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WELCOME MESSAGE 
 
Dear Colleagues and Friends, 
 
On behalf of the organising committees, we are delighted to welcome you to the 10th Conference on 
Computational Methods (ICCM2019) at Singapore. The ICCM conference series is an international 
conference that provides an international forum for exchange of ideas on recent advances in areas related 
to computational methods, including computational mechanics, numerical modelling & simulation of 
manmade or natural systems, as well as their applications in engineering and sciences. It will 
accommodate presentations on a wide range of topics to facilitate inter-disciplinary exchange of ideas in 
science, engineering and related disciplines, and foster various types of academic collaborations in the 
internationally. All papers accepted for publication in the proceedings have been peer reviewed. Papers 
may also be selected and invited to be developed into a full journal paper for publication in special issues 
of some peer-reviewed journals. 

The ICCM (International Conference on Computational Methods) conference series were originated in 
Singapore in 2004 by Professor GR Liu, followed by ICCM2007 at Hiroshima, Japan, ICCM2010 at 
Zhangjiajie, China, ICCM2012 at Gold Coast, Australia, ICCM2014 at Cambridge, England, ICCM2015 
at Auckland, New Zealand, ICCM2016 at Berkeley, CA, USA, ICCM2017 at Guilin, Guangxi, China, 
ICCM2018 at Rome, Italy. Now ICCM2019 comes back to Singapore for celebrating its 10th event. 

The ICCM2019 conference program includes over 330 presentations from more than 20 countries and 
regions scheduled in 47 technical sessions. There will be 3 Plenary Lectures, 8 Thematic Plenary Lectures, 
many Keynote Lectures and Invited Lectures at the conference. The conference sessions will cover a broad 
range of topics related to computational methods, including formulation theory, computational techniques, 
machine learning, modelling techniques and procedures, materials, deformation processing, materials 
removal processes, processing of new and advanced materials, welding and joining, surface engineering 
and other related processes. 

We would like to express our gratitude to all the members of the Local Organizing Committee, 
International Scientific Committee, and the student helpers who have contributed significantly in this 
conference. Our sincere thanks and appreciation go to some international reviewers for their prompt 
review reports on the submitted abstracts and papers. Our appreciation goes also to all the Mini-
Symposium Organizers for their effort and contribution in the organization. Special thanks go to Dr. 
George Xu, the secretary general, for handling a lot of tedious work, Prof Li Hua for the great support by 
organizing student helpers. 

We hope that this conference will provide a great venue of presenting and exchanging information for 
your scientific work. We wish all of you have a great time in this beautiful garden city Singapore. Finally, 
we would like to thank you for your contribution to the ICCM2019 conference. We are looking forward 
to your participation and continued engagement for the future ICCM conferences.  
 
Dr. Fangsen Cui 
Conference Chairman 
Institute of High Performance Computing, A*STAR 
Singapore Association for Computational Mechanics, Singapore 

Professor Gui-Rong Liu 
Honorary Conference Chairman  

University of Cincinnati 
USA 

Dr. George Xu Xiangguo 
Conference Secretary 
Institute of High Performance Computing, A*STAR 
Singapore Association for Computational Mechanics, Singapore 
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A hybrid reconstructed discontinuous Galerkin method for incompressible 

flows on arbitrary grids 

 
*Fan Zhang¹, Jian Cheng2, and †Tiegang Liu1 

1School of Mathematics and System Science, Beihang University, China 
2Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, China 

*Presenting author: zhangfan1990@buaa.edu.cn  

†Corresponding author: liutg@buaa.edu.cn 

Abstract 

The discontinuous Galerkin (DG) methods have attained increasing popularity for solving the 

incompressible Navier-Stokes (INS) equations in recent years. However, the DG methods 

have their own weakness due to the high computational costs and storage requirements. In 

order to tackle this problem, in this paper, a hybrid least-squares reconstruction DG (rDG) 

method, namely P1P2(HLSr), is presented to obtain a quadratic polynomial solution from the 

underlying linear DG solution by use of a hybrid recovery and reconstruction strategy. This 

hybrid rDG method combines the simplicity of the reconstruction-based DG method and the 

accuracy of the recovery-based DG method, and has the desired property of 2-exactness 

which is violated by the original least-squares rDG method. The inviscid term of the INS 

equations, which is split into the nonlinear convective term and the linear Stokes operator, is 

discretized by using a simplified artificial compressibility flux. More specially, the nonlinear 

convective term is discretized in divergency form by using the local Lax-Friedrichs flux, 

while the Stokes operator is discretized by using the artificial compressibility flux which is 

provided by the exact solution of a Riemann problem associated with a local artificial 

compressibility perturbation of the Stokes system. The discretization of the viscous term 

follows the simple direct DG (DDG) method. A number of incompressible flow problems, in 

both steady and unsteady forms, for a variety flow conditions are computed to numerically 

assess the spatial order of convergence of the P1P2(HLSr) method, which demonstrate its 

ability to achieve the designed optimal 3rd-order of accuracy at a significantly reduced 

computational costs.  

Keywords: Incompressible Navier-Stokes equations, reconstructed methods, discontinuous 

Galerkin method, artificial compressibility, arbitrary grids  

 

Numerical results 

Kovasznay problem 

The analytic solution for the 2D INS equations was derived by Kovasznay. The analytical 

expression for the velocity and the pressure is 
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 Here, 
2

24 .
2 4

Re Re
     The computational domain is 

1 3
( , ) (0,2)

2 2
    with 

prescribed Dirichlet boundary conditions on . The Reynolds number is Re=10 and the 

artificial compressibility parameter is c2=1.0. 

 

The comparisons among the numerical results obtained by the DG(P1), DG(P2) and 

P1P2(HLSr) methods are presented in Tab.1. It can be seen that the P1P2(HLSr) method, as 

expected, adding one order of accuracy to the underlying DG(P1) method and even having 

higher order of accuracy for the pressure than the DG(P2) method. Although the DG(P2) 

method does yield a slightly more accurate solution than the P1P2(HLSr) method at the same 

grid resolution, however, it is obtained at the cost of more number of the degrees of freedom 

which leads to a dramatic increase of the computational cost. The detailed convergence 

history, which contains the number of iteration steps and the CPU time (s) to reduce the 

residual by 8 orders of magnitude are presented in Tab.2. 

 

Tab1. Convergence results for the Kovasznay problem. 

 
 

Tab.2 Convergence history for the Kovasznay problem. 

 

Lid-driven cavity flow 

The lid-driven cavity flow has been widely used as a validation case for numerical method of 

the INS equations. The problem has simple geometry and boundary conditions. The standard 
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case is fluid contained in a square domain 2(0,1)  with homogeneous Dirichlet boundary 

conditions on all sides except on the upper side where the velocity is prescribed as (1,0)u . 

Here, we compare the performances of the DG(P1), DG(P2) and P1P2(HLSr)methods at high 

Reynolds number by the lid-driven cavity flow problem with Re=1,000, 5,000 and 10,000. 

 

The u-velocity and pressure profiles along a vertical line and the v-velocity and pressure 

profiles along a horizontal line passing through the geometric center of the cavity respectively 

are presented in Fig.1-Fig.3. It can be seen that the present method is able to mimic the 

available results with great accuracy, the profiles are in good agreement of the reference 

results. 

 

 
Fig.1 Results for the lid-driven cavity flow at Re=1,000. 

 

ICCM2019, 9th-13th July 2019, Singapore

3



 
Fig.2 Results for the lid-driven cavity flow at Re=5,000. 
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Fig.3 Results for the lid-driven cavity flow at Re=10,000. 

 

Steady flow over a circular cylinder 

A flow past a circular cylinder at a Reynolds number of 20 and 40 respectively based on a 

uniform free-stream velocity (1,0)u  with no-slip boundary conditions on the cylinder 

surface is considered in this case. At both of these two Reynolds numbers, the flows are 

laminar and steady and were studied quite extensively in both measurements and numerical 

calculations. 

 

Fig.4 shows the streamlines and the vortex behind the cylinder computed by the P1P2(HLSr) 

method at Re = 20 and Re = 40, respectively. It is clear to see that a pair of stationary 

recirculating regions appears in the wake of the cylinder for each condition and the length of 

the recirculating region increases with the Reynolds number. 
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Fig.4 Streamlines plot of steady flow past around a circular cylinder based on P1P2(HLSr). 

 

Next, we calculate the friction and pressure drag coefficients, the total drag coefficients, the 

front and rear stagnation pressure coefficients, and recirculation lengths obtained for the 

steady flows at Re=20 and 40, respectively. The results are summarized in Tab.3. 

 

Tab.3 Comparison of results for steady flow past a circular cylinder. 

 
An excellent correspondence can be seen to exist between the present and literature results 

which demonstrate that our method can provide an attractive alternative for solving the INS 

equations on arbitrary grids. 
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Abstract 

To specify causes of heart diseases, it is very important to understand a blood flow state in an 
aorta. In this paper, the blood flow which pushed out to the aorta according to a contraction 
motion of a left ventricle was simulated. To express its complicated shape and the motion, the 
unstructured moving grid finite volume method was adopted. In this method, the control 
volume is defined for a space time unified domain. Not only a physical conservation law but 
also a geometric conservation law is satisfied in this approach. Then high accurate 
computation is conducted under the method. The left ventricle expands and contracts, at the 
same time, the ventricle and the aorta perform a translational motion. The model of its motion 
captured from the computed tomography images is also introduced to this computation. The 
result of flow calculation in left ventricle matches with the measurement result qualitatively. 
A flow in an aorta has a dramatic shift on its style in the contraction process of left ventricle. 
We also succeeded to capture its shift on our result of the flow in the aorta. Then, the 
tendency of the flow also matches with the computation and measurement result of others. 
Furthermore, the complicated vortex structure in the left ventricle was shown as the results of 
the simulation. Thus, the validity of the computational method and the possibility of 
calculation for capturing detail flows in left ventricle and aorta were shown in this paper. 

Keywords: Computational fluid dynamics, Blood flow simulation, Left ventricle, Aorta 

 

Introduction 

There are a lot of threat serious or life threatening disease in a heart and vascular diseases, for 
example arteriosclerosis or an aneurysm. It is known from clinical observation that the heart 
and vascular diseases often appear at bifurcation or flexure of thick blood vessel. Thus, the 
relation between the origin of the heart disease and blood flow has been pointed out. Then, 
various hypotheses regarding the fluid dynamics factor of the heart and vascular diseases have 
been made. To prove the validity of the hypotheses, flows in a heart or blood vessel have been 
studied through the method of experimentation or numerical simulation. Ku et al. [1] made a 
measurement the intimal thickening generated at the branching part of the human arteria 
carotis communis, as they were focused on the relations between the intimal thickening of an 
artery and the blood flow. Then, it was shown that the intimal thickening has a correlation 
with the time fluctuation of shear force measured on a glass tube flow made from specimens 
of blood vessel. Fukushima et al. [2] created a visualization of blood flow using the real blood 
vessel taken out from the body. The real blood vessel is made transparent by salicylic acid. 
Then, they determined whether vortex tube exist at the bifurcation of the blood vessel. While, 
by multi scale computing using the finite element method, Sugiura et al. [3] created the 
numerical heart in the supercomputer although it took a huge cost. 
And now, the aorta connected to the left ventricle is comprised of three parts as the aorta 
ascendens expanding upward, the aortic arch taking a bend, and the aorta descendens 
expanding downward. Then, the three principal branched blood vessels expand from the 
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aortic arch. The blood current in the aorta behaves like an intermittent flow which alternates 
start and stop flow, because the aortic valve located between the aorta and the left ventricle 
has to alternate close and open to occur the flow from the left ventricle to the aorta. The 
complicated flow phenomenon in the aorta is created from the geometric feature and the 
pulsatility of the aorta. Then, it is very interesting from the hemodynamic standpoint 
regarding the relation between the origin of the heart disease and the factor of the fluid 
dynamics. It is at an increased risk for developing of the disease at the left ventricle and the 
aorta. Furthermore, it would become more serious when it develops. From the point of the 
view, a lot of researches [4] of the left ventricle and the aorta have been conducted. The 
objective of our paper is to develop an efficient computation method for flows of the left 
ventricle and the aorta with satisfying the expression of the complicated shapes and the 
function. To calculate more accurately, not only expansion and contraction of the left 
ventricle but also translational motion of the aorta is adopted as the motion for computation. 
In particular, to satisfy a physical conservation law and a geometric conservation law, the 
unstructured moving grid finite volume method [5][6] is adopted. In this method, a control 
volume is defined for a space time unified domain. The method made it possible to compute 
accurately for motion of the left ventricle and the aorta. Furthermore, the unstructured mesh 
approach was also able to express such the complicated shape. Then, the computation was 
carried out under the OpenMP parallel environment [7]. 

Numerical Approach 

Governing Equations 

As governing equations, the continuity equation and the Navier-Stokes equations for 
incompressible flows are adopted and written as follows: 
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where q is the velocity vector, Ea, Fa, and Ga are advection flux vectors in the x, y, and z 
direction, respectively, Ev, Fv, and Gv are viscous-flux vectors, and Ep, Fp, and Gp are 
pressure terms. The elements of the velocity vector and flux vectors are 
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where u, v, and w are the velocity components of the x, y, and z directions, respectively, and p 
is pressure. The subscripts x, y, and z indicate derivatives with respect to x, y, and z, 
respectively. Here, Re is the Reynolds number. 
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The Unstructured Moving-Grid Finite-Volume Method 

In this simulation, expansion and contraction of the left ventricle and translation motion of the 
aorta are expressed using moving mesh approach. To assure a geometric conservation law in 
moving mesh, a control volume is defined in a space-time unified domain. For the 
discretization, Eq. (2) can be written in divergence form as 

                                                                  0F  ~~
,                                                                (4) 
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The flow variables are defined at the center of the cell in the (x, y, z) space, as the approach is 
based on a cell-centered finite volume method. Thus, the control volume becomes a four-
dimensional polyhedron in the (x, y, z, t)-domain. For the control volume, Eq. (4) is integrated 
using the Gauss theorem and written in surface integral form as: 

                                           0nFnFF  
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Here, 
un~  is an outward unit vector normal to the surface, ~ , of the polyhedron control 

volume ~ , and n~ = (
xn~ ,

yn~ ,
zn~ ,

tn~ )l, (l=1, 2,... 6) denotes the surface normal vector of control 

volume, and its length is equal to the boundary surface area in four-dimensional (x, y, z, t) 
space. The upper and bottom boundary of the control volume (l = 5 and 6) are perpendicular 
to the t-axis, and therefore they have only the 

tn~  component, and its length corresponds to the 

volume of the cell in the (x, y, z)-space at time tn and tn+1, respectively.  

Computational Model and Conditions 

Geometric Model of Left Ventricle and Aorta 

The function of the left ventricle is draining blood to the aorta like a pomp. The mitral valve 
and the aortic valve are put on the inlet and the outlet of the ventricle, respectively. The shape 
of the left ventricle is structured, as shown Fig. 1. Bothe of the diameter of blood vessels at 
the mitral valve and the aortic valve are 3.0cm. The length from the base of heart to the 
cardiac apex is 7.8cm at lumen maximum volume. The cross-section shape of the left 
ventricle is ellipse. Then, the ratio of the major axis and minor axis on the ellipse is 5 to 4. 
While, the aorta is comprised of three parts which are the ascending aorta expanding upward, 
the aortic arch taking a bend, and the descending aorta expanding downward. Furthermore, 
the three principal branched blood vessels which are called innominate artery, left common 
carotid artery and left subclavian artery expand from the aortic arch. Then the aortic arch 
itself curves three-dimensionally. In other words, the central axis of the aortic arch in not on a 
plane surface. Thus, the aorta is complicated shape with bending, bifurcation and three-
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dimensional torsion. In this paper, the shape of the aorta model is created, as shown Fig. 2. 
Then, Fig. 3 shows aortic arch with three-dimensional curve around the bifurcation points. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Left ventricle model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Aorta model 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.  Angle of torsion at aortic arch from top view 
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Motions of Left Ventricle and Aorta 

The left ventricle is draining blood to the aorta by expansion and contraction. Then the heart 
rate is determined the systole and diastole of the heart. Then, a period from starting point to 
the next starting point of heart rate is called the cardiac cycle. If a pulse rate is 60bpm, one 
cardiac cycle would be 1.0sec. Then, it is classified 0.49sec as the systole and 0.51sec as the 
diastole. The history of the left ventricle cavity volumetric change in one cardiac cycle is 
shown in Fig. 4. The expansion and contraction using moving mesh at the simulation are 
expressed under the history. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  History of left ventricle volumetric change 
 
Fig. 5 shows the computed tomography images of the left ventricle and the aorta [8]. The dark 
black line is a catheter injecting a contrast medium. The figure on the left is a front view of a 
human and the figure on the right is a side view. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  CT images of left ventricle and aorta (left: front view, right; side view) 
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Fig. 6 shows the CT images at the maximum volume of the left ventricle and Fig. 7 shows at 
the minimum one. On both figures, the red line indicates the point of the aortic valve at the 
maximum one. Then, the blue line indicates at the minimum one. From these figures, the 
translation motion of the position of the aortic valve is confirmed from the figures. Then, we 
can see the motion within a broader range from the left ventricle to the descending aorta. The 
motion can affect to the blood flow since the acceleration of the motion is relatively high. 
Thus, in this computation, the motion is introduced. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. CT image at maximum volume of ventricle (left: front view, right; side view) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. CT image at minimum volume of ventricle (left: front view, right; side view) 
 
To know the length of the translation motion, the CT images are used. Several points are put 
on the images as shown in Fig. 8. These points correspond to the points at the computational 
model as shown in Fig. 9. The detail travel lengths are calculated using the height of the left 
ventricle as reference length L. Conducting the measurement by two aspects, the translation 
motion is estimated as three-dimensional movement.  
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Figure 8. Measurement length of translation motion from CT image 
(left: at maximum volume, right; at minimum volume) 

 
 
 
 
 
 
 
 
 
 
 

Figure 9. Corresponding points on computational model 

Computational Conditions 

The computational mesh is generated by MEGG3D [9] using tetrahedral and prism elements. 
The total number of the elements are 2,777,089. The heart rate is 60bpm, and the Reynolds 
number is 2,030. As an initial condition, pressure p = 0 and velocity for x, y, z directions u = v 
= w = 0 are obtained for all elements. In the cardiac diastole, the mitral valve is open and the 
aortic valve is closed completely. Then, the velocity at the mitral valve is given as a linear 
extrapolation and pressure is fixed as p = 0. While, in the cardiac systole, the mitral valve is 
closed and the aortic valve is open completely. These open and closing motion are conducted 
instantly. On the four exit of blood vessels, velocity is determined as a linear extrapolation 
and pressure is zero. The velocity on all walls of the left ventricle and the aorta is given the 
moving velocity decided expansion, contraction and translation motion.  

Computational Results 

Verification of the validity for the Computation 

To verify the validity for the computational approach, results of the flows inside the left 
ventricle and the aortic arch are evaluated. Fig. 10 shows streamlines in the left ventricle at 
the third cardiac diastole from starting this calculation. By expansion of the left ventricle, the 
blood inflow through the mitral valve is seen. Then, we can confirm that the flow makes two 
vortexes. One is generated on the center of the left ventricle, which is larger than another one. 
Another is created between mainstream and the wall. The relatively large vortex is also seen 
in the measurement results of flow in the left ventricle by Kilner et al. as shown in Fig. 11. 
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Figure 10. Streamlines in left ventricle on this computation result 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Measurement result of flow in left ventricle 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Streamline in aorta of the computation 
(left: in early systole, center: in mid to late systole, right: in end systole) 
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Fig. 12 shows streamlines in the aorta at the third cardiac systole from starting this calculation. 
In this figure, left one is in early systole, centered one is in mid to late systole, and right one is 
in end systole. In the early systole, a strong flow along the aortic arc from the left ventricle is 
seen. In the mid to late systole, a spiral flow along the mainstream is confirmed. Then, small 
vortex is generated at the entrance of the innominate artery. In the end systole, mainstream 
itself becomes weak and circulating flow along the aortic wall. Then, we can hardly see flows 
in the tributary. These results are also compared with other computation and measurement 
results. The computational results by Wada are shown in Fig. 13, and the measurement results 
by Kilner et al. are shown in Fig. 14. The tendencies of our computation results on each 
systole are seen in the other computation and measurement results. 
Comparing with other computation and measurement results of flows inside the left ventricle 
and the aorta, the qualitative correspondences are seen in both case. Thus, the validity of the 
computational approach is confirmed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Streamline in aortic arch computed by Wada 
(left: in early systole, center: in mid to late systole, right: in end systole) 

 
 
 
 
 
 
 
 
 
 
 

Figure 14. Measurement results in aortic arch by Kilner 
(left: in early systole, center: in mid to late systole, right: in end systole) 

Blood Flow in Left Ventricle 

The isosurface of Q criterion in the left ventricle at t = 22.0, 23.0, 24.0, 25.0, 26.0 and 27.0 
are shown in Fig. 15. These are from in the third early systole to the third in the mid to late 
systole. Vortex structures generated by the cardiac beat from the second period remain in the 
left ventricle. Into the domain, the inflow of blood with generating the ring-shaped vortex 
tube from the mitral valve is seen. The vortex tube is collapsing according to a decrease in the 
inflow of blood from the mitral valve. Then it becomes a complicated vortex structure and 
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spreads in the left ventricle. Thus, the possibility of calculation for capturing detail flows in 
left ventricle is shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   t = 22.0                                     t = 23.0                                     t = 24.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   t = 25.0                                     t = 26.0                                     t = 27.0 

Figure 15. Isosurface of Q criterion in left ventricle (t = 22.0 to 27.0) 

Conclusions 

To construct the computational approach for specifying cause of heart diseases, blood flows 
in the left ventricle and the aorta were calculated. For high order accurately, the unstructured 
moving-grid finite-volume method was adopted. Furthermore, not only the expansion of 
contraction of the left ventricle but also translation motion of the aorta which is captured from 
the computed tomography images was adopted in this paper. From the results of the flow in 
the left ventricle compared with measurement result, the large vortex is seen. Furthermore, the 
flows in the aorta were estimated using the other computation and measurement results. As 
the tendencies on each systole are seen in both results, the qualitative correspondences are 
confirmed. Thus, the validity of the computational approach is shown. In the computation for 
blood flows inside of the left ventricle at the diastole, complicated vortex structures are 
captured by the approach. Thus, the possibility to computed and specify the cause of the 
diseases was shown. 
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Abstract 

Until recently, the use of Computational Fluid Dynamics (CFD) appears to be gaining traction 

over traditional Gaussian Dispersion Modeling to predict and understand pollutant dispersion 

processes in urban environments. Gaussian Dispersion Models, while computationally fast, 

lacks in physical representation and accuracy but still sufficed as evidenced by its use in 

numerous engineering designs and research applications. In CFD, two typical methodologies 

namely the passive scalar transport and the multi-species transport are used to track spatial 

dispersion of pollutants. The focus of this study is to understand and quantify the differences 

between the two models when applied to near-field dispersion of heavy gases. The two 

methodologies are validated by simulating the dispersion phenomena for two test cases which 

largely bears resemblance to urban settings: a three-dimensional street canyon setup and the 

Mock Urban Setting Test (MUST) field experiment. The pollutant used in the CODASC study 

is Sulphur Hexafluoride (SF6) while Propylene (C3H6) is used in MUST, both heavier than air. 

It is found that numerical results are highly sensitive to the value of turbulent Schmidt number 

(Sct) in both test cases. Through parametric studies, the best accuracy is attained when the Sct 

value of 0.5 is used in the street canyon case and Sct value of 1.5 for MUST. Generally, better 

agreement between numerical and experimental results is reflected in the street canyon case 

study compared to MUST. For the CODASC case study, the passive scalar transport model 

yielded better results than the multi-species transport model while the opposite is true for 

MUST. With the preconceived notion that the multi-species transport model should outperform 

the passive scalar transport, a conclusion showing a lack of significant improvement the former 

has over the passive scalar transport model is indeed unexpected. With regards to computational 

efficiency, the passive scalar transport model requires much lesser resources such as CPU time 

and memory compared to the multi-species transport model, thus making it more efficient.  

Keywords: CFD, pollutant dispersion, near-field, urban environment modeling, turbulence 

modeling 

Introduction 

Pollutant dispersion modeling holds significant importance when determining the severity of 

disasters, be it natural or man-made. Incidents such as the Fukushima Daiichi accident in 2011 

or the more recent 2018 gas leak in Zhangjiakou, China have shown the devastating 

consequences on air quality through the release of toxic materials into the atmosphere. Even 

eight years after the disaster, atmospheric air quality around the immediate vicinity of 

Fukushima still contains lethal levels of radiation [1] and the effects of the incident in 

Zhangjiakou led to tragic consequences, due to the dispersion of a flammable pollutant which 

was ignited, leading to fatalities [2]. It is therefore of paramount importance to understand and 

assess these effects on public health and safety, immediately following an accident or to conduct 

risk management planning for pre-emptive purposes. The importance of understanding 

atmospheric dispersion processes is further emphasized through the span of research in 

developing state-of-the-art models from regulatory bodies such as the United States 

Environmental Protection Agency (US EPA) and UK Met Office to research organizations such 

as the European Cooperation in Science & Technology (COST). Many of these regulatory 
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bodies have developed their own atmospheric dispersion models: for instance, the open-source 

AERMOD was developed by US EPA and NAME by the UK Met Office [3]. In general, 

dispersion models are classified into three different families of models: Gaussian, Lagrangian 

and Eulerian. These models have been used to good effect in disasters such as the 

Eyjafjallajökull eruption and the Fukushima nuclear accident to provide crucial information for 

timely and preventive measures. Private research organizations have also funded initiatives to 

understand and improve the quality of models used to predict transport phenomena such as the 

COST Action 732. 

However, effectiveness and reliability of these dispersion models are confined to certain spatial 

scales namely the meteorological mesoscale which would not be suitable for analyzing 

dispersion in the urban environment, the scale of which is two orders of magnitude smaller than 

meteorological mesoscale. Hence Lagrangian and Eulerian models will not work well for 

modeling dispersion on a microscale level. Gaussian-based models do have its merits when 

used on that spatial scale but the interaction between complex flow fields and different building 

configurations limit its accuracy significantly. Besides Gaussian-based models, microscale 

Computational Fluid Dynamics (CFD) are commonly used. The cost involving CFD 

simulations is relatively low, detailed information about the flow field can be obtained 

depending on mesh resolution and scaling of simulations can be carried out with ease [4]. But 

since errors are introduced in each progressive stage of CFD modeling, accuracy and reliability 

of results are often questioned which require validation studies.  

Gaussian Dispersion Modeling 

The underlying equation of Gaussian-based models is given by:  

𝑐(𝑥, 𝑦, 𝑧) =
𝑄

2𝜋𝜎𝑦𝜎𝑧𝑢
exp (−

𝑦2

2𝜎𝑦
2

) (exp (−
(𝑧 − 𝐻𝑒)2

2𝜎𝑧
2

) + exp (−
(𝑧 + 𝐻𝑒)2

2𝜎𝑧
2

))            (1) 

where 𝑐 is the concentration of a pollutant at a given location, 𝑄 is the rate of pollutant emission, 

𝐻𝑒 is the effective height of release which is the sum of actual stack height 𝐻𝑝 and plume rise 

Δℎ, 𝑢 is the speed of wind in the 𝑥-direction at height 𝐻𝑒. 𝜎𝑦 and 𝜎𝑧 are standard deviations of 

the pollutant concentration profile in the 𝑦 and 𝑧 direction respectively, both represented by a 

Gaussian distribution which depends heavily on atmospheric turbulence. Comprehensive 

experimental measurements have been carried out to relate various values of 𝜎 to atmospheric 

stability. The resulting tabulated data is known as the Pasquill-Gifford-Turner Stability 

Classifications [5]. Stratification of the atmosphere into different stability classes is crucial to 

model the atmospheric boundary layer accurately. The boundary layers are differentiated into 

three main types: unstable, neutral and stable.  

The popularity of Gaussian models is largely due to its low computational costs, with many 

environmental regulatory agencies using it as an initial assessment in determining the severity 

of industrial accidents or pollution levels. Complex dispersion related phenomena can be 

included which adds an edge of versatility to Gaussian models. However, its validity and 

accuracy are dampened by underlying assumptions used in the derivation of Eq. (1). Velocities 

in the 𝑦 and 𝑧 direction are assumed to be zero and diffusion in the 𝑥 direction is ignored. 

Neglecting diffusion in the 𝑥 direction can lead to inaccurate results especially in situations 

where there are low wind speeds which causes significant concern. Atmospheric turbulence is 

also assumed to be uniform and homogenous since 𝜎 is directly proportional to sizes of eddies. 

Furthermore, 𝜎 values are measured from rural terrains with flat and open surfaces, which 

reduce its applicability when the model is used in an urban environment [6, 7]. A sensitivity 

study on the parameters of the Gaussian model by Adel [6] showed that changes as small as 
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10% could result in 100% under or over prediction. Hence using Gaussian models for dispersion 

in urban environments raises questionable issues in accuracy and applicability.  

Within urban environments, buildings and obstacles as well as their complex interaction with 

flow fields bring additional challenges in dispersion modeling. Near-field dispersion is 

characterized by interactions between atmospheric boundary layer flows and flow structures 

around buildings while in far-field dispersion, the horizontal motion proves to be more 

dominant over vertical motions and effects of buildings on flow fields are limited [8].  More 

specifically in near-field dispersion, there are features such as a fully three-dimensional flow 

structure around buildings which affects pollutant transport in ways that could not be fully 

described by Gaussian models. Flow separation, recirculation and various patterns of vortices 

(e.g. horseshoe vortices, vortex shedding etc.) generated by the presence of buildings adds 

further complication in determining pollutant distribution at the desired location.  

Computational Fluid Dynamics (CFD)  

Interest in CFD to model pollutant dispersion in urban environments is not newly found as seen 

by the review of Tominaga and Stathopoulos [8], which offered a comprehensive compilation 

of current modeling techniques. The use of CFD has allowed the approximation of flow field 

quantities such as velocities and concentration to be made known throughout the computational 

domain in all three-dimensions, which Gaussian-based models lack. However, CFD is not 

without uncertainties. The validation and verification of CFD models constitute a major role in 

forming a quantitative conclusion on the accuracy and the reliability of results. Availability of 

experimental data while reassuring, is to be used with caution as circumstances surrounding the 

experiment must be replicated in the CFD model through initial and boundary conditions, 

failing which will render the comparison between numerical and experimental data pointless 

[8]. Inherent in such a strict requirement is the assumption that every experiment must be carried 

out under identical conditions. This hints at some form of replicability which is mostly 

impossible when meteorological factors like wind and weather conditions are involved [9]. 

Even under more predictable conditions such as wind tunnel testing, drawbacks still exist, 

nonetheless. Therefore, a certain pre-existing error must be accepted into the overall model 

evaluation.  

The motivation behind this study is largely due to limited efforts thus far to compare the 

differences between passive scalar transport and multi-species transport. With the passive scalar 

transport model, the concentration of pollutant does not have any impact on the flow field. As 

such, flow properties remain unchanged even if a different pollutant is used. The pollutant used 

can be interpreted to be weightless and its transport is mainly governed by advection and mass 

diffusion. Using the multi-species transport model, on the other hand, will result in the flow 

field changing depending on the chemical species being transported. Since the mixing law takes 

effect, any change in composition in the mixture of species will affect the density of the 

resulting mixture. Gravitational effects are also included where physical characteristics of the 

pollutant will affect the flow field. The two species considered in this study will be the pollutant 

and air. Chemical reactions between the two species are however, ignored in this study.  

A review by Lateb et al. [4] on CFD to predict dispersion in urban environments stated that a 

common assumption used by various studies is that the pollutants are assumed to be passive 

and subsequently, the effects physical characteristics of pollutant particles have on the flow 

field are often neglected. A study previously done by Gromke and Ruck [11] [12] investigated 

pollutant dispersion in a three-dimensional tree free street canyon and found that concentration 

values predicted by FLUENT gave good agreement to wind tunnel measurements. Species 

transport was utilized but they did not study the effects of a passive pollutant. Bekka et al. [13] 
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carried out a study based on the MUST case and found that agreement with full-scale 

experimental data [14] varied with distance from the source. Better agreement was observed 

closer to the source while more deviation was observed further from the source but there was 

no indication on how transport of the pollutant was modeled, raising some doubt over the 

quality of their findings. Tominaga and Stathopoulos [15] carried out a comparison between 

neutrally buoyant (passive) scalars and heavy gases on flow and concentration fields and found 

that prediction performance of heavy gases was worse than that for neutral gases, but their scope 

was limited to just one building configuration. 

Objective  

The objective of this study is to present and evaluate CFD methods for the dispersion of heavy 

gases in urban environments using the commercial code FLUENT. Two different 

methodologies: 1) passive scalar transport and 2) multi-species are proposed to track dispersion 

of pollutant particles. The two methodologies are validated through two test cases 

representative of urban environments: a three-dimensional street canyon and the Mock Urban 

Setting Test (MUST). First, the respective mathematical models are analysed. Following that, 

the characteristics of both case studies used for validation purposes are identified. Besides 

visual observation and comparison of numerical results with experimental data, statistical 

performance measures are subsequently introduced to provide a succinct approach in 

quantifying the performance of each methodology. Results and discussion of the two 

methodologies are subsequently given, where the effects 𝑆𝑐𝑡 values have on concentration 

distributions are discussed. A comparison between both methodologies is rendered and their 

accuracy is evaluated.  

Fundamental Mathematical Models 

The Standard Gradient Diffusion Hypothesis (SGDH) is primarily used to model the turbulent 

scalar fluxes, which are postulated to be directly proportional to concentration gradients with a 

coefficient of proportionality known as turbulent diffusivity, 𝐷𝑡: 

𝑢′𝑐′ = 𝐷𝑡

𝜕𝑐̅

𝜕𝑥
                                                                             (2) 

𝑣′𝑐′ = 𝐷𝑡

𝜕𝑐̅

𝜕𝑦
                                                                             (3) 

𝑤′𝑐′ = 𝐷𝑡

𝜕𝑐̅

𝜕𝑧
                                                                             (4) 

Turbulent diffusivity can be further broken down into a ratio of two terms: turbulent kinematic 

viscosity (𝜈𝑡) over the turbulent Schmidt number (𝑆𝑐𝑡). It should be noted that 𝑆𝑐𝑡 is a free 

parameter, with multiple ranges of values that depend on flow fields and configurations of 

geometries with which the flow interacts with. This seems to suggest that 𝑆𝑐𝑡 can be altered to 

artificially increase or reduce turbulent diffusion which can drastically affect transport 

phenomena and subsequently, numerically predicted concentration.  

Tominaga and Stathopoulos [17] showed that 𝑆𝑐𝑡 ranged from 0.2 to 1.3 which differed from 

the commonly used values of 0.7 to 0.9. Gualtieri et al. [18] discovered in his analysis of 

literature from both water and atmospheric systems that the range of best-fitting 𝑆𝑐𝑡 changes 

for different cases and that there were cases where best-fit 𝑆𝑐𝑡 value was found to be the same 

for extremely different flow conditions (i.e. cases of water and atmospheric systems having 

similar 𝑆𝑐𝑡 values). These two inconsistent observations contributed to a conclusion that it is 

impossible to determine a generic 𝑆𝑐𝑡 value. Gualtieri et al. subsequently questioned if 𝑆𝑐𝑡 had 
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different values in the same flow domain but was inconclusive as to which parameters 

controlled this variability.  

The relevant governing equations begin with the continuity equation:    

∇ ∙ (𝜌𝑣⃗) = 0                                                                     (5) 

Reynolds Averaged Navier-Stokes, also known as the momentum equations: 

𝜌(𝑣⃗ ∙ ∇𝑢) = −
𝜕𝑝

𝜕𝑥
+ (𝜇 + 𝜇𝑡)∇ ∙ (∇𝑢)                                               (6) 

𝜌(𝑣⃗ ∙ ∇𝑣) = −
∂𝑝

∂𝑦
+ (𝜇 + 𝜇𝑡)∇ ∙ (∇𝑣)                                                (7) 

𝜌(𝑣⃗ ∙ ∇𝑤) = −
∂𝑝

∂𝑧
+ (𝜇 + 𝜇𝑡)∇ ∙ (∇𝑤)                                                (8) 

𝑘-𝜖 turbulence model:  

∇ ⋅ (𝜌𝑣⃗𝑘) = ∇ ⋅ (𝜇 +
𝜇𝑡

𝜎𝑘
∇𝑘) + 𝑃𝑘 − 𝜌𝜀                                               (9) 

∇ ⋅ (𝜌𝑣⃗𝜀) = ∇ ⋅ (𝜇 +
𝜇𝑡

𝜎𝜀
∇𝜀) + 𝐶𝜀1𝑃𝑘

𝜀

𝑘
− 𝐶𝜀2𝜌

 𝜀2

𝑘
                                  (10) 

𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜀
                                                                      (11) 

𝑃𝑘 = 𝜇𝑡(∇𝑣⃗)2                                                                     (12) 

Passive scalar transport equation:  

𝛻 ∙ (𝑣⃗𝑐) = 𝛻 ∙ [(𝐷𝑐 +
𝜈𝑡

𝑆𝑐𝑡
) 𝛻𝑐] + 𝑆𝑐                                              (13) 

where 𝑐 is the concentration of the scalar, 𝐷𝑐 is laminar diffusivity and 𝑆𝑐 is the source term. 

The multi-species transport model also utilizes Eqns. (5) to (12) but continues to Eqn. (14) and 

(15):  

∇ ∙ (𝜌𝑌𝑖𝑣⃗) = −∇ ∙ 𝐽𝑖 + 𝑆𝑖                                                           (14) 

𝐽𝑖 = − (𝜌𝐷𝑖 +
𝜇𝑡

𝑆𝑐𝑡
) ∇𝑌𝑖                                                          (15) 

where 𝑆𝑖 is the source term for the 𝑖𝑡ℎ species, 𝐽𝑖 is the diffusion flux of species 𝑖 which is due 

to concentration gradients, 𝐷𝑖 is the mass diffusion coefficient for species 𝑖 in the mixture and 

𝑌𝑖 is the mass fraction of species 𝑖. Eq. (14) and Eq. (15) solve for the mass fraction, 𝑌𝑖 as each 

constituent of the mixture is represented with 𝑖 = 1, 2 …etc.  

Case Studies 

CODASC 

As part of a larger effort in air quality studies to quantify the effects of tree planting on 

dispersion of traffic emissions by the Karlsruhe Institute of Technology (KIT), a database 

named Concentration Data of Street Canyons (CODASC) was established from the results of 

wind tunnel experiments with varying parameters and street canyon/tree avenue configurations 
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[20]. For the scope of this study, it suffices to consider only a tree-free street canyon 

configuration in three dimensions. The street canyon model is scaled down to 1:150, with 𝐿 =
180 𝑚, 𝐻 = 𝑊 = 18 𝑚. Four lines of tracer pollutant release, with the intention of emulating 

traffic exhaust, are placed in between the two building blocks and it exceeds the street canyon 

by about 10% on each side to consider pollutant release from traffic junctions. 𝑆𝐹6 was used as 

a pollutant in this case and the release is distributed through equally spaced perforations. 

Dimensions of computational domain and the street canyon are shown in Fig. 1. Experimental 

data for various scenarios was made available through the online database [20]. 

  
Figure 1. Dimensions of CODASC street canyon model. 

Inlet wind velocity is in the 𝑥-direction, perpendicular to the building blocks and it follows a 

power law profile in a neutrally stratified atmospheric boundary layer: 

𝑢(𝑧)

𝑢(𝑧𝑟𝑒𝑓)
= (

𝑧

𝑧𝑟𝑒𝑓
)

𝛼

                                                               (16) 

𝑧𝑟𝑒𝑓 is the reference height which is 0.12 𝑚 and the flow velocity at the reference height, 

𝑢(𝑧𝑟𝑒𝑓) is 4.70 𝑚/𝑠. Similarly, 𝑢(𝑧) is the velocity at a given height 𝑧. 𝛼 is the wind shear 

exponent of 0.3. 𝑘 and 𝜖 profiles are specified as follows:        

𝑘 =
𝑢∗

2

√𝐶𝜇

(1 −
𝑧

𝛿
)                                                                  (17) 

𝜀 =
𝑢∗

3

𝜅𝑧
(1 −

𝑧

𝛿
)                                                                    (18) 

where 𝑢∗ is the friction velocity of 0.52 𝑚/𝑠 and 𝐶𝜇 is 0.09 which is the turbulence model 

constant. 𝛿 is the boundary layer thickness, 𝜅 is von Kármán’s constant and both have values 

of 0.96 and 0.4 respectively. The variable of interest is the non-dimensional concentration value 

𝑐+ which is normalized: 

𝑐+ =
𝑐𝑢𝐻𝐻

𝑄/𝑙
                                                                       (19) 

where 𝑐 is the measured concentration, 𝑢𝐻 is equivalent to 𝑢(𝑧𝑟𝑒𝑓) and 𝑄/𝑙 is the tracer source 

strength of 𝑆𝐹6 per unit length. The main point of interest is the normalized concentration 

distribution of the leeward and windward side of the street canyon.  

Mock Urban Setting Test (MUST) 

MUST is a full-scale, outdoor experiment free from laboratory limitations conducted at the U.S. 

Army Dugway Proving Ground (DPG) Horizontal Grid test site [14]. Motivation for MUST 

primarily grew out of a need for field data to be obtained outside laboratory conditions for the 
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verification and validation of models developed to understand dispersion mechanisms and the 

full effects of atmospheric boundary layers and surface roughness on transport phenomena in 

an urban setting. The setup configuration of MUST comprises of shipping containers each 12.2 

𝑚 long, 2.42 𝑚 wide and 2.54 𝑚 high arranged in a 12 by 10 array in a 200 𝑚 squared area. 

With reference to the original report [14], trial name #2681829 is selected to be replicated in 

this present study by means of numerical methods. Propylene (𝐶3𝐻6) is used as a tracer gas and 

is released at a height of 1.8 𝑚 above ground at a rate of 225 litres per minute and the location 

of release is marked by a cross in Fig. 2. 48 sensors were strategically placed at areas of interest 

to measure concentrations; 40 of which are distributed evenly across the array at a height of 1.6 

𝑚 above ground and are denoted by the orange points. The other 8 are placed 1, 2, 4, 6, 8, 10, 

12 and 16 𝑚 above ground level at a single location in the middle of the array, where the green 

point is. The dimensions of the computational domain are shown in Fig. 3. 

 
 

Figure 2. Layout of test case 

#2681829 and locations of sensors 1 

to 48 (Image taken from [12]). 

 

Figure 3. Dimensions of computational domain 

for MUST. 

 

Given the nature of MUST experiments (i.e. outdoor and full-scale), it is necessary to model 

the atmospheric boundary layer (ABL) to obtain accurate and reliable predictions of 

atmospheric-related phenomena [21]. More specifically, the modeled ABL must be horizontally 

homogenous which is achieved when inlet profiles of mean wind speed and turbulence 

quantities are in equilibrium with the wall functions used. With a horizontally homogenous 

ABL, streamwise gradients will be prevented from forming in these profiles as the flow 

progresses to simulate the phenomena of interest. This study focuses on a neutrally stratified 

ABL since thermal and buoyancy effects on turbulence are not considered. The most commonly 

used boundary conditions to simulate the ABL is first proposed by Richards & Hoxey [22]. For 

fully-developed, steady, incompressible and 2-dimensional ABL flows, the 𝑘-𝜀 turbulence 

model can be simplified to Eqs. (21) and (22) when Eq. (20) is assumed:  

𝑉 = 𝑊 =
𝜕𝑈

𝜕𝑥
=

𝜕𝑘

𝜕𝑥
=

𝜕𝜀

𝜕𝑥
= 0                                                         (20) 

𝜕

𝜕𝑧
(

𝜇𝑡

𝜎𝑘

𝜕𝑘

𝜕𝑧
) + 𝐺𝑘 − 𝜌𝜀 = 0                                                           (21) 

𝜕

𝜕𝑧
(

𝜇𝑡

𝜎𝜀

𝜕𝜀

𝜕𝑧
) + 𝐶𝜀1𝐺𝑘

𝜀

𝑘
− 𝜌𝐶𝜀2

𝜀2

𝑘
= 0                                                   (22) 

where 𝐺𝑘 = 𝜇𝑡 (
𝜕𝑈

𝜕𝑧
)

2
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𝜅2 = 𝜎𝜀(𝐶𝜀2 − 𝐶𝜀1)√𝐶𝜇                                                                (23) 

Inlet velocity, 𝑘 and 𝜀 profiles proposed by Richards & Hoxey in 1993 follow the log-law 

profile as specified from Eqs. (24)-(26). It can subsequently be shown that Eqs. (24)-(26) are 

the analytical solutions to the 𝑘 − 𝜀 turbulence model of Eqs. (21) and (22) if Eq. (23) is 

satisfied. The constants are specified by Launder & Spalding [16], where 𝐶𝜀2 = 1.92, 𝐶𝜀1 =
1.44, 𝜅 = 0.42 and 𝐶𝜇 = 0.09 which results in 𝜎𝜀 = 1.225.  

𝑈(𝑧) =
𝑢𝐴𝐵𝐿

∗

𝜅
ln (

𝑧 + 𝑧0

𝑧0
)                                                             (24) 

𝑘(𝑧) =
(𝑢𝐴𝐵𝐿

∗ )2

√𝐶𝜇

                                                                       (25) 

𝜀(𝑧) =
(𝑢𝐴𝐵𝐿

∗ )3

𝜅(𝑧 + 𝑧0)
                                                                    (26) 

The freestream velocity of wind entering the computational domain has a magnitude and 

direction of 7.93 𝑚/𝑠 at a height of 4 𝑚 above ground level and −41° respectively. 𝑢𝐴𝐵𝐿
∗  is the 

frictional velocity of 1.1𝑚/𝑠 and roughness length, 𝑧𝑜 has a value of 0.19368 𝑚 when von 

Kármán’s constant, 𝜅 takes a value of 0.42. Concentration is measured in parts per million by 

volume (ppmv). Standard wall functions with sand-grain roughness modifications following 

the logarithmic law of the wall where the roughness function Δ𝐵 =
1

𝜅
ln (1 + 𝐶𝑠𝑘𝑠

+) for a fully 

rough regime (𝑘𝑠
+>90) are used and 𝑘𝑠

+ is the non-dimensional roughness height. This results 

in Eq. (27) where 𝐸 = 9.793.  

𝑢𝑝 =
𝑢∗

𝜅
ln (

𝐸𝑦+

1 + 𝐶𝑠𝑘𝑠
+)                                                            (27) 

Comparing Eq. (27) with the velocity profiles by Richards & Hoxey, Eq. (24) it is observed 

that both are similar and hence must be consistent. If profiles proposed by Richards & Hoxey 

are used and through first-order matching, 𝑘𝑠 is given by:  

𝑘𝑠 =
𝐸𝑧0𝑧𝑝

𝐶𝑠(𝑦0 + 𝑦𝑝)
                                                                (28) 

According to FLUENT [19], the roughness constant 𝐶𝑠 is set to a default value of 0.5 which 

when used with 𝑘-𝜀 turbulence models, Nikuradse’s original experimental data [23] for flow 

through a pipe tightly packed with a uniform sand-grain roughness can be replicated. FLUENT 

subsequently recommended that the range of 𝐶𝑠 should lie between 0 and 1 depending on how 

roughness varies from the uniform sand-grain. However, this range is limited to a specific case 

of pipe flow as evidenced from lack of a clear guideline on setting 𝐶𝑠 for arbitrary types of 

roughness. Using the default value of 𝐶𝑠 in FLUENT results in 𝑘𝑠 ≈ 3.8 𝑚, based on 𝑧0 =
0.19368 𝑚.  Given the multitude of studies [21] [24] [25] which strongly advised that the 

normal distance from the centre point P of the first cell adjacent to the wall 𝑧𝑝 to be greater than 

𝑘𝑠, it follows that 𝑧𝑝 > 3.8 𝑚 and subsequently the height of the first cell adjacent to the wall, 

2𝑧𝑝 > 7.6 𝑚. This requirement is not practical, given that the height of a container used in this 

case study is only a mere 2.54 𝑚. The result would be a very coarse mesh which would not be 

able to resolve the flow field accurately. To overcome this, an alternative solution is considered 

and implemented in this study where the restriction on 𝐶𝑠 is relaxed and set equal to 𝐸 which 

results in 𝑘𝑠 = 𝑧0. This condition is enforced in the far-field region of the computational domain 
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surrounding the near-field region, where the arrays of containers are placed. In the near-field 

region, 𝑘𝑠 is set equal to 0 and 𝐶𝑠 equal to 0.5.  

Statistical Performance Measures 

To quantify the quality of numerical results and their agreement with experimental data, 

statistical performance measurements are introduced. Following recommendations by Chang et 

al. [10], the normalized mean square error (NMSE), fractional bias (FB) and the fraction of 

predictions within a factor of two of observations (FAC2) are used. The definitions of these 

statistical performance measures are defined below:  

𝑁𝑀𝑆𝐸 =
(𝐶𝑜 − 𝐶𝑝)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐶𝑜
̅̅ ̅𝐶𝑝

̅̅ ̅
                                                                  (29) 

𝐹𝐵 =
(𝐶𝑜

̅̅ ̅ − 𝐶𝑝
̅̅ ̅ )

0.5(𝐶𝑜
̅̅ ̅ + 𝐶𝑝

̅̅ ̅)
                                                                   (30) 

𝐹𝐴𝐶2 =

𝑁
0.5≤

𝐶𝑝

𝐶𝑜
≤2.0

𝑁𝑡𝑜𝑡𝑎𝑙
                                                                    (31) 

where 𝐶𝑝 refers to model predictions while 𝐶𝑜 are experimental values. A perfect model would 

have a value of 1 for FAC2; a value of 0 for FB and NMSE. However, it is well-known that 

uncertainties will inevitably be present in simulating transport phenomena.  

Results & Discussion 

CODASC 

Grid independence studies were carried out, ensuring the solution no longer changes with mesh 

density. A mesh size of 14 million cells was found to be adequate. As the flow approaches 

normal to the street canyon, flow separation results with elements of recirculation inside the 

canyon. Pollutants released from the ground will be carried by the downward movement of the 

recirculated flow and deposited on the leeward side. This recirculation is responsible for 

differences in magnitude of 𝑐+ between both walls as the pollutants gradually accumulate on 

the leeward side whilst deposits of tracer gas are removed from the windward side. Flow 

recirculation also traverses in the 𝑧-direction, along the length of each building as seen in Fig. 

4. Since the entering flow is symmetrical about the 𝑧-𝑥 plane, the traversing of recirculated 

flow grows from each end of the street canyon into the 𝑧-direction and naturally meets in the 

middle, which explains why 𝑐+ is highest in the middle of the street canyon. Combining all 

these elements together will result in concentration distribution in Fig. 5. The streamlines of the 

airflow in Fig. 4 are colored by velocity magnitude and the contour plot in Fig. 5 is distinguished 

by normalized concentration 𝑐+.  
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Figure 4. Velocity (𝑚/𝑠) streamlines 

obtained from a z-x cutting plane at edge of 

the model as flow approaches normal to 

building. 

Figure 5. c+ distribution in near-field 

region area of interest. 

Dependence of Sct Value on c+ 

One of the primary concerns in this study is determining the appropriate value of 𝑆𝑐𝑡, which is 

a free parameter, to be used. Given the nature of 𝑆𝑐𝑡 as described earlier, this free parameter 

can be tuned to artificially reduce or amplify turbulent diffusion or alternatively as it is more 

commonly done, the value to be used can be obtained from reviews of past studies. The practice 

of tuning the 𝑆𝑐𝑡 value is ill-advised as evidenced from multiple studies which have warned 

against it in order to fit the experimental data available [17] [18]. But the use of such tuning 

practices strengthens the premise that determining the appropriate 𝑆𝑐𝑡 value is problem 

dependent [17] as flow interacting with different configurations of obstacles have their own 

turbulent kinetic energy and turbulent diffusion rates.   Referring to past studies, Tominaga et 

al. [17] concluded that dispersion in a street canyon configuration compared to that around a 

single building will be different, stating that turbulent diffusion is often underestimated in 

RANS models when applied to single building configuration. With more obstacles present, the 

increase in turbulent kinetic energy would compensate for that underestimation, hence it is 

expected that a value greater than 0.3 would provide better prediction results for a street canyon 

configuration. They went on to conclude that 𝑆𝑐𝑡 values should be considered depending on 

how dominant turbulent diffusion is in a given flow configuration. But Gromke et al. [12] used 

RANS simulations of a street canyon for multiple values of 𝑆𝑐𝑡 ranging from 0.2 to 1.0 and 

found that the value of 0.3 gave the best agreement with experimental results. However, they 

concluded by recommending a critical review of 𝑆𝑐𝑡 values for future studies on pollutant 

dispersion in urban environments.  

In this case study, RANS simulations were conducted for selected 𝑆𝑐𝑡 values from a range of 

0.1 to 0.9 to validate against past studies and to show the effects 𝑆𝑐𝑡 values have on turbulent 

diffusion. Normalized concentration, 𝑐+ was monitored on both leeward and windward side in 

the street canyon. On each side, 𝑦 from 0 to 1.2 were divided into 100 equally spaced discrete 

points for every 𝑧 value from 0 to 0.12 in increments of 0.02. Referring to Fig. 6 below, points 

1 to 700 represent distribution of 𝑐+ on the leeward side of the street canyon. Similarly, points 

701 to 1400 represent distribution of 𝑐+ on the windward side of the street canyon. For example, 

with reference to Fig. 1, point 1 refers to the red cross marked on the leeward wall, where 𝑧 = 

0 and 𝑦 = 0. Point 2 is subsequently on 𝑧 = 0 and 𝑦 = 0.012 and point 100, denoted by the 

orange cross is where 𝑧 = 0 and 𝑦 = 1.2. Point 101 is continued where 𝑧 = 0.02 and 𝑦 = 0 and 

so on. Point 701 is on the windward wall, where 𝑧 = 0 and 𝑦 = 0, is denoted by the purple 

cross. Point 800 is denoted by the black cross which is where 𝑧 = 0 and 𝑦 = 1.2. Point 801, by 

the same logic, is where 𝑧 = 0.02 and 𝑦 = 0. This accounts for the total of 1400 discrete points 

to determine the concentration distribution on both leeward and windward walls. By visual 

ICCM2019, 9th-13th July 2019, Singapore

27



observation, it can be seen that 𝑐+ distribution has been consistently overpredicted on the 

leeward side and this overprediction increases as the 𝑆𝑐𝑡 value increases in Fig. 6. The same 

observation applies to the windward side but 𝑐+ is underpredicted when 𝑆𝑐𝑡 has a value of 0.3. 

𝑐+ is larger in magnitude on the leeward side and this remains true for all cases simulated.  

  
Figure 6. Plot of c+ distribution on leeward 

side followed by windward side in the street 

canyon. 

Figure 7. 45° line plot of c+ distribution 

when Sct = 0.5. 

Fig. 7 shows the deviation between numerical prediction and experimental data for the case 

when 𝑆𝑐𝑡= 0.5. The leeward side and windward side are separated for ease of analysis. Data 

points should ideally lie along the red line and in between the two dotted green lines which 

provide a band of error on how far these points deviate from experimental measurements. 𝑐+ 

distribution on the windward wall tend to lie along the 45° line compared to that of the leeward 

wall, where larger and more frequent deviation is encountered. Due to the extensive number of 

data points, statistical measures are necessary in order to give a quantitative view of the results 

which are reflected in Table. 1. Comparing the results, NMSE is lowest for 𝑆𝑐𝑡 0.3 while FB 

for 𝑆𝑐𝑡 0.5 is lowest. Both 𝑆𝑐𝑡 0.3 and 0.5 share the same value for FAC2 which is close to the 

ideal value of 1 compared to other 𝑆𝑐𝑡 values. From this analysis, it can be concluded that 𝑆𝑐𝑡 

0.5 is the optimum value for this street canyon case study, simultaneously verifying Tominaga 

et al. [17] expectations for a 𝑆𝑐𝑡 value greater than 0.3.  

Table 1. Statistical performance measurements for different Sct values  
𝑺𝒄𝒕 𝟎. 𝟑 𝑺𝒄𝒕 𝟎. 𝟓 𝑺𝒄𝒕 𝟎. 𝟕 𝑺𝒄𝒕 𝟎. 𝟗 Model Perfects 

NMSE 0.20 0.31 0.45 0.59 0 

FB 0.14 -0.05 -0.17 -0.26 0 

FAC2 0.95 0.95 0.92 0.90 1 

 

Contour plots of the leeward wall of the street canyon are presented from Figs. 8 and 9, while 

contour plots of the windward wall are presented from Figs. 10 and 11. These are positioned on 

the 𝑧 − 𝑦 plane. The contour plots are all symmetrical about the 𝑧-axis, which serves as a form 

of validation between model and physical reality. 𝑐+ at the two ends of both leeward and 

windward walls is relatively lower due to more dominant convection forces from vortices 

generated from the interaction between the flow and the street canyon. 

 

 

 

Point 
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Figure 8. c+ distribution of experimental 

result for leeward wall. 

Figure 10. c+ distribution of 

experimental result for windward wall. 

  
Figure 9. c+ distribution of numerical 

result on leeward wall when Sct = 0.5. 

Figure 11. c+ distribution of numerical 

result on windward wall when Sct = 0.5. 

Comparison Between Passive Scalar and Multi-Species Transport Models 

For the multi-species model, a 𝑆𝑐𝑡 value of 0.5 is used based on earlier findings from the passive 

scalar model. As seen in Table 2, the passive scalar transport model outperforms the multi-

species model in every statistical benchmark, which is unexpected as it is initially believed that 

the multi-species model will instead outperform the passive scalar transport model since the 

pollutant considered is denser than air. Density of the flow field is expected to change due to 

changes in the mass fraction of pollutant in air because of the coupling of momentum equations 

with the continuity equation. Similarly, Fig. 12 to Fig. 15 show the respective contour plots. 

Table 2. CODASC: Comparison of passive scalar and multi-species transport model 

through statistical performance measures. 

 Passive Scalar Transport 

Model 

Multi-Species 

Transport Model 
Model Perfects 

NMSE 0.31 1.99 0 

FB -0.05 -0.48 0 

FAC2 0.95 0.87 1 

 

 
 

 
 

  
Figure 12. CODASC: c+ distribution on the 

leeward wall (Passive Scalar Model). 

Figure 14. CODASC: c+ distribution on the 

windward wall (Passive Scalar Model). 

  

Figure 13. CODASC: c+ distribution on the 

leeward wall (Multi-Species Model). 

Figure 15. CODASC: c+ distribution on the 

windward wall (Multi-Species Model). 

Mock Urban Setting Test (MUST) 

In order to determine if some form of homogeneity has been achieved with the current 

parameters set, the profiles of velocity in the 𝑦-direction, 𝑘 and 𝜀 are monitored. Referring to 

Fig. 16, profiles at 𝑦_1 and 𝑦_2 are tracked as flow progresses from the far-field region to the 

near-field region, especially since grid density changes are involved. Fig. 17 shows the 𝑦-

velocity profiles with the analytical profile, the 𝑘 and 𝜀 profiles with their respective analytical 

profiles as 𝑧 increases. The velocity profiles in Fig. 17 reflects a relatively good agreement 

between the analytical profile and 𝑦_1 and 𝑦_2 save for some deviations on the order of 

approximately 0.1. 𝑘 profiles, on the other hand, show an increasing deviation from the 
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analytical profile with increasing 𝑧. The profile of 𝑦_1 deviate from 𝑦_2 near the ground and 

generally show an underprediction of turbulent kinetic energy. According to Richards and 

Norris [26], the local maximum in turbulent kinetic energy 𝑘 at 𝑦_2 is due to an inconsistency 

in the discretization of the production term 𝑃𝑘 instead of the turbulence model itself. The 𝜀 

profiles show no differences between the analytical profile, 𝑦_1 and 𝑦_2 except for the near-

ground region.  

 

 
Figure 16. Locations in the MUST case 

where v, k and ε profiles are taken and 

monitored from. 

Figure 17. Plot of Z against mean 

velocity, k and ε profiles for MUST 

case. 

As the incoming flow approaches the near-field region, the presence of containers forces the 

flow to be diverted with recirculation around each individual container and is deflected 

upwards. Complexity surrounding this flow configuration is significantly greater than the street 

canyon case given that the flow enters at an inclined angle. The streamlines of the fluid flow 

are shown in Fig. 18, where it is colored by velocity magnitude. According to the coloration of 

the streamlines, it is observed that a slight acceleration of the flow persists despite enforcing 

the horizontal homogeneity condition when flow transits from the far-field to near-field region. 

It is also noted that behind each container, the velocity of streamlines drops to almost zero. 

 
Figure 18. Velocity streamlines of flow entering the near-field domain at a −41° angle of 

the MUST case. 
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Dependence of Sct Value on c+ 

Given the flow configuration in MUST varies significantly from the street canyon model due 

to different geometries, it is expected that the optimal 𝑆𝑐𝑡 would be different. Experimental data 

is readily available from on-site measurements which adds ease to validation. Based on visual 

observations of Fig. 19, the most noticeable trend is that numerical results consistently 

underpredict 𝑐+. Using statistical performance measures in Table 3., NMSE appears to be 

lowest for 𝑆𝑐𝑡 1.5, while FB is lowest for 𝑆𝑐𝑡 2. Both 𝑆𝑐𝑡 1.5 and 2 share the same FAC2 of 

0.47. Comparing NMSE and FB of 𝑆𝑐𝑡 1.5 and 𝑆𝑐𝑡 2 leads to conflicting results and can be 

concluded that there are limited differences between these two 𝑆𝑐𝑡 values. However, a 

conclusion can be drawn in that 𝑆𝑐𝑡 values of 1.5 and higher will result in better agreement with 

experimental data. Fig. 20 show the contour plot of 𝑆𝑐𝑡 value equal to 1.5 which ranges from 0 

𝑝𝑝𝑚𝑣 to 6 𝑝𝑝𝑚𝑣. The inlet flow is at an angle of −41°, which is stated to be the mean angle 

based on data obtained by field experiments [14].   

Table 3. Statistical performance measurements of various Sct values for the MUST case. 
 𝑺𝒄𝒕 0.5 𝑺𝒄𝒕 0.7 𝑺𝒄𝒕 0.9 𝑺𝒄𝒕 1.5 𝑺𝒄𝒕  2 Model Perfects 

NMSE 1.68 1.08 0.78 0.55 0.59 0 

FB 0.95 0.81 0.70 0.49 0.39 0 

FAC2 0.03 0.21 0.35 0.47 0.47 1 

 

 
 

Figure 19. Plot of numerical c+ data from 48 

sensors placed at various locations with 

increasing Sct values in the MUST case. 

