around which the balls 
circulate in its orbital motion, and z’ is the radial axis. Then 
 sin- � .,/�

0.*/�1  .2/�1  .,/�1 ,     (12) 

cos- � 0.*/�1  .2/�1
0.*/�1  .2/�1  .,/�1 ,     (13) 

sin-3 � .2/�
0.*/�1  .2/�1 ,      (14) 

cos-3 � .*/�
0.*/�1  .2/�1 .      (15) 

 
Using the Pythagorean Theorem, it can be seen from figure 5 that 
 %45 � 6(� � %47 � 8(� � 9��� � 0.5
� � ��:� � 0 � ;,  (16) 6� � 8� � 9��� � 0.5
� � ��:� � 0 � ; <.   (17) 

 
From (12)-(15) =7/� � =>/� � =5/� � =?� � 0 � ; �<, =? � 0=7/� � =>/� � =5/� .   (18) 

 
For steady state operation of a ball bearing at high speed, the forces and moments acting 
on each ball are as shown by figure 6. 
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Figure 6. Ball loading at angular 

position ψj 
 Figure 7. Forces and moments about the 

inner ring center of mass 
 
The normal ball loads are related to normal contact deformations by 
 @� � A���B.�,  @� � A���B.�,    (19) 

 
in which Koj and Kij are functions of contact angles [Harris (2001)]. 
 
From Fig. 6 considering the three axes equilibrium forces, yields 
 @� sin%�� � &cos'( � @� sin �� � C7�cos%�� � &cos'( � C7�cos�� � 0, (20) @� cos%�� � &cos'( � @� cos �� � C7�sin%�� � &cos'( � C7�sin�� � C5′ � 0,  (21) C>� � C>� � 0 � ; �<,     (22) 
 
Substituting (8)-(11) and (19) into (20)-(21) yields 
 D*��$��E��!��F.G�������.�
� !�� � E+�!+�F.G%)*����(�D*+�%),��$�(��+��.�
� !+� � 0 � ; H<,   (23) 

E��!��F.G$� D*���������.�
� !�� � E+�!+�F.G%),��$�( D*+�%)*����(��+��.�
� !+� � C5/ � 0 � ; I<.  (24) 

 
From Fig. 6 considering the three axes equilibrium moments, yields 
 �J)� sin%�� � &cos'( � J)� sin �� � J?�cos%�� � &cos'( � J?�cos�� � 0,  (25) �J)� cos%�� � &cos'( � J)� cos �� � J?�sin%�� � &cos'( � J?�sin�� � J5′ � 0, (26) J>/ � J>� � J>� � 0 � ; K<.     (27) 

 
Substituting (8)-(11) into (25)-(26) yields 
 LM��$� LN���������.�
� !�� � LN+�%)*����( LM+�%),��$�(��+��.�
� !+� � 0 � ; O<,   (28) 
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LN��$��LM���������.�
� !�� � LN+�%),��$�(�LM+�%)*����(��+��.�
� !+� � J5/ � 0 � ; P<.  (29) 

 
The centrifugal force acting on the ball at angular position ψj is given by [Harris (2001)] 
 C5/ � B� QRS=S� ,      (30) 

 
in which m is the mass of ball, 
 RS � RT � 296 � ��� � ½
�cos��:    (31) 
 
is the operational ball’s pitch diameter at position j, and ωmj is the absolute orbital speed 
of the ball about of the bearing axis. 
 

Substituting the identity =S�  = (ωmj/ω)
2ω2

 in (30) gives 

 C5/ � B� Q=�RS W.X�. Y�
,     (32) 

 
in which ω is the absolute angular velocity of the rotating ring. 
 
For the outer race to be stationary ωmj = –ωoj, ω = ωij + ωmj, 
 .X�. � B

B Z+�′ [\X�1 ]�^�_`.G
abc��dbZ��′ e�f]g*′�WN,�_e�Ybg,′�WN*�_h�Yd
Z��′ [\X�1 ]%^+_`.G(abc+�d_Z+�′ WN,�_e�Yfig*/�e�bg,/�h�j

,      (33) 

and 

.M�. � �0.*/�1  .2/�1  .,/�1
Z��′ ig*/�e�bg,/�h�j\X�1 ]�^�_`.G
abc��dbZ��′ e� Z+�′ ]g*′�WN,�_e�Ybg,′�WN*�_h�Yd\X�1 ]%^+_`.G(abc+�d_Z+�′ WN,�_e�Y

,   (34) 

 
in which ωij, ωoj are the angular velocities about the bearing axis of the inner and outer 
rings with respect to the ball at position j, and r’ij, r’oj are the inner and outer rolling 
radii [Harris (2001)]. 
 
Likewise, for the inner race to be stationary ωmj = –ωij, ω = ωoj + ωmj, 
 .X�. � B

B Z��′ [\X�1 ]%^+_`.G(abc+�d_Z+�′ WN,�_e�Yfig*/�e�bg,/�h�j
Z+�′ [\X�1 ]�^�_`.G
abc��dbZ��′ e�fkg*/�WN,�_e�Ybg,/�WN*�_h�Yl

         (35) 

 
and ωRj/ω is given by (34) with opposite sign. 
 
Similarly, the gyroscopic moments acting on the ball at angular position ψj are given by 
[Harris (2001)] 
 J>/ � m=� W.M�. Y W.X�. Y .,/�

0.*/�1  .2/�1  .,/�1 ,    (36) 

and 
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J5/ � �m=� W.M�. Y W.X�. Y .2/�
0.*/�1  .2/�1  .,/�1 ,    (37) 

 
in which J is the ball’s mass moment of inertia. 
 
The friction forces due to sliding in the x and y-directions of inner and outer ball-
raceway elliptical contact areas are given by [Harris (2001)] 
 

C7� � HnE+�!+�F.G
�op+�q+� r r s1 � 7+�1p+�1 � >+�1q+�1 sint�Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� ,  (38) 

C7� � HnE��!��F.G
�op��q�� r r s1 � 7��1

p��1 � >��1
q��1 sint�Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� ,  (39) 

C>� � HnE+�!+�F.G
�op+�q+� r r s1 � 7+�1p+�1 � >+�1q+�1 cost�Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� ,  (40) 

C>� � HnE��!��F.G
�op��q�� r r s1 � 7��1

p��1 � >��1
q��1 cost�Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� , (41) 

 
in which µ is the friction coefficient; aij, bij, aoj, and boj are semimajor and semiminor-
axes of inner and outer pressure ellipses; xij, yij, xoj, yoj are the co-ordinates of an element 
of area, dydx, inside the contact ellipse, which has a resultant velocity of slip V of the 
race on the ball acting at the angle γ with respect to the y-direction, which are given by 
 

t� � tan�B >+��e*+�gN+�7+� e2+�gN+�
,    t� � tan�B >���e*��gN��7�� e2��gN��

.   (42) 

 
Vxij, Vxoj, Vyij, Vyoj, ωsij, and ωsoj are the relative linear and angular slip velocities of inner 
and outer races with respect to the ball located at position j. The terms involving these 
velocities for use in (42) are given by [Harris (2001)] 
 

$*+�.N+� � z0?+1�7+�1 �0?+1�p+�1  0Wa1 Y1� p+�1 |}��+��.�
� !+�� Z+�′\X�1
%),��$�(~.2/�

.*/�%)*����(�.,/�}),��$��%^+_`.G(abc+�\X�1
�+�′ ~ ,  (43) 

$2+�.N+� � z0?+1�7+�1 �0?+1�p+�1  0Wa1 Y1� p+�1 ��+�′ |].*′�%),��$�( .,′�%)*����(d
.*′�%)*����(�.,′�}),��$��%^+_`.G(abc+�\X�1

�+�′ ~
,  (44) 
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$*��.N�� � �z0?�1�7��1 �0?�1�p��1  0Wa1Y1� p��1 |}�����.�
� !�� Z��′\X�1
$�~.2/�

.*/����.,/�}$� �^�_`.G
abc��\X�1
���′ ~ ,  (45) 

$2��.N�� � z0?�1�7��1 �0?�1�p��1  0Wa1Y1� p��1 ����′ |W.*/�$� .,/���Y
.*/����.,/�}$� �^�_`.G
abc��\X�1

���′ ~ ,    (46) 

 
in which Ri and Ro are the curvature radii of deformed surfaces, given by 
 �� � ��+���+ B,   �� � ������� B.     (47) 

 
The total frictional moments of the friction forces about the normal at the center of the 
contact ellipse are [Harris (2001)] 
 

J)� � HnE+�!+�F.G
�op+�q+� r r 0w�� � u�� s1 � 7+�1p+�1 � >+�1q+�1 cos it� � tan�B >+�7+�j Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� , (48) 

J)� � HnE��!��F.G
�op��q�� r r 0w�� � u�� s1 � 7��1

p��1 � >��1
q��1 cos it� � tan�B >��7��j Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� . (49) 

 
The moments of the friction forces about the y’-axis are [Harris (2001)] 
 

J>� � HnE+�!+�F.G
�op+�q+� r r z0��� � w�� � 0��� � ��� � 0W��Y� �  ��� | s1 � 7+�1p+�1 � >+�1q+�1 sint�Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� ,  (50) 

J>� � HnE��!��F.G
�op��q�� r r z0��� � w�� � 0��� � ��� � 0W��Y� �  ��� | s1 � 7��1

p��1 � >��1
q��1 sint�Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� . (51) 

 
The frictional moments about an axis through the ball center perpendicular to the line 
defining the contact angle, which line lies in the x’z’-plane, are [Harris (2001)] 
 

J?� � HnE+�!+�F.G
�op+�q+� r r z0��� � w�� � 0��� � ��� � 0W��Y� �  ��� | s1 � 7+�1p+�1 � >+�1q+�1 cost�Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� ,  (52) 

J?� � HnE��!��F.G
�op��q�� r r z0��� � w�� � 0��� � ��� � 0W��Y� �  ��� | s1 � 7��1

p��1 � >��1
q��1 cost�Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� . (53) 

 
Equations (16)-(18), (22)-(24) and (27)-(29) may be solved simultaneously for Vj, Wj, 
δoj, δij, r’oj, r’ij, ωx’j, ωy’j, and ωz’j at each ball angular location once values for δa, δr, and 
θ are assumed. 
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An iterative procedure is to be used to solve the equations simultaneously. Since Koj and 
Kij are functions of contact angle, equations (8)-(11) may be used to establish Koj and Kij 
values iteratively. 
 
To find the values of δa, δr, and θ, it remains to establish the equilibrium conditions of 
forces and moments about the inner ring center of mass, as shown by Fig. 7, which are 
 Cp � ∑ kE+�!+�F.G%)*����(�D*+�%),��$�(��+��.�
� !+� l<�B � 0 � ;�< B,   (54) 

C� � ∑ kE+�!+�F.G%),��$�( D*+�%)*����(��+��.�
� !+� l cos'<�B � 0 � ;�< �,   (55) 

       J � ∑�B< {Ri�A���B.�sin�� � C7��cos�� � ��/Ri
�cos' � %C>���sin�� � J)�cos��(sin'} = 0 � ;�< H,    (56) 
 
in which Fa, Fr, and M are external forces and moment applied to the inner ring center 
of mass. 
 
Having computed values for Vj, Wj, δoj, δij, r’oj, r’ij, ωx’j, ωy’j, and ωz’j at each angular 
position and knowing Fa, Fr, and M as input conditions the values of δa, δr, and θ may 
be computed by equations (54)-(56). After obtaining the primary unknown quantities δa, 
δr, and θ, it is necessary to repeat the calculation of Vj, Wj, δoj, δij, r’oj, r’ij, ωx’j, ωy’j, and 
ωz’j, until compatible values of primary unknown quantities δa, δr, and θ are obtained. 

Numerical procedure 

Equations (16)-(18), (22)-(24), (27)-(29), and (54)-(56) may be written as 
 ;����
 � 0,  g, h = 1, …, 9Z + 3,     (57) 
 
in which δ1 = V1, …, δZ = VZ, δZ+1 = W1, …, δ2Z = WZ, δ2Z+1 = δo1, …, δ3Z = δoZ, δ3Z+1 = 
δi1, …, δ4Z = δiZ, δ4Z+1 = r’o1, …, δ5Z = r’oZ, δ5Z+1 = r’i1, …, δ6Z = r’iZ, δ6Z+1 = ωx’1, …, δ7Z 
= ωx’Z, δ7Z+1 = ωy’1, …, δ8Z = ωy’Z, δ8Z+1 = ωz’1, …, δ9Z = ωz’Z, δ9Z+1 = δa, δ9Z+2 = δr, δ9Z+3 
= θ. 
 
The first 9Z equations from (57) must be solved simultaneously for δ1, …, δ9Z once 

values for δ9Z+1, …, δ9Z+3 are assumed. If ���, h = 1, …, 9Z, is a 9Z-dimensional vector 

with the initial estimates of the variables δ1, …, δ9Z, improved values are given by 
 ��3 � ��� � 9���:�B�;��,      (58) 
 

in which �;��, g = 1, …, 9Z, is the 9Z-dimensional vector with the first 9Z errors 

functions from (1). The elements of the square 9Z×9Z-matrix 9���: are 
 �� � �2%45 � �( �!��!� � 2%47 � �< ( �!�b��!� � 29��� � 0.5
� � �H< : �!��b��!� , (59) 

�� <
� � 2� �!��!� � 2�<  �!�b��!� � 29��� � 0.5
� � ��< : �!1�b��!� ,   (60) 

�� �<
� � 2�O<  �!��b��!� � 2�P<  �!��b��!� � 2�K<  �!��b��!� ,    (61) 

(62) 
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(63) �� �<
� � �D2���!� � �D2+��!� ,        (64) 

(65) 

(66) �� K<
� � �L2/��!� � �L2+��!� � �L2���!� .       (67) 

 
The forces Fz’j, Fxij and Fxoj to be used in (62) and (63) are given by (32), (38) and (39) 
and their differentiation with respect to δh, h = 1, …, 9Z, yields 
 �D,/��!� � Q=� �W.X�. Y� �!��!� � RS W.X�. Y �WgX�g Y�!� �,    (68) 

�D*+��!� � HnE+�!��b�F.G
�op+�q+� r r s1 � 7+�1p+�1 � >+�1q+�1 cost� ��+��!� Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� � H� D*+�!��b�
�!��b��!� ,  (69) 

�D*���!� � HnE��!1�b�F.G
�op��q�� r r s1 � 7��1

p��1 � >��1
q��1 cost� �����!� Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� � H� D*��!1�b�
�!1�b��!� . (70) 

 
The forces Fyij and Fyoj to be used in (64) are given by (40) and (41) and their 
differentiation with respect to δh, h = 1, …, 9Z, yields 
 

�D2+��!� � � HnE+�!��b�F.G
�op+�q+� r r s1 � 7+�1p+�1 � >+�1q+�1 sint� ��+��!� Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� � H� D2+�!��b�
�!��b��!� ,   (71) 

�D2���!� � � HnE��!1�b�F.G
�op��q�� r r s1 � 7��1

p��1 � >��1
q��1 sint� �����!� Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� � H� D2��!1�b�
�!1�b��!� . (72) 

 
The moments Msij, Msoj, MRij, MRoj and Mz’j to be used in (65) and (66) are given by (48), 
(49), (52), (53) and (37) and their differentiation with respect to δh, h = 1, …, 9Z, yields 
 

(73) 
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(74) 

(75) 

(76) 

(77) 
 
The moments Myij, Myoj and My’j to be used in (67) are given by (50), (51) and (36) and 
their differentiation with respect to δh, h = 1, …, 9Z, yields 
 

(78) 

(79) 

(80) 

 
As in (38)-(41) and (48)-(53), also in (69)-(76), (78) e (79) γij, γoj are given by (42). The 
derivatives of γij, γoj with respect δh, h = 1, …, 9Z, to be used in (69)-(76), (78) e (79) are 
given by 
 

��+��!� � �z7+� e2+�gN+�|�ze*+�gN+�|
�c� �z>+��e*+�gN+�|�ze2+�gN+�|

�c�
z>+��e*+�gN+�|1 z7+� e2+�gN+�|1 ,    

�����!� � �z7�� e2��gN��|�ze*��gN��|
�c� �z>���e*��gN��|�ze2��gN��|

�c�
z>���e*��gN��|1 z7�� e2��gN��|1 , (81) 

 
in which Vxij/ωsij, Vyij/ωsij, Vxoj/ωsoj, Vyoj/ωsoj are given by (43)-(46). The derivatives of 
Vxij/ωsij, Vyij/ωsij, Vxoj/ωsoj and Vyoj/ωsoj with respect δh, h = 1, …, 9Z, to be used in (81) 
are given by 
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(82) 

(83) 

(84) 

(85) 
 
For the outer race to be stationary ωmj/ω and ωRj/ω are given by (33)-(34). The 
derivatives of (33) and (34) with respect δh, h = 1, …, 9Z, to be used in (68), (77) and 
(80) are given by 
 

(86) 
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(87) 
Likewise, for the inner race to be stationary, 
 

(88) 
and d(ωRj/ω)/dδ is given by (87) with the opposite sign. 
 
The last three equations from (57) must be solved simultaneously for δ9Z+1, …, δ9Z+3 

after obtaining updated values for: βij, βoj, Kij, Koj, sxj, szj, Fxij, Fyij, Fxoj, Fyoj, Msij, Msoj, 

MRij, MRoj, δkZ+j, k = 0, …, 8; j = 1, …, Z. If ���, h = 9Z+1, …, 9Z+3, is a 3-dimensional 

vector with the initial estimates of the variables δ9Z+1, …, δ9Z+3, in that order, improved 

values are given by (58), in which �;��, g = 9Z+1, …, 9Z+3, is the 3-dimensional vector 

with the errors functions, in that order, from (57). The elements of the 3×3-matrix 9���: 
are 

(89) 

(90) 
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(91) 
 
Differentiating (16)-(18), (22)-(24) and (27)-(29) with respect δh, h = 9Z+1, …, 9Z+3, 
27Z simultaneous linear equations in ∂δkZ+j/∂δh, k = 0, …, 8; j = 1, …, Z, results, which 
are 

  (92) � �!��!� � �<  �!�b��!� � 9��� � 0.5
� � ��< : �!1�b��!� � 0,    (93) 

�O<  �!��b��!� � �P<  �!��b��!� � �K<  �!��b��!� � 0,     (94) 

(95) 

(96) �D2���!� � �D2+��!� � 0,             (97) 

(98) 

 (99) �L2/��!� � �L2+��!� � �L2���!� � 0.       (100) 

 
The derivatives of Fz’j, Fxij, Fxoj, Fyij, Fyoj, Msij, Msoj, MRij, MRoj, Mz’j, Myij, Myoj and My’j 
with respect δh, h = 9Z+1, …, 9Z+3, to be used in (89)-(100) are given by (68)-(80). In 
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(69)-(76), (78) and (79) γij, γoj are given by (42). The derivatives of γij, γoj with respect 
δh, h = 9Z+1, …, 9Z+3, to be used in (69)-(76), (78) and (79) are given by (81), with 
Vxij/ωsij, Vyij/ωsij, Vxoj/ωsoj and Vyoj/ωsoj given by (43)-(46). The derivatives of Vxij/ωsij, 
Vyij/ωsij, Vxoj/ωsoj and Vyoj/ωsoj with respect δh, h = 9Z+1, …, 9Z+3, to be used in (81) are 
given by (82)-(85). 
 
