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Abstract 

Combined finite-discrete element method takes the advantages of both the finite 
element (FE) method and the discrete element (DE) method, but a coupling approach 
is required for effective combination of the two methods. In this paper, a coupling 
approach is proposed by using ghost particles. The entire domain is decomposed into 
a FE region and a DE region which are connected by an interface, and ghost particles 
are constructed inside the boundary of FEs by interpolation and used to connect the 
boundary of DEs. This interface connection method effectively couples FEs with DEs. 
A numerical example is computed to demonstrate the effectiveness of the proposed 
approach. 

Keywords: Ghost particle, Coupling approach, Combined finite-discrete element 
method, Multiscale modelling. 

Introduction 

The conventional finite element (FE) method has some limitations in numerical 
modelling of brittle fracture problems since it is based on the continuum mechanics, 
and special treatments have to be employed, e.g., remeshing strategies [Mediavilla et 
al. (2006); Belytschko and Black (1999)] or extended finite element method 
[Belytschko et al. (2001); Moės and Belytschko (2002)]. In contrast, the discrete 
element (DE) method is able to capture the discontinuous nature of materials, but it is 
not as computational efficient as the FE method. Combined finite-discrete element 
method, which combines the two methods, has been developed so as to use the 
advantages while avoiding the drawbacks of the two numerical methods [Munjiza 
(2004)]. 

Essentially, the combination of the two methods can be achieved by the interaction of 
either contact or coupling. The contact interaction is more suitable for contact 
occurring between different pieces of an object when fragmentations form [Munjiza 
et al. (1995)] and between two or more different media [Onate and Rojek (2004); 
Chen et al. (2015)]. The coupling interaction is more applicable for the connection 
between different subdomains of an entire domain, which is decomposed for efficient 
computation via the so-called multiscale modeling. The coupling approaches used 
along with the combined finite-discrete element method are generally classified into 
overlapping coupling [Wellmann and Wriggers (2012); Li et al. (2015); Jebahi et al. 
(2013); Tu et al. (2014)] and interface coupling [Christian et al. (2014); Lei and Zang 
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(2010)]. For the overlapping coupling compatibility condition is required to be 
satisfied in a bridging domain [Xiao and Belytschko (2004)], where the total energy is 
a linear mixing of energies from both FEs and DEs, while only a simple compatibility 
condition at the interface is required to be satisfied in the interface coupling. 

In this paper, a ghost particle-based approach is proposed to couple the continua with 
discrete elements for the combined finite-discrete element method. The computational 
domain is decomposed into a FE region and a DE region, which are distinguished by 
an interface. The two regions are connected by the interface interaction between the 
boundary DEs and ghost particles which are constructed at the boundary FEs. This 
approach is conceived from the extension of atomistic-continuum coupling [Kohlhoff 
et al. (1991); Shilkrot et al. (2002)], in which ghost atoms are used to coincide with 
the FE nodes in the transition region (harsh mesh requirement), and the number of 
coincidence layers is dependent on the cut-off radius of atomistic potential. For the 
present approach, however, only one layer of ghost particles is required as the 
interaction of DEs only occurs between adjacent particles. Furthermore, to overcome 
the difficulties of remeshing, the strictly coincident compatibility condition is relaxed 
by introducing the ghost particles, whose position is determined from the 
interpolation of nodal coordinates of FEs. 

To apply this coupling approach to model fracture problems, an important and 
essential step is to validate its effectiveness prior to the occurrence of fractures. This 
paper is therefore confined to the development and validation of this new coupling 
approach, without exploration and investigation into brittle fractures. The governing 
equations and DE model will be briefly introduced in next section. Afterwards, the 
development of the proposed coupling approach is presented in detail, followed by 
the numerical validation. Finally, conclusions are drawn. 

General formulations 

The governing equations for FEs and DEs are briefly described first, followed by the 
introduction of a DE connective model, which is used to discretize the area of interest. 

Governing equations 

Ωc Ωd

Γu

Γσ

ΓI

 

Figure 1. Domain decomposition into a continuum region and a discrete region 

A computational domain, subject to prescribed displacement at the Dirichlet 
boundary Γ௨ and prescribed tractions at the Neumann boundary Γఙ, is divided into a 
continuum subdomain Ω  and a discrete subdomain Ωௗ  as shown in Figure 1. The 
interface between these two subdomains is defined as Γூ ൌ ߲Ω ∩ ߲Ωௗ. 
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For the continuum subdomain, the FEs are used for spatial discretization and the 
governing equation of the FE method is given as 

ሷ܃ۻ  ܃۹ ൌ ۴  ۴ୡ୭୳ (1)

where ۻ and ۹ are mass and stiffness matrices, respectively; ܃ is the displacement 
vector; ۴ is the resultant force vector consisting of external tractions and/or damping 
force; ۴ୡ୭୳  is the coupling force resulting from the interaction with the discrete 
subdomain. 