Figure 20. c+ distribution with Sct = 1.5 

for MUST case. 

Comparison Between Passive Scalar and Multi-Species Transport Models 

Next, a comparison of accuracy in predicting 𝑐+ between the passive scalar transport model 

and multi-species model is made. 𝑆𝑐𝑡 value of 1.5 is taken for both cases. From Fig. 21, the 

multi-species model provides better agreement with experimental results compared to the 

passive scalar model. Significant underprediction of numerical results continue to persist, with 

increasing deviation away from the source release. A similar conclusion is also reached by 

examining the statistical performance measures in Table 4. NMSE and FB indicate that the 

multi-species model gave results closer to perfect model values than the passive scalar model 

did while both models hold the same values for FAC2 of 0.47. Fig. 22 and Fig. 23 show the 

degree of dispersion with different methodologies used.  

Table 4. Comparison of statistical performance measures of passive scalar 

and multi-species transport model against the model perfects. 
 Passive Scalar Multi-Species Model Perfects 

NMSE 0.55 0.45 0 

FB 0.49 0.31 0 

FAC2 0.47 0.47 1 
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Figure 21. Plot of numerical c+ data for passive scalar and multi-species transport model 

with Sct = 1.5 of 48 sensors placed at various locations for MUST case. 

 

  
Figure 22.  c+ distribution of passive 

scalar transport model in MUST case with 

the mean inflow angle of −41°. 

Figure 23. c+ distribution of multi-species 

transport model in MUST case with the 

mean inflow angle of −41°. 

Variation of Inflow Angles 

In an attempt to investigate further the discrepancy in concentration of pollutant far from the 

source release, the inlet boundary conditions are examined in further detail. A standard 

deviation of 9.5° in the instantaneous wind direction is provided as reflected by Yee and Biltoft 

[27]. Likewise, an additional point mentioned by Nadir et al. [13] was the standard deviation of 

the inlet flow angle of −41° but this was overlooked as a potential source of error in his paper. 

This is considered in the present study and following the deviation of −9.5°,  two separate 

additional cases with the inflow angle of −31.5° and −50.5° were simulated. In Fig. 24, the 

inflow at an angle of −31.5° clockwise from the positive 𝑥-axis resulted in better agreement 

compared to the case with an angle −41° clockwise from the positive 𝑥-aixs. Underprediction 

still occurs, albeit at a lower occurrence when inflow angle deviates to −31.5° and it is mostly 

limited to the tower of sensors numbered 40 to 48. This is further evidenced in Table 5., where 

the case with inflow angle of −31.5° performed significantly better on every statistical 

performance measure. When inflow is angled at −50.5°, the opposite occurs in that the model 

performed worse. These cases are simulated using a 𝑆𝑐𝑡 value of 1.5. This was repeated using 

the multi-species transport model and a similar conclusion can be drawn. The above attempts 
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in carrying out studies involving the change in inflow angles conclusively show a source of 

error originating from comparing field experiments with numerical studies. This error is 

expected and inevitable when carrying out full-scale outdoor experiments.  

Table 5. Statistical performance measures against model perfects for varying inflow 

angles with the passive scalar transport model in MUST case. 

 
−𝟒𝟏° −𝟑𝟏. 𝟓° −𝟓𝟎. 𝟓° 

Model 

Perfects 

NMSE 0.55 0.21 2.31 0 

FB 0.49 0.28 0.76 0 

FAC2 0.47 0.65 0.18 1 

 

 
Figure 24. Plot illustrating the numerical c+ data from 48 sensors placed at various 

locations in the MUST case, with different inflow angles using the passive scalar transport 

model compared against experimental data. 

Conclusion 

A comparison between two different transport methodologies was carried out through their 

respective validation against two test cases; the CODASC model and MUST. The CODASC 

experiment was carried out under controlled conditions in a wind tunnel whereas MUST is a 

full-scale outdoor experiment, taking into account effects of the atmospheric boundary layer. 

Results from CODASC study proved that the passive scalar transport model outperformed the 

multi-species transport model and the opposite for MUST. In reality, it is expected that the 

multi-species model will provide better accuracy since density changes caused by species 

compositions in the flow field are taken into account. Furthermore, pollutants heavier than air 

in terms of molecular weight were used in simulating transport phenomena for both cases, 

allowing the physical dispersion process to be more accurately represented.  

Hence, it is concluded that since the multi-species transport model did not provide significant 

improvement over the passive scalar transport model in general, the multi-species model should 

be dismissed until further investigations can prove its worth. Furthermore, for engineering 

applications where computational efficiency is a major component in determining which 

methodology to use, it should be noted that the passive scalar transport model is much more 

efficient compared to the multi-species transport model. Time taken for a simulation using the 

passive scalar transport model can be up to three times shorter compared to using the multi-

species model.   
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For CODASC case study, limited information on how the four lines of tracer source release 

were modeled in both wind tunnel experiments and numerical studies that it is believed the 

results from this present study could only be justified with the assumption of a dilute source. 

For MUST, given that it is a full-scale outdoor experiment, it would be unrealistic to expect the 

magnitude and direction of the inlet wind flow be maintained throughout the course of the 

experiment, though it is an assumption necessary for numerical studies lest the level of 

complexity be increased. Through investigations on the variations of inflow angles, it suggests 

that the inflow angle did not remain constant at −41° during field experiments. Differences in 

configuration of obstacles in both cases could play a major role in prohibiting the full realisation 

of benefits in utilising the multi-species transport model. Efforts to remove the turbulent 

Schmidt number, 𝑆𝑐𝑡 should be a priority in reducing ambiguity in dispersion studies using 

CFD.  
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Abstract 

 

Invariably, any type of microscopic imaging modality can be used to reconstruct 

morphological data in three-dimensions (3-D). These techniques allow us to study the 

structural characteristics of cells, tissues and organs and gaining meaningful insights into their 

form and function. One of the oldest methods for studying biological entities in 3-D is serial 

histological-section reconstruction (SHSR) which dates back to the late 19th century. Despite 

the advent of competing modern techniques that are faster, cheaper and easier to apply and 

that work in an automated fashion, this method (SHSR) remains indispensable. It is because 

reconstructions resulting from sections generally display better contrast and signal-to-noise 

ratio. Additionally, dyes and labels can be used more effectively when applied to the surfaces 

of sections than to, e.g., resin sample blocks: functional units can therefore be identified by 

coloured- or fluorescent signals. SHSR is useful from ~0.2 µm resolution and can easily 

sample large volumes in the 10003 voxel range. These characteristics make it particularly 

effective for preparing accurate, high-resolution 3-D representations of micro-anatomical 

data. Here, we report on computational use of SHSR in investigation of the structure of the 

airway- and vascular systems of the mature lung of the domestic fowl, Gallus gallus variant 

domesticus. The topographical relationships between the structures were thoroughly examined 

after preparation of movies that allowed us to rotate the reconstruction around different axes 

and extract and re-insert different parts back into the visualization. In the extant air-breathing 

vertebrates, the avian respiratory system (the lung-air sac system) is structurally the most 

complex and functionally the most efficient. Its unique design largely explains how, among 

only a few other extant animal taxa, birds attained volancy. Powered (active) flight is an 

exceptionally energetically costly mode of locomotion which requires large amounts of 

oxygen to sustain. While it has been continuously studied for over the last four centuries, 

some aspects of the structure and function of the avian lung remain uncertain and contentious. 

They include the airflow dynamics across the lung, the arrangement of the airway- and 

vascular systems and the shapes, sizes and spatial organization of the terminal respiratory 

units. We noted that in contrast to the mammalian lung, where arterial- and airway systems 

track each other and the venous system runs segmentally, i.e., between the other two systems, 

in the avian lung, the corresponding structures do not display similar close following. This 

may be explained by the unique development and evolution of the avian lung: two 

morphologically- and functionally distinct parts, namely the paleopulmo and the neopulmo, 

exist. The parts develop at different times which later combine into one organ. It explains how 

and why the airways- and the blood vessels do not track and even pattern each fundamentally 

because the conduits are dedicated to the distinctive parts of the lung with which they were 

associated. 
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Introduction 

 

A number of techniques are available to generate volumetric ultrastructural models, 

and combination of a variety of strategies is now possible for tailoring to specific 

biological questions and applications. [1] 

 

Through the process of evolution by natural selection [2], living things develop in specific 

ways to enable them to best execute functions. Understanding cellular dynamics and processes 

is fundamental to characterizing the underpinnings of life. Most diseases and pathologies arise 

from cellular abnormalities which trigger intracellular biochemical changes. After the invention 

of the compound light microscope, some four-and-half centuries ago by Zacharias Jansen 

(1580-1638) in 1595 [3] [4] and for nearly three hundred years thereafter, microscopic study 

of biological structures was limited to two-dimensional (2-D) delineation, depiction and 

description. In the late 19th century, researchers desiring to understand the three-dimensional 

(3-D) attributes of biological entities employed different ingenious visualization aids to 

examine serial sections, such as projecting lines from the outlines of structures to produce an 

image of the object perpendicular to the direction of sectioning [5] or by tracing outlines of 

the object of interest onto stacks of glass sheets [6] [7]. Modifications on these types of 

techniques were still being used [8] when Sydney Brenner first applied computers to the 

problem of visualizing serial section reconstructions in the early 1970’s [9]. More recently 

however, advances in computing power; software; imaging technology as well as 

visualization tools have spurred the development of a large number of 3-D reconstruction 

approaches. These techniques are revolutionizing the fields of molecular-, cellular- and tissue 

biology [1] [10]-[21]: even four-dimensional (4-D) preparations or visualizations are now 

possible [21]-[23]. The distinctive functions that are displayed by biological structures stem 

from a multitude of minute physical and biochemical events than occur between and among 

topologically connected structural components at the different levels of the organization of 

highly complex assemblages [24]. The spatial conformation (shape) of the structural 

components that comprise living matter is ubiquitously 3-D [25]-[28]. Recently, 3-D cell- and 

organoid culture have become particularly popular in studies of cell development, 

morphology, differentiation, host-pathogen interaction and effects of drug treatments 

compared to the traditional 2-D ones [23] [29]-[41]. It has been recognized that cells which 

are cultured in 3-D cell culture assays behave utterly differently compared to those ‘grown’ in 

2-D ones [31] [32]. Comparative investigations have indicated that 2-D cell cultures lose 

tissue distinctive assemblage, generating changes in mechanical and biochemical signals and 

disrupting cell-cell or cell matrix connections [31]. In drug delivery studies, while many 

preparations may show success in 2-D cell cultures, this is not the case in in vivo studies 

because the 3-D environment of the large number of cells in the body may render it 

problematical for the drugs to equally affect all cells [30]. Furthermore, although in 2-D 

culture cells acquire a spheroid morphology, the clusters are formed mainly by aggregation of 

cell masses instead of dividing from a single cell and the groupings of cells are significantly 

larger than those obtained by 3-D culture [36]. 3-D cell culture optimally supports the 3-D 

shape of cells, thereby providing a physiologically appropriate environment similar to the one 

which exists in the living tissue [34]-[36]. It is by coiling and folding into proper 3-D shape 

that proteins can perform their complex biochemical function(s). Here, two examples are 

given to underscore the importance of 3-D configuration in proper function of biological 

components. 

 

In microscopic biology, 3-D reconstruction is a highly instructive investigative technique [18] 

[42]-[45]. It involves constructing a spatial model of a biological entity from a sufficient 
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number of 2-D images [46]-[48]. Unfortunately, because of the high cost of time and 

materials as well as the special skills required to perform it, 3-D reconstruction has not been 

employed in morphological studies as much as it should have been. The 2-D images needed to 

prepare the 3-D shape can be acquired by manual preparation of serial sections or by 

tomographic methods using any measureable signal that is able to penetrate the specimen such 

as: light, ultrasound, gamma rays, X-rays, neutrons or electrons [18] [49]-[52]. Serial section 

3-D reconstruction is the oldest method of obtaining 3-D spatial micro-anatomical data and 

dates back to the late 19th century [53]-[55]. Recent advances in optical microscopical 

sectioning techniques as well as automatic block-face image capturing methods like episcopic 

fluorescence image capturing (EFIC) or surface imaging microscopy (SIM) [56] [57] have 

considerably increased the efficiency and the accuracy of serial sectioning. Regarding 

possible sub-micron resolution, compared to the modern 3-D reconstruction techniques, 

conventional light microscopical (histological) sections have certain advantages of which the 

main ones are contrast and large sample size which is investigated [11] [18] [58] [59]. Only a 

few state-of-the-art 3-D reconstruction techniques, e.g., synchrotron-based microcomputer 

tomography (µCT) or focused ion beam scanning electron microscopy (FIB/SEM) 

tomography compare in resolution with imaging sections [60]. As more robust ways of 

utilizing 3-D reconstruction technology continue to be developed, 3-D imaging and animation 

will constitute an indispensable investigative arsenal in the morphologist’s toolbox. Old 

questions will be revisited and investigated from different perspectives and new questions will 

be formulated and researched. 3-D reconstruction has lately found application in new research 

fields such as tissue engineering and regenerative medicine [60]-[63].  

 

In this investigation, we have performed 3-D computer reconstruction on serial histological 

sections to study the spatial arrangement of the airway- and the vascular systems of a bird’s 

(avian) lung. Among the extant air-breathing vertebrates, the avian respiratory system (the 

lung-air sac system) is structurally the most complex and functionally the most efficient [64]-

[72] compared with the mammalian one. Although it has been continuously investigated for 

well over four centuries (i.e., since [73]), still, some important aspects of its biology remain 

unclear and/or controversial [74]. Like the invaginated gas exchangers of other vertebrates, 

the lungs of birds are ventilated tidally, i.e., in-and-out, and in addition the avian lung 

(specifically the paleopumonic part of it) is ventilated unidirectionally and continuously in a 

caudocranial direction, i.e., back-to-front. This is achieved by synchronized bellows-like 

actions of the air sacs. The path followed by the inspired air across the avian lung is 

controlled by aerodynamic valving [75] and not by anatomical valves or sphincters, as it was 

once believed. Morphometrically, the avian lung has thin blood-gas barrier, large respiratory 

surface area and large blood capillary volume, structural parameters which confer an 

exceptionally high pulmonary diffusing capacity for oxygen [71] [76]-[78]. Such 

specializations explain why except for bats, birds are the only other vertebrate animals that 

have attained powered (active) flight which is an energetically highly costly form of 

locomotion which requires particular specializations [79]. Some birds can fly nonstop over 

long distances and others fly under the extreme hypoxic conditions of the high altitude [78]-

[82]. Here, we present a 3-D reconstruction method for multi-view image acquisition of 

microscopic samples combined with pre- and post-processing steps including correlation-

based image registration, filtering and a combination of manual and automated segmentation.  
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Materials and methods 

 
Fixation and processing of the lung 

The Animal Ethics Committee of the University of Johannesburg approved all experimental 

procedures (Clearance Number: 2017-06-29/Maina). A mature domestic fowl (chicken), 

Gallus gallus variant domesticus, was killed by intravenous injection with pentobarbitone 

sodium (Euthanase®) into the brachial vein at a dosage of 2mg/kg. Thereafter, the lungs were 

fixed by intratracheal instillation of phosphate buffered 2.5% glutaraldehyde (350 mOsm L−1, 

pH 7.4) at a pressure head of 3 kPa. The trachea was ligated and the fixative left in situ for six 

hours. Afterwards, the lungs were carefully dissected out from their costal attachments. 

Whole lungs were processed and embedded in paraffin wax according to routine histological 

procedures. 

 
Serial sectioning and imaging 

Two-thousand six hundred and eighty-nine (2689) transverse serial sections were cut at 8 µm 

thickness, stained with haematoxylin and eosin and mounted onto glass slides. The whole 

series of sections constituted the entire lung volume. A total of thirty seven (37) sections were 

lost or damaged during sectioning. The rest were mounted onto glass slides. In most cases, the 

lost sections were non-consecutive, but in one case nine sections (72 µm) were lost in a row. 

An area measuring 12.88 × 9.655 mm, which included the entire transverse section through 

the lung was photographed using an Axioskop image analyser (Zeiss Instruments) at a 

magnification of x10 in uncompressed Tiff image format at a resolution of 2576 × 1931 pixels 

with a calibrated sampling of 5 µm/pixel. 

 

 
 

Figure 1: Image processing and alignment. (a). Every 5th image was selected, normalised and down-

sampled. (b). The images were multiplied by a mask function to prevent the image border and particles 

of dust from contributing to the alignment score. (c). The previously aligned image (“n”) is used as a 

template and the images are correlated with one another: this is illustrated using red/green. The image 

to be aligned (n+5) is rotated and translated relative to the template (n) until a maximum correlation 

score is obtained (aligned). This newly aligned image is then used as a template to align the next 

image (n+10) and the process is repeated. 
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Image alignment 

Every fifth image was selected. In cases where this section was missing or showed obvious 

defects such as folds, tears, compression or inadequate staining, the previous- or subsequent 

section was chosen. This produced five hundred and thirty five (535) images (representing 40 

µm in the Z-direction), which were manually corrected in brightness and contrast using 

ImageJ Version 1.4.0. [83] and imported into Spider V.15 [84]. Images were normalised to a 

mean of 0 and standard deviation of 1 and down-sampled by a factor of 8 using bicubic 

interpolation to yield a sampling of 40 µm in X and Y (Fig. 1a). The images were then 

multiplied by a mask function representing a Gaussian falloff (Fig. 1b) and aligned to one 

another by maximising the cross-correlation function in X, Y and in-plane rotation (Fig. 1c) 

[12]. The resulting alignment was sufficient for resolving the parabronchi and larger blood 

vessels (Fig. 2) and permitted satisfactory reconstruction.  

 
 

 
 

 

Figure 2: A cross-section (image 127) of the lung through the aligned image stack. All 535 individual 

sections can be seen as vertical lines. Errors in vertical alignment can be seen as “jitters” in individual 

structures. Areas where this is especially apparent are marked (*). Large differences in intensity 

between adjacent sections can be seen as vertical bands (arrows).  

 

 

Segmentation of the reconstruction 

To identify and segment the air-conducting elements of the reconstruction, an automated 

procedure was used. It involved applying a Gaussian filter and a threshold [12] [14]. In some 

cases, where the parabronchi were separated from adjacent ones by interparabronchial septa, a 

border was manually drawn around the periphery of the lung. Also, where two air-conducting 

elements lay adjacent to one another, to ascertain that they were resolved, lines were manually 

drawn between them. This process was iterated until a reasonable match between the 

unprocessed images and segmentation [85] was achieved (Fig. 3).  

 

Blood vessel segmentation was achieved by manually defining the border of each blood 

vessel in the original (unprocessed) colour images (Fig. 3). These images were then down-

sampled and aligned to one another by applying the alignment parameters obtained 

previously. To ensure that no blood vessels were mistaken for air-conducting elements 
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(especially those lacking erythrocytes in their lumen), the segmented blood vessels were 

subtracted from the air-conducting elements. 
 

Reconstruction processing and display  

The above procedure produced three image stacks: “air”, “blood” and “original images”. 

These were converted into volumes using Spider V.15 and low-pass Fourier filtered to a 

resolution of 160 µm with a Gaussian falloff [84] [85]. All three reconstructions were 

simultaneously displayed in UCSF Chimera 1.12 [86], the appropriate surface threshold value 

being determined by comparison with the “original images” volume. Larger blood vessels and 

airways were visualised by applying an additional low-pass Fourier filter to a resolution of 0.8 

mm and adjusting the threshold value. The segmentation function in Chimera was used to 

further segment the blood vessels into arteries and veins. 

 

 

 

Figure 3: Segmentation of the reconstruction. (a). An unprocessed hematoxylin and eosin stained 

image (section 233) showing various air-conducting elements and blood vessels. (b). The same section 

shown in (a), but resampled, normalised and aligned. The larger vessels and lumina of the parabronchi 

are sufficiently well-resolved. (c). The manual blood vessel segmentation (red) and automated airways 

segmentation (cyan) superimposed on (b). An excellent match between the structures identifiable in 

the section was obtained. (d). The final image showing the airways (cyan) and blood vessels (red). 

 

Results 

 
Airways: bronchial system 

The trachea divided into right- and left extrapulmonary primary bronchi (EPPB) at the syrinx. 

The EPPB penetrated the lung at the hilus where they lie craniolateral to the pulmonary artery 

(PA) and caudomedial to the pulmonary vein (PV). On entering the lung, the EPPB becomes 

the intrapulmonary primary bronchus (IPPB) or the mesobronchus which changes in diameter 

and course as it passes through the lung to exit the lung at the abdominal air sac. On the 

various aspects of its lumen, as it passes through the lung, the IPPB gives off four sets of 

secondary bronchi. These are: the medioventral secondary bronchi (MVSB) that originate 

from the dorsomedial aspect of the lumen; the mediodorsal secondary bronchi (MDSB) that 

arise from the dorsal wall; the lateroventral secondary bronchi (LDSB) that arise from the 

caudoventral part and; the laterodorsal secondary bronchi (LDSB) that emanate from the 
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lateral aspect of the distal part of the IPPB. The parabronchi or the tertiary bronchi 

interconnect the secondary bronchi. The parabronchial system, which connects the MVSB to 

the MDSB, forms the paleopulmo or the ‘old lung’ while those which connect the MDSB to 

the LVSB and the LDSB form the neopulmo or the ‘new lung’. The paleopulmonic 

parabronchi form a stack or pile of air conduits which largely occupy the dorsocranial part of 

the lung while the neopulmonic ones are mostly located on the caudoventral part of the lung. 

As they (paleopulmonic parabronchi) join the MVSB to the MDSB on the dorsal aspect of the 

lung, they form hoop-like shapes: the paleopulmonic parabronchi lie parallel to each other and 

sporadically anastomose with each other while the neopulmonic parabroonchi anastomose 

profusely, forming a dense network. Generally, the paleopulmonic parabronchi are larger in 

size compared to the neopulmonic ones. 
 

Vascular systems: pulmonary artery (PA) 

The PA enters the hilus ventral to the root of the first MVSB. On penetrating the lung, it 

divides into four main branches (= rami), namely the accessory-, the cranial-, the 

caudomedial- and the caudolateral branches. The branches supply blood to different parts of 

the lung: the accessory branch, which is the first blood vessel to arise from the PA, supplies 

blood to a small part of the lung ventral to hilus; the cranial branch supplies blood to the 

craniodorsal region of the lung cranial to the second costal sulcus; the caudolateral branch 

supplies blood to the ventrolateral part of the lung and; the caudomedial branch, which is the 

most direct extension of the PA, supplies blood to most of the lung caudal to the second costal 

sulcus. The four branches of the PA divide the lung roughly into a cranial- and a caudal 

arterial vascular region, with a vertical transverse line passing through the second costal 

sulcus forming the anatomical landmark or the dividing boundary: the cranial part of the lung 

is supplied with blood by the accessory- and the cranial branches while the caudal one is 

supplied by the caudomedial- and the caudolateral branches. Along the median longitudinal 

plane which divides the lung into a lateral and a medial half along the so-called linea 

anastomotica, i.e., the area marking connection between the parabronchi from the MVSB and 

those from the MDSB (the paleopulmonic parabronchi) meet, the former part of the lung is 

supplied by the caudolateral branch of the PA while the later one is supplied by the 

caudomedial branch. In this study, up to about the level of the interparabronchial arteries, no 

anastomoses were observed between the four branches of the PA.  
 

Vascular system: pulmonary vein (PV) 

At the hilus, the PV is separated from the PA by the intrapulmonary primary bronchus. The 

PV is formed by connection of three converging blood vessels (radices), namely the cranial-, 

the caudal- and the ventral radices. The radices join outside the lung to form the PV. In our 

study, the connection of the radices was not included in the 3-D reconstruction because that 

part of the lung was inadvertently cut off during trimming off of adhering connective tissue. 

Most of the craniodorsal part of the lung is drained by the cranial radix which is formed by 

confluence of three large veins; the caudal radix drains the part of the lung caudal to the third 

costal sulcus and is formed by as many as four radices which extend dorsally and ventrally 

and; the ventral radix, which drains the cranioventral part of the lung comprises two main 

branches which drain the part of the lung located between the second and the third costal 

sulci. Up to the level of the interparabronchial veins, no anastomoses were observed between 

the radices.  

 

Discussion  

Employing different methods, the morphologies of the airways of the avian lung have been 

investigated by various investigators [64]-[66] [71] [87]-[90]. Consensus on the numbers of 
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airways, their shapes, connections, topographic locations and nomenclature has, however, not 

yet been reached [74. While interspecific differences have been reported [64]-[66] [68] [71] 

[91] [92], it cannot be completely ruled out that interspecimen differences occur largely from 

developmental abnormalities and irregularities and the environmental conditions under which 

the avian eggs are incubated. In this study, in addition to 3-D reconstruction of the airways- 

and the blood vessels, for more insightful visualization of the morphologies and the spatial 

associations between the different parts, movies which allowed the rotation of the 

constructions across different planes and extraction (removal) and re-introduction of the 

different parts to the constructions were prepared. Although certain weaknesses exist in all the 

techniques which have been used to study the morphology of the avian lung, this study 

corroborates most of the previous accounts. Indisputably, 3-D reconstruction is a very 

powerful means of studying the morphologies of biological structures, including those of 

structurally complex avian respiratory system.   

 

The pulmonary vasculature of birds has been studied by [93]-[98]. Various techniques which 

included injection with markers and following the paths they follow, e.g., microspheres, in the 

blood vessels by light microscopic examination and microfilm, silicone, mercox or latex 

rubber injection followed by maceration and preparation of casts or replicas have been used. 

While our observations generally agree with those previously made by other investigators, 

certain differences exist. Unlike in the mammalian lung where arteries closely follow airways 

while veins run intersegmentally [99] [100], i.e., they are located between the airways and the 

arteries, in the avian lung, the airway- and the vascular systems do not display such 

arrangement. This may be explained by the complex development of the avian lung [101]- 

[103], where, in lungs of phylogenetically derived species (evolutionally advanced birds), the 

paleopulmonic part develops first to be followed by the neopulmonic one [102] [103]: the 

adult lungs of an evolutionally developed bird comprises two distinctive parts, namely the 

‘paleopulmo’ and the ‘neopulmo’ which display structural and functional differences: the two 

regions are typically located in different regions of the lung [64] [68] [92] and the two parts 

are ventilated differently. The paleopulmo is continuously and unidirectionally ventilated in a 

caudocranial direction by concerted actions of the air sacs [67] [104] while the neopulmo is 

ventilated tidally, i.e., back-and-forward. Taking these properties into consideration, it is 

axiomatic that the airways and the blood vessels of the avian lung cannot follow each other in 

the same way as in the mammalian lung, where mesenchymal cells which contribute to the 

development of the airways and the blood vessels start at the same point (essentially the lung 

bud) and in close proximity grow outwards as the lungs develop [105]-[107], forming the 

various functional systems. Regarding the observations of [93] [94], in comparison with the 

observations noted in this study, certain structural discrepancies exist. The main ones are: a) 

while two main radices were reported to converge and form the PV [93] [94], here, three main 

blood vessels drained the lung and joined to form the PV and; b) the second costal sulcus and 

not the third one formed the boundary between the cranial- and the caudal blood supply- and 

the respective drainage regions of the lung by the PA and PV, respectively.  

 

In conclusion, compared to the other techniques which have hitherto been employed to study 

the morphology of the airway- and the vascular systems of the avian lung, incontrovertibly, 3-

D reconstruction is the more robust technique. When it is combined with preparation of 

movies which can be operated and closely viewed from different angles, the geometries of the 

structures can be thoroughly scrutinized and understood. It is important to underscore that 

while a powerful technique in its own right, scanning electron microscopy (SEM), which is 

conventionally applied for imaging biological structures, does not strictly generate 3-D 

images as generally wrongly interpreted: although they may appear so, the resulting images 
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do not have an aspect of depth. Presently, there are several SEM techniques that can be used 

to obtain 3-D information on a biological sample [108]-[110]. Some of them can be done on 

any microscope and some require specialist instrumentation, software, or microscopes.  
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Abstract 

The nonlinear random vibrations of the cable-moored floating structures under wave 

excitations are studied in three dimensions. One ends of four mooring cables are connected to 

the floating structure and the other ends are fixed to the seabed. The nonlinear equations of 

motions of the mooring cables are derived using the 3D cable elements which are formulated 

based on the extended Hamilton principle. The floating structure is simplified as a rigid body 

with six degrees of freedom. Then the equations of motion of the floating structure and 

mooring cables are formulated as a whole system through their connection conditions. In the 

last, the equations of motion of the whole structure under random wave excitation are 

analyzed numerically. The influences of different sag-to-span ratios and inclination angles of 

the mooring cables on the responses of the floating structure and maximum cable tensile force 

are studied. 

Keywords: Cable-moored floating structure, random wave excitation, 3D cable elements, 

connection conditions. 

Introduction 

The cable-moored floating structures can find their applications in ocean engineering to 

exploit marine resources such as oil, gas and minerals. If the floating platform is subjected to 

horizontal excitations, the movements of floating platform can induce the geometry change of 

mooring cables. The geometric nonlinearity of the mooring cables plays an important role in 

the dynamical analysis due to their flexibility. Some researches simplified the mooring cables 

as linear springs [1, 2] or nonlinear springs [3, 4] to support the floating platform, which 

cannot reflect the real behavior and influence of the cables. A numerical approach was 

developed for analyzing the dynamic behavior of marine cables using lumped mass [5-8]. 

With this method, cables are discretized into linear segments connected by nodes and the 

equilibrium equations are established at each node. The mooring cables were fully modelled 

using the finite element method [9, 10], in which the equations of motions of the mooring 

cables and those of floating platform were solved separately and iteratively.  

 

In this paper, the nonlinear random vibrations of three-dimensional floating structure and 

mooring system under wave excitations are studied. The nonlinear random equations of 

motions of the mooring cables are formulated using the 3D cable elements formulated based 

on the extended Hamilton principle [12]. The cable element is simplified as a flexible tension 

member without considering its bending and torsion stiffness because of the extremely large 

ratio of its length and cross-sectional dimension. The floating platform is considered as a rigid 

body with six degrees of freedom, i.e., three translational displacements and three rotational 

displacements. The equations of motions of both the floating platform and mooring system 
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are formulated as whole system through their connection conditions. Finally, the whole 

system under random wave excitation modelled using JONWSAP spectrum is solved 

numerically. 

Problem Statement 

Consider a floating structure and mooring system as shown in Figure 1. It consists of the 

floating platform and four catenary mooring lines C1, C2, C3 and C4. The floating platform 

and mooring cables are connected through four nodes A, B, C and D. O is the mass center of 

the floating platform. The other ends of the mooring cables are fixed on the seabed. wa, wb and 

wc are the length, height and width of the floating platform, respectively. The top view and 

side view of the three-dimensional floating system are shown in Figure 2. The mooring cables 

C1, C2 and C3, C4 are symmetric about the y-axis in the plane x1Oy and x2Oy, respectively. θ, l 

and d are the inclination angle, inclined length and sag of the mooring cable, respectively. wl 

is the length between the nodes A and B.  
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Figure 1. Configuration of the three-dimensional floating system 
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Figure 2. (a) Top view (b) Side view of the three-dimensional floating system 

 

Nonlinear Random Vibrations of the Moored Floating System  

Finite Element Formulation for the Dynamics of Cable 

The equations of motion for the element e in the local coordinate systems O-x1yz1 and O-x2yz2 

are derived based on the extended Hamilton principle and they are given as follows. 

 ( ) ( )e e e e e e e e e

l a l l l l l l d+ + + =M M d C d Κ d d f   (1) 

where 
e

ld  is the displacement vector of element e in the local coordinate systems O-x1yz1 and 

O-x2yz2; 
e

df  is drag force vector of element e; 
e

aM  is the added mass matrix of element e 

which is expressed as 

ICCM2019, 9th-13th July 2019, Singapore

50



 
1 1

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 02

0 0 0 0 0

0 0 0 0 0

c

e
ce Ts

a

c

c

C

CAl

C

C



 
 
 
 

=  
 
 
 
  

M T T   (2) 

where 1T  is the transformation matrix between the coordinate system ( )1 1 2 2 x yz x yz  and the 

coordinate system 3 3 3x y z , as shown in Figure 3; cC  is the added-mass coefficient of the cable 

in the transverse direction. 
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Figure 3. Differential element e  in the coordinate system 3 3 3x y z  of the cable element and the 

coordinate system ( )1 1 2 2 x yz x yz  of the cable 

 

With Morison’s equation, the drag forces that act along the x3, y3, z3 directions of element e 

are given as follows, respectively 
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


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  (3) 

where 1D  is the diameter of the cable cross section; dlC  and dtC  are the drag coefficients in 

the longitudinal and transverse directions of the element e , respectively; 3uV , 3vV , 3wV  are the 

fluid velocities in the 3x , 3y , 3z  directions of element e , respectively; 
3

eu , 
3

ev , 
3

ew  are the 

average velocities of element e  in the 3x , 3y , 3z  directions of element e , respectively, which 

are expressed as 

 
3 3 3 3 3 3

3 3 3,   ,   
2 2 2

i j i j i je e e
u u v v w w

u v w
+ + +

= = =   (4) 

and ( )sgn •  denotes the sign function given by 

 ( )

1,      0

sgn 0,      0

1,    0

z

z z

z
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  (5) 
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Therefore, the drag force vector 
e

df  of element e  in the coordinate system ( )1 1 2 2 x yz x yz  is 

expressed as 

  1 3 3 3 3 3 3

1
, , , , ,

2

T
e T e e e e e e

d u v w u v wF F F F F F=f T   (6) 

Using the transformation matrix T and the relationship e e

l g=d Τd  in which e

gd  is the 

displacement vector of element e in the global coordinate system O-xyz, Eq. (1) becomes 

 ( )M d C d Κ d d F
e e e e e e e e

g g g g g g g g+ + =   (7) 

where ( )e T e e

g l a= +M T M M T , e T e

g l=C T C T , e T e

g l=K T K T , and e T e

g d=F T F . The equations of 

motion of the mooring cables are  

 ( )m m m m m m m m+ + =M U C U Κ U U F   (8) 

where the subscript m denotes the number of mooring cables. 

 

Dynamics of the Floating Platform 

The floating platform has six degrees of freedom, which are displacements u, v, w along x, y, z 

axes and rotations α, β, γ in xOy, xOz, yOz plane, respectively. The equations of motion of the 

floating platform are given as follows based on Figure 4. 
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Figure 4. Forces applied on the floating platform (

1 4 dxF Mu c u F= + − , 

2 5 dy bF Mv c v F F= + − + , 
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M J c M F w = + − +  , 
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 ( )0:x ax Ax Bx Cx Dx dxF M M u c u F F F F F= + + + + + + = 4   (9) 

 ( )0 :y ay Ay By Cy Dy b dyF M M v c v F F F F F F= + + + + + + + = 5   (10) 

 ( )0:z az Az Bz Cz Dz dzF M M w c w F F F F F= + + + + + + = 6   (11) 
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where M is the mass of the floating platform, Max, May, Maz are the added mass of the floating 

platform along the x, y and z axes, respectively, which are assumed as constant because the 

vertical displacement is small [12]. Jz, Jy and Jx are the moment of inertia of the floating 

platform in the xOy, xOz and yOz planes, respectively; Fb, Fb1 and Fb2 are the dynamical 

buoyancy of the floating body; FAx, FAy, FAz, FBx, FBy, FBz, FCx, FCy, FCz, FDx, FDy, FDz are the 

dynamical tensions from the cable at nodes A, B, C, and D in the x, y, z axes, respectively. dxF , 

dyF , dzF , dzM , dyM , dxM  are the hydrodynamic drag forces in the x, y, z axes and xOy, xOz, 

yOz planes, respectively. Fb, Fb1 and Fb2 are the dynamical buoyancy of the floating body due 

to the change of submerged volume of the floating body, which are expressed as 
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  (15) 

Referring to Figure 5 with ( )1 2, ,aP w y z− , ( )2 2, ,aP w y z , ( )3 , 2,bP x w z , ( )4 , , 2cP x y w−  

and ( )5 , , 2cP x y w , the hydrodynamic drag forces or moments that act on the floating 

platform are given as follows. 
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Figure 5. Drag forces act on the floating platform 
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where 1dxdF , 2dxdF , dydF , 1dzdF  and 2dzdF  are expressed by 
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where dxC , dyC  and dzC  are the drag coefficients along the x , y , and z directions, 

respectively; 1fxV , 2fxV , fyV , 1fzV  and 2fzV  are the fluid velocities at specific locations along 

the x , y  and z  directions, respectively. 

 

Formulation of the Whole System 

In order to formulate the equations of motion of the mooring cables and the floating platform 

as a whole system, the connection conditions between the mooring lines and floating platform 

are required. Their relationships are   
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where uA, vA, wA, uB, vB, wB, uC, vC, wC, uD, vD, wD are the displacements of the nodes A, B, C, 

and D in the x, y, z axes, respectively. Then the equations of motion about the nodes A, B, C 

and D in Eq. (8) are removed and replaced by Eqs. (9)-(14) using the connections conditions 

given by Eq. (18). The variables of displacements related to nodes A, B, C and D in other 

equations of motion in Eq. (8) are also expressed by Eq. (18). The final equations of motion 

of the whole system are obtained as 

 ( )( ) t+ + =MU CU Κ U U F   (19) 

where U is the global displacement vector; K(U) is the global stiffness matrix; ( )F t  is the 

wave force vector. 

 

Modeling of sea wave excitation 

The sea wave is assumed to propagate in the horizontal direction in the plane yOz. The 

kinematics of the water particles under wave excitation can be calculated based on the linear 

Airy wave theory [13]. The free surface elevation   of the wave is introduced with a wave 
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spectrum S . Then the surface elevation at location z and time t is expressed by using wave 

superposition as 

 ( ) ( ) ( )
1

, t 2 cos
N

i i i i

i

z S k z t    
=

=  − +   (20) 

where   is the frequency interval; i  is the angular frequency of the ith wave component 

which equals ( )tanhi igk k d  and g is the acceleration due to gravity; ik  is the ith wave number 

which equals 2 i   and i  is the ith wavelength; N is the number of frequencies; i  is the 

statistically independent random phase angle which is uniformly distributed between 0 and 

2 . 

 

The condition of deep water depth is considered in this paper because 2h  . Therefore, the 

fluid velocities Vz and Vy along the z and y directions at any point P(x,y,z) and time t are 

expressed as 
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During structural design, the significant height and average period of a random wave are 

specified. Therefore, the following approximate expression for the JONSWAP spectrum 

given by Goda [14] is adopted. 
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where 
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and Hs is the significant height of the wave; 0 02 T =  is the peak angular frequency of the 

wave and T0 is the average period of the wave; 1  is the peakedness parameter which varies 

from 1 to 7; and   is a shape parameter which is expressed as 

 
0

0

0.07,   

0.09,   

 


 


= 


  (24) 

Numerical Example 

Consider a 3D cable-moored floating platform with the parameters listed in Tables 1 and 2. 

The density of seawater is 
31.025 10s =  kg/m3. The power spectral density S  is plotted in 

Figure 6 with 1 3 = , 0.8sH = m and 0 8T = s. Each cable is discretized with 11 elements 

because further increasing the element number cannot make the precision of the results further 

increased obviously. The time step is 0.0008 s and the sample size used in Monte Carlo 

simulation (MCS) is 108. 
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Table 1. Properties of mooring cables 

 Parameter                                                 Value 

 

Young’s modulus E (N/m2)                      1.91011 

Diameter D1 (m)                                            0.1  

Mass density    (kg/m3)                          8.2103 

Damping ratio                                            0.03 

Sea depth h  (m)                                           120 

Inclination angle   (degree)                         45 

Sag-to-span ratio /d l                                  1/90 

Longitudinal drag coefficient Cdl                 0.01 

Transverse drag coefficient Cdt                      1 

Transverse added-mass coefficient Cc           1 

 

Table 2. Properties of mooring cables 

 Parameter                                                 Value 

 

Length wa (m)                                              26 

Height wb (m)                                               5 

Width wc  (m)                                              10 

Mass M (kg)                                            1.2105 

Drag coefficient Cdx along x axis                  1 

Drag coefficient Cdy along y axis                  1 

Drag coefficient Cdz along z axis                  1 

 

 
Figure 6. Power spectral density of wave surface with 1 3 = , 0.8sH = m and 0 8T = s 

 

The PDFs of the responses of the floating platform and maximum cable tensile force at steady 

state are shown in Figure 7. The mean values of 
fv , 

fw ,   and cT  at steady state are 0.0059 

m, 0 m, 0ºand 57.845 10  N, respectively and the corresponding standard deviations are 

0.0112 m, 0.445 m, 1.95ºand 51.258 10 N.  

ICCM2019, 9th-13th July 2019, Singapore

56



 
       

 
Figure 7. The PDFs of 

fv , 
fw ,   and cT  at steady state with 1 90d l = , 45 =    

 

If the inclination angle of the cables keeps as 45º, the standard deviations of the responses of 

the floating platform and maximum cable tensile force at steady state are shown in Figure 8. It 

is observed from Figure 8 that the standard deviation of fw  decreases as d l  decreases from 

1/45 to 1/75. Then it increases as d l  further decreases from 1/75 to 1/150. This is due to the 

fact that as d l  decreases from 1/45 to 1/75, the second natural frequency of the linear system 

increases from 0.94 to 1.103 rad/s, which is farther away from the dominant frequency 0.79 

rad/s of S . As d l  decreases from 1/75 to 1/150, the fundamental natural frequency of the 

linear system increases from 0.586 to 0.83, which is closer to the dominant frequency of S . 

It is also observed from that the standard deviation of fv  always decreases and the standard 

deviations of   and cT  always increase as d l  decreases. 
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Figure 8. The standard deviations of 

fv , 
fw ,   and cT  at steady state for different d l  with 

45 =   

 

If the sag-to-span ratio of the cables keeps as 1/90, the standard deviations of the responses of 

the floating platform and maximum cable tensile force at steady state are shown in Figure 9 

for different inclination angles of the cables. It is observed from Figure 9 that the standard 

deviations of 
fv , 

fw ,  , cT  always increases as   increases from 33º to 54ºand they are 

much influenced by the inclination angles of the cables. This is due to the fact that as   

increases from 33º to 54º, the fundamental natural frequency of the linear system decreases 

from 0.679 to 0.593 rad/s and changes within a small interval, which is farther away from the 

dominant frequency of S , but the second natural frequency of the linear system decreases 

from 1.576 to 0.832 rad/s, which is closer to the dominant frequency of S .  

 

  
Figure 9. The standard deviations of 

fv , 
fw ,   and cT  at steady state for different   with 

1 90d l =  
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Conclusions 

The nonlinear random vibrations of the cable-moored offshore floating structure are analyzed 

under wave excitation. The floating platform is modeled as a rigid body with six degrees of 

freedom. The mooring cables are modeled by using the nonlinear 3D cable elements which 

are formulated based on the extended Hamilton principle. The effects of added-mass and 

nonlinear hydrodynamic drag forces on both the floating platform and mooring cables are 

taken into consideration. Firstly, the equations of motion of the mooring cables and floating 

platform are formulated separately. After that, the connection conditions between the mooring 

cables and floating platform are introduced to make the nonlinear equations of motions of 

both the mooring cables and floating platform formulated as a whole system. The equations of 

motion of the whole system are solved numerically using MCS. The influences of the sag-to-

span ratio and inclination angle of the mooring cables on the statistical properties of the 

moored floating structure and the maximum cable tensile force are studied. It is found from 

numerical results that the responses of the floating platform and the maximum cable tensile 

force are much influenced by both the initial sag-to-span ratio and inclination angle of the 

cables.  
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Abstract 

A high order smooth element is constructed for modeling penny-shaped crack placed on but 
not limited to flat surface using a single element. The smoothness of the element is realized by 
repeated use of real nodes for interpolation in both the radial and circumferential directions of 
the element by taking advantage of geometrical features of the penny shape so that the end 
node/line effects existing in conventional low order elements have been removed. The 
technique of shape function manipulation is proposed to deal with the hyper-singular integrals 
in the boundary element method (BEM) for crack problems. The stress intensity factors under 
various loads are computed and compared with the analytical solutions in the numerical 
examples, showing the accuracy and effectiveness of the proposed high order smooth element. 

Keywords: High order smooth element, Penny-shaped crack, Stress intensity factor, 
Hypersingular integral, Boundary element method 

 

Introduction 

In the three-dimensional fracture analysis of structures, penny-shaped cracks have long been 
one of the most investigated cracks since their good representativeness to the defects in the 
three-dimensional solids. Conventionally, the low-order elements are employed in the 
numerical fracture analysis [1]-[2]. In the case of analyzing fine details near crack tips [3] or 
multiple-cracks [4], huge numbers of elements have to be used, resulting in large solution 
scale of the problem, especially for the FEM. In addition, the hypersingular integrals have to 
be treated carefully in the use of boundary element method (BEM). Based on the Chebyshev 
polynomials, Chen proposed a Gauss type quadrature to evaluate the hypersingular integrals 
encountered over the whole flat crack [5], much like using a single element. Recently, Gao et 
al. proposed a series of isoparametric closure elements [6] and improved by Ma et al. to high 
order smooth elements [7] for modeling closed surfaces using a single element. In the present 
work, the high order smooth elements are extended for modeling penny-shaped crack on flat 
and spherical surfaces, combined with the proposed technique of shape function manipulation 
to deal with the hypersingular integrals in the BEM. The stress intensity factors (SIF) under 
various loads are computed and compared with the analytical solutions [8], showing the 
accuracy and effectiveness of the high order smooth element. 

Construction of smooth element for crack 

Crack discretization 

Only the upper face of the penny-shaped crack needs to be discretized in the radial and 
circumferential directions. An example of the element with total nodes N=12 in the real and 
parametrical spaces are shown in Fig. 1a and 1b, respectively, where the symbols ○ and ◇ 
mean that the nodes are used repeatedly more than once in either circumferential or radial 
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directions for interpolations. The local intrinsic coordinates 1  and 2  correspond to the radial 
and circumferential lines. The double solid line Fig. 1b is the polar point of the element 
without placing node and the numbers with an apostrophe is for avoiding confusion of nodes 
which are used repeatedly. The digits in parentheses are the local counting numbers of nodes, 
which correlates with the global counting number, m, as follows 

 1 2 21m k N k    ,  ( 1 11,...,k N ; 2 21,...,k N )                                      (1) 

where N1 and N2 represent the numbers of nodes on the radial and circumferential lines, and 
also the numbers of the circumferential and radial lines, respectively. 
 

    

1

2

1

2

 
Figure 1.  Crack discretization in real space (a), parametrical space (b) and along one of 

the circumferential lines (c) 

Shape functions 

The shape functions for the crack are formed by the product of the shape functions in both the 
circumferential and radial directions, just the same with the formation of closure elements [6]. 
However, the key idea for constructing smooth elements is the repeated use of nodes, with 
which the interpolation spans are expanded as shown in Fig. 1b. Along one of the 
circumferential lines as shown in Fig. 1c, three nodes with the global numbers 12, 7 and 8 are 
used twice. The digits in parentheses denote the local counting numbers from 0 to N2+2, 
where the nodes used twice have two local counting numbers. The shape functions along 
circumferential lines are defined as follows 

           2 2

2

2 2 2N N
k k N kl l    

  ,   1,2k                                          (2a) 

       22 2N
k kl   ,      23,..., 1k N                                             (2b) 
           2 22 2 2

0
N N

k kl l      ,   2k N                                         (2c) 

where  2 2N
kl

  represents the Lagrange interpolation polynomials of order N2+2 as follows 

     
 

2

2

2
2

0,

N
jN

k
k jj j k

l
 


 




 




 ,  20,1,..., 2k N                                     (3) 

In radial directions, two auxiliary nodes denoted by ◇ as shown in Fig. 1b are supplemented 
across the pole so that the shape functions for crack surface are defined by 

       11 1N
k kl   ,      11,...,k N                                                    (4)  

where  1 1N
kl

  represents also the Lagrange interpolation polynomials of order N1+1 as follows 
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   
 
 

1

1 1

1,

N
jN

k
k jj j k

l
 


 



 




 ,    11,0,...,k N                                     (5) 

In this way, the shape functions for the crack surface can be obtained 

         
1 2

1 2
1 2 1 2,m k k        ,   1 13,...,k N                                     (6a) 

               
   

1 2 1 2

1 2 1 2
1 2 1 2 1 21,m k k k M k

              ,  1 1,2k            (6b) 

where 2 21,...,k N  and the counting numbers m, k1 and k2 in Eqs. (6a) and (6b) are correlated 
by Eq. (1). The subscript M(k) is a mirror function about the pole defined as follows 

  2

2

/ 2

/ 2

k N
M k

k N


  

,   2

2

/ 2

/ 2

k N

k N




                                                        (7) 

Thus in the construction of smooth element for cracks, the even number should be used for N2. 
Although the variation spans of the two intrinsic variables 1  and 2  have been expanded, 
however, the integration spans for the smooth element remain still within [–1,+1], a shaded 
square region as shown in Fig. 1b. In consideration of the deformation feature of crack tip, the 
shape functions for the crack opening displacement (COD) take a different form as 

         
1 2

1 2
1 2 1 2,m k k        ,   1 13,...,k N                                    (8a) 
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              ,  1 1,2k            (8b) 

where 
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 
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1 1
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1 1 / 2

N
k k

k

l


  
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   
   

,       11,...,k N                             (9) 

Therefore the smooth element for crack does not belong to the category of isoparametric 
elements. It need to be pointed out that the role of auxiliary nodes denoted by ◇ is nothing 
but to improve the fitting effect along radial lines, since the outward normal of the surface in 
the region indicated by ◇ turns upside-down from that of the shaded square region as shown 
in Fig. 1b. In addition, what needs to be emphasized is that the outward normal just at the pole 
is indeterminate since the circumferential line reduces to a single point at the pole. This is 
why no node be arranged at the pole for the crack element. It can be seen from the 
construction process that there is no end node and end line inside the smooth element. As a 
result, the interpolation accuracy of the smooth element will increase greatly with the removal 
of end node/line effects and the increase of the order of interpolation polynomials while the 
total number of nodes of the element is kept unchanged. 

Dealing with singularities of integrals 

Basic equations 

The boundary integral equation (BIE) for a crack in full space is given below [9] 

       HFP ,C
i j ij

A

y x x y dA x     ,    y A                                 (10) 

where A stands for the upper surface of the crack and 
i  the traction on A. x and y represent 

the field and source points, respectively. 
j j ju u     denotes the COD defined by the 

difference of displacements, 
ju  and 

ju , over the upper and lower surfaces of the crack. HFP 

means that the integral is evaluated in the Hadamard finite part sense. The kernel C
ij  is 

defined by 
      *, ,C

ij k ikjx y n y x y                                                    (11) 
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In Eq. (11), nk stands for the component of the outward normal and 

                        
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4 1

ijk ij k ki j jk i i j k
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x y r r r r r r
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     
 

         
  

                     , , , , , ,3 1 2 3 1 4j k i k i j i j k ki j jk i ij kr r n r r n r r n n n n                         (12) 

where   and v are the shear modulus and Poisson ratio of the material, respectively. r is the 
distance between the field and source points defined as 

   k k k kr x y x y                                                      (13) 

In a special case of a flat crack placed in the plane x1-x2 with only the normal load applied in 
x3 direction, the expressions (10)-(12) can be written in much simplified forms [5][8]. 
However, in the present work, these forms are kept unchanged to cope with the general cases. 
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Figure 2.  Domains for evaluating strong-singular (a) and hypersingular (b) integrals 

 

Shape function manipulation and evaluation of strong-singular integral 

Now rewrite Eq. (10) after discretizing the COD of the crack using the shape functions (8a) 
and (8b) as follows 

                                                           
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N
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                                                 (15) 

where 
           1 2HFP , ,m m C

ij ij

A

I x x x y dA x          
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J d d
 
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                            (16) 

It needs to be pointed out that in Eq. (16) the upper crack surface A is discretized using the 
shape functions (6a) and (6b), different from that for the COD. The integrals (16) are to be 
evaluated in polar systems as shown in Fig. 2a as follows 
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where (c1,c2) stand for the local coordinates of the source point y. Introduce the shape function 
manipulation as 
                                                      1 2, ,m m m c c                                                        (18) 

Rewrite integrals (17) as 
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                                     CPV 1 2, lim ,m C
ij m ijx y

A

I c c x y dA x 


    CPV HFP
1 2,m m

ij ijI c c I                      (19) 

by subtracting then adding back a shape function at the singular source point. It is seen that 
the first integral CPVm

ijI  at the right hand side of Eq. (19) is reduced to strong-singular integrals 

to be evaluated in the sense of Cauchy principal value (CPV). Expand the integrand of CPVm
ijI  

in (19) in truncated Laurent expansion at a fixed angle   as follows 
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where 
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ij ijx y r x y                                                           (21) 
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In this way, the strong-singular integrals CPVm
ijI  can be evaluated using the conventional Gauss 

quadrature in the following form 
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Evaluation of hypersingular integral 

The second integrals HFP
ijI  at the right hand side of Eq. (19) have no shape function, resulted 

from the shape function manipulation stated previously. Noticed that the kernels appeared in 
these integrals describe a divergence-free field [10], having the properties of 
                                                            lim , =0C

ij
x y

x y d x




                                                    (25) 

over a closed surface, suggesting that the integrals HFP
ijI  are surface independent, which can be 

and should be made use of. As shown in Fig. 2b, when the point x move along the boundary S 
of the crack, the straight line connecting x and y, or the generatrix, will form a new surface, 
over which the evaluation of integrals HFP

ijI  can be carried out instead of the original crack 

surface A. The shape of the new surface would be planar or conical, depending on whether the 
original crack is a flat or curved surface. In either of the cases, however, the component of the 
kernel C

ij  on the generatrix is constant at a fixed angle   because nc  0cn r t 
 

 and r,k are 

all constants on the generatrix, where nc is the outward normal of the new surface, r0 the unit 
vector in r direction. See Fig. 2b and Eqs. (11)-(12). Therefore 
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where   is the solid angle of the cone surface and in particular 2   for planar surface. For 
a physical problem, the integral above should exist, which means that the infinite term or the 
last term at the right hand side of Eq. (26) should be eliminated or should be cancelled out by 
free terms [11]. Finally, the integrals HFP

ijI  can be evaluated using the conventional Gauss 

quadrature in the following form 

ICCM2019, 9th-13th July 2019, Singapore

64



            HFP 2 0 ,ij ij
S

I r x x y dS x                                                 (27) 

Numerical examples 

Computation of SIF 

In the numerical examples, the SIFs, K1, K2 and K3 are computed by the corresponding COD 
values, n , b  and t  in the open, shear and tear modes, respectively, at the point x in the 

local coordinate system  b t n 
    as shown in Fig. 3a using the following approximate 

equations 

 1 2 24 1
nE

K
v

 


 ,  2 2 24 1
bE

K
v

 


,   3 2 24 1
tE

K
v

 


                (28) 

where Δ represents a small distance from the point x to the crack front and E is Young’s 
modulus of the material. In the situation that the crack surfaces are traction free in full space 
under far-field loads, the computation model needs to be decomposed into two parts in the 
numerical analysis of such cracks. In the first part of the model, the tractions equal and 
opposite to the applied loads are acting on the crack surfaces without the far-field loads. In the 
second part of the model, the full space is loaded by the far-field loads without cracks. The 
final response is the linear superposition of the two parts of the model. However, the second 
part has no direct contribution to the values of SIF. 
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Figure 3.  Local coordinate system (a) and errors of computed SIF as function of Δ (b) 

 

Suitable distance check 

Firstly, the suitable distance Δ is checked by a penny-shaped crack of radius a placed in the 
plane x1-x2 (x3=0) in full space under a far-field unit normal load in x3 direction, discretized 
using a single smooth element with a series of total node numbers from N=8 to N=40. The 
relative errors of computed SIF are depicted in Fig. 3b as a function of Δ, showing that the 
accuracy is satisfactory with such few nodes using a single smooth element. The results are 
fairly stable in a wide range of Δ so that Δ/a=10-4 is adopted in the following examples. 

SIF under various normal loads 

Secondly, the SIFs of the penny-shaped crack in full space under various far-field normal 
loads are computed using a single smooth element with the total node number N=32 and 
compared with the analytical solutions [8]. The normal loads are expressed by 

                           
2 2

1 2 1 2 1 2
0 0 1 2 3 4 52

x x x x x x
c c c c c c

a a a aa
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The coefficients for the 4 kinds of loads are listed in Table 1. The SIFs along the crack front 
are computed and shown in Fig. 4a while the angle   is starting from the positive direction of 
x1. It is seen from Fig. 4a that the computed results are in good agreement with those of 
analytical solutions, showing the accuracy and effectiveness of the proposed high order 
smooth element for the crack. 

Table 1. Coefficients in Eq. (29) 

 

SIF under unit shear load 

Next example considers the penny-shaped crack in full space under far-field unit shear load in 
x1 direction using a single smooth element with the total node number N=32. It is seen from 
Fig. 4b that the computed SIF in shear and tear modes (K2 and K3) varies along the crack front 
while the SIF in open mode (K1) keeps zero throughout as expected. 
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Figure 4.  Comparison of computed SIF under various far-field normal loads (a) and 

computed SIF under far-field unit shear load (b) 
 

SIF of cracks on spherical surface 

In the last example, the curved penny-shaped cracks on a spherical surface of radius R are 
computed under far-field unit normal load as shown in Fig. 5a using a single smooth element 
with the total node number N=40. The computed SIFs are presented in Fig. 5b with R/a, 
where the shape of the crack becomes a half-sphere when R/a=1 but behave towards a flat 
crack when R/a is very large. It is shown from Fig. 5b that that the SIF in open and shear 
modes (K1 and K2) increase gradually with R/a while the SIF in tear mode (K3) keeps zero 
throughout as expected. 
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Figure 5.  Curved penny-shaped cracks on a spherical surface (a) with computed SIF (b) 

under far-field unit normal load 
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Conclusions 

In the present work, a high order smooth element is constructed successfully for modeling 
penny-shaped crack placed on flat or curved surface using a single element. By making full 
use of geometrical features such as the symmetry and periodicity, the smoothness of the 
element is realized by repeated use of nodes in the radial and circumferential lines for 
interpolation. As a result, the accuracy of the crack modeling increases because of the raise of 
the order of interpolation polynomials as well as the removal of the end node/line effects 
existing in conventional low order elements. The technique of shape function manipulation is 
proposed to deal with the hyper-singular integrals in the BEM for crack problems. In the 
numerical examples, the accuracy and effectiveness of the proposed high order smooth 
element and the technique for hyper-singular integrals are verified by the computed SIFs, 
using a single element with such few nodes, compared with the analytical solutions. 
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Nonlinear Interaction of Internal Waves Due to Two Point Vortices
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Abstract

In this paper, two-dimensional, two-layer steady stratified flow about a equal-strength counter-
or co-rotating vortex pair in the lower layer is concerned. Potential flow theory and boundary
integral equation method are applied to establish boundary integral equations about the interfa-
cial wave. These equations are solved numerically based on quasi-Newton method. The effects
on interfacial wave profiles of distance of the vortex pair are analyzed. It is found that the
wave height oscillates with d and the extreme values are almost the sum of that for two vortices
consists of the pair, especially for d large enough. When d is set that the wave height gets its
maximum points the wave profiles is about the superposition of that for the two vortices, where-
as when d get its minimum points the difference between the wave profiles caused by the pair
and the sum of profiles for these two vortices is large.

Keywords: Stratified flow, Point vortex pair, Boundary integral equation, Nonlinear inter-
facial waves

Introduction

When there exists a disturbance source in the steady density-stratified fluids, an internal wave
will be generated. Two-layer model of the vertical structure with different densities are often
employed as a simplified model of internal waves of steady density-stratified fluids. Many
researchers have studied the internal waves generated by various disturbance sources in two-
layer fluids such as the moving point source in the upper[1] and lower layers[2], the moving
dipole [3], the point vortex in the lower layer[4] and upper layer[5] and the hydrofoil in the
lower layer[6].

Forbes applied this boundary integral equation method with arclength parameters to describe
the surface while studying non-linear surface wave caused by a submerged point vortex [7]
and a submerged hydrofoil[8] in two-dimensional ideal irrotational fluid of infinite depth. The
obtained equations were solved numerically based on Newton method. Then this theory is
used to study the interfacial waves in two-layer fluids by different disturbance by following
researcher[9], [4].

The vortex pair is the basic element of fluid mechanics. Study of it to a large extent comes from
the problem of trailing wakes. Many studies are concerned with dynamics and instability of
vortex pairs. The literature [10] reviewed the characteristics and the behaviors of vortex pairs.
Besides, some researchers focused on the interactions and the flow structures between vortex
pairs and other objects like wall[11] and free surface[12],[13].

In this paper, the two-dimensional two-layer steady flow for a submerged vortex pair is con-
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sidered. Both layers are inviscid and incompressible ideal fluids with consistent flow direction.
The upper layer is of finite depth and bounded by a rigid lid, while the lower fluid is infinitely
deep in which there exists a vortex pair set on a horizontal fixed position. The structure of this
paper is as follows: at first integral-differential equations are established using the potential
flow theory and boundary integral equation method. Secondly the problem is solved numerical-
ly based on the quasi-Newton method, which has been verified and gives a well performance in
DoF. Then we compare the effects of different parameters on the wave profile, including Froude
number, vortex strength and distance between two vortices.

Model of the problem

Consider steady two-layer fluids of different densities. Both layers are ideal fluids and irro-
tational. Their upstream uniform speeds have consistent flow direction. Creating a Cartesian
coordinate system such that the x axis is placed at the undisturbed horizontal interface and point
in the same direction of upstream uniform speed, as well as the y axis points up vertically. The
depth of upper fluid is T and the upper surface satisfies the rigid-lid assumption. The lower fluid
is infinitely deep with a point vortex pair placed where its center is at (0,−H) . The distance
between the two point vortices is 2D with circulation K1 < 0 at (−d,−1 and K2 > 0 at (d,−1)
respectively. In following context we use subscripts 1 and 2 to represent the physical variables
associated with the upper fluid and the lower, respectively. Densities and upstream uniform
speeds of two layers of fluid are ρ1, ρ2, and γ1, γ2.

