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Abstract 
In structural dynamics, direct explicit and implicit integration algorithms are commonly used to 
solve the temporally discretized differential equations of motion for linear and nonlinear structures. 
The stability of different integration algorithms for linear elastic structures has been extensively 
studied for several decades. However, investigations of the stability applied to nonlinear structures 
are relatively limited and rather challenging. Recently, the authors proposed two systematic 
approaches using Lyapunov stability theory to investigate the stability property of direct integration 
algorithms of nonlinear dynamical systems. The first approach is a numerical one that transforms 
the stability analysis to a problem of convex optimization. The second approach investigates the 
Lyapunov stability of explicit algorithms considering the strictly positive real lemma. This paper 
reviews and compares these two Lyapunov-based approaches in terms of their merits and 
limitations. 

Keywords: Convex optimization, Direct integration algorithm, Lyapunov stability, Nonlinear, 
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Introduction 

In structural dynamics, direct integration algorithms are commonly used to solve the differential 
equations of motion after they are temporally discretized to estimate dynamic responses of 
structures, e.g., seismic responses of bridges [1]. Integration algorithms are categorized into either 
implicit or explicit. An integration algorithm is explicit when the responses of the next time step 
depend on the responses of previous and current time steps only. Otherwise, it is implicit. 
Numerous implicit and explicit direct integration methods have been developed, including the 
Newmark family of algorithms [2], the TRBDF2 algorithm [3], and the Operator-Splitting (OS) 
algorithms [4]. Liang et al. [5,6] investigated the suitability of the OS algorithms for efficient 
nonlinear seismic response of multi-degree of freedom (MDOF) reinforced concrete highway 
bridge systems and promising results in terms of accuracy and numerical stability were obtained. 
The stability of different integration algorithms for linear elastic structures has been studied 
extensively for several decades, e.g., [7]. Studies related to the stability properties of these 
integration algorithms applied to nonlinear dynamic analysis are relatively limited and, unlike linear 
ones, are rather complicated and challenging. This is attributed to specific properties of the 
nonlinear systems. For example, initial conditions affect the stability of nonlinear systems and the 
principle of superposition does not hold. 
 
Lyapunov stability theory [8,9], developed by the Russian mathematician Aleksandr Lyapunov in 
[10], is the most complete framework of stability analysis for dynamical systems. It is based on 
constructing a function of the system state coordinates that serves as a generalized norm of the 
solution of the dynamical system. The most important property of Lyapunov stability theory is the 
fact that conclusions about the stability behavior of the dynamical system can be obtained without 



 
 

actually computing the system solution trajectories. As such, Lyapunov stability theory has become 
one of the most fundamental and standard tools of dynamical systems and control theory. 
Generally speaking, constructing the above-mentioned energy function for the nonlinear system is 
not readily available. To address this difficulty, the authors proposed two approaches. In the first, a 
numerical approach is proposed to transform the problem of seeking a Lyapunov function to a 
convex optimization problem [11,12], which can solve the problem in a simple and clear manner. 
Convex optimization minimizes convex functions over convex sets, in which a wide range of 
problems can be formulated in this way. In this optimization, any local minimum must be a global 
one, which is an important property leading to reliable and efficient solutions using, e.g., interior-
point methods, which are suitable for computer-aided design or analysis tools [13]. The second 
approach proposed by the authors is based on formulating a generic explicit integration algorithm 
into a nonlinear system governed by a nonlinear function of the basic forces. This enables 
investigating the Lyapunov stability of explicit algorithms by means of the strictly positive real 
lemma [11,14]. The study for nonlinear single degree of freedom (SDOF) systems in [14] was 
extended to MDOF ones in [15]. This approach transforms the stability analysis of the formulated 
nonlinear system to investigating the strictly positive realness of its corresponding transfer function 
matrix. This is further equivalent to a problem of convex optimization that can be solved 
numerically. 
 
