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Abstract

A recently developed numerical method, multidomain quasilinearisation method, is applied on
a steady laminar, natural convection boundary layer flow of MHD viscous and incompress-
ible fluid from a vertical permeable flat plate with uniform temperature in this paper. Non-
dimensionless variables are used to transform the governing equations to a system of non-
dimensional nonlinear partial differential equations. Then the resulting equations are solved
numerically by using multidomain quasilinearisation method. The numerical results for tan-
gential velocity, transverse velocity, and temperature, skin friction and Nusselt number are cal-
culated and shown in a table and in various graphs.

Keywords: Natural convection; Magnetohydrodynamics; Multi-domain; Thermal radiation;
Boundary layer.
Nomenclature

B Magnetic induction
Cfx Local skin friction
e Electronic charge
E Intensity of electric field
g Gravitational acceleration
Grx Modified Grashof number
H Magnetic intensity
J Electric current density
m Hall parameter
M Magnetic parameter
Nux Local Nusselt number
p Pressure
Pr Prandtl number
T Temperature of the fluid
T∞ Free stream temperature
x, y, z Co-ordinate directions
u, v, w Velocity components in x, y, z directions
v Velocity component normal to u
V Transpiration velocity
x Axial coordinate
y Coordinate normal to x
qr Thermal radiation
R Thermal radiation parameter



Greek symbols
α Thermal diffusivity
β Volumetric expansion coefficient for tem-

perature
ψ Stream function
θ Dimensionless temperature function
ρ Density
ν Kinematic viscosity
µ Dynamic viscosity
ξ Transpiration parameter
η Pseudo similarity variable
Subscripts
w Conditions at wall
∞ Conditions far away from wall

Introduction

In many industrial processes, the study of magnetohydrodynamics natural convection flow and
heat transfer has attracted considerable attention during the last decades. This is due to its
applications which are found in MHD generator, flight MHD, Plasma studies, nuclear reactors,
geothermal extractions, Hall accelerators and boundary layer control in the field of aeronautics
and aerodynamics. Another important application of magnetohydrodynamic natural convection
boundary layer flow past a semi-infinite vertical permeable flat plate with uniform mass flux
is in space flight and in nuclear reactor. This applications normally requires a strong magnetic
field and a low density gas and therefore the Hall current and ion slip becomes important.

The natural convection boundary layer flow from a vertical wall with Hall current and heat
flux has been discussed by Sato [1], Yamanishi [2], Sherman and Sutton [3], Sing and Cowling
[4], Sparrow and Cess [5], Gupta [6]. Free convection flow of a conducting fluid permeated
by a transverse magnetic field was studied by Katagiri [7]. It has been observed by Singh and
Cowling [4] that regardless of the strength of the applied magnetic field there will always be
a region in the neighborhood of the leading edge of the plate where electromagnetic force are
unimportant, whilst at large distances from the leading edge this magnetic force dominate. Pop
and Watanabe analyzed the free convection flow of a conducting fluid permeated by a transverse
magnetic field in the presence of Hall effects and uniform magnetic field.

Numerical solutions of MHD convection and mass transfer flow of viscous incompressible fluid
were studied by Wahiduzzaman et al. [9]. They assumed that the induced magnetic field is
negligible compared with the imposed magnetic field. Saha et al also studied the effect of Hall
current on the steady, laminar, natural convection boundary layer flow of MHD viscous and
incompressible fluid from a semi-infinite heated permeable vertical flat plate with an applied
magnetic field transverse to it has been investigated, assuming that the induced magnetic field
is negligible compared to the imposed magnetic field.

In the design of nuclear plants, gas turbines, propulsion devises for aircraft, missiles, satel-
lites, and space vehicles, radiative heat transfer is a very important factor. This is due to the
non-isothermal effects where high temperature is involved. Most studies that involve thermal
radiation have been mostly limited to a stretching sheet. Some of the important investigations
involving thermal radiation effects can be found in, for example, Englang and Emery [10], Gorla
and Pop [11], Raptis [12], Abd El-Aziz [13, 14, 15].



Most of these studies rely on traditional numerical methods which requires the use of many grid
points for accurate solutions. This is the result of the presence of local variable ξ which does
not give accurate results for, usually, values of ξ > 1 [17]. The present study attempts to obtain
the accurate solution with the use of few grid points.