For outer race to be stationary ωmj/ω and ωRj/ω are given by (33) and (34), and for 
inner race to be stationary are given by (35) and (34), the last with opposite sign. The 
derivatives of (33) and (34) with respect δh, h = 9Z+1, …, 9Z+3, to be used in (68), (77) 
and (80) are given by (30) and (31); and for (35)-(34), the last with opposite sign, are 
given by (32) and (31), the last with opposite sign. 
 
The linear system’s solutions of the equations (92)-(100) – ∂δkZ+j/∂δh, k = 0, …, 8; j = 1, 
…, Z – are to be used in (89)-(91) for the new estimates of δ9Z+1, δ9Z+2 and δ9Z+3. 

Acknowledgements 

To FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for financial 

support. 

References 

Harris, T. (2001) Rolling Bearing Analysis, 4
th

 ed, John Wiley & Sons, New York. 
Jones, A. (1946) Analysis of Stresses and Deflections, New Departure Engineering Data, Bristol, CT. 
Jones, A. B. (1959) Ball motion and sliding friction in ball bearings, ASME J. Basic Eng. 3, 1-12. 
Jones, A. B. (1960) A General Theory for Elastically Constrained Ball and Radial Roller Bearings Under 

Arbitrary Load and Speed Conditions, J. Fluids Eng. 82(2), 309-320. 
Murer, S., Bogard, F., Rasolofondraibe, L., Pottier, B. and Marconnet, P. (2015) Determination of loads 

transmitted by rolling elements in a roller bearing using capacitive probes: Finite element validation, 
Mech. Syst. Signal Process. 54-5 306–313. 

Rajasekhar, M., Srinivas, J. and Divekar, A. (2013) Dynamic Analysis of Aero-engine Rotors Supported 
on Ball bearing system, Proc 1st Int. and 16th Nat. Conf. on Machines and Mechanisms 

(iNaCoMM2013) 941-946. 
Rasolofondraibe, L., Pottier, B., Marconnet, P. and Chiementin, X. (2012) Capacitive sensor device for 

measuring loads on bearings, IEEE Sens. J. 12 2186–2191. 
Rasolofondraibe, L., Pottier, B., Marconnet, P. and Perrin, E. (2013) Numerical Model of the Capacitive 

Probe's Capacitance for Measuring the External Loads Transmitted by the Bearing's Rolling Elements 
of Rotating Machines, IEEE Sens. J. 13 3067–3072. 

Ricci, M. C. (2009) Ball bearings subjected to a variable eccentric thrust load, Proc. 8
th

 Brazilian Conf. 
on Dynamics, Control and Appl., Bauru, Brazil, 18-22 May. 

Ricci, M. C. (2009a) Internal loading distribution in statically loaded ball bearings, 1
st
 Int. Conf. on 

Comp. Contact Mech., Program and Abstracts, Lecce, Italy, 16-18 Sept., p. 21-22. 
Ricci, M. C. (2009b) Internal loading distribution in statically loaded ball bearings subjected to a 

combined radial and thrust load, Proc. 6
th

 Int. Congress of Croatian Soc. Mech., Dubrovnik, Croatia, 
Sept. 30 to Oct. 2. 

Ricci, M. C. (2009c) Proc. 60
th

 Int. Astron. Congress, Daejeon, South Korea, October, 12-16. 
Ricci, M. C. (2009d) Internal loading distribution in statically loaded ball bearings subjected to an 

eccentric thrust load, Math. Probl. Eng. 
Ricci, M. C. (2010) Internal loading distribution in statically loaded ball bearings subjected to a combined 

radial, thrust and moment load, including the effects of temperature and fit, Proc. 11
th

 Pan-American 

Congress of Appl. Mech., January, 04-10, Foz do Iguaçu, Brazil. 
Rumbarger, J. (1962) Thrust Bearings with Eccentric Loads, Mach. Des. 
Starvin, M. S., Christopher, A. S. and Manisekar, K. (2011) Finite Element Analysis of Large Diameter 

Bearings Subjected to Thrust Load, CiiT Int. J. Automation and Autonomous Syst. 3 389–394. 
Muszynska, A. (1986) Whirl and whip—rotor/bearing stability problems, J. sound vib.110 443-462. 
Seong, S., Kim, W., Bae, D. and Lee, S. (2014) Korean Soc. Mech. Eng. Fall Annual Meet.776-779. 
Sjoväll, H. (1933) The Load Distribution within Ball and Roller Bearings under Given External Radial 

and Axial Load, Teknisk Tidskrift, Mek h.9. 
Stribeck, R. (1907) Ball Bearings for Various Loads, Trans. ASME 29, 420–463. 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

937



 

 

 
 
 

 
 

Tomović, R. (2012) Calculation of the boundary values of rolling bearing deflection in relation to the 
number of active rolling elements,  Mechanism and Mach. Theory 47 74-88. 

Tomović, R. (2012a) Calculation of the necessary level of external radial load for inner ring support on q 
rolling elements in a radial bearing with internal radial clearance, Int. J. Mech. Sci. 60 23-33.  

Tomović, R. (2013) Investigation of the Effect of Rolling Bearing Construction on Internal Load 
Distribution and the Number of Active Rolling Elements, Adv. Mat. Res. 633 103-116. 

Tudose, C., Rusu, F. and Tudose, L. (2013) Influence of rotation angle on bearing rolling bodies load 
distribution. Part 1: Mathematical Model, Appl. Math. Mech. 56 469–474. 

Zhenguo, S., Huimin, D., Fanhai, M. and Hua, W. (2011) Finite element analysis method of slewing 
bearing with plastic deformation, Trans. CSAE 27 52-56. 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

938



Damage prediction of carbon-epoxy composites under shear loads using the 

finite element method 

†K.M. Karumbaiah¹*, R. Das1, and S. Campbell2 

1 Centre for Advanced Composite Materials, Department of Mechanical Engineering, University of Auckland, 
Auckland, New Zealand. 

2 Defence Technology Agency, Auckland, New Zealand  

*Presenting author: Kmal847@aucklanduni.ac.nz  
†Corresponding author: Kmal847@aucklanduni.ac.nz 

Abstract 

Carbon fiber reinforced polymer composite (CFRP) laminates are used in many applications of the 
aerospace industry, particularly, in aircraft structural components due to their good stiffness to 
weight ratios compared to traditionally used aluminium. The ability of accurate prediction of the 
structural response of composites under complex loadings is crucially important for high-end 
designs and optimisation of composite structures. The accuracy and predictive capabilities of finite 
element models in the failure analysis of the carbon-epoxy (IM7/977-3) composite laminates have 
been evaluated. The cross ply composite laminate with the layup configuration [0,90]4S was 
numerically modelled under shear loads, and the commercial finite element program ABAQUS was 
utilised. The failure due to shear loads were analysed using the Hashin’s failure criterion. The 
numerical results were validated by comparing them against the carefully conducted experimental 
test data. The difference between the experimental and numerically predicted values of the stress 
and strain were compared to evaluate the accuracy of the finite element models. 
Keywords: Composite materials, Carbon-epoxy, Failure criteria, Progressive damage. 

Introduction 

Composite laminates developed of fiber-reinforced plies are being progressively used in locomotive, 
aerospace, marine and defence industries as they acquire higher strength than those of metallic 
structures, and they can be engineered to attain optimum material properties in anticipated 
directions. A thought-provoking issue in designing composites is delineating numerous failure 
modes, such as matrix cracking, fiber breakage, fiber kinking, delamination, and fiber/matrix 
debonding, due to its anisotropic nature [Reifsnider 1980, Rotem 1998, Chen, Morozov et al. 2014]. 
The difficulty of the problem is supported by the fact that there are only few successfully theories of 
failure, such as Hashin’s failure criterion [Hashin 1983], Tsai-Hill, Tsai-Wu, and Puck’s failure 
criterion that are incorporated by the researchers to predict the damage and failure of the composite 
materials [Hinton, Kaddour et al. 2004, Kaddour, Hinton et al. 2004, Kaddour, Hinton et al. 2004]. 
Overall, the load carrying capability of a structure does not become extinct as soon as either damage 
or failure arises at a material point. The structure can support supplementary loads before it 
ultimately fails. Thus, it is significant to enumerate damage caused by the commencement of a 
failure mode and study its progression and the ultimate failure of a structure with an increase in the 
applied load. 
 
Damage and failure in composite structures can be analysed by either using a micro-mechanics 
method that deliberates damage and failure at the constituent level or a continuum damage 
mechanics (CDM) method in which material properties of the composite have been standardised 
and damage and failure is studied at the ply/lamina level [Sun, Tan et al. 2011]. Damage studied at 
the constituent level is not only computationally expensive for a real time problem but also involves 
extensive investigational characterization to determine the values of material properties in the 
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damage modelling and analysis. Considering a specific case, a statistical approach can be adapted to 
study the micro-mechanical behaviour of the composite based on Weibull’s distribution and the 
hypothesis that the inclusion or the reinforcements carries no load after it has debonded from the 
matrix; they thus included the effect of fiber/matrix debonding in Mori–Tanaka’s micromechanics 
method of deriving effective properties [Benveniste 1986]. The effect of the micromechanics-
approach of progressive debonding is considered by gradually reducing the elastic constants of the 
inclusions [Sun, Tan et al. 2011]. The debonding of the fiber and the matric can be modelled by 
reducing strengths of the interface among the reinforcement and the matrix [Nguyen and Khaleel 
2004]. Additionally, the micro-mechanics assists in analysing the combined effects of micro-cracks 
and debonding on the effective properties of a composite [Meraghni, Desrumaux et al. 2002]. 
Moreover, the micro-mechanics approach has a limitations, such as expensive for real time 
application and the modelling and simulation requires extensive experimental characterisation to 
determine the material properties. 
 
One of the way to overcome the aforementioned limitation is to use damage mechanics approach 
and to study damage and failure at the lamina level. Damage mechanics is related with the 
illustration, or modelling, of damage of materials that is appropriate for obtaining engineering 
predictions about the fracture of materials, initiation, and propagation of damage and without 
resorting to a microscopic report that would be difficult for real-world engineering design and 
analysis [Krajcinovic and Mastilovic 1995]. Damage mechanics demonstrates the typical 
engineering methodology to model complex phenomena. One of the final task of engineering 
research is to deliver the insight of the examined phenomenon, and to provide a rational predictive 
tool applicable in design [Krajcinovic and Mastilovic 1995]. There is a need of failure criterion to 
predict the initiation of the damage and to analyse its propagation leading to failure. 
 
Ladeveze and Dantec adapted damage mechanics based approach to degrade elastic properties of 
the composite due to matrix cracking, and fiber breakage and a plasticity theory considering 
permanent deformations induced under shear loading [Ladeveze and LeDantec 1992]. Hassan and 
Batra have used three internal variables, such as material properties, loads and ply stacking 
sequence to illustrate the behaviour of composite after initiation of damage due to matrix cracking, 
fiber breakage, and fiber/matrix debonding [Hassan and Batra 2008]. Puck and Schurmann have 
comprehended Hashin’s [Hashin 1983] stress-based failure criterion, and proposed methods to 
degrade elastic parameters of the lamina consequent to the initiation of a damage [Puck and 
Schürmann 2004]. To predict the damage in three dimensional (3-D) composite structure Donadon 
et al. have used a smeared crack approach, developed on the basis of damage mechanics [Donadon, 
Iannucci et al. 2008]. Clegg et al. have considered plastic deformations of a composite material and 
have well-defined a damage surface in terms of stresses induced [Clegg, Horsfall et al. 1988]. The 
development of damage variables is articulated in terms of a fracture energy, critical strain, and 
fracture stress and a local characteristic dimension, which may help to decrease the reliance of 
computed results upon the finite element (FE) mesh used to analyse the problem numerically. To 
model and analyse the failure behaviour of composite laminates under shear loads, the Hashin’s 
failure criterion has been used to analyse the failure of the composite laminate. The damage ensues 
at any point can be characterized by different modes of failure, such as fiber breakage in tension and 
compression, and matrix cracking in tension and compression. The internal variables used to 
characterise different modes of failure depends upon values of stresses in Hashin’s failure criteria, 
which are expressed in terms of the strength parameters for the composite, longitudinal and 
transverse tensile strength, longitudinal and transverse compressive strength, and shear strengths. 
 
In this paper, a load cases has been considered; the cross ply composite laminate with the layup 
configuration [0,90]4S was numerically modelled under shear loads. The failure has been 
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investigated using the Hashin’s failure criterion. The numerical results were validated by comparing 
them against the wisely conducted experimental test data. The accuracy and the dependency of the 
finite element models have been discussed by analysing the difference between the experimental 
and numerically predicted stress and strain behaviour. 

Finite Element Modelling 

A finite element simulation was carried out using a commercial software ABAQUS/CAE, which is 
an engineering tool that is used to solve various engineering problems ranging from linear to non-
linear problems that are complex. Finite element modelling of composites is liable on the 
requirement of the investigation. In ABAQUS, there are numerous methods for composite 
modelling, such as, macroscopic modelling, microscopic modelling, mixed modelling, discrete 
reinforcement modelling and sub-modelling. However, the commonly used in finite element 
simulations of composite material are layered-shells using conventional shell elements. A 16 ply 
composite laminate was analysed under shear loads. 

Material and properties 

The IM7/977-3 carbon epoxy composite materials are widely used in aerospace applications. Wide 
applications of this composite has resulted to analyse and predict the specific properties of the 
composite to obtain the long service life with minimum maintenance or repair of composites 
manufactured of IM7/977-3. Table 1 shows the properties of the composite used to numerically 
analyse the shear and three point bend loads. 

Table 1. Properties of unidirectional IM7/977-3 carbon/epoxy composites [Clay 2014]. 

Property Magnitude Description 

1 ( )TE GPa  164.3 Modulus in fibre direction in tension 
11( )S MPa

 2905 Maximum stress in fibre direction in tension 
1T  0.01610 Maximum strain in fibre direction in tension 
12v  0.3197 Poisson's ratio in fibre direction in tension 

2 ( )TE GPa  8.977 Modulus in 90-degree direction in tension 
22 ( )S MPa

 44.4 Maximum stress in 90-degree direction in tension 
2T  0.00499 Maximum strain in 90-degree direction in tension 
21v  0.0175 Poisson's ratio in 90-degree direction in tension 

1 ( )CE GPa  137.4 Modulus in fibre direction in compression 
11( )S MPa

 1274 Maximum stress in 0-degree direction in compression 
2 ( )CE GPa  8.694 Modulus in 90-degree fibre direction in compression 

22 ( )S MPa

 247.6 Maximum stress in 90-degree direction in compression 
12( )G GPa  4.880 Shear modulus calculated from ±45-degree tension test 
𝛼1 (/˚C) 0.01e-06 Coefficient of thermal expansion in fibre direction [Tay, Liu 

et al. 2008]  
𝛼2= 𝛼3 (/˚C) 32.73-06 Coefficient of thermal expansion in transverse direction 

[Tay, Liu et al. 2008]  

Failure criteria 

Hashin [Hashin 1980] proposed three dimensional failure criterion of unidirectional fibre-reinforced 
composites. The criteria are established in terms of quadratic stress polynomials which are 
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articulated in terms of the transversely isotropic invariants of the applied average stress state. The 
four failure modes are: tensile fibre failure, compressive fibre failure, tensile matrix failure, and 
compressive matrix failure. 

11S 

 = Value of 
11  at longitudinal tensile failure 

11S 

 = Value of 
11  at longitudinal compressive failure 

22S 

 = Value of 
22  at transverse tensile failure 

22S 

 = Value of 
22  at transverse compressive failure 

12S  = Complete value of 
12  at longitudinal shear failure  

23S  = Absolute value of 
23  at transverse shear failure 

If
11 0  , the Tensile Fibre Failure Criterion is: 
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11 12

1.0fF
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11 0  , the Compressive Fibre Failure Criterion is: 
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If

22 0  , the Tensile Matrix Failure Criterion is: 
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If

22 0  , the Compressive Matrix Failure Criterion is: 
 

2 2 2

22 22 22 12

23 23 22 12

1 1.0
2 2m

S
F

S S S S

  




      
          
         

(4) 

 
The Hashin’s equations include two user-specified parameters: α and S23. α is the user-specified 
coefficient that determines the contribution of the longitudinal shear stress to fibre tensile failure. 
Permissible range is 0.0 1.0  , and the default value is α=0. S23 is the transverse shear strength 
of the composite material. During modelling α is maintained 1 and S23 has been extracted from the 
literature [Tay, Liu et al. 2008]. α is a coefficient that determines the contribution of the shear stress 
to the fibre tensile initiation criterion. Based on Hashin’s model proposed in 1980 [Hashin 1983] α 
is maintained as 1. The accuracy and predicative capability of the Hashin’s failure criterion has 
been analysed, under shear loads, and the behaviour of the composite laminates are discussed below. 
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Model Geometry 

A double-notched cross ply composite laminate is of 76 mm length and 56 mm width are analysed 
under shear loads, with a notch tip radius of 1.3 mm as shown in (Figure 1). The composite 
laminate is made of 16 ply of 2 mm thick, with equal number of 0 and 90 degree fiber oriented plies, 
hence the composite layup configuration is balanced and symmetric (Figure 1). 
 

