
 

Interval-based analysis and word-length optimization  

of non-linear systems with control-flow structures  

*J.A. López, E. Sedano, C. Carreras, and C. López 
Dpto. Ingeniería Electrónica, Universidad Politécnica de Madrid. 28040 Madrid, Spain. 

*Corresponding author: juanant@die.upm.es  

Abstract 
The techniques based on extensions of interval computations allow fast and accurate analysis 
of the behavior of complex systems. Some of the most recent works in this area have presented 
procedures to evaluate systems with smooth non-linearities. We take this approach a step 
further by introducing a methodology that combines Multi-Element Generalized Polynomial 
Chaos (ME-gPC) and Statistical Modified Affine Arithmetic (MAA). This methodology allows 
modeling systems with highly non-linear operators and/or control-flow structures. It has been 
implemented in our modular and automated analysis framework, HOPLITE, so that it can be 
used to estimate the dynamic range, quantization noise and sensitivity of systems containing 
the aforementioned control-flow blocks. With this approach we have obtained in case studies 
with non-linear operators a deviation of only 0.04% with respect to the simulation-based 
reference values, which proves the accuracy of our approach. 
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Introduction 

In an industry where time-to-market is critical, the design and implementation of efficient and 
reliable Digital Signal Processing (DSP) systems can make the difference between success 
and failure. In addition, fixed-point computations are preferred when such systems are 
implemented on FPGAs and ASICs due to the lower implementation cost and power 
consumption, and higher performance with respect to its floating-point alternative. However, 
finding a fast and general way for transforming floating-point system descriptions to efficient 
fixed-point implementations remains an open issue. The analysis and selection of optimized 
word-lengths is an important and time-consuming step in the design of DSP and VLSI 
systems. Studies indicate that fixed-point refinement can take up to 25% to 50% of the overall 
development time [1]. Thus, automating and accelerating this process is strongly desirable. 
 
During the past decades there has been a lot of work on the analytical characterization of the 
different structures of the DSP subsystems using mathematical expressions [1-20]. These 
studies provide guidelines to optimize these blocks, but they fail to provide results for the 
newly-developed (typically complex) structures, as well as for the complete (large) systems. 
To try to overcome this issue, a number of proposals has recently appeared. They are aimed at 
developing fast and accurate computation models aimed at providing the optimized word-
lengths for the specific system that will be implemented. 
 
Figure 1 outlines the main parts of this Word-Length Optimization (WLO) process [16]. 
Three major areas are easily identified: (i) Determining the dynamic range of the signals of 
the system, in order to allocate the integer word-length of each variable; (ii) assigning the 



number of bits of the fractional word-lengths; and (iii) obtaining the statistical deviation 
(quantization noise) and determining the validity of the results. None of these three areas is 
trivial, and each of them is a large field of research on its own. 
 
 

 
Figure 1. Fixed-point word-length optimization flow 

 
In practice, the WLO process is commonly split in two parts: First, a computational accuracy 
constraint is determined according to the application performance, and then a WLO technique 
is applied using this constraint. Such modern WLO techniques are classified in two groups: 
simulation-based approaches, and analytical (or hybrid) ones.  
 
Simulation-based techniques [2, 3] for modeling the quantization are the most reliable and 
general approaches, but also the slowest. In order to obtain accurate models, large input data 
sets are usually required. This makes simulation-based methods impractical for WLO, since 
estimations must be repeated many times with different combinations of word-lengths as the 
optimization progresses.  
 
Modern analytical or hybrid techniques are several orders of magnitude faster than the 
simulation-based ones, but they are limited a given type of systems [4-7]. They perform 
separate analysis of the word-lengths required for the integer part (to represent the dynamic 
range of the signals) and the fractional one (to comply with the specified round-off 
constraint). The integer word-lengths are determined using range propagation or interval 
arithmetic. The fractional word-lengths are determined using a number of techniques, such as 
the Perturbation Theory [4], System Transformations [7], Arithmetic Transformations [17], 
and Handelman Representations [18]. Different Extensions of Interval Computations based on 
Affine Arithmetic (AA) [5, 6] have also provided very fast and accurate results, but they must 
be applied according to the characteristics of the system to be evaluated (linear, quasi-linear, 
polynomial, or strongly non-linear) [16].  
 
The structure of the full version of the paper will be as follows: The models based on 
extensions of AA used to evaluate the different types of systems will be explained in separate 
subsections of Section 2. It will also be shown that the non-linear computations need the 



̂  

application of Polynomial Chaos techniques to provide accurate results. Section 3 will explain 
some of the main applications that can be performed using our AA-based analysis, such as the 
sensitivity-driven optimization. The tool used for the propagation and computation of the 
results will be briefly desbribed in Section 4. Two of its main features will be highlighted: its 
modular implementation and the gradual computation of the results, since they are of 
particular importance for High Performance Computing (HPC) and the analysis of big data 
applications. Finally, Section 5 will provide the conclusions and summarizes this work. 