The discrete subdomain is discretized by DEs and the equations of motion for each 
DE particle are expressed as follows 

ቄ ሶܞ݉ ൌ   ୡ୭୳

ሶܫ ൌ ܜ  ܚ ൈ ୡ୭୳
(2)

where ݉ is the mass of the particle; ܞ is the centroid velocity of the particle in global 
coordinate frame;  is the resultant force applied to the particle due to (a) external 
traction, (b) body force, (c) internal force when the DE connective model is used and 
(d) damping force (linearly proportional to the velocity) to dissipate kinetic energy for 
computational purpose; ୡ୭୳ is the coupling force exerted on the particle resulting 
from the interaction with the continuum subdomain; ܫ is the moment of inertia of the 
particle;  is the angular velocity of the particle in the local coordinate frame which 
is embedded into the centroid of the particle; ܜ is the resultant moment applied to the 
particle due to the aforementioned forces ܚ ; is the moment arm of the coupling force 
 .ୡ୭୳

Discrete element model 

 

Figure 2. The discrete element connective model. (a) Cubic arrangement of the 27 
spherical particles. (b) Linkage relation. (c) Virtual springs connect adjacent particles. 

The DE connective model as shown in Figure 2 is employed. This model is in a cubic 
arrangement (Figure 2a), which can produce a neat surface desirable for domain 
decomposition. Each particle in this model is connected to its neighboring 26 
particles, which are categorized into three groups according to their distances to the 
central one as depicted by different numbers in Figure 2b. The interaction force  
between any two adjacent particles is calculated based on their relative displacement 
  and spring stiffness ݇ (see Figure 2c) as follows ܌

 ൌ ܌݇ (3)
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where force  ൌ ሺ ݂, ௦݂, ௧݂ሻ,and ܌ ൌ ሺ݀, ݀௦, ݀௧ሻ.  

Inside each pair as shown in Figure 2c, there are an orthogonal (݇ ) and two 
tangential (݇௦  and ݇௧) linear springs invisibly connecting them. Their stiffness are 
determined based on the energy equivalence between the one stored in the springs 
and that in solid elasticity, as given by [Yu (2011)] 

ە
ۖ
۔

ۖ
ۓ ݇ଵ ൌ ݇ଶ ൌ

ݎܧ2
5ሺ1 െ ሻߥ2

݇௦ଵ ൌ ݇௧ଵ ൌ ݇௦ଶ ൌ ݇௧ଶ ൌ
ሺ1ݎܧ2 െ ሻߥ4

5ሺ1 െ ሻሺ1ߥ2  ሻߥ
݇ଷ ൌ ݇௦ଷ ൌ ݇௧

ଷ ൌ 0

	 (4)

where ܧ ߥ ,  and ݎ  are the Young’s modulus, Poisson’s ratio and radius of the DE 
particles. 

Coupling approach 

The coupling force is explicitly expressed through the interaction between the 
boundary DE particles and the ghost particles, which are virtually constructed at the 
inside of boundary hexahedral elements. Next, the strategy of constructing ghost 
particles is illustrated first, followed by the determination of natural coordinates and 
the kinematic relations between DE boundary particles and ghost particles. 

Construction of ghost particles 

 

Figure 3. Schematic diagram of the coupling approach 

A general rule to decompose domain is that the DE particles are used to spatially 
discretize the region of particular interest, such as the impact zone or area where 
fractures possibly occur, whereas the other region is discretized by FEs. Usually, the 
radius of DE particles is much smaller than the size of FEs to better characterize 
fracture patterns. The DE region should be large enough to cover the interest zone so 
as to avoid possible fractures occurring in the continuum region. Therefore, it is not 
necessary to generate a flexible but uncontrollable interface and a neat interface as 
shown in Figure 3 is then utilized for easy model preprocessing. 

Ghost particles are constructed inside the FEs as shown in Figure 3, and they can be 
treated as a part of the DE model. Each DE particle only interacts with its adjacent 
particles; hence one layer of ghost particles is adequate to describe the coupling 
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interaction between boundary DE particles and ghost particles. The interaction 
mechanism between them is the same as that for a sole DE model as shown in Eqs. (3) 
and (4), and particularly, this interaction interconnects the FE model and the DE 
model. Note that these ghost particles and DE particles should have the same radius 
for the application of this interaction mechanism to link them together. Because only 
one layer of ghost particles is required and also the size of them is small, the ghost 
particles are merely constructed in the boundary FEs. 