25.5 25.5

90

76

56

R 1.3

All dimensions are in mm  
 

(a) (b) 

Figure 1: (a) Model geometry and (b) Layup configuration of the composite laminate 

Meshing and Boundary Conditions 

ABAQUS stress/displacement shell elements use a Lagrangian formulation, where the element 
relocates; bestowing to the behaviour of the constituent material. Guassian Quadrature is used to 
solve for static equilibrium at each integration point within the element. Shell elements are defined 
in ABAQUS using the *SHELL SECTION. This specifies the material, shell element thickness and 
number of through thickness integration points. The optional composite parameter permits the user 
to define separate layers and orientations. Using this type of section characterize a multiple layered, 
complex, laminate can be precisely described and allocated to shell elements.  
 
A convergence study is conducted to determine the minimum number of triangular elements 
required to produce converged mechanical properties and failure patterns (Figure 2). This is 
achieved by starting with a small number of elements and continuously refining the mesh until a 
maximum of 5 % difference in the maximum principal stress is observed. The difference in the 
maximum principal stress between the 0.5 mm and 0.25 mm mesh size is 4.22%, which is less than 
5%. It is preferred to select the mesh size 0.5 mm over 0.25 mm, because the convergence 
difference below 5% is acceptable and the choosing mesh size 0.5 mm saves the computational time 
and memory. 
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Figure 2: Finite element mesh of the composite laminate 

The fiber reinforcement in the double-notch shear test modelled composite is apparently planar, and 

its principal axis is lateral to the model axis, planes of low shear strength will be existing, 

comprising the plane that is parallel to the bottoms of the two opposing notches. Under the shear 

loading, a shearing action is developed along the specimen centre-line between the notch roots, 

apparently leading to a failure on this shear plane. The loading and the boundary conditions are 

shown in (Figure 3). The fixture used in experimental test, has been designed to minimize the 

compressive, tensile and bending influence on the specimen under test. In the similar way the model 

developed has been constrained to bend and behaviour non-linearly. 

Right edge 

no displacement or 

rotation

Left edge

X and Z displacement =0 

No rotation along all 3 axes

No movement permitted 

in Z-direction

 

Figure 3: Boundary and loading conditions 

Results and Discussions 

The fundamental problem with the Double-Notch Shear test models is that significant stress 

concentrations occur at the roots of the notches, resulting in premature failure. The below (Figure 4) 

shows the increased shear stress concentration in the roots of the notches of both fibers oriented in 

longitudinal and transverse direction. 
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(a) (b)  

Figure 4: Stress distribution of [0,90]4S composite laminate under shear loads (a) 0-degree ply 

and (b) 90-degree ply 

The shear response is dependent on the fiber orientation in the composite laminate and it decreases 
from longitudinal direction (0-degree) to transverse direction (90-degree). The finite element model 
was developed to notice a simple shear state generated on the composite ply with double-notch. 
Since, the model’s parallel faces are in opposite direction, under shear loads the model will develop 
horizontal cracks and delamination. But the model develop is based on the composite shell 
elements, hence the model cannot be used to predict delamination  
The shear stress strain behaviour for [0/90]4S model revealed, after a few increment of loading both 
the curves showed proportional behaviour at the commencement. Nevertheless, just beyond the 
comparative limit, they turn into nonlinear due to the build-up of matrix cracks. As stress was 
increased, the eccentricity from the linearity also increased due to the initiation and propagation of 
the cracks along the fiber direction and failure of some fibers by tension in the transverse loading 
direction. The materials exhibited first ply failure at the shear stress of 74 MPa, after which the 
model under goes series of damage in the elements of the adjacent plies, those are the elements 
which fail to carry loads. The maximum shear stress of 86 MPa and 81 MPa are observed under 
experimental and modelled results. The difference between the experimental and modelled results 
are 6% (Figure 5). 
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Figure 5: Stress strain behaviour of [0,90]4S composite laminate under shear loads 

Failure 

The damage and failure prediction helps in knowing the failure pattern and critical elements that 
undergo more deformation, leading to catastrophic failure. Implementing Hashin’s failure criterion 
the matrix and fiber failure modes are analysed and discussed below. The red coloured area 
represents the damaged portion. 
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Fiber compression 

 
Under shear loads the developed model does not show any significant amount of damage in the 
fibers under compression. Because the fibers oriented in longitudinal and transverse direction has 
the potential to withstand compressive loads leading to failure (Figure 6). 

  

 

(a) (b)  

Figure 6: Comparison of Fiber compression failure pattern (a) 0-degree ply and (b) 90-degree 

ply  

Fiber tension 

A significant amount of damage is observed in both the plies (0-degree and 90-degree). The fibers 
oriented in longitudinal direction shows an initiation of the damage; in line with the notch tip. The 
damage propagates with the increase in load, and the direction of damage propagation is inclined at 
an angle of 45 to the orientation of fibers. Additionally the damaged areas shows the tensile failure 
zones in the model (Figure 7). 

   

 

(a) (b) (c)  

Figure 7: Fiber tension failure pattern of [0,90]4S composite laminate under shear loads 

Comparatively, the damage initiation and propagation in 90-degree plies are less, with respect to 
0-degree plies (Figure 8). It is mainly due to the shear response is dependent on the fiber 
orientation, the shear response is maximum in fibers oriented in longitudinal direction, and it 
decreases as the fibers are oriented in transverse direction. Hence, the use of computational model, 
and implementing the Hashin’s failure criteria shows the dependence of shear failure upon the 
orientation of fibers. 
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(a) (b)  

Figure 8: Comparison of Fiber tension failure pattern (a) 0-degree ply and (b) 90-degree ply  

Matrix compression 

The fiber reinforced polymer matrix composite laminate with v-notches sufferers from loss in its 
stiffness, strength, and service life due to notch-enhanced stresses. The presence of notch results 
prompting new modes of damage in the matrix of the composite laminate or by accelerating the 
growth of the existing damage. Figure 9 shows the initiation of the matrix damage at the centre of 
the composite in line with the notch root. A rapid increase in damage areas has been observed in the 
subsequent increment between the notch root tips. It is mainly due to global stiffness reduction and 
decrease in strength in the respective failure areas of the composite as shown in (Figure 9). 
However, the matrix damage developed by a double-notch is moderately small compared to the 
effects of a notch on the ultimate strength of the model. 

   

 

(a) (b) (c)  

Figure 9: Matrix compression failure pattern of [0,90]4S composite laminate under shear loads 

Relatively the matrix damage is more dominantly observed in the fibers oriented in longitudinal 
direction, but the areas of damage is comparatively same (Figure 10). This conveys the fiber 
orientation doesn’t play a vital role in the regions of the matrix damage. 

  

 

(a) (b)  

Figure 10: Comparison of matrix compression failure pattern (a) 0-degree ply and (b) 

90-degree ply  
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Matrix tension 

It has been observed from the experiments that the failure mechanisms leading to failure were the 
matrix cracks in transverse direction. Furthermore increase in loads will result in longitudinal cracks 
(splits) appearing and propagating in the longitudinal direction. A similar way of damage initiation 
and propagation has been observed in the finite element model, specifically in the matrix damage. 
The matrix which fails under tension also exhibits similar pattern of failure as matrix fail under 
compressive nature of the force, but the location of damage is opposite in nature (Figure 11). The 
region where matrix are damage is entirely dependent on the loading and the boundary conditions.  

   
 

(a) (b) (c)  

Figure 11: Matrix tension failure pattern of [0,90]4S composite laminate under shear loads 

When the matrix in the 0-degree laminate are fully damaged, the matrix in the 90-degree laminate 
are only 20% damaged. Additionally, it is evident that for both matrix tensile and matrix 
compressive damage are dominantly observed in 0-degree plies (Figure 12). 
 

  

 

(a) (b)  

Figure 12: Comparison of matrix tension failure pattern (a) 0-degree ply and (b) 90-degree 

ply 

The damage patters observed in simulated results are comparable with the experimental results. 
Figure 13 shown below shows the failed test specimen. The visible damage pattern is of 0-degree 
ply, which is comparable with the simulated results (Figure 7, Figure 9 and Figure 11).  
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Figure 13: failure of carbon-epoxy specimen under shear loads 

Conclusions 

A progressive failure approach was applied to study the failure in terms of transverse and 
longitudinal fracture of cross-ply laminates with double-notch. The local matrix and fiber 
dominated failure was analysed by adapting the Hashin’s failure criteria. The shear stress and strain 
behaviour of the model was analysed by a uniform stiffness reduction approximation. In the initial 
stages of loading the material behaved linearly, after reaching a yield shear stress of 75 MPa a 
non-linear behaviour has been observed with the development of damage in transverse direction. 
Furthermore increment of the load resulted in rapid development and propagation of damage in 
longitudinal direction. A difference of 6% between the experimental and modelled shear stress has 
been observed. Additionally, it has been evidently observed that a matrix dominated failure can be 
predicted in the double-v-notch composite specimen. It was found that the failure in shear model of 
[0, 90]4S was due to pure shear along the line between V-notches, where shear cracks were almost 
parallel to the loading direction, but in the off axis angle 45, cracks were initiated at roots of notch 
and propagated in the direction of fibers.  
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Abstract 
This paper addresses the computational modelling of rolling shear cracks in cross-laminated timber 
structures. In order to predict the structural response, four spatial scales are interlinked within a 
multi-scale modelling framework. Material information is taken from the wood cell-wall at the 
order of few nanometers, wood fibres with dimensions of some micrometers and growth rings 
described by a few millimeters. A computational homogenisation scheme is adopted to determine 
the effective mechanical properties at each scale. The homogenised mechanical properties are then 
used to analyse the fourth (structural) scale represented by a cross-laminated timber plate with 
dimensions of the order of the meter. In order to simulate the cracking in the material, a cohesive 
zone model is adopted at the homogenised macroscopic scale. This approach allows us to model 
interlaminar and inter-fibre cracks. Our numerical simulations reveal the potential predictive 
capabilities of the present approach to investigate further wood and other natural materials. 
 
Keywords: Cross-laminated timber, Rolling shear cracks, Multi-scale modelling 

Introduction 

Cross-laminated timber (CLT) consists of structural panels made up of several layers of boards 
stacked crosswise and glued together on their faces. Among its main advantages, we can highlight 
its favorable seismic performance, its ability to self-protect against fire and its excellent strength, 
which allows wood to be used in tall buildings with heights up to 30 stories [Fairhurst et al. (2010)].  

One important issue in the design of CLT structures which still requires further investigation is the 
rolling shear failure [Zhou et al. (2014)]. It consists of inter-fibre cracking due to shear strains in the 
plane perpendicular to the longitudinal axis of the wood fibres. Figure 1 shows a typical rolling 
shear failure found in the central layer of a CLT plate subject to out-of-plane loads. In particular, 
the design of CLT floor systems with low span-to-depth ratios is often governed by the rolling shear 
capacity of CLT plates and therefore, its full understanding is of paramount importance to prevent 
damage in CLT structures. 
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Figure 1: Typical rolling shear failure in a CLT plate subject to bending 
 
 
 
In order to capture rolling shear cracking in a CLT plate, we propose in this paper a modelling 
strategy which combines the use of a homogenisation-based multi-scale modelling framework to 
determine the undamaged mechanical properties of wood, and the adoption of cohesive interfaces at 
the homogenised macroscopic structural scale to model the crack behaviour.  
 
In the context of multi-scale modelling of CLT structures, few attempts have been made in order to 
predict the CLT structural response [Saavedra Flores et al. (2014); Saavedra Flores et al. (2015a; 
2015b)]. We note, however, that despite the increasing interest in this subject, the complete 
understanding of the mechanical properties of CLT is still an issue which remains open at present. 
In this new paper, we continue with the line of development started in the above references 
[Saavedra Flores et al. (2014); Saavedra Flores et al. (2015a; 2015b)] by presenting new numerical 
results. 

 

Computational approach 

In the present paper, we adopt a homogenisation-based multi-scale constitutive framework in which 
each material scale is associated with a microstructure whose most statistically relevant features are 
incorporated within a representative volume element (RVE). This RVE is assumed to have a 
(microscopic) characteristic length much smaller than the macro-continuum, and at the same time, a 
size large enough to capture the microscopic heterogeneities in an averaged sense. 
 
In this theory it is assumed that the macroscopic or homogenised strain tensor at any arbitrary point 
of the macroscopic continuum is the volume average of the microscopic strain tensor field over the 
domain of a representative volume element of material (RVE). Similarly, the macroscopic or 
homogenised stress tensor field is assumed to be the volume average of the microscopic stress 
tensor. 
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This multi-scale framework is adopted to find the homogenised constitutive response at each 
material scale. In wood, these scales are represented by the wood cell-wall at the order of few 
nanometers, the wood fibres with cross section dimensions of tens of micrometers, and the growth 
rings described by some few millimeters. For further information about the morphology and 
composition of wood at the nano- and microscopic scale level, we refer, for instance, to [Dinwoodie 
(1981)]. The homogenisation of these three (material) scales (represented by three different RVEs) 
allows us to predict the response of the fourth (structural) scale, that is, the CLT plate. 
 
The main philosophy behind the present multi-scale strategy is to start from the response of very 
basic (but fundamental) ingredients at small scales and then, build up an increasingly complex and 
intricate response as the length scale increases. We note here that the determination of an accurate 
prediction of this response would (probably) be unfeasible by means of conventional 
phenomenological models. 
 
As we are interested in modelling cracking in the material, we adopt a Cohesive Zone Model 
(CZM) at the macroscopic structural scale. CZM is the simplest model that allows to describe in full 
a fracture process (i.e. initiation and propagation of the crack) and has been thoroughly used to treat 
several materials such as concrete, rocks, fibre-reinforced plastics and wood [Allix et al. (1998); 
Elices et al. (2002), Saavedra et a. (2012)]. 
 
The basic idea of the CZM can be described as a zero thickness interface transferring tractions 
which are related to the displacement jump of the interface [u] by the meaning of a softening 
function. This evolution law can be written in terms of a damageable stiffness operator k([u]). At 
the beginning, the interface stiffness has no damage (k0). Then, the stiffness decreases with respect 
to the displacement jump and becomes zero at some critical displacement jump. It is possible to use 
a damage variable d to represent the stiffness of the interface, i.e., k = (1−d)k0, with d ranging from 
0 (healthy interface point) to 1 (completely damaged interface point). The area under the entire 
stress-displacement jump curve is the energy per unit area Gf [J/m2] necessary to separate 
completely the interface at a given point. 
 

Numerical simulations 

This section describes the numerical results obtained by the present multi-scale approach enriched 
with macroscopic cohesive laws. The CLT specimen consisted of three 4-cm-thick layers with a 
length of 75 cm and a width of 39 cm. The span length between supports was 60 cm. The outer 
layers were made up of timber pieces oriented in the strong direction of the panel. The central layer 
was made up of members oriented in the weak direction. Edge-gluing is considered between the 
opposite sides of adjacent layers. The macroscopic finite element mesh consists of 861696 linear 
wedge elements and 2.9 millions of DOFs (because of the symmetry of the problem, only one 
quarter of the geometry is considered). Further details on the finite element models of the RVEs 
associated with the corresponding sub-scales can be found in [Saavedra Flores et al. (2015b)]. 
Cohesive interfaces are used to simulate the rolling shear failure, but a distinction between the 
interlaminar interfaces (for delamination) and the inner interfaces of the central layer (for inter-fibre 
cracking) is made. When a cohesive interface is completely delaminated, contact conditions are 
considered to avoid interpenetration. 
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Figure 2 shows the computational simulation of the rolling shear failure in the CLT plate subject to 
three-point-bending. The corresponding contour plot shows the principal stresses. In our simulation, 
two parallel cracks are predicted consistently with experiments (not detailed here), along with some 
delaminated regions, mainly between the bottom and central layer. In our numerical predictions, we 
note that after a cohesive interface has become fully damaged, it is converted into a contact 
interface as well. 
 
 
 
 
 

 
Figure 2: Computational simulation of rolling shear failure in a CLT plate subject to bending 
 
 
Furthermore, our model predicts a critical load of 160000 N when the first crack starts propagating 
in the material, which coincides with the critical value obtained during the experiment. 
 

Conclusions 

This paper has addressed the modelling of rolling shear cracks in CLT plates subject to three-point-
bending. Micromechanical information coming from three scales have been taken into account in 
order to compute the effective material properties for the analysis of the structural scale. Cracking 
has been captured by introducing macroscopic cohesive interfaces in the model. The proposed 
approach has been able to capture key features in the rolling shear failure of CLT plates, revealing 
the potential applications of our approach on the study of CLT structures under different 
configurations of layers and loading conditions.  
 
Finally, we remark that studies are currently under way to explore the buckling behavior and 
buckling-delamination interaction in CLT walls under compressive loads. This will be the subject of 
a future publication. 
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Abstract

We present an implicit coupling algorithm that is suitable for strongly coupled
physical problems that were discretized by heterogeneous numerical schemes,
namely finite volume and finite element methods. The primary characteristic
of the proposed scheme is an implicit treatment of the heterogeneous schemes
through a single matrix approach. The finite element and finite volume parts of
the discretized domain exchange information through a coupling boundary and
the resulting discretization coefficients are stored in a block matrix. The structure
of the matrix is such that the coupling coefficients are stored in the off-diagonal
blocks of the matrix, while finite element and finite volume subdomains are stored
in the diagonal blocks of the matrix. A suite of efficient linear solvers based on the
Krylov subspace methods were developed for the solution of the resulting coupling
problem. Several demonstration cases that illustrate the coupling algorithm are
presented.

Keywords: Finite Element Method (FEM); Finite Volume Method(FVM); Cou-
pling algorithm, Block matrix

Introduction

Multiphysics problems are prevalent in todays engineering practice. It is hard to
imagine a device that does not need structural, thermal and fluid flow analysis in
order to design it for the safe operation and the peak efficiency. Today’s engineer-
ing practice rarely undertakes a numerically integrated approach to analyzing and
simulating the proposed designs. The current design practice takes an iterative
approach to simulations and analysis through a series of the stages that involve
the use of computational fluid dynamics, thermal and stress analysis. Numerical
difficulties arise in a staged approach due to increased stiffness of the problem and
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the loss of coupling among equations. A typical approach to simulating coupled
phenomena involving solids and fluids is done through an exchange of boundary
conditions through the coupling boundaries. This process is inherently iterative.
The coupling between fields in fluids and solids can be recovered by an itera-
tive procedure in which the fields on the coupling boundaries acting as boundary
conditions for different analyses, are updated in this iterative process.