For the convenience of discussion, use γ2 as the speed scale, H the length scale to get the
dimensionless model, then introduce following dimensionless parameters:

F =
γ2
√

gH
, ε1 =

K1

γ2H
, ε2 =

K2

γ2H
ρ =

ρ1

ρ2
, γ =

γ1

γ2
, λ =

T
H

d =
D
H

where F is the Froude number, ε1, ε2 are the dimensionless vortex strengths of the two point
vortices, ρ is the ratio of density, γ is the ratio of far upstream uniform speed, λ is the nondi-
mensional depth of the upper layer, and 2d is the nondimensional distance between two vortices.
The elevation of fluid interface is described by a function y = η(x).

Figure 1. The nondimensional problem of a two-layer flow about a submerged vortex
pair located horizontally.

Because two layer fluids are both ideal fluids and flows are irrotational, from potential flow
theory two potential functions φ1, φ2, the stream functions ψ1, ψ2 satisfy the Cauchy-Riemann
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equation: (∂/∂x)φ j = (∂/∂y)ψ j, (∂/∂y)φ j = −(∂/∂x)ψ j j = 1, 2. Thus two analytic functions
f j(z) = φ j(x, y) + iψ j(x, y), z = x + iy, complex velocity potential functions for upper and lower
fluid separately are introduced. z1 = −d − i, z2 = d − i, the position of the two point vortices,
are two singularities of f2 where i is the imaginary unit, i2 = −1. f2 satisfies

f2 → z +
iε1

2π
ln(z − z1) +

iε2

2π
ln(z − z2), z→ z1, z2 (1)

at z1 and z2. The upstream conditions are

f1 → γz, f2 → z, Re[z]→ −∞ (2)

here Re[z] means the real part of z.

The kinematic boundary condition for upper surface

∇φ1 · n = 0. (3)

At the interface y = η(x) it is

∇φ j · n = 0, j = 1, 2, (4)

where ∇ = ( ∂
∂x ,

∂
∂y ).

Introduce the arclength parameter s to parameterize the fluid interface y = η(x), so the fluid
interface is represented as (x, y) = (x(s), y(s)). The arclength condition is

(
dx
ds

)2

+

(
dy
ds

)2

= 1. (5)

The fluid interface satisfies the Bernoulli equation

ρ

(
dφ1

ds

)2

−

(
dφ2

ds

)2

+
2(ρ − 1)y

F2 = ργ2 − 1, (6)

according to setting the pressure and velocity equally on the interface. For more details can be
found in [4] and referring in it.

Choose a fixed point z = z(s) = x(s) + iy(s) randomly on the fluid interface, where s corre-
sponding arclength parameters. The Laplace equation for the upper and lower layer fluid could
be replaced by

∮
Γ

f (z)dz = 0 and
∑

Res f , zk. Both two integral equations come form Cauchy
integral and residue theorem with respect to integral contour-path on z1 and z2. Writing two
functions φ′js as forms of integral equations, two integral-differential equations are established
for the upper and lower layers by the boundary integral equation method The detailed derivation
process is similar to [4].

Introduce the analytic function G1(z) =
d f1
dz −γ, then apply the Cauchy integral formula and take

its imaginary part to establish the governing equation. Applying the equality
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AB = A · B̄ + iĀ × B = (ac − bd) + i

∣∣∣∣∣∣ a −b
c d

∣∣∣∣∣∣
where A = a + ib, B = c + id ∈ C, the governing equation can be written as follow

π(γ − x′(s)φ′1(s)) = Im
{? +∞

−∞

G1(z(t)) × d(ln(z(t) − z(s)))
}

+ Im
{∫ +∞

−∞

G1(z̃(t)) × d(ln(z̃(t) − z(s)))
} (7)

where z̃(t) = x(t) + i(2λ − y(t)) is the mirror point of z(s) about y = λ. The first integral on the
right side of the equation is the singular integral in the sense of the Cauchy principal value.

For the lower layer, introduce the analytic function G2(z) =
d f2
dz − 1 similarly, apply the residue

theorem, and the equation
∮

Γ2

G2(ξ)dξ
ξ−z(s) = 2πi

∑2
k=1 Res

{
G2(ξ)
ξ−z(s) , zk

}
is obtained, where z1 = −d −

i, z2 = d − i.

Calculating the residue and integrals in the above formula and taking the imaginary part. The
residue contribution obeys the superposition law. The lower layer fluids following governing
equation

π(x′(s)φ′2(s) − 1) =Im
{? +∞

−∞

G2(z(t)) × d(ln(z(t) − z(s)))
}

+
ε1 (y(s) − Im z1)
|z(s) − z1|

2 +
ε2 (y(s) − Im z2)
|z(s) − z1|

2

(8)

Whereas the vortex pair contains two isolated singular points z1 and z2, which requires two
calculation of residual number and add one more term in the governing equation.

The governing equations (5), (6), (7) and (8) are derived. Based on them and the corresponding
boundary condition (2), the unknowns x(s), y(s), φ1(s) and φ2(s) can be calculated.

Numerical procedure

The numerical calculation method is similar to [4], while the difference is that this paper applies
the quasi-Newton iteration method [14, 15] to solve (5), (6), (7) and (8). If y′ is determined ,
then from (5) x′ is obtained, as well as x(s) =

∫ s

−∞
x′(t)dt and y(s) =

∫ s

−∞
y′(t)dt are also acquired.

(7) can be written as integral equations with respect of φ
′

1, then from (6) φ
′

2 can be solved easily.
As y′ is unknown, take the approximation of y′ as ỹ′ and (8) as the cost function to update the
approximation with quasi-Newton method. The following is the detailed process.

The integral area (−∞,+∞) is truncated to the finite interval [s1, sN], then N−1 equally dividing
it to get N grid points sk = s1 + (k − 1)∆s, k = 1, . . .N. Here ∆s = (sN − s1)/(N − 1) means
the step size. xk, yk, x′k, y′k, φ

′

1,k, φ
′

2,k are the approximation value of the responding unknown
quantities. According to the infinity boundary condition (2), the equation (5) and (6) determine
y1 = y′1 = 0,, x′1 = 1, x1 = s1, φ′1,1 = γ, φ′2,1 = 1. To eliminate the effects of singularity in
the integral, half grid points at atsk−1/2 = (sk−1 + sk)/2: xk− 1

2
, yk− 1

2
, x′

k− 1
2
, y′

k− 1
2
, φ′

1,k− 1
2
, φ′

2,k− 1
2
,
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k = 2, . . . ,N are also calculated. Here xk− 1
2

= (xk−1 + xk)/2. So as other variables. The initial
approximation of y′2, · · · , y

′
N = 0.

As y′2, · · · , y
′
N is determined, calculate numerical integration on the finite interval [s1, sN] with

trapezoidal rule to get discrete equations A[φ
′

1,1, . . . , φ
′

1,N]T = c while taking the approximation
value of quantities at s as its value in (7). Dealing with (8) in a similar way yields the equations
of matrix form E(y′2, · · · , y

′
N) = B[φ

′

2,1, . . . , φ
′

2,N]T − d, where φ
′

2,k calculated from Bernoulli’s
equation (6). In these equations coefficient matrices A, B, constant terms b, d are all concerned
with y′k, x′k, xk, yk , which can be calculated by (5) and trapezoidal rules: Finally, we get a system
of equations for y′2, . . . , y

′
N . Solve it applying quasi-Newton method, and the iteration formula

is[14]:

ui+1 = ui − A−1
i E(ui),

Ai+1 = Ai + (bi − Aisi)sT
i /(sT

i si)
i = 0, 1, 2, . . . (9)

where u = (y′2, . . . , y
′
N), ui represents ith iteration approximation of u, E(u) = (E2[y′2, . . ., y′N],

. . ., EN[y′2, . . ., y′N]), si = ui+1 − ui, and bi = E(ui+1) − E(ui). For i=0, A0 could be chosen as(
(ET (y′ + hei) − ET (y′))/h

)
, the (N−1×N−1) difference matrix of cost function E, i = 2, · · · ,N,

where y′ = [y′2, . . . , y
′
N] and ei is N − 1 dimensional unit vector. This Calculating progress

terminates when Calculate ‖E‖2 ‖E‖2 is less than the given number ε.

Results analysis

In the numerical calculation, the upper depth is set λ = 20, and far upstream uniform speed
ratio γ = 1, namely two-layer fluids with equal spped. If we set d = 0, ε1 < 0, ε2 = 0, in fact it
is the case for a single vortex ε < 0. The calculation error precision is setting to be σ = 10−9.
The calculation domain is [-25, 30] and the grid number N = 2201, as well as ∆s = 0.025.

-20 -10 0 10 20 30
-0.04

0

0.04 d=0.05

-20 -10 0 10 20 30
-0.04

0

0.04
d=0.59

-20 -10 0 10 20 30
-0.04

0

0.04 d=1.04

-20 -10 0 10 20 30
-0.04

0
0.04

d=1.59

-20 -10 0 10 20 30
-0.04

0

0.04
d=2.05

-20 -10 0 10 20 30
-0.04

0

0.04 d=2.59

-20 -10 0 10 20 30
-0.04

0
0.04

d=10.13

-20 -10 0 10 20 30
-0.04

0
0.04

d=10.66

Figure 2. Comparison of interfacial wave profiles when d changes, where parameters
F = 0.13, ρ = 0.9, ε1 = −0.24, ε2 = 0.24

For counter-rotating vortex pair with ε1 < 0 and ε2 > 0, figure 2 represents how wave profiles
change with d. As d increasing the amplitude of upstream wave profiles increases and gradually
stabilizes, as well as that of downstream steady wave profile oscillates. When d is large enough
there’s steady wave profile between two vortices, which is close to that for the single vortex
ε < 0. For d = 10.13, the wave height and length of this steady wave profile are h = 0.01587,
L = 2.018, close to that of the steady wave profile h− = 0.01580, L− = 2.019 for a single vortex
ε = −0.24 at (0,−1). Figure 3 describes the periodical change of wave height h of downstream
wave profiles with d clearly. When d changes, the phase difference of two wave profiles caused
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by two vortices changes periodically. If the phase difference is one/half a period, the amplitude
of sum of these two profiles is the maximum of h. The period is close to L−/2. That is to say
that this period is almost the distance of two vortices(2d). As d is large enough, the extreme
values of downstream wave height h are approximately h+ ± h−, which are downstream steady
wave height for a single vortex ε = −0.24 and ε = 0.24, respectively. Whereas for d = 0.51,
h/(h+ + h−) = 0.9775 and d = 1.01,h/|h+ − h−| = 0.8459. These values of d are the maximum
and minimum of figure 3.
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Figure 3. Relationship of h/h− and d. Two horizontal lines of dashes represent h+± h−.
h is the downstream wave height and h− = 0.01580, h+ = 0.03038 are wave height for

a single vortex ε = −0.24 and ε = 0.24, respectively. Other parameters F = 0.13,
ρ = 0.9, ε1 = −0.24, ε2 = 0.24.
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Figure 4. Relationship of h/h−(solid line) and h12/h−(dash line) with d, where h is the
downstream wave height and h− = 0.01580 is the wave height for a single vortex

ε = −0.23. Other parameters F = 0.13, ρ = 0.9, ε1 = ε2 = −0.23.

For co-rotating pair, figure 4 shows that the wave height h also change with d periodically and
the extreme values are almost the sum and difference of wave height for the single vortex except
d = 0.413 and 0.93. On the other hand, let (x(s), y(s)), (x1(s), y1(s)) and (x2(s), y2(s)) represent
the interfaces for the vortex pair ε1 and ε2, the single vortex at z1 and z2, respectively. Figure
4 shows the variance of wave height of y1(s)) + y1(s)) (written as h12) oscillates like h with
d and moves backward except for about d < 0.5. To examine this behavior, try to construct
an approximate analytic expression considering that for a single vortex ε < 0 the wave profile
consists of a large crest like a solitary wave and the downstream steady waves. Assume that this
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crest can be written as y = Asechα(x − x0) and the downstream wave y = Asin((2π)x/L + φ),
calculate curvature of highest point, the amplitude and wavelength and the positions of the
maximum points to obtain the expression y = Asechα(x−x0)+0.0794sin(2π/2.025+0.562)H(x−
x1), where x0 = 0.275, A = 0.0205, α = 2.957 and x1 = (π − φ)L/2π. Figure 5 describes the
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Figure 5. Comparison of interfacial wave profiles calculating by boundary integral
method(solid line) and the expression patched (dash line), where parameters F = 0.13,

ρ = 0.9, ε = −0.23.

fitting effects. From figure 6, the wave profile is close to the superposition of two wave profiles
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(a) d = 0.413
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Figure 6. Comparison of interfacial wave profiles calculating by boundary integral
method(solid line) and the expression patched (dash line) for (a) d = 0.413, (b) d = 0.93

.

for the single vortex as d makes h around its maximum (for instance d = 0.93) and significantly
different as h gets is minimum points(for example d = 0.413).

Conclusion

In the steady two-dimensional two-layer flow with ideal irrotating fluids, a vortex pair sub-
merged in lower layer generates interfacial waves . In this paper, two integral equations coupled
with Bernoulli equations of nonlinear boundary waves are established by applying potential
flow theory and boundary integral equation method, then a numerical method based on quasi-
Newton method is carried out. The influences of d, which is the half of distance between two
vortices on symmetric and asymmetric pair is discussed.

For symmetric/antisymmetric vortex pair, as d increases the wave height of downstream wave
h oscillates and the extreme values are close to the sum/difference of wave heights for two
vortices of the pair. When d is taken near its maximum points, the wave profiles is close to the
superposition of that for these two vortices, whereas if d is taken other values the difference is
large.
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Abstract 

The current paper presents the solution of elastic buckling of columns using stochastic B-

spline wavelet on the interval (BSWI) based wavelet finite element method (WFEM).  In this 

work, the spatial variation of modulus of elasticity is modelled as a homogenous random 

field.  BSWI scaling functions are used for the discretization of the random field.  Columns 

under different boundary conditions are considered as numerical examples.  The stochastic 

Eigen value problem is solved for the response statistics of buckling load with perturbation 

approach and the results are validated using Monte Carlo simulation (MCS).  A parametric 

study is carried out by considering different coefficient of variation values by varying the 

standard deviation.  A comparative study of computational time needed for the execution of 

perturbation approach and MCS is also done. 
 

Keywords: B-spline wavelet on the interval; Multiresolution analysis; Random field; Auto-

covariance function; Perturbation method; Monte Carlo simulation; Elastic buckling 

 

Introduction 

 

Buckling is one of the predominant modes of failure which is observed when a structure is 

subjected to an axial compressive type external loading. It is a stability failure wherein, the 

entire structure collapses suddenly and the critical value of the applied external load causing 

this failure depends on the geometry of the structure and the stiffness of the material but not 

its strength [1]. Engineering structures have a high degree of uncertainty associated with its 

material properties, loads, geometry, operating environments, etc. [2]. The uncertainty in the 

design parameters will also result in uncertainty in buckling loads and its mode shapes. 

Therefore, a stochastic modelling approach leads to a robust design by providing additional 

statistical information on the stability of the structures. At the same time, a stochastic 

modelling also increases the complexity of the mathematical model and needs a higher 

computational effort to obtain the system response when compared with a deterministic 

approach. Nonetheless, widespread research has gone into the development of stochastic 

based numerical methods over the past few decades due to the availability of powerful 

computational resources.  

Extensive research has gone into the development of stochastic finite element methods 

(SFEM) [3], wherein a stochastic mesh is generated to discretize the input random field and 

calculate the response statistics. Vanmarcke and Grigoriu [4] analysed simple beams with 

random elastic moduli using SFEM. Lin [5] developed a SFEM for the buckling analysis of 

frames with random initial imperfections, uncertain sectional and material properties. 

However, due to the high mesh dependency of finite element method (FEM), mapping the 

random field discretization onto response discretization becomes difficult. Hence, there is a 
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need for the development of stochastic based numerical methods, which can address the mesh 

dependency and re-meshing issues of FEM. Meshfree methods have been used in the 

stochastic analysis [6,7] to alleviate the mesh dependency of FEM. Gupta and Arun [8] 

proposed a stochastic meshfree method for elastic buckling of columns. In addition to 

meshfree methods wavelet finite element method (WFEM) is another alternate numerical tool 

which has shown to reduce the issues related to FEM considerably.  

Wavelets are mathematical functions that are used in the approximation of other unknown 

functions at different levels of resolution. The multiresolution analysis (MRA) and two scale 

relation properties of wavelets lead to the development of a hierarchy of solutions during the 

approximation process. Wavelets have a scale varying local basis functions having a compact 

support that leads to a refinement of solution locally in the regions of high gradient.  

Therefore, issues related to slow convergence and re-meshing can be addressed using wavelet 

based numerical methods. B-spline wavelet on the interval (BSWI) has gained widespread 

popularity from among different wavelets that exist in the literature [9], due to its underlying 

properties [10,11] and hence, it is selected to be used in the current paper. 

One-dimensional (1D) C0 and C1 BSWI elements for structural analysis using BSWI WFEM 

were constructed by Xiang et al. [12]. Deterministic buckling analysis of functionally graded 

beams and functionally graded plates was done by Zuo et al. in their papers [13] and [14] 

respectively. Yang et al. [15] carried out a deterministic study of free vibration and buckling 

analysis of plates. 

Besides the discretization of random field, evaluation of response statics also needs to be 

computationally efficient. Monte Carlo simulation (MCS) has been used for the calculation of 

response statistics. Elishakoff [16] solved the problem of buckling of finite columns with 

initial imperfections, resting on a softening nonlinear elastic foundation by Monte Carlo 

method. But the usage of MCS makes the modelling process computationally expensive with 

increase in MCS sample size and number of random variables. Hence, a more viable 

procedure is needed that requires less computational effort. In this regard, perturbation 

methods have been extensively used for SFEM or stochastic meshless methods. 

From the existing literature, it is noticed that a stochastic BSWI WFEM formulation for 

elastic buckling of columns using the perturbation method for calculating the response 

statistics, while material properties are modelled as random field does not exist. Hence, in the 

present study, the solution of elastic buckling of columns using stochastic BSWI WFEM is 

presented. The spatial variation of modulus of elasticity is modelled as a homogenous random 

field. BSWI scaling functions are used for the discretization of the random field and response. 

Columns under different boundary conditions are considered as numerical examples. The 

stochastic Eigen value problem is solved for the response statistics of buckling load with 

perturbation approach and the results are validated using MCS. A parametric study is carried 

out by considering different coefficient of variation (CV) values by varying the standard 

deviation. A comparative study of computational time needed for the execution of 

perturbation approach and MCS is also done. 

In the next section, for the benefit of the reader, a brief description of BSWI and its properties 

is given. 

 

B-spline wavelet on the interval [0, 1] 

 

The theory of spline wavelets for whole square integrable real space
2 ( )RL was developed by 
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Chui and Wang [17–19]. Wavelets defined on 
2 ( )RL

 
cannot be directly used as interpolating 

functions as it results in numerical instability [20]. Hence, Chui and Quak [10] addressed this 

issue by constructing wavelet bases for the bounded interval [0, 1], which came to be known 

as BSWI. Spline wavelets are semi-orthogonal wherein, they retain inter-scale orthogonality 

and there is no necessity for the basis functions to be orthogonal to its translates within the 

same resolution level. By introducing multiple knots at the endpoints, splines can readily 

adapt to the case of the bounded interval [0, 1]. As a result, no truncation is needed when the 

function on 
2 ( )L R  is restricted. By way of suitable adaptation at the endpoints, MRA of 

2 ( )L R  can be implemented over to [0, 1].  Multiple knots exist at end points (0 and 1 in the 

case of BSWI) and they do not diminish the overall order of smoothness of the elements on 

[0, 1]. The continuity of B-splines depends on the selected order m  in such a way that B-

splines with order m  are in 2mC  continuity.  The analytical expressions for the BSWI scaling 

functions   and wavelet functions   for given order m  and resolution 0j  can be found in 

the paper by Goswami et al. [21] and the expressions for order m  and any resolution j  were 

given by Xiang et al. [12] as,  
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The compactly supported intervals of wavelets are,  

 

 ,

[0,  (2 1 )2 ], (0 boundary wavelets)

( ) [ 2 ,  1], (1 boundary wavelets)

[ 2 ,  (2 1 )2 ], (inner wavelets)

supp ψ  





 

 


 


  

j

j

j

j

m k

j

m k

k

k m k



  

   (3) 

 

 
BSWI scaling functions are categorized as the boundary scaling functions that exist at 

boundary points 0 and 1 on the domain and inner scaling functions that are dilations and 

translations of cardinal B-splines as shown in Eq. (1), (2) and (3). Eventually, the 

corresponding wavelets can be constructed from the scaling functions. BSWI scaling 

functions of different order and resolution which are used in the current study are shown in 

Figure 1. 
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                          a) 4, 4m j                                                  b) 2, 2m j     

Figure 1.BSWI scaling functions using different order and resolution 

 

Formulation of stochastic BSWI WFEM element for elastic buckling of columns 

In BSWI WFEM, the problem domain   is divided into sub-domains i (i=1, 2...) and each 

i
 
is then mapped into the standard element solving domain e = { | ∈ [0, 1]}, where 

instead of using the traditional polynomial interpolation, scaling or scaling and wavelet 

functions of BSWI can be used to form the shape functions over the elements e .  Here  is 

the local co-ordinate used for solving 1D BSWI on [0, 1] along y  axis.   

 

Deterministic modelling 

 

The generalized functional of potential energy governing static buckling of columns is given 

as [22], 

                                        

2 22

0 0

20 0

1

2 2

L Ld w dwP
EI dx dx

dx dx

   
     

  
                                    (4) 

Here, 0w is the transverse deflection, I is the second moment of area, P is the axial 

compressive load, E  is the Young’s modulus. One BSWI WFEM beam element based on 

Euler-Bernoulli theory (EBT) which was developed by Xiang et al. [12] is used in the present 

study. One BSWI EBT beam element with C1 continuity is divided into 2 3j m  nodes with 

end nodes having both transverse and rotational degrees of freedom (DOF) and internal nodes 

having only transverse DOF as shown in Figure 2, where ,m j are the order and resolution of 

BSWI scaling functions respectively.  
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Figure 2.Distribution of nodes and degrees of freedom for one BSWI EBT based beam 

element with C1 continuity using m = 4, j = 4 

 

The unknown transverse deflection field function of Euler-Bernoulli beam element is 

approximated in the element solving domain   in terms of wavelet scaling functions as, 
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where, 
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eb  is the column vector of wavelet coefficients that needs to be 

determined.  The unknown transverse deflection field function can be expressed in terms of 

1C element type transformation matrix and physical DOF as, 
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 (7) 

The elemental transformation matrix transforms the stiffness matrix from wavelet space into 

physical space. The transformation matrix also maintains the continuity and compatibility 

within the element and by using an assembly matrix, at the interface between the 

neighbouring elements. Upon substituting the deflection field of Eq. (6) into the weak form 

and invoking the stationary condition for variation of admissible deflections, the solution of 

static buckling of columns is obtained in the form of an Eigen value problem as,  
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                                                                  0e e e
K - PG w                                                     (8) 

where, 
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Here, e
K is the elemental stiffness matrix and e

G is the elemental geometric stiffness matrix. 

The Eigen values P  from Eq. (8) correspond to the buckling loads and the Eigen vectors e
w  

correspond to the mode shapes.    

 

Stochastic modelling 

 

In the present work, the Young’s modulus ( )xE is considered as a spatially varying 

homogeneous lognormal random field. As a result, the generalized functional of total 

potential as given in Eq. (4) along with response, will also become stochastic in nature. When 

( )E x is a homogeneous lognormal field with mean
lE and standard deviation 

lE   it can be 

expressed in terms of ( ) x  as,  
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The auto-covariance kernel for ( ) x  can be written as [23],  
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(12) 

 

where, 
nnR , i is the distance between two points ,a bx x

 
along i , ic

 
is the correlation 

length parameter which determines the statistical correlation of field variable in the domain. 

Here, ( )x  is a random field that does not possess an explicit expression and hence requires 

an approximation, which can be achieved by approximating a function over a set of random 

variables distributed in the domain obtained by discretization of the random field. In the 

current study, for modelling the random field a shape function method is proposed to be used. 
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Shape function method using Lagrange interpolation and moving least square shape functions 

has been employed in SFEM [24] and stochastic meshless methods [6] respectively. However, 

in the present study, BSWI scaling functions are used to model both the random field and 

response.  

On similar lines, as the deflection field is approximated in Eq. (5), the unknown random field 

can be approximated in the element solving domain in terms of BSWI scaling functions as,   
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b  is the column vector of wavelet coefficients that needs 

to be determined and  ,r rm j are the order and resolution of BSWI scaling function chosen 

for the discretization of random field. The subscript r is used here to denote the function or 

variable associated with the random field. Also, it can be noted that the order and resolution 

that is used for the discretization of the deflection field and random field can be different from 

each other. The unknown random field function is expressed in terms of 0C element type 

transformation matrix as,  
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where,  R 1R 2R ( 1)R.....
T

e

n     is the set random variables distributed over the domain of 

the element. Thus, element stiffness coefficients and hence the element deflections will 

become functions of random variables 
R

e  and Eq. (8) becomes a stochastic Eigen value 

problem as,  
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When ( )xE  is modelled as a homogeneous lognormal field as given in Eq. (10), the e
K  in 

Eq. (15) can be written as,  
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Here, K
e
is the elemental stochastic stiffness matrix for beams based on EBT formulation. 

The element stiffness matrices K
e
and G

e
 are obtained for all the sub-domains and assembled 

together to obtain the global stochastic Eigen value problem as, 
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      R R R
0K - P G W   

 
  (17) 

From Eq. (17), the second moment characteristics of buckling loads (Eigen values) P  and 

mode shapes w (Eigen vectors) are obtained using the perturbation method which is discussed 

in the next section. 

Perturbation method 

 

Perturbation method uses the expansion of the global stiffness matrix K , Eigen values P  and 

Eigen vectors w  via Taylor series [8]. It is based on the assumption that the variance of the 

random field should be small. Let  
1


N

i i



  denote the vector of N  zero mean random 

variables representing the random field in the global domain . The Taylor series expansion 

of K , P  and w  can be obtained as,     
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where, 0K , 0P  , 0W  are deterministic values evaluated at  0K ,  0P ,  0W ;  
 

 
.

. 0
I

i
i





, 

and  
 

 
2 .

. 0
II

ij
i j



  

. Upon substituting Eq. (18), (19) and Eq. (20) into Eq. (17) and 

rearranging the terms of the same order gives,   

 

                                                                       
 0 0 0 0K - P G W                                                        (21)                                                

 

                                                       
 0 0 0 0I I I

i i i
    K - P G W K - P G W

                                    
         (22) 

 

                 
 0 0 0 0II I I I I I I II II

ij i i j j j i ij ij
             K - P G W K - P G W K - P G W K - P G W            (23) 

 

It is to be noted that 0 0K - P G  is symmetric, which leads to,  
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Pre-multiplying Eq. (22) and (23) by 
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W and using Eq. (24) leads to,    
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Upon simplification of Eq. (25) leads to,  
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By substituting Eq. (27) into Eq. (25), I

iW can be obtained, which can be further substituted 

into Eq. (26) to obtain, 
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Upon the substitution of Eq. (28) into Eq. (26) 
II

ijW can be obtained. By applying the 

expectation and variance operators on the first order or second order approximation of Eq. 

(19), the first and second order statistics of critical buckling load can be obtained as,  
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Second order approximation 
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(30) 

 

Similarly statistics of other response functions of interest, like W can also be found out. In the 

next section, a few 1D numerical examples are solved based on the preceding formulations 

and the results are analysed. 

 

Numerical examples 

Two numerical examples are solved with the proposed stochastic BSWI WFEM formulation 

for elastic buckling of columns. Columns with pinned-pinned (p-p) and fixed-pinned (f-p) 

boundary conditions under axial compressive loading as shown in Figure 3 are considered for 

the study. The response statistics for buckling loads and mode shapes are calculated via 

perturbation approach and the results are compared with the statistics obtained from MCS. 

From a convergence study, based on the calculation of relative percentage error 

ICCM2019, 9th-13th July 2019, Singapore

84



in L2 norm of mean and standard deviation values of Young’s modulus for various MCS 

sample size; it is noted that an error of less than 1% is obtained when the MCS sample size is 

5000. Hence, MCS sample size of 5000 is considered in the current study. The mean value of 

Young’s modulus is taken as 52 10 MPa
lE   with   100 mmL , 1mmb  and 1mmh  . The 

entire domain of the column is modelled using one BSWI C1 type continuity element. The 

deflection field is approximated using cubic ( 4m  ) BSWI scaling functions with a 

resolution of 4j  and the random field is approximated with linear ( 2m  ) BSWI scaling 

functions with a coarse resolution of 2j  .       

                                                            

                                     a) Pinned-Pinned                      b) Fixed-Pinned  

            Figure 3.Columns with various boundary conditions under axial compressive loading 

The mean values of the buckling loads (first, second and third) for a pinned-pinned (p-p) 

column obtained by using the perturbation approach are shown in Figure 4. These values are 

compared with the values obtained from MCS and the results are plotted for different values 

of CV, obtained by varying the standard deviation of Young’s modulus ( )xE . The correlation 

length parameter considered is 50. It can be observed from Figure 4 that at a CV of 20% the 

results obtained from perturbation approach are in good agreement with MCS for all the 

buckling loads. However, at a CV of 25%, a deviation of 3% is observed between the 

perturbation and MCS results in the case of third buckling load. The variation of standard 

deviation values of buckling loads against CV are shown in Figure 5. It can be observed that 

even at a CV of 25%, the values obtained from perturbation approach concur well with the 

MCS values for all the buckling loads.  
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         a) First buckling load                                     b) Second buckling load  

 

                                                           c) Third buckling load  

Figure 4.Variation of mean values of buckling loads for columns with different boundary 

conditions against CV 

 

        

         a) First buckling load                                       b) Second buckling load  

 

            c) Third buckling load 

Figure 5.Variation of standard deviation values of buckling loads for columns with different 

boundary conditions against CV 

The variation of mean and standard deviation values of buckling loads obtained by using the 

perturbation approach against varying correlation length parameter is shown in Figure 6 and 

Figure 7 respectively. A value of 5% is considered for CV during the process. Figure 6 and 7 

shows that even at a small correlation length parameter the values obtained from WFEM 

based perturbation approach remain in good agreement with the MCS values. This shows that 

a coarse discretization of random field using BSWI WFEM is able to accurately capture the 

results even at extreme correlation length parameters unlike SFEM, wherein the dependency 

of correlation length parameter on random field mesh is well documented [3,24] and would 

require a higher number of random variables to be used for accurate results.    
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Besides the buckling loads, the first three mode shapes are also plotted for the pinned-pinned 

column in Figure 8. It can be seen that WFEM based perturbation approach accurately 

captures the first three mode shapes when compared with MCS results.  

        

         a) First buckling load                                      b) Second buckling load  

 

           c) Third buckling load 

Figure 6.Variation of mean values of buckling loads for columns with different boundary 

conditions against correlation length parameter 

 

         

         a) First buckling load                                       b) Second buckling load  

 

           c) Third buckling load 
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Figure 7.Variation of standard deviation values of buckling loads for columns with different 

boundary conditions against correlation length parameter 

 

    

                         a) First mode                                                 b) Second mode  

 

                  c) Third mode  

Figure 8. Mode shapes for a pinned-pinned column 

The mean values of the buckling loads for a fixed-pinned (f-p) column obtained by using the 

perturbation approach are shown in Figure 4. It can be observed from Figure 4 that at a CV of 

25% there is a deviation of around 5% between the results obtained from perturbation 

approach and MCS for the third buckling load. However, no such deviation is observed in the 

standard deviation values obtained from perturbation approach and MCS as seen in Figure 5. 

Similar to the case of pinned-pinned columns, the mean and standard deviation values of 

buckling loads against varying correlation length parameters for a fixed-pinned column show 

a good agreement between the perturbation and MCS results as observed in Figure 6 and 

Figure 7. Furthermore, the first three mode shapes as shown in Figure 9 reinstates the 

accuracy of the WFEM based perturbation approach.   
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                         a) First mode                                                 b) Second mode  

 

                  c) Third mode  

Figure 9. Mode shapes for a fixed-pinned column 

 

Computational time 

Besides evaluating the mean and standard deviation values of the buckling loads, the 

normalized computational times required by the perturbation approach (FOP and SOP 

combined) and MCS (5000 simulations) is also calculated. It is noted that in the case of a 

pinned-pinned column, the execution time of MCS is 39.63 times more in comparison with 

WFEM based perturbation approach. Similarly, for a fixed-pinned column, the execution time 

of MCS is 38.28 times more than the perturbation method. Hence, the proposed BSWI 

WFEM based perturbation approach is not only accurate but also computationally more 

efficient in comparison with the MCS based approach.     

Conclusion 

The current paper proposes the formulation of stochastic BSWI WFEM formulation for 

elastic buckling of columns wherein, the spatial variation of modulus of elasticity is modelled 

as a homogeneous random field. In the present work, BSWI scaling functions are used for the 

approximation of deflection field as well as random field. The response statistics are 

calculated using the perturbation approach and validated by comparing with the results of 

MCS. The results obtained from the numerical examples show that WFEM based perturbation 

approach can be used to accurately capture the response statistics of the buckling load for 

values of CV up to 25%.  

The domain of the column is discretized using only one BSWI WFEM element, due to which, 

there are no meshes and the programming effort needed in the pre-processing stage to form a 

global matrix from the assembly of multiple elements is reduced. The parametric study on 

correlation length parameters show that the values obtained from perturbation approach based 

on WFEM concur well with MCS values at extremely small or large correlation length 

parameters even when the random field is modelled using a coarse nodal discretization. 

Further, the normalized computational times are calculated for both the numerical examples 

and WFEM based perturbation approach takes less time in comparison with MCS in both the 

cases, thereby making it more efficient.     
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Abstract 
In this paper, a novel substructural damage detection method combining autoregressive 
moving average with exogenous inputs (ARMAX) model residual and Kullback-Leibler 
divergence (KLD) is proposed to identify the damages of shear building structures. Firstly, 
based on the partition strategy of multi-input multi-output (MIMO) model, the overall 
structure is divided into series of substructures such that structural damage diagnosis process 
is able to be implemented on each substructure independently. For the sake of better resisting 
noise interference and enhancing damage detection robustness, every substructure is modeled 
by autoregressive-moving average with exogenous inputs (ARMAX) model, and its model 
residuals contain sensitive structural damage feature characterized by the changes in 
chi-square distribution function (CSDF) of the model residuals. Furthermore, KLD is utilized 
to measure the similarity between two probability distributions and used as structural damage 
indicator to quantify the damage in detail. Numerical simulation is conducted to evaluate the 
performance of proposed damage identification approach, and it shows the satisfactory results 
of structural damage localization and quantification. 

Keywords: Damage detection; shear structure; substructure; ARMAX model residual; 
chi-square distribution function (CSDF); Kullback-Leibler divergence (KLD) 

 

1. Introduction 

In recent years, due to the aging of aerospace, civil, and mechanical infrastructures especially 
for the structures serving human society activities for a long time, structural health monitoring 
(SHM) has become an essential research field in maintaining the integrity of structures. 
Structural damage detection generally provides the fundamental information for SHM 
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practices and is one of the most challenging components in the construction of SHM system 
[1].  

 

As the nondestructive evaluation (NDE) techniques, vibration based damage detection 
methods have become more effective and flexible than the traditional detection approaches in 
engineering applications in the latest decades. Modal properties are easily obtained from 
structural responses, and modal frequencies, mode shapes or mode shape curvatures are 
chosen as damage sensitive features for wide applications of damage detection. In addition, 
substructuring technique has been also developed for subtly designing and analyzing the 
complex large-scale structures in an efficient way that the whole structure is decomposed into 
a series of smaller substructures. By adopting a strategy of ‘divide-and-conquer’, the 
performance of dynamic system model fitting and the accuracy of structural parameters 
identification are not reduced especially for actual large-scale engineering structures, such as 
high-rise building structures and long span bridges. For damage detection, most damage 
indicators of previous substructuring method are based on modal parameters. A substructuring 
method combined with the difference between squared original frequency and squared 
damaged frequency was proposed in [2]-[3] for damage identification of shear structures. 
However, modal parameters usually represent the property of the whole structure such that the 
modal parameters based damage indicators indicate the global structural damage, which is not 
sensitive enough for local damage identification under complicated environmental conditions 
[4]. In contrast to modal parameters identification based detection methods, the time domain 
or frequency domain methods extract local damage sensitive features via signal processing 
and only concentrating on measured data of structural responses, meanwhile, these methods 
are in a data-driven way without a model of the structure and different from the model based 
method requiring an accurate finite element model. For linear time-invariant (LTI) systems, 
autoregressive process can well model the structural systems and distinguish various system 
dynamics through the ‘black box’ model structure containing system inputs and outputs; 
besides, the autoregressive model based methods are more intuitionistic than the frequency 
domain method by generating underlying observations process directly from the model 
parameters without spectral representation. The autoregressive model parameters, such as the 
model residuals and model coefficients, have been well utilized as the damage sensitive 
indexes for local damage detection. In the previous researches, most model residuals-based 
damage detection methods are based on pattern recognition approaches [5], and their damage 
indicators usually rely on pattern recognition tools, which often require a large amount of 
training data to extract damage sensitive features and inevitably produces huge computational 
complexity.  

 

In order to improve the computational flexibility of existing methods and potentially locate 
and quantify damages for shear structures, this paper proposes a new substructural damage 
detection method based on autoregressive moving average with exogenous inputs (ARMAX) 
model and Kullback-Leibler divergence (KLD). At first, the substructural division strategy in 
[2]-[3] is employed so that the damage detection process can be carried out on each 
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substructure independently, which is suitable for a parallel and distributed SHM system. The 
ARMAX model combined with substructure of MIMO system is built to remove strong 
correlation of the responses and needed not to use pre-whitening filter, which is more 
convenient in signal processing than the autoregressive (AR) method of single output [6]-[7]. 
Besides, an ARMAX model is able to enhance the noise immunity of damage detection 
results by its moving average term of model residual. Furthermore, this study proposes an 
innovative damage indicator by incorporating ARMAX model residual and Kullback-Leibler 
divergence (KLD) for sensitive damage quantification in a data-driven way. KLD is an index 
widely used for measuring the similarity between two probability distributions in statistics; 
the value of KLD is close to zero when the two probability distributions are similar, otherwise, 
the value of KLD is close to one [8]. In this study, the distribution of model residual can be 
well described by the chi-square distribution function (CSDF), the KLD value between 
CSDFs in damage state and undamaged state can clearly indicate the damage, including the 
location and extent of substructural damage. Simulation of six degrees of freedom (DOFs) 
shear building structure subjected to mutually correlative white noises is conducted to verify 
the performance of proposed damage substructural damage detection approach, and specific 
conclusions are finally discussed. 

 

2. Theoretical fundamentals 

2.1. Dynamic system modeling with ARMAX model 

For the linear discrete-time system with multiple-input and multiple-output, the dynamic 
process can be described by an ARMAX model as following: 

 

 𝑦𝑦(𝑡𝑡) + ∑ 𝑎𝑎𝑘𝑘𝑦𝑦(𝑡𝑡 − 𝑘𝑘)𝑛𝑛𝑎𝑎
𝑘𝑘=1 = ∑ 𝑏𝑏𝑘𝑘𝑢𝑢(𝑡𝑡 − 𝑛𝑛𝑘𝑘 − 𝑘𝑘 + 1)𝑛𝑛𝑏𝑏

𝑘𝑘=1 + ∑ 𝑐𝑐𝑘𝑘𝑒𝑒(𝑡𝑡 − 𝑘𝑘)𝑛𝑛𝑐𝑐
𝑘𝑘=1  (1) 

 

where y(t) represents the system output at time t, u(t) denotes the system input; 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘, and 
𝑐𝑐𝑘𝑘 indicate the coefficients of autoregressive term, system input term, and moving-average 
term, respectively, na, nb and nc depict their corresponding model orders, respectively, nk 
means the time delay steps; e(t) are the residuals of the estimation process at time t; the 
ARMAX model is efficient for its flexibility to availably handle the disturbance modeling 
through its moving-average coefficient 𝑐𝑐𝑘𝑘. 

 

2.2. Substructure division 
Generally, the shear building structure can be simulated as a one-dimensional shear model 
with lumped masses through the below motion equation: 
 

 𝑴𝑴𝒙̈𝒙 + 𝑪𝑪𝒙̈𝒙 + 𝑲𝑲𝒙̈𝒙 = −𝑴𝑴𝑴𝑴𝒙̈𝒙𝒈𝒈 (2) 
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where 𝑴𝑴𝑛𝑛×𝑛𝑛 , 𝑲𝑲𝑛𝑛×𝑛𝑛 , and 𝑪𝑪𝑛𝑛×𝑛𝑛 respectively depicted the mass, stiffness, and damping 
matrixes, n depicts the number of DOFs, r denotes the 𝑛𝑛 × 1 unit vector (𝒓𝒓 = [1⋯1]𝑇𝑇), x 
indicates the displacement vector of lateral vibration relative to the ground, 𝑥̈𝑥𝑔𝑔 means the 
ground acceleration. 

The motion of each DOF is affected by the motion of adjacent DOFs; every mass and its 
adjacent masses are separated from the overall structure to construct series of substructures, as 
shown in Fig. 1. According to the principle of force balance at the lateral direction, the motion 
equation of substructure i (1 ≤ i ≤ n-1) can be expressed as 

 
 𝑚𝑚𝑖𝑖𝑦̈𝑦𝑖𝑖 + (𝑐𝑐𝑖𝑖 + 𝑐𝑐𝑖𝑖+1)𝑦̇𝑦𝑖𝑖 + (𝑘𝑘𝑖𝑖 + 𝑘𝑘𝑖𝑖+1)𝑦𝑦𝑖𝑖 = −𝑚𝑚𝑖𝑖𝑧̈𝑧𝑖𝑖−1 + 𝑐𝑐𝑖𝑖+1𝑦̇𝑦𝑖𝑖+1 + 𝑘𝑘𝑖𝑖+1𝑦𝑦𝑖𝑖+1 (3) 

 
where 𝑚𝑚𝑖𝑖 is the ith story mass, 𝑘𝑘𝑖𝑖  is the stiffness coefficient of the ith story, 𝑐𝑐𝑖𝑖 is the 
damping coefficient of the ith story; yi represents the displacement of the ith story relative to 
the (i-1)th story; 𝑧̈𝑧𝑖𝑖 means the absolute acceleration of the ith story, and especially 𝑧̈𝑧0 denotes 
the ground acceleration 𝑥̈𝑥𝑔𝑔. Considering that the top mass 𝑚𝑚𝑛𝑛 is the free end and only one 
mass is adjacent to it, the motion equation of the top substructure is represented by following: 
 
 𝑚𝑚𝑛𝑛𝑦̈𝑦𝑛𝑛 + 𝑐𝑐𝑛𝑛𝑦̇𝑦𝑛𝑛 + 𝑘𝑘𝑛𝑛𝑦𝑦𝑛𝑛 = −𝑚𝑚𝑛𝑛𝑧̈𝑧𝑛𝑛−1 (4) 

 
Introducing the difference expression 
 

 𝑦̇𝑦𝑖𝑖(𝑡𝑡) = 𝑦𝑦𝑖𝑖(𝑡𝑡+𝑇𝑇)−𝑦𝑦𝑖𝑖(𝑡𝑡−𝑇𝑇)
2𝑇𝑇

 (5) 

 

 𝑦̈𝑦𝑖𝑖(𝑡𝑡) = 𝑦𝑦𝑖𝑖(𝑡𝑡+𝑇𝑇)−2𝑦𝑦𝑖𝑖(𝑡𝑡)+𝑦𝑦𝑖𝑖(𝑡𝑡−𝑇𝑇)
𝑇𝑇2

 (6) 

 
where 𝑦̇𝑦𝑖𝑖 and 𝑦̈𝑦𝑖𝑖 means the velocity and acceleration of the ith story relative to the (i-1)th 
story, respectively, 𝑡𝑡  represents the time index, T depicts the sampling interval. By 
substituting Eq. (5) and Eq. (6) into Eq. (3), the motion equation of substructure i (1 ≤ i ≤ n-1) 
can be rewritten as 
 

𝑦̈𝑦𝑖𝑖(𝑡𝑡) + 𝑎𝑎1𝑦̈𝑦𝑖𝑖(𝑡𝑡 − 1) + 𝑎𝑎2𝑦̈𝑦𝑖𝑖(𝑡𝑡 − 2) = 𝑏𝑏11𝑧̈𝑧𝑖𝑖−1(𝑡𝑡 − 1) + 𝑏𝑏12𝑧̈𝑧𝑖𝑖−1(𝑡𝑡 − 2) 

 +𝑏𝑏21𝑦̈𝑦𝑖𝑖+1(𝑡𝑡 − 1) + 𝑏𝑏22𝑦̈𝑦𝑖𝑖+1(𝑡𝑡 − 2)              

 +𝑐𝑐1𝑒𝑒(𝑡𝑡 − 1) + 𝑐𝑐2𝑒𝑒(𝑡𝑡 − 2)                (7) 
 
In this, Eq. (7) can be regarded as an ARMAX model with two-input (𝑧̈𝑧𝑖𝑖−1 and 𝑦̈𝑦𝑖𝑖+1) and 
single-output (𝑦̈𝑦𝑖𝑖) [2]-[3], where e(t) represents the ARMAX model residuals. Likewise, the 
motion equation of top substructure n can be rewritten by substituting Eq. (5) and Eq. (6) into 
Eq. (4), and it can be identified as a single-input (𝑧̈𝑧𝑛𝑛−1) and single-output (𝑦̈𝑦𝑛𝑛) ARMAX 
model, that is 
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𝑦̈𝑦𝑛𝑛(𝑡𝑡) + 𝑎𝑎1𝑦̈𝑦𝑛𝑛(𝑡𝑡 − 1) + 𝑎𝑎2𝑦̈𝑦𝑛𝑛(𝑡𝑡 − 2) = 𝑏𝑏1𝑧̈𝑧𝑛𝑛−1(𝑡𝑡 − 1) + 𝑏𝑏2𝑧̈𝑧𝑛𝑛−1(𝑡𝑡 − 2) 

+𝑐𝑐1𝑒𝑒(𝑡𝑡 − 1) + 𝑐𝑐2𝑒𝑒(𝑡𝑡 − 2)               (8) 

 

Figure 1. Substructure division method 
 

Herein, in order to characterize each substructure with MIMO model and promptly acquired 
essential structural features, only three accelerometers are needed to establish the related 
ARMAX model while two is enough for the top substructure. 

 

2.3. Damage indicator 
In this paper, a novel structural damage indicator based on ARMAX model residual and 
Kullback-Leibler divergence is proposed to identify the damages of shear structures. Initially, 
the predicted system output 𝑦𝑦�𝑢𝑢(𝑡𝑡) modeling with ARMAX model in undamaged state can be 
calculated as  
 

 𝑦𝑦�𝑢𝑢(𝑡𝑡) = −∑ 𝑎𝑎𝑘𝑘𝑦𝑦(𝑡𝑡 − 𝑘𝑘) + ∑ 𝑏𝑏𝑘𝑘𝑢𝑢(𝑡𝑡 − 𝑛𝑛𝑘𝑘 − 𝑘𝑘 + 1) +𝑛𝑛𝑏𝑏
𝑘𝑘=1

𝑛𝑛𝑎𝑎
𝑘𝑘=1 ∑ 𝑐𝑐𝑘𝑘

𝑛𝑛𝑐𝑐
𝑘𝑘=1 𝑒𝑒(𝑡𝑡 − 𝑘𝑘) (9) 

 

The model residuals of the undamaged state and damaged state can be generated between the 
measurement system output y and the predicted system output 𝑦𝑦� by comparing with the 
reference ARMAX model of undamaged state, that is  

𝑚𝑚𝑖𝑖−1 

𝑚𝑚𝑖𝑖 

𝑚𝑚𝑖𝑖+1 

𝑚𝑚𝑛𝑛−2 

 

𝑚𝑚𝑛𝑛−1 

𝑚𝑚𝑛𝑛 

 

𝑘𝑘𝑖𝑖 , 𝑐𝑐𝑖𝑖  

𝑘𝑘𝑖𝑖+1, 𝑐𝑐𝑖𝑖+1 

𝑥𝑥𝑖𝑖−1 

𝑥𝑥𝑖𝑖 

𝑥𝑥𝑖𝑖+1 

𝑥𝑥𝑛𝑛−2 

𝑥𝑥𝑛𝑛−1 

𝑥𝑥𝑛𝑛 

𝑧𝑧𝑖𝑖−1 = 𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑔𝑔 

 

𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 
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 𝑒𝑒𝑢𝑢(𝑡𝑡) = 𝑦𝑦𝑢𝑢(𝑡𝑡) − 𝑦𝑦�𝑢𝑢(𝑡𝑡) (10) 

 
 𝑒𝑒𝑑𝑑(𝑡𝑡) = 𝑦𝑦𝑑𝑑(𝑡𝑡) − 𝑦𝑦�𝑢𝑢(𝑡𝑡) (11) 

 

where 𝑦𝑦𝑢𝑢(𝑡𝑡) and 𝑦𝑦𝑑𝑑(𝑡𝑡) are the measurement output of undamaged and damaged state from 
the substructure being analyzed, respectively. For damage case caused by the degradation of 
story stiffness, structural responses generated from damaged system generally vary from 
responses of undamaged system, and it is hard to fit the structural responses in damaged state 
well by using the reference ARMAX model in undamaged state. In other words, model 
residuals from damaged system responses (Eq. (11)) are different from residuals of responses 
in undamaged state (Eq. (10)), which contains important structural information for damage 
examination. In addition, the model residual vector are normalized to a dimensionless vector 
so as to remove the effects of various response amplitudes, as shown as follows 

 

 𝒆𝒆�𝒖𝒖 = 𝒆𝒆𝒖𝒖
‖𝒚𝒚𝒖𝒖‖

 (12) 

 

 𝒆𝒆�𝒅𝒅 = 𝒆𝒆𝒅𝒅
‖𝒚𝒚𝒅𝒅‖

 (13) 

 

where 𝒆𝒆𝒖𝒖 and 𝒆𝒆𝒅𝒅  represent the ARMAX model residual vector in the undamaged and 
damaged state, respectively; ‖𝒚𝒚𝒖𝒖‖ and ‖𝒚𝒚𝒅𝒅‖ mean the norm of output response vector in 
the undamaged and damaged state, respectively, 𝒆𝒆�𝒖𝒖  and 𝒆𝒆�𝒅𝒅  denote the corresponding 
normalized dimensionless residual vector, respectively. On the other hand, the discrepancy 
between the distributions of residual vectors in undamaged and damaged state is able to 
qualitatively reflect the existence of structural damage, and in this work we utilize the 
chi-square distribution function (CSDF) to characterize ARMAX residual vectors for 
structural damage identification: 

 

 𝑓𝑓(𝑥𝑥) = �
𝑥𝑥
𝑘𝑘
2−1𝑒𝑒−

𝑥𝑥
2

2
𝑘𝑘
2𝛤𝛤(𝑘𝑘2)

     𝑥𝑥 > 0

         0          𝑥𝑥 ≤ 0

 (14) 

 

where 𝑥𝑥 represent the random variable, f(.) denotes the chi-square distribution function, Γ(.) 
indicates the gamma distribution function, k depicts a positive integer that specifies the 
number of degrees of freedom and affects the shape of the chi-square distribution function 
curves of residual vectors. Moreover, KLD is utilized to quantify the difference of 
distributions of ARMAX model residuals and used as the structural damage indicator in this 

study. At first, for the discrete random variable 𝑋𝑋 =  {𝑥𝑥1,  𝑥𝑥2,  … , 𝑥𝑥𝑛𝑛} (𝑛𝑛 ≥ 2)  and 
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𝑌𝑌 =  {𝑦𝑦1,  𝑦𝑦2,  … ,𝑦𝑦𝑛𝑛} from an uncertainty system, their corresponding probability distribution 

of each element are given as 

 

 𝑃𝑃(𝑋𝑋) =  {𝑝𝑝1(𝑥𝑥),  𝑝𝑝2(𝑥𝑥),  . . .  ,  𝑝𝑝𝑛𝑛(𝑥𝑥)} (15) 

 

 𝑄𝑄(𝑌𝑌) =  {𝑞𝑞1(𝑦𝑦),  𝑞𝑞2(𝑦𝑦),  . . .  ,  𝑞𝑞𝑛𝑛(𝑦𝑦)} (16) 

 

where 𝑝𝑝i(𝑥𝑥) and 𝑞𝑞𝑖𝑖(𝑦𝑦)  represent the probability distribution function of the element 𝑥𝑥𝑖𝑖 

and 𝑦𝑦𝑖𝑖, respectively; and 0 ≤ 𝑝𝑝𝑖𝑖(𝑥𝑥),  𝑞𝑞𝑖𝑖(𝑦𝑦) ≤1, ∑ 𝑝𝑝𝑖𝑖(𝑥𝑥) (or 𝑞𝑞𝑖𝑖(𝑦𝑦))𝑛𝑛
𝑖𝑖=1 = 1, 𝑖𝑖 = 1, … ,𝑛𝑛. The 

KLD [8] between the probability distributions of discrete random variables X and Y is defined 
as  

 

 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃(𝑋𝑋)‖𝑄𝑄(𝑌𝑌)) = ∑ 𝑝𝑝𝑖𝑖(𝑥𝑥)ln 𝑝𝑝𝑖𝑖(𝑥𝑥)
𝑞𝑞𝑖𝑖(𝑦𝑦)

𝑛𝑛
𝑖𝑖=1  (17) 

 

For the discrete random variables of ARMAX model residuals applied in linear time-invariant 
system,  

  𝒆𝒆𝒖𝒖 =  {𝑒𝑒𝑢𝑢(𝑡𝑡),  𝑒𝑒𝑢𝑢(𝑡𝑡 −  1),  . . .  ,  𝑒𝑒𝑢𝑢(𝑡𝑡 −  𝑛𝑛 +  1)} (18) 

  𝒆𝒆𝒅𝒅 =  {𝑒𝑒𝑑𝑑(𝑡𝑡),  𝑒𝑒𝑑𝑑(𝑡𝑡 −  1),  . . .  ,  𝑒𝑒𝑑𝑑(𝑡𝑡 −  𝑛𝑛 +  1)} (19) 

 

where t indicates time index, n ≥ 2 denotes the length of the residual vector, the 
corresponding probability distributions of each element of undamaged and damaged state are 
described as  

 

 𝑃𝑃( 𝒆𝒆𝒖𝒖) =  {𝑝𝑝1(𝑒𝑒𝑢𝑢),  𝑝𝑝2(𝑒𝑒𝑢𝑢),  . . .  ,  𝑝𝑝𝑛𝑛(𝑒𝑒𝑢𝑢)} (20) 

 

 𝑃𝑃(𝒆𝒆𝒅𝒅) =  {𝑝𝑝1(𝑒𝑒𝑑𝑑),  𝑝𝑝2(𝑒𝑒𝑑𝑑),  . . .  ,  𝑝𝑝𝑛𝑛(𝑒𝑒𝑑𝑑)} (21) 

 

Eventually, the structural damage indicator using KLD between distributions of ARMAX 
model residuals is defined as following: 
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 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃(𝒆𝒆�𝒖𝒖)‖𝑃𝑃(𝒆𝒆�𝒅𝒅)) = ∑ 𝑝𝑝𝑖𝑖(𝒆𝒆�𝒖𝒖)ln 𝑝𝑝𝑖𝑖(𝒆𝒆�𝒖𝒖)
𝑞𝑞𝑖𝑖(𝒆𝒆�𝒅𝒅)

𝑛𝑛
𝑖𝑖=1  (22) 

 
 𝒆𝒆�𝒖𝒖 = sort(abs(𝒆𝒆�𝒖𝒖)) (23) 

 
 𝒆𝒆�𝒅𝒅 = sort(abs(𝒆𝒆�𝒅𝒅)) (24) 

 

where 𝒆𝒆�𝒖𝒖 and 𝒆𝒆�𝒅𝒅 represent the rearrangement vectors of absolute value of 𝒆𝒆�𝒖𝒖 and 𝒆𝒆�𝒅𝒅 in 
ascending order, respectively; P(.) means the corresponding chi-square distribution function. 

 
3. Numerical simulation 
3.1. Simulation setup 
In order to substantiate the performance of proposed method for damage detection, numerical 
simulation of damage detection on a six-story shear building structure has been conducted. As 
is depicted in Fig. 2, it is a six-story shear building model which can be simplified as a 6-DOF 
structure system, and the structure system is subjected to white noise excitation. The 
structural parameters are given as follows: the mass of every story is 1×102 kg, and the lateral 
stiffness is 1×106 N/m; damping ratio is assumed to be 3% for all modes; the first six natural 
frequencies of the shear model in undamaged state are given as 3.84 Hz, 11.29 Hz, 18.08 Hz, 
23.83 Hz, 28.18 Hz and 30.91 Hz for the 1st mode to the 6th mode, respectively; the data 
sampling frequency is 200 Hz; taking into account the influence of environmental disturbance, 
measurement noises of 5% noise level are added into the acceleration data of all stories; there 
are totally 5×6=30 damage cases which consist of 10%, 20%, 30%, 40% and 50% reduction 
of lateral stiffness on every story. Fig. 3 shows the time series excitation of white noise. 

 

Figure 2. 6-story shear building structure subjected to white noises excitaion 
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3.2. Procedure and results 
Primarily, the overall structure is divided into 6 substructures using the partition method 
mentioned in Section 2.2 (Eqs. (2) ~ (8)), as shown in Fig. 4. For each substructure from 
number 1 to 5, it can be modeled in good condition as a 2-input and 1-output ARMAX model, 
while the substructure 6 is modeled as 1-input and 1-output ARMAX model. For example, the 
ground acceleration (𝑧̈𝑧𝑔𝑔) and the acceleration of the 2rd DOF relative to the ground (𝑦̈𝑦2) are 
modeled as the input of substructure 1 while the 1st DOF relative to the ground (𝑦̈𝑦1) is 
modeled as the output. Besides, the absolute acceleration (𝑧̈𝑧𝑖𝑖−1) (2 ≤ 𝑖𝑖 ≤ 5) of the (i-1)th DOF 
and the acceleration of the (i+1)th DOF relative to (i-1)th DOF (𝑦̈𝑦𝑖𝑖+1) are modeled as the input 
of substructure i while the acceleration of the ith DOF relative to the (i-1)th DOF (𝑦̈𝑦𝑖𝑖) is 
modeled as the output. Especially for the top substructure, the absolute acceleration (𝑧̈𝑧5) of the 
5th DOF is modeled as the input and the acceleration of the 6th DOF relative to 5th DOF (𝑦̈𝑦6) is 
modeled as the output of substructure 6.  

 

Figure 3. Input excitation of white noises 
 

 

Figure 4. Substructure division for 6-DOF simulated shear building structure 
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The undamaged limit of each substructure is independently calculated through the mean value 
of KLD values between 10 data subsets in undamaged state, and the time duration of each 
subset is 20 secs. The changes in ARMAX model residuals from the undamaged system to the 
damaged systems can be reflected by its chi-square distribution function. All CSDF curves of 
10% damage at the 1st ~ 6th floors are shown in Fig. 5 to indicate the damages existing in the 
structure. It can be observed from Fig. 5 that the CSDF curves shapes of damaged floors are 
conspicuous compared with others of undamaged floors. This is in good agreement with the 
theoretical expectation that ARMAX model residual of substructure in damaged state varies 
from the one of substructure in undamaged state since the substructural responses in damaged 
state cannot fit well the ARMAX model in undamaged state, as shown in Eqs. (9) ~ (14). 
Nevertheless, it is hard to exactly calculate the gap between the CSDF curves of different 
damage cases by only using the distinction of curves shapes. In view of this, KLD derived 
from Eqs. (15) ~ (24) is adopted to quantify the difference of CSDF curves between 
undamaged state and damaged state, and the complete identification of 10%, 20%, 30%, 40% 
and 50% damage cases is shown in the bar plots of Fig. 6. As a result, it reveals that there 
exists evident regularity in the damage location while the damage indicator can clearly 
quantify the damage with the damage degree increasing though it was interfered by the 5% 
noise. Therefore, it is explicitly reasonable that the proposed residual-based KLD is 
acceptably to reveal the linear relationship between the values of damage indicator and the 
structural stiffness reductions even in the case of a high severity of damage. 

 
Figure 5. Chi-square distribution function (CSDF) of ARMAX model residual (white 

noise excitation, 5% noise, ARMAX model, data length = 4000, na = 2, nb = 3, nc = 3, and nk 
= 0; k = 2 (number of DOFs of CSDF)) 
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Figure 6. Damage indicator of Kullback-Leibler divergence (KLD) (white noise excitation, 
5% noise, ARMAX model, data length = 4000, na = 2, nb = 3, nc = 3, and nk = 0; k = 2 

(number of DOFs of CSDF)) 

 

4. Conclusions 

This paper proposed an innovative substructural damage detection method based on damage 
indicator of ARMAX model residual-based KLD. Simulation of damage identification on a 
six-story shear building structure subjected to white noise is conducted to evaluate the 
performance of proposed damage detection strategy and damage indicator, and the results 
show that it can locate and quantify the damages of shear structures effectively by the 
proposed method. Due to the damage detection procedure can be implemented on each 
substructure independently, which suits for monitoring of key areas of actual engineering 
structure. On the other hand, the proposed CSDF curves of ARMAX model residual can 
clearly locate the structural damages in a visualized way with its distinguished tendencies; the 
proposed damage indicator of residual-based KLD can locate and quantify the damages in a 
data-driven way, which is suitable for local damage detection and does not rely on previous 
training data of various damage patterns. These mean that the proposed substructural damage 
detection approach is easy and efficient for local substructure damage detection of shear 
structures. In the following research, it is needed to further investigate about the identification 
of nonlinear damage in complex engineering structures with the proposed substructure 
damage identification method. 
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Abstract 
The finite difference method (FDM) is a renounced numerical method for solving of complex 
problems of numerous fields. However, the efficacy of this method depends on the resolution 
of the mesh i.e. the size of the mesh used to obtain the solutions. In general, very small sized 
mesh, i.e., high mesh resolution is necessary to obtain an acceptable solution for various 
multi-scale physical problems. This high resolution of mesh consumes a significant amount of 
computational memory. Thus, huge wastage of computational resources occurs in refinement 
of sections of the domain where computation of the solution does not require high resolutions. 
This problem is effectively addressed by mesh refinement (MR) technique, a technique of 
local refinement of mesh only in sections where needed, thus allowing concentration of effort 
where it is required. The objective of this paper is to develop a mesh refinement algorithm for 
fourth order biharmonic equation which is widely used to solve boundary value elastic 
problems by using finite difference approach. Initial tests using the MR algorithm establish 
that the model adopted has considerable potential for mixed boundary value elastic problems. 
The results of initial test also show that consumption of computational resources is 
significantly less compare to uniform mesh (UM) while maintaining the quality of the 
solution.  