This paper reviews and compares these previously discussed two Lyapunov-based approaches in 
terms of their merits and limitations. The first numerical approach is shown to be generally 
applicable to implicit and explicit direct integration algorithms for various nonlinear force-
deformation relationships. Moreover, this approach can potentially be extended to nonlinear MDOF 
systems but may involve extensive computations. The second approach is applicable to explicit 
algorithms without adopting any approximation and is computationally efficient even for MDOF 
systems. 

Integration Algorithm 

The discretized equations of motion of a MDOF system under an external dynamic force excitation 
is expressed as follows: 

    1111 )( ++++ =++ iiii pufucum       (1) 

where m  and c  are the mass and damping matrices, and 1+iu , 1+iu , 1+if , and 1+ip  are respectively 
the acceleration, velocity, restoring force, and external force vectors at time step 1+i . The restoring 
force ( )uf  is generally defined as a function of the displacement vector u . It is to be noted that 
bold-faced symbols indicate arrays, either vectors or matrices. 
 
A single-step direct integration algorithms (explicit or implicit) are collectively defined in this paper 
using the following difference equations: 

    ( ) ( ) ( ) 1
2

2
2

11 +∆+∆+∆+=+ iii tηtηtii uuuuu       (2) 

    ( ) ( ) 1431 Δ ++ +∆+= iiii tηtη uuuu       (3) 

In general, Eqs. (1)–(3) require an iterative solution, which forms the basis of the implicit 
algorithms. On the other hand, these algorithms become explicit when 02 =η . For example, 

]21,21,41,41[],,,[ 4321 =ηηηη  leads to implicit Newmark with constant average acceleration, 
]21,21,0,21[],,,[ 4321 =ηηηη  transforms the integration to the explicit Newmark algorithm [2]. 



 
 

Lyapunov-Based Numerical Approach 

For each direct integration algorithm of SDOF systems, the relationship between the kinematic 
quantities at time steps 1+i  and i  can be established as follows: 

    iiii LA +=+ xx 1      (4) 

where ( ) ( )[ ]Tiiii uutut  ∆∆= 2x . It is noted that iA  and iL  are the approximation operator and the 
loading vector at the time step i , respectively. The loading vector, L , is generally bounded and 
independent of the vector of kinematic quantities, x , and does not affect the Lyapunov stability of 
the direct integration algorithms. Therefore, L  can be set to zero in the sequel of this paper. 
 
For linear structures, the approximation operator, A , remains constant. The stability criterion of 
linear systems is obvious and well-known, namely the spectral radius of the approximation operator 
( )Aρ  must be less than or equal to 1.0. In contrast, for nonlinear structures, methods that are 

applicable to linear ones generally do not work. For example, the spectral radius and frequency 
domain methods basically convey nothing about the stability properties of algorithms. Instead, we 
turned to Lyapunov stability theory, based on which a numerical approach was proposed. This 
approach transforms the stability analysis to a problem of convex optimization, which is applicable 
to direct integration algorithms used to solve nonlinear problems. 
 
As discussed above, we are investigating the system in Eq. (4) with the loading vector 0L = , i.e., 

    iii xx A=+1      (5) 

where iA  is a function of 1+iδ  which is the tangent stiffness at time step 1+i  normalized by the 
initial stiffness. Detailed derivations of iA  for different algorithms are given in [11,12].  
 
One standard Lyapunov function 1+iv  at the time step 1+i  is defined in [16] as follows:  

    1111 ++++ = ii
T
iiv xx M      (6) 

where the positive definite matrix T
ii 11 ++ = MM  is a function of 1+iδ . A sufficient condition for the 

system and thus the direct integration algorithm to be stable is as follows: 
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where 10 ≤< tr  controls the rate of convergence, i.e., the smaller the tr , the faster the convergence. 
Eq. (7) lead to the negative semi-definiteness of 1+iP , i.e., 0P =+ 1i . For a direct integration 
algorithm, 1+iM  can be expressed as: 

    1 1
1

( )
B

i j j i
j
α δ+ +

=

=∑M Φ      (8) 

where jα  and 1( )j iδ +Φ  are the j–th constant coefficient and base function, respectively, and B  is 
the total number of base functions. One example set of base functions is given in [11] where the set 



 
 

of base functions of 1Φ  to 6Φ  represent constant 1+iM , 7Φ  to 12Φ  constitute the base functions 
that treat 1+iM  as a linear function of 1+iδ , and nonlinear relationship between 1+iM  and 1+iδ  are 
considered by base functions 13Φ  to 18Φ . 