It has been demonstrated that the finite difference method gives the solutions for all large values
of transpiration parameter ξ. However, nonsimilarity method cannot give solutions for large
values of ξ [16]. The aim of this paper is to give an alternative method that will handle solutions
for large values of ξ when nonsimilarity transformation methods are used.
Problem Formulation

Consider the steady natural convection boundary layer flow of an electrically conducting and
viscous incompressible fluid from a semi-infinite heated permeable vertical flat plate in presence
of magnetic field and thermal radiation with the effect of Hall currents.

Applying the Boussinesq approximation, the boundary layer equations governing the flow under
the assumption that the fluid is quasi-neutral and ion slip and thermoelectric effect results in the
following system of equations:

∂u

∂x
+ ∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2 + gβ(T − T∞)− σB2
0

ρ(1 +m2)(u+mw), (2)

u
∂w
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∂w
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∂2w
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0
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u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2 −
1
ρcp

∂qr

∂y
, (4)

(5)

where u, v and w are the velocities in the x−,y− and z− direction, T is the fluid temperature,
ν(= µ/ρ) is the kinematic coefficient of viscosity, µ is the fluid viscocity and ρ is the fluid
density, α(= κ/ρcp) is the thermal diffusivity with κ being the fluid thermal conductivity and
cp is the heat capacity of the fluid at constant pressure, qr is the thermal radiative heat flux, m(=
ω2τ 2) is the Hall parameter, with ω as the cyclotron frequency of electron and τ as collision
time of electrons with ions.

The radiative heat flux qr under Rosseland approximation takes the form

qr = − 4σ
3k1

∂T 4

∂y
, (6)

where σ is the Stefan-Boltzmann constant and k1 is the mean absorption coefficient. Assuming
that the temperature difference within the flow is sufficiently small, T 4 may be approximated in
Taylor series form, after ignoring higher order terms, as follows:

T 4 = 4T 3
∞T − 3T 4

∞. (7)

Applying (6) and (7) to equation (4) we get

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2 −
16σT 3

∞
3k1ρcp

∂2T

∂y2 . (8)



The boundary conditions are:

u(x, y) = 0, v(x, y) = −V0, w(x, y) = 0, T (x, y) = Tw at y = 0 (9)
u(x, y) = 0, v(x, y) = 0, w(x, y) = 0, T (x, y) = T∞ at y =∞, (10)

where V0 is the transpiration velocity which is positive for suction and negative for injection.

The set of non-linear partial differential equations are transformed by introduction of dimen-
sionless group of transformations for the dependent and independent variables applicable in
natural convection flow from a vertical surface:

ψ(x, y) = νGr1/4
x [f(ξ, η) + ξ], η = y

x
Gr1/4

x , ξ = V0x

ν
Gr−1/4

x , (11)

w(x, y) = ν

x
Gr1/2

x g(ξ, η), θ = T − T∞
Tw − T∞

(12)

where ψ is the stream function, defined by

u = ∂ψ

∂y
and v = −∂ψ

∂x
(13)

which satisfies the continuity condition (1). In the above equation (12) f is the dimensionless
stream function, g is the dimensionless velocity and θ is the dimensionless temperature of the
fluid. η is the pseudo-similarity variable and ξ is the transpiration parameter depending on the
transpiration velocity V0 and the axial variable x.

Applying these transformations to the system of equations (2) - (4), the resulting governing
non-similarity system of partial differential equations are expressed in dimensionless form as
[17]:

f ′′′ + 3
4ff

′′ − 1
2f
′2 + θ + ξf ′′ − M

(1−m2)(f ′ +mg) = 1
4ξ
(
f ′
∂f ′

∂ξ
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)
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1
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4R
)
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4fθ
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4ξ
(
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∂θ

∂ξ
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)
(16)

where the local Grashof number, magnetic field number and thermal radiation parameter are,
respectively, given by

Grx = gβδT

ν2 x3, M = σB2
0x

2

ρGr
1
2
x

, R = 4σT 3
∞

kk1
(17)

The primes in the above equations denoted differentiation with respect to η and the correspond-



ing boundary conditions are given by

f(0, ξ) = f ′(0, η) = 0, g(0, ξ) = θ(0, ξ) = 1, (18)
f ′(∞, ξ) = g(∞, ξ) = θ(∞, ξ) = 0. (19)

The physical quantities of interest in this case are the skin-friction, Nusselt and Sherwood num-
bers which are defined in [23] as