This simulation of coupled problems is further complicated by the use of differ-
ent simulation practices that involve different discretization methods used for the
particular stage of the analysis. In fluid flow, finite volume method is commonly
used for the discretization of governing equations. In analyses that involve solid
materials finite element is the method of choice for producing the discrete systems
of equations. The choice of the discretization method that is being used for a given
problem is often dictated by the efficiency and accuracy requirements. The Finite
Volume Method (FVM) is often used in computational fluid dynamics (CFD) as
a method of choice due to its simplicity and ability to reproduce the conservation
laws. The simplicity of the finite volume discretization stems from the fact that
the low degree polynomials (C0) are used for the interpolation within finite vol-
umes. The numerical efficiency of the finite volume schemes stems from the fact
that only one integration point per face of the finite volume cell is required to
evaluate the numeric flux. This approach yields a low storage numerical scheme
that produces very sparse matrices. Furthermore, C0 interpolation functions used
for the representation of the variables within a finite volume cell allows the usage
of arbitrary shapes of finite volumes cells, thus simplifying the mesh generation
for the domains with the complex geometric shapes. In this work we are con-
cerned with the cell-centered finite volume method that stores all variables in cell
centers. Matrix coefficients arising in implicit discretization of the finite volume
problems are obtained by evaluating fluxes on the cell face centers. This approach
is chosen intentionally given the fact that cell-centered finite volume discretiza-
tion is the dominant approach in the CFD community. Data structures required
for the efficient representation of the finite element connectivity on unstructured
meshes of arbitrary shapes is of the so-called face-to-cell type. In practical terms,
face-to-cell connectivity allows very fast access to the cell data required for the
flux evaluation in the face center.

On the other hand, finite element method is a preferred approach for the
problem solution in structural analysis and in computational mechanics in gen-
eral. Finite element approach to discretization to problems in mechanics offers a
strong mathematical foundations that allow for error and convergence estimates
even for challenging computational problems. Usage of higher order interpolation
polynomials enables a higher order of accuracy when compared to finite volumes
for the nominally same size of the computational mesh. The finite element method
is particularly well suited for the elliptic problems arising in linear elasticity and
structural mechanics. Since the finite element data is stored in the nodes of the
finite elements, the data structure required for the representation of the finite el-
ement discretization on unstructured meshes consists of node-to-cell connectivity
information. Matrix coefficients in the finite element discretization are obtained
as the collection of the contributions from all finite elements sharing the particular
node.

In recent years researchers have started addressing the problem of coupled sim-
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ulations. Geiger at al. [4] proposed an algorithm for coupling of nodal based finite
volume and finite elements using overlapping groups of finite elements and finite
volumes. Galerikin finite elements were used to provide the second order of accu-
racy interpolation for flux evaluations on finite volume grid. This approach may be
classified as a control volume finite element method using dual grids [1]. Lazarov
at al. [5] proposed the method for coupling finite volume-finite elements by using
the node based finite volume scheme on dual grids. Sardella [3] proposed a mixed
finite element/volume method that used finite volume approach to discretizing
convective terms while finite element approach was used for the discretization of
the diffusion terms in convection diffusion problems. The mixed algorithm was
applied to the singularly perturbed problems in fluid mechanics providing the nu-
merical stability to the computations. Gadeschi at al. [2] proposed the coupling
method based on hierarchical Cartesian grids for heat transfer between solids and
fluids. Vierndeels [6] and Sicklinger at al. [7] recently proposed frameworks for
a general coupling between codes. In both works the idea is based on using the
Jacobians of the governing equations to create the coupling conditions for souped
simulations. Vierendeels and Sicklinger algorithms are examples of the explicit
coupling of black-box solvers within the framework of iterative coupling approach.

It is observed that in the previous attempts to couple finite volume and finite
element methods, the approach was to modify one or the other method across the
shared interface in order to make the approach more suitable for the discretization.
Contrary to that, in this work we maintain the characteristics of each method used
for the discretization of the respective part of the domain. Therefore, we propose
an approach to coupling that maintains the discretization practices of both finite
volume and finite element methods.

A novel implicit coupling algorithm for the mixed discretizations involving fi-
nite elements and finite volumes that exchange information along one or more
boundaries called coupling interfaces is proposed. The resulting discretization co-
efficients are stored in a block matrix in which coupling interface coefficients are
stored in off-diagonal blocks while the finite element and finite volume discrtiza-
tions are stored in diagonal blocks. We propose an algorithm for coupled interfaces
that uses native information from each discretization scheme to produce the nec-
essary data for coupling of finite element and finite volume discretizations. The
method is conservative and there is no loss of mass, energy or momentum across
the interface even though substantially different discretization schemes are used
on each side of the interface. Linear solver suite capable of handling block matri-
ces arising in coupled finite element-finite volume discretizations is also developed.
Two computational examples are presented as an illustration of the coupled algo-
rithm. The first example demonstrates the coupling of finite elements and finite
volumes in the case of the energy equation for the solid with an interface sep-
arating finite volume from finite element discretizations. The second example
is coupled fluid-solid heat transfer problem in which energy equation is coupled
through the solid-to-fluid interface.

Governing equations and boundary conditions

Consider the energy equation in the solid shown in Figure (1)
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k∂2
i T = f in Ω = ΩF E ∪ ΩF V . (1)

Constant heat conduction coefficient independent of spatial location and temper-
ature was assumed. The energy equation is closed by adding the corresponding
boundary conditions

B(T ) = b on Γ = ΓF E ∪ ΓF V . (2)

In addition to the solid energy equation, the coupled system might have a fluid
domain. In that case, the energy equation in the fluid is given by the convection-
diffusion equation

∂i(ρuiT ) = k∂2
i T in Ω = ΩF E ∪ ΩF V , (3)

supplemented by the boundary conditions

C(T ) = c on Γ = ΓF E ∪ ΓF V . (4)

Equations (1) and (3) represent the steady-state equations of energy transport in
solids and fluids. The boundary conditions considered here are of Neumann and
Dirichlet type. The computational domain is general is divided in two parts by an
internal surface called coupled boundary separating regions where finite volume
and finite element discretizations are applied. However, the coupling boundary
might be a physical boundary separating fluid from a solid thus representing a
physical surface coinciding with the coupling interface.

An internal consistency condition can be added to the governing equations (1)
through (4) that enforces the conservation of energy across the coupling interface
as illustrated in Figure (1) In simple terms, the energy flux across the coupling
interface is preserved and we can write the balance equation∫

Γ−
f−

i nidΓ−
∫

Γ+
f+

i nidΓ = 0. (5)

In the case of heat conduction, the consistency condition becomes∫
Γ−

(k∂iT )−
i nidΓ−

∫
Γ+

(k∂iT )+
i nidΓ = 0. (6)

Internal consistency condition is used to produce the consistent interpolations
between finite elements and finite volumes for both cases when the interface is an
arbitrary surface separating dicretization zones and as well as when the interface
coincides with both the physical and discretization boundaries. Consistent inter-
polation is defined here in terms of the energy conservation as well as in terms of
bridging the different requirements for the smoothness of the interpolation func-
tions. In other words, the interface consistency condition must allow conservation
of energy even when on one side the data variation within a finite volume cell is
represented by functions belonging to C0 space and o the other side the data vari-
ation within a finite volume is represented by C1 space. We limit our discussion
here to interfaces that have C0 to C1 (and vice versa) transitions. Higher order
transitions are the subject of ongoing research.
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Figure 1: Coupling interface separating either physical domains or arbitrary in-
ternal domains discretezed with different numerical schemes

Method of solution

We use two different approaches to discretizing equations (1) and (2), finite vol-
ume and finite element methods namely. We consider the computational domain
consisting of two parts as depicted in Figure (1). The part denoted by ΩF E to-
gether with the boundary ΓF E constitute the domain of the discretization by finite
elements. Similarly, the part denoted by ΩF V together with the boundary ΓF V is
discretized by the cell-centered finite volume method. Interface ΓI between two
discretization domains is an internal surface that is used to transfer the informa-
tion between two discretization methods.

Linear 4-node quadratic finite elements with C1 continuity are used for the
finite element basis while the cell centered finite volume discretization with the
C0 interpolation basis is used for the finite volume part of the domain. Finite
element and finite volume discretizations are both nominally of the second order
of accuracy. In the case of finite elements, the second order of accuracy is achieved
by using the shape functions with C1 continuity. In the case of the finite volume
discretization, the second order of accuracy is achieved by evaluating the weak
form of the energy equation at the geometric center of the finite volume cell.

Weak form of the energy equation is used for both finite volume and finite
element discretizations. The weak form of the energy equation for the solid is
obtained by multiplying both sides of Eq. (1) by a test function ξ and integrating
over the whole domain Ω ∫

Ω
k∂2

i TξdΩ =
∫

Ω
fξdΩ. (7)

The cell centered finite volume method is obtained when the test function ξ is
chosen to be constant over the finite volume cell and equal to unity i.e., ξ ∈ C0.
In that case Eq (7) in the domain ΩF V is replaced by the conservation law of
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energy in the solid ∫
ΓF V

k∂iTnidΓF V =
∫

ΩF V

fdΩF V . (8)

Vector of local surface normal is denoted by ni and we used Gauss-Ostrogradsky’s
theorem to obtain the weak form of the conservation law of energy in the solid.

The finite element method for the case of the energy transport in the solid is
obtained through integration by parts Eq. (7)∫

ΩF E

k∂iT∂iξdΩF E =
∫

ΩF E

fξdΩF E +
∫

ΓF E

ξk∂iTdΓF E. (9)

In this work we use test functions and shape functions that are linear i.e., ξ ∈ C1.
Standard finite volume and finite element discretizations are obtained when

integrals in equations (8) and (9) are replaced by the numerical integration per-
formed in face and cell centers for finite volume and nodes for finite element meth-
ods. In addition, partial differentials in Eq. (8) are replaced by finite differences
for a given neighboring finite volume cells, leading to the following expression for
the surface integral ∫

ΓF V

k∂iTnidΓF V ≈ k
TcR
− TcL

d
AΓF V

+G. (10)

Symbol d is used to represent the distance between two cell centers while G is
the non-orthogonal contribution AΓF V

is the surface area of the interface between
finite element and finite volume cell. In a general case the direction between two
cell centers does not coincide with any of the cartesian directions and the non-
orthogonal contribution of the partial derivative, denoted by gi, has to be added
to the expression in Eq. (10). However, here we assume that this contribution was
lumped into the right-hand-side of Eq. (8) without any loss of generality. Right
hand side of Eq. (8) is evaluated in the cell center of the finite volume cell.

The finite element approximation of Eq. (9) is obtained by assuming that the
test and shape functions belong to the same space thus yielding the following
expression for the left-hand-side of Eq. (9)

k∂iT∂iξ =
∑

j

kTnj(∂iSj)2. (11)

Symbol S represents a shape function that is in this case chosen to be linear La-
grange polynomial and we have used the linear representation of the temperature
field over the finite element T = ∑

j SjTnj. Right-hand-side of Eq. (9) is evaluated
by computing the contributions of each volumetric integral to the nodes of the
given finite element.

Standard discretization practices are easily applied throughout respective dis-
cretization domains. However, in order to complete the discretization of the whole
domain Ω = ΩF E ∪ ΩF V the question of the discretization along the interface ΓI

must be addressed.
Figure (2) depicts a dEtail the interface ΓI where we can see finite element

being a neighbor to a finite volume cell connected but the common face Γe
I . We

use the consistency condition in Eq. (5) to complete the discretization for finite
element-finite volume couple. The consistency condition states that the in order
to conserve the energy in the domain then the energy flux leaving one domain
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Figure 2: Finite element-finite volume pair sharing a common face that is a part
of the ΓI interface. Black circle represents the finite volume cell center while open
circles represent the nodes of finite element.

along the interface ΓI must be equal to the energy entering the other domain
across the same interface ΓI . Therefore, in order to complete the discretization
along the ΓI interface we must find the expression for the flux across across every
face connecting finite elements and finite volumes Γe

I .
This expression is obtained by approximating the flux across the interface by

the finite difference between finite volume and finite element centroid values∫
Γe

I

k∂iTnidΓe
I ≈ kf

Tc −
∑
Si(Tni)c

d
AΓe

I
+G. (12)

Expression ∑(SiTni)c is the finite element interpolation of the temperature field
in the centroid of the finite element, Tc is the value of the temperature field at the
finite volume centroid, AΓe

I
is the surface area between finite volume and finite

element and G is the non-orthogonal contribution due to misalignment of the
face normal and the direction defined by the cell distance. Since Eq. (5) requires
that the fluxes on both sides of the interface ΓI are equal, Eq. (12) is used to
complete the discretization on along the interface. It should be noted that the
same expression Eq. (12) is used to compute the coupling matrix entries for both
finite element and finite volume discretizations. The resulting matrix structure is
shown in Figure (3).

The off-diagonal entries in the block matrix AΓC0
C1

and AΓC1
C0

are obtained by
computing the contributions to the finite element and finite volume system of
equations using Eq. (12). The consistency condition given by Eq. (5) produces
the contributions to finite element and finite volume side of the interface so that
the finite volume side (Γ+) has the following entries:

AF V =
[
kf
Tc

d
AΓe

I

]−
, (13)

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

962



Figure 3: Matrix structure for the coupled finite element-finite volume discretiza-
tion.

AΓC1
C0

=
[
−kf

(∑SiTni)c

d
AΓe

I

]−

. (14)

The symbol kf is the surface heat conduction coefficient evaluated by using the
harmonic averaging procedure. It should be noted that the expression in Eq. (13)
is the contribution to the the block matrix AF V at the interface while Eq. (14)
is the contribution to the coupling block matrix AΓc0

c1
. The non-orthogonal con-

tribution G is added to the right hand side of the finite volume block. Similarly,
finite element discretization produces the following contributions:

AF E =
[
−kf

2
(∑SiTni)c

d
AΓe

I

]+

, (15)

AΓC0
C1

=
[
kf

2
Tc

d
AΓe

I

]+

. (16)

The finite element discretization of the element produces the contribution to the
diagonal block matrix AF E as well as to the off-diagonal coupling block AΓC1

C0
.

Since the consistency condition specifies the flux for the finite element face of
the interface Γe

I , the nodes that reside on the interface receive the half of the
flux due to linear interpolation as indicated in Eq. (15) and (16). The non-
orthogonal correction is is similarly interpolated and added as the contribution to
the coefficients AΓC1

C0
.
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Eq. (12) implicitly uses the fact that the flux across the face Γe
I is evaluated

using the pointwise values of the temperature field instead of cell averages. This
transition between pointwise and cell averages is possible due to the fact that the
pointwise values coincide with the cell averages if the function is evaluate at the cell
centroid for the finite volumes of second order of accuracy. Therefore, even though
the test functions for finite element and finite volume methods belong to different
spaces of continuous functions, the transition from C1 to C0 functions is enabled
throughout the use of pointwise values in finite volume method thus matching the
desired interpolation continuity requirements. Clearly, the higher order transition,
for example C2 to C0 will require the reconstruction of the pointwise values in the
finite volume domain that will recover the desired continuity requirements. This
is the subject of the ongoing research work.

Once the off-diagonal coupling coefficient have been computed, the diagonal
entries in the block matrix AF V and AF E are obtained by applying the standard
discretization practices applicable to finite volume and finite element discretiza-
tion schemes. The resulting system represents a fully coupled system that is solved
by the linear algebra suite. Each block in the coupled matrix A is represented
through a sparse matrix structure utilizing the compressed-row format to save the
memory. However, it should be noted that the implementation of the linear alge-
bra library allows for storage of dense blocks as well. The linear algebra library
implements Krylov subspace algorithms including conjugate gradient (CG), bi-
conjugate gradient stabilized (BCGSTB), transpose free qausi-minimum residual
(TFQMR). In addition, algebraic multigrid solver (AMG) based on aggregation
of neighbors has been implemented to operate on the coupled block matrix. Con-
sistent restriction and prolongation operators have been implemented so that the
block matrix can be consistently defined on the progression of coarse levels.

Results and discussions

In this section we present the results for the two cases of the coupled systems. The
first case is represented by the energy transport in the solid with the boundary
conditions as depicted in Fig. (4). The upper half of the domain was discretizaed
by the cell-centered finite volume method while the lower half of the domain was
discretizaed by the linear quadratic finite elements. Since there is no jump in mate-
rial properties and given the adiabatic conditions on the sides, the solution to this
problem is a linear variation of the temperature between 300K and 400K in the
vertical direction. The mesh is fully orthogonal and there was no non-orthogonal
contribution in the discretizaed system of equations. The computed temperature
profiles at two locations are shown in Fig. (5) and (6). The agreement between
analytical and the b=numerical solution if excellent as the analytical behavior of
the temperature is recovered. It should be observed that the temperature was
plotted at the nodes of the finite element plot in Fig. (5). For the finite volume
portion of the domain the temperature was plotted in the cell centers as shown in
(6). This explains the offset of the plot in the x-direction.

The second case considered in this work is the coupled energy transport be-
tween fluid and solid domains as depicted in Fig. (7). Boundary conditions are
given in Fig. (7). The fluid portion of the domain was discretized with the cell-
centered finite volume schemes while the solid part was discretized using the linear
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quadratic finite elements. Since the problem involves the fluid flow, the boundary
layer formed at the surface of the solid wall is largely responsible for the heat
transfer to and from the fluid. For the given inlet velocity and length of the do-
main, the Reynolds number based on the length is very low Re = 400, well below
the transitional Reynolds number for the flat plate (500, 000). Therefore, the flow
over the surface of the solid is laminar. The computed temperature profiles and
the comparison to the theoretical one is given in Fig. (8) and (9).

Conclusion

We introduced a novel algorithm for finite element-finite volume coupling that is
based on the native cell-centered finite volume and linear quadratic finite element
discretization methods in their respective parts of the computational domain. The
coupling coefficients required for the implicit representation of the coupled matrix
were defined. The consistency condition that is based on the flux conservation
between finite element and finite volume discretizaitons was defined and used to
define the coupling coefficients. Block matrix linear solver based on BCGSTAB
was used to solve the coupled solver in one matrix thus producing the implicitly
coupled solution. Two examples of the application of the newly defined coupled
method were provided. The first example was the energy transport in the solid
body discretized in part by finite volume and the other part by finite element
technique. The solution was compared to the analytical solution and the excel-
lent agreement was achieved. The second case that was considered consisted of
the energy transport between fluid and solid domains. The fluid domain was dis-
cretized but the cell-centered finite volume while the solid part was discretized
by the linear quadratic finite element scheme. The agreement between analytical
and numerical solution, in all cases, is very good.
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Figure 4: Computational domain for energy transport in a solid.