Keywords: Finite Difference Method; Mesh Refinement; Fourth Order Biharmonic Equation; 
Mixed Boundary Value Problems 

 
Introduction 

Finite difference method is extensively used to solve mixed boundary value elastic problems 
because of the simplicity of this method[1],[2],[3],[4],[5]. Usually mixed boundary value 
elastic problems are governed by fourth order biharmonic equation (FOBE) of potential 
function, . Analytical solution is not possible for FOBE which makes numerical method 
very popular for mixed boundary value problems. For instance, Ahmed et al. [1] analyzed 
stress-strain distributions of a both end fixed deep beams with mixed boundary conditions by 
applying FDM. Later, a generalized mathematical model for the solution of mixed-boundary-
value elastic problems is depicted by Hossain et al. [4]. However, in these examples, the 
physical domains are discretized with high resolution uniform mesh, which consumes a 
significant amount of computational resources to store data. Moreover, high resolution of 
mesh involves the solution of a large matrix which ultimately accumulates huge amount of 
round of error during computation.  
 
Previously, remedies of fine uniform mesh induced problems are sought by zooming the 
critical region, stress concentrated area [6]. However, the adaptability of this method is 
limited by the requirement of solutions for several times. Moreover, for this method, the 
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boundary conditions for current solution step depend on the previous step solution. So, if the 
solution of previous step is not acceptable due to less resolution, then current step solution 
would not be also acceptable. Recently, memory exhausting problems is significantly reduced 
with the development of powerful computers, however, an algorithm for the solution of mixed 
boundary value problems with less memory consumption is still demanding. To address this 
memory exhausting problem, the mesh refinement technique is extensively used in various 
field of study[7],[8],[9],[10]. 
 
Mesh refinement is a technique of local refinement of a mesh to allow computational 
resources and efforts where it is required. Sections of the physical domain needing high 
resolution are generally determined by means various criteria which includes comparing the 
solution to a threshold or the local rate of change to a solution. A mesh refinement algorithm 
based on the idea of multiple component grids for the solution of fourth order biharmonic 
equation using finite difference techniques is presented in this article. The solution of this 
equation is often smooth and easily approximated over large portions of their domains if there 
is no steep gradients, cracks or other discontinuity in the solution. However, most often the 
physical problem contains support boundary or locally isolated internal regions with steep 
gradients, cracks, or discontinuities, where the solution is difficult to approximate. We place 
locally finer grids in these regions over a coarse grid covering the domain. The solution on 
each line sub grid can then be approximated by standard finite difference techniques, as done 
on the coarse grid. 

Mathematical Formulation  

In terms of potential function,  under plain stress or plain strain condition, solution of 
boundary value elastic problems requires to solve the following fourth order biharmonic 
equations with appropriate boundary conditions [1]. 

     (1) 

The relation between potential function and displacement components are as follows 

          (2) 

     (3) 

where  and  are the displacement components in the x- and y- directions respectively. 
The relation between stress components, displacement components are as follows 

   (4) 

  (5) 

   (6) 

Since, the target of this paper is to develop a mesh refinement algorithm for fourth order 
biharmonic equation, we select a very simple mixed boundary value elastic problem as shown 
in Fig. 1. In the considered problem, a simple elastic member of length ‘2b’ and width ‘a’ has 
an embedded crack under the uniform axial loading. For simplicity, we considered there is no 
crack growth under this uniform loading condition. The material geometry of the problem is 
taken as a/b=1.0 and size of the crack is taken as one fourth (a/4) of the width of the member. 
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Referring to Fig. 1, for this problem, both the top and bottom edges are free and the both 
lateral edges are subjected to uniform tensile loading. Taking the advantages of symmetry, the 
right half section of the elastic member is solved under MR and finite element method (FEM) 
with necessary BCs as shown in Fig. 2. 
 

 
Figure 1: Simple bar with embedded crack under uniform tensile stress 

 

 
Figure 2: Half section of the problem with necessary boundary conditions 

 
As far as numerical solution is concerned, it is evident from the expression of boundary 
conditions (please see Fig. 2) that all the boundary conditions of interest can easily be 
discretized in terms of displacement function,  by the finite-difference method. 

Numerical Method  

The replacement process of continuous problem by a discrete problem whose solution 
approximates the solution of continuous problem under numerical method is known 
discretization. Under mesh refinement technique, first the domain is discretized with a coarse 
grid. Then, finer grids are added in the region which requires more resolution. An example of 
discretization of the considered problem under mesh refinement is shown in Fig. 3. From 
theory of elasticity we know that the crack location is the critical region for this problem. So, 
under the mesh refinement technique, the finer mesh is taken in that region. Since, no time 
scale is associated with the problem, instead of adaptive mesh refinement, we introduce 
statistically refined mesh. Under any numerical method, the governing equation (Eq. 1) must 
be satisfied each interior nodal point. Since, the domain is discretized into variable sized 
mesh, uniform grid-based stencil (Stencil-1 of Fig. 4) cannot be used throughout the domain. 
Thus, to satisfy the governing equation throughout the domain, several stencils are formulated 
as shown Fig. 4 (Stencils 2-6). Details of the stencil formulation can be found in reference 
These stencils can fully satisfy the governing equation throughout the domain. 
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Figure 3: Discretization of domain under mesh refinement technique with three different size 

of mesh. 

 
Figure 4: Types of stencils for governing equation 

As seen from the problem definition, each physical boundary is defined by two conditions. 
This double conditions problem is satisfied by bringing an imaginary boundary [4]. The 
stencils of various boundary parameters over uniform mesh are shown in Fig. 5. However, 
these uniform mesh-based stencils are not applicable on the transition node, a node that 
connects two sizes of mesh. Special stencils are required for these transition nodes which is 
shown in Fig. 6. 
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Figure 5: Stencils for displacement and stress components 

 
Figure 6: Special stencil for stress component 

Results and Discussions 

In MR FDM, finest mesh size is taken as , fine mesh size is taken as  
and coarse mesh size is taken as . A uniform mesh of size  is taken for 
FEM discretization. Mesh sensitivity analysis is performed for both methods (data not 
shown). The displacement components at y/b = 0.0 with MR FDM with refine mesh (RM) 
and FEM are shown in Fig. 7 as a comparative study. Fig. 7a shows displacement component, 
ux/a distribution at section y/b = 0.0. Except at the tip of the crack both methods show same 
amount of displacement in x-direction. At the tip of the crack FEM shows a little bit higher 
displacement, however, this disagreement is not significant. Fig. 7b shows displacement 
component uy/b distribution at section y/b=0.0 and the results of both are in good agreement. 
In other section of the member, both methods provide exactly same amount of displacement 
(data not shown).  In every case, MR results are as good as FEM results although greater no 
of nodal points is considered under FEM discretization. 
 

 
Figure 7: Comparison of MR FDM results with FEM results at section y/b=0.0: a) ux 

distribution and b) uy distribution. 
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The comparison of stress components at y/b = 0.0 is shown in Fig. 8. For this type of 
problems, the most desired parameter is the stress component in direction to applied stress 
and, in this case, it is σy which is shown in Fig. 8a. From this figure it is seen that results of 
both methods are in good agreement. The maximum stress is observed as 3.75 times of 
applied stress for FEM and around 3.8 times of applied stress for MR FDM. The normal 
stress, σx distribution is shown in Fig. 8b. From figure 8b, it is seen that the pattern of 
distribution is similar for both methods, but FEM give somewhat larger stress than that of 
mesh refinement technique. As stated in earlier example, this discrepancy arises due to the 
application of three BCs at the singularity points. 
 

 
Figure 8: Comparison of MR FDM results with FEM results at y/b=0.0 in terms of stress 

components: a) σy/σo distribution and b) σx/σo distribution. 

Conclusions 

A mesh refinement algorithm is developed for fourth order biharmonic equation which is 
widely used to investigate the displacements and stress analysis of mixed boundary value 
problems. The governing equation is discretized by finite difference method in various way to 
develop various stencils which are required to satisfy the governing equation throughout the 
domain. Due to mesh refinement, the boundaries are also discretized into irregular meshes. As 
a result, the boundary conditions also need to be discretized in different way than regular 
mesh. Our results show that the developed method can easily be used to obtain the solution of 
mixed boundary value elastic problems in terms of displacement and stress components. Our 
results also show that a reduced number of nodes can yields results as good as finite element 
method. 
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Abstract 

In order to solve the problem of large limitation of simulation results caused by load factors 

and corrosion conditions respectively in the study of corrosion failure of metallic materials, 

the idea of combining cellular automata and edge-based smoothed point interpolation method 

(ES-PIM) is adopted. The corrosion process of aluminum under environmental action was 

simulated by cellular automata method and the corrosion topography was obtained which was 

used for the establishment of calculation model. To overcome overly-stiff property existing in 

the widely used finite element method (FEM) with linear triangular elements, the edge-based 

smoothed point interpolation method (ES-PIM) is used for calculation which has been found 

both spatially and temporally stable, and works well for both static and dynamic problems. 

Keywords: Widespread corrosion damage   Cellular Automaton   Meshfree method 

1.Introduction 

As a kind of nonferrous metal structural materials, aluminum and its alloys are widely used in 

aviation, aerospace, automobile, machinery manufacturing and so on. In the process of its use, 

it will suffer different forms of damage due to the influence of the service environment, 

among which corrosion is a common form of damage. However, the failure of aluminum 

structure is not caused by the single factor of corrosion, usually accompanied by the action of 

load on it. Most scholars have simulated the corrosion behavior of aluminum based on the 

corrosion mechanism of aluminum, but have not carried out mechanical analysis on the 

corrosion defect structure generated subsequently. Therefore, it is of great significance to 

simulate the corrosion and failure behavior of aluminum and its alloys in the service 

environment. 

 

In the field of aluminum corrosion behavior simulation, Engelhardt et al.[1-3] established a 

damage function analysis model  to predict local corrosion such as pitting corrosion, crevice 

corrosion and stress corrosion. Urquidi-macdonald  et al.[4] studied the relationship between 

the crack growth rate caused by pitting corrosion and various parameters (corrosion potential, 

pH, temperature and conductivity) using artificial neural network technology (ANN).In 

Cellular Automata (CA) model, space is divided into cells with finite states. These cells 
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evolve according to certain local rules. By the CA model based on the rules of local reactions 

in the system, can reflect the influence of different scales complex physical and chemical 

systems, by defining the molecular scale or the interaction of the atomic scale, within the 

scope of the macro qualitatively describe the nature of the complex system, so using the CA 

technology to rot corrosion in the process modeling more intuitive and convenient, like Wang 

Hui et al. [5-6] adopted cellular automata (CA) method to obtain the growth and evolution 

curve of corrosion pits and the change curve of geometric morphology with time. 

 

After years of development, finite element method (FEM) has become an important tool for 

modeling and simulation of solid and complex geometric structures. However, the finite 

element method has some inherent defects. For example, the finite element model is 

"overly-stiff", which affects the accuracy of strain, especially for stress results; When the 

mesh is severely deformed, the precision of the solution will be affected. 

 

During mesh generation, using triangle (for 2D) or tetrahedron (for 3D) elements, mesh 

generation becomes much easier and is usually done automatically without manual 

manipulation. But at the same time, the accuracy of finite element calculation results is often 

very poor. 

 

Professor G.R. LIU[7-9]and his team used point-based polynomial interpolation (PIM)[10] or 

radial basis interpolation(RPIM)[11] to construct the shape function, and introduced smoothed 

Galerkin weakform and generalized gradient smooth operator [12,13]. Thus, the node-based 

smoothed point interpolation method [14,15](NS-PIM) can be obtained. 

 

In practical application, this method shows that it can withstand mesh deformation better and 

still has good calculation results under triangular mesh. Moreover, this method provides the 

upper bound of energy norm. However, the stiffness matrix K obtained by this method is 

smaller than the actual stiffness matrix K, that is, the smoothed system is "overly-soft", 

resulting in a displacement larger than the actual displacement. In order to solve this problem, 

Edge-based smoothed Point Interpolation Method[16-18] (ES-PIM) is introduced. 

 

In ES-PIM, every edge-related problem domain of the background grid is smoothed. 

Compared with the node-based smooth operator, the smoothness of edge-basis strain can 

weaken the degree of softening, so that the ES-PIM model is closer to the exact stiffness and 

has a good calculation effect in both static and dynamic problems. 

 

For the above methods, professor G.R.LIU and his team established Galerkin weakened weak 

(W2) formulation constructed by generalized gradient smoothing operator. 

 

Weakened weak (W2) formulation seeks solutions in G space[19]which is a function space 

containing both continuous and discontinuous functions. G space includes all the continuous 

and discontinuous displacement cases under the framework of FEM and Meshfree. Therefore, 

in the framework of finite element and meshless method, it is suitable for both compatible and 

incompatible displacements. By using the generalized strain smoothing technique, we can 
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obtain the generalized smooth Galerkin weak form for all the above methods. 

 

In this paper, the widespread corrosion behavior of aluminum is simulated by using cellular 

automata method, and a computational model is established based on the simulated corrosion 

topography. The model is analyzed by introducing edge-based smoothed point interpolation 

method and the results are obtained. The combination of the two methods provides a new way 

to analyze the mechanical properties of structures with corrosion defects. 

 

2. Establishment of widespread corrosion model 

 

2.1 Definition of cellular automata 

Cellular Automata (CA) is defined as a dynamic system that evolves in discrete time 

dimensions in accordance with certain local rules in a cellular space composed of cells with 

discrete and finite states. 

 

In the process of its evolution, each cell can change according to local rules state, namely 

based on cellular automata and its neighbor cell state with this to determine the next state of 

cellular automata, all belong to sync status updates, in accordance with local rules the entire 

cellular space show the change of state in discrete time. 

 

2.2 Boundary conditions 

When simulating a given cellular automata rule, one cannot deal with an infinite lattice. The 

system must be finite and have boundaries. Clearly, a site belonging to the lattice boundary 

does not have the same neighborhood as other internal sites. In order to define the behavior of 

these sites, a different evolution rule can be considered, which sees the appropriate 

neighborhood. This means that the information of being, or not, at a boundary is coded at the 

site and, depending on his information, a different rule is selected. 

 

Each variable of cellular automata has a finite number of states and is local in time and space. 

In order to keep each variable in the cellular space free from the influence of the external 

environment, the boundary conditions of the model are usually defined as follows: Periodic 

boundary conditions are used for the left and right boundary to keep the properties of the 

system and the element unchanged, and the theoretical infinity of cellular space is realized. 

The upper and lower boundaries adopt fixed boundary conditions to ensure the 

non-correlation of upper and lower boundary cells, as shown in Figure 1. 

 

A cellular automata rule is local, by definition. The updating of a given cell requires one to 

know only the state of the cells in its vicinity. The spatial region in which a cell needs to 

search is called the neighborhood. In principle, there is no restriction on the size of the 

neighborhood, except that it is the same for all cells. However, in practice, it is often made up 

of adjacent cells only. If the neighborhood is too large, the complexity of the rule may be 

unacceptable (complexity usually grows exponentially fast with the number of cells in the 

neighborhood). 
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Figure 1. Schematic Diagram of boundary conditions 

 

For two-dimensional cellular automata, two neighborhoods are often considered: the von 

Neumann neighborhood, which consists of a central cell (the one which is to be updated) and 

its four geographical neighbors north, west, south and east. The Moore neighborhood contains, 

in addition, second nearest neighbors northeast, northwest, southeast and southwest, that is a 

total of nine cells.[7] 

 

Figure 2. illustrates these two standard neighborhoods. 

          

(a)                                 (b) 

Figure 2. (a) Von Neumann and (b) Moore neighborhoods. The shaded region 

indicates the central cell which is updated according to the state of the cells located 

within the domain marked with the bold line. 

 

2.3 transformation rule 

In the study on the formation process of metal corrosion products, the cellular transformation 

process is realized, which is expressed by the following conversion equation: 

                                   M C P+ →                                   (1) 

In the top formula, M is the metal cell; C is corrosive cell; P is the cell of corrosion product. 

In particular, the concentration of oxygen in the atmosphere changes very little, and the key 

factor affecting the corrosion rate of metal oxygen absorption is the relative humidity of water 

molecules. Therefore, in order to simplify the CA model, only water molecules involved in 

the reaction are represented by C in the equation, and the effect of oxygen on corrosion is no 
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longer considered. 

 

Cellular conversion rules: only corrosion cell C in cellular space has random mobility (top, 

bottom, left, right). If C moves in the direction of neighbor metal cell M, both M and C are 

converted to P. Conversely, if the neighbor is C, all cells remain unchanged. If the neighbor in 

the direction of C is a space bit, then C will jump to the space bit, and the original position 

will randomly become a space bit; If all neighbors of M are C, all cells remain unchanged. If 

at least one neighbor of M is C, and C does not move toward M, M also remains unchanged. 

 

3. Numerical model 

3.1 Brief on Basic Equations 

The stress-strain problem of corrosion-damaged structure belongs to the linear elastic problem 

of solid mechanics, so we first brief the basic equations for solid mechanics problem of linear 

elasticity. 

 

Consider a two-dimensional solid mechanics problem with a physical domain of 2R         

bounded by  .The static equilibrium equation for 2D solids in the domain 2R  can be 

written as: 

                              0, , 1,2
ij

i

j

b i j
x


+ = =


                            (2) 

where   are given external body force and    is the stress tensor which relates to the strains 

tensor   via the constitutive equation or the Generalized Hook’s law: 

                                     ij ijkl klC =                                    (3) 

where     is elasticity tensor of material property constants. 

 

The strains tensor   relates to the displacement by the following compatibility equation. 

                                  
1

2

k l
kl

l k

u u

x x


  
= + 
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                               (4) 

where   ,       is the displacement components in the xi-directions at a point in   . 

 

In matrix form, the equilibrium Eq.(2) becomes: 

                                     0d + =L σ b                                  (5) 

where    is a matrix of the differential operator defined as: 
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The constitutive equation becomes: 

                                       =σ Cε                                     (7) 

Where C  is matrix of material properties which entries of     ,                and 

              .     

 

The compatibility equation (4) can also be written in the matrix form of : 

                                      d=ε L u                                      (8) 

where           is the displacement vector. Substituting Eq.(8) into (7) and then into (5): 

                                   
T

d d + =L CL u b 0                                  (9) 

There are two types of boundary conditions: Dirichlet (or essential / displacement ) boundary 

conditions and Neumann (or natural / stress) boundary conditions. Let    denote a part 

of   , on which homogenous Dirichlet boundary condition is specified, then we can obtain: 

                                 
D   on 0,iu =                                  (10) 

Let    denotes a part of   , on which Neumann boundary condition is satisfied, 

                                 ,ij j in t =   on 
N                                (11) 

where   is unit outward normal vector, and   is the specified boundary stress on   , 

respectively. The matrix form of Eq.(11) is as follows: 

                                
T

n =L t，  on 
N                                 (12) 

Where 

                               ( )
0

0

x

n x y y

y x

n

n n n

n n

 
 

=  
 
 

L                             (13) 

3.2 Displacement field approximation using the PIM 

The point interpolation method (PIM) obtains the approximation by letting the interpolation 

function pass through the function values at each scattered node within the local supporting 

domain. 

 

Different types of point interpolation can be constructed by using different types of base 

functions. There are two common types: Polynomial point interpolation method (PIM) based 

on polynomial basis function and radial point interpolation method (RPIM) based on radial 

basis function. 

 

For the polynomial PIM, the formulations start with the following assumption: 

                             
1

( ) ( ) ( )
n
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i i

i

u x P a
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= = x P x a                             (14) 
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Where     is a field variable function defined in the Cartesian coordinate 

space           ,     is the basis function of monomials which is usually built utilizing 

Pascal’s triangles,   is the corresponding coefficient, and   is the number of nodes in the 

local support domain. The complete polynomial basis of orders 1 and p can be written as: 

                           ( )2( ) 1 , 1T px x x D=P x                           (15) 

                      ( )2( ) 1 ,T p px y x xy x y pD=P x                      (16) 

For the radial PIM, using radial basis functions augmented with polynomials, the field 

function can be approximated as follows: 

                     
1 1

( ) ( ) ( ) ( ) ( )
n m

T T

i i i j

i j

u x R a P b
= =

= + = + x x R x a P x b                 (17) 

Where     and     are radial basis functions and polynomial basis functions respectively, 

and  are corresponding coefficients,   is the number of nodes in the local support domain 

and   is the number of polynomial terms. 

 

The coefficients in Eqs.(14) and (17) can be determined by enforcing the field function to be 

satisfied at the   nodes within the local support domain. Finally, the PIM shape functions can 

be obtained and the field function can be expressed as: 

                              
1

( ) ( ) ( )
n

T

i i

i

u d
=

= =x x Φ x d                            (18) 

where   is a nodal function value and     is the PIM shape function which possesses the  

Kronecker delta function property. In the above formulation, it is noticed that we need to 

properly select   nodes for interpolation ensuring a nonsingular moment matrix. 

 

3.3  T schemes for node selection 

In this paper, three-point triangular background element is adopted to discretize the problem 

domain. The element can be generated automatically without manual operation, and the mesh 

density of triangular background element can be adjusted according to the need of 

computational accuracy. 

 

The T scheme used in ES-PIM method mainly includes T3 scheme, T6/T3 scheme and T6 

scheme. The following mainly introduce the T3 and T3/T6 scheme which used for 

programming. 

 

The T3 scheme mainly uses the three vertices of the triangular mesh where the calculation 

point is located to represent the displacement function of the calculation point, and its 

displacement field is a linear displacement field. This method has many similarities with the 

first-order finite element interpolation method. The T3 scheme is used only for creating linear 

PIM shape functions by using polynomial basis functions. As illustrated in Figure 3. 
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Figure 3. Illustration of the T3 scheme       Figure 4. Illustration of the T6/T3 scheme 

of node selection                           of node selection 

 

Whether the point of interest    is located in an interior cell (element  ) or a boundary cell 

(element  ), only the three nodes of the home cell (     or     ) are selected. 

 

In the T6/T3 scheme, the point of interest located in the boundary cell only needs three nodes 

to interpolate and the linear displacement approximation function also constructed by these 

three nodes. For the point of interest located in an interior cell needs six nodes to interpolate 

and been used for construct a quadratic displacement approximation function. As illustrated in 

Figure 4. 

 

It not only successfully overcomes the singular problem which exists in the process of PIM 

approximation by using the polynomial basis but also improves the efficiency of the method. 

 

3.4 Edge-based smoothed strains 

In consideration of the displacement field is not continuous, the generalized smoothed 

Galerkin weak form or the weakened weak form which has exactly the same form as the 

standard Galerkin weak form need to be used. 

                 ( )( ) ( )( ) 0
t

T T Td d d    
  

− −  =  u D u u b u t                (19) 

Thus, the formulation procedure is exactly the same as that in the standard FEM and all we 

need to do is to use the edge-based smoothed strain   in place of the compatible strain 

fields  . 

 

In the framework of W2 formulation, the gradient of the field function (strains) will be 

obtained using the following generalized smoothing operation which considers both 

continuous and discontinuous displacement functions.[20] 
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where   is the compatible strain,   is the smoothed strain over the smoothing domain(  ),   

( )x i

j
1 3i i− 1 3j j−





 k k
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is the area and   is the boundary of the smoothing domain   . 

 

To perform the generalized strain smoothing, the problem domain is first discretized using 

three-node triangular background cells, and then the stationary and nonoverlapping smoothing 

domains are constructed based on these triangles such that           and             in 

which   is the number of smoothing domains. 

 

Under the framework of ES-PIM theory the, smoothing domains are constructed for the edges 

of triangular cells by connecting two ends of the edge to the centroids of two adjacent cells. 

As illustrated in Figure 5. Thus, the number of smoothing domains (   ) equals the number of 

edges of triangles (     ). 

 

 

Figure 5. Construction of edge-based strain smoothing domains, which are stationary, 

nonoverlapping and constructed based on the three-node triangular cells. 

 

Substituting Eq. (8) into Eq. (20), the edge-based smoothed strain   can be written in the 

following matrix form of nodal displacements: 

                          

infl

1
( )

k
k n i i k i

i Nk

d
A






=  =  L Φd B x d                           (21) 

where    is the matrix of PIM shape functions and    is the number of field nodes involved 

in constructing the smoothed strain fields within   .      is termed the smoothed strain 

matrix, which can be expressed as: 
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In the above equation, elements of the smoothed strain matrix are obtained as: 

                          ( )
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Using the Gauss integration scheme, the above integration can be further expressed as 

follows: 

                        ( )
1 1

1
( ) ( ) ,

seg Gauss
N N

il n i mn i m

m nk

w n l x y
A


= =

 
= = 

 
 b x x                     (24) 

kA
k k

1 SN =   ,i j i j  = 

SN

SN

edgeN

k

Φ inflN

k ( )i kB x

ICCM2019, 9th-13th July 2019, Singapore

118



where    is the number of segments of the boundary   ,     is the number of Gauss points 

which located in each segment on   , and    is the corresponding weight number of the 

Gauss integration scheme.  

 

By using the PIM with different T schemes we can construct the displacement field. Then, 

substituting the assumed displacements and the smoothed strains which given by Eq.(20) into 

Eq.(19), a set of discretized algebraic system equations can be obtained in the matrix form: 

                                       =Kd f                                     (25) 

   is the force vector, which can be obtain as: 

                             
t

T Td d
 

= − +  f Φ b Φ t                            (26) 

and the stiffness matrix   is assembled from the substiffness matrix for all the integration 

cells which are exactly the edge-based smoothing domains for the present method: 

                                   
( )

1

aN

ij ij k

k=

=K K                                    (27) 

where   is the substiffness matrix associated with the integration cell   (i.e. smoothing 

domain   ), which is computed using the smoothed strain matrix, as follows: 

                                
( )

k

T

ij k i jD d


= K B B                               (28) 

4. The Solution of widespread corrosion-damaged structure 

In the service environment, corrosion damage of engineering structures are usually not just 

single point  corrosion damage, instead, widespread corrosion is the main form of structural 

corrosion. The occurrence of widespread corrosion is often random, which makes the cellular 

automata method more suitable for simulation 

 

4.1 Establishment of widespread corrosion-damaged structure model 

In order to simulate the formation process of widespread corrosion, we use cellular automata 

method combined with MATLAB software for programming. The morphological model of 

widespread corrosion-damaged structure of aluminum can be obtained by simulation program. 

As illustrated in Figure 6. 

 
Figure 6. Topography of widespread corrosion damage structures 
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Where the black part in Fig.6 is the appearance of the corroded aluminum metal, with  

Young’s modulus            and Poisson’s ratio      , the white part is the liquid with a 

certain concentration of corrosion and causes widespread corrosion defects on the surface of 

aluminum. There are two main factors influencing corrosion morphology, one is relative 

humidity, the other is ambient temperature.Figure.6 shows the widespread corrosion-damaged 

structure morphology which forms in relative humidity 70% and the temperature of 50℃. 

 

The solution domain was determined based on the simulated widespread corrosion 

morphology, and the computational model was established by combining Fortran 

programming, as illustrated in Figure 7. 

 

Figure 7. Calculation model of widespread corrosion morphology 

 

Hinge constraints are applied to the left edge of the member containing widespread 

corrosion-damaged, and 15kN distributed load is applied to the right edge for stretching.  

 

The problem domain and its boundary are modelled and represented by using 35920 nodes 

scattered in the problem domain and on its boundary. The density of the nodes depends on the 

accuracy required and resources available. 

 

Near the upper edge of the corrosion morphological structure model, we use adaptive 

algorithms to improve the computational accuracy. As illustrated in Figure 8. 

 

Figure 8. Domain discretization of the widespread corrosion-damaged structure by 

using 35920 nodes and 70065 triangular meshes. 
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4.2 The solution of the widespread corrosion structure 

The results of stresses obtained using ES-PIM are listed in Tables 1. 

 

Table 1. The output sample for stress obtained 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The distribution of stresses in the domain obtained by ES-PIM are drawn by Tecplot shown in 

Figure 9. respectively. 

 

 

 

              

(a)                                    (b) 

No. of 

field 

nodes 

𝝈𝒙𝒙 𝝈𝒚𝒚 𝝉𝒙𝒚 

1 4.78E+03 1.90E+02 -3.75E+02 

2 4.80E+03 -1.12E+03 2.02E+03 

3 8.34E+03 1.15E+03 -2.40E+03 

4 

5 

5.24E+03 

4.55E+03 

-1.56E+02 

-1.13E+03 

-2.18E+03 

-2.73E+03 

6 4.37E+03 -1.62E+03 -2.90E+03 

7 4.85E+03 -1.54E+03 -3.13E+03 

8 5.93E+03 -1.70E+03 -3.72E+03 

9 6.57E+03 -1.87E+03 -4.03E+03 

10 7.78E+03 -1.56E+03 -4.45E+03 

︙    

35918 1.08E+04 -1.20E+03 3.15E+03 

35919 2.81E+04 4.76E+03 -2.05E+03 

35920 9.42E+03 -7.85E+02 1.29E+03 
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                                     (c) 

Figure 9. (a), (b), (c) are stress nephogram of   ,   and   respectively. 

 

The results of displacements obtained using ES-PIM are listed in Tables 2. 

 

Table 2. The output sample for strain obtained 

No. of field 

nodes 
u  v  

1 4.75E+03 2.21E+02 

2 4.00E+03 -3.21E+02 

3 7.42E+03 2.07E+03 

4 4.13E+03 9.55E+02 

5 2.51E+03 9.14E+02 

6 2.11E+03 6.34E+02 

7 2.29E+03 1.02E+03 

8 2.94E+03 1.28E+03 

9 3.61E+03 1.08E+03 

10 4.53E+03 1.69E+03 

︙   

35919 2.79E+04 4.94E+03 

35920 9.25E+03 -6.19E+02 

 

The distribution of stresses in the domain obtained by ES-PIM are drawn by Tecplot shown in 

Figure 10. respectively. 

               

                    (a)                               (b) 

Figure 10. (a), (b) are strain n ephogram of  and  respectively. 

xx yy
xy
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5. Conclusions and discussions 

In this work, an edge-based point interpolation method for widespread corrosion-damaged 

structure problems is formulated. And it provides a new way to solve the problem of 

widespread corrosion-damaged structure and lays a foundation for the research of integrated 

disruption of corrosion structure. The following conclusions can be drawn from the analysis: 

 

The PIM shape functions used in the ES-PIM have the Kronecker delta function 

property. Thus, we can perform the straightforward imposition of point essential boundary 

conditions and no additional treatments are needed to apply continuity conditions along the 

interface to meet the interface condition. For the present ES-PIM models, the requirement for 

the nodes distribution and mesh generation along the interface is exactly the same as that for 

the FEM. 

 

The influence range of stress concentration of corrosion pits with relatively close distance is 

wider than that of a single corrosion pit, therefore, the widespread corrosion damage structure 

is more likely to generate cracks in the stress concentration area and eventually lead to the 

failure of the structure. 
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Abstract 

Cuttlefish are known to have superior characteristics for attitude control by using two fins. 

The objective of this study is to clarify the characteristics of cuttlefish-like motion for an 

optimal attitude control. To analyze both flows around a cuttlefish and its motion depending 

on fluid force, coupled simulation of the moving computational domain method and motion 

dynamics were applied. Furthermore, moving mesh techniques combined with a torsional 

spring approach and an angle-based-smoothing enabled the calculation of various fin motions. 

As a first step, it is confirmed whether fluid–rigid structure interaction of moving cuttlefish 

robot is correct. As a result of comparison with the movement of the experiment robot, the 

movement was almost in agreement. Therefore, this calculation method is effective. In 

addition, it was found that the influence of the movement of cuttlefish fins on the flow field 

was small. 

 

Keywords: Cuttlefish, moving boundary problem, moving mesh method 

 

Introduction 

Cuttlefish swim by undulating the fins on the sides of their bodies. This affects the 

surrounding flow and enables fine movement, resulting in excellent attitude control. By 

incorporating this movement into a fish-type robot, the robot can move underwater without 

raising mud on the sea floor or getting entangled in seaweed. The robot can also achieve fine 

attitude control when working with its arms. 

The way cuttlefish swim is currently being studied. Kier et al. [1] suggested that in their fin 

movements, cuttlefish swim in almost the same way as do fish. Rahman et al. [2] are 

developing a robot that imitates the side fins of cuttlefish. They have indicated that propulsion 

and rotation can be performed by fin undulation. However, little has been reported on attitude 

control. Enabling a robot to achieve attitude control will make it possible to smoothly perform 

underwater work and ecological surveys even if disturbances such as tidal currents and waves 

largely affect the obtained results. It is therefore important to conduct research on the attitude 

control mechanism. Although experiments have been done using a robot, they are costly and 

difficult to implement. Therefore, studies based on numerical fluid dynamics are effective. On 

the other hand, as a simulation method, it is necessary to consider the interaction of moving 

fins and fluid flow around the fins and body. Therefore, we performed a coupled simulation of 

fluid dynamics and dynamics of structure. 

In the work we report in this paper, we clarified fin movement as a means to achieve attitude 

control and performed coupled simulation of numerical fluid dynamics and structure 
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dynamics. As a first step, we determined whether the fluid–rigid structure interaction of a 

moving cuttlefish robot is correct. 

 

NUMERICAL APPROACH 

Governing equations 

The governing equations are the continuity equation and the incompressible Navier–Stokes 

equation. These are written as 
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where q is the velocity vector, Ea, Fa, and Ga are respectively advection flux vectors in the x, 

y, and z directions, Ev, Fv, and Gv are viscous-flux vectors, and Ep, Fp, and Gp are pressure 

terms. The elements of the velocity vector and flux vectors are 
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where u, v, and w are respectively the velocity components of the x, y, and z directions and p 

is pressure. The x, y, and z subscripts respectively indicate derivatives derived from x, y, and z 

and Re is the Reynolds number. We also took into account the combined translation and 

rotation motions of a cuttlefish. The rigid body equations of motion are 

B
B

dt

d
f

p
  (4) 

BB
B

B

dt

d
NL

L
  (5) 

 

Here, pB is the momentum vector of the body, fB is the external force vector, LB is the angular 

momentum vector, NB is the torque vector, and B  is the angular velocity. 

Moving-grid finite-volume method 

To ensure the geometric conservation laws are followed, we used a control volume in the 

space-time unified domain (x, y, z, t), which is four-dimensional in the case of three-

dimensional flows. This enables Eq. (2) to be written in divergence form as 

0F 
~~

, (6) 
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The present method is based on a cell-centered finite-volume method. Thus, the flow 

variables are defined at the center of the cell in the (x, y, z) space. The control volume 

becomes a four-dimensional polyhedron in the (x, y, z, t)-domain, as schematically illustrated 

in Figure 1. 

 

 

Figure 1 Schematic view of control volume 
~

 in (x, y, z, t) space-time unified domain. 

  

We apply volume integration to Eq. (6) with respect to the control volume illustrated in 

Figure 1. Using the Gauss theorem, we can write Eq. (6) in surface integral form as 
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Here, 
un~  is an outward unit vector normal to the surface of the polyhedron control volume 

~
 

( 
~

 ). The term n~ = (
xn~ ,

yn~ ,
zn~ ,

tn~ )l, (l=1, 2,... 6) denotes the surface normal vector of control 

volume and its length is equal to the boundary surface area in four-dimensional (x, y, z, t) 

space. The upper and bottom boundaries of the control volume (l = 5 and 6) are perpendicular 

to the t-axis. Therefore they have only the 
tn~  component, the length of which corresponds 

respectively to the cell volume in the (x, y, z)-space at time tn and tn+1. Thus, Eq. (8) can be 

expressed as 
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Moving computational domain method 

The basic coordinate system of the moving computational domain method is the general, 

fixed, stationary (x, y, z) Cartesian coordinate system. The computational domain itself, 

including the body inside, moves in the fixed (x, y, z)-space. The flow around the body is 

calculated as the moving boundary problem. Unknown flow variables, such as pressure p and 

x-directional velocity u, are defined at each grid cell center in the computational domain. The 

motion of the computational domain in accordance with the body motion y in the physical 

space is arbitrary. Accordingly, any kind of body motion can be simulated by the moving 

computational domain method. The flow field driven by the body is calculated in the 

computational domain in which the body fitted mesh system is used. The computational 

domain itself moves in the physical (x, y, z) space time-dependently. Thus, since the mesh 

system of the computational domain also moves in the (x, y, z) space, a flow solver has to be 

constructed for the moving grid system. In the present moving computational domain method, 

the moving-grid finite-volume method [3] is used. The only necessary and essential 

assumption is that the conditions in front of the moving computational domain have to be 

known because they are necessary as a boundary condition of the flow solver. The natural 

assumption may be the stationary fluid condition in front of the moving computational 

domain. 

Spring approach for moving grid 

Cuttlefish fins change their angle from 0 to 45 degrees. To express such fin movements, it is 

necessary to use a large movement defined by a computational grid. Thus, we used the spring 

approach [4], which adds a torsion spring effect to the conventional spring method. In this 

approach, to obtain robustness in the computation, we added a spring constant associated with 

the shape of the cell (cells sides’ angles), as shown in Equation (10). 

ijangleijspringij kkk ][][   (10) 

In our work, we specifically used the following equations: 

2][

1

ij

ijspring
l

k   (11) 

 
dnin

ijanglek
 42][

sin

1

sin

1
, (12) 

where lij shows the side length of the cell. Then, 𝜃𝑖𝑛 and 𝜃𝑑𝑖 are angles defined by two torsion 

sides of a tetrahedral cell, as shown in Figure 2.  
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Figure 2 Spring constant for tetrahedron. 

Numerical procedure 

To solve Eq. (9), we apply the SMAC method [5]. Thus, Eq. (9) can be solved in the three 

following stages. The equation to be solved at the first stage contains unknown variables at 

n+1-time step in flux terms. Thus, the equation is iteratively solved using the LU-SGS method 

[6]. The equation to be solved at the second stage is the Poisson equation about the pressure 

correction. This equation is iteratively solved using the Bi-CGSTAB method [7]. The flux 

vectors are evaluated using the QUICK method, whereas the flux vectors of the pressure and 

viscous terms are evaluated in a central-difference-like manner. The incompressible fluid-

body interaction is calculated in the first step of the SMAC method. Figure 3 shows the 

flowchart of the fluid-body interaction. 

 

 
 

Figure 3 Flowchart for interaction calculation. 

 

 

NUMERICAL RESULTS 

To verify the efficacy of the fluid–rigid structure interaction method, we used a cuttlefish 

robot to compare simulation results with the experiment results [2]. In the experiment, we 
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investigated circular movement due to the frequency differences between the left and right 

fins. 

 

Calculation model 

The experiment robot used in this calculation is shown in Figure 4. The robot has a total 

length of 1.3 m, a maximum width of 0.714 m, a thickness of 0.1 m, a fins length of 0.874 m, 

a fillet width of 0.075 m and a weight of 62.8 kg. 

 

 
Figure 4 Cuttlefish robot [2]. 

 

The calculation model is shown in Figure 5. On a dimensionless basis, its total length L 

amounts to the total length of the experiment robot. Figure 6 shows the model’s surface mesh 

and Figure 7 shows the computational mesh around the model. We generated the 

computational mesh using MEGG3D supported by JAXA [8]. The calculation region is a 

sphere with diameter 30L. The number of cells is 2,875,222. The coordinate system defines 

the x axis in the length direction and the y axis in the width direction, and the direction 

perpendicular to them is the z axis. 

 

 
Figure 5 Cuttlefish robot model. 
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Figure 6 Cuttlefish robot surface mesh. 

 

   
(a) y-z plane      (b) x-z plane 

 

Figure 7 Computational mesh around cuttlefish robot. 

 

Fin movements 

The cuttlefish fins move in a traveling wave motion and the fin deformation is represented 

by the following equations: 

𝜃 = 𝛩(𝑠) sin(2𝜋𝐾𝑠 − 2𝜋𝑁𝑡), 
(13) 

𝛩(𝑠) = sin−1 [{1 − 0.905(
𝑠

𝑓𝐿
− 0.5)2} sin 𝜃max], 

(14) 

𝑦(𝑡) = 𝑟 cos 𝜃, 
(15) 

𝑧(𝑡) = 𝑟 sin 𝜃. 
(16) 

 

In these equations, 𝜃 is the angle from the base of the fin to its tip, K is wave number, N is 

frequency, fL is the fin length in the x direction, s is the length in the x direction from the tip 

of the fillet, 𝜃max is the maximum angle, and r is the length from the base of the fins to the tip. 

In accordance with the experiment conditions, the calculation condition was set to 1 for the 

wave number and 45° for the maximum angle. The direction of traveling wave motion is the-x 

direction. The left and right fins are defined as shown in Figure 8. The left fin frequency is 0.5 

Hz and the right fin frequency is 1.0 Hz. 
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Figure 8 Definition of robot’s left and right fins. 

 

Movement and deformation of computational mesh 

Figure 9 shows the movement and deformation of the space mesh. This figure shows that the 

fin movement is represented by the deformation of the computational mesh and the quality of 

the cell shape is maintained. 

 

 
(a) Fin angle: 45 degrees 

 

 
(b) Fin angle: -45 degrees 

Figure 9 Mesh deformation for fin motion at y-z plane. 
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Calculation conditions 

As computational conditions, the characteristic length is 1.3 m, the characteristic velocity 

is 0.5 m/s, the kinematic viscosity of water is 1.004×10-6 m2/s, and the Reynolds number is 

647,000. The time step is 0.0001. It is assumed that the model moves in static fluid. The 

initial stationary condition of pressure and the velocity components in the x, y, and z 

directions are given by p = 0.0 and u = v = w = 0.0. The model movements are obtained by 

coupled analysis of fin movement and fluid dynamics. 

 

Trajectory of moving cuttlefish robot 

Figure 10 shows the movement trajectory of the side fin type robot up to T = 51.4 s. This 

figure shows the trajectory from the upper side, and the one that is not transparent is the 

position at T = 51.4 s. The robot gradually rotates in the acceleration from the stationary state 

and performs the circular movement. The obtained results confirmed that the simulation 

reproduces the movement in which the speed and the attitude angle change moment by 

moment. 

 

 

 
Figure 10 Trajectory of cuttlefish robot in circular motion. 

 

We used the calculation results to compare the gravity position center coordinates of the robot 

obtained in the experiment Rahman et al. reported [2]. Figure 11 shows a comparison of the 

trajectory of the center of gravity position in the x-y plane. Red lines represent simulation 

results and blue lines represent experimental results. Figure 11 shows that both trajectories 

have the same circular motion. In comparing the circular motion diameters, we found the 

experimental result was 1.40 m, the simulation result was 1.31 m, and the error was 6.8%. 

The simulation result and the experimental result basically match. This confirms the 

effectiveness of the present calculation method of fluid-rigid structure interaction and the 

validity of the calculation result. 
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Figure 11 Center of gravity trajectory. 

 

 

The flow field calculation results we obtained were a 0.1 m/s velocity isosurface around the 

robot at t = 0 s, 17.1 s, 34.3 s, and 51.4 s (Figure 12). We consider that the velocity isosurface 

exist only around the fins, which little affects the surrounding flow. Figure 13 shows the 

pressure distribution on the cuttlefish robot surface. The obtained results confirm that in 

frequency terms the pressure changes more in the right fins than in the left fins, and that thus a 

difference in thrust force exists between the left and right fins. 

 

   
(a) t = 0.0 s      (b) t = 17.1 s 

   
(c) t = 34.3 s      (d) t = 51.4 s 

Figure 12 Velocity isosurface at V = 0.1 m/s 
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(a) t = 0.0 s      (b) t = 17.1 s 

 
(c) t = 34.3 s      (d) t = 51.4 s 

Figure 13 Pressure distribution on the cuttlefish robot surface. 

 

Figure 14 shows the time history of the forces applied to the whole object, i.e. the right and 

left fins in the x direction. These x directions refer to the object fixed coordinate system. 

Figure 14 shows that a propulsion force applied to the right fin is larger than that applied to 

the left fin. The difference in the thrust force applied to the left and right fins makes a circular 

motion. 

 

 
 

Figure 14 Time history of force applied to the robot. 
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CONCLUDING REMARKS 

We confirmed whether fluid–rigid structure interaction of a moving cuttlefish robot was 

correct for attitude control. In comparing experiment results with calculation results, we found 

that they agreed well. We ascertained that the calculation method results obtained with our 

method agreed well with simulation results and showed our method’s efficacy. We also 

confirmed that the fin movement did not affect the flow field very significantly. We also 

found that the difference in thrust force on the left and right fins makes a circular motion. 
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ABSTRACT
In the current study, element free Galerkin method, a meshless method, is proposed for

wrinkling analysis of pre-stressed membranes. The mathematical model for studying wrinkling
of pre-stressed membranes is derived by considering the bending stiffness, though it is negli-
gible. Moving least approximation for deflection is constructed by considering three degrees
of freedom per node. Essential boundary conditions are imposed using scaled transformation
matrix method. Initially, compression induced wrinkling of a homogeneous thin plate without
pre-stress is solved to validate the method and then a pre-stressed homogeneous membrane is
analyzed for both compression induced and shear induced wrinkling. Capabilities of proposed
method for membrane analysis is compared with that of finite element method(FEM). Com-
parative study on wrinkling analysis using EFGM and different FEM element types in a FEM
package shows that, in lower modes both methods shows satisfying consistency in eigenvalues
with respect to total of number of nodes, while at higher modes EFGM shows better consistency
than FEM. Further the study is extended to wrinkling of non-homogeneous membranes sub-
jected to linearly varying in-plane load. The results obtained from EFGM analysis is compared
and found to be matching well with those available in literature.

INTRODUCTION
Thin membranes are largely used in the field of aerospace engineering applications such

as solar collectors, parachutes, sun-shield, antennae, balloons, space radars, solar sails [1, 2]
etc, because of its light weight and low space requirements. In most of these applications, the
membrane will be kept folded and deployed to the required shape at the time of application.
This process may produce wrinkles in the membrane as it has very small bending rigidity. Also,
due to its lower bending stiffness, it cannot support compressive and bending loads. Most of the
application needs highly smooth surface without wrinkles, in order to have maximum efficiency.
This is usually achieved by giving a pre-stressing in the plane of the sheet. However, though
these are pre-stressed, chances of wrinkling due to various loads acting on the membranes still
exists.

A large number of studies are available in the area of membrane analysis [3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14]. Tension field theory [3] and bifurcation analysis [15] are two early
developed approaches used in wrinkling analysis. Wagner[3] proposed the tension field theory
for the wrinkling problem and estimated the maximum shear load that can be carried by a
membrane. Wong and Pellegrino[10, 11, 12], conducted experimental and analytical studies
on shear induced wrinkling of rectangular membrane and verified it numerically using FEM.
Also they have extended their research into wrinkling due to corner loads on a square plate.
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Miyamura[16] studied wrinkling of pre-stressed circular membrane due to in-plane torsional
load. Stress in the membrane are found from experiments and are compared with the results
obtained from bifurcation analysis. Xiao et al.[13] analyzed wrinkles on a square planar thin
film under pure shear and validated using experimental results. The influence of shear force,
pre-stress and boundary conditions were also investigated. Kumar et al.[14] studied wrinkling
of a membrane due to tensile and shear loading using commercial finite element package
ABAQUS. The work was concentrated on the variation in eigenvalues and number of wrinkles
with thickness and aspect ratios for different materials. Leissa et al.[17] found exact solution for
buckling and vibration of thin plate, having two opposite edges simply supported and other two
edges clamped, subjected to linearly varying in-plane load, using power series method. They
extended the studies to other boundary conditions as well [18]. Wang et al.[19] used differential
quadrature (DQ) technique to solve the plate buckling problems studied by Leissa et al.[17]. Lal
and Saini[20] studied buckling and vibration analysis of non-homogeneous thin plates subjected
to linearly varying in-plane loads using DQ method. The variation of critical load with various
parameters like a/b ratio, non homogeneity parameter, loading parameter etc were studied.
Though there exist a number of analytical, empirical and numerical studies, currently the most
common practice in structural analysis is the use of FEM with the help of any commercially
available packages. FEM, due to its simplicity and robustness, found its way into both industrial
and academic fields. Also there are works on wrinkling analysis of membranes using FEM
[12, 21]. However, use of non-conforming shell/plate elements available in commercial FEM
softwares can lead to erroneous eigenvalues [22, 23]. Very small thickness of membranes also
play a role in restricting the use of regular FEM plate/shell elements [22] and make the analysis
cumbersome. Moreover, wrinkling is a highly mesh dependent problem and hence usage of
FEM invites high computational time and cost. One way of handling these complexities is to
re-mesh the problem domain at every stage or to refine mesh on that particular area. This helps
in preventing severe distortion of element and also deals with the discontinuities developed at
each stage. However, these are computationally expensive and less accurate. The use of very
fine elements also leads to generation of localized modes in problems like wrinkling, vibration
etc. Meshless methods are another way of avoiding the difficulties associated with FEM such as
high cost in meshing low accuracy in stress difficulty in adaptive analysis etc [24], by alleviating
the discretization of problem domain into elements or meshes. Only a set of nodes scattered
on the problem domain are needed to represent the problem domain. The main advantage
of these methods is its simplicity in adaptive analysis and problems with moving boundary
discontinuities.

Among these meshless methods, the EFGM is particularly simple and has faster rate of
convergence [25, 26, 27]. EFGM uses moving least square (MLS) method [28] for approximating
the function. Krysl and Belytschko[29] introduced EFGM to the bending analysis of thin plates
using Kirchhoff thin plate theory and extended the same to the analysis of thin shells [30].
EFGM had been used for vibration analysis of beams, plates and shells [31, 32, 33]. Enforcing
essential boundary conditions in EFGM is little complicated when compared to methods like
FEM. This is owing to lack of Kronecker delta property of MLS shape functions. Several
techniques like, Lagrange multiplier [25], penalty function [34], scaled transformation method
[27] etc are used to address this issue. For the current paper scaled transformation method is
used for enforcing essential boundary conditions. Overall EFGM is found to be computationally
efficient tool in many engineering applications. However, wrinkling analysis of pre-stressed
membranes and non-homogeneous membranes using EFGM or any other meshless methods is
missing in the available literature.

The current study proposes to use EFGM for wrinkling analysis of pre-stressed membranes.
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In the proposed approach, governing differential equation is derived by coupling bending
stiffness along with membrane forces using the principles of Love- Kirchoff thin plate theory.
Though the present work does not do a study on post wrinkling behavior or study on effect
permanent folding lines which necessitate the incorporation of bending stiffness [22], thin plate
bending theory is used to obtain more general and simple mathematical model. The proposed
method uses a deflection approximation with three degree of freedom (DOF) per node for MLS.
The capabilities of EFGM in wrinkling of membrane is examined through different examples. In
the first case, wrinkling analysis of a homogeneous membrane, without pre-stress is solved using
EFGM and results are compared with those obtained analytically and from FEM. Wrinkling due
to compressive loading and due to shear loading of a pre-stressed membrane is studied in the
second problem. The results obtained from both these problems are compared with FEM, using
different element types available. The dependency of eigenvalues on the number of nodes are
studied and a convergence study is also conducted with the different element types and EFGM.
In the third case, wrinkling of a non-homogeneous membrane subjected to linearly varying
uni-axial load is studied. The results obtained are compared with the solutions available in the
literature.

VARIATIONAL FORMULATION FOR MEMBRANE WRINKLING
The governing differential equation of an initially flat, isotropic, non-homogeneous thin

membrane defined on a x − y Cartesian plane; assuming classical plate theory for incorporating
the flexural rigidity and considering in-plane forces is given by,

∂2Mx

∂x2 − 2
∂2Mxy

∂x∂y
+
∂2My

∂y2 = Fx

(∂2w

∂x2

)
+ Fy

(∂2w

∂y2

)
+ 2Fxy

( ∂2w

∂x∂y

)
, (1)

where Mx , My are bending moments with respect to y, x axis and Mxy is the twisting moment,
given by,

Mx = −D(x, y)
[∂2w

∂x2 + ν
∂2w

∂y2

]
My = −D(x, y)

[∂2w

∂y2 + ν
∂2w

∂x2

]
Mxy = D(x, y)(1 − ν) ∂

2w

∂x∂y
,

(2)

where w is the deflection in z direction, Fx,Fy are in plane loads per unit length in x, y direction
and Fxy is shear load per unit length acting on the middle plane of the membrane. D(x, y) is
membrane flexural rigidity defined as,

D(x, y) = E(x, y)h3

12(1 − ν2)
, (3)

where h is thickness of membrane and E(x, y) is modulus of elasticity, and ν is Poisson’s ratio,
which is assumed to be constant. The increment in the total potential energy of the thin plate
upon buckling is given by [35],

∆Π =
1
2

∬
A

D
[(∂2w

∂x2 +
∂2w

∂y2

)2
+ 2(1 − ν)

[( ∂2w
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)2
− ∂
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∂x2
∂2w

∂y2

)]
dxdy

+
1
2

∫ a

0

∫ b

0

[
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)2
+ Fy

(∂w
∂y

)2
+ 2Fxy

(∂w
∂x
∂w

∂y

)]
dxdy.

(4)
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Equation 4 is solved using EFGM as explained in the following sections.

EFGM FORMULATION
In EFGM, the unknown field variable wh(x) can be written as[25].,

wh(x) =
m∑

i=1

pi(x)ai(x) = pT (x)a(x), (5)

where pT (x) is the basis function of order m and a(x) are the unknown coefficients which
depends on the position x. To model thin membrane using Love-Kirchhoff’s plate assumption,
a quadratic basis function is used, which is given by,pT (x) =

{
1 x y x2 xy y2}

The unknown coefficients at any point x, are determined by performing a weighted least
square fit of the local approximation, which in turn determined by minimizing the difference
between local approximation at that point and nodal parameters [26]. A support domain or
domain of influence is considered such that the weight function chosen has finite value inside
this domain and has a value zero outside. A rectangular domain of influence is considered
here[26]. Weight function of cubic type [24] is used for the present study Here in case of thin
membrane wrinkling, considering three DOF per node, L2 norm can be defined as,

J =
n∑
i

W(x − xi)
{
[pT (xi)a(x) − wi]2 + [p,yT (xi)a(x) − θxi]2 + [p,xT (xi)a(x) − θyi]2

}
, (6)

where W(x − xi) is the weight function, n is the number of nodes inside domain of influence
and θx ,θy are rotation in x, y direction respectively. The unknown coefficients can be found out
by minimizing the L2 norm. By differentiating J with respect to a j ,

∂J
∂a j
=

n∑
i

W(x − xi)
{
p j(xi)[pT (xi)a(x) − wi] + p j,y(xi)[pT

,y(xi)a(x) − θxi]

+ p j,x(xi)[p,xT (xi)a(x) − θyi]
}
= 0,

j = 1,2,3....m

(7)

Assembling all j and representing in matrix form,

A(x)a(x)=C(x). (8)

where, A(x) is called the weighted moment matrix [24] defined by,

A(x) =
n∑

i=1
Wi(x − xi)[p(xi)pT (xi) + p,y(xi)p,yT (xi) + p,x(xi)p,xT (xi)], (9)

C(x) is given by,

C(x) = Cww + Cθxθx + Cθyθy, (10)

with,
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Cw =
[
W(x − x1)p(x1) W(x − x2)p(x2) . . . W(x − xn)p(xn)

]
Cθx =

[
W(x − x1)p,y(x1) W(x − x2)p,y(x2) . . . W(x − xn)p,y(xn)

]
Cθy =

[
W(x − x1)p,x(x1) W(x − x2)p,x(x2) . . . W(x − xn)p,x(xn)

]
.

(11)

From equation 8 and equation 10, a(x) can be obtained as,

a(x) = A(x)−1[Cww + Cθxθx + Cθyθy]. (12)

Finally, substituting equation 12 in equation 5, the approximation function wh(x) can be
written as,

wh(x) = ΦT
w(x)w + ΦT

θx
θx + ΦT

θy
θy, (13)

where,

ΦT
w = pT (x)A−1(x)Cw

ΦT
θx
= pT (x)A−1(x)Cθx

ΦT
θy
= pT (x)A−1(x)Cθy

. (14)

Thus the equation 13 can be rewritten in matrix form as,

wh(x) =
[
ΦT

w ΦT
θx

ΦT
θy

] 
w
θx
θy

 = NTd. (15)

However, due to the lack of Kronecker delta properties in EFGM, imposing essential bound-
ary conditions involves some additional complication. Here scaled transformation method [27]
is used, in which the displacement approximations given in equation 13 are scaled using a scaled
transformation matrix in such a way that, nodal values and nodal parameters will coincide along
the nodes on essential boundary.

In scaled transformation method, an identity matrix say Λ having number of rows and
columns equal to the total DOF is constructed. The rows corresponding to the degrees of
freedom, in which essential boundary conditions has to be applied, is then populated with shape
function associated with it. A representation of Λ can be shown as,

Λ =



ϕ11 ϕ12 ϕ13 ϕ14 . . ϕ1m . .
ϕ21 ϕ22 ϕ23 ϕ24 . . ϕ2m . .
0 0 1 0 . . 0 . .
0 0 0 1 . . 0 . .
. . . . . . . . .
. . . . . . . . .
ϕn1 ϕn2 ϕn3 . . . ϕnm . .
. . . . . . . . .
. . . . . . . . .


, (16)

where, ϕi j represents shape function of node i evaluated at node j. Here 1st ,2nd and nth are rows
corresponding to degrees of freedom in which boundary condition has to be applied. Detailed
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discussions on this are not included here and reader may advised to go through [27]. Once, Λ
is formed, the discretized system of equations can be written from 4 and 15 as,

1
2

dTKfd +
Fx

2
dTKgxd +

Fy

2
dTKgyd + Fxyd

TKgxyd = 0, (17)

where, K is the modified stiffness matrix, Kgx,Kgy and Kgxy are modified geometric stiffness
matrices, given by,

K = Λ−TKΛT

Kgx = Λ−TKgxΛT

Kgy = Λ−TKgyΛT

Kgxy = Λ−TKgxyΛT,

(18)

where Kf is stiffness matrix and Kgx,Kgy and Kgxy are geometric stiffness matrices. The
sign of geometric stiffness terms in the equation depends upon the direction of in-plane loads.
The terms will be positive for stretching and negative for compression. Stiffness matrix and
geometric stiffness matrices are given by,

Kf =

∬
N′′TDN′′dxdy

Kgx =

∬
NT
,xN,xdxdy

Kgy =

∬
NT
,yN,ydxdy

Kgxy =

∬
NT
,xN,ydxdy,

(19)

where N′′ represents matrix containing the double derivatives of shape function, N,x,N,y rep-
resents partial derivative of N with respect to x, y respectively. Consequently, the essential
boundary conditions are imposed simply by following FEM methodology.

MODEL DESCRIPTION
For the present study, four cases are taken in to consideration. Case(a):Wrinkling analysis of

homogeneous thin plate subjected to uni-axial compressive loading Case(b): Wrinkling analysis
of a pre-stressed, homogeneous membrane, case(c): Wrinkling analysis of non-homogeneous
membranes, subjected to linearly varying, uni-axial load. Though inhomogeneity in modulus
of elasticity is considered for case(c) and case(d), Poisson’s ratio is assumed to be constant.
Moreover, for all the cases material is assumed to be isotropic.

Case(a): Wrinkling analysis of a homogeneous thin plate with uni-axial compressive
loading

A homogeneous thin plate of dimension 0.3m × 0.3m with thickness 0.2mm, which is free
of any initial pre-stress and loaded with a uni-axial compressive load is considered for the study.
The material is assumed to be Kapton which has an Young’s modulus of 3500 × 106N/m2

and Poisson’s ratio of 0.31. All sides of the membrane are given simply supported (SSSS)
boundary condition. The results obtained using EFGM, are compared with analytical solution
and the results obtained using different element types in FEM. Analytical solution obtained
using Navier’s solution method is used here [36]. Five different quadrilateral element types, S4
(four noded element with six DOF per node and with full integration), S4R(four noded element,
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with six DOF per node and with reduced integration), S4R5 (four noded element with 5 DOF per
node with reduced integration), S8R(8 noded element with six DOF per node and with reduced
integration) and S8R5 (8 noded element with 5 DOF per node and with reduced integration) are
taken for modeling. For comparison, discretization in EFGM is done with regularly distributed
nodes, similar to that of linear element types (S4, S4R and S4R5) in FEM.

Three different modes, first (m = 1,n = 1), 20th(m = 5,n = 2) and 30th(m = 9,n = 2)
modes are considered for study, where m,n are number of half sine waves in x, y direction
respectively. This is selected with an objective to study the capability of the methods in an
initial, an intermediate and a higher mode. Mode shapes of corresponding modes, obtained
from EFGM are shown in Fig. 1. A convergence study on eigen values obtained using EFGM
and all element types in FEM for the the three different modes under consideration have been
carried out.

Fig. 1. Mode shapes obtained from EFGM, for wrinkling of membrane without pre-stress and
simply supported on all sides

Fig. 2a shows the variation of eigenvalue with number nodes for the the first mode. It
can be observed from Fig. 2a that, FEM results obtained from models which uses 4 node
quadrilateral elements are showing larger variations from analytical solution when compared
to other element types and EFGM, for lower number nodes. However, it is to be noted that the
difference from analytical solution for S4 element are is within 2%. Moreover, a convergence
is observed while number of nodes are increased. Accurate and consistent results are obtained
while 8 node quadrilateral elements and EFGM are used for the analysis for all the set of nodes.
Variation of 20th mode eigenvalues with respect to number of nodes is shown in Fig. 2b. From
the figure it can be observed that the variation of the results corresponding to element types
S8R, S4R, S4R5 and S4 are very large for lesser number of nodes. For higher number of nodes
all the element types are providing satisfactory results. However element type S8R5 and EFGM
are showing very small error even with the use of lower number of nodes and hence shows a
comparatively consistent results. Eigenvalues obtained for higher mode under consideration is
given in Fig. 2c.

A large error is observed for all FEM elements at the lesser number of nodes, while
EFGM gives fairly accurate and consistent results. Table 1 shows the percentage variation of
eigenvalues obtained using EFGM and FEM from analytical solution for the set 121 nodes. It
can be observed that S8R is showing a huge variation of 8239.83% and other FEM element types
also show unacceptable variation from analytical solution at lesser number of nodes. However
EFGM results are within 6%variation from analytical solutions.
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(b) 20th mode(m = 4,n = 4)
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(c) 30th mode(m = 9,n = 2)

Fig. 2. Variation of 1st mode(m = 1,n = 1) eigenvalues with number of nodes for the case (a)

Table 1. Percentage variation of eigenvalues from analytical value with the use of 121 nodes
for 30th mode(m = 9,n = 2)

Method Element type Percentage variation(%)

FEM

S4 311.36
S4R 427.50
S4R5 426.36
S8R 8239.83
S8R5 146.65

EFGM 5.38

Thus EFGM with only 3 DOF per nodes is observed to provide accurate results with lesser
number of nodes compared to FEM with 5 or 6 DOF per node.