CfxGr
−3/4
x = f ′′(0, ξ), NuxGr

−1/4
x = −θ′(0, ξ), (20)

respectively.
Bivariate Spectral Quasilinearisation Method (BSQLM)

In this section we first describe the standard bivariate spectral quasilinearisation method for
solving coupled non-linear partial differential equations. The quasi-linearisation method is
based on Taylor series expansion of system of equations about some previous approximation
of the solution. The assumption used is that the difference between the current and previous
solution is small. To illustrate the idea of the BSQLM we first write equations as

Ωk[H1, H2, H3] = 0, for k = 1, 2, 3, (21)

where H1, H2 and H3 represents equations (14), (15) and (16) respectively. The quasilinearisa-
tion scheme applied in equations (14) - (16) results in

a0rf
′′′
r+1 + a1rf

′′
r+1 + a2rf

′
r+1 + a3rfr+1 + a4r

∂fr+1

∂ξ
+ a5r

∂f ′r+1
∂ξ
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(22)
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∂ξ
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′
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∂ξ
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c0rf
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∂ξ
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′′
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′
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∂ξ
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(24)

where



a0r = 1, a1r = 3
4fr + ξ + 1

4ξ
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∂ξ
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∂ξ
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M
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4ξ
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4θ
′
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4ξθ
′
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Pr

(1 + 4
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4ξf

′
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′′′
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′′
r + a2rf

′
r + a3rfr + a4r

∂fr

∂ξ
+ a5r

∂f ′r
∂ξ

+ a6rgr+1 + a7rθr+1 −H1,

R2r = b0rf
′
r + b1rfr + b2r

∂fr

∂ξ
+ b3rg

′′
r + b4rg

′
r + b5rgr + b6r

∂gr

∂ξ
+ b7rθr −H2,
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′
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∂fr

∂ξ
+ c3rgr + c4rθ

′′
r + c5rθ

′
r + c6rθr + c7r
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−H3.

Applying spectral collocation on (14) - (16) gives

A11FFF i + a4r

Nt∑
j=0

dijFFF j + a5r

Nt∑
j=0

dijDDDFFF j + A12GGGi + A13θθθi = RRR1,i, (25)

A21FFF i + b2r

Nt∑
j=0

dijFFF j + A22GGGi + b6r

Nt∑
j=0

dijGGGj + A23θθθi = RRR2,i, (26)

A31FFF i + c2r

Nt∑
j=0

dijFFF j + A32GGGi + A33θθθi + c7r

Nt∑
j=0

dijθθθj = RRR3,i, (27)

where

Ai
11 = aaa0rDDD

3 + aaa1rDDD
2 + aaa2rDDD + aaa3rIII, Ai

12 = aaa6rIII, Ai
13 = aaa7rIII,

Ai
21 = bbb0rDDD + bbb1rIII, A22 = bbb3rDDD

2 + bbb4rDDD + bbb5rIII, A23 = bbb7rIII,

Ai
11 = ccc0rDDD + ccc1rIII, A32 = ccc3rIII, A33 = ccc4rDDD

2 + ccc5rDDD + ccc6rIII.

For convenience, equations (25), (26) and (27) are expanded for i = 0, . . . ,M2 and rearranged
to obtain the following matrix form

BrXr+1 = Rr (28)

where the coefficient matrix Br is defined as



where
Bii

11 = Ai
11 + aaa4rdiiIII + aaa5rdiiDDD, Bii

12 = Ai
12, B

ii
13 = Ai

13,

Bij
11 = aaa4rdijIII + a5rdijDDD, Bij

12 = 0, Bij
13 = 0,

Bii
21 = Ai

21 + bbb2rdiiIII Bii
22 = Ai

22 + bbb6rdiiIII, B
ii
23 = Ai

23,

Bij
21 = bbb2rdijIII, Bij

22 = 6r6r6rdijIII, Bij
23 = 0,

Bii
31 = Ai

31 + ccc2rdiiIII, Bii
32 = Ai

32, B
ii
33 = Ai

33 + ccc7rdiiIII,

Bij
31 = ccc2rdijIII, Bij

32 = 0, Bij
33 = ccc7rdijIII,

(29)

The vectorsXr+1 and Rr are defined as

Xr+1 =
[
F(0)

1,r+1G(0)
2,r+1 · · ·θθθ

(0)
m,r+1

∣∣∣F(1)
1,r+1G(1)

2,r+1 · · ·θθθ
(1)
m,r+1

∣∣∣ · · · · · · · · · · · · ∣∣∣F(M2)
1,r+1G(M2)