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

967



Figure 5: Temperature profile in the vertical direction for the case of the energy
transport in the solid for the finite element portion of the domain at the loca-
tion x = 0.5m. Solid line represents the numerical whereas dots represent the
analytical solution.

Figure 6: Temperature profile in the vertical direction for the case of the energy
transport in the solid for the finite volume portion of the domain at the location
x = 0.625m. Solid line represents the numerical whereas dots represent the
analytical solution.
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Figure 7: Computational domain for the fluid-solid energy transport.

Figure 8: Temperature profile in the vertical direction for the case of the energy
transport in the fluid-solid system for the finite element portion of the domain at
the location x = 0.5m. Solid line represents the numerical whereas dots represent
the analytical solution.
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Figure 9: Temperature profile in the vertical direction for the case of the energy
transport in the solid for the finite volume portion of the domain at the location
x = 0.625m. Solid line represents the numerical whereas dots represent the
analytical solution.
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Abstract 
In this paper, the finite element method (FEM) is used to study the incremental sheet forming 
process of pyramidal shape. The material used is aluminium alloy 5052. The tool, a hemispherical 
ball-head with a diameter (d = 4 mm) made of HSS tool steel, is used to press down on the sheet 
metal causing locally plastic deformation. The comparison between spiral tool path, spiral-step tool 
path and z-level tool path is carried out. Moreover, the final thickness distribution is investigated. 
The results indicate that the minimal thickness can be found on the corner of wall angle in SPIF 
process. Under the same step over, spiral-step tool path can obtain the deepest depth for pyramidal 
shape. The maximum formability for successful forming of the pyramidal shape with depth 60mm 
is wall angles 65°. 
  
Keywords: Finite element, Incremental sheet forming, Aluminum 

Introduction 
Single Point Incremental Forming (SPIF) involves a local and progressive pressing out of the 
desired shape on a clamped sheet by a round-headed forming tool which follows a continuous path. 
SPIF offers full flexibility because the use of dedicated tooling isn’t required. However, one 
disadvantage is that the operation time is high. Furthermore, SPIF may still be of use for low 
volume series and in combination with other forming processes to produce part details. 
Thickness reduction is a phenomenon common to any sheet metal forming process that leads to the 
occurrence of crack and fracture of the resulting shape. In the numerical study of SPIF, the 
deformation behaviour such as thickness distribution and the mechanical properties of sheet metal 
on a pyramidal shape was investigated [Dejardin et al. (2010); Emmems et al. (2010)]. These reports 
present the thickness distribution in the final product is not uniform. Since tool path defines the 
component geometry, the different tool path with different incremental steps may affect the 
formability. Spiral tool path and z-level tool path are proposed to test formability for truncated 
cones [Liu et al. (2013)]. Experimental results show that inclination angle and incremental step of the 
tool path affect the deformability.  
In this paper, the finite element method is used to study the single point incremental forming 
process of pyramidal shape. The effect of spiral tool path, spiral-step tool path and z-level tool path 
on pyramidal depth and minimal thickness is investigated. 
 

Materials and Method 

Forming Strategy 

The proposed part is a quadrangular pyramid. The initial dimension of Al5052 is 86×86×0.6 mm. 
The base dimension of pyramidal shape is 60×60 mm and the height is 60 mm. The maximal 
inclination angle is a variation as indicator of forming limit. The composition of this material is 
shown in table 1. 
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Table 1. Composition of Al5052. 

Al Mg Cr Cu Fe Mn Si Zn 

Balance 2.5 0.3 0.05 0.25 0.05 0.05 0.05 

Tool path 

Figure 1 shows the details of single point incremental forming and the illustration of incremental 
steps. Step over is an adjustable parameter quantity to generate the tool path. For the investigated 
pyramidal with the variation inclination angle, step over is used to generate three kinds of tool paths 
(spiral, spiral-step and z-level). The spiral-step tool path in Figure 2 (a) is continuous with an 
incremental descent of the tool distributed over the entire surface of a part. Wall angle can be 
calculated by the trigonometric relationship of step over and step down. Figure 2(b)  

 

Figure 1. Details of incremental forming 

   
(a) (b) (c) 

Figure 2. Tool paths for pyramidal shape: (a) spiral tool path, (b) spiral-step tool path and (c) 
z-level tool path. 

Finite element model 

A set of forming tool and sheet used to simulate the deformation behavior with different tool path in 
SPIF process as shown in Figure 3. The sheet material is considered to be isotropic, homogeneous 
and incompressible. The sheet is meshed by shell element with four nodes and assumed deformable. 
Nodes on all edges of the sheet are constrained as fixed displacement and rotation during the 
forming process. The rigid tool shape is a cylinder with hemispherical head whose diameter is 4 
mm. The friction between sheet and tool is modelled using the Coulomb friction with a friction 
coefficient value of 0.13. 

 

Figure 3. Numerical model used for incremental sheet metal forming process 
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Material properties 

The material is underwent the tensile test and obtained the engineering stress-strain curve as shown 
in Figure 4 (a). The power law equation (1) describes the material behaviour in incremental sheet 
forming: 

σ = k𝜀𝑛        (1) 

where σ is the equivalent stress, ε denotes the equivalent strain, k is the strength coefficient and n is 
the strain-hardening exponent. Therefore, the curve of true stress-strain can be shown in Figure 
4(b). The required mechanical properties of Al-5052 used in simulation are given in Table 2. 

  
(a) (b) 

Figure 4. Engineering stress-strain curve for 5052 aluminium alloy sheet with 0.6 mm 

Table 2. Mechanical properties for 5052 aluminium alloy sheet. 

k n E (GPa) σ0 v 

707 0.34 35.2 180.1 0.3 

Results and discussion 

In SPIF, the formability is higher than the deep drawing and stamping. Research literatures report 
that wall angle can be a formability indicator. In this study, the maximum wall angle is used as 
indicator to evaluate the formability of Al-5052 sheet with 0.6 mm thickness considering the effect 
of three types of tool path. A pyramidal shape is proposed as the benchmark as show in Figure 5. 

 

Figure 5. Benchmark- a pyramidal shape 

Effect of tool path on formability 

Figure 6 (a) shows the complete pyramidal shape with base dimension of 60×60 mm and the height 
of 60 mm. The tool movement is spiral-step as show in Figure 2(b) and step-down is 0.5 mm. The 
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final wall angle is 69°. The simulation result presents the same shape as shown Figure 6(b). The 
wall angle is the same and no fracture occurs after the tool completes the movement. Hence, the 
thickness of wall is compared as shown in Figure 7. The minimal thickness which is 0.03 mm can 
be found on the corner of wall angle. 

  
(a) (b) 

Figure 6. The complete benchmark shape: experimental (a) and simulation (b) results 

 

Figure 7. The comparison of wall thickness between experiment and simulation 

Forming limit diagram 

In the first test, the step over was set to be a constant value 0.5 mm for all tool paths. A series of 
pyramidal shapes were simulated with wall angle 60°, 65°, 66°, 67°, 68°, 69° and 70° to evaluate 
the formability. Figure 8 presents the simulation results. Under the same step over, no noticeable 
different on formability between spiral, spiral-step and z-level tool paths. As can be seen, the 
maximum formability for successful forming of the pyramidal shape with depth 60mm is wall 
angles 65°. A safety formability region is identified in area A for taking the required pyramid height 
into consideration. The area B3 has larger safety formability zone for spiral-step tool path than 
those for others. Therefore, spiral-step tool path can obtain the deepest depth for pyramidal shape 
with 0.5 mm step over size. 

 

Figure 8. Influence of spiral, spiral-step and z-level tool paths on formability vs wall angle (α). 
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Conclusions 

Deformation behaviour of Al-5052 sheet in an incremental process for various tool paths is 
investigated. Formability is evaluated to understand the forming mechanism. Some conclusion can 
be drawn as follows: 
(1) The minimal thickness can be found on the corner of wall angle in SPIF process. 
(2) Under the same step over, spiral-step tool path can obtain the deepest depth for pyramidal shape. 
(3) The maximum formability for successful forming of the pyramidal shape with depth 60mm is 
wall angles 65°. 
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Abstract 

Combined finite-discrete element method takes the advantages of both the finite 
element (FE) method and the discrete element (DE) method, but a coupling approach 
is required for effective combination of the two methods. In this paper, a coupling 
approach is proposed by using ghost particles. The entire domain is decomposed into 
a FE region and a DE region which are connected by an interface, and ghost particles 
are constructed inside the boundary of FEs by interpolation and used to connect the 
boundary of DEs. This interface connection method effectively couples FEs with DEs. 
A numerical example is computed to demonstrate the effectiveness of the proposed 
approach. 

Keywords: Ghost particle, Coupling approach, Combined finite-discrete element 
method, Multiscale modelling. 

Introduction 

The conventional finite element (FE) method has some limitations in numerical 
modelling of brittle fracture problems since it is based on the continuum mechanics, 
and special treatments have to be employed, e.g., remeshing strategies [Mediavilla et 
al. (2006); Belytschko and Black (1999)] or extended finite element method 
[Belytschko et al. (2001); Moės and Belytschko (2002)]. In contrast, the discrete 
element (DE) method is able to capture the discontinuous nature of materials, but it is 
not as computational efficient as the FE method. Combined finite-discrete element 
method, which combines the two methods, has been developed so as to use the 
advantages while avoiding the drawbacks of the two numerical methods [Munjiza 
(2004)]. 

Essentially, the combination of the two methods can be achieved by the interaction of 
either contact or coupling. The contact interaction is more suitable for contact 
occurring between different pieces of an object when fragmentations form [Munjiza 
et al. (1995)] and between two or more different media [Onate and Rojek (2004); 
Chen et al. (2015)]. The coupling interaction is more applicable for the connection 
between different subdomains of an entire domain, which is decomposed for efficient 
computation via the so-called multiscale modeling. The coupling approaches used 
along with the combined finite-discrete element method are generally classified into 
overlapping coupling [Wellmann and Wriggers (2012); Li et al. (2015); Jebahi et al. 
(2013); Tu et al. (2014)] and interface coupling [Christian et al. (2014); Lei and Zang 
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(2010)]. For the overlapping coupling compatibility condition is required to be 
satisfied in a bridging domain [Xiao and Belytschko (2004)], where the total energy is 
a linear mixing of energies from both FEs and DEs, while only a simple compatibility 
condition at the interface is required to be satisfied in the interface coupling. 

In this paper, a ghost particle-based approach is proposed to couple the continua with 
discrete elements for the combined finite-discrete element method. The computational 
domain is decomposed into a FE region and a DE region, which are distinguished by 
an interface. The two regions are connected by the interface interaction between the 
boundary DEs and ghost particles which are constructed at the boundary FEs. This 
approach is conceived from the extension of atomistic-continuum coupling [Kohlhoff 
et al. (1991); Shilkrot et al. (2002)], in which ghost atoms are used to coincide with 
the FE nodes in the transition region (harsh mesh requirement), and the number of 
coincidence layers is dependent on the cut-off radius of atomistic potential. For the 
present approach, however, only one layer of ghost particles is required as the 
interaction of DEs only occurs between adjacent particles. Furthermore, to overcome 
the difficulties of remeshing, the strictly coincident compatibility condition is relaxed 
by introducing the ghost particles, whose position is determined from the 
interpolation of nodal coordinates of FEs. 

To apply this coupling approach to model fracture problems, an important and 
essential step is to validate its effectiveness prior to the occurrence of fractures. This 
paper is therefore confined to the development and validation of this new coupling 
approach, without exploration and investigation into brittle fractures. The governing 
equations and DE model will be briefly introduced in next section. Afterwards, the 
development of the proposed coupling approach is presented in detail, followed by 
the numerical validation. Finally, conclusions are drawn. 

General formulations 

The governing equations for FEs and DEs are briefly described first, followed by the 
introduction of a DE connective model, which is used to discretize the area of interest. 

Governing equations 

Ωc Ωd

Γu

Γσ

ΓI

 

Figure 1. Domain decomposition into a continuum region and a discrete region 

A computational domain, subject to prescribed displacement at the Dirichlet 
boundary Γ௨ and prescribed tractions at the Neumann boundary Γఙ, is divided into a 
continuum subdomain Ω  and a discrete subdomain Ωௗ  as shown in Figure 1. The 
interface between these two subdomains is defined as Γூ ൌ ߲Ω ∩ ߲Ωௗ. 
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For the continuum subdomain, the FEs are used for spatial discretization and the 
governing equation of the FE method is given as 

ሷ܃ۻ  ܃۹ ൌ ۴  ۴ୡ୭୳ (1)

where ۻ and ۹ are mass and stiffness matrices, respectively; ܃ is the displacement 
vector; ۴ is the resultant force vector consisting of external tractions and/or damping 
force; ۴ୡ୭୳  is the coupling force resulting from the interaction with the discrete 
subdomain. 

The discrete subdomain is discretized by DEs and the equations of motion for each 
DE particle are expressed as follows 

ቄ ሶܞ݉ ൌ   ୡ୭୳

ሶܫ ൌ ܜ  ܚ ൈ ୡ୭୳
(2)

where ݉ is the mass of the particle; ܞ is the centroid velocity of the particle in global 
coordinate frame;  is the resultant force applied to the particle due to (a) external 
traction, (b) body force, (c) internal force when the DE connective model is used and 
(d) damping force (linearly proportional to the velocity) to dissipate kinetic energy for 
computational purpose; ୡ୭୳ is the coupling force exerted on the particle resulting 
from the interaction with the continuum subdomain; ܫ is the moment of inertia of the 
particle;  is the angular velocity of the particle in the local coordinate frame which 
is embedded into the centroid of the particle; ܜ is the resultant moment applied to the 
particle due to the aforementioned forces ܚ ; is the moment arm of the coupling force 
 .ୡ୭୳

Discrete element model 

 

Figure 2. The discrete element connective model. (a) Cubic arrangement of the 27 
spherical particles. (b) Linkage relation. (c) Virtual springs connect adjacent particles. 

The DE connective model as shown in Figure 2 is employed. This model is in a cubic 
arrangement (Figure 2a), which can produce a neat surface desirable for domain 
decomposition. Each particle in this model is connected to its neighboring 26 
particles, which are categorized into three groups according to their distances to the 
central one as depicted by different numbers in Figure 2b. The interaction force  
between any two adjacent particles is calculated based on their relative displacement 
  and spring stiffness ݇ (see Figure 2c) as follows ܌

 ൌ ܌݇ (3)
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where force  ൌ ሺ ݂, ௦݂, ௧݂ሻ,and ܌ ൌ ሺ݀, ݀௦, ݀௧ሻ.  

Inside each pair as shown in Figure 2c, there are an orthogonal (݇ ) and two 
tangential (݇௦  and ݇௧) linear springs invisibly connecting them. Their stiffness are 
determined based on the energy equivalence between the one stored in the springs 
and that in solid elasticity, as given by [Yu (2011)] 

ە
ۖ
۔

ۖ
ۓ ݇ଵ ൌ ݇ଶ ൌ

ݎܧ2
5ሺ1 െ ሻߥ2

݇௦ଵ ൌ ݇௧ଵ ൌ ݇௦ଶ ൌ ݇௧ଶ ൌ
ሺ1ݎܧ2 െ ሻߥ4

5ሺ1 െ ሻሺ1ߥ2  ሻߥ
݇ଷ ൌ ݇௦ଷ ൌ ݇௧

ଷ ൌ 0

	 (4)

where ܧ ߥ ,  and ݎ  are the Young’s modulus, Poisson’s ratio and radius of the DE 
particles. 

Coupling approach 

The coupling force is explicitly expressed through the interaction between the 
boundary DE particles and the ghost particles, which are virtually constructed at the 
inside of boundary hexahedral elements. Next, the strategy of constructing ghost 
particles is illustrated first, followed by the determination of natural coordinates and 
the kinematic relations between DE boundary particles and ghost particles. 

Construction of ghost particles 

 

Figure 3. Schematic diagram of the coupling approach 

A general rule to decompose domain is that the DE particles are used to spatially 
discretize the region of particular interest, such as the impact zone or area where 
fractures possibly occur, whereas the other region is discretized by FEs. Usually, the 
radius of DE particles is much smaller than the size of FEs to better characterize 
fracture patterns. The DE region should be large enough to cover the interest zone so 
as to avoid possible fractures occurring in the continuum region. Therefore, it is not 
necessary to generate a flexible but uncontrollable interface and a neat interface as 
shown in Figure 3 is then utilized for easy model preprocessing. 

Ghost particles are constructed inside the FEs as shown in Figure 3, and they can be 
treated as a part of the DE model. Each DE particle only interacts with its adjacent 
particles; hence one layer of ghost particles is adequate to describe the coupling 
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interaction between boundary DE particles and ghost particles. The interaction 
mechanism between them is the same as that for a sole DE model as shown in Eqs. (3) 
and (4), and particularly, this interaction interconnects the FE model and the DE 
model. Note that these ghost particles and DE particles should have the same radius 
for the application of this interaction mechanism to link them together. Because only 
one layer of ghost particles is required and also the size of them is small, the ghost 
particles are merely constructed in the boundary FEs. 

 

Figure 4. Position determination of the ghost particle 

As a virtual part of the corresponding FE, each ghost particle has the same kinematic 
response as that of the FE when subject to loading or deformation. With this 
compatibility condition taken into account, a reasonable assumption is made that each 
ghost particle sticks to the same natural coordinate of the corresponding isoparametric 
FE. The natural coordinates will be determined next, but before doing so, the physical 
coordinates of ghost particles need to be acquired. As being symmetric to the 
boundary DE particles (as shown in Figure 4), the physical coordinates of ghost 
particles at initial configuration can be immediately determined by 

ܠ ൌ ܠ െ ܖݎ2 (5)

where ܠ and ܠ are physical coordinates of boundary particles and ghost particles; ܖ 
is the normal vector of interface. 