 

Figure 4. Position determination of the ghost particle 

As a virtual part of the corresponding FE, each ghost particle has the same kinematic 
response as that of the FE when subject to loading or deformation. With this 
compatibility condition taken into account, a reasonable assumption is made that each 
ghost particle sticks to the same natural coordinate of the corresponding isoparametric 
FE. The natural coordinates will be determined next, but before doing so, the physical 
coordinates of ghost particles need to be acquired. As being symmetric to the 
boundary DE particles (as shown in Figure 4), the physical coordinates of ghost 
particles at initial configuration can be immediately determined by 

ܠ ൌ ܠ െ ܖݎ2 (5)

where ܠ and ܠ are physical coordinates of boundary particles and ghost particles; ܖ 
is the normal vector of interface. 

Determination of natural coordinates 
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Figure 5. Mapping and inverse mapping between physical coordinates and natural 
coordinates 

For any ghost particles, their physical coordinates can be obtained from Eq. (5), thus 
the purpose here is to determine corresponding unknown natural coordinates. 
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For a given point ܠ located inside a hexahedron element, the physical coordinate 
ሺݔ, ,ݕ  ሻ of that point can be expressed by the interpolation from nodal coordinatesݖ
and their associated shape functions ܰሺߦ, ,ߟ  ሻ as followsߞ

ܠ ൌ ,ߦሺܠ ,ߟ ሻߞ ൌ ூܰሺߦ, ,ߟ ூܠሻߞ

଼

ூୀଵ

(6)

The shape functions are specifically given 

ூܰ ൌ
1
8
ሺ1  ሻሺ1ߦூߦ  ሻሺ1ߟூߟ  ሻߞூߞ (7)

where the natural coordinate for each node ܫ is shown in Table 1. 

Table 1. Natural coordinate for each node, ூ ൌ ሺߦூ, ,ூߟ  ூሻߞ

ଵ ൌ ሺെ1,െ1,െ1ሻ ଶ ൌ ሺ1,െ1,െ1ሻ

ଷ ൌ ሺ1,1,െ1ሻ ସ ൌ ሺെ1,1,െ1ሻ

ହ ൌ ሺെ1,െ1,1ሻ  ൌ ሺ1,െ1,1ሻ

 ൌ ሺ1,1,1ሻ ଼ ൌ ሺെ1,1,1ሻ
 

It is worth noting that Eq. (6) indicates the mapping from physical coordinates to 
natural coordinates (shown in Figure 5); however, its inverse mapping from natural 
coordinates to physical coordinates, i.e.,  ൌ ሺݔ, ,ݕ  ሻ, is generally impossible to beݖ
explicitly expressed [Belytschko et al. (2013)]. Note that here we use position vectors 
to denote specific coordinates, i.e., ܠ ൌ ሺݔ, ,ݕ ሻݖ  and  ൌ ሺߦ, ,ߟ ሻߞ . Therefore, to 
specifically determine natural coordinates, an alternative numerical approach [Qian et 
al. (1998)] based on Taylor series is employed. 

The position vector of physical coordinates as seen in Eq. (6) is expanded around 
ܠ ൌ ሺݔ, ,ݕ   ሻ with a linear approximationݖ

ܠ ൎ ܠ 
,ߦሺܠ߲ ,ߟ ሻߞ

߲
ሺ െ ሻ (8)

where Jacobian matrix ۸ ൌ   is specifically given by߲/ܠ߲

۸ ൌ

ተ

ተ

ݔ߲
ߦ߲

ݔ߲
ߟ߲

ݔ߲
ߞ߲

ݕ߲
ߦ߲

ݕ߲
ߟ߲

ݕ߲
ߞ߲

ݖ߲
ߦ߲

ݖ߲
ߟ߲

ݖ߲
ߞ߲

ተ

ተ

	 (9)

and ୭ is the corresponding natural coordinates of ܠ୭, i.e., ܠ୭ ൌ ,ߦሺܠ ,ߟ  .ሻߞ

Rearranging Eqs. (8) and (9), an iterative form for natural coordinates is expressed as 
follows 

ାଵ ൎ   ۸
ିଵሺܠ െ ሻܠ ሺ݇ ൌ 0,1,2⋯ ሻ (10)
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where ܠ ൌ ,ߦሺܠ ,ߟ  ሻ. The iteration is terminated when the ࣦଶ norm is less than aߞ
user-specified tolerance ߝ, i.e., 

ܠ‖ െ ‖ଶܠ ൏ ߝ (11)

As the natural coordinates only need to be determined once at the initial configuration 
when hexahedron elements are not deformed yet, this numerical iteration is very 
efficient to achieve its convergence. 