2,r+1 · · ·θθθ
(M2)
m,r+1

]T
Rr =

[
R(0)

1 R(0)
2 R(0)

3 · · ·R(0)
m

∣∣∣R(1)
1 R(1)

2 R(1)
3 · · ·R(1)

m

∣∣∣ · · · · · · · · · · · · ∣∣∣R(M2)
1 R(M2)

2 · · · R(M2)
m

]T
The approximate solutions are obtained by solving (28) iteratively for r = 0, 1, 2, . . .. The
inclusion of boundary conditions and multi-domain solution approach is discussed in the next
section through a specific example.
Multi-domain bivariate spectral collocation method for systems of PDEs

It is well-known that the standard form of the bivariate spectral quasi-linearisation method de-
scribed in [24] works well for problem defined over small domains. Large domains require
proportionally larger number of nodes to yield accurate results. For the BSQLM, increasing
the number of nodes increases the computational effort required to solve the matrix equations
almost exponentially. A simple way of ensuring that accurate solutions are obtained efficiently
over large domains is to seek to limit the size of the matrix equations. As can be noted from
matrix equation (28), the size of the coefficient matrix for a system of m PDEs in m unknowns
ism(M1+1)(M2+1) bym(M1+1)(M2+1), whereM1,M2 give the number of nodes in the x1
and x2 domains, respectively. Below, we introduce a strategy that seeks to reduce the size of the
matrix equations by ensuring that the value of M2 is kept to be as low as possible. For problems
where the largest order of the derivative with respect to x2 is one this can be achieved by evalu-



ating the solution in a sequence of equal intervals, which are subject to continuity conditions at
the end points of each interval.

To apply the multi-domain bivariate spectral quasi-linearisation method (MD-BSQLM) we di-
vide the interval ξ ∈ [0, ξP ] into P sub-intervals Ωe = [ξe−1, ξe] for e = 1, 2, . . . , P as shown in
the illustration 1 below.

ξ0 ξ1 ξ2 ξ3 ξe−1 ξe ξP−1 ξP

Ω1 Ω2 Ω3 Ωe ΩP

ξe−1 ξe

ξ
(e)
0 ξ

(e)
1 ξ

(e)
2 ξ

(e)
q−1 ξ(e)

q

Figure 1: Multi-domain grid

Each interval Ωe is further divided into q divisions which are not necessarily of equal spacing.
The non-linear equations (25), (26) and (27) are solved in each subinterval [ξe−1, ξe] with the

solution denoted by
e

f(η, ξ) in this interval. In the first interval [ξe−1, ξe], the solution is
1
f(η, ξ)

is obtained subject to the “initial” condition
1
f(η, 0). For each e ≥ 2, at each interval [ξe−1, ξe],

the continuity condition
e

f(η, ξe−1) =
e−1
f (η, ξe−1) (30)

is used to implement the BSQLM over the interval [ξe−1, ξe]. This process is repeated to generate

a sequence of solutions
e

f(η, ξ) for e = 1, 2, . . . , P
In our system, the number of equations and unknowns is m = 3 and the orders of the highest
derivatives that are required as limits in the definition of the coefficient parameters and matrices
are

n1,1 = 3, n1,2 = 0, n1,3 = 0, n2,1 = 1, n2,2 = 2 n3,1 = 1, n3,3 = 2

With these values, the coefficient parameters and matrices are obtained using the formulas given
in the previous section and are defined in the appendix. Applying the spectral collocation gives

A11
e

FFF i,r+1 + a4r

M2∑
j=0

dij

e

FFF j,r+1 + a5r

M2∑
j=0

dij

e

DDDFFF j,r+1 + A12
e

GGGi,r+1 + A13
e

θθθi,r+1 =
e

RRR1,i, (31)

A21
e

FFF i,r+1 + b2r

M2∑
j=0

dij

e

FFF j,r+1 + A22
e

GGGi,r+1 + b6r

M2∑
j=0

dij

e

GGGj,r+1 + A23
e

θθθi,r+1 =
e

RRR2,i, (32)