Determination of natural coordinates 

1 2

3
4

5
6

78

1 2

34

5 6

78

X

Y
Z

ξ

η
ζ

1

mapping

inverse mapping

 

Figure 5. Mapping and inverse mapping between physical coordinates and natural 
coordinates 

For any ghost particles, their physical coordinates can be obtained from Eq. (5), thus 
the purpose here is to determine corresponding unknown natural coordinates. 
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For a given point ܠ located inside a hexahedron element, the physical coordinate 
ሺݔ, ,ݕ  ሻ of that point can be expressed by the interpolation from nodal coordinatesݖ
and their associated shape functions ܰሺߦ, ,ߟ  ሻ as followsߞ

ܠ ൌ ,ߦሺܠ ,ߟ ሻߞ ൌ ூܰሺߦ, ,ߟ ூܠሻߞ

଼

ூୀଵ

(6)

The shape functions are specifically given 

ூܰ ൌ
1
8
ሺ1  ሻሺ1ߦூߦ  ሻሺ1ߟூߟ  ሻߞூߞ (7)

where the natural coordinate for each node ܫ is shown in Table 1. 

Table 1. Natural coordinate for each node, ூ ൌ ሺߦூ, ,ூߟ  ூሻߞ

ଵ ൌ ሺെ1,െ1,െ1ሻ ଶ ൌ ሺ1,െ1,െ1ሻ

ଷ ൌ ሺ1,1,െ1ሻ ସ ൌ ሺെ1,1,െ1ሻ

ହ ൌ ሺെ1,െ1,1ሻ  ൌ ሺ1,െ1,1ሻ

 ൌ ሺ1,1,1ሻ ଼ ൌ ሺെ1,1,1ሻ
 

It is worth noting that Eq. (6) indicates the mapping from physical coordinates to 
natural coordinates (shown in Figure 5); however, its inverse mapping from natural 
coordinates to physical coordinates, i.e.,  ൌ ሺݔ, ,ݕ  ሻ, is generally impossible to beݖ
explicitly expressed [Belytschko et al. (2013)]. Note that here we use position vectors 
to denote specific coordinates, i.e., ܠ ൌ ሺݔ, ,ݕ ሻݖ  and  ൌ ሺߦ, ,ߟ ሻߞ . Therefore, to 
specifically determine natural coordinates, an alternative numerical approach [Qian et 
al. (1998)] based on Taylor series is employed. 

The position vector of physical coordinates as seen in Eq. (6) is expanded around 
ܠ ൌ ሺݔ, ,ݕ   ሻ with a linear approximationݖ

ܠ ൎ ܠ 
,ߦሺܠ߲ ,ߟ ሻߞ

߲
ሺ െ ሻ (8)

where Jacobian matrix ۸ ൌ   is specifically given by߲/ܠ߲

۸ ൌ

ተ

ተ

ݔ߲
ߦ߲

ݔ߲
ߟ߲

ݔ߲
ߞ߲

ݕ߲
ߦ߲

ݕ߲
ߟ߲

ݕ߲
ߞ߲

ݖ߲
ߦ߲

ݖ߲
ߟ߲

ݖ߲
ߞ߲

ተ

ተ

	 (9)

and ୭ is the corresponding natural coordinates of ܠ୭, i.e., ܠ୭ ൌ ,ߦሺܠ ,ߟ  .ሻߞ

Rearranging Eqs. (8) and (9), an iterative form for natural coordinates is expressed as 
follows 

ାଵ ൎ   ۸
ିଵሺܠ െ ሻܠ ሺ݇ ൌ 0,1,2⋯ ሻ (10)
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where ܠ ൌ ,ߦሺܠ ,ߟ  ሻ. The iteration is terminated when the ࣦଶ norm is less than aߞ
user-specified tolerance ߝ, i.e., 

ܠ‖ െ ‖ଶܠ ൏ ߝ (11)

As the natural coordinates only need to be determined once at the initial configuration 
when hexahedron elements are not deformed yet, this numerical iteration is very 
efficient to achieve its convergence. 

Interaction between particles 

 

Figure 6. Kinematic relation of two adjacent particles 

For any two adjacent particles (݅ and ݆) as shown in Figure 6, their interaction force 
can be calculated by Eq. (3). As the stiffness of springs keeps constant, the practical 
interest here is to determine their relative displacement. With the central difference 
method employed for temporal discretization, an incremental form is used to calculate 
the relative displacement at ݐାଵ  

ାଵ܌ ൌ ܌  Δ܌ାଵ (12)

where the incremental relative displacement Δ܌ାଵ is determined by relative velocity 
as follows 

Δ܌ାଵ ൌ ሶܠ ାଵ/ଶ
 Δݐାଵ (13)

At any time, the relative velocity is evaluated at the middle point   of the line 
connecting two particles’ centroids, as expressed by 

ሶܠ  ൌ ሶܠ 
 െ ሶܠ  (14)

in which 

ቊ
ሶܠ  ൌ ሶܠ    ൈ ܚ

ሶܠ 
 ൌ ሶܠ    ൈ ܚ

(15)

where ܠሶ  and ܠሶ are velocities of the particle ݅ and ݆, respectively.  

If one of the particles in the pair is a ghost one, its rotational velocity is not taken into 
account and the translational velocity is interpolated from the nodal velocities of the 
corresponding FE as follows 

ሶܠ ൌ  ூܰሺߦ, ,ߟ ሶܠሻߞ ூ

଼

ூୀଵ

(16)

where the natural coordinate  ൌ ሺߦ, ,ߟ  ሻ is determined using the method mentionedߞ
before.  
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It is worth noting that the interaction force exerted on each ghost particle is 
distributed into all nodes of the corresponding FE with the use of shape functions as 
given by Eq (17).  

ூ ൌ െ ூܰሺߦ, ,ߟ ሻߞ (17)

Numerical validation 

 

Figure 7. Diagram of the cantilever beam and the particles distribution in the coupled 
finite-discrete element model. 

To validate the proposed numerical method, the coupling approach is implemented in 
an in-house code named as CDFP [Lei and Zang (2010)]. A cantilever beam with one 
end fixed and the other subject to constant loading (ܲ ൌ 0.4 N) as shown in Figure 7 
is modeled, and the computed deflection at the free end of the beam is compared to 
the analytical result. 

The dimensions of this beam are: length ܮ ൌ 20 mm, width ܹ ൌ 4 mm and height 
ܪ ൌ 2  mm. The elastic material properties are: mass density ߩ ൌ 0.001  g/mm3, 
Young’s modulus ܧ ൌ 1000 MPa and Poisson’s ratio ߥ ൌ 0.23. The coupled finite 
element model with the FE and DE regions as allocated in Figure 7 is generated by 
using different spatial discretization techniques. The mesh size for both the FE model 
and the coupled model is 0.5 mm and the particle radius for both the DE model and 
the coupled model is 0.125 mm. To acquire a static solution from the explicit central 
difference time integration, an appropriate damping is imposed to the nodal and 
particle velocities. 

The deflection at the free end computed from the coupled model is 0.388 mm, which 
is very close to the analytical solution 0.4 mm. To further demonstrate the 
effectiveness of the proposed coupling model, the displacement distribution of the 
beam along the loading direction obtained from the FE model, the DE model and the 
coupled model are compared in Figure 8, where a good agreement can be observed. 

Z-displacement

Coupled finite-discrete element model

Finite element model

Discrete element model  

Figure 8. The comparison of displacement distributions along loading direction. 
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Conclusions 

In this paper a new approach to couple continua with DEs is proposed by using ghost 
particles. The ghost particles are constructed at the boundary FEs to connect DEs and 
this connection is achieved through the same interaction mechanism as the DE 
method. To keep ghost particles constantly sticking to the same natural coordinates of 
the corresponding FEs, an iterative strategy for inverse mapping from physical 
coordinates to natural coordinates is employed. The proposed numerical approach is 
used to model a cantilever beam and the agreement of the computed deflection at the 
free end with the analytical result validates the numerical method.  
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Abstract 
The 3D ES-FEM using tetrahedral mesh proposed recently has showed many great features in 

mechanics, and mid-frequency acoustics analysis, such as kh≈1. When it comes to higher frequencies, the 
3D ES-FEM also encounters the dispersion error, which is related to “slightly overly-soft stiffness” induced 
by the excessive edge-based smoothing operations compared to the continua system. In this paper, an 
improved 3D edge-based smoothed finite element method (IES-FEM) is proposed by introducing a 
parameter controlling the ratio of “slightly over-softness” of the ES-FEM and “over-stiffness” of the FEM, 
and the balance of the discretized system can then be tuned to reduce the dispersion error in higher frequency 
range, i.e. 1≤kh≤2. Numerical results demonstrate the advantages of IES-FEM for acoustic problems, in 
comparison with the ES-FEM using the same mesh. 

Keywords: Numerical method; Edge-based smoothed finite element method (ES-FEM); Acoustic; 
Dispersion error; 

1. Introduction 

Acoustic analysis has been a hot topic due to the increasing customer demands on the comfort 
of automobiles or aircraft, etc. As a traditional numerical modal is used, especially for a linear finite 
element system, the mid-frequency acoustic analysis often encounters computational difficulties. 
Researches in [1] reveal that the standard FEM can provide proper results with the restriction of 
kh<1, which is related to the “rule of thumb”.  In the numerical analysis, the linear FEM cannot give 
accurate prediction even if the kh<1 is satisfied.  

In order to explain the root cause of the acoustic error and predict the acoustic field in the mid-
frequency range, Ihlenburg [1] found that the acoustic error bounds contain a pollution term that are 
related to the loss of stability with large wave numbers, and he firstly showed that FEM with 
higher-order polynomial approximations (the hp version of the FEM) work well in reduce the 
acoustic error. The higher order methods such as p-FEM [2], and the discontinuous enrichment 
method (DEM) [3] have also been studied for acoustic computations in the mid-frequency regime. 
Babuška [4] attempted to correct the loss of stability in the Helmholtz operator and designed a 
Generalized Finite Element Method (GFEM) for the Helmholtz equation such that the pollution 
effect is minimal. The Galerkin/least-squares finite element method (GLS)[5], the quasi-stabilized 
finite element method (QSFEM) [4] were also proposed to improve the accuracy of acoustic 
analysis. 

In a standard Galerkin FEM formulation, the discretized system behaves “overly-stiff”, which 
leads to inaccurate results in acoustic simulation, especially for the linear FEM in the mid-
frequency regime. Due to the adaptively of linear elements (such as triangular and tetrahedral 
elements) in generating mesh in complex domain, the research on the use of low order mesh with 
high accuracy is of practical significance. Recently, Liu’s group conducted intensive studies on the 
softness of low-order elements and proposed smoothed finite element methods (S-FEM) by using 
the gradient smoothing technique together with the finite element methods. Using the node-based 
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strain smoothing operation, a node-based smoothed point interpolation method (NS-PIM or LC-
PIM [6, 7]) and a node-based smoothed finite element method (NS-FEM) [8] have been formulated 
in the frame of meshfree and FEM, respectively. The node-based smoothed technique can provide a 
much better gradient solution than the standard FEM, while the smoothing domain contains too 
many elements leading to “overly-soft” of NS-FEM and instability in solving dynamic and acoustic 
problems [9,10]. The edge-based smoothed finite element methods (ES-FEM) [10-13] are thus 
proposed for 2D and 3D mechanics and acoustic problems, respectively. The ES-FEM showed 
super convergence properties, ultra accuracy and high computational efficiency compared to the 
traditional FEM using the same set of triangular and tetrahedral meshes, and is very suitable for 
dynamic and acoustic problems.  

In studying the 3D ES-FEM for acoustic problems[13], the ES-FEM provides better results 
than improved FEM using hexahedral mesh at kh≈1. When it comes to higher frequencies, the ES-
FEM also encounters the dispersion error [14], which is rooted at the “slightly over-softness” of 
stiffness matrix in ES-FEM. In this paper, an improved 3D edge-based smoothed finite element 
method (IES-FEM) is proposed by introducing a parameter controlling the ratio of “slightly over-
softness” of the ES-FEM and “over-stiffness” of the FEM, and the balance of the discretized system 
can then be tuned to reduce the dispersion error in higher frequency range, i.e. 1≤kh≤2. Numerical 
results demonstrate the advantages of IES-FEM for acoustic problems, in comparison with the 
standard ES-FEM using the same elements. 

In this work, we mainly focus on the acoustic analysis in mid-frequency regime, and “the 
1<kh<2” is adopted as a reference of mid-frequency. The paper is organized as follows: Section 2 
briefly describes the mathematical model of the acoustic problems. The idea of IES-FEM method is 
formulated detailed in Section 3. The numerical example is used to evaluate the performance of the 
proposed method in Section 4. Finally the conclusions from the numerical results are made in 
Section 5. 
 
2. Acoustic problems and its standard Galerkin discretization 

The acoustic pressure p in a bounded domain Ω is governed by the following well-known 
Helmholtz equation: 

2 0p k p∆ + =  (1) 
where ∆ is the Laplace operator, k is the wavenumber defined by 

k
c
ω

=  (2) 

where c and ω denote the speed of sound traveling in the homogeneous media and angular 
frequency, respectively. For general interior acoustic problems with boundary Γ, there are three 
types of boundary conditions prescribed on the boundary of ΓD, ΓN and ΓA, where Γ=ΓD∪ ΓN∪ ΓA, 
and the three sets of boundary conditions are expressed 

Dp p=   on DΓ   (3) 

np n j vρω∇ ⋅ = −  on NΓ   (4) 

np n j A pρω∇ ⋅ = −   on AΓ   (5) 
where Dp  is the prescribed acoustic pressure on the boundary DΓ  , vn is the normal velocity on 
boundary ΓN, ρ is the medium density and An represents the admittance coefficient on boundary ΓA.  
In the standard FEM, the discrete of acoustic pressure p can be expressed in the following form: 

1

m

i i
i

p N p
=

= =∑ Np   (6) 
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where Ni are the nodal shape functions obtained using standard finite element procedure and pi are 
the unknown nodal pressures. In standard Galerkin weak form, the shape function N is also chosen 
as the weight function w and the discretized form for acoustic problems can be obtained as: 

   2d d d d 0
N A

n nk j v j Aρω ρω
Ω Ω Γ Γ

− ∇ ⋅∇ Ω+ ⋅ Ω− ⋅ Γ − ⋅ Γ =∫ ∫ ∫ ∫N NP N NP N N NP  (7) 
The discretized system equations can be finally obtained and written in the following matrix form: 

FEM 2 FEM[ ]{ } { }k j j− + = −Κ Μ C Ρ Fρω ρω  (8) 
where FEMK  is the acoustical stiffness matrix, FEMΜ  is the acoustical mass matrix, C  is the 
acoustical damping matrix, T{ }P is nodal acoustic pressure vector, F  is the nodal acoustic forces 
vector, and all of them are described as follows  

( ) ( )TFEM d
Ω

= ∇ ∇ Ω∫K N N   (9) 
FEM T d

Ω
= Ω∫Μ N N      (10) 

T d
A

nA
Γ

= Γ∫C N N    (11) 
T d

N
nv

Γ
= Γ∫F N    (12) 

3. The idea of Improved edge-based smoothed finite element method (IES-FEM) 

3.1 Brief the Smoothing domain in ES-FEM for acoustic problems 
 

nodeField

trianglesurface
theofCentroid ntetrahedro

theofCentroid
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n
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n
 

n
 

n
 Edge k 

 
Figure 1 The sub-smoothing-domain of edge k in cell j 

In the scheme of the ES-FEM for 3D problems, the numerical integration of Eq. (9) is not 
performed based on the tetrahedral elements but the edge-based smoothing domains. In the 
construction of local smoothing domains, the sub-domain of the smoothing domain s

kΩ  for edge k  
located in the particular cell j  can be obtained by connecting two end nodes of the edge to the 
centroids of the surface triangles and the centroid of cell j , as shown in Fig. 1. The sub-smoothing-
domain for edge k is one sixth region of this tetrahedral element. Finding out other sub-domains 
located in other elements containing edge k  and the smoothing domain for edge k  can be 
constructed by uniting all the sub-domains. The number of local smoothing domain is equals to the 
number of elemental edges. Using edge-based smoothing operation, the gradient component ∇N  is 
replaced by the smoothed item ∇N , and the global smoothed acoustic stiffness matrix can be 
written as:  

( ) ( )TES-FEM
d

Ω
= ∇ ∇ Ω∫K N N  The smoothed acoustical stiffness matrix (13) 
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3.2 Improved ES-FEM (IES-FEM) for acoustic problems   

Recently, it is found that the ES-FEM also encounters the dispersion error[14] in large wave 
number, i.e.1≤kh≤2, which is related to “slightly overly-soft stiffness” induced by the excessive 
edge-based smoothing operations compared to the continua system. The numerical method can be 
tuned to the exact or nearly exact stiffness using appropriate domains as well. Similar as α-FEM by 
combining the FEM and NS-FEM, an IES-FEM is also proposed by introducing a parameter alpha 
making the best use of “over-stiffness” of the FEM model and “slightly over-softness” of the ES-
FEM model to achieve the ultimate performance.  

             

Field node

+ =

FEM ES-FEM IES FEM−

FEM

ES-FEM

Centroid of surface triangle
 

Figure 2 The IES-FEM is formulated by combining of the FEM and ES-FEM 
In the 3D problem of IES-FEM, each tetrahedral element is divided into seven portions, as 

shown in Fig.2: six volumes containing tetrahedral edges have an equal volume of e
1
6

Vα , and the 

remaining part in the middle of the element has a volume of (1−α)Ve, where the Ve is the volume of 
the tetrahedral element. Six volumes containing tetrahedral edges compose a part of six edge-based 
smoothing domain of ES-FEM, and the middle part is used to calculate the contribution to the local 
stiffness matrix of IES-FEM using FEM, thus the stiffness of IES-FEM can be formulated as 
follows: 

( )IES-FEM FEM ES-FEM1
e nN N

i i
α α= − +∑ ∑K K K  (14) 

where Ne is the number of total elements in the entire problem domain and Nn is the number of total 
edges in the entire problem domain. The stiffness matrix KFEM and KES-FEM can be calculated by Eq. 
(9) and Eq. (13). Note that the parameter alpha which controls the contribution of ES-FEM and 
FEM can be selected as constant to improve the results of acoustic simulation [14]. In the 3D IES-
FEM for acoustic problems, numerical analysis indicates that when alpha equals to 0.82, it can 
always provide very good results. 
 