Theoretical background on Extensions of Interval Computations  

The evaluation of the quantization techniques using Extensions of Interval Computations has 
been rapidly progressing during the past years, and different new methodologies have been 
suggested to improve the quality and accuracy of the solutions, as well as to broaden the 
scope of the systems that can be addressed using them.  
 
The first of such extensions is Affine Arithmetic (AA). AA has been originally suggested for 
the evaluation and characterization of the linear systems, and has shown to provide among the 
fastest computation times [10, 11]. However, AA is not able to capture of the correlations of 
the nonlinear operations. To overcome this fact, Modified Affine Arithmetic (MAA) has been 
proposed instead [5, 11, 19]. MAA contains higher-order terms that keep track of the results 
of the non-linear operations. However, these higher-order terms are not orthonormal, so the 
propagation of the affine terms provides misleading results.  
 
A key feature for the accurate propagation of the higher-order terms is the incorporation of the 
Polynomial Chaos Expansions (PCE) techniques. The intervals of AA are included in the 
computation as parameters of the orthonormal polynomials of PCE, thus allowing easy 
propagation of the coefficients through the nonlinear system [16, 20]. This approach has been 
applied to dynamic range estimation [20], and to the analysis of the quantization noise for 
small, sequential systems [16]. However, PCE still fails to efficiently handle systems with 
discontinuities, and is not capable of modeling control-flow operations. Multi-Element 
generalized Polynomial Chaos (ME-gPC) is able to produce accurate models for 
discontinuous systems [16], as will be explained below. In this Section the mathematical 
background for AA, MAA, PCE and ME-gPC is given. 
 

Affine Arithmetic (AA) 

An affine form is defined as a polynomial expansion of order one where the independent 
variables are uniformly distributed in the interval [−1, 1]. Affine arithmetic is capable of 
capturing the correlation between intervals after affine operations (i.e. linear). A first-order 
affine form is expressed as [6]: 
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The mean value is given by a0, the terms εi are the independent sources of uncertainty and the 
coefficients ai are the amplitudes of these uncertainties. The uncertainty sources can represent 
the variations of the signal or the RON. The basic operations between two affine forms â y b 
are summarized in Table 1 [5, 6]. The instructions supported by this methodology are either 
linear [5, 6] or smooth non-linear [9], meaning that their behavior can be approximated by 
linear models. The terms nmax refer to the maximum number of noise terms present in the 
affine forms.  



Table 1. Coefficient propagation rules of Affine Arithmetic 

 
Linear operations (addition, subtraction and constant multiplication) are executed in a precise 
manner. However, after performing the nonlinear operations the temporal correlations of the 
input signals are lost [5]. The result of executing non-linear operations over uniform 
distributions is typically non-uniform so it is theoretically impossible to represent it as a linear 
combination of uniform distributions. In order to alleviate this shortage, MAA [21] introduces 
higher order polynomials to capture the correlations among the signals. 
 

Modified Affine Arithmetic (MAA) 

MAA was initially used for polynomial evaluation and algebraic curve plotting in 2D [21]. 
Given two affine forms: 

aaaâ ε10 += , bbbb ε10
ˆ +=  (2) 

εa and εb are the noise terms bounded in the interval [−1, 1], a0 and b0 are the means of both 
variables and a1 and b1 represent the variations of the signals over the mean values. The 
simplest nonlinear operation is a multiplication of both affine forms: 
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Generalizing for any order, the centered form of the output polynomial is given by: 
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It can be seen that this solution is an extension of AA in which all the high-order terms are 
taken into account [5]. In [21], this technique is just applied in the case of multiplications and 
other non-linear operations are obviated. Nevertheless, since the monomials of MAA are not 
orthonormal, the incorporation of the PCE techniques that take into account higher order 
terms when considering different types of operations is also required. Without them, the 
propagation of the gains throughout the system under analysis would not be accurately 
performed. 
 



Polynomial Chaos Expansions (PCE) 

Given a set of independent random variables of dimension N, { }Nφφφ ,,, 11 =Φ , and another 
random variable Y, square integrable, such that Y = f(Φ), then Y can be expressed as a 
weighted sum of polynomials as 
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where each αi is a constant coefficient and each ψi is the i-th polynomial from an orthogonal 
basis [20]. The terms αi are the spectral coefficients of the expansion, and the terms ψi(Φ) are 
the orthonormal polynomial basis, which satisfy the condition 
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In practice, the number of terms of the PCE is truncated to a finite number. It depends on the 
dimension of the expansion n (number of independent variables in vector Φ) and the 
maximum order of the polynomials used, p. The selection of the basis depends on the 
probability density functions (gaussian, uniform, gamma, beta, etc.) of the RVs present in the 
system. In particular, for the analysis of a given system with gaussian random variables, 
Hermite basis polynomials provide the most accurate results [22].  
 
The coefficients of the expansion αi in Eq. (5) are computed by applying a Galerkin 
projection operation [16, 19], and solved by applying Monte-Carlo techniques with a small 
number of samples. 
 