A31
e

FFF i,r+1 + c2r

M2∑
j=0

dij

e

FFF j,r+1 + A32
e

GGGi,r+1 + A33
e

θθθi,r+1 + c7r

M2∑
j=0

dij

e

θθθj,r+1 =
e

RRR3,i, (33)



where

Fi,r+1 = [fr+1(ξ̂i, η̂0), fr+1(ξ̂i, η̂1), fr+1(ξ̂i, η̂2), . . . , fr+1(ξ̂i, η̂M1)]T ,
Gi,r+1 = [gr+1(ξ̂i, η̂0), gr+1(ξ̂i, η̂1), gr+1(ξ̂i, η̂2), . . . , gr+1(ξ̂i, η̂M1)]T ,
θθθi,r+1 = [θr+1(ξ̂i, η̂0), θr+1(ξ̂i, η̂1), θr+1(ξ̂i, η̂2), . . . , θr+1(ξ̂i, η̂M1)]T .

The boundary conditions for solving equations (39) - (41) are

e

f(ξi, ηM1) = 0,
M1∑
p=0

D(1,0)
M1,p

e

f(ξi, ηp) = 0, e
g(ξi, ηM1) =

e

θ(ξi, ηM1) = 1, (34)

M1∑
p=0

D(1,0)
0,p

e

f(ξi, ηp) = 0, e
g(ξi, η0) =

e

θ(ξi, η0) = 0. (35)

The “initial” conditions at ξ = 0 (ξ̂ = ξ̂M2 = −1) are obtained by solving the following ODE
set

f ′′′ + 3
4ff

′′ − 1
2f
′2 + θ − M

(1−m2)(f ′ +mg) = 0, (36)

g′′ + 3
4fg

′ − 1
2f
′g − M

(1−m2)(g −mf ′) = 0 (37)

1
Pr

(
1 + 3

4R
)
θ′′ + 3

4fθ
′ = 0 (38)

The solution of equation (36) - (38), in the first interval, are denoted by
1
FM2,r+1,

1
GM2,r+1 and

1
θM2,r+1. In the next intervals we solve the following equations

A11
e

FFF i,r+1 + a4r

M2−1∑
j=0

dij

e

FFF j,r+1 + a5r

M2−1∑
j=0

dijDDD
e

FFF j,r+1 + A12
e

GGGi,r+1 + A13
e

θθθi,r+1 =
e

KKK1,i, (39)

A21
e

FFF i,r+1 + b2r

M2−1∑
j=0

dij

e

FFF j,r+1 + A22
e

GGGi,r+1 + b6r

M2−1∑
j=0

dij

e

GGGj,r+1 + A23
e

θθθi,r+1 =
e

KKK2,i, (40)

A31
e

FFF i,r+1 + c2r

M2−1∑
j=0

dij

e

FFF j,r+1 + A32
e

GGGi,r+1 + A33
e

θθθi,r+1 + c7r

M2−1∑
j=0

dij

e

θθθj,r+1 =
e

KKK3,i, (41)

where

e

K1,i =
e

R1,i − a4rdiM2

e

FFFM2,r+1 − a5rdiM2DDD
e

FFFM2,r+1, (42)
e

K2,i =
e

R2,i − b2rdiM2

e

FFFM2,r+1 − b6rdiM2

e

GGGM2,r+1, (43)
e

K3,i =
e

R3,i − c2rdiM2

e

FFFM2,r+1 − c7rdiM2

e

θθθM2,r+1. (44)

The continuity conditions in this example are given by



e

f(η, ξe−1) =
e−1
f (η, ξe−1),

e
g(η, ξe−1) = e−1

g (η, ξe−1),
e

θ(η, ξe−1) =
e−1
θ (η, ξe−1),

(45)

Applying the continuity conditions on (42) - (44) gives

e

K1,i =
e

R1,i − a4rdiM2

e−1
FFF M2,r+1 − a5rdiM2DDD

e−1
FFF M2,r+1, (46)

e

K2,i =
e

R2,i − b2rdiM2

e−1
FFF M2,r+1 − b6rdiM2

e−1
GGG M2,r+1, (47)

e

K3,i =
e

R3,i − c2rdiM2

e−1
FFF M2,r+1 − c7rdiM2

e−1
θθθ M2,r+1. (48)

Results and Discussion

The natural convection flow from a vertical permeable equations are derived and solved using
multi-domain bivariate spectral collocation method. This is done taking into account the normal
magnetic field to the surface of the plates. Also, thermal radiation and the Hall current effects
are taken into consideration.