Case(b): Wrinkling analysis of a pre-stressed, homogeneous membrane
A pre-stressed homogeneous membrane with same size and material as that of case(a) is

considered for analysis. Two different numerical examples are examined in this case. In both
the examples, the membrane is being pre-stressed in the y direction and given simply supported
boundary condition on all sides. In example(i), Compression induced wrinkling of pre-stressed
membrane due to compressive load in x direction Fig. 3a was studied and in example(ii), shear
induced wrinkling of pre-stressed membrane as shown in Fig. 3b is studied. Both the problems
are analyzed using EFGM and compared with results from FEM analysis using different element
types available. Three modes (first mode, and an intermediate mode and a higher mode) are
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taken into consideration. A convergence study for eigenvalues corresponds to 1st mode, 20th

mode and 30th mode have been carried out for both the examples. Percentage variation of
eigenvalues obtained with a reference value is also analyzed for each element type and EFGM
for studying the rate of convergence. The reference value is taken as the eigenvalue obtained
when maximum number of nodes, that is 3721 nodes, are used. That is, reference value is
different for EFGM and every element type.

(a) Example 1 (b) Example 2

Fig. 3. Problem considered for wrinkling analysis of pre-stressed membrane due to compressive
and shear loading

Example 1: Compression induced wrinkling
Wrinkling of a pre-stressed homogeneous membrane due to compressive loading in x axis is

analyzed using EFGM and different element types available. A pre stress of 10N/m is applied
to the membrane initially in y direction. The mode shapes of the modes taken into consideration
for study is shown in Fig. 4

Fig. 4. Mode shapes obtained from EFGM, for wrinkling of pre-stressed membrane due to
compressive loading

The results obtained from first mode is shown in Fig. 5a. From Fig. 5a it is clear that
for initial mode, all FEM element types and EFGM provides fairly consistent eigenvalues with
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respect to number of nodes, except for lowest number of nodes. At lowest number of nodes
considered, eigenvalue corresponding to S8R shows high variation. Percentage variation of
eigenvalues from reference value for all element types and EFGM are shown in table 2. From
Table 2, it can be observed that, except for S8R5 and EFGM all other element types shows error
values more than 5% at 121 nodes. S8R is showing very high percentage variation of 71% at
121 number of nodes. But at 441 nodes percentage variation is reduced to 1.54%. For higher
number of nodes, all element types and EFGM show consistent result with percentage variation
within 0.3%.

For an intermediate mode, as shown in Fig. 5b, element types S8R, S4, S4R and S4R5 of
FEM are showing lower convergence rate, while element types S8R5 and EFGM results shows
higher convergence rate. The percentage variation of eigenvalues from the reference values
are shown in Table 3. From the table it can be observed that element type S8R shows huge
variation of 3584.40% with the use of 121 nodes. Element types S4, S4R, S4R5 and S8R5 also
shows large variation at lower number of nodes. All element types except S8R shows percentage
variation within 5% for number of nodes higher than 961. However, EFGM shows consistent
results with percentage variation of 3.76% even at 121 nodes.

For a higher mode, from Fig. 5c, all element types are showing lower rate of convergence
compared to EFGM results. EFGM gives consistent results at higher modes. Percentage
variation in eigenvalues are shown in Table 4. As element type S8R fails to capture the 30t h
mode with the use of 121 nodes, the percentage variation correspond to which is not included in
Table 4. From the Table 4, it is clear that element type S8R is showing huge variation at lower
number of nodes, element types S4, S4R, S4R5 and S8R5 also show considerable variation with
the use of 121 nodes. However EFGM shows more consistent results compared to all element
types in FEM.
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Fig. 5. Variation of eigenvalues with number of nodes for compression induced wrinkling
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Table 2. Percentage variation of eigenvalue for 1st mode compressive loading

Method/Element type Number of nodes
121 441 961 1681 2601 3721

S4 8.50 0.22 0.15 0.12 0.10 0
S4R 6.74 0.087 0.04 0.09 0.07 0
S4R5 6.70 0.09 0.04 0.09 0.07 0
S8R5 1.24 0.12 0.04 0.01 0.01 0
S8R 71.2 1.54 0.09 0.02 0.01 0

EFGM 1.26 0.19 0.1 0.04 0.01 0

Table 3. Percentage variation of eigenvalue for 20th mode compressive loading

Method/Element type Number of nodes
121 441 961 1681 2601 3721

S4 144.53 14.38 4.83 1.94 0.67 0
S4R 138.24 13.57 4.55 1.83 0.63 0
S4R5 136.96 13.46 4.51 1.81 0.62 0
S8R5 64.02 3.28 0.72 0.22 0.06 0
S8R 3584.40 105.37 32.20 3.94 0.57 0

EFGM 3.76 1.88 0.72 0.30 0.10 0

Table 4. Percentage variation of eigenvalue for 30th mode compressive loading

Method/Element type Number of nodes
121 441 961 1681 2601 3721

S4 307.72 18.85 6.11 2.43 0.84 0
S4R 293.83 17.93 5.81 2.31 0.79 0
S4R5 289.53 17.73 5.75 2.28 0.79 0
S8R5 148.48 4.85 1.04 0.32 0.09 0
S8R * 70.27 91.31 14.65 2.16 0

EFGM 2.56 2.04 0.80 0.33 0.16 0
*S8R fails to capture 30th mode at 121 nodes

Example 2: Shear induced wrinkling
Wrinkling of a pre-stressed homogeneous membrane due to shear loading is analyzed using

EFGM and FEM. An in-plane pre-tension of 10N/m is applied. The mode shapes of the
corresponding modes taken into consideration for study is shown in Fig. 6.
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Fig. 6. Mode shapes obtained from EFGM, for wrinkling of pre-stressed membrane due to
shear loading

The variation of eigenvalues with the number of nodes for the first mode is shown in Fig. 7a.
From Fig. 7a it is observed that, element type S4R and S8R shows less consistency in results at
lower number of nodes, while other element types show consistent results. Particularly, element
type S8R5 and EFGM shows consistency and high rate of convergence in the results. Table 5
shows percentage variation in eigenvalues of each element types and EFGM at lower number
of nodes. It is observed that at 121 nodes all element types except S8R5 and EFGM are show
percentage variation higher than 5%. Particularly element type S8R shows a huge variation of
86.13% at 121 nodes. With the use of 441 number of nodes, except for element type S8R, all
other element types and EFGM has percentage variation value within 3%. Particularly, element
type S8R5 and EFGM shows very low percentage variation of 0.12% and 0.21 % respectively.

Fig. 7b shows the variation in 20th mode eigenvalues for shear induced wrinkling. From
Fig. 7b it is observed that, all element types except S8R5 shows inconsistent results. Also
EFGM provides faster rate of convergence compared to all element types. Table 6 shows the
percentage variation of 20th mode eigenvalues with number of nodes. As element type S8R
fails to capture 20th mode, the results corresponding to which is not included in Table 6 and Fig.
7b. From the Table 6, it is clear that EFGM shows very low percentage variation and higher
rate of convergence compared to all element types in FEM.

Fig. 7c shows the variation of eigenvalues corresponding to the higher mode under consid-
eration with respect to total number of nodes used for discretization. It can be clearly observed
that only EFGM is able to produce consistent results irrespective of the number of nodes, in
comparison with FEM. Table 7 shows the percentage variation of eigenvalues for all the el-
ements types in FEM and EFGM for different set of nodes with respect to its own reference
value. It is very much clear from the table that EFGM shows faster rate of convergence with
consistent result at higher modes too. FEM results are highly dependent on the number of nodes
and element types used. Similar to 20th mode results, element type S8R fails to capture 30th

mode also at 121 number of nodes
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Fig. 7. Variation of eigenvalues with number of nodes for for shear induced wrinkling

Table 5. Percentage variation of eigenvalue for 1st mode shear loading

Method/Element type Number of nodes
121 441 961 1681 2601 3721

S4 11.63 2.49 0.92 0.38 0.13 0
S4R 7.61 1.62 0.60 0.25 0.09 0
S4R5 7.52 1.60 0.59 0.24 0.08 0
S8R5 1.42 0.12 0.03 0.01 0.01 0
S8R 86.13 9.39 0.85 0.10 0.01 0

EFGM 0.22 0.21 0.08 0.03 0.01 0

Table 6. Percentage variation of eigenvalue for 20th mode shear loading

Method/Element type Number of nodes
121 441 961 1681 2601 3721

S4 124.43 13.92 5.66 2.30 0.80 0
S4R 101.34 13.92 4.83 1.96 0.68 0
S4R5 100.02 13.82 4.80 1.94 068 0
S8R5 45.40 3.13 0.68 0.2 0.06 0
S8R * 96.23 18.56 4.24 0.69 0

EFGM 5.31 1.54 0.60 0.25 0.09 0
*S8R fails to capture 20th mode at 121 nodes
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Table 7. Percentage variation of eigenvalue for 30th mode shear loading

Method/Element type Number of nodes
121 441 961 1681 2601 3721

S4 283.14 21.22 7.20 3.09 1.01 0
S4R 146.12 16.91 5.76 2.32 0.81 0
S4R5 143.88 16.72 5.67 2.32 0.81 0
S8R5 63.36 3.98 0.86 0.26 0.01 0
S8R * 146.58 53.33 14.67 2.96 0

EFGM 5.55 1.64 0.61 0.25 0.09 0
*S8R fails to capture 30th mode at 121 nodes

Thus it can be concluded that in wrinkling analysis of pre-stressed membrane, EFGM shows
rate of convergence and consistent results, while the values obtained using FEM are highly
dependent on the element type and size used.

Case(c):Wrinkling analysis of non-homogeneous membrane, subjected to linearly varying,
uni-axial load

Wrinkling analysis of non-homogeneous membrane, subjected to linearly varying, uni-axial
compressive load as shown in Fig. 8 is carried out using EFGM. The load Fx is taken as zero
and Fy is taken as compressive and linearly varying along edges y = 0, y = b.

The variation of Fy is given by [20],

Fy = −F0(1 − γx), (20)

where γ is the loading parameter. F0 is the load at x = 0, where x is given by,

x =
x
a

(21)

similarly for consistency other non-dimensional parameters are defined as,

h =
h
a

F∗
0 =

12F0(1 − ν2)
aE0h

3 ,
(22)

where, a, b and h are length, width and thickness of the membrane respectively. F∗
0 is the non-

dimensional force parameter. The modulus of elasticity E0, is assumed to be exponentially
varying, which is given by,

E = E0eµx (23)

where µ is the non-homogeneity parameter.
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Fig. 8. Problem taken for non-homogeneous membrane wrinkling analysis

A non-dimensional critical force parameter is defined as [20],

F∗
0cr =

12F0cr(1 − ν2)
aE0h

3 , (24)

where F0cr is the critical load obtained from wrinkling analysis.
Two type of boundary conditions are taken for analysis. In both of the cases, loading side

is given simply supported boundary condition (y = 0 and y = b). In the first case, the other
two supports are considered clamped (C-C). In the second problem, one of the non-loading
edge is given clamped support and the other edge is given simply supported (C-SS) boundary
condition. Analysis are done for two different loading parameters, γ = 0 ie uniform loading and
γ = 1 ie, linearly varying loading from maximum value F0 at x = 0 to zero at x = 1. Table 8
and Table 9 shows a comparison of critical force parameter obtained using EFGM for different
values of non-homogeneous parameter, µ. The same problem has been solved by [20] by DQ
method. Here results available in [20] is taken for comparison. Table 8 shows the results for
b/a = 1 and γ = 0 and Table 9 shows the results of b/a = 1 and γ = 1

Table 8. A comparison of critical force parameter for b/a = 1 and γ = 0, obtained using EFGM
and using DQ given in[20] for different values of non-homogenity parameter, µ

µ
C-SS C-C

EFGM [20] EFGM [20]
-0.5 43.9491 43.9425 58.8788 66.0304
-0.3 48.6693 48.6598 65.2750 73.0507
0 56.6673 56.6536 75.9725 84.9225

0.3 65.9110 65.8938 88.1120 98.6082
0.5 72.8551 72.8365 97.0748 108.8660
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Table 9. A comparison of critical force parameter for b/a = 1 and γ = 1, obtained using EFGM
and using DQ given in [20] for different values of non-homogenity parameter, µ

µ
C-SS C-C

EFGM [20] EFGM [20]
-0.5 61.5015 61.4897 117.7998 133.780
-0.3 67.8166 67.8000 128.2408 146.139
0 78.4570 78.4334 145.34 166.7380

0.3 90.6731 90.6433 164.2914 190.086
0.5 99.8002 99.7673 178.0288 207.3480

From the Table 8 and 9 it can be observed that for membrane with C-SS boundary conditions,
EFGM provides matching F∗

0cr values with the reference value. However, for membrane with
C-C boundary conditions EFGM results do not match with the reference values available in
literature. Hence for comparison, a homogeneous membrane whose results are available in
literature [17, 19] is taken into consideration. F∗

0cr values obtained for homogeneous membrane
(µ = 0) of b/a ratio 1 and γ = 0, with C-C boundary conditions using different methods are
shown in table 10. It can be observed that, EFGM results match well with that obtained using
all methods except that available in et al[20]. Hence, it is evident from table 10 that results
of C-C boundary condition shown in [20] is erroneous and that is the reason for mismatch of
results in table 8 and table 9 for C-C boundary condition.

Table 10. A comparison of critical force parameter for b/a = 1 and γ = 0 for a
homogeneous(µ = 0) membrane

Method F∗
0cr

EFGM (1296 nodes) 75.9725
Power series ([17]) 75.9100

DQM ([19]) 75.9100
DQM([20]) 84.9225
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Fig. 9. Wrinkling curves for different cases of study using EFGM.

Wrinkling curves for non-homogeneous membrane corresponds to four combinations of
µ and boundary conditions (C-C membrane with µ = 0, C-SS membrane with µ = 0, C-C
membrane with µ = 0.5 and C-SS membrane with µ = 0.5) are shown in Fig. 9. Wrinkling
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curve for a homogeneous membrane with µ = 0 and loading parameter γ = 2 and γ = 1, are
available in [17]. From the Fig. 9, it can be observed that, the curves plotted using EFGM are
found to match with that available in [17].
Case(d): Wrinkling analysis of pre-stressed non-homogeneous membrane due to com-
pressive load

Compression induced wrinkling of non-homogeneous membrane pre-stressed by 10N/m in
y direction is considered for study. Membranes with non-homogeneity parameter µ equal to
0.3 and 0.5 and boundary conditions C-C and C-SS are considered. Initial, intermediate and
higher modes of wrinkling is examined for all these four cases and the resulting plots showing
the variation of eigenvalues with respect to number of nodes are shown in Fig. 10. From the
figure it is clear that EFGM shows a faster rate of convergence in results for all the three modes
taken into consideration. It is observed that, though at 121 nodes eigenvalues corresponds to
1st and 20th modes shows variation within 5%, eigenvalue corresponds to 30th mode shows a
variation of 30% with respect to converged value. However, as number of nodes are increased
to 441, variation in all the modes are reduced to 3% or less. It is also found that, in pre-stressed
case, the eigenvalues obtained for C-C boundary condition and C-SS boundary condition do not
show much difference at higher modes. Also as expected, it is observed that, with the increase
in µ value, the eigenvalue also increases.
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Fig. 10. Variation of eigenvalue with number of nodes for pre-stressed non-homogeneous
membrane

CONCLUSION
The current work discusses the use of EFGM, a meshless method, for wrinkling analysis

of pre-stressed membranes and proves its capabilities in capturing the eigenvalues even at
higher modes. Classical plate formulation with three DOF per node is considered for study.
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A general EFGM formulation for non-homogeneous membrane with in-plane loads derived by
considering the bending stiffness, though it is negligible. Initially, a simple wrinkling analysis
of homogeneous thin plate due to uni-axial compressive load is carried out and compared with
analytical and FEM solutions to validate the proposed method. The results shows that, EFGM
provides accurate results for all the modes under consideration, even with the use of less number
of nodes. Further, wrinkling analysis of pre-stressed membrane due to shear and compressive
loading is studied. The results obtained from both these problems are compared with result
obtained from that of FEM using different element types. A study on consistency of the
numerical tools are also conducted by taking respective converged eigenvalues as reference for
every element types and EFGM. It is found that, consistent results adn faster rate of convergence
are obtained when EFGM is employed regardless of modes under consideration. However
many FEM element types shows larger variation at lower number of nodes at higher modes.
The study is further extended to wrinkling analysis of non-homogeneous membrane subjected to
linearly varying in-plane load, to demonstrate the capability of the proposed method. The results
obtained matches well with the results available in the literature. Moreover wrinkling curves
for non-homogeneous membranes are proposed. Finally, EFGM is used for wrinkling analysis
of pre-stressed non-homogeneous membrane for two different non-homogeneity parameter and
boundary conditions.It is observed that, EFGM produces consistent results and shows a faster
rate of convergence. Thus, EFGM is proved to be an efficient and accurate numerical tool which
can be used for wrinkling analysis of membranes.
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Abstract 

Characterizing the fracture surfaces within a single sand particle precisely and describing it 

quantitatively plays an essential role in understanding the breakage behavior of sands. This 

paper presents two novel methods to obtain the realistic fracture surface from 3D particle 

fragment reassembly and the application of the point cloud registration technique. In the first 

phase of this research, a fracture region matching algorithm was developed to reassemble 

fractured sand particles by using a variety of image processing and matching techniques 

including the minimum spanning tree (MST), simple chordless cycles (CSC) and modified 4-

points congruent set algorithms (4PCS), etc. [1]. In that study, image matching was only 

performed between fragments and the original particle was not involved in the matching 

exercise. In the second phase, the target of research was set to match the individual fragments 

to their mother particle directly, which entailed matching the original face (if any) on the 

fragment surface to the mother particle and then identifying the fracture face on a fragment 

surface that is generated from the mechanical crushing event. That target was achieved by 

employing the Standard Iterative Closest Point (Standard ICP) algorithm in the 3D point cloud 

registration [2]. The effectiveness and efficiency of the tracking methods were demonstrated 

using the tomography data of 9 crushed Leighton Buzzard sand particles.  

Keywords: Particle fracture; Tracking; Particle crushing; Registration 

 

1 Introduction 

Particle crushing plays an important role in the macroscopic mechanical behaviour of sands. A 

significant amount of research work (e.g., physical experiment and numerical simulation) has 

been done to investigate the crushing of sand particles. In spite of these research progress, 

difficulties still exist in accurately depicting the 3D fracture surfaces resulting from particle 

crushing in a mathematical way, and no method has been developed so far for identifying and 

tracking individual fragments generated during a particle crushing event.  

In recent years, some efforts have been dedicated to the development of discrete particle 

tracking methods [3] [4]. These methods mainly rely on the use of particle volume for particle 

tracking. Very recently, Cheng and Wang [5] extended the method proposed by Andò et al. [4] 

by adopting both particle surface area and particle volume as the matching criterion for particle 

tracking. However, this approach suffers from the use of a small search window which may 

only be valid in the case of small sample deformation, and the searching efficiency could 

decrease dramatically when the sample is subject to a large deformation. Furthermore, it can 

only handle problems in which sand particles experience no or very little crushing so that the 

particle volume and surface area almost remain unchanged. As an alternative, Zhou et al. [6] 

incorporated a set of spherical harmonics invariants into the development of a novel particle 

tracking method, but again it will be highly complicated and challenging for the method to be 

employed in the matching of crushed particles. Most recently, the authors have achieved a 
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success in reassembling fractured LBS particles by using a fracture region matching algorithm, 

but this method cannot be directly used to match a fragment to the mother particle from which 

the fragment is generated.  

The objective of this paper is to propose two methods for reassembling sand particles and 

registering 3D point clouds that were crushed and scanned by μCT. In the first phase of this 

research: based on the work of Zhao et al. [7], particle fragments were separated from each 

other, and every fragment was converted to a point cloud. According to the magnitude of the 

surface curvature calculated from the second fundamental form, the points with a higher 

curvature was extracted. Then, we used the minimum spanning tree (MST) to connect all these 

points into a curve network. The bottom-up graph pruning algorithm was essential for removing 

the short branches from the tree. To improve the work efficiency, all simple chordless cycles 

(CSCs) were identified from the MST. After that, the Hausdorff distance and the modified 4PCS 

algorithms were adopted to identify potential CSCs for matching and to match them. The 

registered result which was evaluated by the ray-triangle intersection algorithm to avoid the 

substantial penetration effect provides further information about the potential broken region 

within the sand particle. 

In the second phase, the point cloud registration technique which has been widely used in many 

areas, including computer vision, medical diagnosis and archaeology, etc., is adopted for 

quantitatively characterizing the fracture surface and matching a fragment to the mother particle. 

The Standard Iterative Closest Point (Standard ICP) technique, proposed by Besl and McKay 

[8], is the most well-known algorithm among the numerous registration methods for efficiently 

registering 3D point clouds. The Standard ICP is used in this study to mathematically 

characterize the surfaces of fragments of 9 LBS particles that were subjected to single particle 

crushing tests with in-situ μCT scanning and then match these child particles to their mother 

particle.  

2 The first phase: reassembling sand particles 

A number of μCT images of a fractured particle with a resolution of about 3 μm were obtained 

by using the GE Phoenix v|tome|x m. The CT data visualised as a stack of μCT images, could 

not be utilised directly for image reconstruction because of the existing noise. Performing image 

processing on digital images is an essential way to gain a precise description of fracture patterns. 

Scripting language was compiled to separate the fragments according to the magnitude of 

volume for the convenience of performing image registration. It shall be noted that not all the 

fragments were used in the image registration due to the difficulty of finding the right feature 

curve networks of the fragments as they get smaller and the goal of obtaining the principal 

fracture surfaces. 

In this study, an OBJ file which consists of point and face information was read by the 

MATLAB software to obtain curvature at a point on a curve. Aiming at extracting the feature 

curve network the points with high mean curvatures were selected based on the distribution of 

curvature. Then, we used the Prim's algorithm to build a MST by connecting the extracted points 

in the first step. MST is a subset of the edges of (un)directed graph that forms a tree that includes 

every vertex, where the total weight of all the edges of the tree is minimized. the bottom-up 

graph pruning algorithm was used to remove short branches. The purpose of data segmentation 

is to obtain all CSCs. The CSC, which is a set of points in which a subset cycle of those points 

does not exist, can be extracted. Aiming at improving the work efficiency, the Hausdorff 

distance method was adopted to identify the similarity between two CSCs. Then the 

combination with the largest degree of similarity is prioritised for matching by sorting. 
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2.1 Modified 4PCS algorithm 

A modified 4PCS algorithm was used to express the invariant and to obtain four-points wide 

bases S from chordless cycle C. It should be noted that the set of four-points wide bases S (S for 

chordless cycle C) is a group of four points which must satisfy the following two conditions: 1) 

the four points are coplanar; and 2) the quadrilateral composed by four points is the convex 

quadrilateral. 

The main steps of the S1 (S1 for simple chordless cycles C1 in fragment 1) search algorithm are: 

First, three points A, B, C were arbitrarily chosen from C1. Note the fact that any three points in 

the space can form a plane. However, we need to eliminate the possibility that the three points 

selected are collinear. Then we selected the fourth point D beyond these three points in the set 

of CSC and determined whether the fourth point and the first three points were coplanar. If the 

four points are coplanar, we could then build a four-points wide base X = {A, B, C, D}. Next, 

the crossover point O of these two diagonals (AC and BD) is determined. If the following 

conditions are true, we can conclude it is a convex quadrilateral: A 5-dimensional descriptor 

vector v1 = {l1, l2, θ, η1, η2} was constructed to depict the four-points wide base X = {A, B, C, 

D}, where l1=||AC||, l2=||BD||, θ is the angle between them, η1=||AO||/||AC||, η2=||BO||/||BD||. 

The main steps of the S2 (S2 for simple chordless cycles C2 in fragment 2) search algorithm are: 

We first determined the set of all point pairs Pa = {Pa,1, Pa,2, Pa,3, …, Pa,m} in C2 (m is the number 

of point pairs), in which the distance between each pair of points was equal to l1. Likewise, 

another set of point pairs Pb= {Pb,1, Pb,2, Pb,3, …, Pb,n} in C2 (n is the number of point pairs) in 

which the distance between each pair of points was equal to l2 was also determined. All the 

point pairs in set Pa and set Pb are alternately combined to form a set of four-points wide bases, 

Sc= {Sc,1, Sc,2, Sc,3, …, Sc,h}, in which the number of all combinations was h = m×n. Then the 

same algorithm used for S1 search described above was used for Sc search. Lastly, we could 

construct another 5-dimensional descriptor vector v2. 

2.2 Results and discussion 

In this section, we show the results of the fragment reassembly of 4 LBS particles tested by 

Zhao et al. [7] in which the results of fracture pattern and morphology evolution were 

demonstrated. The 4 particles are denoted as LBS-1, LBS-2, LBS-3 and LBS-4, where the 

numbering of particles follows Zhao et al. [7]. We only show the result of reassembly of LBS-

1 particle, which has an initial volume of 2.18 mm3 (Fig. 1). The crushing of LBS-1 resulted in 

a few hundred fragments, from which 16 fragments were successfully reassembled, making it 

the most successful case out of the 4 LBS particles. The volume of the reassembled LBS-1 is 

about 97.7% of the original volume. The smallest fragment volume matched successfully is 

0.007 mm3 and equal to 0.32% of the original particle volume. The shapes of all 16 fragments 

are shown in Fig. 1(e). Figs. 1(a)-1(d) indicate that LBS-1 was reassembled accurately, 

demonstrating again the high capacity of the proposed matching algorithm. Apparently, this 

fracture mode is different from those of other three particles and is resulted from the combined 

influence of overall less spherical shape (sphericity 0.80), unsmooth surface, little initial void 

and loading direction. 
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Fig. 1. LBS-1 model: (a, c) the original particle shape; (b, d) the reassembly result; (e) 

3D fragment model 

3 The second phase: point cloud registration 

In this study, another 5 LBS particles were tested and scanned, in the same manner as Zhao et 

al. [7] using the μCT system (v|tome|x m, Phoenix|X-ray, General Electric Company (GE)) of 

Shanghai Yinghua NDT Equipment Trade Co., Ltd. The 5 LBS particles were randomly 

selected and had a size between 1.2 and 1.6 mm (due to the load capacity of the apparatus), 

which is not considered to have a significant effect on the crushing behavior. The limited CT 

resolution will create some difficulties for the matching algorithm, particularly for those very 

tiny fragments which tend to have similar morphologies. In fact, this is the main reason for 

choosing LBS particles for this study, which have relatively smooth surfaces and textures, 

reducing the difficulty level for the matching exercise. Other kinds of rough sand particles, for 

example, highly decomposed granite (HDG), are purposely avoided, due to its high surface 

roughness, which becomes intractable for the fragment identification and matching. More than 

500 raw images (i.e., 2D slices) were obtained for each scan, containing a considerable amount 

of noises and cannot be directly used for image analysis. The voxel size of these images is 5.69 

μm. The resolution of the CT scan was not changed during the scan. More details of the image 

processing can also be found in Zhao et al. [7]. 

3.1 Child particle surface segmentation 

In recent years, the point cloud registration is a popular topic and has been widely used in the 

driverless vehicle, medical diagnose and archaeology, etc. Although the technique has received 

a strong development and assisted us considerably in solving graphics-related problems, 

shortcomings like its being sensitive to the noise and hard to recognize the useless points still 

exist in its working process. For this study, points consisting of the fracture face of a child 

(a)

(b)

(c)

(d) (e)
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particle, regarded as useless points, will affect the matching efficiency and accuracy, because 

there are no corresponding points to them on the mother particle surface. Therefore, a data pre-

processing step, called the contour-based mesh segmentation, whose function is to partition the 

child particle surface into several faces, is necessary in the point cloud registration process. 

However, it shall be noted that distinguishing the fracture face from the original face in advance 

is highly challenging. As a result, it is necessary to try matching each face of a child particle to 

the mother particle surface and then use an index called the distance error to evaluate the 

matching degree and eliminate the wrong matching. More details of the procedure of contour-

based mesh segmentation can also be found in Rodrigues et al. [9]. 

3.2 Iterative closest point algorithm 

 

Fig. 2. The relationship between contour-based mesh segmentation and the Standard ICP 

In the point cloud registration, the order of child-mother particle image matching is determined 

by the volume of the child particle. The face with the largest area on a given child particle is 

prioritized for the point cloud registration. The Standard ICP algorithm, which is an optimal 

registration method based on Least Squares Method, was adopted in this paper. The core idea 

of this algorithm is to make trial selections of corresponding points repeatedly and calculate an 

optimal rigid body transformation until the convergence of matching is satisfied. Accordingly, 

Face  3Face  1

Face  2

Face  1 Face  2 Face  3

Right matching Wrong matching Wrong matching
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the first step in the Standard ICP algorithm is to find the initial corresponding points from the 

source cloud and the target cloud, respectively. Then in the second step, the rotation and 

translation matrices are calculated and applied to the source cloud, which results in the 

transformation of the corresponding points. In the last step, the calculation process returns to 

the part of adjusting and reselecting the correspondence points. These steps are iteratively 

performed until the termination condition is satisfied. The performance of the Standard ICP 

was tested by registering the point cloud of each face on a given child particle to the point clouds 

of the mother particle, as shown in Fig. 2. 

3.3 Results and discussion 

9 LBS particles are examined and divided into two groups, namely Group A and Group B in 

this section. Group A involves 4 LBS particles tested by Zhao et al. [7] in which the results of 

fracture pattern and morphology evolution were demonstrated. The 4 particles are denoted as 

LBS-1, LBS-2, LBS-3 and LBS-4, where the numbering of particles follows Zhao et al. [7] 

Group B includes 5 LBS particles which were tested in this study and labelled as LBS-5, LBS-

6, LBS-7, LBS-8 and LBS-9. We only show the results of reassembly of LBS-1 and 5 particles 

(Figs. 3 and 4). 

 

Fig. 3. Group A: the original and fracture face information for a given child particle 

(The grey color expresses the child particle and the mother particle is presented by the 

rest color.) 

The point cloud registration can identify the locations of child particles in the mother particle, 

and upon the successful matching of more and more child particles, can restore the morphology 

of the mother particle. However, some limitations still exist in this algorithm. It will not be 

successful if there is no original face on the child particle. It will also be a challenge if the 
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original faces for two given child particles have similar morphologies. In addition to the above 

backwards, calculation errors are unavoidable in this algorithm, making it difficult to match the 

child particle with the mother particle completely. Fig.4 shows further the matching results with 

colour-labeled particle surfaces. 

 

Fig. 4. The results of image matching between child particle and mother particle (The 

grey color expresses the mother particle and the child particle is presented with green 

color. The mesh expresses the region with higher point density. Translucent state exists 

in the child particle 7 and 8 for better observing.) 

4 Concluding remarks 

The main contribution of this paper is the proposal of two innovative algorithms for 

reassembling fractured sand particles based on the results of CT scanning of single sand 

particle crushing tests. 

Fig. 4. The results of image matching between child particle and mother particle (The grey 

color expresses the mother particle and the child particle is presented with green color. The 

mesh expresses the region with higher point density. Translucent state exists in the child 

particle 7 and 8 for better observing.)
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 For the first phase, the matching algorithm, which has been widely used in medical diagnosis, 

computer vision, archaeology, forensic investigations and other related fields, was applied to 

the micromechanical study of sands for the first time, making this study a pioneering one in the 

investigation of the 3D particle morphology restoration upon particle breakage. Although only 

four LBS particles were reassembled in this study, the results of particle reassembly 

demonstrated the high capability and robustness of the proposed algorithm, and contributed to 

our further understanding of the fracture pattern and morphology evolution during the sand 

particle crushing process. It serves as a starting point for the further investigation of the fracture 

mechanics of sands. 

For the second phase, the point cloud registration method, which has been widely used in many 

areas such as image processing, computer vision, machine vision and medical diagnosis, etc., 

was applied for the first time to characterize fractured sand particles and match them to the 

original particles. This was achieved by implementing the Standard ICP algorithm to segment 

and identify the original faces and fracture faces of the child particles resulting from the 

crushing of LBS particles, which were subjected to the single particle crushing test and scanned 

by the μCT. 9 LBS particles were successfully reassembled using the above technique, 

demonstrating the high competence and robustness of the technique in quantifying the fragment 

morphologies and matching them to the original particles. Our next goal is to enhance the 

algorithm to enable the automatic ID-tracking of fractured particles within a loaded sand sample. 
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Abstract 

GPU parallel computing was applied to a trajectory prediction of an aircraft. An aerobatic 

maneuver was simulated by a coupled method of 6-DOF motion and MCD method. Because 

the simulation contained a complex interaction of grid movement and flow dynamics and thus 

it was quite expensive, the acceleration by GPU was attempted to demonstrate its ability 

compared to CPU parallelization. The GPGPU code was constructed by OpenACC because of 

the directive-based programming. The GPU computing accomplished a remarkable speedup, 

which confirmed that GPGPU is useful for the acceleration of this system. 

Keywords: CFD, Parallel Computing, GPGPU, OpenACC, Flight Simulation. 

 

Introduction 

The numerical flight simulation of an aircraft is an important problem in Computational Fluid 

Dynamics (CFD) for aerospace. With this system called the Digital Flight [1], aerodynamic 

coefficient of an airplane can be safely calculated even in a risky flight without real aircrafts. 

Moreover, a risk of stall can be predicted when the flight is simulated within a real time. 

To achieve the flight simulation based on physics, the authors have proposed the Moving 

Computational Domain (MCD) method [2], which is one of the moving grid methods based on 

the Moving-grid Finite-Volume method [3]-[5]. In this method, the computational domain itself 

with an aircraft inside moves by following a movement of the airplane, therefore any 

restrictions of the computational domain for three-dimensional space can be removed [6][7]. 

Recently, we have integrated the six-degrees-of-freedom (6-DOF) motion to this CFD method 

[8][9], and simulated unconstrained motions of objects influenced by fluid and the motion. As 

applications of this coupled method to a flight simulation, various aerobatics of an airplane 

were computed. The rotation of the propeller and the moving control surface were installed in 

this system as well to simulate flight as if pilot operated the aircraft. 

In this paper, parallel computing on graphics processing unit (GPU) is introduced towards the 

calculation within an actual time. Although OpenMP or MPI is generally adopted to shorten the 

calculation time [10], general-purpose computing on GPU (GPGPU) has been recently in the 

spotlight. GPU has a number of cores, thus GPUs could calculate much faster than CPU. 

Although major examples for GPGPU are NVIDIA’s CUDA or OpenCL, much time and labor 

is required for code rewriting. Therefore, we employed OpenACC which can accelerate using 

compiler directives for our first coding on GPU to see whether GPGPU can help for faster 

computing compared to OpenMP. 
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Numerical Scheme 

Flow Solver 

The governing equations are the three-dimensional Euler equations for compressible flow 

written in the conservation form (1),(2) as follows: 

∂𝐪

𝜕𝑡
+

𝜕𝐄

𝜕𝑥
+

𝜕𝐅

𝜕𝑦
+
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𝜕𝑧
= 0, (1) 
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 . (2) 

The equations are discretized by the Moving-grid Finite-Volume method with four-dimensional 

control volume combined with time and space. The inviscid flux vectors are estimated by Roe’s 

flux difference splitting [11] at the interfaces. MUSCL approach and Venkatakrishnan limiter 

[12] are employed to provide second order accuracy in space. The 2-stage rational Runge-Kutta 

method is applied as a time stepping scheme. 

 

6-DOF Motion 

Because the aircraft is treated as a rigid body in this paper, 6-DOF equations of motion govern 

the flight of the aircraft. The Newton’s equation of motion (3) is applied to the translation of 

the mass center, and the Euler’s rotation equation (4) is applied to the rotation in body axes. 

The rotational motion is calculated in the body-fixed axis subscripted with B. Here quaternion 

[13] is used to avoid gimbal-lock. 6-DOF equations are integrated into the inner iteration of 

flow solver as a strong coupling method [14]. 

𝑑𝐩

𝑑𝑡
= 𝐟 (3) 

𝑑𝐋𝐵

𝑑𝑡
+ 𝛚𝐵 × 𝐋𝐵 = 𝐍𝐵  (4) 

𝐩 = [

𝑚𝑟̇𝑥
𝑚𝑟̇𝑦
𝑚𝑟̇𝑧

] , 𝐟 = [
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] , 𝐍𝐵 = [

𝑁𝑥𝐵

𝑁𝑦𝐵

𝑁𝑧𝐵

] (5) 

Grid Movement and Deformation 

MCD Method 

When it comes to the movement of the whole grid in a large area, Moving Computational 

Domain (MCD) method is applied. The computational domain itself with an object inside 

moves by following the moving aircraft. 
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Grid Deformation 

The rotation of the propeller and the motion of the control surface are installed by sliding-mesh 

approach and tension-torsion spring analogy [15] (Fig. 1(a)). To apply the sliding mesh 

technique, computational domain is divided into two domains, one is the fuselage domain and 

the other is the propeller domain. The conservative quantities are interpolated at the interface 

where tetrahedral grids overlap each other. When the control surface is moved, grids are 

deformed by tension-torsion spring analogy (Fig. 1(b)). 

   
 

(a) Sliding-mesh method   (b) Tension-torsion spring analogy 

Figure 1. Grid movement and deformation 

Application 

Calculating Condition 

P-51 propeller aircraft model with 1,612,350 unstructured grid points are generated by 

MEGG3D [16][17] are shown in Fig. 2. The center of gravity is assumed to be located in 

25%MAC (Mean Aerodynamic Chord), and the moment of inertia is generated by the engine, 

the fuel tank and the skin of the airplane. 

   

Figure 2. Computational grid 

The straight flight, two clockwise and two counterclockwise aileron roll are simulated with this 

system. At first, the aircraft performs straight flight to avoid the initial turbulence at V = 0.45, 

where the speed of sound is 1.0. After that, to complete the clockwise rolling, the right aileron 

is manipulated up to 10 degrees, and left aileron is manipulated down to 10 degrees. The rudder 

is also controlled to avoid adverse yaw. In counter-clockwise rolling, the ailerons and rudder 

are operated oppositely. 

Domain 
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Results 

The surface pressure distributions at the forward straight flight, clockwise rolling and counter-

clockwise rolling are shown in Fig. 3. It can be seen in Fig. 3(a) that the rotating propeller 

generated the vortex and pressure distribution on main wing became asymmetry. After ailerons 

are operated, the pressure distribution at the main wing changed significantly, as seen in Fig. 

3(b) and (c). The pressure at the bottom side of the main wing is lower than the upper side, 

which yields the rolling moment to complete the aileron roll. 

 

(a) Forward flight 

 

(b) Clockwise flight 

 

(c) Counterclockwise flight 

 

Figure 3. Pressure contours in the aileron roll 
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GPU Parallel Computation 

For high-speed calculations, we constructed the GPU calculation code of this system by 

OpenACC. The computer for GPU computing (PC1) has CPU of Intel® Core™ i7-3930K 

Processor and GPU of GIGABYTE6.0 V-NTITANBLKGHZ-6GD-B GEFORCE GTX TITAN 

BLACK. The operating system is Windows7 64bit and the compiler is PGI Accelerator Fortran 

Workstation. For comparison of the calculating speed, this system is calculated only with CPU 

(PC2). The computer, which has the highest performance for CPU we could use, has Intel® 

Core™ i7-3930K Processor. The operating system is Cent OS 6.3, and the compiler is Intel 

Composer XE 2013. 

We constructed the FORTRAN code accelerated by OpenACC and measured the calculating 

speed of this system on 100 steps 10 times with PC1 and PC2. The speedup is defined as follows: 

 

Speedup =
TPC1

TPC2
 (6) 

 

where T represents the calculation process time. With the GPU parallelization, we achieved 

13.6x speedup over the serial CPU solver. In contrast to the fact that approximately 2x speedup 

can be achieved with OpenMP, GPU computing accomplished the significant speedup. The 

flight simulation so far was carried out for some maneuvers only because of its long calculation 

time. However, with GPU computing, it is expected that flight simulation from take-off to 

landing can be calculated in future. 

Conclusions 

In this study, the coupled computational method of the unstructured MCD method and six-

degrees-of-freedom flight dynamics was constructed, and GPU parallelization accelerated this 

system. In the simulation of aerobatic maneuver, the ailerons and rudder are operated, and then 

pressure distribution at main wing changed, which completes the aileron roll. Then, GPGPU 

by OpenACC was carried out to achieve the high-speed computation. GPU acceleration 

attained 13.6x speedup over the serial CPU computing. It is confirmed that GPU computing is 

effective for the acceleration of this system. 
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Abstract

This paper is concerned with tools that can be used for the design/optimization of 3D valveless
and valved diaphragm pumps. These pumps comprise a main chamber, an inlet and outlet duct
and a periodically moving diaphragm that causes the unsteady/periodic fluid flow within the
device; the inlet and outlet ducts might either be valveless diffusers or tubes of constant cross-
section with valves (valved pumps). Obtaining the desired net mass-flow rate per period with
the minimum (hopefully zero) back-flow at the exit (especially, in the absence of valves) are the
usual objectives. The minimization of viscous losses within some pump’s components such as
inlet or outlet valved ducts could be an extra target. Regarding CFD analysis, apart from the cut-
cell method mentioned in the title, an in-house flow solver using body-fitted unstructured grids
is also used. Both codes are based on the finite volume approach by sharing the same numerical
features and run on GPU-clusters (the former) and on many-processor platforms (the latter).
To support gradient-based optimization, with either CFD tool, the continuous adjoint method
computing the gradient of the objectives with respect to the design variables has been developed
and programmed. According to the proposed parameterization scheme, all design variables
are related to the diaphragm geometry and its periodic motion. An alternative optimization
method that was also made available for the needs of this paper is a (gradient-free) evolutionary
algorithm, assisted by metamodels (on-line trained artificial neural networks) and the principal
component analysis for efficiently searching the design space. Using this tool, many-objective
optimizations can be performed to compute the front of non-dominated solutions. This paper
focuses on particular features of the analysis and optimization tools for this type of diaphragm
pumps, including micropumps for medical applications.

Keywords: Cut-cell method; Adjoint method; Diaphragm pump; Valved pump; Evolutionary
Algorithm.

Introduction

Valveless or valved diaphragm pumps are formed by an inlet and outlet duct as well as a cham-
ber with a periodically moving diaphragm controlling the fluid’s flow. Depending on the appli-
cation, they are often preferred over bladed pumps since they can pump various types of fluids
in a noiseless manner. They are manufactured in large or small scales, with the large (usu-
ally valved) ones used for cleaning tank bottoms or pumping sewage, while the small (usually
valveless) ones (micropumps) used as medical analysis devices, in biochemical-processing ap-
plications or to deliver drug to patients [1]. The inlet and outlet ducts might be tubes of constant
cross-section equipped with valves of different types (valved pumps) preventing back-flow. In
medical applications and drug injections using valveless (micro)pumps, the exit flow must be
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uninterruptible and, in some cases, the valves are replaced by diffusers [2, 3]. Unfortunately,
during their operation, back-flow might instantaneously occur at the outlet. Therefore, obtain-
ing the desired net volume flux per period with minimum (hopefully zero) back-flow at the exit
are standard objectives/constraints during design-optimization. In some cases, keeping viscous
losses low in pump’s components is an additional objective.

Regarding the CFD analysis of the diaphragm pumps this paper is dealing with, two in-house
codes are used to model the periodic viscous flow within the pump. The first one, referred to as
PUMA [4], uses body-fitted unstructured grids, continuously adapted to the moving diaphragm,
using the spring analogy method. The software is GPU-enabled and uses the MPI protocol to
perform on a many-GPU platform. However, in cases where large boundary movements occur
or two bodies approach and finally touch each other, such as in valved pumps, grid deforma-
tion/adaptation to the changing boundaries becomes costly, delicate or even impossible. For
these reasons, a flow solver based on the cut-cell variant [5] of the general class of Immersed
Boundary Methods (IMB) [6] has been developed, too. Starting point is a Cartesian grid en-
closing the flow domain. The background (coarse) grid remains stationary while the immersed
solid bodies are allowed to move covering and uncovering grid cells. Grid is continuously re-
fined close to the moving geometry, to increase the accuracy of the flow simulation. The two
CFD codes are based on the finite volume approach and share the same numerical features.

For the optimization, the pump’s diaphragm motion must be parameterized. The values of
the design variables minimizing the selected objective functions are the unknowns in the opti-
mization problem. The manufacturability of the diaphragm and the mechanism controlling its
motion is beyond the scope of this paper.

The GB method is supported by the continuous adjoint method that computes the gradient of the
objective function w.r.t. the design variables. The main advantage of the adjoint method is that
its cost is independent of the number of the design variables. In case of more than one objectives,
these are concatenated to a single function to be minimized. However, since the computation of
the Pareto front of non-dominated solutions is of great value for the designer, an Evolutionary
Algorithm (EA) is additionaly used. The EA is assisted by locally trained metamodels and the
Kernel Principal Component method reducing the optimization’s computational cost, which is
the main drawback of EAs [7].

In this paper, CFD analyses and optimizations with either code and either optimization method,
for diaphragm pumps or their components (such as inlet/outlet tubes equipped with a rotating
disc-shaped shutter) are demonstrated.

Description/Parametrization of the Diaphragm Pumps

Fig. 1a shows the valveless micropump studied in this paper. Its geometry is based on an
existing micropump found in the literature [2]. Regarding the valved pump it is assumed that
they use cylindrical inlet and outlet ducts with a constant cross-section equipped with valves,
fig. 1b, in place of the diffusers used in the valveless devices. The micropump’s scale is of
millimeters, with 1cm length and chamber’s volume ∼40mm3. Valved pump’s dimensions can
be much larger, since this kind of devices are used for different purposes. Due to manufacturing
reasons, the inlet and outlet diffusers or ducts and valves are identical. The pressure distribution
inside the chamber and its volume is periodically changing by moving the diaphragm, this
motion being essential for the pump’s functionality. Technically, a piezoelectric device moves
the diaphragm with a predetermined frequency, by pushing it from the inlet to the outlet causing
the fluid to flow.
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(a) (b)

Figure 1: Left: Valveless diaphragm micropump with diffusers at the inlet and outlet.
Right: Valved (butterfly valve) duct replacing the diffusers. The rotating disc, at three

different positions, is shown in blue. The disc is always present in the flow, so it induces a
total pressure drop, even when open.

The diaphragm’s motion is parameterized, defining thus the design variables for the ensuing
optimizations. The resting position of the diaphragm lays on the y= 0 plane, where the x and
z axes point in the longitudinal and span-wise directions, respectively. The first two design
variables (b1, b2) define a rectangular area limiting the moving part of the diaphragm, fig. 1.
The maximum displacement ymax(t) over all time instants is given by ymax(t) = b3exp

(
−

b4(t − T )2
)(

1 − |1 − 2t
T
|
)

where T = 0.02 sec is the period, b3 controls the maximum overall
displacement, which is much smaller than the chamber’s height, achieved at the half period
and b4 controls the abruptness of the exponential function. The longitudinal deformation over
time is defined by y(x, t) = ymax(t)(6τ 2

x − 8τ 3
x + 3τ 4

x), τx = x+δx
Dx

, where δx = b5min(x +
Lx/2, Lx/2 − x) and Dx= (1 − b6)δx, with Lx and Lz being the total length and width of the
chamber. Similarly, the span-wise diaphragm’s deformation follows a similar parameterization.
The design variables b7 and b8 define δz = b7min(z + Lz/2, Lz/2 − z) and Dz = (1 − b8)δz,
which are required to compute y(z, t) = ymax(t)(6τ

2
z − 8τ 3

z + 3τ 4
z ), τz = z+δz

Dz
. Different time

instants of the deformation of the arbitrarily selected motion along the symmetry plane can be
seen, later on, in fig. 11.

Flow Equations and Discretization

The 3D grid generator developed and used by the cut-cell method is likely the most challenging
and important part of any cut-cell software. The implementation of an octree data structure
makes grid generation fast with low memory requirements. Starting point is a uniform Cartesian
grid covering the whole computational space including also the solid bodies (i.e. the pump’s
boundaries). Then, each cell intersected by the pump’s boundaries is subdivided into eight
sub-cells. The process is repeated until a minimum cell volume is reached. During the grid
refinement process, each cell should have at most four neighbouring cells per face, preventing
this way the creation of big cells next to much smaller ones. The computation of the exact
intersection of cells with the pump’s boundaries is based on the Sutherland-Hodgman algorithm
[8]. The part of the cell inside the solid body is discarded and the remaining part creates a
polyhedral finite volume (fig. 2a). Special treatment is needed whenever a cell splits into two
or more polyhedra, which are treated as different finite volumes (fig. 2b).
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geometry
cube

cut-cell

(a)

geometry
cube

cut-cell 1
cut-cell 2

(b)

Figure 2: (a) A cube (black dashed line) is cut by the triangulated solid surface (green
dashed line) creating a cut-cell (blue line). (b) A cube is separated into two different
cut-cells. The flow and adjoint equations are solved only in the part of the cube lying

inside the fluid domain.

A known downside of the cut-cell method is the formation of very small cut-cells leading to
instabilities during the flow and adjoint numerical solution. A cell-merging technique is applied
to surpass this difficulty. According to that, small cells are merged with bigger neighbours,
named master-cells, creating hyper-cells. Geometrical criteria are used for the selection of
the master-cell among the neighbours of a small-cell. In specific, for all neighbouring cells
with volume greater than a threshold value, the one with the largest common face is chosen.
If the first criterion fails, the neighbour with the biggest volume is chosen as the master-cell.
Generally, more than two cells can be merged to form a hyper-cell.

PUMA [4] uses an unstructured grid with hexahedral elements, the generation of which will not
be elaborated here, in the interest of space.

Flow prediction in a diaphragm pump requires the numerical solution of the unsteady incom-
pressible Navier-Stokes equations. These are written as,

Γ−1
ij

∂Vj
∂τ

+
∂Ui
∂t

+
∂f invik

∂xk
− ∂f visik

∂xk
= 0, i = 1, 4, Γ =


β2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1)

where the Einstein notation is used. Index k=1, 2, 3 refers to the Cartesian directions; (x1, x2, x3)

stand for (x, y, z) and (u1, u2, u3) to the corresponding Cartesian velocity components, ~V =[
p u1 u2 u3

]T , ~U =
[
0 u1 u2 u3

]T , ~f invk =
[
uk u1uk + pδ1

k u2uk + pδ2
k u3uk + pδ3

k

]T and
~f visk =

[
0 τ1k τ2k τ3k

]T , where δji is the Kronecker symbol, p is the pressure divided by the
density, t is the real time, τ is the pseudo-time and τik =ν( ∂ui

∂xk
+ ∂uk

∂xi
) are the viscous stresses.

Finally, Γ is the preconditioning matrix used to stabilize the numerical solution, depending on
β which stands for the pseudo-compressibility coefficient. Flows considered in this paper are
laminar. In PUMA, the discretization of eqs. (1) is based on the vertex-centered finite volume
approach. On the other hand, the cell-centered approach is used in the cut-cell software. In both
solvers, inviscid flux f invik is computed based on the Roe’s approximate Riemann solver, [9].
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The diaphragm motion is taken into account in the flow equations’ discretization. Both solvers
use the Reynolds theorem to compute the "physical" time derivatives, namely, the integration
of the time derivative of Ui in a deformable finite volume ΩFV is given as∫

Ωk+1
FV

∂Ui
∂t

dΩ =
d

dt

∫
Ωk+1

FV

Ui dΩ −
∫

Sk+1
FV

ugridm nmUi dS

' 1

2∆t

(
3Uk+1

i Ωk+1
FV − 4Uk

i Ωk
FV + Uk−1

i Ωk−1
FV

)
−
∑
faces

ugridm nmU
k+1
i ∆s (2)

where Ωk+1
FV , Ωk

FV , Ωk−1
FV is the volume of the same finite volume at time instants k + 1, k and

k − 1, respectively. ugridm stands for the grid velocity (i.e. the grid deformation rate) and is
computed in a way ensuring the satisfaction of the geometric conservation law. nm is the unit
normal pointing outwards the finite volume and ∆S the area of the finite volume faces. PUMA
morphs the grid at each time instant employing a spring analogy technique, [10]. Fig. 3 shows
two grids (used by PUMA) where, on the left, the diaphragm is in its resting position whereas,
on the right, the diaphragm is pushed down. Regarding the cut-cell method, the Cartesian grid is

Figure 3: Perspective views of the unstructured CFD grids used by PUMA code at time
instants 0 and 0.45T . Axes not in scale, y-axis is 14 times greater.

continuously adapted to the diaphragm’s motion. First, a coarsening procedure applies and cells
in the vicinity of the diaphragm are coarsened. Then, cells cut by the new diaphragm’s geometry
are refined and the neighbouring cells are adapted accordingly. The flow field computed at the
previous time instant(s) is transferred to the new grid for computing time derivatives of the
flow variables. Transfer is conservative by taking into account that cut-cells change in shape or
migrate from the fluid to the solid region. Among other, solidified cells merge their values with
those of neighbouring fluid cells. Fig. 4 shows three time-steps while the valve moves from
open to closed position. A Cartesian grid, adapted to the valve’s motion, is generated anew at
each time-step.
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(a)

(b)

Figure 4: (a) Adapted Cartesian grid for three positions of the butterfly valve. (b) View of
the valve in the fully open position.

Adjoint Equations and Gradient Computation

Three metrics are used to measure the quality of the resulting flow in a diaphragm pump or its
components (valved ducts), namely

• The volume of the fluid entering pump’s exit (back-flow, Qbf ; a non-negative quantity, by
definition) within a period T . It is defined as Qbf =−

∫
T

∫
SO
min(0, umn

O
m)dSdt, where

nO is the unit normal to the pump’s outlet (SO).

• The net volume of fluid pumped within T , i.e. Qnet=
∫
T

∫
SO
umn

O
mdSdt.

• The total pressure losses (Qpt = pIt − pOt ) between (valved) duct’s inlet and outlet.

Depending on the application, the objective function could be any of these metrics (F ≡ Q) or
a combination of them; in regard to Qnet since the usual target is to achieve a desired volume
flow rate, this might give an objective function of the form F = |Qnet−Qnet,ref |. Among other,
below, a single-objective optimization of the pump is performed to minimize F =

Qbf

Qnet
.

The gradient of F w.r.t. bi (defined in section ) is computed using the continuous adjoint method.
The augmented objective function (to be differentiated instead of F ) is

Faug = F +

T∫
0

∫
Ω

ΨiRidΩdt (3)

where Ri are the residuals of the flow equations, Ψi are the adjoint variable fields, Ω is the fluid
domain at t. By differentiating Faug w.r.t. bi and setting the multipliers of variations in the flow
variables to zero, the unsteady adjoint equations along with their boundary conditions arise.
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The unsteady adjoint equations are

Γ−1
ji

∂Ψj

∂τ
− ∂Ψ̄i

∂t
− Ajik

∂Ψj

∂xk
− ∂fA,visik

∂xk
= 0 (4)

where ~̄Ψ =
[
0 Ψ2 Ψ3 Ψ4

]T , ~fA,visk =
[
0 τA1k τ

A
2k τ

A
3k

]T stands for the adjoint viscous flux and

τAik = ν
(
∂Ψi+1

∂xk
+ ∂Ψk+1

∂xi

)
are the adjoint stresses. Similarly to the flow equations, a pseudo-

time derivative multiplied with the inverse of the preconditioning matrix Γ has been added in
eq. 4. The integration of the temporal term on deformable finite volumes is similar to the flow
equations solver as in eq. 2.

For the pump’s wall boundaries (including the diaphragm), the adjoint velocity is set to zero.
Given the fact that the inlet/outlet duct shapes do not change in time, the adjoint inlet/outlet
condition reads

ΨiAijkn
I/O
k

∂Vj

∂q
I/O
l

+
∂F̂

∂q
I/O
l

= 0 (5)

where F̂ is the integrand of F . Working with Qbf in particular, since function “min” cannot be
differentiated, this is replaced with a sigmoid function in eq. 5. qI/Ol stands for flow quantities
extrapolated from the CFD domain (like the velocity components at the outlet or the velocity
magnitude at the inlet).

Considering that period T is constant, the gradient of F w.r.t. bi becomes an expression of the
computed primal and adjoint fields, as follows

δF

δbi
=−

T∫
0

∫
Ω

[
Ψn

∂Vn
∂xl

∂

∂t

(
δxl
δbi

)
+

(
Ψn

∂f invnk

∂xl
−Ψn

∂f viscnk

∂xl

)
∂

∂xk

(
δxl
δbi

)]
dΩdt

−
T∫

0

∫
Ω

τadjkm

∂uk
∂xl

∂

∂xm

(
δxl
δbi

)
dΩdt+

T∫
0

∫
SW

(
Ψ1nk − τadjkmnm

) δugridk

δbi
dSdt

+

T∫
0

∫
SI/O

∂F̂

∂xl

δxl
δbi

dSdt

(6)

where SI , SW stand for the inlet and diaphragm surface, respectively. Note that in the cut-cell
method, δxl

δbi
takes non-zero values only along the diaphragm.

PCA-Driven Metamodel-Assisted Evolutionary Algorithms

A (µ, λ) EA, with µ parents and λ offspring in each generation, is the background stochastic
optimization tool. Metamodels assist the EA (Metamodel Assisted EA-MAEA), so as to reduce
its computational cost. Metamodels are Radial Basis Function (RBF) network trained on-line
during the evolution on individuals evaluated on the CFD tool and used, when needed, to predict
the objective function value(s) of new individuals at practically negligible cost compared to a
CFD run. In each generation (excluding the very first ones, in which there is no enough data
to train the metamodels), each population member is pre-evaluated with personalized locally
trained metamodels and, then, only the few most promising ones are re-evaluated with the
CFD tool. Training patterns are selected, using several criteria, from the pool (database) of
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individuals evaluated during the preceding generations. Aiming at maximum performance, the
Kernel Principal Component Analysis (PCA) method drives the EA as mentioned in [7]. Briefly,
prior to applying the evolution operators, the design space is transformed into the feature space
in which the evolution operators perform better and the metamodels are trained only with the
significant variables as computed by the method. This EA assisted by metamodels and the
PCA, referred to as the PCA-driven MAEA [11] [12] [7], has been developed within the EASY
platform [13] of NTUA, is also used for the optimization.

Method Demonstration in a Valved Inlet/Outlet Duct

The valve is modeled as a disc-shaped shutter rotating around an axis/rod (fig. 1b). Applications
like the flow inside a duct with a rotating valve, perfectly suit to the cut-cell CFD software, as
this avoids morphing a body-fitted grid (without changing grid topology). Thus, only the cut-
cell software is used here to compute the flow field inside the duct while the valve rotates
from the open to the closed position. Velocity magnitude and pressure fields, for different
valve’s positions, are shown in fig. 5, respectively. Flow trajectories around the rotating disc are
presented in fig. 6. The unsteady adjoint equations have also been solved giving the necessary
information to compute the sensitivity derivatives of the ∆pt function, defined between the inlet
and the outlet of the duct. A time history of the adjoint velocity magnitude and adjoint pressure
fields is shown in fig. 7. 3D views of the adjoint field around the disc-shaped shutter, at different
positions is shown in 8.

(a)

(b)

Figure 5: Top: Instantaneous velocity magnitude fields within the valved duct, at equally
distributed time instants. Bottom: Instantaneous pressure fields at the same time

instants.
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Figure 6: Flow trajectories within the valved duct with the disc half-open.

(a)

(b)

Figure 7: Top: Instantaneous adjoint velocity magnitude fields within the valved duct, at
equally distributed time instants. Bottom:Instantaneous adjoint pressure fields at the

same time instants.

Method Demonstration in a Valveless Micropump

A first valveless micropump (the way this has been constructed is beyond the scope of this
paper) is optimized at first; this pump (to be referred to as the “reference” one; index “ref”)
delivers the desired net volume of fluid per period (T =0.02s.), with a non-negligible backflow
rate though. Therefore, it was decided to run a two-objective optimization aiming at minimum
|Qnet − Qnet,ref | and minimum Qbf . Next to this, two single-objective optimizations are also
performed, both with the same target; one of them is based on the PCA-driven MAEA and the
other on the GB method supported by the adjoint solver. It should be noted that, in the single-
objective optimizations, the (common) target was to minimize Qbf

Qnet
; thus, any comparison with
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Figure 8: Adjoint flow trajectories (for ∆pt as the objective function) within the valved
duct with the shutter half-open.

the two-objective optimization is made only for the purpose of comparing computational cost
and not the quality of the optimal solutions obtained by the various methods.

The PCA-driven MAEA is configured with µ= 6 and λ= 12 and both metamodels and PCA
are activated after the first generation. The computational budget is limited to 200 CFD runs.
The convergence history of the single-objective optimization is shown in fig. 10. For the single-
objective problem, the resulted optimal motion has reduced the objective function

(
Qbf

Qnet

)
by

two orders of magnitude from the initial/reference one. Regarding the two-objective optimiza-
tion, the final front of non-dominated solutions is presented in fig. 9. Notice that the optimal
solution of the first optimization is the bottom right end of the front.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  2  4  6  8  10  12

Q
bf

x1
011

|Qnet-Qnet,ref|x1012
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Figure 9: Front of non-dominated solutions (red points) computed by the PCA-driven
MAEA in the two objective optimization. Reference (black point) and the optimal (found

by the GB optimization) solution (blue point) are included, too.

In regard to the GB optimization, in which the cost of the solution of the adjoint equations
is, on the average, equal to the cost of solving the flow equations, each optimization cycle
approximately costs as much as two CFD calls. Steepest-descent is used with an adaptive step
size per optimization step. The convergence of the GB optimization is shown in fig. 10. After
36 CFD calls, this practically leads to the same optimal solution with the one found by the
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PCA-driven MAEA for the same objective. Note that the PCA-driven MAEA could have been
stopped earlier since, during the last generations, the optimal solution does not change.

Regarding the flow quality metrics for the GB optimization, the net volume flow is increased
from Qnet,ref = 5.18mm3 for the reference motion to Qnet = 6.23mm3 for the optimal one
and the back-flow is reduced from Qbf,ref = 2.12mm3 to Qbf = 0.255mm3. The optimal and
reference diaphragm’s motion are shown at various time instants in figs. 11, 12, respectively.
Fig. 13 shows that the optimal micropump has reduced the internal vortical flow in the last
time instants and the maximum deformation of the diaphragm has been limited which assists at
minimizing the back-flow at the exit.
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Figure 10: Convergence history of the micropump’s optimization. (Left) PCA-driven
MAEA, (right) Gradient-Based method.