 
Figure 1.  Schematic illustration of discretization process 

With the range of iδ  and 1+iδ  given, e.g., [ ]baii ,, 1 ∈+δδ , points can be discretized within this range 
(Figure 1), e.g., sampling 1+p  points in [ ]ba,  with interval ( ) pab −=∆δ . This yields ( )21+p  
possible pairs of ( )1, +ii δδ . Accordingly, the stability analysis becomes a problem of convex 
optimization that seeks the determination of the coefficients jα  by minimizing their norm for the 
selected base functions 1( )j iδ +Φ  where Bj →1: , subjected to the following conditions on the 

( )21+p  possible pairs of ( )1, +ii δδ : 
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Moreover, with prior knowledge about the variation of 1+iδ , the range of ii δδ −+1  can be specified, 

e.g., εδδ <−+ ii 1 , where ε  is an optional parameter that is not necessarily small. For example, 
suppose we are interested in investigating the stability of a certain algorithm in the range of  

[ ]2,1, 1 ∈+ii δδ , and 5.1=iδ  at the i-th time step. If prior knowledge is known such that 3.0=ε , i.e., 
( )8.1,2.11 ∈+iδ , fewer possible pairs of ( )1, +ii δδ  that require less computational effort can be 

considered. The problem of convex optimization can be solved numerically by CVX, a software 
package for specifying and solving convex programs [17].  
 
Two examples of the softening and the stiffening cases for the implicit Newmark algorithm with 
constant average acceleration are presented to illustrate this approach. The following conditions are 
considered in these examples: 

    ( ) 0.105.020205.005.0 ===== trn επµζ      (10) 

where ( ) InnnInn kmTTtmkmc πωπµωωζ 22,,,2 2 ==∆=== . The set of base functions 1Φ  
to 12Φ  in [12] is used. 



 
 

Softening Example 
Suppose we are interested in investigating the stability of the implicit Newmark algorithm in the 
range of [ ]0.1,9.0, 1 ∈+ii δδ , therefore ( ) 005.0=−=∆ pabδ . The coefficients jα , 121: →j , are: 
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Stiffening Example 
Analogous to the procedure of the previous softening example, suppose the range of interest for the 
stiffening case is [ ]1.1,0.1, 1 ∈+ii δδ , the obtained coefficients jα , 121: →j , are: 

    
10

12
9

11
8

10
9

9

11
8

6
7

9
6

9
5

8
4

8
3

10
2

7
1

1001.5,1020.7,1094.8,1003.7

,1039.3,1001.1,1053.1,1030.2

,1025.2,1093.1,1028.2,1081.9

−−−−

−−−−

−−−−

×−=×=×−=×=

×=×=×−=×−=

×−=×=×=×=

αααα

αααα

αααα

     (12) 

The set of jα  in Eqs. (11) and (12) from many determined sets has the minimum 2-norm α , i.e. 
12

2

1
min j

j
α

=
∑ , explaining the listed small values of jα . The existence of such set of jα  implies the 

existence of 1+iM  in Eq. (8) that satisfies the inequality in Eq. (7), which signifies that the implicit 
Newmark algorithm is stable for the conditions in Eq. (10) in the range of  [ ]0.1,9.0, 1 ∈+ii δδ  based 
on Eq. (11) or in the range of [ ]1.1,0.1, 1 ∈+ii δδ  based on Eq. (12). Several other examples are 
provided in [9,10]. 
 