4. Numerical study 

4.1Numerical error for acoustic problems 

The pollution is mainly a consequence of the dispersion effect, meaning that the wave number 
of the numerical solution and the wave number of the exact solution disagree. The dispersion effect 
was first examined for the wave equation [1] 

In the mid-frequency analysis, the standard FEM cannot provide proper results under the 
condition of kh>1 due to dispersion error. In this work, we mainly focus on the acoustic analysis in 
mid-frequency regime, and “the 1<kh<2” is adopted as a reference of mid-frequency. In the 
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following computations, the numerical global error indicator is given in terms of velocity and can 
be described as follows:  

( ) ( )T2

1
de h e h e hp p v v v v

Ω
− = − − Ω∫    (15) 

where v  is complex conjugate of the velocity v, the superscript e denotes the exact solutions and h 
denotes the numerical solutions obtained from numerical methods including the present IES-FEM, 
ES-FEM using low-order elements.  
 
4.2 3D tube with Neumann boundary condition  

The numerical example adopted in 3D interior acoustic problem is a cylinder tube filled with 
air as shown in Fig. 3. The air density ρ is 1.225kg/m3 and the speed of sound in the air is 340m/s. 
The dimension of this cylinder tube with length l=1m, diameter d=0.3m is considered. The 
boundary conditions of this problem are that: the left end of tube is specified normal velocity 
boundary condition with vn=10m/s, and the right end of tube is a rigid wall with zero velocity. The 
analytical solutions for this problem can be easily derived and the acoustic pressure and velocity are 
given by 

( )( )cos 1

sin( )

k
p j cvn k

ξ
ρ

−
= −  (16) 

( )( )sin 1
sin( )

nv k
v

k
ξ−

=  (17) 

 

 

vn Air 
Ω 

0.3 
 

1 
  

Figure 3 3D acoustic tube with the Neumann boundary condition. 

 

4.2.1 The verification of parameter alpha 
In 3D acoustic analysis, the parameter alpha is firstly investigated. The frequency value of 

1352Hz  is used. Fig. 4 plots the numerical error of IES-FEM against the parameter alpha from 0 to 
1 with a step of 0.01 by the use of four models with nodal spacing of 0.06m, 0.05m, 0.04m and 
0.03m. It can be seen from this figure that: (1) at frequency of 1352Hz , the monotonic convergence 
can be obtained for the IES-FEM with alpha varies from 0 to 1 with the refinement of mesh; and the 
IES-FEM can always provide very good results when α equals to about 0.82. 
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Figure 4 Numerical error for different mesh size by varing the parameter alpha at different frequencies 

4.2.2 Acoustic accuracy and convergence 
The tube is discretized by unstructured mesh with an average mesh size of 0.06m. The 

frequency value of 1352Hz  (kh=1.5) has been studied using present IES-FEM. For the purpose of 
comparison, ES-FEM[13] solutions are also computed using this set of tetrahedral mesh. The results 
obtained from these two numerical methods have been plotted in Fig. 5, together with the exact 
solutions. It can be seen from the plots that: the IES-FEM can give much better results than the ES-
FEM, that gives solution departing a lot from the exact one. The convergence property is also 
investigated by using four models with 588, 990, 1753 and 3894 uniformly distributed nodes with 
nodal spacing of 0.06m, 0.05m, 0.04m and 0.03m. Fig. 6 presents the convergence curves in terms 
of global error against the average nodal spacing h at the frequency of 1352Hz for ES-FEM and 
IES-FEM. From the figure, it can be observed that the present IES-FEM can give much more 
accurate gradient results than that of ES-FEM. 
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Figure 5 Exact and numerical solutions of acoustic pressure for the 3D acoustic tube at kh=1.5 
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Figure 6 Comparison of accuracy and convergence for 3D acoustic tube 

 

4.2.3 Computational time and efficiency study 
Fig. 7 compares the computational time between IES-FEM and ES-FEM. Note the bandwidth 

of IES-FEM is the same as ES-FEM, and the computational time using IES-FEM is almost the same 
as ES-FEM. However, when it comes to the computational efficiency in terms of CPU time for the 
same accuracy, the IES-FEM is found to much more efficient than the ES-FEM as shown in Fig. 8.  
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Figure 7 Comparison of the computational time for the IES-FEM and ES-FEM 
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Figure 8 Comparison of the efficiency of numerical results in terms of global error 

 

5. Conclusions  

In this paper, an improved 3D edge-based smoothed finite element method (IES-FEM) is 
proposed by introducing a parameter controlling the ratio of “slightly over-softness” of the ES-FEM 
and “over-stiffness” of the FEM, and the balance of the discretized system can then be tuned to 
reduce the dispersion error in higher frequency range, i.e. 1≤kh≤2. The determined parameter alpha 
controls a proper gradient smoothing operation in the IES-FEM, and provides a perfect balance 
between stiffness and mass in the discrete system matrix, which dramatically reduces the dispersion 
error. Numerical results demonstrate the advantages of IES-FEM for acoustic problems, in 
comparison with the ES-FEM using the same mesh. 
 

a) The IES-FEM uses the simplest linear tetrahedral mesh, which can be easily generated for 
any complicated domains of acoustic media, and hence is ideal for automated modeling and 
simulation. 

b) In the IES-FEM, no additional parameters or degrees of freedom are introduced, and the 
present method can be implemented in a straightforward way with little change to the 
standard FEM code. 

c) In IES-FEM for acoustic problems, when the parameter alpha equals to 0.82, the numerical 
studies show that it can always provide much better results and is more efficient than ES-
FEM. 
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Abstract 
In this paper, Combined with the third-order TVD Runge-Kutta method, we develop a parallel 
solver using the fifth-order high-resolution weighted essentially non-oscillatory (WENO) finite 
difference scheme to simulate detonation diffraction for three-dimensional condensed explosives. 
Using the explosive LX-17, abrupt corner turning of detonation was investigated as the detonation 
moved from a near-ideal cylinder of small radius suddenly into a cylinder of large radius. The 
numerical simulation results revealed the restrictive relationships among the pressure, the density 
and the reaction progress in the failure regions around the corner. As a result, the detonation cannot 
turn the corner and subsequently fails, but the shock wave continues to propagate in the unreacted 
explosive, leaving behind a dead zone. Previously, we have used the PBX-9404 explosive to 
simulation the detonation diffraction. Comparing with that, the inert explosive LX-17 has the longer 
distance to detonation along the inner wall. It demonstrated that a larger field of the dead zone can 
be generated, and it may not close. 
Keywords: Condensed explosives; Numerical simulation; WENO; High resolution; Corner-
Turning; Dead zone 

Introduction 
The ability of a detonation wave to continue to propagate after it encounters an abrupt or a more 
gradual geometry change is very important to understand in practical explosive charge design. The 
corner leads the detonation wave to curve and spread to the side along the inner wall, and the 
reaction zone may decouple and lag behind the shock. If extinction occurs, the lead shock degrades 
into a weak shock followed by a fast flame. The dead zone represents a loss of available energy in 
the system to do work and must be computed accurately. 

Numerous experimental and numerical studies have been performed to study corner turning 
phenomena. Souers et al. [2004] have performed a series of highly-instrumented experiments 
examining corner-turning of detonation, and they used pulsed X-rays to observe the dead zones in 
ambient detonating LX-17 with the breakout on the edges measured by streak camera. Cox and 
Campbell studied the ability of PBX 9502 to turn corners using a long, cylindrical straight section 
that suddenly changes into a much wider cylinder, which has a slice taken out of one side [Cox and 
Campbell (1981)]. They concluded that the explosive had a 17mm corner turning radius, and that 
the explosive inside this radius did not detonate. The most detailed experiments of TATB corner 
turning and dead zone formation are those fired using proton radiography at Los Alamos National 
Laboratory[Ferm et al. (2002) ; Mader et al. (2002)]. The greater penetrating power of high energy 
protons compared to X-rays allows finer structures of the dead zones to be observed. Kapila [Kapila 
et al. (2007)] simulated the process of detonation diffraction of the explosive LX-17 with different 
corners by second-order accurate capture scheme to research the changes of the explosive state at 
the corner wall under the influence of detonation diffraction around the corner and observed the 
initiation process along the inner wall to be similar to the shock-initiation under low-pressure. 
Tarver[2010] modeled the hydrodynamics of double corner turning and shock desensitization in two 
dimensions using the Ignition and Growth LX-17 detonation reactive flow model. They compared 
the calculated arrival times and axial free surface velocity histories of the top aluminum plates with 
the experimental measurements, well in agreement. In recent years, Yang G. [Yang et al. (2013)] 
used the smoothed particle hydrodynamics (SPH) method combined with ignition and growth 
model to give good prediction for the von Neumann spike state of detonation in condensed 
explosives. The smoothed particle hydrodynamics (SPH) method is more and more widely applied 
to investigate the detonation phenomena, e.g. [Yang et al. (2011); Hu et al. (2014)]. 

In this paper, the process of corner-turning of the double cylinder geometries in LX-17 are 
numerically simulated by high resolution numerical scheme. Fifth-order WENO scheme [Jiang and 
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Shu (1996)] and third-order TVD Runge-Kutta method are employed to discretize Euler equations 
with chemical reaction source, and parallel high resolution code is developed. The code was used to 
stimulate the process of detonation diffraction at the corner. Respectively, the change rules of 
pressure, density and reaction rate in the low-pressure region and the inner wall region will be 
investigated, and the corner effect on the detonation wave propagation will be discussed. 

1. Governing equations 

The detonation process is very short, so the transport effect of viscosity, heat conduction and 
diffusion can be neglected in the detonation process. The non-stationary compressible Euler 
equations can be used as the fluid dynamics governing equations. In the form as follows 

 ( ) ( ) ( ) ( )U F U G U H U S Ut x y z+ + =+                                                         (1) 

Where the conserved variable vector U, the flux vectors F ,G and H as well as the source term S 
are given, respectively, by 

 ( )T, , , , ,U u v w Eρ ρ ρ ρ ρ ρλ=                                                        (2) 

 ( )T2( ) , , , , ( ) ,F U u u p uv uw u E p uρ ρ ρ ρ ρ ρ ρ λ= + +                   (3) 

 ( )T2( ) , , , , ( ) ,G U v vu v p vw v E p vρ ρ ρ ρ ρ ρ ρ λ= + +                  (4) 

 ( )T2( ) , , , , ( ) ,H U v wu wv w p w E p wρ ρ ρ ρ ρ ρ ρ λ= + +                   (5) 

 ( )T
( ) 0,0,0,0,0,0,S U ρλ=                  (6) 

 ( ) ( )2 211
2

E e q u vλ= + − + +                (7) 

Here u, v, w are the Cartesian component of the particle velocity in the x, y, z directions. 
Respectively, ρ is density, p is pressure, E is total energy per unit volume, e is internal energy, λ is 
reaction rate variable. 

2. Equations of state and reaction rate 

The unreacted explosive and the reaction products are both described by the JWL equation of state, 
but their parameter values are different. For LX-17 explosive, the specific parameter values of 
equation of state are shown in Table 1 [Zhang and Chen (1991)]. 

 

1 2

1 2
0 1 0 2 0

0

exp( ) exp( )

exp( ) exp( )

/

p A RV B R V C T
V

C TA Be RV R V
R R

V

υ

υ

ω

ρ ρ ρ
υ υ

= − + − +

= − + − +

=

         (8) 

Table 1. EOS data for the explosive LX-17 

JWL parameters Unreacted  Products  
A(102GPa) 77.81 6.547 
B(102GPa) -1.5031 0.7124 
Cυ(102GPa/K) 2.487×10-5 1.0×10-5 
R1 11.3 4.45 
R2 1.13 1.2 
ω 0.8939 0.38 
ρ0(g/cm3) 1.895 1.895 
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Respectively, υ is the specific volume, and υ0 is the specific volume at the initial moment. A, B, 
R1, R2, Cυ and ω are constants, and T is temperature. 

The most commonly used chemical reaction rate model of condensed explosives is the ignition 
and growth reaction rate model proposed by Lee and Tarver. For LX-17 explosive, the specific 
parameter values of the chemical reaction rate equation are shown in Table 2 [Zhang and Chen 
(1991)]. 

 0 1 2(1 ) ( / 1 ) (1 ) (1 )b x c d y e g zd I a G p G p
dt
λ λ ρ ρ λ λ λ λ= − − − + − + −       (9) 

Here I, G1, G2, b, a, x, c, d, y, e, g and z are constants. 
Table 2. Rate data for the explosive LX-17 

Parameters Value  
I(μsec-1) 4.0×106 

G1(μsec-1(102GPa)-z) 0.6 
G2(μsec-1(102GPa)-z) 400 
b 0.667 
a 0.22 
x 7.0 
c 0.667 
d 0.111 
y 1.0 
e 0.333 
g 1.0 
z 3.0 

3. The numerical method 

In this paper, WENO finite difference scheme is employed to discretize Euler equations with 
chemical reaction source in space. The semi-discrete scheme is as follows: 

( ) ( ) ( ), 1/2, , 1/2,1/2, , 1/2, , , , 1/2 , , 1/2
, ,

, ,

G GF F H HU Si j k i j ki j k i j k i j k i j k
i j k

i j kt x y z
+ −+ − + −−− −∂  = − − − + ∂ ∆ ∆ ∆ 

 
   

 (10) 

Third-order TVD Runge-Kutta scheme is employed for temporal discretization. 

 

(1)
, , , , , ,

(2) (1) (1)
, , , , , , , ,

1 (2) (2)
, , , , , , , ,

( )

3 1 1 ( )
4 4 4
1 2 2 ( )
3 3 3

U U U

U U U U

U U U U

n n
i j k i j k i j k

n
i j k i j k i j k i j k

n n
i j k i j k i j k i j k

tL

tL

tL+


= + ∆


 = + + ∆



= + + ∆

                      (11) 

4. Results and discussion 

The explosive LX-17 is selected as an example, and the model geometry size is shown in figure 1. 
There is the inflow boundary conditions on the left of the small radius cylinder and all other 
boundaries are set wall boundary conditions. We take the mesh size Δ=0.1(mm), and the explosive 
is initiated by C-J (Chapman-Jouguet) condition within 0.5mm distance on the left of the small 
radius cylinder.  
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Fig. 1.  Schematic for the double-cylinder corner-turning model 
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Fig. 2.  Contours of pressure (top), density (middle) and the reaction rate (bottom) of the 
double-cylinder corner-turning at 1.65μs (left), 3.3μs (right) 

Previously, we have obtained The propagating state of detonation wave around the corner is 
generally determined by two factors in the other paper. One is the transverse shock wave along the 
inner wall downwards, and the other is the extending curved detonation wave. In this model, when 
the detonation wave reaches the corner position, the time span is 0.97μs. From figure 2, because of 
the effect of corner turning influence, the expansion generated there is felt by the lead shock.  

At 1.65μs, the influencing regions domain centred around the corner, and the low-pressure region, 
low-density region have appearanced. Comparing the contour of the reaction rate with the contours 
of the pressure and the density, we can find that the shock wave continues to propagate in the 
unreacted explosive, leaving behind unreacted explosive. The dead zone, which is a region of 
unreacted explosive, generally forms around the right-angle turn. At this moment, the dead zone 
appears primarily behind the lead shock wave. Then the factor of the transverse shock wave along 
the inner wall downwards plays a leading role, and the extending curved detonation wave have just 
extended alightly. In the center position of the model section, there is still the steady detonation 
wave propagating forward along the central axis of the model. At 3.3μs, as the detonation wave 
propagates forward and extends to the sides of the head shock wave, the low-pressure region and 
the low-density region have become increasingly large. Along the inner wall, the lead shock wave 
has reached the edges of the cylinder, and the reflection can be seen. However, lots of unreacted 
explosive is left behind the lead shock wave. It demonstrated the failure exits, and the failure/dead 
zone has been shown in the figure 1 as the region A. It looks like a turnip shape which has a good 
consistent with the experimental results[Souers et al. (2006)].  

 

Fig. 3.  Plots of pressure, density and the reaction rate along the inner wall at different 
moments 
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As showed the plot of pressure in figure 3, at 0.97μs, the detonation wave just arrived at the corner 
position, and the transverse shock wave causes pressure changes only within 0.5mm along the inner 
wall. The maximum is 9Gpa and rapidly decreased to 0. The lead shock wave propagates 4.1mm 
and 7.2mm along the inner wall at 1.75μs and 2.53μs respectively. At 3.31μs, the lead shock wave 
has reached the edges of the cylinder. The low-pressure region can be clearly shown by the plot of 
pressure at different moment. And again, the low-density region can be seen from the plot of 
density, and we can find, in the low-density region, the density has fallen below the initial density. 
From the plot of the reaction rate, at 3.31μs, we can see that the reaction progress will decline to 0 
directly, which suggests only slight retonation generating. With time lapsing, the re-initiation is 
failure. In the next moment, the extending curved detonation wave reachs the inner wall to re-
initiate, otherwise it is detonation failure along the inner wall. 
 

 
Fig. 4.  Plots of pressure, density and tatal energy along the the central axis of the model at 
different moments 

The figure 4 gives the corner-turning influence on the pressure, density and energy in the position 
of the central axis. After the detonation wave has reached the corner, the detonation wave in the 
axis position has little effect, and it still keep steady detonation to propagate forward. At 2.4μs and 
3.3μs, because of expansion, the troughs appear behind the detonation wave. The trailing expansion 
region shows some effects of the signals of expansion emanating from the corner. By contrast, the 
evolution along the wall is more complex, as discussed in detail above. 

Conclusions 

In this paper, Fifth-order WENO scheme and third-order TVD Runge-Kutta method are employed 
to investigate the process of the corner turning of LX-17. The parallel high resolution code is 
developed. By calculation and detailed analysis for the corner-turning of the double cylinder 
geometries, we can obtain the following conclusions: 

(1) As showed in the example, using the LX-17 explosive, the detonation failure happens along 
the inner wall, and there is no re-initiation subsequently within a radius of 9.6mm. The transverse 
shock wave plays little direct role for initiation explosive which swept by the lead shock wave. In 
addition, the extending curved detonation wave needs a long time to reach the inner wall. Because 
of the two factors, there is a great proportion of unreacted explosive remained, forming a large area 
of dead zone. 