Figure 11: Reference diaphragm motion at the symmetry plane. Time instants: 0.20T ,
0.30T , 0.40T , 0.50T , 0.60T and 0.70T , from top-left to bottom-right respectively.
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Figure 12: Optimal diaphragm motion at the symmetry plane. Time instants: 0.20T ,
0.30T , 0.40T , 0.50T , 0.60T and 0.70T , from top-left to bottom-right respectively.

Figure 13: Velocity magnitude iso-areas on the symmetry plane at time instant 0.45T .
Reference (left) and optimized (right) motion. Axes not in scale, y-axis is 14 times greater.
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Conclusion

This paper focuses on particular features of the analysis and optimization tools for valveless
and valved diaphragm pumps. For both pump types, the diaphragm motion is parameterized
and metrics quantifying the quality of the resulting flow inside the pump or its components
are defined. Performing the optimization through gradient-free methods, their computation is
all we need. In this paper, the gradient-free optimization is performed using a metamodel-
assisted evolutionary algorithm, additionally supported by the principal component analysis of
the population, for the purpose of cost reduction. For the use of gradient-based optimization,
though, the objective functions in use should also be differentiated; for this purpose, the con-
tinuous adjoint method is employed. From the CFD viewpoint, it is very convenient to possess
more than one tools. Our first CFD tool is based on a cut-cell method, being more appropri-
ate in case of valves that periodically open and close. Next to this, a standard CFD solver
with body-fitted unstructured grids is used. For both codes, the same adjoint methods for the
same objective functions have been developed. Some selected analyses and optimizations have
been performed and demonstrated the capabilities of the available tools. Their integration in an
automatic workflow, which will involve both optimization methods and both CFD tools, is in
progress.
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Abstract 

In practical engineering applications, random variables may follow multimodal distributions 

with multiple modes in the probability density functions, such as the structural fatigue stress 

of a steel bridge carrying both highway and railway traffic and the vibratory load of a blade 

subject to stochastic dynamic excitations, etc. Traditional probabilistic uncertainty 

propagation methods are mainly used to treat random variables with only unimodal 

distributions, which, therefore, tend to result in large computational errors when multimodal 

distributions are involved. In this paper, a high-precision probabilistic uncertainty propagation 

method is proposed for problems involving multimodal distributions. Firstly, the multimodal 

probability density functions of input random variables are constructed based on the Gaussian 

mixture model. Secondly, the high-order moments of the response function are calculated 

using the univariate dimension reduction method, based on which the input uncertainty is 

effectively propagated. Thirdly, the probability density function of the response is estimated 

using the maximum entropy method. Finally, a convergence mechanism is formulated to help 

ensure the uncertainty propagation accuracy. Two mathematical problems and two truss 

structures are investigated to demonstrate the effectiveness of the proposed method. 

Keywords: Probabilistic uncertainty propagation; Multimodal distribution; High-order 

moment; 
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Example: A 52-bar space truss 
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(c) FEM model 

Fig. 1. The 52-bar space truss and its FEM model 

As shown in Fig. 1, a hemispherical space truss (like a dome) is considered, which contains 

52 bars. The cross-sectional areas of bars 1-8 and 29-36 are 2
1 2inA = . The cross-sectional 

areas of bars 9-16 are 2
2 1.2inA =  and that of the other bars are 2

3 0.6inA = . The radius of 

the hemispherical space truss is 240inR = . Six external loads are applied on the space truss, 

which are 1p  in the inner normal direction of point 1, 2p  in the inner normal direction of 

points 2 and 4, 3p  in the inner normal direction of points 3 and 5, 4p  in the inner normal 
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direction of points 6 and 10, 5p  in the inner normal direction of points 8 and 12, 6p  in the 

inner normal direction of points 7, 9, 11,13. The response function is defined as follows: 

 1 1 2 3 4 5 6( , , , , , , )g E P P P P P Pδ =        (1) 

The detailed information of the random variables 1 2 3 4 5 6, , , , ,P P P P P P  and E are presented in 

Table 1. 

Table 1 The distribution parameters of random variables 1 2 3 4 5 6, , , , ,P P P P P P  and E 

Random 
variables 

Distribution 
types 

Distribution parameters 

Coefficients Mean values Standard deviations 

1(kip)P  Multimodal α =(0.2,0.2,0.3,0.3) μ =(45,55,75,85) σ =(4,4.5,4,4.5) 

2 (kip)P  Multimodal α = (0.2,0.2,0.3,0.3) μ = (40,50,70,80) σ =(4,4.5,4,4.5) 

3 (kip)P  Multimodal α = (0.2,0.2,0.3,0.3) μ = (35,45,65,75) σ =(4,4.5,4,4.5) 

4 (kip)P  Multimodal 
α = 

(0.18,0.18,0.32,0.32) 
μ =(30,35,55,60) σ =(3,6,3,6) 

5 (kip)P  Multimodal 
α = 

(0.18,0.18,0.32,0.32) 
μ = (25,30,50,55) σ =(3,6,3,6) 

6 (kip)P  Multimodal 
α = 

(0.25,0.25,0.25,0.25) 
μ = (20,25,45,50) σ =(3,6,3,6) 

E(ksi) Normal -- µ =2.5e+04 σ =1.0e+03 

The PDF results of 1δ  obtained by the proposed method and MCS method are plotted in Fig. 

2. It can be observed that the PDF results obtained by the proposed method coincides well 

with that obtained by MCS, which indicates the high uncertainty propagation accuracy of the 

proposed method. Especially, the bimodal characteristic of the PDF obtained by MCS is well 

captured by that obtained by the proposed method. Besides, the CDF results for a series of 

response functions 10 1 2 3 4 10= ( , , , )g P P P Pδ δ−  and their relative errors are presented in Table 2. 

It can be observed that small relative errors are achieved by the proposed method at all cases. 

For example, the largest relative error of the proposed method is only 3.5088 percents when 

10 1.5δ = − in. 
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Fig. 2. Comparison of the PDF results between the proposed method and MCS method 

Table 2 Comparison of the CDF results between the proposed method and MCS method  

1  (in)δ  
MCS The proposed method 

CDF 0 (%)ε  CDF 1(%)ε  

-1.5 1.7100e-03 -- 1.6500e-03 3.5088 
-1 0.1714 -- 0.1694 1.1350 

-0.5 0.5947 -- 0.5933 0.2337 
0 0.8857 -- 0.8856 2.9700e-03 

0.5 0.9997 -- 0.9998 3.5500e-03 

The order of moments that are required for uncertainty propagation is determined as l=12 by 

the convergence mechanism. The evolution process of the estimated PDF and its Shannon 

entropy under different order of moments are shown in Fig. 3. It can be found that when l 

increases from 2 to 12, the response PDF calculated using the proposed method gradually 

approaches to the reference PDF obtained by MCS. When l=12, the estimated response PDF 

is of the highest precision. Furthermore, the Shannon entropy of the response PDF gradually 

converges to a steady value when l increases from 2 to 12. Table 3 presents the first 12 raw 

moments of the response function calculated by UDRM and their relative errors compared 

with the results of MCS. It can be observed that the raw moments of the response function are 

calculated with satisfied accuracy using the UDRM. The largest relative error of the raw 

moments is just 9.2600 percents, which occurs at the calculation of 12m . 

Table 4 presents the number of function evaluations of the proposed method and MCS method. 
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The MCS method is conducted with 1×106 function evaluations, while the proposed method 

operates with only 12×7+1=85 function evaluations. Therefore, the proposed method is of 

satisfied computational efficiency. 
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Fig. 3. Evolution of the estimated PDF and its Shannon entropy with the variation of l  
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Table 3 The calculated raw moments of the response function 

Raw moments The proposed method MCS Relative error（%） 

1m  
-0.5758 -0.5764 9.7620e-02 

2m  
0.5120 0.5133 0.2672 

3m  
0.4327 0.4327 0.5930 

4m  
0.4930 0.4981 1.0214 

5m  
-0.5243 -0.5327 1.5811 

6m  
0.5800 0.5934 2.2272 

7m  
-0.6631 -0.6842 3.0931 

8m  
0.7807 0.8138 4.0523 

9m  
-0.943 -0.9952 5.1494 

10m  
1.1687 1.2484 6.3843 

11m  
-1.4789 -1.6033 7.7761 

12m  
1.9094 2.1043 9.2600 

Table 4 Comparison of computational efficiency between different methods 

 MCS The proposed method 
Number of function 

evaluations 
1×106 85 
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Abstract 

Focusing on improving the performance of EEG-based emotion recognition and exploring 

emotional scalp region, this paper presents a novel emotion-related independent components 

selection method based on Independent Component Analysis (ICA). Specifically, we first 

establish an optimal spatial-domain filter based on whole channel ICA to extract Independent 

Components (ICs). On this basis, the Emotion Related Independent Components (ERICs) are 

determined by evaluating the performance of these ICs through the “leave one IC out” method. 

Besides, the Singular Value Decomposition (SVD) is help to extract the spatial features. 

Average recognition accuracy using support vector machine as the classifier achieves 86.49%, 

which reveals the superiority of the proposed algorithm for emotion recognition. 

Keywords: Independent Component Analysis, Singular Value Decomposition, emotional 

EEG source, emotion recognition 

 

1. Introduction 

Electroencephalogram (EEG) signal, generated from Autonomous Nervous System (ANS), 

can describe the relationship between psychological changes and emotions [1][2]. Recently, 

some remarkable EEG-based emotion recognition works have been carrying out explorations 

on the locations of emotion-related scalp region. Among them, Heller, W. found that alpha-

power (8-12Hz) and gamma spectral (30-50Hz) changing at right parietal lobe are related to 

emotional responses [3][4]. Li, M et al. and Coan, J. A et al. investigated the relationship 

between the region of temporal/frontal lobe in gamma band and emotion tasks [5][6]. 

Whereas, emotion-related areas of the cerebral cortex are still uncertain so far, this would lead 

to a limitation on performance improvement in emotion recognition. Nowadays, researches 

are mainly concentrating on time/frequency characteristics to analyse the sources of emotion-

related scalp region while the independence and spatial information of the source may be 

ignored. To explore the location of emotion-related sources and improve the recognition 

accuracy, we develop a novel selection method basing on the Independent Component 

Analysis (ICA) to obtain Emotion-Related Independent Components (ERICs). 

2. Method 

The fundamental flowchart of the proposed algorithm based on ICA and SVD is elaborated in 

Fig.1 and the key steps are as follows: 
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Figure 1.  Extraction of ERICs for emotional EEG source localization. 

2.1. Data preprocessing 

The 32-channel EEG datasets used in our work are obtained from the MAHNOB-HCI-

TAGGING DATABASE [7].The classification task is performed among three classes of 

emotion (pleasant, neutral valence and unpleasant) according to the valence dimension. 

Considering the fact that the gamma band plays a significant role than other band in emotion 

recognition [5][8], we first use a bandpass filter of 30-50Hz to extract gamma rhythm. To 

ensure the stability of emotion elicitation and avoid the multi-emotion in an observation 

period, we further split the pre-processed EEG signals into segments of 8s with 50% overlap 

using the rectangle window [9], and regard one data segment as a trial. 

2.2. Single trial ICA analysis 

We consider a single trial 1[ , ]T

nx xx  mentioned above as instantaneous mixture, which 

can be separated by information maximization approach [11] combined with natural gradient 

[12]. Instantaneous mixture is the simplest form of ICA algorithm which can be modeled as 

x As , where A  represents mixing matrix and 1[ , , ]T

ns ss  denotes the source signals. 

The goals of employing ICA algorithm are to learn the unmixing matrix W  and obtain the 

estimate of source signals 1[ , , ]T

ny yy , which means -1=W A  and =


y s Wx , where 


 

denotes the estimate of .  

 

Each row of y  can be regarded as an Independent Component(IC), and a random column 

, ( 1, , )ia i n  in A  includes projection coefficients from thi  IC to each electrodes. To 

acquire the maximum projected position of each IC, we calculate the maximum value of each 

column for A , and then save the index of the maximum values into a matrix 
1 nD , in which 

the elements of 
1 nD  represent the indexes of EEG channels. 
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2.3. ICs validity judgement and spatial feature extraction 

In order to obtain the ICs related to the specific scalp region at the same time, we continue to 

perform the validity judgement of selected ICs on a channel set. We give a k-channels set CS  

to explain the process, specifically, if the matrix 
1 nD  includes 

1
. , , . , , .

i kCS CS CSNo Chan No Chan No Chan  simultaneously (here, .
iCSNo Chan  is the index of 

EEG channel, and 
iCSChan  is the electrode label of the thi  channel in CS ), we infer that these 

ICs on the CS  is valid. 

 

For a random trial x  that have conformed validity judgement of ICs, we choose the 

corresponding column vector to establish the ICA filter bank 
1{w , ,w }k

 and employ the 

filter bank to linearly project each trial to extract ICs (
1 , ,n n

ku u ) for different emotional states. 

Let 1 , ,
T

n n

ku u


   S  and perform Singular Value Decomposition (SVD) on 


S  : 

 

                                                              
T



S UΣV                                                           (1) 

  

U , V are orthogonal matrices, Σ  is diagonal matrix. Finally the SF  = 

[ 1 1 1 1, , , ,j j k kv v v     ] is regarded as the feature. SF  is the abbreviation of spatial feature. 

j  is the thj  non-zero element on the diagonal of Σ , jv  is the thj  column element vector of 

V . 

2.4. ERICs selection 

First, the optimal ICA filter that designed on whole channels is applied to extract the 

corresponding ICs. Thus, 32 ICs for 32 observation channels, which according to the ICs-

electrode mapping mode, can be acquired. In order to assess the relevance between emotion 

and ICs, we then apply the “leave one IC out” method for ERICs selection, that is one IC 

( , 1, ,32ju j  ) is taken out and the SF  for emotion recognition is extracted on the rest of 

the ICs. In this way, we can acquire a recognition accuracy jac  in the absence of ju , and 

attain recognition accuracy vector 1 32{ , , , , }jac ac acChanAc  through 32-rounds tests in 

same way. To select the ERICs by evaluating the decreased recognition accuracy that induced 

by the absence of special IC, we define 1 32{ , , , , }jda da daACC  as follows: 

 

                                            max( )j jda ChanAc ChanAc                                           (2) 

 

where, max( )  denotes the selection of the maximum value in observation vector. It is worthy 

to note that the greater the degradation of the performance, the higher emotion correlation this 

IC has, then we get 31 test channel sets in Fig.2 for selecting ICs. Finally, the step named 

“Determine optimal channel set” in Fig. 1 is performed repeatedly on the test channels sets, 

the ICs that on the optimal channel set are regarded as the ERICs. 
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Figure 2.  The generation process of 31 test channel sets for a subject. _CS i  represents 

a test channel set for selecting ICs. The colored rectangular boxes show the emotional 

correlation of the channels, which obtained by ACC  from a single subject. 

 

3. Experiments and results 

To validate the feasibility of the proposed method, ten subjects’ data from the database 

mentioned above are involved in our experiment. We divide single subject’s EEG data to 

average two parts, one part is to generate the channel sets CS  and another part is used to 

select the optimal channel set. The recognition ratios based on these test channel sets are 

illustrated in Fig. 3. It shows that the recognition accuracy is rising steadily and stabilized at a 

high level. For each subject, we choose ICs on the channel set with the highest ratio (marked 

with a white triangle) as the ERICs. 

 

 
Figure 3.  Recognition accuracy based on test channel sets for each subject. The box 

with a white triangle indicates the best recognition performance among 31 channel sets. 

 

Furthermore, the comparison experiment results can be seen from Fig.4, which correspond to 

whole ICs, ERICs and traditional method based on power spectral density and asymmetry 

features [7], respectively. It is obviously that methods based on ICA algorithm achieve better 

performance than traditional time/frequency domain method, and the experiment results can 

also prove that spatial-domain feature provides richer distinguishable information to 

accurately identify different emotional states. Compared with result obtained by using whole 
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ICs, result of only using ERICs reaches higher accuracy since it removes irrelevant ICs which 

may have influence on the performance of emotion recognition. In a word, the experiment 

validates the feasibility of the proposed ERICs selection strategy as well as the ability of 

improving the recognition performance. 

 

 
Figure 4.  Recognition accuracy for different methods. 

 

To evaluate the performance of the ERICs, the F1 scores and recognition rates for the 

classification in different modalities are given in the Table 1. Among three classes of emotion 

recognition, the “Pleasant” state achieves the highest accuracy ratio (88.23%), while the 

“Neutral-valence” state shows the lowest one (81.5%). It indicates that the emotion 

independent component in the “pleasant” state is more effective than that in the “unpleasant” 

and “Neutral-valence” states. 

 

Table 1. The recognition accuracy and F1 score under three emotion tasks in case of the 

“ERICs”. 

Emotion Modality ERICs 

Pleasant 
Accuracy 88.23% 

F1-score 0.8697 

Neutral-valence 
Accuracy 81.50% 

F1-score 0.8319 

Unpleasant 
Accuracy 82.92% 

F1-score 0.8431 

 

Moreover, we draw the topography map to analyse the emotion-related scalp region according 

to the mean of sACC  over all subjects. From Fig. 5, we can observe that the ICs located on 

the lateral temporal, prefrontal and occipital scalp regions are crucial for emotion recognition. 

This result is consistent with the reports of literature [5] and [10]. 
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Figure 5.  The topography map based on the mean of sACC  over all subjects. 

 

4. Conclusion 

In this work, we present an EEG-based emotion recognition method using ICA to improve the 

performance of emotion recognition. The main properties of this method are: (i) the spatial 

features obtained by ICA and SVD are first applied to EEG for emotion recognition, (ii) the 

independence of the emotion related sources is first considered, (iii) the emotion-related 

independent components can describe the emotion-related scalp region and (iv) experiment 

results confirm both the validity of ERICs in the cerebral cortex and the ability to recognize 

three-class emotion tasks with a high accuracy (86.49%). 
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Abstract 

Stress/displacement field analyzing of mechanical assembly is the basis of predicting the me-

chanical property of the assembly and optimizing the structure and the assembly process. How-

ever, the discontinuity structures in the mechanical make it difficult to calculate. In this paper, 

a new kind of stress/displacement layered mapping and calculation method based on layered 

elastic theory is proposed. With considering the mechanical continuous/discontinuous charac-

teristics, a layered model of assembly structure is established and the layered constraint condi-

tions is determined by its position in assembly. Stress/displacement field could be obtained by 

using traditional solution of layered elastic system which is modified to adjust to the model of 

mechanical assembly. Finally, a discontinuous mechanical structure is solved by using the lay-

ered model and the comparison between the analytically calculation, FEA and experiment data 

proves the effectiveness of the model. 

Keywords: Stress/displacement field; Layered elastic theory; Structural discontinuity; Elastic 

mechanics 

 

1 Introduction 

In general, machines like lathe are not a continuous whole. They’re assembly by various parts 

according to requirements. The parts that are connected to each other are called mechanical 

joints, such as bolted joint, sliding guide joint, et al. The contact region between different parts 

of the ministry is often referred to as a joint interface. 

According to the research, the characteristics of mechanical joint interface have an important 

influence on the performance of mechanical parts, such as contact fatigue strength, friction 

power consumption, wear life [1,2,3]. In addition, the dynamic performance, vibration and 

noise of mechanical equipment depend on interface’s stiffness and the damping. Burdekin et al 

[4] pointed out that the deformation of machine tool’s joints accounted for most of the total 

deformation and the contact stiffness of joints was about 60%~80% of the total rigidity of the 

machine tool. The research of Yagi[5] found that the mechanical joint is important to the dy-

namic stiffness of reconfigurable machine tool. There is a view [6] joint’s damping is larger 

than the damping of the structure itself and Beards [7,8,9] studied structure damping with the 

interface’s sliding. He puts the integration that 90% of the total damping is coming from joint. 

Now that the joint is significant on the static and dynamic performance of mechanical system, 

a lot of researches have been carried out. For instance, Zhang and Mr. Huang [10, 11] had 

studied joint’s normal and tangential stiffness, damping through a lot of experiments and sum-

marized the influence of normal stress, the media, materials, processing methods and rough-

ness. Mi [12] studied the influence of the pretension on the dynamic stiffness of the machine 
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tool. In addition, a lot of achievements have been made in the identification of the parameters 

and the mechanics modeling of the joint [1,13-15]. 

In fact, joint’s behavior is important for mechanical design/operation/maintenance of mechan-

ical equipment. People has accumulated experiences to analyze it in long-term engineering 

practice. With the development of science and technology, the joint interface’s characticts of 

mechanical equipment will become an important part of scientific and technical. 

Joint is a space with a certain thickness. In order to understand joint comprehensively and ac-

curately, it is necessary to figure out how the load transforming in joint interface. Traditional 

mechanical analysis methods, either material mechanics or elastic mechanics, are based on the 

theory of continuum mechanics and the assumption that the object is composed of a continuous 

medium filled in the space [16]. The joint in mechanical equipment destroys the continuity of 

the whole machine structure, so that the continuum mechanics is not completely suitable for the 

analysis of the assembly mechanical. Moreover, the discontinuity of the structure makes the 

transfer of load between the components more complex, including non-linearity, which making 

it difficult to analyze the stress/displacement field in machine. 

Layered elastic theory (LET) is the theoretical foundation in pavement design and calculation. 

LET belong to the elasticity. It developed on the basis of elastic semi-space theory. In 1885, 

Bossiness proposed a theoretical solution to the stress/displacement of elastic semi-space under 

vertical concentrated force. In 1943 and 1945, the Burmister used the Love functions to obtain 

the theoretical solution of the stress/displacement of the double-layer and multi-layer elastic 

system under the symmetrical vertical load [17-19]. In 1951, Sneddon firstly introduced the 

Hankel integral transforms into axisymmetric problems [20]. Since then, the LET has been de-

veloped rapidly and extended to non-axisymmetric and multi-layer elastic systems [21-24]. 

With the improvement of computer and computing method, the system of layered elastic me-

chanics is applied to the engineering. There are lots of algorithms for computing, such as 

BISAR, JULEA, DIPLOMAT, Kenlayer, LEAF, et al [24]. At present, the layered elastic sys-

tem mechanics and its algorithm have been widely used in the engineering practice of multi-

level road and multi-layer foundation all over the world. 

LET is widespread in road construction, but it is seldom used in mechanical. The theory com-

prehensively considers both overall stress transfer and the discontinuous effect of interface to 

analyze the stress/ displacement field, which provides the possibility for the analysis of me-

chanical characteristics of discontinuous mechanical structures. 

Therefore, this paper introduces a new method which is based on layered elastic mechanics to 

analysis stress/ displacement field in discontinuous mechanics. An example of double-layer 

discontinuous mechanical under vertical load is given and in order to verify the effectiveness, 

we also have experimental and finite element analysis. Comparing the results of three methods, 

the new method is effective in structural discontinuity. 

2 The Basic Concept of Layered Elastic Theory 

The LET is the theoretical basis of multi-layer pavement and foundation design. The pavement 

system is layered structure on the soil foundation and composed of different materials. In gen-

eral, the external load on the road surfaces is vertical or horizontal. LET assumes object as an 

elastic system, including a series of elastic layers and a semi-infinite layer. It is used to analyze 

stress and displacement of the elastic system when load is acting on the surface of pavement. 

LET is based on the following assumptions: 
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• Each layer is ideal linear elasticity, completely uniform, continuous, and isotropic. 

• Initial stress is 0 and body forces are ignored in system without external load. 

• Strains and displacement are assumed to be small. 

• Stress, deformation and displacement vanish in infinity point. 

Fig. 1 shows a n-layer elastic system. We denote the number of layers as n. 
iE 、

i 、
ih  are 

Young's modulus, Poisson's ratio and thickness of layers respectively. Each layer is infinite 

along radial direction r . Except the nth-layer is a semi-infinite space (
nh =  ), the other layers’ 

thickness is limited. The cylindrical coordinate system is established in Fig. 1 and there is only 

vertical load acting on the surface. 

z

r

1Layer

2Layer

1Layer n −

Layer n

1 1 1, ,h E

2 2 2, ,h E

1 1 1, ,n n nh E− − −

,n nE

Load

   

zr

r

z



zr

x

z

y


r

Load

 

Fig. 1. A n-layer elastic system       Fig. 2. axisymmetric problem. 

There are two main methods based on LET to obtain stress/displacement filed in layered elastic 

system[23]. The traditional method gives the relation between mechanical component and cor-

relation function firstly. Then the undetermined function is obtained through the Hankel trans-

formation. For example, Burmister presents a unique stress function, which solves the stress 

and displacement of the two-layer and three-layer elastic system under the axisymmetric verti-

cal load[17]-[19]. Maina and Matsui used the Michell equation and Boussinesq equation to 

calculate the elastic response of the elastic layered structure under horizontal and vertical 

loads[22]. It should be pointed out the method is simple and practical, but we must know the 

relation of displacement/stress component and the displacement/stress function. It is suitable 

for simple problems such as spatial axisymmetric. 

The other method[23] calculates basic equation with the Laplace and Hankel integral transfor-

mation to obtain stress/displacement field. Although it does not need to obtain the relation be-

tween the displacement/stress component and the displacement/stress function, the process of 

solution is quite complicated. 

The first method (displacement method) is used to solve spatial axisymmetric problem in the 

next. It is typical method to establish mechanical model in layered elastic system. 

The whole solution begins with acquiring stress/displacement’s general result in axisymmetric 

spatial. In cylindrical coordinates system, assuming Love displacement function ( , )r z  and ac-

cording to Lame equation of elasticity, the relation between displacement components and dis-

placement function is expressed as follows: 
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The stress component is shown by the displacement function 
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
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 (2) 

Where 2 denote the Laplace operator and is given by 

 
2 2

2

2 2

1

r rr z

  
 = + +

 
 (3) 

In fact, the Love displacement function should satisfy the following re-harmonic equation 

 4 0 =  (4) 

Using the Hankel integral transformation on both ends of the re-harmonic Eq. (3) it can be 

shown that 

 
2

4 2 2

0 20
( , ) ( ) ( ) ( , z) 0

d
r r z J r dr

dz
    



 = − =  (5) 

Where ( , )z  is the zero-order Hankel integral transformation function 

 0
0

( , ) ( , ) ( )z r r z J r dr   


=   (6) 

Eq. (4) is the ordinary differential equation, and the expression of its solution is 

 ( , ) ( ) ( )z zz C A z e D B z e 

     −= + + +  (7) 

The solution of displacement function ( , )r z is obtained by the means of Hankel inverse trans-

form 

 
0

0
( , ) [( ) ( ) ] ( )z zr z C A z e D B z e J r d 

      


−= + + +  (8) 

Where is integral variable and A 、 B 、C 、 D are integral constant associated with  . 

Assuming 3A A= ， 2B B= , 3C C= , 2D D= and substituting Eq. (6) into Eq. (1) and (2), 

component of stress and displacement are obtained 
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Where  

 ( ) ( ) ( ) 1
0

1 1z zU J r C z A e D z B e d    


−= + + − − −        (10) 

Where 
0J ,

1J are order 0 and order 1 of the first kind Bessel functions; denoting   as integral 

constant. A 、 B 、C 、 D  are integral constants associated with   and solved through defi-

nite condition of question. 

If the load is axisymmetric, the mechanical problem in the layered elastic system also belongs 

to spatial axisymmetric problems. Since Eq. (9) is a general solution of stress/displacement in 

spatial axisymmetric problems, the stress displacement at any point in the layered elastic system 

can be solved. The stress and displacement expressions in Eq. (9) contain four integral constants 

A、 B 、C 、 D . As long as the integral constant is determined, the stress/displacement of the 

entire layered elastic system can be obtained. Because the boundary conditions of each layer 

are different, the integral constants in the stress/displacement expression of each layer are also 

different. In this paper, the subscript i is used to number the layers. In a N-layer elastic system, 

there are 4N unknown integral constants, 
iA ，

iB ，
iC ，

iD ( )1,2, ,i N= . 

It is known when the surface of layers contacts or bond, the normal stress (displacement) on 

both sides of interface is continuous and the tangential stress (displacement) may have some 

correlation. Furthermore, it is easy to obtain the stress boundary conditions in the surface of the 

layered elastic system. By using these stress conditions of surface, bonding conditions between 

layers and other definite conditions, equation set can be established to solve integral constants. 

The above is a common method for solving layered elastic mechanics system. 

3 Calculation of Discontinuous Mechanical Structure. 

3.1 Model Assumption 

Different from roadbed structure, the structure of mechanical equipment is more complicated 

in general. It is necessary to ignore some unimportant factors and simplify the practical prob-

lems. In this paper, the discontinuous mechanical structure with vertical load is simplified as 

the following model, a double-layer elastic system. The system bases on the assumption of 

LET. 
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In Fig. 3, we denote the thickness of layer 1 as h  and the layer 2 is a semi-infinite substrate. 

iE 、
i  are layers’ Young's modulus and Poisson's ratio respectively. The uniform load ( )q r is 

distributed vertically on a circular area (radius  ) on the 1st layer’s surface. Because the distri-

bution of load is axisymmetric, the stress, strain and displacement components are also axis-

symmetry. Stress and displacement of any point in the system could be solved through the tra-

ditional method, Love displacement function method. The stress of the axisymmetric problem 

is shown in. 

( )rq

2

1 1, ,h E

z

ro
1Layer

2Layer 2 2, E

  

Fig. 3. A double-layer elastic system 

3.2 Boundary Conditions and Governing Equations 

Since the system is subjected to vertical downward normal force, its surface stress boundary 

condition is as follows 

 1

1

( ) ( 0)

0 ( 0)

z

zr

q r z

z





= − = 


= = 
 (11) 

For the continuous mechanical structure, the normal stress and normal displacement of inter-

face are continuous 

 
( )

( )

1 2

1 2

z z z h

w w z h

 = = 


= = 

 (12) 

The shear stress of interface can be calculated by its displacement, as following 

 ( )1 2 2 1( )zr zr K u u z h = = − =  (13) 

Where K is the coefficient of layers combination. 

In fact, when there is only vertical load, friction in layers has little effect on mechanical com-

ponents distribution. we assume interface is smooth and frictionless to simplify the model. So 

0K = and the shear stress of interface is as follows 

 ( )1 2 0zr zr z h = = =  (14) 
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If r and z approach infinity( r → and z → ), respectively, stress and displacement compo-

nents in Eq. (9) will be zero 

 
2 2 0A C= =  (15) 

3.3 Solving the Stress and Displacement Components 

By substituting stress/displacement of components in Eq. (9) into Eq. (11), (12), (14) and us-

ing Hankel integral transformation ,the following linear algebraic equations are obtained 
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Where  
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Substituting 
2 2 0A C= = into Eq. (16),

iA ，
iB ，

iC ，
iD ( )1, 2i = could be represented as fol-

lows: 

 

2
2

1

2

1

2
2

1 1 1

2

1 1 1 1

2

2

2

( )
[( 1 ) ( 1) ]

( )
[ ( ) ]

( )
[(2 )( 1 ) 2 ( 1) ]

( )
{2 [2 ( ) (1 2 ) ] }

( )
(2 1)[(1 ) (1 ) ]

( )
(2

h
h

h

h
h

h

h

q e
A N h N e

q
B N N h e

q e
C h N h N h N e

q
D N N h h h e

q
B N h h e

q
D N




















    


     


 



−
−

−

−
−

−

−

= − − − − −


= − − −


= + − − + − −


= − − − + − +


= − − + − −


= −


2

2

2 2

1)(2 )[(1 ) (1 ) ]

0

hh h h e

A C

    −


















− − + − −



= = 



 (18) 

Where  
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Integral constant 
iA ，

iB ，
iC ，

iD is related to ( )q  . If the distribution equation of load ( )q r is 

known, components of stress and displacement is obtained by substituting ( )q   into Eq. (18). 

If the load is axial symmetrical and circular distribution of vertical loads, the distribution 

function of load circular range with assuming radius   is expressed as: 
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Accordingly, 
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0
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In particular, if load circular is uniform ( )q r q =  ,it is shown that 
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In order to separate ( )q  from the integral constant expression, assuming ( )i iA A q = , ( )i iB B q = ,

( )i iC C q = , ( )i iD D q =  in Eq. (18). If adding a new integral variable x =  and considering r , z

into dimensionless form
r


,

z


, respectively. the final expression of the stress strain and displace-

ment component is subjected to the vertical load is obtained by considering Eq. (23). 
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3.4 Calculation Example 

Assuming first layer’s parameters 9h mm= , 15mm = , Specimen’s material 235Q ,Young's mod-

ulus 5

1 2 2 10E E MPa= =  ,Poisson's ratio
1 2 0.3 = = . The vertical load on the surface is

9000Q N= , 2/q Q = . The stress and displacement field are calculated by Eq. (24), as shown in 

Fig. 5. 
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(c)                                                                                   (d) 

 

(e)                                                                                   (f) 

Fig. 4. Stress and displacement distribution curves along radial direction 

In Fig. 4(a), the curve 0z = mutates at r= and when r> , 0z = ; when r< ,
z q = − , satisfying 

surface stress boundary condition. The curve , 1z h layer=  and curve 
1, 2lz h ayer=  are over-

lapped, corresponding with interlayer stress boundary condition
1 2z z = . In Fig. 4(f), curve 

, 1z h layer=  and curve , 2z h layer=  are overlapped, satisfying interlayer displacement boundary 

condition
1 2w w= . In Fig. 4 (d), the value of curve 0, 1laz yer=  and curve , 1h laz yer=  are close 

to 0, satisfying shear stress equals to 0 in surface and interlayer. When r  gradually increasing, 

all the components in Fig. 4 will tend to zero, corresponding to the condition when r approaches 

infinite, all of components will be zero. These results prove the reasonability of LET. 

4 Experiment and finite element analysis 

In order to verify the LET’s effectiveness in the calculation of stress /displacement field of 

structural discontinuity, we extract the normal stress on interface and compare it with the results 

of experimental and finite element analysis. 
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(a)                                                            (b) 

Fig. 5. Experimental schematic diagram and field photos. 

Taking two cuboid metals as experimental specimen and both the material of them  are

235Q ,Young's modulus 5

1 2 2 10E E MPa= =  , Poisson's ratio
1 2 0.3 = = . We denote the size of 

metal block as 100 100 9mm mm mm   in the first layer and the size of another metal block as 

100 100 60mm mm mm  . The contact region between two metals were grounded to 0.8aR m= . The 

contact stress was measured by the pressure-sensitive film, which is placed on the interface. 

The cupping machine was used to provide load and the load was transformed into circular load 

by a metal cylinder of radius 15mm = , high10mm , placed on the top of the first layer. At first, 

the cupping machine loaded downwards slowly until the pressure reaches 9000N . Then the 

pressure was kept for some time so that the color of pressure-sensitive film was fully displayed. 

Photos of experimental schematics and site are shown in Fig. 5. 

    

Fig. 6. Pressure-sensitive film              Fig.7. Pressure distribution of interface. 

Because of the pressure, the white pressure-sensitive film turns red, and the red concentration 

increases with the increase of pressure intensity. The contact stress can be measured by evalu-

ating the color concentration of the film. Fig. 6 shows the scanning image of the pressure-sen-

sitive film after experiment. Obviously, the color distributed as an axisymmetric pattern. The 

high color concentration in the center indicates that the contact pressures are large. The color 

concentration rapidly decreases in the region far from center, indicating that the pressure drops 

quickly. After denoising and fliting, the color density of film was converted into pressure value 
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and a three-dimensional image which displaying pressure distribution of interface in Fig. 6 and 

Fig. 7. The “steep peak” distribution of the contact pressure is shown clearly in the figure. 

Due to machining error and measurement error, the result in Fig. 6 is not absolutely axisym-

metric. In order to eliminate the impact of these errors, we used the average value of axial 

pressure to represent the pressure in the radial. 

Fig. 8 shows the contact stress distribution of LET, experimental and finite element method 

(FEM). Because the existing of pressure-sensitive film, the state of contact pressure on interface 

has been changed in a way. There were two comparative analysis of FEM with different contact 

conditions. FEM (with film) adds a new layer which has same mechanical parameter with film 

between the original layers and FEM (without film) contacts directly. The value of pressure in 

the figure is negative, indicating the compressive stress. 

In Fig. 8, four pressure distribution curves basically coincide. The curve of LET and FEM 

(without film) almost overlapped since both of them regardless the influence of film layer. The 

curve of experimental and FEM (with film) is lower in center and higher in edges than LET and 

FEM (without film). It indicates that the presence of films has a certain effect on the state of 

mechanical interface. In general, the pressure distribution of experimental and finite element 

analysis is consistent with the result of layered elastic system. 

 

Fig. 8. Data comparison of contact stress 

5 Conclusions 

A stress/displacement field calculation model based on layered elastic mechanics is established 

to solve the mechanical calculation problem in the discontinuous structure in joints. 

The calculation model based on layered elastic mechanics is a new way to calculate the stress / 

displacement field in joints. This method can be extended to more mechanical structure, con-

sidering different types of load, friction and other complex conditions and it is effective to an-

alyze problems such as pressure distribution and small sliding of interface. 

The model still has some shortcomings: For instance, because of ignoring the and roughness, 

flatness and waviness of the contact surfaces, there will be a deviation between the calculation 
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results and the actual situation to some extent. The analytical model of the mechanics charac-

teristics of the complex geometry parts subjected to non-axisymmetric loads or horizontal load 

(unidirectional load, rotational load) needs further study. 
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Abstract 

An extended isogeometric analysis (XIGA) approach based on Bézier extraction and simple 

first-order shear deformation theory (S-FSDT) is proposed for the free vibration analysis of 

cracked functionally graded material (FGM) plate. The XIGA relies on the concept of partition 

of unity to model a crack. By decomposing the NURBS basis functions into Bernstein basis 

functions and Bézier extraction operator, the implementation of XIGA becomes simple. The S-

FSDT uses four parameters for displacement field approximation which overcomes the shear-

locking and captures the shear deformation effect. The S-FSDT requires 1C  continuity which 

is easily achieved through non-uniform rational B-spline (NURBS) basis functions. The 

material properties of the FGM vary by power law along the thickness of plate. Several 

numerical examples are solved to validate the accuracy of the proposed approach. The effects 

of various parameters such as length to thickness ratio, crack length and boundary conditions 

are investigated on the natural frequencies and mode shapes.              

Keywords: XIGA; Bézier extraction; NURBS; FGM; Vibration 

1. Introduction 

Functionally graded material (FGM) is a class of composite material made by mixing the two 

different material phases such as ceramic and metal. Unlike composite material, the material 

properties of the FGM vary smoothly and continuously in a certain direction and able to avoid 

the inter-laminar stresses and debonding phenomenon. These advantageous features of FGM 

are extensively used in variety of engineering applications [1]. In order to ensure the reliability 

of components made from functionally graded materials (FGMs), it is essential to analyze their 

behavior in the presence of crack, which can be done by evaluating the static and dynamic 

behavior, of few standard crack problems. Over the years, several researchers have performed 

the vibration analysis of cracked plates using different numerical techniques and plate theories. 

Guan-Liang et al. [2] employed the finite element method (FEM) to perform the free vibration 

analysis of cracked square plate based on the classical plate theory (CPT). Bachene et al. [3] 
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uses extended finite element method (XFEM) in context of first-order shear deformation theory 

(FSDT) to investigate the free vibration behavior of cracked homogenous rectangular and 

square plates. Further, Natarajan et al. [4] explored the XFEM based on FSDT to study the free 

vibration analysis of cracked FGM plate. Huang et al. [5] used the Ritz method and 3D elasticity 

theory to perform the free vibration analysis of cracked rectangular FGM plates. 

In the present study, a simple first-order shear deformation theory (S-FSDT) is utilized for the 

free vibration analysis of cracked FGM plates. The S-FSDT model requires four parameters for 

displacement field approximation and completely overcomes the shear locking effect associated 

with the original FSDT model [6]. Moreover, S-FSDT model requires 1C  continuity of 

generalized displacement field which cannot be easily attainable using lower order Lagrangian 

shape functions. However, this necessity is easily attainable by the NURBS basis functions 

utilized by isogeometric analysis (IGA) [7]. Moreover, in order to capture the discontinuities in 

the domain, partition of unity (PU) enrichment functions are incorporated with IGA 

approximation and called as extended isogeometric analysis (XIGA) [8]. Over the years, XIGA 

is widely used for solving the stationary and propagating cracks in 2D [9], 3D [10], cracked 

plates [11, 12] and shell structures [13]. Furthermore, the implementation of XIGA can be 

further simplified by incorporating the Bézier extraction approach [10]. Recently, Tan et al. 

[14] employed XIGA based on Bézier extraction using refined plate theory for the free vibration 

analysis of cracked FGM plates. Hence, the present work aims to extend the XIGA based on 

Bézier extraction and S-FSDT for the free vibration analysis of cracked FGM plates. Numerous 

examples are solved to validate the accuracy of the proposed approach and the obtained results 

are compared to other published results.  

2.1 Functionally Graded Plates 

Let us consider a ceramic-metal functionally graded plate of uniform thickness h. The upper 

surface of the plate is assumed to be ceramic rich whereas the bottom surface is fully composed 

of the metal. As shown in the Fig. 1, the x-y plane is assumed as the mid-plane of the plate, and 

the positive z-axis is directed above from the mid-plane. Moreover, along the thickness direction 

(z) of the plate, Young’s modulus and density are varied using power law as [6], 
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where, n refers as gradient index and subscripts m and c denote the metal and ceramic 

constituents, respectively. 
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Table 1: Material properties of FGM plate [5] 

 E (GPa) v   3/kg m  

Aluminum (Al)   70 0.30 2702 

Alumina (Al2O3) 300 0.30 3800 

 

 
Figure 1: A schematic of cracked FGM plate 

 

2.2 Simple First-Order Shear Deformation Plate Theory 

The displacement field at any point (x, y, z) in the plate based on S-FSDT is given as [6], 
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where, ou  and ov  represent the mid-plane displacements in x and y directions respectively; bw

and sw  represent the bending and shear components of transverse displacement (w), 

respectively. 

Assuming the small strain condition, the non-zero strains are related with the displacement field 

given in Eq. (3) as, 

 
0

s

z  
   

   

ε κε

γγ
  (4) 

where, 

xx

yy

xy







 
 

  
 
 

ε , 
xz

yz





 
  
 

γ , 

0

0
0

0 0

u

x

v

y

v u

y x

 
 

 
 

  
 

  
 

  

ε , 

2

2

2

2

2

2

b

b

b

w

x

w

y

w

x y

 
 

 
  

  
 

 
 

   

κ  and 

s

s

s

w

x

w

y

 
  

  


 
  

γ  

x 

z 

y 

o 

h 

z 

h/2 

h/2 
o 

Ceramic 

Metal 

ICCM2019, 9th-13th July 2019, Singapore

213



The relationship between the stress and strain are related by the following equation as, 

     0 ,z z z  σ Q ε κ τ G γ   (5) 
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where, k is the shear correction factor (SCF). In the present work, SCF is taken as k = 5/6.  

Next, using the Hamilton principle, the weak form for free vibration analysis of a FGM plate 

can be expressed as, 
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3. Bézier Extraction of NURBS 

Bézier extraction represents the NURBS basis function over each element in the form of 

Bernstein polynomial defined over 0C  continuous isogeometric Bézier element. Bézier element 

representation is given by Borden et al. [15] for the NURBS and further explored by Scott et 

al. [16] for T-spline. In order to decompose the NURBS basis functions in to Bernstein 

polynomial basis, Bézier decomposition is used. For more detail interested readers are 

encouraged to follow these papers [15-17].  

4. Extended Isogeometric Analysis (XIGA) 

The XIGA uses the merits of IGA and partition of enrichment (PU) concept for the fracture 

analysis of stationary and quasi-static crack growth [8, 9, 14]. In XIGA, the crack is modeled 

through enrichment functions added in the standard IGA approximation. At a particular point 

( , )x yx , the displacement approximation for the crack based on Bézier extraction of NURBS 

is written as, 

  
4

1 1 1 1

Crack

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
cfen ct

nn n

i i j j j k k k

i j k

R R H H R 

 



 
   

 
       

 
   h

u x x u x x x a x x x b   (7) 

ICCM2019, 9th-13th July 2019, Singapore

214



where,  iR x  is the NURBS basis functions which is written in the terms of Bernstein 

polynomial basis functions and Bézier extraction, enn  indicates the total number of control 

points per element and  , , ,
T

i o o b su v w wu  indicates the degrees of freedom (DOFs) per control 

point i  in any NURBS element. Moreover, cfn  and ctn  represent the set of control points 

associated with all those elements which possess crack face and crack-tip respectively. 

Additionally, cfn  enriched with Heaviside function, ( )H x  whereas ctn  enriched with asymptotic 

crack tip enrichment functions,   x . The   x  are taken from the Ref. [14] 

Substituting Eq. (7) into Eq. (4), the strains are given as, 

    
1

enn
m b s

o s i i i i

i

   ε κ γ B B B d   (8) 

where, std enr 
 

B B B  and  1 2 3 4, , , , ,d u a b b b b   

Substituting Eq. (8) into Eq. (6), the following form is obtained, 

  2 0 K M d   (9) 

where, the K and M are global stiffness and mass matrix, respectively. The expression of K and 

M are obtained as provided in Ref. [6].   

5. Results and Discussions 

In this section, the free vibration analysis of cracked FGM plates using S-FSDT in the context 

of XIGA based on Bézier extraction approach is performed. Several rectangular and square 

FGM plates having center crack configuration are considered. Unless stated otherwise, ceramic-

metal FGM plates whose material properties given in Table 1 are considered. Cubic NURBS 

basis functions are used in either direction throughout this study, as it provides faster 

convergence [11]. In all examples, a full integration using    1 1p q    Gauss points are used 

for standard (non-enriched elements) and sub-triangulation scheme for the enriched elements 

[12]. Moreover, three different boundary conditions are considered on the edges of plate such 

as; SSSS, FCFF and CFCF, where, S, F and C represent simply supported, free and clamped 

respectively. The simply supported boundary condition (S) used in this paper is represented as, 

 
0, 0,

0, 0,

o b s

o b s

v w w x a

u w w y b

   

   
  (10) 

whereas the clamped boundary condition is given as [6], 

The percentage difference of normalized natural frequencies is obtained as, 
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As shown in Fig. 2, the rectangular FGM plate with planar dimension  a b  and uniform 

thickness h containing a through-thickness center crack of length d is considered. Before 

proceeding to the free vibration analysis of cracked FGM plates, initially a convergence study 

of the normalized natural frequency of cracked homogeneous plate is performed. A fully simply 

supported (SSSS) homogeneous rectangular plate with a/b = 1, b/h = 10, d/a = 0.3 and material 

properties of aluminum alloy as given in Table 1 is considered. The normalized natural 

frequency 
2

i.e.
b

h E


 

 
    

 
 obtained using S-FSDT and XIGA based on Bézier approach 

is presented in Table 2. It is observed that normalized frequencies obtained using S-FSDT based 

XIGA match well with the 3-D elasticity results [5]. Moreover, as the number of control points 

increases from 32 32  to 42 40 the results converge to two significant figures. Hence, for the 

subsequent examples 32 32  or more number of control points will be used. 

 

 

 

 

 

 

 

 

Figure 2: A rectangular FGM plate with center crack 

 

 

To further illustrate the accuracy of proposed method, the normalized natural frequencies is 

obtained for different b/h and d/a ratios for the SSSS square homogeneous plate. The material 

properties are taken same as the previous example. Table 3 presents the normalized natural 

frequencies evaluated using S-FSDT based XIGA are compared with 3D elasticity approach 

[5]. It is found that the for both thick and thin plates the normalized natural frequencies obtained 

using present approach are in good agreement with 3D elasticity results. The maximum 

percentage difference between their results are within 4.21% for Mode 2 with b/h = 20 and d/a 

= 0.5.   
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Table 2: Normalized natural frequency of SSSS square homogeneous plate (b/h = 10) with center 

crack (d/a = 0.3) 

Method Number of control points Mode 

  1 2 3 

S-FSDT based XIGA 20 20  5.4532 13.4416 13.7265 

 24 24  5.4710 13.4095 13.7282 

 28 28  5.5244 13.4065 13.7373 

 32 32  5.5234 13.3988 13.7369 

 36 36  5.5225 13.3962 13.7368 

 40 40  5.5226 13.3962 13.7369 

3D elasticity [5]  5.421 13.22 13.76 

 

Table 3: Normalized natural frequency of SSSS square homogeneous plate with center crack     

d/a b/h Method Mode     

   1 2 3 4 5 

0.3 5 S-FSDT based XIGA 5.0799 11.0129 11.5279 16.6322 18.6180 

  3D elasticity [5] 4.960 10.84 11.61 16.64 18.06 

  % Difference 2.39 1.58 0.71 0.05 3.04 

 10 S-FSDT based XIGA 5.5224 13.3887 13.7369 21.0819 23.7780 

  3D elasticity [5] 5.421 13.22 13.76 20.97 23.13 

  % Difference 1.85 1.27 0.17 0.53 2.76 

 20 S-FSDT based XIGA 5.6573 14.3151 14.5760 23.0514 26.1400 

  3D elasticity [5] 5.590 14.21 14.57 22.94 25.62 

  % Difference 1.2 0.74 0.04 0.48 2.01 

 100 S-FSDT based XIGA 5.7031 14.6623 14.8871 23.8391 27.1033 

  3D elasticity [5] 5.701 14.65 14.89 23.82 27.11 

  % Difference 0.04 0.08 0.02 0.08 0.02 

0.5 5 S-FSDT based XIGA 4.8180 8.7417 11.4390 15.4412 16.7323 

  3D elasticity [5] 4.633 8.764 11.43 15.97 16.89 

  % Difference 3.91 0.25 0.08 3.37 0.94 

 10 S-FSDT based XIGA 5.2063 11.0595 13.6018 20.7129 22.0429 

  3D elasticity [5] 5.069 11.10 13.55 20.35 21.44 

  % Difference 2.67 0.37 0.38 1.77 2.77 

 20 S-FSDT based XIGA 5.3232 12.8075 14.4199 22.7085 24.0426 

  3D elasticity [5] 5.238 12.28 14.37 22.44 23.60 

  % Difference 1.61 4.21 0.35 1.19 1.86 

 100 S-FSDT based XIGA 5.3628 13.1284 14.7227 23.5087 24.8437 

  3D elasticity [5] 5.353 12.98 14.72 23.46 24.79 

  % Difference 0.18 1.14 0.02 0.21 0.22 
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Next, an Al/Al2O3 center cracked square FGM plate is considered and the effect of various 

parameters such as; different boundary conditions, length to thickness ratio (b/h) and gradient 

index (n) on normalized natural frequencies is analyzed as presented in Table 4. In this case, 

the normalized natural frequency is obtained as 
2

c

c

b

h E


    , where c represents the 

material properties corresponding to ceramic (Al2O3) in Al/Al2O3 FGM plate. Table 4 reveals 

that the normalized natural frequencies obtained using proposed method are well matched with 

the 3D elasticity results. However, for FCFF boundary condition the maximum percentages in 

normalized Mode 2 frequency is seen. Besides, the normalized frequencies increase with 

increasing the b/h ratios and decreases as gradient index (n) increases. It is also observed that 

the normalized frequencies for FCFF boundary condition is less as compared to SSSS and CFCF 

boundary conditions. Finally, the contour of first mode shape of square Al/Al2O3 FGM plate 

(b/h = 50) having center crack (d/a = 0.3) with CFCF and SSSS boundary conditions is shown 

in Fig. 3.            

 
(a) CFCF  

 
(b) SSSS 

Figure 3: First mode shape of square Al/Al2O3 FGM plate (b/h = 50) having center crack (d/a = 0.3) 
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Table 4: Normalized natural frequency of Al/Al2O3 square FGM plate with center crack (d/a = 0.3)      

BCs n b/h Method Mode     

    1 2 3 4 5 

SSSS 0 5 S-FSDT based XIGA 5.0799 9.7269 9.7417 11.0129 11.5279 

   3D elasticity [5] 4.959 9.728 9.742 10.84 11.60  

   % Difference 2.41 0.01 0.00 1.58 0.62 

  50 S-FSDT based XIGA 5.6973 14.6173 14.8468 23.7352 26.9756 

   3D elasticity [5] 5.665 14.58 14.84 23.68 26.71 

   % Difference 0.57 0.26 0.05 0.23 0.99 

 0.2 5 S-FSDT based XIGA 4.7338 9.2672 9.2813 10.3189 10.7870 

   3D elasticity [5] 4.627 9.266 9.280 10.18 10.88 

   % Difference 2.28 0.01 0.01 1.36 0.86 

  50 S-FSDT based XIGA 5.2876 13.5678 13.7804 22.0323 25.0406 

   3D elasticity [5] 5.259 13.53 13.78 21.99 24.80 

   % Difference 0.54 0.28 0.00 0.19 0.97 

 5 5 S-FSDT based XIGA 3.3182 6.3156 6.3259 7.1625 7.4900 

   3D elasticity [5] 3.185 6.274 6.296 6.823 7.322 

   % Difference 4.10 0.66 0.47 4.86 2.27 

  50 S-FSDT based XIGA 3.7498 9.6192 9.7695 15.6156 17.7484 

   3D elasticity [5] 3.725 9.581 9.760 15.56 17.53 

   % Difference 0.66 0.40 0.10 0.36 1.24 

FCFF 0 5 S-FSDT based XIGA 1.0164 2.4343 3.2024 5.3565 6.7674 

   3D elasticity [5] 1.016 2.195 3.221 5.359 6.285 

   % Difference 0.04 10.3 0.58 0.05 7.39 

  50 S-FSDT based XIGA 1.0494 2.5723 6.4260 7.8198 9.3068 

 0.2 5 S-FSDT based XIGA 0.9445 2.2627 3.0515 5.0015 6.3027 

   3D elasticity [5] 0.9441 2.049 3.069 5.010 5.869 

   % Difference 0.04 9.91 0.57 0.17 7.13 

  50 S-FSDT based XIGA 0.9739 2.3872 5.9641 7.2575 8.6378 

 5 5 S-FSDT based XIGA 0.6674 1.5880 2.0887 3.4704 4.3767 

   3D elasticity [5] 0.6633 1.406 2.098 3.394 3.992 

   % Difference 0.62 12.2 0.44 2.23 9.19 

  50 S-FSDT based XIGA 0.6907 1.6929 4.2288 5.1463 6.1245 

CFCF 0 5 S-FSDT based XIGA 5.2039 6.6281 8.8744 10.3010 12.1163 

  50 S-FSDT based XIGA 6.4333 7.9599 12.7911 18.2150 20.1967 

 0.2 5 S-FSDT based XIGA 4.8705 6.1928 8.4553 9.6195 11.3993 

  50 S-FSDT based XIGA 5.9712 7.3879 11.8719 16.9093 18.7481 

 5 5 S-FSDT based XIGA 3.4024 4.3168 5.7698 6.6574 7.8857 

  50 S-FSDT based XIGA 4.2342 5.2385 8.4171 11.9857 13.2888 
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6. Conclusions 

In this work, the free vibration analysis of cracked FGM plates using S-FSDT in the context of 

XIGA based on Bézier extraction approach is successfully performed. The gradation of material 

properties is taken along the thickness of the plate. The bottom end of the plate possesses 100% 

alloy while top end possesses 100% ceramic. The material properties (i.e. Young’s modulus & 

density) vary using power law from bottom to top end of the plate. NURBS basis functions 

obtained from Bézier extraction technique are used for defining the geometric description and 

solution approximation. The values of normalized frequencies are obtained using present 

method are found in good agreement with 3D elasticity solutions. Moreover, the normalized 

natural frequencies are significantly affected by the b/h ratios, crack aspect ratios (d/a), gradient 

index (n) and boundary condtions.  
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Abstract 
In order to conduct simulations with high accuracy using particle methods, numerous particles 
with small size are required to increase the resolution of the calculation domain, and 
furthermore an improved MPS method with variable-size VSP-MPS has been proposed to 
achieve the object in acceptable time. In this paper, the scheme is improved with adaptive 
variable-size particle as AVSP-MPS to increase computational efficiency. First, we made 
linear programming for the selection and changed the decision method of particle entering the 
different resolution to improve the robustness at coarse/fine interface, as a result, the accuracy 
of calculation was improved. As the high resolution of the previous multi-resolution MPS 
method is static, we get a moving high resolution region and proved that the region movement 
has no adverse effect on the flow field. At last, the scheme with adaptive variable-size particle 
as AVSP-MPS is introduced, the shape and area of the domains with high resolution can be 
dynamically adjusted during the calculation. The proposed method was verified by simulating 
dam-break case with a moving obstacle. The computing time for the cases with and without 
AVSP-MPS was analyzed to prove its capability on reducing the computational cost. 
Keywords: adaptive variable-size particles, coalescence, split, moving multi-resolution 
region, computational efficiency 

 

1 Introduction 

In classical grid-based computational methods, variable resolution can be easily achieved 
though refined structured/unstructured grids to improve accuracy in specific computational 
domains. Particle-based methods such as moving particle semi-implicit (MPS)[1] method is 
widely used for analyzing unsteady flow with large deformation, however, with the increase 
of calculation accuracy and scale, it takes large amount of particles to adopt a single 
resolution, and the calculation is time-consuming. To reduce the computational cost, several 
methods have been developed in smoothed particle hydrodynamics (SPH)[2] and MPS 
simulations.  
 
Different with incompressible flow simulation in MPS, SPH is generally used to solve 
compressible flow, the incompressible flow is usually solved by introducing a weakly 
compressible scheme (WCSPH). In order to reduce computer time, Omidvar[3] produced a 
variable particle mass distribution with fine resolution near the body and coarse resolution 
further away. Though two well-defined test cases of waves generated by a heaving semi-
immersed cylinder and progressive waves interacting with a fixed cylinder, the variable mass 
distribution leads to a computer run speedup of nearly 200%. Feldman[4] proposed a dynamic 
particle refinement method where candidate particles are split into several ‘daughter’ particles 
according to a given refinement pattern. In such a method, the daughter particle properties 
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such as mass, volume, density, velocity and pressure are chosen so that both energy and mass 
are conserved. Vacondio[5] modified dynamically the particle sizes by means of splitting and 
coalescing (merging) individual particles, their simulations have shown that the particle 
refinement procedure is able to increase the efficiency while maintaining the same level of 
accuracy as a uniform distribution with the most refined resolution. Chiron[6] presented the 
basics of an Adaptive Particle Refinement (APR) technique, inspired by Adaptive Mesh 
Refinement (AMR)in mesh-based methods. This approach ensures robustness at coarse/fine 
interfaces with alleviated constraints. Sun[7-8] implemented a particle shifting technique (PST) 
in the framework of δ+-SPH combining with APR which is a numerical technique adopted to 
refine the particle resolution in the local region and de-refine particles outside that region. The 
problems of high computational costs and tensile numerical instability are avoided in δ+-SPH 
scheme since APR and Tensile Instability Control (TIC) have been implemented. 
 
Most of the above attempts based on SPH were implemented with the explicit algorithm to 
produce the pressure field. However, a semi-implicit algorithm is often adopted to obtain the 
pressure field in MPS method, which need to solve the pressure Poisson equation and makes 
it much more difficult developing the local refine technique in the MPS than that in the SPH. 
Shibata[9-10] developed a multi-resolution technique, the overlapping particle technique (OPT), 
the OPT expresses a whole simulation domain with partially overlapping sub-domains with 
their own spatial resolutions and particle shape. Despite the improvements, because the mass 
or volume conservation of the particle size conversion procedure is not thoroughly discussed 
in OPT, the total mass conservation of the algorithm needs to be studied and guaranteed. 
Tanaka[11] developed further a multi-resolution technique for the MPS method in two 
dimensions, however, the formulation was derived for the classical MPS method and thus it 
suffers from inaccuracy and stability issues. Tang[12] extended this method for three 
dimensions, however, no splitting or merging algorithms were adopted and therefore the 
spatial resolution cannot be changed dynamically. Chen[13] developed a multi-resolution MPS 
method with variable-size particles based on an algorithm for dynamic particle coalescing and 
splitting. For the existing surface detection technique could not avoid misdetection, the 
dynamic particle refinement is also incorporated based on an improved MPS method with no 
surface detection (NSD-MPS)[14]. Besides, a new gradient model associated with different 
particles sizes is used and all effective radii of particles remain the same ensures the 
conservation of mass and momentum in VSP-MPS method. Tanaka[15] developed novel 
boundary conditions for the treatment of wall and pressure boundaries for the multi-resolution 
least square MPS method, the new boundary condition makes the method easier to be used in 
flow simulations of channel flows.  
 
However, for all of the above MPS methods, the domains with different sized particles are set 
before calculation and their location/area are fixed, which makes it cumbersome when 
simulating the fluid flow cases with a moving object. In this paper, we improved the moving 
particle semi-implicit method with adaptive variable-size particles as AVSP-MPS. The spatial 
resolution varies dynamically with the location of the interface between liquid and the moving 
objects, the different resolution areas don’t need to be known beforehand. In order to optimize 
the splitting and coalescing algorithm, we made linear programming for the selection of 
resolution and got the optimal resolution interval. In addition, we changed the decision 
method of particle entering the different resolution to improve the robustness at coarse/fine 
interfaces. Based on the above improvements, the dam-break case with a moving object was 
simulated with different methods. Compared with the VSP-MPS method which can only 
delimit the resolution region in advance, with an adaptive algorithm, AVSP-MPS method can 
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further reduce the number of particles needed in the simulation and improve the calculation 
efficiency. 

2 VSP-MPS Methods 

This section recalls the MPS method with variable-size particles, the governing equations for 
an incompressible flow are: 

 0D
Dt
ρ ρ+ ∇ ⋅ =u  (1) 

 2D p
Dt

ρ µ= −∇ + ∇ +
u u f  (2) 

where u represents velocity vector, t is time, ρ is the constant density, p is pressure, μ is 
dynamic viscosity and f is the volumetric force, such as gravity. 

2.1 Kernel Function 

The cubic spline kernel function, which is usually used in SPH, was used in this paper: 
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where r is the distance between neighboring particles, h = 2.1l0 is used for all particles in this 
paper, l0 is the initial particle size, and α is the normalization coefficient. With the kernel 
function, the particle number density can be calculated as: 

 ij jn w V=∑  (6) 

where wij is the kernel function between particle i and j, and Vj is the volume of particle j. The 
constant particle number density is n0 = 1.0 for standard particle distribution. 
 