Once the random input signals have been defined, and expressed as a function of the ψi(Φ) 
basis polynomials, the next step is to propagate the coefficients through the data flow graph. 
This procedure is exploits the orthogonality properties of the polynomials. The basic 
operations are performed as follows.  
 
Consider two input RVs x̂  and ŷ  expanded in a PCE, 
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The computation of the linear operations is straightforward, i.e.: 
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The propagation through the non-linear operations such as the multiplication is not so direct. 
Considering that ẑ  = x̂ · ŷ  and substituting each variable by its correspondent PCE: 
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The coefficients zk are calculated by performing a Galerkin projection [19]:  
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which constitutes a linear system of m equations. It can be expressed in matrix form as: 

Z = A·X,  with A = C·Y (11)  

where A is an m×m matrix and X, Y and Z are the column vectors that correspond to the x̂ , ŷ  
and ẑ  coefficients, respectively. Tensor C(i, j, k) is the same for a given dimension and order, 
so it only has to be calculated once (for instance in a pre-processing stage), and afterwards 
reused when needed, thus notably reducing the required computation time [16]. In addition, a 
number of techniques for accelerating the computation of the C matrix can be applied, 
speeding the overall process even further. The interested reader may find detailed examples of 
the propagation of affine forms using combined PCE + MAA in [16, 19]. 
 

Multi-Element generalized Polynomial Chaos (ME-gPC) 

In many cases, PCE requires an excessively large basis to accurately represent the set of 
values. This happens particularly in the presence of discontinuities, or when many non-linear 
operations appear following each other. To overcome this, ME-gPC is formulated [WK05]. 
This technique partitions the input domain in smaller sub-domains, decomposing the complex 
functions into a set of simpler ones. This enables the efficient use of lower PCE orders to 
model the sub-domains, while still providing very accurate results [16]. 
 
Being B = [−1, 1]n the domain in which Ξ = [ 1ξ , 2ξ , …, nξ ] is defined, the ME-gPC method 
proposes its decomposition in a regular set of non-overlapping elements. Each element will be 
now contained in the domain Bk = ),[ 11

kk ba  × ),[ 22
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respectively the upper and lower bounds of the i-th local random variable. 
 
From this decomposition of the global domain, a local random vector for each element is now 
defined as kζ  = [ k

1ζ , k
2ζ , …, k

nζ ]. Next, in order to take advantage of the properties of the 

Legendre Chaos, each kζ  is re-scaled into a new random vector kξ  = [ k
1ξ , k

2ξ , …, k
nξ ]. This 

vector is equivalent to kζ  but in the domain [−1, 1]n, instead of Bk. 
 
Once a dimension has been partitioned, the new PCE expansions for each sub-domain are 
generated. Each of these expansions has the form 
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where ξ~  is defined [−1, 1]d. To calculate the coefficients iu~  of each new expansion, a linear 
system of equations is solved. This system is generated by choosing m+1 uniform grid points 

iξ
~  in [−1, 1]d. 

 
With the expansions )~(~ ξu  obtained with this method, PCE can be locally applied to the 
different elements. Once the expansions have been computed, the statistical global moments 
can be reconstructed applying Bayes' theorem and the law of total probability. 
 



Figure 2 shows an example of the domain decomposition using ME-gPC for the conditional 
inequality x2 ≥ y. 
 

 
Figure 2. Example of domain decomposition using ME-gPC. 

 
So far MEgPC has only been used to estimate the dynamic range in systems without control-
flow structures, and it has been only applied to numerical procedures. In the following 
Sections we will combine MEgPC and MAA to estimate the sensitivity and the quantization 
noise in fixed-point digital systems with control-flow structures, extending the initial analysis 
carried out for linear systems in [6] to non-linear operations and control structures in the Data 
Flow Graph. 
 
This largely broadens the applicability of the probabilistic interval analysis in word-length 
optimization, as it allows for an entire new class of systems to be targeted for modelling and 
optimization [16]. 

DSP Applications of the Extensions of Interval Computations  

Some of the main applications of the Extensions of Interval Computations will be explained 
here, in different subsections, such as Dynamic Range Estimation, Quantization Noise, and 
Sensitivity Analysis in the different types of structures, including systems with discontinuities 
and control-flow structures. 
 

The HOPLITE framework 

In this Section a modular automated word-length optimization tool, HOPLITE, is introduced. 
One of its main objectives is to provide designers flexibility to perform modelling and search 
policies that best suit their objectives [16]. In the different subsections a general overview of 
the HOPLITE work flow will be provided, some of the implementation decisions, modules 
and interfaces of the framework, and a detailed execution example.  
 



Table 2 provides a preliminary analysis of the languajes evaluated for its implementation, and 
Figure 3 shows a general overview of the functions included in the HOPLITE framework. 
 

 
Figure 3. The HOPLITE framework work flow 

 
 



 
Table 2. Language selection: requisites and availability 
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