The approach discussed above can be applied to investigate the stability of different direct 
integration algorithms considering various nonlinear effects, e.g., stiffening ( 11 >+iδ ) and softening 
( 11 <+iδ ) force-deformation relationships. Thus, this approach is generally applicable to direct 
integration algorithms as long as they can be expressed as given by Eq. (5). Moreover, this 
approach can potentially be extended to MDOF systems. For m  DOF systems, the m3 × m3  
approximation operator is a function of j

i 1+δ , where mj →1:  denotes the j-th DOF, and thus 
( )( ) 2391 2 mmm ++  selected base functions and corresponding coefficients are needed if 1+iM  is 

expressed as an affine function of j
i 1+δ , mj →1: . Thus, this approach involves extensive 

computations for MDOF systems. 

Lyapunov-Based Approach Considering Strictly Positive Real Lemma 

This approach was proposed to deal with stability issues of explicit direct integration algorithms, 
i.e., 02 =η  in Eq. (2). As mentioned previously in the introduction, it transforms the stability 
analysis of the formulated MDOF nonlinear system to investigating the strictly positive realness of 
its corresponding transfer function matrix. 
 
For a MDOF system with n  DOFs, the j–th term of the restoring force vector, [ ]njf j ,1, ∈ , can be 
expressed as a linear combination of N  basic resisting forces of the system, [ ]Nlql ,1, ∈ , i.e., 
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j qf ==∑
=1
α      (13) 

where [ ]NT qqq ,,, 21 2=q  and [ ]j
N

jjj ααα ,,, 21 2=α . Therefore, 

    [ ] αqf ==
Tnfff ,,, 21 2      (14) 

where [ ]Tnαααα ,,, 21 2=  is an n × N  matrix. In general, N  is the summation of the number of the 
basic resisting forces from each element that contribute to the n  DOFs of the system. For the 
special case of a shear building, nN =  because of its assumed shear mode behavior. The l–th basic 
resisting force, lq , is here defined as a function of lu , which is in itself a linear combination of the 
displacement of each DOF, [ ]nju j ,1, ∈ , i.e., 

    uβl
n

j

jl
j

l uu ==∑
=1
β      (15) 

where ],,,[ 21 nuuu 2=u  and ],,,[ 21
l
n

lll βββ 2=β . Therefore, 

    [ ] βuu ==
TNuuu ,,, 21 2      (16) 

where [ ]TNββββ ,,, 21 2=  is an N × n  matrix. Detailed explanation of N  defining the number of 
columns and rows of the matrices α  and β , respectively, are available in [15]. Moreover, the l–th 
basic resisting force, lq , is a sector-bounded nonlinearity and is restricted to the following range: 

    ( ) ( )22 ll
Max

llll
Min ukuquk ≤≤      (17) 

where l l
Mink u  and l l

Maxk u  are the minimum and maximum bounds of lq , respectively. Define 

    [ ]N
MinMinMinMin kkk ,,,diag 21 2=k      (18a) 

    [ ]N
MaxMaxMaxMax kkk ,,,diag 21 2=k      (18b) 

    ]diag[ 21 N
MinMax k,,k,k 2=−= kkk      (18c) 

After some manipulation [15], both stiffening and softening systems can be expressed in Eq. (19) 
with coefficients ee BA ,  and eq  summarized in Table 1. 

    eeiei qBA −=+ xx 1      (19) 

 
Table 1. Coefficients of MDOF stiffening and softening systems 

Matrix Stiffening Systems Softening Systems 

eA  CkαBAA Mine 11 −=  CkαBAA Maxe 22 +=  

eB  αB1  αB2  

eq  iMinie xCkqq −= +11  12 +−= iiMaxe qCkq x  
 



 
 

where the terms in Table 1 are expressed as follows: 

    ( ) ( )[ ] ( )cmm0mmBB ttt eff

T

effeff ∆+=∆∆=−= −−
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12
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12
21 , ηη      (20a) 