Figure 1 shows three possible cases between two adjacent particles. For example, particle i 
may overlap with particle j as shown in Figure 2(a), in this case, the density attribution of j to 
i is ij jw V  using Eq. (3), while the density of i is ( ) / max( , )i j i jV V V Vρ + . In order to avoid particle 
clustering, an additional weight function[13] is introduced: 
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where the subscript a represents the additional function, Vmax = max(Vi, Vj) is the maximum 
volume between the two particles (where 2

i iV l=  and 2
j jV l= ), li and lj are the diameters of 

particle i and j respectively. 
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When 0.5( )ij i jr l l≥ +  (Figure 2(c)), the additional weight function ,a ijw  is zero. When 

0.5ij j ir l l< −  (Figure 2(a)), the density attribution of j to i is max/jV V  , , max1 /a ijw V=  . When 

0.5 0.5( )j i ij i jl l r l l− ≤ ≤ +  (Figure 2(b)), a monotone decreasing function 2 3 2
, ,(1 1.5 0.5 )a ij a ijR R− +  is 

used to represent the value of ,a ijw  from max1 / V  to zero. 

i ii j j j

 
(a) overlapping particles       (b) clustering particles         (c) adjacent particles 

Figure 1.  Position relationships between two particles 

2.2 Particle Interaction Models 

A new gradient model is used in this paper to ensure the conservation of momentum[16]. 
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The parameters 1λ  is defined as 
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The gradient (9) is totally irrelevant from particles’ distance, and the influence from the 
particles with different sizes could be ignored. 
 
The original Laplace model introduced by Koshizuka[1] is used in this paper 
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The parameters 2λ  is defined as 
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The pressure Poisson equation introduced by Tanaka[16] is used in this paper: 
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where n
in  is the particle number density in the thn  steps and 0.008γ =  is a coefficient. 

ICCM2019, 9th-13th July 2019, Singapore

225



2.3 Free Surface boundary Conditions 

The original MPS method may misjudge surface particles when the solving the pressure 
Poisson equation with multi-resolution, which has an adverse effect on the accuracy of 
calculation. Thus, a new algorithm of MPS method with no surface detection (NSD-MPS)[14] 
can improve computational stability by avoiding surface particle detection. The NSD-MPS 
method ensures that all real particles have the particle number density more than n0 in the 
whole region by introducing conceptual particles to compensate for the loss of particle 
number density. The Dirichlet boundary condition of the pressure Poisson equation is 
enforced by the conceptual particles, which have the free surface pressure Pfree, that is to say, 
the conventional surface particles are replaced by conceptual particles to take the zero-
pressure condition. You can get more details in reference [14]. 

2.4 Particle Splitting and Coalescing Methodology 

In order to increase the resolution in certain areas of the computational domain, particle 
splitting and coalescing were involved in the algorithms. In previous methods, the momentum 
tends to be non-conservation, especially in the process of fine resolution to coarse resolution, 
particles need to wait or be deleted in the simulation. In VSP-MPS method, we cancel the 
restriction, different particle sizes are allowed in the region, which can achieve momentum 
conservation. At the same time, different resolutions are determined by a maximum volume 
Vmax and a minimum volume Vmin. A particle that is larger than Vmax would be split into seven 
daughter particles, while a particle that is smaller than Vmin would be coalesced with a 
neighboring particle. With several processes of splitting and coalescing, the size of particles in 
the region is limited to a certain range, which is conducive to controlling the number of 
particles and improving the computational efficiency. 

2.4.1 Particle splitting 

In particle splitting processes[13], a mother MPS particle splits into 7 daughter particles, and 
the volumes of the daughter particles are equal to 1/7 of mother particle. In order to meet the 
Newton’s third law, all particles including the new daughter particles share the same 
smoothing length h = 2.1l0. 

(a) splitting process

(b) random splitting angles to avoid particle clustering

L H L H L H

Mother 
particle

Daughter 
particles1

2 3

6 5
47

 
Figure 2.  Large particles splitting into daughter particles 

where the solid straight line represents the demarcation line of different resolutions. Here, the 
left side of the demarcation line is the low resolution area, as expressed with L at the left side, 
and the right side is the high resolution area, as expressed with H at the right side. 
 
Figure 2(a) is the sketch of a process of a particle splitting into seven daughter particles. The 
daughter particle 1 locates at the same position as the mother particle, and the other six 
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daughter particles are distributed to form a regular hexagon around particle 1. Daughter 
particles are distributed with a small overlap in the first splitting process to decrease particle 
clustering, then the daughter particles move away from other particles with a small distance in 
the rest steps so that the CFL condition of MPS is met, the splitting process will be finished in 
five steps. Furthermore, an algorithm will be used to lead the daughter particles to form a 
random angle as shown in Figure 2(b), and to guide the particles moving to proper positions. 
The algorithm would further reduce the possibility of particle clustering. The velocity vectors 
of the daughter particles are set equal to that of their mother particle for linear momentum 
conservation in the five steps during the splitting process. The daughter particles would have 
no angular velocity at the first step of splitting because the mother particle has no angular 
momentum. 

2.4.2 Particle coalescing 

Particle coalescing process[13] will conduct between two neighboring particles as shown in 
Figure 3, fine particles will coalesce with other particles if their volume is smaller than given 
minimum volume Vmin. Similar to the splitting process described previously, a five-step 
coalescing process will be used to avoid particle clustering, and the additional weight function 
(Eq. (6)) won’t be used between the two particles during coalescing process. 

Two particle coalescing processes with ten steps

LH LH LH LH LH

 
Figure 3.  Sketch of particle coalescing processes 

Considering the incompressibility and mass conservation, the volume of the new particle 
(new particle is represented by M) VM is calculated as: 

 M i jV V V= +  (14) 

For momentum conservation, during coalescing, the position and velocity vector of mass 
center are: 
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And for angular momentum, the coalescing two particles would have velocities 
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where Mθ


 is the angular velocity. After the coalescing, the two particles merged into one large 
particle without angular velocity. 
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t = t + Δt

 
Figure 4.  Flowcharts of the VSP-MPS method and the splitting/coalescing model 

Figure 4(a) shows the flowchart of the VSP-MPS method, and Figure 4(b) shows the 
flowchart of the splitting/coalescing model. The number count represents the status of the 
splitting/coalescing model, count = 0 means no the splitting/coalescing model, and count=1-5 
represents the step of the splitting/coalescing process from 1 to 5. To save computational cost, 
splitting and coalescing processes share a same five-step process, in other words, the splitting 
and coalescing processes are initiated every five steps by checking their criteria respectively, 
there is no new splitting and coalescing process during the five steps. 

3 Numerical Verification 

A Dam-break case is simulated to verify the VSP-MPS method along with the particle 
splitting and coalescing schemes in this section. The case is simulated with single resolution 
and variable resolution respectively to verify the accuracy of the VSP-MPS method and its 
effectiveness on improving the computational efficiency. 
 
The initial setup of the dam-break case is shown in Figure 5. Vmax and Vmin are the maximum 
and minimum volumes to control the particle splitting and coalescing processes in our 
algorithm. The physical parameters of fluid particle used in this case are ρ = 988kg/m3 and ν = 
1.0 × 106m2/s. In the single resolution case, the initial diameter of water particles is l0 = 
0.0019m, the particle is 5672, in which 3200 are fluid particles. In the variable resolution 
case, the initial diameter of water particles is l0 = 0.005m, the fluid particle will split or 
coalesce during the simulation, and the diameter of the particles will be 0.0019m after once 
splitting process. 
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Figure 5.  Geometry of the dam-break case 

3.1 Repartition of the Resolution 

The resolution is realized by setting the maximum and minimum volume of particles in 
different regions. In order to improve efficiency, we made linear programming for the 
selection of resolution and got the optimal resolution interval. 
 
The upper and lower bounds of the intervals in different resolution regions are shown in 
Figure 5. Although the errors caused by the inconsistency of particle sizes can be mitigated by 
using the kernel function and the interaction model given in section 2. If the difference 
between Vmin and Vmax is too large in the same resolution region, all the particles meet this 
region would stay and coalesced would not happen, the number of the particles was large and 
the calculation efficient was low. On the other hand,, if the difference between Vmin and Vmax 
is too small,  the split and coalesce process may happen  and repeat until the size of the 
particle meet the narrow interval. The calculation efficient was also low by carrying out more 
split/coalesce process. 
In order to reduce the number of splitting and coalescing process, after the splitting of the 
smallest particle and the largest particle, the split particles will not split and coalesce again in 
the low resolution region. 

 1 / 7 11 1
7
b aa a+ + +

− ≤ ≤ +  (20) 

 11 1
7

aa a+
− ≤ ≤ +  (21) 

In high resolution regions, the largest and smallest particles that need to be split do not split 
and coalesce after once splitting. 

 1 1 1
7 7 7
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7 7 7

bb b+
− ≤ ≤ +  (23) 

At the same time, in order to maintain the continuity of particle diameter, the Vmin of low 
resolution region should be smaller than the Vmax of high resolution region. 

 11
7

a b− ≤ +  (24) 
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It is certain that Vmin1 and Vmin2 should be greater than zero to ensure the non-negativity of 
particle volume. 

 1 0a− ≥  (25) 

 1 0
7

b− ≥  (26) 

Simultaneous equation (20) - (26) gives the feasibility interval as shown in Figure 6. In order 
to reduce the difference of particle diameter in the same resolution region, in low resolution 
region, the particle diameter should be close to 2

0 0V l= , and the particle diameter should be 
close to 2

0 0/ 7 / 7V l=  in high resolution region, On the basis of satisfying the preceding 
conditions(equation (20) - (26)),  the values of a and b should be as small as possible. When 
the weights of a and b are the same, the optimal solution is a=3/4 and b=6/50(the point 
marked P as shown in Figure (6)), when the weights of a and b are different, the optimal 
solution will not change. So after the repartition of the resolution, we get Vmax1 = 1.75l02, Vmin1 
= 0.25l0

2, Vmax2 = 0.263l0
2, Vmin2 = 0.0229l0

2. 

 
Figure 6.  Optimal solution of resolution repartition 

3.2 Dam-break test 

Figure 7 shows the experimental and simulation results of the position of water front in the 
dam-break case. The horizontal axis is the non-dimensional time, t(2g/L)0.5, and the vertical 
axis is the non-dimensional position of the water column’s leading edge (Z/L). The VSP-MPS 
result with variable resolution is compared with the single resolution MPS result and the 
experimental results by Martin[17]. The simulation results agree with the experimental results, 
and compared with the single resolution MPS result, the VSP-MPS result has even higher 
precision in high resolution area(as shown in Fig. 7). 
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Figure 7.  Experimental and simulation results of the position of water front in the dam-
break problem 

          
t = 0.3s with MPS        t = 0.6s with MPS 

          
 t = 0.3s with VSP-MPS                        t = 0.6s with VSP-MPS  

Figure 8.  Snapshots from the dam-break simulation 
Figure 8 shows the pressure distribution of fluid at two typical times with different methods, 
which shows that the VSP-MPS method can accurately simulate the pressure distribution of 
fluid in the flow process. In addition, it can be observed that coarse particles can split into fine 
particles after entering the high resolution region, and fine particles will coalesce with 
neighboring particles after entering the low resolution region.  The splitting and coalescing 
processes are implemented until the particle volume remains within the given range. It is 
notable that the splitting and coalescing processes occur in the whole computational domain, 
instead of just at coarse/fine interface. 
 
Figure 9 shows the comparison of particle number and CPU time with the two different 
methods. Compared with the single resolution MPS method, the VSP-MPS method requires 
fewer particles and greatly reduces the calculation time. For example, there are 5672 particles 
in the dam-break case with single resolution MPS, and the particle number is constant during 
the simulation. In VSP-MPS method, the particle number is various during the simulation, it 
can be divide into 5 phases during the simulation (see Figure 9(a)). There are 1422 initial 
setting particles at the begin of the simulation (region A), when the particle pass through the 
high resolution, the particle split into finer particles, so the particle number increases in this 
phase (region B). The particle number decrease in region C due to the fluid flow back into 
low resolution region and fine particle coalesces with neighboring particle. Then the fluid 
sloshes between the two solid walls (region D) flowing through the resolution boundary for 
several times before totally dissipated, At last, the fluid tends to be stable gradually(region E), 
and the particle number converge to be a constant. 
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(a) Particle number                                           (b) CPU time 

Figure 9.  Comparison of particle number and CPU time with different methods 
As shown in Fig 9(b), the calculation time of VSP-MPS is much short than that of MPS with 
single resolution. Compared with single resolution MPS method, when the simulation runs to 
five seconds, the CPU time is reduced by 79.8% using VSP-MPS method. The above 
simulation results prove that the VSP-MPS method could improve the simulation accuracy 
and significantly raise the calculation efficiency. 

4 Numerical Simulation 

In VSP-MPS method, the resolution regions are mandatory to be set before the simulation, 
and the shapes and locations of which are fixed during the whole calculation. It is difficult for 
a fixed high resolution region to cover a complex flow with moving object.  
 
In this paper, a new scheme AVSP-MPS was proposed based on VSP-MPS, the high 
resolution region could be adjusted during the calculation and even could tracking the location 
and shape of the target flow. It is much more flexible for complex flows, and the accuracy and 
efficiency would both be improved. 

4.1 Improvement of the Algorithm Accuracy 

Though the VSP-MPS method allows finer particles in specific areas and coarser particles 
elsewhere, the robustness on coarse/fine interface needs to be improved. In the previous 
algorithm, the particle will split into finer particles when the center of mass of the particle 
enters the high-resolution region. As a result, there will be a large number of particles of 
different diameters at coarse/fine interface, the numerous different diameters at coarse/fine 
interface will reduce the accuracy of the simulation. In order to improve the robustness at 
coarse/fine interface, we improved the algorithm by changing the decision method of particle 
entering the different resolution. The improved approach is that only when the whole particle 
(the boundary of the particle) enters the high resolution region the particle splitting into finer 
particles. 
 
In order to validate the improved algorithm, we simulated the dynamic behavior of a single 
particle passing through the high resolution boundary with the unimproved algorithm and the 
improved algorithm. The center of the particle is initially located at coarse/fine boundary, and 
the particle is given a uniform rightward initial velocity u=0.1m/s. Gravity is not considered 
in the whole process. The comparison of particles dynamic behavior before and after 
improvement is shown in Figure 10. 
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Figure 10.  Comparison of particles dynamic behavior before and after improvement 

where the black solid line represents the coarse/fine boundary, the left region of the boundary 
is low resolution, and the right region of the boundary is high resolution. 
 
Before the improvement, the particle is divided into seven fine particles when the center of 
mass of the particle passes through the coarse/fine boundary. However, at this time, three fine 
particles stay in the low-resolution region. After two coalescing processes, one coarse particle 
and four fine particles are formed. Then the coarse particles will continue to split and form 
seven finer particles when it passes through the coarse/fine boundary. The finer particles, 
reside in the low resolution region, are coalesced twice, and finally nine particles with three 
different diameters are obtained. 
 
After the improvement, the particle splits into 7 finer particles when the left boundary of the 
particle enters the high resolution region, all finer particles have a velocity of u = 0.1m/s due 
to momentum conservation. The particles keep moving rightward at a constant speed. On the 
contrary, before the improvement, the particle interaction with different velocities makes the 
particle motion more complex, and the velocity of particles changes after they passing 
through the coarse/fine boundary, it has an adverse effect on the algorithm accuracy. 
 
After the improvement, there is no finer particle staying in low resolution region, the dynamic 
behavior of the particle is simpler, the number of splitting and coalescing processes decreases, 
and the robustness of the coarse/fine interface is improved. We further simulate the dam-
break case as shown in Figure 5 with the unimproved algorithm and the improved algorithm 
respectively. The physical parameters of fluid particle used in this paper are ρ = 988kg/m3 and 
ν = 1.0 × 106m2/s, the initial diameter of the fluid particles is l0 = 0.005m. Figure 11 shows the 
comparison of particle diameter numbers before and after the improvement near coarse/fine 
interface and in the whole calculation area. 
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(a) Diameter number near coarse/fine interface   (b) Diameter number in the whole area 
Figure 11.  Comparison of particle diameter number before and after improvement 

Before the improvement, the diameter number of the particles start to rise when particles pass 
through the coarse/fine interface (time = A), so when the fluid hits the right wall and falls 
back (time = B), the diameter number of particles increases sharply. As the fluid continues to 
flow across the coarse/fine interface, the difference in diameter number is accumulated. When 
the simulation runs to C (time = C), the fluid flow tends to stabilize gradually, and the 
diameter number of particles has basically reached saturation. Up to the five seconds of the 
simulation, after the improvement, the number of particle diameter is reduced by 15% near 
coarse/fine interface, and in the whole calculation area, the number of particle diameter 
decreased by 32%. Although the particle interaction model we used in 2.2 can reduce the 
influence of the particle diameter difference on the calculation accuracy, after improvement, 
the robustness at coarse/fine interface is improved. 
 
In order to verify the accuracy of the algorithm has been improved, we compared the 
experimental with simulation results of the position of water front in the dam-break problem 
as shown in Figure 12, after improvement, the simulation results are more consistent with the 
experiment compared with the previous algorithm. The algorithm accuracy of the scheme is 
improved by changing the decision method of particle entering the different resolution. 

 
Figure 12.  Experimental and simulation results of the position of water front in the 

dam-break problem 

4.2 Moving High Resolution Region 

In previous multi-resolution MPS methods, the high resolution region is fixed. In order to 
make the high resolution region move around the solid adaptively, we studied the influence of 
high resolution region movement on the flow field. We simulated the dam-break case as 
shown in Figure 5 with static high resolution region and moving high resolution region 
respectively. Figure 13 shows experimental and simulation results of the position of water 
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front in the dam-break problem, the simulation results obtained by the two methods almost 
coincide with each other, which proves that with moving high resolution region, the dynamic 
behavior of the fluid is not affected. 

 
Figure 13.  Experimental and simulation results of the position of water front in the 

dam-break problem 

                   
t = 0.27s with static high resolution region            t = 0.52s with static high resolution region 

                   
t = 0.27s with moving high resolution region       t = 0.52s with moving high resolution region 

Figure 14.  Snapshots from the dam-break simulation 
Figure 14 shows the pressure distribution of fluid at two typical times with different methods, 
with moving high resolution region, the method can also accurately simulate the pressure 
distribution of fluid in the flow process. 
 
In fact, as described earlier, the algorithm has realized that the splitting and coalescing 
processes can be conducted in the whole area, and the system can always keep the 
conservation of mass and momentum. The only difference between static resolution and 
moving resolution is the location of finer particles, so movable scheme can be very helpful if 
the location of the flow details we want to describe may change in the simulation. All the 
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above proves that the region movement has no adverse effect on the flow field, the scheme 
has been extended and the multi-resolution regions is fixed any more. 

4.3 Adaptive Variable Size Particle MPS Model 

In previous algorithm, the high resolution regions are static in space and known beforehand; 
all the particles that enter the high resolution regions are split into smaller particles. Since the 
high resolution region is static, it is not adaptive, in this paper, the scheme is improved with 
adaptive variable-size particle as AVSP-MPS, which means the shape and area of the domains 
with high resolution can be dynamically adjusted during the calculation according to the 
distance from a fluid particle to a movable object. 
 
In this section, we use three methods, single resolution MPS, VSP-MPS and AVSP-MPS, to 
simulate the dam-break case with a moving obstacle, respectively. The schematic diagram is 
shown in Fig. 15. The density of fluid particles is ρ = 988kg/m3, the viscosity is ν = 1.0 × 
106m2/s, the gravity is G = 9.8m/s2, and the initial diameter of water particles is l0 = 0.005m. 
The object moves in horizontal direction and the equation of motion can be expressed as u = -
0.5×sin(2πt). The high resolution area in VSP-MPS simulation is static, so it is necessary to 
divide a large area into high resolution region (as shown in R2 (red box) in Figure 15(a)). As a 
contrast, the high resolution region does not need to be given beforehand with AVSP-MPS 
method, the high resolution region can dynamically change in the simulation to ensure fine 
particles are always used around the moving obstacle (as shown in R2 (red box) in Figure 
15(b)). 

R2
Vmax2 = 0.263l0

2

Vmin2 = 0.0229l0
2

R1
Vmax1 = 1.75l0

2

Vmin1 = 0.25l0
2

u

    

R1

R2
u

 
(a) VSP-MPS                                                 (b) AVSP-MPS 

Figure 15.  Geometry of the dam-break with obstacle 
Fig. 16 shows the diameter distribution of fluid particles at several typical times using AVSP-
MPS method, in the simulation, fine particles are only used around the moving obstacle, 
coarse particles are used in other area. It proves that the adaptive model has been successfully 
added to AVSP-MPS method, the high resolution area can dynamically change according to 
the distance between fluid particles to the moving obstacle. 

     
t = 0.4s                                                             t = 06s 
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t = 1.0s                                                             t = 2.0s 

Figure 16.  Diameter distribution of the dam-break with obstacle 
Fig. 17 shows the time-varying curves of particle number and CPU obtained by three methods. 
Compared with the single resolution MPS method, AVSP-MPS can greatly reduce the particle 
number and CPU time in the simulation process by 59.5% and 43.0%. Compared with the 
VSP-MPS method which can only delimit the resolution region in advance, AVSP-MPS 
method can reduce particle number by 49.5%, CPU time by 27.1%. With an adaptive 
algorithm, AVSP-MPS method can reduce the number of particles needed in the simulation 
and improve the calculation efficiency. 

     
(a) Particle number                                           (b) CPU time 

Figure 17.  Comparison of particle number and CPU time in different cases 

5 Conclusions 

In this paper, the scheme of MPS method is improved with adaptive variable-size particle as 
AVSP-MPS to increase computational efficiency. First, we made linear programming for the 
selection of resolution and got the optimal resolution interval, compared with MPS with 
single resolution, VSP-MPS method can reduce the number of particles needed for simulation 
and greatly shorten the calculation time. Then the algorithm is improved by changing the 
decision method of particle entering the different resolution to improve the robustness at 
coarse/fine interface. The improved approach is that only when the whole particle (the 
boundary of the particle) enters the high resolution region the particle splitting into finer 
particles. The algorithm accuracy of the scheme is improved by changing the decision method 
of particle entering the different resolution. As the high resolution of the previous multi-
resolution MPS method is static, we get a moving high resolution region and studied the 
influence of high resolution region movement on the flow field, the region movement will not 
affect the flow field. At last, the scheme with adaptive variable-size particle as AVSP-MPS is 
introduced, the shape and area of the domains with high resolution can be dynamically 
adjusted during the calculation according to the distance from a fluid particle to a movable 
object. Compared with the VSP-MPS method which can only delimit the resolution region in 
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advance, with an adaptive algorithm, AVSP-MPS method can further reduce the number of 
particles needed in the simulation and improve the calculation efficiency. 
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Abstract 

In the present work, elasto-plastic fatigue crack growth (FCG) in three-dimensional (3D) domains 

is numerically performed using the extended finite element method (XFEM). The XFEM does not 

require conformal mesh and remeshing for crack growth modeling as required in the standard finite 

element method. The crack front in 3D is modeled by joining the small size line segments. The 

fatigue crack growth rate (FCGR) is computed by the stress intensity factor (SIF) dependent Paris 

Law. The main challenge in the elasto-plastic FCG modeling is the evaluation of three modes of 

SIFs, which is properly handled by the J-decomposition approach. The field variables are 

decomposed into their symmetric and anti-symmetric portions across the crack surface in the J-

decomposition approach. These decomposed portions of fields are used to compute the symmetric 

and anti-symmetric J-integrals. The numerical issues such as the derivative of stress and strain 

energy density; evaluation of stress in the virtual domain during the J-integral calculation are 

properly addressed. The numerically predicted FCG behavior of Ni-based superalloy is validated 

experimentally at elevated temperature. 

Keywords: Stress intensity factor; Fatigue crack growth (FCG); J-decomposition; XFEM.  

 

Introduction 

Advancement in the industries and technologies demands the highly efficient and reliable design 

of the structures/components. To fulfill this objective, all the complex loading effect, 

environmental factors, flaws in materials like heterogeneity, micro-defects, cracks are necessary 

to involve in the designing phase. In general, finite element method (FEM) is employed to assist 

the designing process of the structures/components but FEM is not suitable for designing when 

material flaws like cracks are considered in the structures/components. In FEM, there is the need 

of conformal mesh about the crack surface to produce the jump effect in displacement and a very 

fine mesh is required to capture the stress singularity at the crack front. The modeling to crack 

propagation requires the remeshing with every crack growth and transfer of data from old mesh to 

the new mesh. The remeshing procedure is a time-consuming process and data transfer introduces 

the inaccuracies in the solution. All these complications inspired the researchers to develop new 

methods to overcome these issues. 

In the past two decades, many numerical methodologies are developed by the researchers to 

overcome the problem of conformal mesh and remeshing for crack modeling such as boundary 

element method [1], meshfree methods [2]-[3], extended finite element method [4]-[5], extended 

isogeometric analysis [6]-[7], coupled meshfree and finite element method [8], gradient damage 
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models [9], phase field method [10]  and many more. Among these methods, XFEM is one of the 

most robust and successfully implemented method to model the stationary cracks, elasto-plastic 

fatigue crack growth [11], creep crack growth [12], crack growth in heterogeneous materials [13], 

dynamic crack growth [14], etc. In XFEM, two types of enrichment functions are added to the 

standard FEM displacement approximation via the partition of unity. The jump enrichment 

function is utilized to model the jump in displacement field about the crack surface whereas the 

crack front singularity is captured by the front enrichment functions. 

In this paper, the methodology to model the elasto-plastic FCG in the 3D domain is presented. The 

SIF depended Paris Law is used to calculate the FCGR at the ends of the line segments of the crack 

front. The individual modes of SIFs are evaluated using the J-decomposition approach [15]. All 

the fields i.e. strain, stress and displacement derivatives are decomposed into symmetric and anti-

symmetric portions across the crack surface in this approach. A virtual cylindrical domain is 

created at the ends of the line segments of crack front to calculate the J-integral. The interpolation 

functions are used to calculate all the required fields at the virtual domain from the nodal data. 

However, the stress field cannot be obtained by directly interpolation due to plasticity thus; a data 

transfer scheme is employed to calculate the stress field at the virtual domain. Due to the presence 

of plasticity, direct derivatives of stress and strain energy density are not possible hence function 

approximation is utilized to compute the derivative of stress and strain energy density. The 

numerically computed FCG for Ni-based superalloy is compared with the experimental results and 

found in a good match. 

Mathematical Formulation 

In this section, XFEM based methodology to simulate the elasto-plastic FCG is explained. The 

FCGR is computed by SIF range based Paris Law. The individual modes of SIF are calculated by 

the J-decomposition approach, which depends on the decomposed fields. During the evaluation of 

J-integral, several numerical issues are faced that are discussed in detail in this section. The 

maximum principal stress criterion is used to obtain the crack growth direction.  

Governing Equations 

A residual stress-free domain of isotropic homogeneous material is considered for the formulation. 

The domain is assumed of volume   and bounded by the surface   as shown in Fig. 1. Prescribed 

traction and displacement is applied to the surface t  and u  of the domain respectively. A sharp 

traction free crack in the domain is also considered and denoted by the c  in Fig. 1. The 

equilibrium equation and the associated boundary conditions for the domain are defined as 

 

  , 0 in , 1, 2,3ij j i j       (1) 

 

 0 onij j cn     (2) 

 

 onij j i tn t     (3) 

 

 oni i uu u    (4) 
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where 
ij  is the Cauchy stress, iu  is the displacement, 

jn  is the unit normal vector, iu  and it  

are the applied displacement and traction on the surface u  and t  respectively. The strong form 

of Eq. (1) is converted into weak form by employing the principle of virtual work as 

 

  
,

δ δ 0
t

ij i i ij
u d t u d

 
       (5) 

 

This weak form of equilibrium equation is written into discrete equations using discretization of 

the domain as follows 
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0
e

e t

n
T T

i i
e

u d t d
 



    B CB N   (6) 

 

where B  is the gradient matrix of shape functions, C  is the elasto-plastic constitutive matrix, en  

is the number of elements and N is the shape function vector. The simultaneous solution of Eq. 

(6) gives the displacement field that is further used to compute the strain and trial stress field using 

displacement derivatives and constitutive relation respectively. The trial stress is checked for 

yielding at each integration point via J2 plasticity yielding criterion. For the yielded integration 

point, generalized Ramberg-Osgood material model along with associated flow rule is used to 

calculate the plastic strain and stress field [16] whereas for non-yielded integration point trial stress 

is taken as final stress field. The equilibrium of the system is ensured by the global convergence 

parameter that is defined as follows 
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Figure 1. An illustration on 3D cracked domain along with boundary conditions 
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If the convergence parameter is less than the tolerance that means the equilibrium has been attained 

and the next load step is initiated, otherwise solution of the discrete equations is performed again 

with the updated residual force and updated elasto-plastic constitutive matrix  D  as 

 

 
1 1

e e

e t e

n n
T T T

i i ij
e e

u d t d d
  

 

       B DB N B   (8) 

 

This process is continued until the convergence is achieved. If the solution diverges then load step 

is taken as half and the solution of discrete equations is computed from the previously converged 

load step. 

Extended Finite Element Method 

XFEM has been successfully used to model the propagating cracks without the need of conformal 

mesh and remeshing of the domain during crack propagation. In this method, two types of 

enrichment are added to the standard FEM displacement approximation via the partition of unity. 

The jump enrichment function is used to model the crack surface whereas the crack front 

singularity is mimicked by the front enrichment functions. Due to the introduction of these 

enrichment functions, the total number of degree of freedom (DOF) of the system increased 

slightly. The enriched displacement approximation for a domain [17] can be written as 

 

  
4

1

( ) ( ) ( ) ( ) ( ) ( )
c t

h l
i i j j j k l l k k

i n j n k n l

N N Η Η N   
   

         u x x u x x x x   (9) 

 

where ( )Η x  and ( )l x  are the jump and front enrichment functions respectively; n , cn  and tn  

presents all the nodes in the domain, nodes associated with completely cut elements and nodes 

associated with partially cut elements respectively;   and   are the DOFs related with jump 

enrichment function and front enrichment function respectively. The jump enrichment function 

and front enrichment function [18] are given below 

 

  
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 

1 for 0

1 for 0
H
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

 

x
x

x
  (10) 

 

  
1

, , ,
2 2 2 2 1

r cos r sin r cos sin r sin sin
n

      
   

 
     

x   (11) 

 

where   x  is the normal distance from the crack surface; n  is the hardening constant of 

material; r  and   are the polar coordinates with respect to crack front. To trace the crack surface 

in the domain level set is used. 

Fatigue Crack Growth 

The Paris law is used to estimate the FCGR in the domain as 
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  
m

I eq

da
C K

dN
    (12) 

  

where da  is the crack growth, dN  is the number of cycles required for the crack growth da , 

I eqK  is the equivalent SIF range, C  and m  are the Paris law constants. The equivalent stress 

intensity factor range for the constant amplitude fatigue loading is defined as 

 

 Δ = max min

I eq I eq I eqK K K   (13) 

 

where max

I eqK  and min

I eqK  are the equivalent stress intensity factor corresponding to 
max  and 

min  of 

applied fatigue load. The individual modes of SIFs (mode-I and mode-II) are used to compute the 

equivalent stress intensity factor as 

 

 3 2= 3
2 2 2

c c c
I eq I IIK K cos K cos sin

       
     

     
  (14) 

 

where IK  and IIK  are the SIFs of mode-I and mode-II respectively that are evaluated by J-

decomposition approach, c  is the critical angle for crack growth. The maximum principal stress 

criterion [19] is used to compute the critical angle for crack growth as given below 
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  (15) 

J-decomposition Approach 

The individual modes of SIFs are evaluated from J-integral, which is calculated at the ends of the 

crack front line segments using the J-decomposition approach [20]. A virtual cylindrical domain 

as shown in Fig. 2 is created at these ends of crack front to perform the J-integral computation. 

The decomposed form of J-integral at these ends is defined as 
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  (16) 

 

where I ,II ,III represent the mode-I, mode-II and mode-III respectively, W  is the strain energy 

density, eL  is the length of the virtual domain along the crack front, q  is function having value 

one at the crack front and zeros at the boundary of the virtual domain. The symmetric portion of 

fields provides the mode-I SIF whereas anti-symmetric portion is further divided to obtain the 

mode-II and mode-III SIFs. 
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In order to compute the J-integral by this approach, the required fields are interpolated from the 

original mesh to the virtual cylindrical domain via shape function interpolation and decomposed 

into symmetric and anti-symmetric portions across the crack surface. For the decomposition of 

fields, all the fields are required at the mirror point of the integration point that can be calculated 

from the nodal data by interpolation functions. Due to the presence of plasticity, stress field cannot 

be directly obtained at the virtual domain and mirrored point from the displacement field. 

Therefore, to calculate the stress field at the required point, a data transfer scheme is utilized. In 

this scheme, the stress field is transferred from the integration points to the nodes [21] by 

 

  
1

T T

n ip 


 N N N   (17) 

 

where 
T

N  is the matrix contains the value of shape functions at the integration points, n  and 
ip  

are the fields at node and integration point respectively. After that, the nodal stress is interpolated 

at the required point using shape functions of the element. Due to the use of sub-tetrahedralization 

for enriched elements, the stress field is extrapolated at the nodes of sub-tetrahedron using Eq. (17) 

and stored for each tetrahedron separately. The interpolation of the stress field in the enriched 

element is performed in two steps. In the first step, sub-tetrahedron is identified that contains the 

mirrored point while in the second step; the stress field is interpolated using the extrapolated nodal 

Figure 2. A virtual domain at the end of crack front line segment for the calculation 

of J-integral 

End of line segment of crack front  Virtual cylindrical domain 
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stress and shape functions of the identified sub-tetrahedron. The decomposed stress field for all 

the modes at the spatial point P across the crack surface 1-3 (as given in Fig. 3) is expressed as 
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Figure 3. Symmetric and anti-symmetric portion of stress field across the crack surface 

(1-3) at point P 
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In a similar way, other fields can also be decomposed [22]. The analytical derivatives of strain 

energy density and stress are not possible due to the plasticity hence; it is evaluated by the function 

approximation. The required field of all the integration points of an element is fitted into a 

quadratic function by nonlinear least squares method as  

 

 2 2 2

1 2 3 4 5 6 7 8 9 10

N f f f f f f f f f f                     (20) 

 

where , ,    are the local coordinates of the integration points and 1 2 3 4 5 6 7 8 9 10f , f , f , f , f , f , f , f , f , f  

are the fitting constants. The derivative of Eq. (20) is used to compute the derivative of stress and 

strain energy density. 

Numerical Implementation 

The flowchart for the implementation of the FCG methodology is presented in Fig. 4. The 

discretized domain along with boundary conditions is given as input to the computational model. 

The crack front is divided into small line segments to perform the simulation. The elasto-plastic 

solution is performed on the computational model using a typical load step as discussed in the 

previous section. After obtaining the converged solution on complete loading, a virtual cylindrical 

domain is created at the ends of the line segments of crack front to evaluate the J-integral using 

the J-decomposition approach. The data is transferred from the original mesh to the virtual 

cylindrical domain to compute the J-integral. The stress evaluation at the virtual domain and mirror 

point is performed via the data transfer scheme. The derivatives of stress and strain energy density 

are computed by function approximation as given in Eq. (20). The decomposed fields are used to 

calculate the J-integral for all the modes, which are further converted into SIFs of individual modes 

as 

 

  i

iK E J i I ,II     (21) 

 

 2 III

IIIK G J   (22) 

 

where E  and G  is the Young’s modulus (for plane stress condition) and shear modulus 

respectively. The equivalent SIF and critical angle are calculated from the SIFs of individual 

modes. The crack growth rate at the ends of line segments of the crack front is evaluated using 

equivalent SIF range and the Paris Law. The crack increment is computed for a particular number 

of cycles and the current crack front is updated with this crack increment. For the next step of the 

analysis, the updated crack front is considered as the crack front and the whole process of loading 

and calculation of SIF is repeated. This process is continued until the equivalent SIF is less than 

the fracture toughness. 

Numerical Results and Discussion 

A compact tensile specimen consists of Ni-based superalloy having 32 mm width and 6 mm 

thickness is considered for the validation of the presented FCG methodology. A through crack of 

7.2 mm is considered in the specimen as shown in Fig. 5.  
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Figure 4: The flowchart for the implementation of proposed FCG methodology  
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The fatigue load of  3500 N 0 1maxF R .   is applied at the elevated temperature of 650 °C. The 

mechanical and fatigue properties of Ni-based superalloy at the elevated temperature are provided 

in Table 1. The specimen is discretized into 15 × 15 × 3 elements while the crack front is divided 

into 8 line segments. A virtual cylindrical domain is created at the endpoints of the line segments 

of crack front except for the corner points of the crack front. The radius and length of the virtual 

cylindrical domain are taken as 1 mm and 0.5 mm respectively. The decomposed fields are used 

to calculate the individual modes of SIFs as described in the previous sections. 

 

 
 

Table 1. Material properties of Ni-based superalloy at 650 °C 

 

 

 

 

 

 

 

 

 

Mechanical Properties 650 ºC Value 

Young’s modulus, E  (GPa) 180 

Poisson ratio, v  0.33 

Yield strength, 
yts  (MPa) 653 

Ultimate tensile strength, uts  (MPa) 987 

Paris Law constant, C  1.78×10-8 

Paris Law constant, m  2.89 

Figure 5. A schematic of compact tensile specimen considered for simulation 

38.4 
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The crack growth is evaluated from the crack growth rate at each endpoint of line segments of 

crack front for a particular number of cycles. Initially, the number of cycles is kept high but when 

the crack growth is in the range of element size then the number of cycles is reduced to capture 

the very high rate of crack growth. The numerically computed FCG is shown in Fig. 6 and 

compared with the experimental results [23]. The numerical results are found in a good agreement 

with the experimental results. The numerically obtained crack front at different stages of the 

simulation is also presented in Fig. 7. The predicted growth of the crack front in the middle of the 

specimen is high as compared to the surface of the specimen, which is consistent with the 

theoretical expectations. 

 

 

 

Summary 

In this paper, elasto-plastic FCG in the 3D domain is simulated using the XFEM. In the current 

study, FCGR is computed by the SIF based Paris law. The SIFs of individual modes at the ends of 

the line segments of the crack front are calculated via J-integral through J-decomposition 

approach. The variable fields are decomposed into symmetric and anti-symmetric portions across 

the crack surface in this approach. A virtual cylindrical domain has created at the ends of the line 

segments of the crack front to compute the J-integral. The nodal data is used to calculate all the 

required fields at the virtual domain by interpolation functions. In the presence of plastic 

deformation, the stress field at the virtual domain is obtained by a data transfer scheme. The direct 
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derivatives of stress and strain energy density are not possible hence function approximation is 

employed to compute the derivative of stress and strain energy density. The obtained fatigue crack 

growth for the compact tensile specimen is compared with the experimental results and found in a 

good match. 
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Abstract 

The solutions for different liquid, sand, gases transportations are very different. Many of them 
concern applications of different advanced polymer technologies but for high pressure pipe 
ducts steel materials are commonly applied. This paper presents results of numerical 
calculations and experimental verification of T-pipe joints forming process. FEM analyses 
were conducted for the chosen process technological parameters and tools designs. The 
kinematics of metal flow in the area of the formed flanges was analyzed. Distributions of 
stresses, strains and damage criterion during forming were determined. Calculated values of 
forces and moments acting on tools and workpieces allow for designing of tools geometry for 
experimental verification of the proposed forming process. Worked out numerical calculations 
of T-pipe joints forming show practical possibility of this process application. Regarding the 
existing solutions for this type of parts manufacturing it should be interesting to develop 
special device for this activity dedicated to the hydraulic press or for handy operated devices 
for smaller pipe diameters. 
 
Keywords: FEM, design optimization, cold forming 

Introduction 

There are various solutions for transportation of different liquid, sand and gases. A lot of  
them concern applications of different advanced polymer technologies but for high pressure 
pipe ducts steel materials are commonly applied. For this reason, it is of great importance to 
preserve good sealing of the  designed pipelines. Different welding technologies are normally 
used for connections making but especially difficult case among them is T-pipe joints (tee) 
forming and welding with another pipe structures. In many cases connections made with T-
pipe joints are performed by drilling the wholes inside one pipe and its welding into another. 
A flanging technology is applied for increasing mechanical characteristics and durability of 
these connections. This solution is favorable for pressure distribution and makes the welding 
processes easier for making and verifying – Fig. 1. In comparison with a traditional solution, 
this one is also less material consuming and it can be also applied in existing installations 
using portable devices for drilling and tee making. Typical applications areas include food 
processing, pharmaceutical, pulp and paper industry, stainless steel piping systems, water 
treatment, shipbuilding and conventional and nuclear submarines [1]. The proposed solution 
for bigger pipe installations must be equipped with special machine for tee making. This 
aggregate consists of drilling section for elliptic hole making and a special flanging head. 
Combining rotations and axial movement of this element results in flanges (collars) creation. 
It is possible to reduce smaller pipes tee making by means of portable tools as this process 
does not require application of bigger values of forces and torques. For the planned new 
devices for T-pipe joints development, the observations of this problematic and numerical 
verification of material flow and technological parameters are fundamental. Tools geometry 
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and load parameters knowledge combined with final parts dimensions accuracy [2-4].are the 
most significant for new solution designing. 
    

 

Fig. 1.The example of traditional (left) and formed by flanging T-pipe joint (right) [1] 

Numerical modeling 

Deform 3D software was used for numerical calculations of the proposed scope of flanging 
processes.  Pipes with external diameter Ø150 and created collars with diameters Ø50 and 
were applied in numerical models. Weldable fine-grain structural steel for pressure vessels 
P355NH was used [2] as the material model. For the  calculations needs in the cold metal 
forming conditions all tools and workpieces have the same initial temperature T = 20°C.The 
constant friction model was assumed for all cases with friction factor m = 0.25, as the 
processes are completed with good lubrication. Some calculations were realized with 
workpiece mounted inside the jaws with a diameter corresponding to the pipe dimensions. 
After verification of state of stress and strain, the workpiece were limited to the halfpipes 
fixed by boundary conditions at the external edges. For the proper circular collar shape 
forming the initial holes inside the pipes was designed as elliptic calculating geometrically 
created collar. For example, the collar Ø50 mm formed into the pipe Ø150 mm required initial 
elliptic whole 30 x 37 mm. Fig. 2 presents the examples of worked out models of the analyzed 
cases. The first model consists of formed pipe with initial elliptic whole, outer pipe as 
mounting for workpiece and two bars – tools which flange the collar. In the second, 
developed model physical fixation is replaced by boundary conditions with fixed edges (red 
nodes in Fig 2). The box with fine mesh was used for time calculation optimization in later 
realized simulation These modifications enable faster simulations.. All these changes were 
made after verifications of state of stress with the first model without any changes. 
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Feed rates and tools configurations 

Feed rates f written in mm of working tools movement per rotation were crucial for the 
analyzed cases technological values. This parameter is strictly combined with dimensional 
accuracy and effective time of the realized collar tee connections. It was assumed, analyzing 
accessible solution [1], to apply solution with two rotating and axially moving tools. The 
forming tools – bars have the same diameter Ø10 mm and specially rounded ends. According 
to the chosen option, the feed rates applied in calculations were 0.5; 1.0 and  
2.0 mm per one rotation. Tools – bars forming angle α were regarded as another very 
important technological parameter in this forming process The values for this parameter were 
taken initially within the range of α = (35÷60)°. Finally, this parameter was changeable during 
whole process starting from the biggest values α = 60° during necking and reaching value  
α = 0° at the final sizing stage of collar flanging. Final strain distribution is also changed by 
the forming angle choice. Bigger values of strain with significant part of redundant strains 
were obtained due to smaller inclination angle and feed rates. 

 
Fig.2. Worked out numerical models for calculations with physical pipe stabilization (left) 
and with boundary conditions with fixed displacement (right) 

During numerical simulations realized with the presented assumptions and technological 
parameters it was possible to verify distributions of stress and strain during collars flanging. 
In Fig. 3 and Fig.4 the results of calculations for Ø50 collar forming into Ø150 mm pipe are 
presented. As it is shown in Fig. 3 the distribution of effective stress is really local and 
maximum values of this parameter exceed 1000MPa [5]. In zones of contact between tools 
and workpiece material is moved towards the direction of axial movement of tools. Presented 
in Fig. 4 effective strain distributions show real range of material deformation during flanging 
process. Values of this parameter are slightly different according to number of moving tools 
but the distributions are depended on different feed rates applications Bigger values of feed 
rate f = 1 and 2 mm per rotation provide to obtaining effective strain values reaching 12÷14. 
Normally this information is important considering fine grain material structures into 
plastically formed zones. However this observation must be verified in experimental tests in 
real flanging collars device [6-8]. After short verification of numerical calculations results, it 
was decided to design a handy operated device for smaller T-pipe forming up to 150 mm tube 
diameters with 50 mm flanges. Due to choosing two working bars head (caused by symmetry 
of loads), it was also decided to apply changeable forming angle values during forming. 

α 
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Fig.3. Progression of shape and distribution of effective stress during Ø50 collar forming into 
Ø150 mm pipe 

 
Fig.4. Progression of shape and distribution of effective strain during Ø50 collar forming into 
Ø150 mm pipe 
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Virtual model and real device for T-pipes flanges forming are presented in Fig. 5. 
Additionally, for verification of different forming angle α influence on the process course and 
final flange accuracy, three different working head with two working rounded edges were 
prepared – Fig. 6. 
 

 
Fig. 5. Designed virtual model and worked out device for T-pipe forming  

  

Fig. 6. Three different working heads with two working rounded edges and tools mounted on 
towing screw into the workspace 

 
Designed for experimental tests three working heads have initial forming angle value α equal 
65°; 50° and 35°. Finally in all cases this angle decreases up to 0° for effective flange internal 
diameter sizing. Results of 50 mm flange forming on 150 mm diameter tubes are presented in 
Fig. 7. Presented flanges were formed with feed rate f = 1 mm per rotation. Obtained after this 
experiment the assumed shape of collars shows the influence of working tools geometry on 
final wall thickness distribution at formed area and torque values. In all analysed zones of 
collar forming there are no significant decreases of wall thickness. This information is very 
important for the future scope of usage of T-pipe joint in welding of high pressure pipe ducts 
with very elevated mechanical characteristics. The differences between calculated and 
obtained in experiment distributions of collar wall thickness are not significant. The 
application of the pipe with initial wall thickness 4.00 mm results in minimal calculated value 
3.48 mm and measured in experiment 3.56 mm. During the process observation it was stated 
that the friction conditions are very important for this values distribution. The application of 
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old pipes with rusted inner surface in experiments results in bigger wall thinning during 
flange forming. The application of parts from carbon steel with analogical dimensions and 
process conditions results in final collar wall thickness equal 3.16 mm. Presented result were 
obtained using working head with initial value of forming angle α = 50°.  
 

 
Fig.7. Flanges of 50 mm formed on 150 mm diameter tubes (new inox steel tube – left and 
used carbon steel tube - right) 
 
Obtained during experimental tests maximum values of torques during flange forming 
depending on working head forming angles and types of tubes are presented in Tab 1. 
Assumed maximum values for handy – operated device was 300 Nm. This value was not 
exceed in whole experiment range for new tubes. During tests with presented in Fig. 7 (right 
side) used carbon steel tube measured maximum value of torque equal 380 Nm. It results 
mentioned above the biggest reduction of wall thickness. However for bigger tube diameters 
or wallthickness new device with servomotor is designed and it will be realized in practise.  
 
Tab.1 Measured torques values during flange forming 
Initial α angle, ° 65° 50° 35° 
Inox steel tube torque, Nm 240 250 270 
Carbon steel tube torque, Nm 200 210 240 

 
Conclusions 
Worked out numerical calculations of T-pipe joints forming show practical possibility of this 
process application. Regarding the existing solutions for this type of parts manufacturing it 
should be interesting to develop special device for this activity dedicated to the hydraulic 
press. Some results concerning especially feed rate f and inclination angle α and initial elliptic 
hole dimensions will be very useful for this process recognizing. The observed significant 
torque values reduction depending on applied feed rates is very useful for handy operated 
worked out portable device. In this case, the crucial limitation is pipe fixation during collar 
forming in existing installation. The device body stiffness is also very important because it 
will decide about whole dimensions accuracy and tools positions stability. Another very 
important factor are friction conditions determining parts wall thickness distributions 
important for certification procedures of these T-joints. Finally, all these issues will decide on 
the scope of the proposed solution applicability and safety rules for users. Presently realized 
works at this field concern designing and working out stationary device for flanging of tubes 
up to 400 mm diameters. 
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Abstract 

Fatigue life estimation of riveted joints with countersunk head was performed by the crack 
growth analysis and results were compared with the experimental observation. The multi-site 
damage (MSD) in the skin made from the aluminium alloy D16č ATV was assumed so that 
the simultaneous development of fatigue cracks emanating from holes in the same structural 
element was studied. The equivalent initial flaw size approach (EIFS) was employed. The 
series of ten simultaneously growing cracks was analysed by methods of linear elastic fracture 
mechanic and crack growth concept utilizing FASTRAN model. Stress intensity factors used 
in the crack growth law were determined from the finite element model created in ABAQUS 
FE package. Cracks development under loading at several load levels was simulated. 
Assuming initial corner cracks of 0.125 mm in size, the analysis results show the fatigue lives 
close to the experimentally determined S-N curve of tested specimens. The considerable part 
of the fatigue life of the joint can be attributed to the crack growth. The analysis results 
exhibit that the smaller load level yields the longer crack initiation. The simulated fatigue life 
of tested specimens determined by the crack growth concept can be used as the upper bound 
for the design purposes in involved joint configuration very well. 

Keywords: Crack, Fatigue, FEM, MSD, Rivets 

 

Introduction 

The connection of skins in an airplane structure is commonly made by rivets. Several types 
including solid rivets and blind rivets with round, flat, countersunk or pan head are being 
used. The countersunk head is special for its smooth surface of final outer side and for that it 
is used in aerospace widely. The disadvantage is the sharp shape in the hole caused by the 
countersunk and due to this fact, the fatigue life can be reduced considerably in comparison 
with rivets that require blind hole [1]. Expected stress peak on the hole edge does not need to 
be crucial because it can be reduced by residual stresses created during riveting process 
[2][3][4]. The residual stress can beneficial to the fatigue performance of riveted joints [5]. 

The durability of the joint is influenced by many factors and the fatigue life prediction is far 
from easy. The experimental evaluation is used for S-N curve determination which depicts 
cyclic stress amplitude versus number of cycles to failure. The fatigue life under constant 
amplitude loading at different load level can be predicted based on the S-N curve. 
Alternatively, more complex prediction models can be employed [6][7]. The means of 
fracture mechanics are also utilized [8][9]. The fatigue life of the joint is analysed according 
to a crack advance, but some initial crack should be assumed. The analysis can be conducted 
for different joint configurations without experimental S-N curve data, but the crack growth 
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rate data together with crack growth model are necessary. The introduced analysis is 
performed by this approach and the comparison with the experimental S-N curve is finally 
presented. 

Experimental evaluation of fatigue life 

In test laboratories of the Czech Aerospace Research Centre, the experimental fatigue life 
verification of several rivet types was carried out [1]. The result of countersunked rivets were 
different from other types due to the failure occurring in the centre part representing a skin, 
while the failure of straps was common in other rivet types (see Figure 1). The quadriplicated 
configuration of the test specimen was used. The methodology of fatigue tests was based on 
fatigue loading until failure. Whereas, after the failure of one joint, the specimen was split up 
to enable further testing of remaining joints of the specimen. The joint consisted of the central 
part 1.5 mm thick and two 0.8 mm thick strips symmetrically placed on the top and the 
bottom. The rivets in each joint were arranged in four rows with five rivets. The rivets were 
specified as 5DuZz 3x7P according to the manufacturer standards. The main head of the rivet 
is countersunked, the shank is 3 mm in diameter and the secondary head is being created by 
squeezing the rivet shank with final cylindrical shape. The type of rivets was the same in all 
joints in the test specimen. A set for the fatigue life evaluation consisted of six pieces of test 
specimens. 

 

Figure 1: Tested and analysed fatigue lives of the riveted joints with countersunk head. 

Specimens were loaded by monotone loading with constant amplitude of the force, the stress 
ratio R = 0.05 and the frequency from 3 Hz up to 8 Hz. The tests were performed at room 
temperature and ambient laboratory conditions. The uniaxial hydraulic test machines INOVA 
ZUZ 100 with load cell capacity of 100 kN was used for fatigue tests. The maximum stress 
values σmax of the central part gross section were defined on five levels from 83 MPa up to 
152 MPa to cover S-N curve uniformly.  

During the fatigue experiment the failure of the central part only has been occurring. No 
failure of the rivets happened. Unfortunately, due to the cover by straps, the crack growth was 
not able to monitor. The cracks developed through rivet holes and only the final failure was 
noticed. The life of the joints was in the range of 1e4 up to 2e6 cycles. The fatigue data were 
evaluated using the linear regression by means of a linear model represented by the equation 

 1 2 maxlog logfN A A σ= +  (1) 

with determined coefficients for tested configuration A1=12.87 and A2=3.98 and coefficient of 
determination r2 = 0.98. 

After the failure the crack surface was photographically documented. The example tested 
under load conditions with σmax = 48.1 MPa is shown in Figure 2. Based on the fractographic 
examination carried out on a macro scale utilising optical microscopy the crack initiation 

Failure
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points were identified. In the Figure 2 they are marked by red arrows. Fatigue cracks initiated 
in the rivet holes. The crack initiation was clear at site holes shown in Figure 3. In the detail 
the corner crack shape is obvious and the surrounding crack surface structure shows changes 
in the macromorphology of the surface. The finding indicates the damage of the surrounding 
area in the cross section due to the final failure. 

 

Figure 2: Several crack initiations from the rivet holes; σmax = 48.1 MPa. 

 

Figure 3: Detail of crack initiation point at the side hole; σmax = 48.1 MPa. 

The interesting note is that the crack initiation spots were located mainly at the corner of 
intersection of the countersunk and the outer surface and not at the opposite sharp edge as can 
be expected due to stress concentration effect. 

Simulation of the fatigue life 

The joints life can be split into the period of a crack initiation and a crack growth. The 
boundary between these periods is not strict and is very difficult to distinguish it 
quantitatively. In microscale the transition depends on the microcrack size and the 
microstructural barriers. The size of the crack at the transition point can be different for 
different types of materials. The point of the transition may be specified rather qualitatively. 
The initiation period is the surface phenomenon and the crack growth period starts if the crack 
growth resistance of the material is controlled by the crack growth rate [8]. The initiation 
period can be significant portion of the life. However in the airplane structures the crack 
growth period is being essential and the considerable attention is paid to it. 

The macromorphology of inspected failure surfaces of tested specimens indicated several 
cracks emanating from the rivet holes. The cracks growth was not documented due to the 
straps that covered the cracks for the hole life of the joints. The simulation of crack growth 
could point out the severity of the period of crack growth in the fatigue life. 

A simultaneous crack growth scenario was chosen to analyse employing equivalent initial 
flaw size (EIFS) approach. According to Joint Service Specification Guide of USAF for 
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aircraft structures (JSSG-2006) [9] small imperfections equivalent to an 0.127 mm radius 
corner flaw resulting from material and structure manufacturing and processing operations are 
assumed to exist in each hole of each element in the structure. In slow crack growth structure 
at holes and cut-outs, the assumed initial flaw is a 1.27 mm radius corner flaw at one side of 
the hole. When the primary damage and crack growth originates in a fastener hole and 
terminates prior to member or element failure, continuing damage should be an 0.127 mm 
radius corner flaw plus the amount of growth which occurs prior to primary element failure 
emanating from the diametrically opposite side of the fastener hole at which the initial flaw 
was assumed to exist. The presumption of initial 1.27 mm flaw can be sometimes 
conservative but it is prescribed to declare the crack resistant feature of the structure. 

In the presented cracks scenario the cracks were developing simultaneously from the same 
size in configuration of corner cracks of 0.13 mm in size located at the edge of countersunked 
holes. This arrangement was chosen in order not to give priority to a one larger crack. The 
analysis of crack growth was performed by step-by-step routine so that the cracks were 
extended from the previous configuration based on the computed crack increment. The 
characteristics of linear elastic fracture mechanics for each modeled step were determined 
from finite element model and the crack extension between modeled steps was determined by 
the crack growth model. 

Numerical model 

The numerical model of cracks configuration in each step was created in the FE package 
ABAQUS 2017. A symmetry was applied on the model so that only one quarter of the model 
was analysed. The example of crack configuration is shown in Figure 4. Model was 
discretized by tetrahedral (C3D4) and hexahedral elements (C3D8I). The mesh was refined 
around a crack front using only hexahedral elements stacked in ten layers (see Figure 5) with 
the smallest element dimension of about 0.002 mm. Regular mesh around a crack front is used 
to have a good results of contour integral for stress intensity factor calculation. Isotropic linear 
elastic material model with E = 72 000 MPa and ν = 0.33 was employed. The model was 
loaded by stress applied on tension site and boundary conditions respected the used 
symmetry.  

 

Figure 4: 1/4 model of the skin part including cracks; top-front view on the geometry. 

Crack n.1 Crack n.2 Crack n.3 Crack n.4 Crack n.5

Load

z sym
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Figure 4: Detail of the mesh around the crack n. 5. 

The stress intensity factor KI was determined by internal ABAQUS routine using contour 
integral method. Only the opening mode I was assumed in fracture mechanics parameters 
determination thus the K always corresponds to mode I if stated without index in this work. 
There were from ten up to twenty contours evaluated in ten layers around a crack front 
typically. The mean value of the stress intensity factor from each contour was determined and 
one mean value Kchar from all layers was used as characteristic for a crack. Typical 
normalized stress intensity factors K/Kchar according to contours are plotted in Figure 5. The 
value of K stabilizes after some contours away from the crack front except the one on the side 
of the crack (the blue dots in Figure. 5). The mean value eliminates this discrepancy. 

 

Figure 5: Stress intensity factor around the crack front of the crack n.5 with the length 
of 2.1 mm. 

Material data 

In the numerical model cracks were extended at the same moment of elapsed cycles. The 
crack increments were determined by the crack growth model FASTRAN. The specimens 
were loaded with constant amplitude and despite the basic Paris law could be sufficient, more 
sophisticated model was used. At high crack growth rates, the effect of constrained loss can 
be expected, but only some models can capture this effect.  

The crack growth rate data were used according to [11], where the data of Russian alloy 
D16CzATWH are documented. The crack growth properties are considered to be similar to 
the 2024-T3 alloy [12]. These data were used in presented work based on the results from 
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preliminary data testing. The results of simulated crack growth under constant amplitude 
loading in M(T) specimens using D16czATWH data for FASTRAN model were close 
to experimentally observed growth in specimens made from D16cATV. The crack growth rate 
data were interpolated by linear relationship in the form 

 ( )m

eff
a C K
N
∆

= ∆
∆

  (2) 

with coefficient C = 1.2e-10 and m = 3.5. The effective value of stress intensity factor Keff 
depends on the opening stress intensity factor Kopen according to 

 maxeff openK K K∆ = −   (3) 

Kopen is determined by the FASTRAN model considering load history by semi-analytical 
method. It requires the value of constraint factor α. The implementation in AFGROW [13] 
enables using one constraint value through the whole crack growth or two values according to 
crack growth rates at transitions points from plane strain to plane stress. These rates are 
attributed to points of flat-to-slant transition visible on fracture surfaces [8, 14]. The rate of 
1e-7 m/cycle together with α = 2 were used for plane strain transition point and the rate of 
2.5e-6 together with α = 1.2 were used for plane stress transition point. 

The cracks were characterised by the shape function β. Its values were determined in step 
points normalizing the values of stress intensity factor KFEM determined from the numerical 
model by the term aσ π , where σ denotes the remote stress and a is the crack length. 

 FEMK
a

β
σ π

=   (4) 

The crack increments to find the crack fronts in the step i+1 were determined from the actual 
step i extrapolating the β values linearly from previous points i-1 and actual point i. The 
resulting values of β therefore occur in zig-zag pattern around middle theoretical curve. In 
order to avoid this behaviour, the iteration process should be employed as presented in [15], 
but it was not used in this work accepting some loss of accuracy. 

Cracks growth 

The analysis of crack growth was carried out step-by step. The multi-side damage (MSD) 
scenario was assumed and all cracks were influencing each other through the simulation 
during the whole fatigue life. This type of analysis is not common due to its cost. More 
convenient is to analyse crack extension of the most loaded crack and after reaching the 
opposite side in the load carrying cross-section, the crack increment of the other crack is 
determined. Note that the crack increment during the growth of primary crack must be 
included. The initial crack length for all cracks was 0.13 mm assuming the crack shape as a 
circle section. A crack was therefore corner shaped up to reaching the whole thickness.  

Results 

The analysis of fatigue life was performed with the σmax = 48, 83 and 112 MPa independently. 
At each step of crack increments the numerical model was adapted in order to obtain the 
values of shape function. The shape function plots are in Figure 6. 
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Figure 6: Shape functions of cracks in analyses with a) σmax = 48 MPa b) σmax = 83 
MPa c) σmax = 112 MPa. 

The shape function for small crack lengths is identical up to the size of 2 mm that corresponds 
to the change of the shape from the corner crack to the through crack. Up to this point cracks 
do not influence each other. The other change of the shape function occurs when the crack 
terminates. The full dots mark the state before terminating of the crack n. 1 and the circle dots 
correspond to the crack after that. The rapid rise of β value for the crack n. 2 immediately 
after terminating the crack n. 1 is obvious. 

From the plot of crack growth curves shown in Figure 7, it is clear that the fatigue life is 
determined by the crack n. 1. After terminating the crack n. 1 the other cracks growth is very 
fast. 

 

Figure 7: Shape functions of cracks in analyses with σmax = 48, 83 and 112 MPa. 

Based on the result that the fatigue life is mainly determined by the crack n.1 the fatigue life 
with the levels σmax = 64 MPa and 152 MPa was determined using the shape function of the 
crack n. 1. The results are shown in logarithmical plot in Figure 8 together with the 
experimental results of specimen lives. The test data can be interpolated by power function 
drawn in log-log plot by linear curve. 
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Figure 8: Fatigue life of joint specimens; crack growth analysis and test data. 

Discussion and conclusion 

The fatigue life of the specimens representing riveted joint of airplane skin made from 
aluminium alloy was analysed. The experimental evaluation of the life was performed on 
several load levels under load cycle asymmetry R = 0.05. In logarithmical axes plot the test 
data can be interpolated by linear regression curve. 