Saha et al. [17] MBQLM
ξ f ′′(0, ξ) θ′(0, ξ) f ′′(0, ξ) θ′(0, ξ)
2 0.706 1.4028 0.7088928 1.4026916

10 – – 0.1428570 7.0000000
20 0.0714 13.9995 0.0714227 14.0000000
40 0.0357 27.9985 0.0340195 27.9997087
50 0.0285 349981 0.0247535 34.9964783
60 0.0238 41.9977 0.0182251 41.9806430
70 0.0204 48.9974 0.0140161 48.9328200
80 0.0178 55.9971 0.0115996 55.8259543

Table 2: Comparison of Multi-domain solution local skin friction and the Nusselt number
against the transpiration parameter ξ while Pr = 0.7, M = 0.5, m = 100 against the Saha
et al results [17]

Table 1 shows the comparison results between the current results and the literature results [17].
The table displays the local skin friction and the Nusselt number with respect to the transpiration
parameter ξ ranging from 0 to 80 while Pr = 0.7,M = 0.5,m = 100. It is observed that for the
increasing value of the transpiration parameter xi the value of the local skin friction coefficient
turn to increase near the leading edge, and then diminished slowly. The local Nusselt number
coefficient increases rapidly. This observation validates that the solutions of large transpiration
number are in agreement with the literature [17].

We also look at the residual error results in order to ensure that our numerical scheme is accu-
rate. The convergence error results are shown in Figures 2, 3 and 4 for velocity, temperature
and temperature profiles.

Figures 5 to 7 shows the tangential velocity, transverse velocity and temperature profiles, re-
spectively, for M = 0.5, m = 2, R = 1 and Pr = 0.01 for different values of ξ. The tangential



velocity profile, in Figure 5, decreases as the transpiration parameter ξ is increased. This shows
that the local maximum values of the velocity profile occurs at the area of the boundary layer.
The same observation is shown in Figure 6 on the transverse velocity. Figure 7 shows that the
temperature profiles decreases as the transpiration parameter is increased. The momentum and
thermal boundary layer thickness decreases with the increasing values of ξ due to suction effects
of the surface mass transfer.

Magnetic field parameters effects are presented in Figures 8 and 9. Tangential velocity pro-
files decrease with increase in magnetic parameter but the transverse velocity increases with an
increase in the magnetic field parameter.

The effect of thermal radiation parameter is presented in Figures 10 to 12. The thermal radiation
parameter increases both the tangential and transverse velocity profiles. It also increases the
temperature profiles of the fluid. This is due to the decrease in values of R leading to a decrease
in Rosselenda radiation absorptivity k1. Also, an increase in temperature has a direct effect
on the buoyancy force which in turn iniduces more flow causing the tangential and transverse
velocities to increase.
Conclusion

This paper has presented a recently developed multidomain quasilinearisation method for solv-
ing general non-linear differential equations. The multidomain quasilinearisation method is
developed based on bivariate spectral quasilinearisation method (BSQLM). The main goal of
the current study is to apply this method in a natural convection flow from a vertical plate with
uniform surface temperature. The method proves to be efficient especially for large transpira-
tion parameter. Velocity, temperature and temperature profiles are also analysed here. From
these investigations we can conclude:

• MD-SQLM overcomes the similarity transformation barrier of not capturing solutions at
large transpiration parameter values.

• Increase in the transpiration parameter decreases the momentum and thermal boundary
layer

• Thermal radiation parameter increases the tangential velocity, transverse velocity and
temperature profiles.
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Figure 2: Convergence error in the tangential velocity profile at different values of ξ
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Figure 3: Convergence error in the transverse velocity profile at different values of ξ
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Figure 4: Convergence error in the temperature profile at different values of ξ
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Figure 5: Tangential velocity profile at different values of ξ
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Figure 6: Transverse velocity profile at different values of ξ
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Figure 7: Temperature profile at different values of ξ



Figure 8: Tangential velocity profile for R = 3, m = 2, Pr = 0.7 at M = 0.5, 1, 1.5, 2.5
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Figure 9: Transverse velocity profile for R = 3, m = 2, Pr = 0.7 at M = 0.5, 1, 1.5, 2.5

Figure 10: Tangential velocity profile for M = 1/2, m = 100, Pr = 0.7 at R = 0, 1, 2, 3
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Figure 11: Transverse velocity profile for M = 1/2, m = 100, Pr = 0.7 at R = 0, 1, 2, 3

Figure 12: Concentration profile for R = 3, m = 2, Pr = 0.7 at M = 0.5, 1, 1.5, 2.5