Interaction between particles 

 

Figure 6. Kinematic relation of two adjacent particles 

For any two adjacent particles (݅ and ݆) as shown in Figure 6, their interaction force 
can be calculated by Eq. (3). As the stiffness of springs keeps constant, the practical 
interest here is to determine their relative displacement. With the central difference 
method employed for temporal discretization, an incremental form is used to calculate 
the relative displacement at ݐାଵ  

ାଵ܌ ൌ ܌  Δ܌ାଵ (12)

where the incremental relative displacement Δ܌ାଵ is determined by relative velocity 
as follows 

Δ܌ାଵ ൌ ሶܠ ାଵ/ଶ
 Δݐାଵ (13)

At any time, the relative velocity is evaluated at the middle point   of the line 
connecting two particles’ centroids, as expressed by 

ሶܠ  ൌ ሶܠ 
 െ ሶܠ  (14)

in which 

ቊ
ሶܠ  ൌ ሶܠ    ൈ ܚ

ሶܠ 
 ൌ ሶܠ    ൈ ܚ

(15)

where ܠሶ  and ܠሶ are velocities of the particle ݅ and ݆, respectively.  

If one of the particles in the pair is a ghost one, its rotational velocity is not taken into 
account and the translational velocity is interpolated from the nodal velocities of the 
corresponding FE as follows 

ሶܠ ൌ  ூܰሺߦ, ,ߟ ሶܠሻߞ ூ

଼

ூୀଵ

(16)

where the natural coordinate  ൌ ሺߦ, ,ߟ  ሻ is determined using the method mentionedߞ
before.  



8 

 

It is worth noting that the interaction force exerted on each ghost particle is 
distributed into all nodes of the corresponding FE with the use of shape functions as 
given by Eq (17).  

ூ ൌ െ ூܰሺߦ, ,ߟ ሻߞ (17)

Numerical validation 

 

Figure 7. Diagram of the cantilever beam and the particles distribution in the coupled 
finite-discrete element model. 

To validate the proposed numerical method, the coupling approach is implemented in 
an in-house code named as CDFP [Lei and Zang (2010)]. A cantilever beam with one 
end fixed and the other subject to constant loading (ܲ ൌ 0.4 N) as shown in Figure 7 
is modeled, and the computed deflection at the free end of the beam is compared to 
the analytical result. 

The dimensions of this beam are: length ܮ ൌ 20 mm, width ܹ ൌ 4 mm and height 
ܪ ൌ 2  mm. The elastic material properties are: mass density ߩ ൌ 0.001  g/mm3, 
Young’s modulus ܧ ൌ 1000 MPa and Poisson’s ratio ߥ ൌ 0.23. The coupled finite 
element model with the FE and DE regions as allocated in Figure 7 is generated by 
using different spatial discretization techniques. The mesh size for both the FE model 
and the coupled model is 0.5 mm and the particle radius for both the DE model and 
the coupled model is 0.125 mm. To acquire a static solution from the explicit central 
difference time integration, an appropriate damping is imposed to the nodal and 
particle velocities. 

The deflection at the free end computed from the coupled model is 0.388 mm, which 
is very close to the analytical solution 0.4 mm. To further demonstrate the 
effectiveness of the proposed coupling model, the displacement distribution of the 
beam along the loading direction obtained from the FE model, the DE model and the 
coupled model are compared in Figure 8, where a good agreement can be observed. 

Z-displacement

Coupled finite-discrete element model

Finite element model

Discrete element model  

Figure 8. The comparison of displacement distributions along loading direction. 
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Conclusions 

In this paper a new approach to couple continua with DEs is proposed by using ghost 
particles. The ghost particles are constructed at the boundary FEs to connect DEs and 
this connection is achieved through the same interaction mechanism as the DE 
method. To keep ghost particles constantly sticking to the same natural coordinates of 
the corresponding FEs, an iterative strategy for inverse mapping from physical 
coordinates to natural coordinates is employed. The proposed numerical approach is 
used to model a cantilever beam and the agreement of the computed deflection at the 
free end with the analytical result validates the numerical method.  
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