(2) The low-pressure, low-density regions are formed in the vicinity of the corner, in which the 
explosive will react slowly in the subsequent steps, but the released energy cannot support the 
transverse shock wave propagation forward to re-initiate explosive. 
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Abstract 
Based on the double shockwave approximation procedure and combining RGFM 
procedure with level-set method, a local Riemann problem for strong nonlinear 
equations of state such as JWL equation of state was constructed and then solved to 
suppress successfully the numerical oscillation caused by high-density ratio and 
high-pressure ratio across the explosion products and water interface. A fifth order 
finite difference WENO scheme and the third order TVD Runge-Kutta method were 
utilized for spatial discretization and time advance, respectively. A novel enclosed 
type MPI-based parallel methodology for RGFM procedure on uniform structured 
meshes was presented to realize the parallelization of the three dimensional 
RGFM-based code for underwater explosion, which had dramatically improved the 
practical scale of computing model. The overall process of three dimensional bubble 
pulsations generated by underwater explosion of both TNT and aluminized explosives 
was successfully simulated with high order numerical scheme. The peak overpressure 
at different locations of three dimensional underwater explosion for both explosives 
mentioned above was monitored and analyzed for revealing the influence of 
aluminum powder combustion on peak overpressure of explosion wave. The 
numerical results obtained indicated that the attenuation of explosion wave formed by 
aluminized explosives was slower than that caused by TNT. The influences of 
aluminum powder combustion on bubble pulsations were also investigated by 
comparing TNT with aluminized explosives. 

Key words: Underwater explosion; WENO scheme; RGFM; Local Riemann solver; 
Parallel computation 

Introduction 
Underwater explosion is one of the typical multi-medium problems, in which 
explosion flow usually consists of detonation products and water. It is obvious that 
the sharp medium interface with high-density ratio and high-pressure ratio separates 
the detonation products from water. In the process of numerical simulation on 
underwater explosion problem, because of the abrupt change with density and 
pressure close to the interface, the unphysical numerical oscillation is very easy to 
occur in the neighborhood of the interface. Meanwhile, as the continuous upgrade of 
explosives, density ratio and pressure ratio increase constantly and greatly. Therefore, 
tracking and treating the strong discontinuous nonlinear interface of underwater 
explosion becomes a gradually popular topic and receives considerable attentions in 
this field. 
 
As for interface tracking technique, many scholars had presented some efficient ways 
over the past few decades. With particle-in-cell [Amsden (1966)] approach based on 
the rectangular mesh, the numerical results for the flow field and sharp material 
interface were achieved by tracking the particle. MAC method [Harlow and Welch 
(1965)] was often used to track the interface movement and the flow field evolution. 
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Level-set method [Sethian (1996); Adalsteinsson and Sethian (1999)] used the 
Hamilton-Jacobi equations to describe the moving interface, which was tracked for 
later time as the zero level set of the smooth signed distance function instead of the 
explicit function. Thus, some cases with complex interface, such as crisscross, torsion 
and separation, can be easily treated.  
 
Fedkiw [Fedkiw et al. (1999)] presented the Ghost Fluid Method (GFM), which can 
obtain excellent results in treating the interaction between the weak shock wave and 
interface. Under the condition of strong shock wave, it, however, may get fake 
physical solution. Liu [Liu et al. (2003)] had put forward the MGFM procedure and a 
local Riemann problem solver, where the states of ghost fluid across the interface for 
each phase were defined. Wang [Wang et al. (2006)] presented the RGFM procedure. 
According to the states of medium across the interface, a local Riemann problem was 
constructed at first. The solution obtained was then used to redefine the flow states 
for not only real fluid grids next to the interface but also ghost fluid grids. Thus fewer 
errors were introduced by RGFM procedure. Considering the impact of the explosion 
on the interface with high-density ratio and high-pressure ratio and different 
equations of state, Zhao [Zhao et al. (2013)] proposed a novel interface treatment by 
combining the original GFM with RGFM procedure.  
 
It can be observed that, since the GFM, MGFM and RGFM were presented, the 
numerical simulations for multi-medium flow had been applied widely. Simulating 
the underwater explosion based on the GFM in the attainable literatures generally 
used the stiff-gas equation of state for explosion products and water, while the 
complex EOS like JWL was seldom used. Meanwhile, RGFM-based simulation by 
splitting a multi-medium problem into single medium flows, usually requires that the 
computer hardware configuration is extremely rigor to satisfy a large-scale 
calculation. In general, serial computation can’t meet the needs of three dimensional 
large-scale engineering applications.  
 
In this paper, based on double shockwave approximation procedure, we first 
presented in detail a technology to solve the local Riemann problem with the complex 
equations of state such as JWL equation of state used in underwater explosion 
simulations. It effectively avoided the unphysical oscillation occurring at the 
multi-medium interface in explosion flow field. Combining RGFM method formally 
transformed multi-medium flow field into pure flow fields with enclosed type 
parallelization module, the mechanism of three dimensional underwater explosion 
and the evolutional laws of bubble pulsation were obtained by using the fifth order 
finite difference WENO scheme on uniform structured meshes. 

1. Governing equations  

The equations governing three dimensional underwater explosion can be written as 

                    ( ) ( ) ( )
,

F U G U H UU S
t x y z

∂ ∂ ∂∂
+ + + =

∂ ∂ ∂ ∂
                    (1) 

( , , , , ) ,TU u v w Eρ ρ ρ ρ ρ=  

2( , , , , ( ) ) ,TF u u p uv uw E p uρ ρ ρ ρ ρ= + +  

2( , , , , ( ) ) ,TG v uv v p vw E p vρ ρ ρ ρ ρ= + +  

2( , , , , ( ) ) ,TH w uw vw w p E p wρ ρ ρ ρ ρ= + +  

(0,0,0,0,0) ,TS =  
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where ρ, p denote the density and pressure, respectively. u, v and w are the velocity 
components, and E is the total energy per unit mass. 
 
The total energy generally consists of internal energy and kinetic energy as follows 

 ( )2 2 21 ,
2

E u v w e= + + +   (2) 

here e means the internal energy. 
 
To close the above governing equations, the corresponding equations of state for 
explosion products and water must be introduced.  
 
The explosion products are usually described by the JWL equation of state, which can 
be expressed in the following form as 

 
1 0 2 0

1 0 2 0

(1 )e (1 )e ,
R R

p A B e
R R

ρ ρ
ρ ρωρ ωρ ωρ

ρ ρ

− −
= − + − +   (3) 

where the parameters A, B, R1, R2, ω and ρ0 are material constants of detonation 
products, which are specifically shown in the following table. 
 

Table 1. JWL EOS parameters for explosion products 

ρ0(kg/m3) A(MPa) B(MPa) C(MPa) R1 R2 ω 

1630.0 373800.0 3747.0 734.0 4.15 0.9 0.35 

 
The compressible water enclosing the explosion product is also our focus. So the 
stiff-gas equations of state must be required and could be written as 

 ( )1 ,p e Bγ ρ γ= − −   (4) 

where γ and B shown in Table 2 are constants. 
 

Table 2. Stiff-gas EOS parameters for water 

γ B(MPa) 

7.15 331.0 

 
For aluminized explosives, Miller mathematical model describing the combustion of 
aluminum powder can be written as 

 ( )
11
221 ,d a p

dt
λ λ= −   (5) 

ICCM2015, 14-17 July, 2015, Auckland, New Zealand

1004



where λ is the reaction process variable characterizing the aluminum powder reaction 
degree in the process of aluminum powder combustion and a is a material constant. 

2. The local Riemann problem for underwater explosion 

After confirming the specific locations of the explosion products and water interface 
by advancing implicit Level-set function, RGFM-based multi-medium interface 
treatment should be utilized to change a multi-medium problem into two single 
medium problems. A local Riemann problem is constructed first at the interface and 
then solved. In the RGFM method, the predicted interface states solved by Riemann 
problem are assigned to the real fluid nodes just close to the interface in the real fluid. 
Then normal constant extrapolation by solving extension equation is used to acquire 
the values of three ghost fluid nodes required for high order WENO scheme. Next, 
the particular solution to local Riemann problem in underwater explosion will be 
described briefly. 
 
Taking one dimensional case as an example, with the help of mass conservation 
equation and momentum conservation equation, the relationship between the velocity 
and pressure of the interface can be achieved as follows 

 ( ) ( )* 1 * *
*

1 1 ,L L
L L

u F p u P P
ρ ρ

 
= = − − − 

 
  (6) 

 ( ) ( )* 2 * *
*R

1 1+ ,R R
R

u F P u P P
ρ ρ

 
= = − − 

 
  (7) 

here ρ*L and ρ*R are the densities of both sides of interface, which are unknown 
quantities for the time being and also need to be solved. 
 
The nonlinear function relationship on interfacial pressure is obtained by the above 
two equations, which can be written as 

 ( ) ( ) ( )* 1 * 2 * 0.F p F p F p= − =   (8) 

Combining energy conservation equation with respective equations of state, the 
implicit function with respect to ρ*L, ρ*R and p* can be deduced and then given as  

 ( ) ( ) ( ) *
* * * *

*

1, , 0,
2

L L
L L L L L L

L L

e p e p p p ρ ρ
ρ ρ

ρ ρ
−

− − + =   (9) 

 ( ) ( ) ( ) *
* * * *

*

1, , 0.
2

R R
R R R R R R

R R

e p e p p p ρ ρ
ρ ρ

ρ ρ
−

− − + =   (10) 

For the local Riemann problem composing of JWL equations of state and Stiff-gas 
equations of state, the brief process of solving it by Newton iterative method is 
described below. It is supposed that, for one dimensional Riemann problem, gaseous 
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detonation products locate at the left hand side of the interface and the water is on the 
opposite side. Obviously, the Eq. (8-10) is now a closed nonlinear equation consisting 
of interfacial pressure and both sides of densities close to interface as unknown 
variables. The classical Newton iterative method is adopted to solve the problem of 
interest, and it can be written as 

 ( ) ( )
( )( ) ( )( )
( )( ) ( )( )

1 2* *

* 1 *
1 2* *

.
n n

n n

n n

F p F p
p p

F p F p
+

−
= −

′ ′−
  (11) 

The appropriate guess value of the interfacial pressure for (11) is necessary, and 
should be selected at first. If the value of |p*(n+1)–p*(n)| is equal or less than a given 
threshold, Newton iteration will be stop automatically, and the final result p*(n+1) is the 
interfacial pressure p* to be sought. Thus, the velocity and both sides of densities can 
be obtained by simultaneously solving the Eq. (6), (9) and (10). At this point, the 
solution of the local Riemann problem in underwater explosion has been deduced 
completely. 

3. Parallelization for RGFM procedure 

For a general difference scheme, it is only required to communicate data in current 
process with adjacent processes in the orthogonal directions, that is to say, the 
processes in the diagonal directions are not necessary. For the WENO scheme 
combining with RGFM for underwater explosion, it is slightly different. If the 
interface is very close to any corner of the current computational process, information 
such as pressure and density at some nodes of diagonal processes will be inevitably 
used in the construction of the local Riemann problem. Considering such special 
requirements for RGFM method to implement data communication, a novel fully 
enclosed type data communication mode is presented, in which the enclosed 
communication boundaries are built on the periphery of computational domain of any 
process.  
 

Table 3. Parallelization for RGFM 

Process number  
of receive buffer  

Receive buffer 
number 

Send buffer 
number 

Process number  
of send buffer 

n 1 4 n-x-1 
n 2 3 n-x+1 
n 3 2 n+x-1 
n 4 1 n+x+1 
n 5 6 n-1 
n 6 5 n+1 
n 7 8 n-x 
n 8 7 n+x 
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The above table takes the two dimensional case as an example to illustrate the 
presented enclosed type parallel method. It is obvious that the method can be directly 
extended to three dimension underwater explosion, and has been implemented in this 
paper. 

4. Numerical investigations on three dimensional underwater explosion 

4.1 Validation 

According to the one dimensional fluid unsteady motion theory, the law of bubble 
pulsation can be given as 

 
29

10

27 3 .
64 2

b
b H

b bb

RprR p
R RR ρρ
∞ ′

′′ = − −   (12) 

The corresponding initial condition has the following form 

 0

0

.
0

b t

b t

R r

R
=

=

 =
 ′ =

  (13) 

 

(a) 400MPa                     (b) 500MPa 

 
(c) 600MPa                (d) 700MPa 

Figure 1. The comparisons of numerical results with theoretical results on 
bubble radius under different pressures 
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The numerical results of bubble pulsation using RGFM procedure are compared with 
the theoretical results, which is shown in Fig.1. The maximum bubble radius and its 
corresponding time are shown in Table 4 and Table 5, respectively. It is evident from 
Fig.1 and two tables that the numerical results obtained are consistent with the 
theoretical results, and that the errors of maximum bubble radius and its time don’t 
exceed 10%. So, the RGFM-based high order procedure presented in this paper can 
exactly describe the whole process of bubble pulsation. 

 
Table 4. The comparisons of numerical results of maximum bubble radius with 

theoretical results  

Pressures Theoretical 
results(m) 

Numerical 
results(m) 

Relative 
errors 

400MPa 0.572 0.583 1.9% 

500MPa 0.534 0.555 3.9% 

600MPa 0.506 0.527 4.2% 

700MPa 0.483 0.504 4.3% 
 

Table 5. The comparisons of numerical results of the maximum radius time with 
theoretical results  

Pressures Theoretical 
results(m) 

Numerical 
results(m) 

Relative 
errors 

400MPa 0.819 0.768 -6.2% 

500MPa 0.668 0.618 -7.5% 

600MPa 0.602 0.554 -8.0% 

700MPa 0.541 0.495 -8.5% 

4.2 Numerical investigations on bubble pulsation of TNT explosive 

The TNT explosive is used with the radius of 0.25m for underwater explosion. Water 
pressure is 400MPa, 500MPa and 600 MPa, respectively. Apparently, the selected 
pressure exceeds the usual pressure of underwater explosion. The main purpose is to 
save the computing time without damaging the essential laws of bubble pulsation. 
The 64 processes are employed to compute this problem with up to 13.824 million 
grids. The size of grids is 0.02m×0.02m×0.02m, while the whole physical domain is 
4.8m×4.8m×4.8m. 
 
The computational results at some typical moments are shown in Fig. 2-4. The 
contour of density and pressure are very symmetrical and fake nonphysical oscillation 
doesn’t happen. The distribution of density and pressure in the underwater explosion 
field can be reflected precisely. 
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(a)  Density contour                    (b) Pressure contour 

Figure 2. Numerical results at 0.531ms 

 

    

(a)  Density contour                    (b) Pressure contour 

Figure 3. Numerical results at 0.744ms 

 

    

(a)  Density contour                    (b) Pressure contour 

Figure 4. Numerical results at 0.962ms 
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Figure 5. Numerical results on the evolution of bubble pulsation 

 
The numerical results shown in Fig. 5 indicate that combining the local Riemann 
solver with RGFM procedure can exactly simulate the full process of underwater 
explosion and bubble pulsation, and the interface of the computed bubble consistently 
maintains smooth without any numerical oscillation. 

 

Figure 6. The evolution of bubble radius under the different pressure conditions 

 
Fig. 6 shows that maximum bubble radius decreases with the increase of pressure. 
The maximum radius is 0.583m when water pressure is 400MPa. When its pressure is 
700MPa, the maximum radius reduces by 13.6% and decreases to 0.504m. Bubble 
pulsation period also decreases with the increase of pressure. The pulsation period is 
1.749ms when pressure is 400MPa. When pressure is 700MPa, the period reduces by 
40.4% and reduce to 1.043ms. So, the influence of water pressure on bubble pulsation 
period is more obvious.  
 
The numerical results reveal that the physical essence of expansion and contraction of 
the bubble interface is the movement of contact discontinuity for local Riemann 
problem at the interface, and the pressure, normal speed and density close to the 
interface determine the evolution of bubble interface. Thus, solving local Riemann 
problem is an effective way to quantitatively reveal the formation mechanism of 
bubble pulsation. Solving local Riemann problem can obtain accurate flow 
characteristics near the interface and the evolution of bubble interface in the flow 
field. The complete process of bubble pulsation is captured nicely. Therefore, the 
unique advantages based on RGFM procedure and local Riemann solver are obvious 
to simulate bubble pulsation in underwater explosion. 
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4.3 Numerical investigations on bubble pulsation of aluminized explosives 
The aluminized explosives is simplified to gas detonation products containing 
unreacted aluminum powder. The stiff-gas equation of state is used for water. The 
initial pressure is 500 MPa, and the radius of explosive is 0.21m. The 64 processes 
are employed for this problem with 13.824 million grids, and the size of grids is 
0.02m×0.02m×0.02m, while the whole physical domain is also 4.8m×4.8m×4.8m. 

 
Figure 7. The comparison of aluminized explosive with TNT on bubble pulsation 

radius under 500 MPa water pressure  

 
It is shown in Fig. 7 that the expansion processes of two kinds of explosive are almost 
the same at the initial stage and the radius-time curve is substantially coincident. But, 
at the late stage, the appearances of two kinds of explosives are very different. First, 
the maximum bubble radius and its evolutional period of aluminized explosives are 
significantly greater than those of TNT. Second, because explosion wave propagation 
causes energy loss, the maximum radius for TNT at the later stage becomes small. 
For aluminized explosives, the maximum radius during the second period is even 
greater than that of the previous period due to the secondary energy release formed by 
the combustion of aluminum powder supplementing the energy losses to some extent. 

Conclusions 

Combining RGFM multi-medium interface treatment method with fifth order finite 
difference WENO scheme, the large scale underwater explosion parallel simulations 
are performed by the novel Riemann problem solver presented for complex nonlinear 
equations of state and MPI-based enclose type parallel module. The three dimensional 
whole physical processes of bubble pulsation in underwater explosion are numerically 
investigated. The important mechanism of underwater explosion is also revealed as 
follows: 
 
1) Solving local Riemann problem defined by detonation products and water can 
essentially depicts the motion process of bubble surface caused by both sides of the 
flow field, by which the complete process of bubble pulsation is captured exactly. The 
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maximum radius and its corresponding time of bubble obtained by numerical 
simulations are agreed well with the theoretical results; 
 
2) For bubble pulsation in underwater explosion, the physical essence of expansion 
and contraction of bubble surface is the propagation of contact discontinuity of local 
Riemann problem at the explosion products and water interface. The interfacial states 
including pressure and normal speed at the interface and density on both sides of the 
interface play a key role in determining the motion behavior of bubble surface; 
 
3) For the same charge configuration, with the increase of water pressure, both 
maximum bubble radius and its pulsation period decrease. Nevertheless, the influence 
of water pressure on bubble pulsation period is more obvious than maximum bubble 
radius; 
 
4) The secondary energy release for aluminized explosives can continuously add the 
energy loss caused by explosion wave propagation in water. So in the subsequent 
process of bubble pulsation, the radius and pulsation period for aluminized explosives 
are obviously larger than those of TNT charge. Maximum radius of aluminized 
explosive in the process of the second pulsation even exceeds the first pulsation 
process. 
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