    [ ]1 0, , Identity matrixη η= = =C βC C I I I I       (20b) 

Similar to the first numerical approach, the Lyapunov function 1+iv  at the time step 1+i  is chosen 
as: 

    111 +++ = i
T
iiv xx M      (21) 

The constraints that the basic forces are sector-bounded lead to 

    ( ) ( ) 011 ≤−−−≤−=∆ ++ ie
T

ieiii vvv xx LqWLqW      (22) 

where there exist matrices M , L and W  such that 

    LLMAAM T
e

T
e +=      (23a) 

    LWCkλMAB0 T
e

T
e +−=      (23b) 

    WWMBBλλ0 T
e

T
e

T −−+=      (23c) 

where λ  is a constant diagonal matrix of arbitrary positive coefficients. Derivations from Eq. (21) 
to Eqs. (23) can be found in [15]. Based on the generalized strictly positive real lemma [18], the 
stability analysis reduces to seeking k  such that the transfer function matrix ( )zG  in Eq. (24) is 
strictly positive real. 

    ( ) ( ) eezz BAΙCkλλG 1−−+=      (24) 

For SDOF systems, the matrices α  and β  become 1, based on [11,14], Eq. (24) reduces to  

    ( ) ( ) eezkzG BAΙC 11 −−+=      (25) 

The strictly positive realness of ( )zG  can be guaranteed by the asymptotical stability of eA  and 

    ( )[ ] 0Re >zG      (26) 

which leads to 

    ( )[ ] kzH 1Re −>      (27) 

where 

    ( ) ( ) eezzH BAΙC 1−−=      (28) 

The Nyquist plot [16] can be used to plot ( )θjeH  ∀ [ ]πθ 2,0∈ . From this plot, the minimum value 
of ( )[ ]zHRe  that is corresponding to the k1−  can be obtained. 
 
For MDOF systems, based on [19], the strictly positive realness of ( )zG  in Eq. (24) becomes 
equivalent to Eq. (29) with 0PP =T= : 
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Eq. (29) is a linear matrix inequality (LMI) over variables P  and k  [20]. This problem of convex 
optimization, which seeks k  and the corresponding P  by minimizing certain convex cost function, 
subjected to the constraints of 0PP =T=  and 0k = , can be solved numerically by CVX [17]. 
 
Multi-story shear buildings with stiffening and softening structural behaviors are used as examples 
to illustrate this approach. A general multi-story shear building structure is depicted in Figure 2. 
The detailed derivation of q  and u  as well as the corresponding matrices α  and β  for this shear 
building is given in [15]. Accordingly, the maximum, j

Maxk , and minimum, j
Mink , stiffness values of 

the j–th story, where nj →1:  and the number of stories is n , for stable (in the sense of Lyapunov) 
stiffening and softening multi-story shear building systems, respectively, are to be determined. 

 
Figure 2. A general multi-story shear building structure 

The stability analysis is conducted for the following numerical values: 

    01000,05.0,5.0 .km j
Ij === ζ      (30a) 

    ( ) 01.0,2,
1

22 =∆==
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=
njj
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j
jjj TtT µπωωωλ      (30b) 

where jT  is the period of the j–th mode of vibration of the analyzed structure. The initial bound 

matrix is 1 2diag[ , , , ]n
I I I Ik k k=k 2 , i.e., Mink  and Maxk  for stiffening and softening systems, 

respectively. A 20-story (Figure 2 with 20n = ) shear building is used to investigate the Lyapunov 
stability analysis of the explicit Newmark algorithm, i.e. 1 2 3 4[ , , , ] [1 2,0,1 2,1 2]η η η η = . Lyapunov 
stability analysis following the approach previously discussed in this section is conducted for the 
analyzed this 20-story shear building with stiffening or softening behavior. The cost function for 
this building structure is selected as )min( 20

1∑ =
−

j
jk , which is equivalent to )max( 20

1∑ =j
jk . In this 

cost function, j j j
Max Mink k k= −  is the difference of the upper and lower bounds of the basic resisting 

force jq  associated with the j–th story, where :1j n→ . Table 2 shows that the difference of the 
upper and lower bounds, Max Mink k k= − , of each resisting force for the explicit Newmark algorithm 
to be stable (in the sense of Lyapunov) for both stiffening, ( )[ , ]T T T

I I∈ +u q u k u u k k u , and 

softening, ( )[ , ]T T T
I I∈ −u q u k k u u k u , systems. 



 
 

Table 2. The k  of each basic resisting force for the 20-story shear building 

Story 
Number 

Stiffening  
systems 

Softening  
systems 

Story 
Number 

Stiffening  
systems 

Softening  
systems 

1 716.1 203.7 11 31.3 35.9 
2 125.1 149.6 12 25.3 30.8 
3 98.8 150.4 13 21.8 28.5 
4 133.0 166.5 14 19.6 26.7 
5 163.4 140.0 15 17.3 24.0 
6 119.7 97.7 16 15.0 21.2 
7 76.9 74.8 17 14.2 20.4 
8 56.5 64.1 18 16.9 23.7 
9 46.7 55.3 19 29.6 37.3 
10 39.0 44.8 20 116.1 106.7 

 
More Examples are given in [10,14,15] to illustrate this approach for different direct explicit 
integration algorithms applied to different structures (buildings and bridges) with stiffening and 
softening force-deformation relationships. 

Summary and Concluding Remarks 

This paper reviewed and compared two recently proposed Lyapunov-based approaches of stability 
analysis in terms of their merits and limitations. Interested readers should consult references 
[11,12,14,15] for detailed derivations and examples.  
 
The first approach transforms the stability analysis to a problem of existence, that can be solved via 
convex optimization, over the discretized domain of interest of the restoring force. As such, this 
approach is a numerical one with certain approximations. It is shown to be generally applicable to 
both implicit and explicit direct integration algorithms for various nonlinear force-deformation 
relationships, including stiffening and softening ones. References [11,12] considered nonlinear 
SDOF systems. This approach can potentially be extended to nonlinear MDOF systems but 
extensive computations are involved and can be overcome by some methods, e.g., parallel 
computing [21]. 
 
The second approach is specifically applicable to explicit algorithms for nonlinear SDOF and 
MDOF systems considering strictly positive real lemma. In this approach, a generic explicit 
algorithm was formulated for a nonlinear system governed by a nonlinear function of the basic 
force without adopting any approximations. Starting from this formulation and based on Lyapunov 
stability theory, the stability analysis of the formulated nonlinear system is transformed to 
investigating the strictly positive realness of its corresponding transfer function matrix. 
Furthermore, this is equivalent to a problem of convex optimization that can be solved numerically. 
The basic force in this study was limited to the sector-bounded nonlinearity, including stiffening, 
softening and even hysteretic force-deformation relationships as long as they are within the sector 
bounds. Moreover, this approach is more computationally efficient than the first numerical one, 
especially for MDOF systems. Comparisons between these two approaches are listed in Table 3. It 
should be emphasized that Eqs. (7) and (22) are sufficient conditions for dynamical systems to be 
stable. Therefore, both approaches provide a sufficient condition for the direct integration algorithm 
to be stable. In other words, neither of these two approaches can indicate the condition of instability 
of the investigated algorithms. For example, having some basic resisting force vector q  that may 



 
 

fall outside the range in Table 2 does not indicate the instability of the explicit Newmark algorithm 
for the analyzed 20-story shear building. 
 

Table 3. Comparisons between the two approaches 

Property First approach Second approach 

Algorithm Implicit & Explicit Explicit 

Nonlinearity No restriction Sector-bounded 

Condition Sufficient Sufficient 

Approximation Yes No 

MDOF Potentially Yes 

Computational effort Extensive Efficient 
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