The analysis of fatigue live was also performed by means of linear elastic fracture mechanics 
and crack growth model. The multi-site damage (MSD) was assumed so that the numerical 
model of the part representing the skin was created and the shape function for each crack was 
determined. The analysis of fatigue life was carried out using equivalent initial flaw size 
approach (EIFS). The simultaneous crack growth was assumed. Provided initial corner cracks 
of 0.125 mm in size, the analysis results show the fatigue lives close to the experimentally 
determined S-N curve of tested specimens. The considerable part of the fatigue life of the 
joint can be therefore attributed to the crack growth. The analysis results exhibit the smaller 
load level yields the longer crack initiation and also the higher scatter of the fatigue life. 

The crack initiation process is the surface phenomenon and can be covered computationally 
very hardly without relevant material data [8]. The presented analysis shows that in involved 
joint configuration the simulated fatigue life determined by the crack growth concept can be 
used as the upper bound for the design purposes successfully. 
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Abstract 
In this paper, we used an immersed boundary method to simulate the compressible flow field 
around a curvilinear body.  The reflection of a moving shock wave is studied from a cylinder 
and other blunt bodies.  WENO(weighted essentially non-oscillatory) scheme is a widely 
known high-order method for the simulation of compressible flow, but the implementation for 
an arbitrarily given boundary condition is hard to make using coordinate transformation in 
FDM(finite difference method) or polygonal control volume in FVM(finite volume method). 
Therefore, we have set a numerical code without skewness of grids by use of simple Cartesian 
coordinates system.  At the boundary, the conservative condition with the slip velocity is 
guaranteed with a simple mathematical treatment called the immersed boundary condition.  
The reflected shock waves computed from blunt bodies are compared with experimental 
results. 
Keywords: Euler equation, WENO scheme, Immersed boundary method 

 

Introduction 

 Immersed Boundary Method(IBM) can be used for the numerical computation using the 
structured meshes in Cartesian coordinate for a complex geometry. Peskin[1], proposing 
modifications of original IBM, analyzed the blood flow around the heart valves, and Chudhuri 
et al.[2], using WENO scheme in conjunction with IBM, simulated the interaction of high 
Mach number shock waves with wedge and blunt obstacles. 
 In this paper, we simulate the weak shock waves reflected from blunt bodies such as a 
cylinder with WENO scheme[3] linked with IBM. 

Governing equation 

 The Euler equation governing two-dimensional compressible inviscid flows can be written in 
conservative form as, 

   0Q F G
t x y

∂ ∂ ∂
+ + =
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 where Q  is convection variables vector; ,F G  are inviscid flux variables vectors; , , , ,u v p Eρ  
are density, x -direction velocity, y -direction velocity, pressure, and total energy, etc. 
 

Immersed Boundary Method(IBM) 

 

 
 

Figure 1. Immersed boundary treatment 
 
Flow variables IPφ  in imaginary point can be evaluate as, 
 

4

1
IP k NP

k
φ δ φ

=

= ∑         (3) 

 
where δk  is Inversed Distance Weight(IDW) of interpolation, and the flow variable φBP in the 
boundary point can be evaluate from Ref. [4]. In Eq. (3), the IDW is defined as 
 

14

1
k k k

k
δ η η

−

=

 =  
 
∑ ,  1/k kdη =       (4) 

 
where 𝑑𝑑𝑘𝑘 is the distance between the imaginary point(IP𝑘𝑘) and a neighboring grid point(NP𝑘𝑘), 
which are marked in Fig. 1. 

 To calculate the flow variable GPφ  in ghost point using a Dirichlet boundary condition. 
 

2GP BP IPφ φ φ= +       (5) 
 
where the φBP  means the variable at the boundary. 
 

 
 

Figure 2. Schematic diagram for the weak shock wave reflected blunt body. 
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Numerical simulation 

 Fig. 2 shows the computational domain and the initial condition for the planar moving shock 
impinging into a cylinder, for example.  The shock Mach number is set Mas = 1.34, and the 
pressure before and after shock can be simply computed with Rankine-Hugoniot condition.  
The specific heat ratio of air is fixed to 1.4. 
 The density contours at each time step can be visualized in Fig. 3, and the fifth-order WENO 
scheme is used with third-order TVD(total variation diminishing) Runge-Katta time 
integration for the numerical result in the present figure.  In every time step, holographic 
interferograms[5] are compared with isopycnics, or density contours obtained from 
computation.  The number of nodes is 258,496 and number of elements is 257,336. 
 Mach reflection consisting of Mach triple points and Mach stems is reflected in front of the 
circular cylinder. A slip line is visible as the disturbed isolines, and the Mach stems intersect 
each other to form a secondary Mach reflection at the aft of the cylindrical body, which is 
called a ‘shock-shock reflection’. 
 

 

 
 

 

 

 

 
Figure 3. Numerical isopycnics using WENO with IBM(left) and experimental 

interferogram(right): 48, and 120μs[5] 
 

Summary 

 In this paper, we have simulated two-dimensional compressible flow induced from a moving 
shock reflection from a circular cylinder.  The incident Mach number is Mas = 1.34, and the 
boundary treatment from the implementation of an immersed boundary method is 
successfully applied for the high-order WENO method.  The numerical results coincide with 
those of experiment, and describe delicate wave physics in detail for every time step.  This 
method is also valid for other geometries if we just change the shape of blunt bodies. 
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Abstract 

With the increasing accessibility of computing power in recent years, computational fluid 

dynamics (CFD) has become a vital and routine part of the building design process. However, 

these simulations require explicit modeling of major structures in the vicinity of the building of 

interest, as the orientation and placement of these structures can have significant impact on the 

local wind flow patterns around and within the building of interest. However, the manual 

generation of these geometries can be extremely tedious. Thus, we propose a semi-automated 

photogrammetry-based approach to regenerate simplified building geometries for urban 

simulations. We also examine the actual discrepancy in heights between the photogrammetry-

generated buildings and the actual reported building heights from an online database for a sample 

location in Singapore, and report a mean percentage error of less than 10% under this approach, 

thus suggesting the applicability of this method to a wide range of urban simulations.  

Keywords: Computational Fluid Dynamics, Urban Simulations, Photogrammetry, Automated 

Geometry Regeneration 

 

Introduction 

With the recent advances in availability of computing power, computational fluid dynamics 

(CFD) has become a vital and routine part of the urban planning and building design process. 

Singapore’s Building and Construction Authority, for example, now has established guidelines 

for conducting CFD simulations in their Green Mark methodology to aid in performance-based 

urban planning and building design [1]. 

 

Even while these urban simulations become increasingly common, scientific literature now 

recommends explicit modeling of major structures in the vicinity of the building of interest in the 

urban built environment, as these local structures can have significant impact on the local wind 

flow patterns around the building of interest [2, 3]. Assuming a typical building length and 

spacing of approximately 10 x 10 m
2
 to 100 x 100 m

2
, there can be on the order of 100 buildings 

around the building of interest that needs to be explicitly modeled. While one option is to 

purchase the explicit building footprints and geometries directly from relevant governmental 

agencies, this may not always be an option due to a variety of issues such as cost, especially for 

academics, or lack of documentation, especially for older structures and buildings with no 

appropriately digitized records. A common solution is thus to capitalize on open-source 

resources such as Google Maps or Open Street Maps to manually obtain the building footprint, 

and re-generate the buildings in a computer-assisted design (CAD) program by hand. This is 
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laborious, and often also requires the CFD practitioner to resort to other methods to obtain the 

building heights, such as the enumeration of building floors through on-site visits.  

 

Conversely, photogrammetry is a long developed technique in other applications that has been 

previously described in literature as an effective means of obtaining 3D-model information for 

various urban simulations [4, 5]. While image acquisition in the past might have been difficult, 

the increasingly widespread availability of drone photography now makes photogrammetry for 

geometry regeneration a feasible solution. In addition, while photogrammetry can produce 

extremely high fidelity geometries, the sheer scale of CFD urban simulations often necessitate 

simplifications in the geometry, hence necessitating an additional processing step post-

photogrammetry. 

 

In this work, we thus propose a semi-automated photogrammetry-based approach to regenerate 

building geometries for urban simulations. While this method cannot regenerate the actual 

building of interest in adequate detail for modeling, it can help expedite the generation of 

surrounding buildings for explicit modeling which often do not need to be represented in as fine 

detail. We describe the workflow in the following section, along with a comparison of the actual 

discrepancy in heights between the photogrammetry-generated buildings and the actual reported 

building heights in an online database. This is anticipated to provide a quantitative measure for 

interested urban simulation practitioners to decide if photogrammetry is indeed suitable for 

further routine use. 

 

Methods and Results 

Semi-Automated Photogrammetry Workflow 

There are 3 components to the current workflow, with occasional human input required. Two 

sources of images are required, with the first being 3-dimensional aerial images of the area of 

interest, such as can be acquired by aerial drone photography, and the second being 2-

dimensional images or schematics of the building footprints, similar to the maps available from 

open source resources such as Open Street Maps. The combination of these images to create an 

actual water-tight CAD geometry for subsequent urban simulations is described in greater detail 

in the following subsections. Additionally, the scripts used for the automatic acquisition and 

conversion of acquired images to the actual CAD geometries are available for referencing at 

https://github.com/ooichinchun/Maps2Geometry. 

 

Aerial Image Acquisition 

Images acquired in this work are 3-dimensional screen grabs from Google Maps instead of actual 

drone photography images. However, it is anticipated that aerial drone photography would be 

able to obtain images of a similar quality and type. The set of images acquired should span a 

complete rotation around the area of interest, and should ideally comprise a set of images at 

different azimuths as well. A representative example of a potential image that can be used is 

presented in Figure 1. 
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Figure 1. Example aerial photograph of the area of interest to be modeled.  

 

Building Footprint Modeling 

Images of the simplified building footprints can be acquired from sources such as Open Street 

Maps as .svg vector files. From these files, it is possible to obtain the vertices and lines that make 

up individual building polygons. In addition, the convex hull algorithm can be used to simplify 

the geometry, as illustrated in Figure 2 [6]. The convex hull algorithm essentially seals off small 

gaps and undulations within the buildings, which are often not meshed in actual CFD urban 

simulations due to their comparatively small length scales. For example, the two buildings in the 

top right corner of Figure 2 with the undulating edges are simplified by the convex hull 

algorithm into relatively simpler polygons. The resulting set of vertices and edges can then be 

written out into a CAD file for import into any CAD program. 

 

 
Figure 2. Example of the geometries regenerated from Open Street Maps (objects with the 

solid brown fill) and the convex hull geometries generated (black lines).  
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Geometry Regeneration 

The aerial images acquired in the prior step are then used to re-generate the geometry via 

photogrammetry. Agisoft Photoscan is used in this work to convert the set of images into an 

actual 3-dimensional point cloud. Rescaling and re-alignment to a North-South orientation are 

required at this stage to ensure consistency with the geometry file generated from Open Street 

Maps. The individual mesh points generated by photogrammetry are then filtered by their 

Cartesian coordinates for the building locations as defined by the geometry file such that the 

respective building heights can be obtained and the individual building footprints can be 

extruded accordingly. Representative output images for this process are displayed in Figure 3. 

 

 
Figure 3. (a) Sample output of the mesh from photogrammetry for the aerial images 

obtained (b) Corresponding output of the scripts for the simplified extruded buildings 

around the region of interest. 
 

Quantification of Error in Geometry Regeneration 

The generated geometries are then analyzed for discrepancies to assess the accuracy of this 

particular method. Heights as obtained from the photogrammetry point cloud are compared to 

heights obtained from an online reference (www.emporis.com), and the results are plotted in 

Figure 4. 
 

 
Figure 4. (a) Plot of the building heights as obtained from an online database against the 

building heights obtained by the photogrammetry-based method described in this work. (b) 

A normal Q-Q plot for the standardized residuals for the regression line from (a). 
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The results indicate that there is a very good match between the building heights as reported by 

the online reference and as produced from photogrammetry. The gradient of the line in Figure 4a 

is 0.97, while the R
2
 of the regression is 0.88. The Q-Q normal plot of the scaled residuals as per 

Figure 4b also indicates that there is no systemic error in the photogrammetry, with the 

regression exhibiting normally-distributed errors. More critically, we determine the mean and 

median absolute percentage error in heights to be 9.7% and 7.7% respectively, which can be a 

helpful measure for the CFD practitioner to determine if this method is appropriate for their 

purposes. 
 

Conclusions 

In this work, we demonstrate the application of photogrammetry to rapidly regenerate simplified 

building geometries for urban CFD simulations. More critically, we show that the discrepancy in 

heights obtained via this method are less than 10%, which is probably much less than the typical 

uncertainty in other parameters such as appropriate inlet wind velocity for urban simulations. We 

anticipate that this method would be of increasing interest to CFD practitioners, as the necessity 

for accurate representation of surrounding buildings in CFD simulations gradually becomes more 

evident to industry. 
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Abstract

Debonding failure in the form of either IC debonding or concrete cover separation commonly
controls the load carrying capacity of RC beams flexurally strengthened with an externally
bonded FRP plate, leading to a very low utilization rate (e.g., 20%-40%) of the FRP strength.
A number of experimental studies carried by the authors’ group and some other researchers
indicate inclined FRP U-jackets as the end anchorage show to be highly effective in delaying
or suppressing the debonding failures, resulting in significant enhancements in the structural
performance of FRP-plated RC beams and utilization rate of the FRP strength. This paper
presents a one-dimensional finite element model for FRP-to-concrete bonded joint anchored
with inclined FRP U-jackets, in which interfacial cohesive elements are used to represent the
force-slip behavior of the anchored joints. Comparisons between the FE predictions and test
results have been made to demonstrate the accuracy of the proposed FE model. On the basis
of the FE predictions, expressions of the force-slip model are proposed for the inclined FRP
U-jackets, which considers the effect of vital parameters (e.g., inclination angle, width and
thickness of U-jackets), and can be directly used in an FE model for the FRP-plated RC
beams with inclined U-jackets.

Keywords: Fiber reinforced polymer (FRP), concrete, debonding, fiber anchor, finite element
modelling

1. Introduction

Externally bonding of fiber reinforced polymer (FRP) plates has become a widely-used
technique for the strengthening of reinforced concrete (RC) beams due to superior properties
of the FRP materials, such as high strength-to-weight ratio and excellent corrosion
resistance[1].Debonding failure in the form of either IC debonding (intermediate crack
debonding) or concrete cover separation commonly controls the load carrying capacity of RC
beams flexurally strengthened with an externally bonded FRP plate, leading to a very low
utilization rate (e.g., 20%-40%) of the FRP strength[2].A number of experimental studies
carried by the authors’ group and some other researchers indicate that inclined FRP U-jackets
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as the end anchorage show to be highly effective in delaying or suppressing the debonding
failures, resulting in significant enhancements in the structural performance of FRP-plated RC
beams and utilization rate of the FRP strength. FRP U-jacketing at 45° to the beam axis at end
anchorage is much more effective in delaying or suppressing the above two failure modes
than vertical U-jacketing[3][4]. FRP U-jackets of different parameters have significantly
various effects on anchorage, however, the force-slip behavior between the FRP U-jackets and
concrete interface remains unclear. Bond testing on of FRP-to-concrete bonded joints
anchored with inclined U-jackets is an attractive test approach to investigate the anchoring
mechanism of FRP U-jackets in FRP-plated RC beams. Experimental studies including single
shear tests, double shear tests and modified beam tests and theoretical studies by means of
fracture mechanics analysis and finite element analysis are two vital measures for
investigating interfacial debonding behavior of FRP-to-concrete bonded joints [5]-[9].

The authors’ group has conducted several series of NES single-shear pull tests for a CFRP
plate-to-concrete bonded joint anchored with inclined U-jackets, which considers the effect of
vital parameters (e.g., inclination angle, width and thickness of U-jackets). In this paper, a
one-dimensional finite element model for FRP-to-concrete bonded joint anchored with
inclined FRP U-jackets is proposed, in which interfacial cohesive elements are used to
represent the force-slip behavior of the anchored joints. Comparisons between the FE
predictions and test results have been made to demonstrate the accuracy of the proposed FE
model. On the basis of the FE predictions, expressions of the force-slip model are proposed
for the inclined FRP U-jackets, and can be directly used in an FE model for the FRP-plated
RC beams with inclined U-jackets.

2. Near-end supported single-shear pull test
The author has conducted a series of NES single-shear pull tests, taking the inclination angle,
width and thickness of U-jackets as experimental variables, to study debonding behavior
between FRP and concrete anchored with FRP U-jackets of different forms. The test program
consisted of 10 concrete specimens. All used 220×300mm700mm concrete prisms. In this
test program, the cylinder compressive strength of concrete `

cf was 34MPa. All CFRP plates
had the same dimensions: 50mm in width and 1.2mm in thickness. The bond length of CFRP
plates was 400mm, which was longer than the effective bond length. And the nominal
thickness of single ply of CFRP plate used for U-jackets is 0.167mm. Details of specimens
dimensions of U-jackets in different forms can be found in Fig. 1 and Table 1.

Figure 1. Test rig.
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Table 1. Details of specimens and test results

Specimen
U-jackets

Rounder radius
(mm)Width Ub

(mm)
Plies Bond length

UL (mm)
angle
(°)

CS1 — — — — —
I30P2W40L250C25 40 2 250 30 25
I45P2W40L250C25 40 2 250 45 25
I60P2W40L250C25 40 2 250 60 25
I90P2W40L250C25 40 2 250 90 25
I135P2W40L250C25 40 2 250 135 25
I45P2W50L250C25 50 2 250 45 25
I45P2W60L250C25 60 2 250 45 25
I45P1W40L250C25 40 1 250 45 25
I45P3W40L250C25 40 3 250 45 25

3. One-dimensional finite model

3.1. General

Figure 2. Pull test: (a) Schematic; (b) FE model

The one-dimensional interface finite element model in Fig. 2 contains two kinds of interfacial
elements COH2D4, referred to hereafter as CA and CB, adopting two different constitutive
laws to represent the debonding behavior of two different interfaces. In the CFRP-to-concrete
bonded joint, the properties of the interfacial elements CA are defined by using the bi-linear
bond-slip model of Lu et al. [9], while the proposed elastic-brittle bond-slip model accounts
for the bond behavior of U-jacket-to-concrete using the interfacial elements CB. By
employing the interfacial elements CB along the overlap area, as shown in Fig. 2, the bond
bond strength among the overlap area can be significantly enhanced to reflect the anchoring
effect of FRP U-jackets. The debonding failure of bonded joints depends only on the
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bond-slip behavior parallel to the interface, and the vertical displacement of top and bottom
surfaces of interfacial elements are constrained as a result. So that top and bottom surfaces
can be assumed to be the CFRP plate and the concrete prism, respectively.

The bonded joint model used in this paper has the following dimensions: the length of the
bonded joint is 400mm, which is equal to the bond length of CFRP plates, and the
out-of-plane thickness is 50mm, which is equal to the width of CFRP plates. The element size
of 1mm is used for the interfacial element, and the shear strain of the element equals to the
shear slip hence. After constraining the horizontal displacement of the bottom surface of
interfacial elements at the loaded end, the interface slip can be accessed directly by the
horizontal displacement of the top surface of interfacial elements at the loaded end.

3.2. Proposed bond-slip model

The proposed bi-linear bond-slip model is shown in Fig. 3(b), which features a linear
ascending branch followed by the rapid failure of the interface element CB. According to the
above model, the bond shear stress increases linearly with the interface slip until it reaches the
peak value at which the interfacial slip corresponding to the applied load is defined as sb
hereafter. When the interfacial slip is greater than sb, the bond stress reduces to zero
immediately, indicating the failure of a local interface element. And the description of the
local bond-slip relationship is proposed by following equations:









b

b

ssif
ssifEs

0
 (1)

where E is the slope of the ascending branch. Based on the above discussions, the local
bond-slip model can be precisely denoted, as long as the value of the key parameters,
including the slope of the ascending branch E and the ultimate slip s0, are determined.

(a) (b)
Fig 3. Bond slip model: (a) Lu’s bi-linear model; (b) Proposed elastic-brittle model

ICCM2019, 9th-13th July 2019, Singapore

280



4. Analysis results and discussions

Table 2. Key parameters of proposed bond slip model

Specimen Slope
E(MPa) Ultimate slip s0(mm)

I30P2W40L250C25 3.0 3.2
I45P2W40L250C25 4.3 3.0
I60P2W40L250C25 5.6 2.8
I45P2W50L250C25 5.2 3.4
I45P2W60L250C25 6.1 2.3
I45P1W40L250C25 —— ——

I45P3W40L250C25 6.4 2.2

Through multiple calculations, the values of slope E and the ultimate slip sb in the proposed
bond-slip model adopted by interfacial elements CB, which are employed among the overlap
area, are shown in Table 2. Comparisons between the FE predictions and test results have
been made to demonstrate the accuracy of the proposed FE model in Fig. 4. It can be seen that
the proposed bond-slip model gives results in close agreement with the test results, showing
the same development trend of load-slip curves, excluding the stage 4 of load-slip curves. It
can be found that a sudden drop of the load-carrying capacity occurs in the stage 4 of the
load-slip curve when it reaches a interface slip s1 at a value around 1.1~1.2mm, followed by
the load’s linear increasing with the interfacial slip until the failure of the interface model.
Nevertheless, the experimental curve only showed a slight downward trend in stage 4,
revealing that there is only a mild decrease in the load-carrying capacity in stage 4. When the
interface slip reaches a value around 2.0 mm, where the complete debonding of the
CFRP-to-concrete bonded joint emerges, the load-carrying capacity increases linearly at a
constant rate in stage 5 and converges with the FE prediction until the failure of the specimen.
This inevitable difference appears in stage 4 of the force-slip response, on account of different
loading schemes between the FE analysis and the experiment program. The force-control
loading scheme is adopted by the test program, while the displacement-control loading
scheme is used for the FE model, which makes it possible to capture rapid drop of the
load-carrying capacity.

(a) (b)
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(c)
Fig 4.FE versus test load-slip curves: (a) Inclination angle of U-jackets; (b) Width of

U-jackets; (c) Thickness of U-jackets

Figure 5. Proposed force-slip model and force-slip curve of FE model
P0 is the peak load of the debonding duration of CFRP plates. s0 is the slip corresponding to
the test load reaches P0; sf is the slip of complete debonding of CFRP plates; Pu is the ultimate
test load; su is the ultimate slip.

For the stage 4 of load-slip curves from FE predictions, the following simplification can be
made to get a better fitting with experimental results. Make the extension line for the segment
BC, intersecting with stage 5 at point D, where the corresponding interface slip can be defined
as sf. Accordingly, a load-slip model of the FRP-to-concrete bonded joint anchored with the
inclined U-jackets is proposed through the finite element analysis by replacing the fold line in
the stage 4 of the FE model with the linear segment CD, as the dotted line shown in Fig. 5.
Based on the observations, the load-slip response can be closely predicted by the proposed
bond-slip model.

5. Conclusions

This paper presents a one-dimensional finite element model for FRP-to-concrete bonded joint
anchored with inclined FRP U-jackets, in which interfacial cohesive elements adopting the
proposed bond-slip model are used to represent the force-slip behavior of anchored joints.
Comparisons between the FE predictions and test results have shown that the FE model can
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provide close predictions of the load-slip response of the bonded joint, demonstrating the
accuracy of the proposed FE model with the bi-linear bond-slip model. The shape and several
key parameters of the force-slip model of the FRP-to-concrete with the end anchorage can be
determined through the proposed FE model.
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Abstract 

Wet foam consists of many bubbles. Its geometry and mechanical property are complex. The 

contact between bubbles generates structure like porous media with Plateau channels, and the 

surface tension force acts on both sides of the liquid film. Seldom model or method can simulate 

the phenomenon of liquid foam in detail. In this study, the moving particle semi-implicit (MPS) 

method is employed to study wet foam behavior and channels. The Lagrangrian description and 

particles with flow information are applied, which has inherent advantages in dealing with large 

deformation of interface. A double gas-liquid interface surface tension model is studied based 

on the surface free energy model, and the interface tension was introduced to study the 

interaction between bubbles and solid wall. Further, the behavior of three-dimensional multiple 

bubbles is investigated in detail. The typical behavior of bubbles are analyzed. The effects of 

liquid viscosity, surface tension coefficient and bubble size on the behavior of bubbles are 

discussed. Subsequently, the forming process of different kinds of Plateau channel structure 

were displayed and discussed in detail. 

Keywords: MPS method; double gas-liquid interface surface tension; interface tension; Plateau 

channels 

1 Introduction 

Foams includes two phases of gas and liquid, along with the surfactant molecules in the liquid 

which reduce the surface tension of the liquid at the liquid-gas interface to facilitate foam 

formation. As shown in Figure 1, the liquid volume fraction,∅ may vary from less than 1% (dry 

foam) to around 36% (wet foam) under gravity effect [1]. Typically, foam channels are divided 

into internal channels and external channels. The internal channels can be considered as flow 

through a collection of long channels that are called Plateau borders (PB) and junctions of four 

PBs that is called node. The external channels’ fundamental difference with internal channels 

is the existence of a no-slip wall[2]. However, foams are often inside of containers and has one 

side in contact with air, so it is necessary to classify the foam channels more comprehensively. 

In this study, the foam channels that come into contact with air are called the open channels, 

and the wet foam channels are discussed and studied emphatically. 

    

Figure 1.  Foam gas-liquid two-phase distribution 
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Foams have numerous applications in the industries, agriculture and food. Industrially, their 

ability to preferentially gathering desired materials has made them greatly useful in the mineral 

industry for collecting desirable elements, and they can also be  used for crop spraying in 

agriculture. These successful applications of foam rest on the capability of water-based foam to 

distribute a small volume of liquid over a wide area[2][3][4]. Therefore, one of the major question 

about the dynamical behavior of foams is the forming process of liquid channel structure in 

foams. Understanding the factors that influence bubbles’ behavior such as surfactant materials 

and the forming process of different kinds of channels structure in foam is crucial in increasing 

its efficiency for current applications as well as creating potential new applications for foams. 

To better understand the factors that influence bubbles’ behavior and the formation mechanism 

of various foam channel structures, requires a more complete description and study of the flow 

behavior and different kinds of foam channel structure respectively. 

 

Along with the extensive application of foams in many aspects, great progress has been made 

in making the science of foams a sound including theories models, numerical simulation 

methods and experiments respectively. Hot topics have included static structure (the shapes and 

arrangements of bubbles), and dynamic evolution such as coarsening due to diffusion of gas, 

capillary and gravity driven drainage, rheology and coalescence due to rupture of the films 
[1][5][6]. Koehler et al. expanded the basic microscopic model by a theoretical study and 

experimental investigations at the scale of a single Plateau border for the flow rates,  obtaining 

experimental results of velocity profiles inside the both interior and exterior PBs[2][7]. D. G. T. 

Barrett et al. employed experiments to help us to understand the dynamics of foam instability, 

and static (or quasi-static) simulations using the Surface Evolver to establish equilibrium film 

shapes in different frame shapes and sizes[8]. Besides, in gravity environment, the 

hydrodynamic process will result in uneven distribution of liquid film thickness from top to 

bottom. At the same time, the rapid liquid loss also makes it difficult for the bubbles to evenly 

and stably distribute in the foam. However, the buoyancy disappears and gravity drainage is 

suppressed under low microgravity, capillary drainage is slowed down due to the quasi-

spherical shape of the bubbles, so the overall behavior of foam will show completely different 

characteristics from that under normal gravity. The microgravity environment of 20~25 seconds 

(0.01G) was realized by parabolic aircraft flight method, and then the liquid evolution process 

of two-dimensional foam was observed and analyzed, but these experiments are relatively 

isolated and their results are not well analyzed[9].  

 

There have been many numerical method of the foam in recent years. Among the approaches, 

VOF[10] and level set method[11] are applied extensively. In fact, the VOF method tracks the 

volume fraction of each phase or component instead of tracking the interface itself. The 

interface is reconstructed from the values of volume fraction which imply that it would be 

complicated for VOF to be extended to the three-dimensional case. For the level set method, it 

uses the level set function to store the information of the interface. The advantage is that the 

level set function varies smoothly across the interface while the volume fraction is 

discontinuous. Besides, the curvature can be easily evaluated from the level set function. 

However, the level set method requires a re-initialization procedure to keep the distance 

property when large topological changes occur around the interface. This may violate the mass 

conservation for each phase or component. The LBM method [12] was also applied to study the 

deformation of a single bubble or several bubbles in the liquid, but the surface tension force 

acts only on the single-gas-liquid-interface in the liquid. 

 

Most studies focused on the bubble’s shape and deformations in the liquid or the tube where 

the surface tension force acts only on the single-gas-liquid-interface in the liquid. And most of 
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the mentioned studies’ numerical models are two-dimensional simulation which are suitable for 

the specific individual parts of foam, whereas a three-dimensional model can overcome the 

shortcomings of two-dimensional simulation by analyzing the overall structure of foam. 

Besides the study of wet foams is essential to understand and control foaming processes. 

However, foams are created in a transient wet state and evolve rapidly afterwards under normal 

gravity. Indeed, a micro- or zero-gravity study of wet foam hydrodynamics removes the various 

instabilities experienced under normal gravity, but these experimental methods are difficult to 

achieve, or the weightlessness time is too short, or the preparation cycle is too long, resulting 

in scattered experimental research results in this field. All these questions have motivated the 

use of numerical methods to carry out wet foam investigations without considering the gravity 

effect.  

 

To model the behavior of a single film bubbles with double-gas-liquid-interfaces in the absence 

of gravity, two main issues including surface tension force modeling and interface recording 

have to be considered. The moving particle semi-implicit (MPS)[13] is employed in this study 

because of the advantage in dealing  with the large deformation. So far, the MPS method was 

successfully used in engineering and science, such as the deforming process of bubbles in the 

air[14], and the multiphase flows with deformable interfaces movement[15]. Figure 2 is the 

schematic diagram of the framework of this study. The aim of this study is to present a three-

dimensional model for the foam system including interior node-PB and exterior node-PB as 

well as open node-PB without considering the effect of gravity. Firstly, the factors of the effect 

on the dynamic behavior of bubbles including surface tension coefficient and fluid viscosity 

were studied respectively to present a comprehensive comparison on foam behavior in the 

presence of various physical conditions and bubble sizes. Subsequently, the forming process of 

different kinds of foam channel structure were displayed and discussed. Once the forming 

process of different kinds of foam channels structure including exterior and interior as well as 

open channels were studied, a complete geometrical model for the foam can be used in foam 

stability study in different environments. This study is anticipated to broaden the recognition of 

the foam behavior and the formation mechanism of various foam channel structures without 

considering gravity. 

 

Figure 2.  Schematic diagram of the framework 

2 Numerical method  

2.1 The MPS method 

In the MPS method, the governing equations of the flow mechanics include the conservation 

equations of the mass and the momentum. For an incompressible flow, they can be written in a 

Lagrangian form as: 
𝐷𝜌

𝐷𝑡
+ρ∇·u=0                                                                     (1) 
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𝜌
D𝒖

Dt
= −∇𝑃 + 𝜇∇2𝒖 + 𝜌𝒇                                                   (2) 

where ρ is density, t is time, u is velocity,  P is pressure,  𝜇 is dynamic viscosity coefficient, g 

is acceleration of gravity, and f is the volumetric force, such as gravity and surface tension force, 

 is gradient, 2 is Laplacian. The calculation area and its boundary are discretized by a set of 

particles, which are divided into three kinds including fluid particles, gas particles and solid 

particle with different physical parameters in this study. The interaction between adjacent 

particles is defined by a kernel (weight) function: 

𝑤(𝑟) = {

𝑟𝑒

𝑟
− 1     (𝑟 ≤ 𝑟𝑒)

0              (𝑟 > 𝑟𝑒) 
                                                  (3) 

Where r is the distance between the two particles. This effective radius re is 2.1𝑙0 , and 𝑙0 is the 

initial distance between two neighboring particles. It is obvious that the kernel function is only 

valid within the effective radius. Similar to the physical density of the liquid, a particle density 

is defined as: 

𝑛𝑖 = ∑ 𝑤(𝑟)𝑗≠𝑖                                                                   (4) 

It is a constant value 𝑛0  for an incompressible fluid but a little smaller on the free surface. Any 

movement of the particles would change the particle density to a temporal 𝑛𝑖
∗. In order to modify 

it back to 𝑛0 , the pressure is calculated by solving the Poisson equation with Incomplete 

Cholesky Conjugate Gradient (ICCG) method: 

〈∇2𝑃𝑛+1〉𝑖 =
𝜌

Δ𝑡2

〈𝑛𝑖
∗〉−𝑛0

𝑛0
                                                          (5) 

By treating the foam system as a multi-density multi-viscosity fluid, the mesh-free particle 

method for incompressible multiphase flow has been introduced in this study based on the MPS. 

At the interface, a particle with viscosity 𝜇1 (or density 𝜌1 ) may interact with particles with 

viscosity 𝜇2 (or density 𝜌2 ). The multi-viscosity and multi-density models are derived from the 

interaction between particles with different properties.In this study, the harmonic mean 

viscosity model is used to calculate the viscous momentum transfer process. 
1

𝜌
∇ ∙ (𝜇∇𝜑) =

2𝑑

𝜌𝑖𝜆𝑛0
∑ [

2𝜇𝑖𝜇𝑗

𝜇𝑖+𝜇𝑗
(𝜑𝑗 − 𝜑𝑖)𝑤(|𝒓𝑗 − 𝒓𝑖|)]𝑗≠𝑖                    (6) 

where 𝜑  is an arbitrary scalar, d=3 indicates a three-dimensional problem. Similar to the 

harmonic mean viscosity model, the harmonic average method is applied to the average density 

model so that the change of pressure field in the transition region was relatively gentle. In this 

way, the pressure field distribution in the transition region is conducive to ensuring the stability 

of the simulation. Poisson equation of pressure can be written as: 

∇ ∙ (
1

𝜌
∇𝑃) =

2𝑑

𝜆𝑛0
∑ [

𝑃𝑗−𝑃𝑖
2𝜌𝑖𝜌𝑗

(𝜌𝑖+𝜌𝑗)
⁄

𝑤(|𝒓𝑗 − 𝒓𝑖|)]𝑗≠𝑖                              (7) 

After obtaining the distribution of the multiphase pressure field, the following pressure gradient 

model was used to calculate the pressure gradient term: 

∇𝑃 =
2𝑑

𝑛0
∑ [

𝑃𝑗+𝑃𝑖

|𝒓𝑗−𝒓𝑖|
2 (𝒓𝑗 − 𝒓𝑖)𝑤(|𝒓𝑗 − 𝒓𝑖|)]𝑗≠𝑖                                (8) 

Only brief outline of the MPS method is given in this section, more detailed models and 

algorithms could be found in relative references[13]. 

 

2.2 Surface tension model 
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According to the single film bubble’s geometric feature (Figure 3), it could be considered as a 

liquid film shell with an amount of gas on both sides in the air. Since the flow of the liquid film 

and the deformation of the bubble often happen in a very low Reynolds Number with a very 

small velocity, the gas outside of the bubble is assumed that it has a very limited influence on 

the bubble. In the algorithm of the MPS, the influence of the outside gas on the bubble will be 

totally ignored except as the atmosphere pressure in this study. In other words, there will be no 

gas particles in the gas phase outside the bubble system, and we have zero pressure constantly 

on the outside free surface open in the air, but both sides of the film formed between bubbles 

are affected by gas.  

 

Though the single liquid film is very thin, it has two gas-liquid interfaces including outside 

interface and inside interface. In order to accurately calculate the surface tension force on both 

sides, an interlayer of viscous fluid particles is employed to represent the liquid between the 

two interfaces. On the other hand, the gas inside the bubble is taken as incompressible and has 

a uniform density and pressure so that the surface tension force which acts on both sides of the 

film formed between bubbles in foams can be calculated.  

 

Figure 3.  The geometric feature of single film bubble 

Within the framework of the MPS method, the surface tension forces on the two interfaces will 

be calculated integrally using the surface free energy surface tension model[16]. The potential 

energy between two particles is denoted by P(r), and then the force 𝒇 between the particles is: 

𝒇 =
∂P

∂r
𝒏                                                                      (9) 

According to the requirement of repulsion when the distance between particles is less than a 

critical value and attraction when it is larger than a critical value. The force between the particles 

can be calculated by different formulas[16]. For the particles with particles of uniform and 

symmetrical distribution around, the resultant force on them is 0, when the particles are on or 

adjacent to the free surface, the resultant force is not 0, that is the surface tension. Therefore, 

the formula for calculating the potential energy between particles is[17]:  

𝑃(𝑟) = {
1

 3
𝐶 (𝑟 −

3

2
𝑙𝑚𝑖𝑛 +

1

2
𝑟𝑒) (𝑟 − 𝑟𝑒)

2    (r < 𝑟𝑒)

  0                                                             (𝑟 ≥ 𝑟𝑒)
                        (10) 

where C is a modified parameter, which can be obtained according to the physical properties of 

fluids. 𝑙𝑚𝑖𝑛  is the boundary of repulsion and attraction, which is also the     extreme point of 

surface free energy. 𝑙𝑚𝑖𝑛 is 1.5𝑙0, and 𝑟𝑒  is 3.1𝑙0  in the subsequent numerical calculation and 

research[18]. 
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2.3 Interface tension 

When the foam contacts the container, the external channels are created. For small foam 

containers, the relative number of exterior and interior channels is significant. Therefore, it is 

necessary to study the formation mechanism and the factors influencing the formation of 

external channels. 

 

Interface tension exists between different substances that are in contact but not mutually soluble 

such as liquid-gas, liquid- liquid and liquid-solid. The wetting effect between multiple 

interfaces can be described by the following equations[18]: 

{
 
 

 
 𝜎𝛼𝜃𝑐𝑜𝑠𝛼 + 𝜎𝛼𝛽 + 𝜎𝛽𝜃𝑐𝑜𝑠𝛽 = 0

𝜎𝛼𝜃 + 𝜎𝛼𝛽𝑐𝑜𝑠𝜃 + 𝜎𝛽𝜃𝑐𝑜𝑠𝛽 = 0

𝜎𝛼𝜃𝑐𝑜𝑠𝛼 + 𝜎𝛼𝛽𝑐𝑜𝑠𝜃 + 𝜎𝛽𝜃 = 0

𝛼 + 𝛽 + 𝜃 = 360°

                                          (11) 

where 𝛼, 𝛽 and 𝜃 are contact angles, 𝜎𝛼𝜃, 𝜎𝛼𝛽 and are the surface tension coefficients of non-

gaseous contact material. 

 

Figure 4.  The relationship between contact angles and interface tensions 

For the liquid-solid interface tension case, since the solid is considered as rigid body, β in Figure 

4 is 180°. Contact angle 𝜃 of liquid-solid system demonstrates the wettability of solid surface. 

If 𝜃 is smaller than 90°, the solid surface is hydrophobic, or else the solid surface is hydrophilic. 

In this study, we focus on the effect of hydrophobic/hydrophilic solid surface on the forming 

process of the external channels. 

 

3 Numerical validation 

  

3.1 Oscillation of square single film bubble 

The square single film bubble oscillation process is calculated with the surface tension model 

as a classic validation case. The results are shown in Figure 5. Initially, a square single film 

bubble is arranged with 60×60 particles including liquid particles and gas particles.  The side 

length of the square bubble is 18 mm and the spacing between the particles is 𝑙0=0.0003m.  The 

time step is t = 0.00001s, and the physical parameters are shown in the captions of Table 1.  

Table 1. Particle Physical property parameters 

Material 
Density

（kg/m3） 

Dynamic Viscosity 

Coefficient（N·S/m2） 

Surface Tension 

Coefficient（N/m） 

Water 1000 1.01×10-3 0.0725 

          Gas 1.5 1.79×10-5 — 
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The single film is composed of three layers of particles including the outside layer, the inside 

layer and the inter layer between them. The gas outside the bubble is ignored, and the gas inside 

the bubble is incompressible and uniform which is not shown in these figures (Figure 5).  

                                         

      (a) t=0 s      (b) t=0.02 s      (c) t=0.04 s      (d) t=0.08 s      (e) t=0.2 s        (f) t=0.86s  

Figure 5.  Oscillation process of square single film bubble under surface tension forces  

The square bubble firstly shrinks from the four corners with large curvatures until it is deformed 

into a diamond shape. Then the similar deforming process repeats, the square shape and the 

diamond shape appear alternately. However, since the viscous dissipation of the liquid and the 

gas, their interaction reduce the energy gradually in every time step, and the oscillation 

amplitude shows damped oscillation attenuation with time. Finally, the deformation will end 

when the amplitude approaches zero in Figure 6. As a result, a perfect round shape (t = 0.86 s 

in Figure 5) is generated.  

 

Figure 6. Amplitude variation curve of y-axis oscillation during bubble deformation 

The square single film bubble oscillation process is a benchmark test to verify surface tension 

model. We know that Laplace law for the two-dimensional case is[19]: 

                                                          ΔP =
𝜎

𝑅
                                                              (12) 

Where ΔP is the pressure jump across the interface. R is the radius of the bubble.  When the 

amplitude approaches zero,  ΔP can be calculated by counting the average pressure o the liquid 

film with the corresponding bubble radius R. The radius is set to be 3, 4, 5, 6, 7 and 8mm 

respectively. The surface tension coefficient 𝜎  is taken as 0.072N/m. Then, the numerical 

results and the analytical solution (Eq. (12)) are drawn as a function of the radius of the bubble 

in Figure 7. As can be seen from the Figure 7, the numerical results agrees well with the 

analytical solution. These show that the Laplace law is accurately satisfied. 

t/s

d
y

/m

0.2 0.4 0.6 0.8 1
0.012

0.0125

0.013

0.0135

0.014

0.0145

0.015

ICCM2019, 9th-13th July 2019, Singapore

290



 

Figure 7.  The verification of Laplace law 

3.2 The solid-liquid wetting effect 

A two-dimensional water droplet wetting on a solid wall without gravity was simulated in this 

section to verify the interface tension mentioned above. Theoretical solutions exist for a droplet 

wetting on solid under zero gravity as shown in Figure 8. The stable contact angle θ is formed 

at the contact point between the three phases[18]. Due to the surface tension, the free surface of 

droplet presents a regular sphere, and it’s a regular arc in two-dimensional space. The relation 

of the parameters on Figure 8 is: 

V=π𝑅0
2 =

1

2
× 2𝜋𝑅

2𝜃

2𝜋
× 𝑅 − 𝑅 sin 𝜃 × 𝑅 cos 𝜃                   (13) 

S=2𝑅 sin 𝜃                                                (14) 

Where V is the volume of the droplet, S is the area of the contact part, R is the radius of the 

droplet surface,𝑅0 is the initial radius of the droplet. 

 

Figure 8. The relationship between contact angle and contact area in solid-liquid wetting  

Figure 9 is the time serial of a water droplet wetting process on a solid wall under zero gravity 

with a static contact angle of 60°. The initial droplet radius is 0.02m with particle size 

𝑙0=0.001m and the time step is 0.001s. As shown in Figure 9, the wetting length increases 

rapidly with time, and the dynamic contact angle and droplet height decrease gradually.   

                                    

 (a) t=0 s           (b) t=0.5 s         (c) t=1.5 s          (d) t=2 s            (e) t=3 s            (f) t=5 s 

Figure 9.  Droplet wetting process on a solid wall 
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As shown in Figure 9(f), the droplet reaches finally stable at about t=5s with steady contact 

angle and area like Figure 10. 

 

Figure 10. Curve of wetting length over time 

Figure 11 shows the contact area of numerical and theoretical results at different contact angle. 

The simulation results indicate that the surface tension model and the interface tension 

mentioned could simulate solid-liquid wetting effect correctly. 

 

Figure 11. Contact area of numerical and theoretical results at different contact angle 

4 Numerical simulation and discussions  

4.1 Dynamic Behavior Between Two Bubbles 

In order to study the dynamic behavior of bubbles in detail, the flow field velocity of the liquid 

film in the calculation area is counted, and the average velocity of the liquid film is obtained 

from the following formula. 

𝑣𝑒𝑙𝑜𝐿 =
∑ 𝑣𝑒𝑙𝑜𝑖
𝑁𝐿
𝑖

𝑁𝐿
                                                         (15) 

Where 𝑣𝑒𝑙𝑜𝐿 is the average velocity of liquid film particles, 𝑁𝐿 is the total number of liquid 

particles, 𝑣𝑒𝑙𝑜𝑖 is the velocity of liquid particle 𝑖. 
 

Without considering the effect of gravity, the process of bubble coalescence at the same scale 

is simulated and the effects of different physical parameters on its dynamic behavior are 

analyzed. Then the more general phenomenon of bubbles’ dynamic behavior at different scales 

is simulated and analyzed. 

4.1.1 Simulation of interaction between the same sizes of single film bubbles 
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Figure 12 is the time serial of the coalescence process of three-dimensional bubbles with the 

same size. The initial position of the bubbles is shown in Figure 12(a), and Figure 12(b-f) is 

obtained by cutting along the plane of the center of two bubbles where blue particles and red 

particles represent liquid film and gas respectively. The radius of the bubble is 4.5 mm with 

particle size 𝑙0=0.3mm, the distance between the center of mass of the bubble is 9.3 mm, the 

thickness of the liquid film is 0.9 mm, and the time step is 0.00001 s. The physical parameters 

are shown in the table 2.  

Table 2. Particle Physical property parameters 

Material 
Density

（kg/m3） 

Dynamic Viscosity 

Coefficient（N·S/m2） 

Surface Tension 

Coefficient（N/m） 

Water 1000 2×10-2 0.032 

          Gas 1.5 1.79×10-5 — 

 

 

Figure 12. The coalescence process of three-dimensional bubbles with the same size 

It can be seen from the Figure 12 that the initial velocity of two equal-scale bubbles is zero at 

the initial time. Since the bubble is not a sphere in the strict sense when it is arranged in 

Cartesian coordinates, the bubble shrinks into a sphere under the action of surface    

tension .Therefore, the average velocity of liquid film increases sharply in a very short time .In 

the process of forming spheres, two bubbles contact each other (there is a small degree of 

extrusion), and liquid film is formed between bubbles, then the average velocity of liquid film 

decreases sharply. The above process takes place in a very short time and can be regarded as an 

adaptive process of the initial physical environment of bubbles, so the influence of fluid 

properties on this stage can be neglected. 

 

In the initial stage (a-b) of the contact process between two bubbles, a large curvature is formed 

at the angle between the outside of the liquid film. The surface tension drives the surface of the 

liquid film to deform and fuse rapidly, which makes the average velocity of liquid film increase. 

 

With the continuous approaching of bubbles (b-c), the average velocity of liquid film decreases 

because the squeezing degree between bubbles increases. Besides, the intermediate liquid film 

gradually expands to both sides so that the liquid film becomes thinner through continuous 

drainage. 
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Subsequently, under the action of inertia, bubbles continue to move toward the center (c-d) and 

the liquid film breaks up when the liquid film thickness reaches a critical value. Because the 

liquid film formed between bubbles is not uniform, there is a curvature difference, the liquid 

film gradually stretches longitudinally, and the average velocity of liquid film shows an upward 

trend. 

 

When the liquid film is stretched to a certain extent, it gradually shrinks to the center (d-e) under 

the action of surface tension with ellipsoidal bubbles transiting to spherical bubbles. Finally, 

under the action of surface tension and viscous dissipation, the average velocity of liquid film 

also shows a trend of attenuation through continuous contraction oscillation.  

 

Finally, the oscillation amplitude becomes smaller and smaller, and the average velocity of 

liquid film basically remains unchanged, and approaches zero. The two bubbles merge into a 

large bubble with a stable shape (e-f). 

 

Besides, the broken liquid film disperse in the bubble without the gravity, and under the action 

of surface tension, the small spherical droplet are formed. Because of the symmetry, the small 

spherical droplet suspends in the center of the bubble. 

 

4.1.2 The influence of different physical parameters on the interaction between bubbles 

From the above analysis, it can be found that when bubbles merge, the velocity curve shows 

damping oscillation attenuation with the shape of bubbles changed. Finally, the average velocity 

of liquid film becomes zero, and the two bubbles merge into a static spherical bubble. From the 

point of view of energy, the two bubbles are driven by chemical potential energy in a static state 

with a tendency to form a bubble. The shape of bubble deforms during coalescence, which will 

cause viscous dissipation and consume a part of energy. The chemical potential energy is related 

to the surface tension of bubbles, so the effects of surface tension and fluid viscosity on the 

dynamic behavior of bubbles will be studied below.   

 

For the coalescence process of three-dimensional bubbles with the same size above, Figure 13 

is the average velocity of liquid film under different viscous coefficients with the same surface 

tension coefficient, and other parameter settings are the same as table 2 except for the dynamic 

viscosity coefficient. 

 

Figure 13. Average velocity of liquid film under different viscous coefficients 

The smaller the viscous coefficient is, the larger the first peak value of the bubble coalescence 

speed and the larger the oscillation amplitude of the velocity curve are, which shows that the 
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chemical potential energy in the process of bubble coalescence is dissipated through the viscous 

term. The larger the viscous coefficient is, the more the energy dissipation per unit time is. With 

the increase of viscosity, the peak velocity of liquid film decreases, and the time required to 

reach the first peak velocity decreases. 

 

With the increase of viscous coefficient, the deformation of bubbles is smaller in unit time. This 

is precisely because the viscous coefficient reflects the strong degree of fluid impediment to 

bubble motion. If the viscous coefficient is large, the resistance of the bubbles’ coalescence will 

be large, and the viscous dissipation will be large in the course of motion. Therefore, the larger 

the viscous coefficient is, the less likely the liquid film held by the bubbles in the interaction 

will crack. 

 

Similarly, Figure 14 is the average velocity of liquid film under different surface tension 

coefficients with the same dynamic viscosity coefficient, and other parameter settings are the 

same as table 2 except for surface tension coefficient. 

 

Figure 14. Average velocity of liquid film under different surface tension coefficients 

The relationship between the first peak value of velocity and surface tension is opposite to that 

of viscosity. The higher the surface tension is, the earlier the bubbles begin to polymerize, and 

the higher the average peak velocity of liquid film is. 

 

With the increase of surface tension, the deformation of bubbles increases in unit time, which 

shows that the chemical potential energy is related to the surface tension of bubbles. Under the 

effect of surface tension, the surface free energy of bubbles changes into kinetic energy, and 

the average velocity of particles increases. 

 

4.1.3 Simulation of interaction between the different sizes of single film bubbles 

It can be seen from the above analysis that when the viscosity coefficient is increased or the 

surface tension is reduced, the stable shape of the connection between bubbles is more likely to 

appear. The new physical parameters are shown in the table 3. Figure 15 is the time serial of 

the connection process of three-dimensional bubbles with the different sizes. The initial position 

of the bubbles is shown in Figure 15(a). The radius of the bigger bubble is 6 mm and the radius 

of the smaller bubble is 3 mm with particle size 𝑙0=0.3mm, the distance between the center of 

mass of the bubble is 9.3 mm, the thickness of the liquid film is 0.9 mm, and the time step is 

0.00001 s.  
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Table 3. Particle Physical property parameters 

Material 
Density

（kg/m3） 

Dynamic Viscosity 

Coefficient（N·S/m2） 

Surface Tension 

Coefficient（N/m） 

Water 1000 2×10-2 0.012 

          Air 1.5 1.79×10-5 — 

 

 

Figure 15. The connection process of three-dimensional bubbles with the different size 

It can be seen from the Figure 15 that when the two bubbles start to contact each other at the 

beginning, the curvature of the place where the bubble contacts is large, and the liquid film is 

rapidly deformed and fused under the surface tension (a-c). Then, a liquid film is formed 

between the bubbles (c-e). 

 

Due to the symmetry, the liquid film held by the two bubbles with the same size is a circular 

plane when they are in contact with each other. However, when the non-equal two bubbles are 

in contact with each other, the liquid film is a spherical surface having a certain curvature and 

is convex toward the larger bubble direction (d-e), because the small bubble curvature is larger 

than the large bubble, and the additional pressure of the small bubble is greater than the large 

one. 

 

4.2 The forming process of different kinds of foam channels structure 

By simulating the dynamic behavior of three-dimensional single-film bubbles of equal and non-

equal scales, typical flow phenomena and deformation characteristics and rules of liquid film 

are obtained, and the effects of basic physical parameters including surface tension and dynamic 

viscosity on flow and deformation were studied. On the above basis, further research on the 

formation mechanism of various foam channel structures has been carried out through the 

following work. 

 

To better understand the formation mechanism of various foam channel structures, requires a 

more complete description the different kinds of foam channel structure firstly. In liquid foam, 

bubbles stack with each other, and the gaps between bubbles form a network channel for the 

flow of trace liquid, which is composed of Plateau channel and the junction point.  In this study, 

ICCM2019, 9th-13th July 2019, Singapore

296



the foam channels are divided into three types including interior node-PB and exterior node-PB 

as well as open node-PB. Subsequently, the forming process of different kinds of foam channel 

structure were displayed and discussed as follows. 

 

4.2.1 Open node-PB 

In the study of the open Plateau channel where the bubbles in the foam are in contact with the 

air, in order to save computing resources and ensure the rationality of the calculation results, 

three bubbles with the same size are selected as the basic unit of calculation. 

 

Figure 16 is the time serial of a cross-section of three bubbles with the same size during 

connection and the gas inside the bubbles is not shown in the figures. The initial arrangement 

of three bubbles with the same size is shown at t = 0s, the radius of a single bubble is 6 mm, 

and the thickness of the liquid film is 0.9 mm. Under the action of surface tension, the three 

bubbles contact with each other, then the liquid film deform rapidly and stick together with 

each other. During this process like Figure 16(a-d), the liquid film held between bubbles 

expands continuously, and the space occupied by air between bubbles is filled by liquid film 

continuously. Finally, the liquid film held by the three bubbles does not change significantly, 

and form a more stable system like Figure 16(f). The liquid film in the stabilized bubble system 

shows good symmetry, and the angle between adjacent liquid films is about 60°.  

         

     (a) t=0 s        (b) t=0.02 s      (c) t=0.04 s       (d) t=0.06 s      (e) t=0.1 s       (f) t=0.3 s   

Figure 16. Three equal-scale bubbles connection processes 

At the same time, in order to further study the details of bubble evolution from sphere to 

polyhedron, triangle in polygon configuration is selected as the basic research unit, and the 

process of gas disappearance and polygon formation is analyzed in Figure 16(a-f) where the 

part marked with red circles. At the initial moment, the bubble is completely circular, and the 

gas in the triangle region is the largest. With the structure evolution of adjacent bubbles under 

surface tension, the triangular region begins to sew up and the internal gas decreases gradually. 

At t=0.3 s, all the gas disappear with the curved surface held by bubbles gradually becoming 

flat. At this time, it can be predicted that when the space is filled with multiple bubbles, the 

polygon structure can be formed completely. 

 
 

In order to better analyze the formation mechanism of liquid film channel for micro-liquid flow 

in the process of bubble interaction, the channel structure at a specific time is specially extracted 

in this study. 

 

Figure 17 is the time serial of three bubbles forming an Open node-PB during the connection 

process. Under the action of surface tension, bubbles keep approaching each other, and the 

space occupied by air between bubbles is continuously filled by liquid film. Each bubble liquid 

film contacts with each other to form a new liquid film and a liquid film channel encapsulating 

the liquid film. Later, the distance between bubbles decreases further, and the area of liquid 

film held by bubbles enlarges and the channel of liquid film encapsulating liquid film increases. 

When the channel of liquid film increases to a certain extent, the channel of liquid film contacts 

with each other to generate a new liquid film channel and two nodes. As shown in Figure 17(a-

ICCM2019, 9th-13th July 2019, Singapore

297



e), there is no independent channels which are connected by nodes. Each node has four channels, 

and the channel centered on the nodes is umbrella-shaped. If the formation mechanism of a 

single node is analyzed, the basic process is similar to the above process. It is very similar to 

the formation of the liquid film channel and the nodes between the channels in the foam system, 

which is directly contacted with the air. Therefore, this type of channel is an Open node-PB in 

this study. 

 

                                

(a) t=0.05 s       (b) t=0.1 s       (c) t=0.15 s      (d) t=0.2 s         (e) t=0.3 s 
           

Figure 17. Three equal-scale bubbles connection processes with film channels 

4.2.2 Interior node-PB 

Similarly, in the study of the internal Plateau channel in the foam system, in order to save 

computing resources and facilitate the analysis and discussion of the formation of the internal 

Plateau channel, four bubbles with the same size are selected to form a basic unit of interaction 

in this study. 

 

Figure 18 is the time serial of formation of Plateau Channels in four bubbles during the 

connection process. Initially, the four bubbles are tetrahedral distribution. The radius of a single 

bubble is 6 mm, and the thickness of the liquid film is 0.9 mm. Under the action of surface 

tension, the four bubbles contact each other, and make the liquid film rapidly deform and bond 

with each other. In this process, the liquid film held by the bubbles expands continuously, and 

the space occupied by the air between bubbles is filled and occupied by the liquid film 

continuously. Finally, the liquid film held by the four bubbles does not change significantly, 

and form a relatively stable system, which is similar to the behavior of the three bubbles 

mentioned above. 

 

As bubbles keep approaching each other, six new liquid films and the liquid film channels 

encapsulating the liquid membranes are formed. When the liquid film channel increases to a 

certain extent, the liquid film channel contacts each other, and four new liquid film channels 

are generated and five nodes are generated. This paper considers that the external liquid film 

channel (outline) is a part of the interaction between the basic unit and other basic units, so it is 

neglected in the discussion.  

                                   

                                                             

       (a) t=0.05 s                  (b) t=0.15 s               (c) t=0.3 s              (d) t=0.45 
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Figure 18. Four equal-scale bubbles connection processes with film channels 

In order to better analyze the channel structure, the internal Plateau channel at t=0.45 s is 

specially extracted and rotated every 60 degrees along the x-axis in this study. As shown Figure 

19 below, the four bubbles share a central interior node, where each of the three bubbles forms 

a concave triangular inner Plateau border, and the four bubbles form four inner Plateau channels. 

             

Figure 19. Interior node-PB structure at different angles 

Figure 20 is the internal structure of four bubble stabilization units, where the different colors 

represent the different pressure values. As can be seen from the figure 20, the pressure values 

at channels and nodes are all higher than the pressure values of the nearby liquid film. The area 

with a smaller pressure value means the thickness of the liquid film there is smaller, in other 

words, it contains less liquid. 

    

Figure 20. Internal structure of four bubble stabilization units 

Figure 21 is the Plateau structural unit. For the whole foam system, the liquid is mainly 

distributed in the liquid films and liquid film channels, and the liquid content in the liquid film 

channels is more. If gravity is taken into consideration, the liquid stored in the liquid film 

channels will naturally drain, making it difficult for the entire foam system to remain stable for 

a long time. This is also one of the difficult problems in the experimental study of the formation 

mechanism and structural characteristics of the foam channel. In this section, the influence of 

gravity is neglected and the drainage process is suppressed, making the bubble system easier to 

achieve and maintain stable state. After considering the size of bubbles and the number of 

bubbles, the formation mechanism and structural characteristics of the whole foam system can 

be further analyzed. 

 

Figure 21. Plateau structural unit 

4.2.3 Exterior node-PB 

Foam systems usually exist in containers. Therefore, the relative number of exterior and interior 

channels is significant for small foam containers. The container wall is treated as flat wall in 
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this paper. The exterior foam’s fundamental difference with interior foam is the existence of a 

no-slip wall. 

 

The influence of vessel wall on channel formation is mainly in two aspects. One is that the 

existence of the wall restricts the space expansion of the channel to the normal direction of the 

wall during the formation process. The other is that the different wettability of the wall material 

to the liquid will affect the formation of the channel and the shape of the stable channel. In this 

study, the interaction of two bubbles on a flat plate with different wettability is simulated, and 

the effect of wall surfaces with different wettability on the formation of the channel and the 

shape of the stable channel is studied. 

 

In order to facilitate the observation and analysis of the formation of external channels, the 

bubbles are split vertically along the center of the bubbles. Figure 22 is the time serial of the 

two bubbles interacting and infiltrating on a plate wall under zero gravity with a static contact 

angle of 30°. The initial arrangement of two bubbles with the same size is shown at t = 0s, the 

radius of a single bubble is 3 mm, and the thickness of the liquid film is 0.9 mm. and the time 

step is 0.00001s.  

 

As shown in Figure 22(a-d), the coalescence of two bubbles is accompanied by the infiltration 

of bubble liquid film into a flat plate. During the coalescence of the two bubbles, as the liquid 

film continuously infiltrates the wall, the bubble liquid film begins to contact the wall surface 

and connect with each other, and the liquid film held between the two bubbles undergoes the 

process of forming, expanding and breaking up like Figure 22(a-d). Then, the two bubbles 

coalesce into a larger bubble. Under the action of gas pressure and interfacial tension in the 

larger bubble, the liquid film in contact with the plate in the bigger bubble changes constantly 

and cracks finally like Figure 22(c-e). Subsequently, the fractured liquid film gathers on the 

plate to form an external channel in Figure 22(e-g). As shown in Figure 22(g-h), the external 

channel reaches finally stable at about t=0.35s with steady contact angle and area finally. 

 

(a) t=0 s            (b) t=0.03 s                (c) t=0.06 s           (d) t=0.1 s    

 

(e) t=0.15 s           (f) t=0.2 s              (g) t=0.25 s                   (h) t=0.3 s 

Figure 22.  Bubbles wetting process on a solid wall 

Figure 23 shows the axial cross section shape of the coalesced bubbles at different contact 

angles (30°, 60°, 90°, 120° and 150°), when the coalesced bubbles are in stable state on the 

plate. From the simulation results, it can be concluded that the different wall wettability will 
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affect the dynamic behavior of bubbles on the flat plate when bubbles are in contact with a flat 

plate. When the wall wettability is hydrophilic, it is easy to produce an exterior node-PB during 

the coalescence of multiple bubbles on a flat plate, and the shape of the axial cross section of 

the channel is closely related to the hydrophilicity. On the contrary, when the wall wettability 

is hydrophobic, it is hard for bubbles to form an exterior node-PB in the process of coalescence 

on the plate, but to spread a layer of liquid film on the plate, and the spreading area of the liquid 

film on the plate is related to the hydrophobicity. The stronger the wall hydrophobicity, the 

smaller the spreading area of the liquid film on the plate. 

                  

 𝜃=30°                    𝜃=60°                   𝜃=90°                  𝜃=120°                𝜃=150° 

Figure 23.  Bubbles wetting result on a solid wall with different contact angles 

5 Conclusions 

Based on the MPS method, the bubbles behavior and the forming process of different kinds of 

foam channel structure were simulated in three-dimensional space by introducing the surface 

tension and interfacial tension model. The MPS method is a Lagrange method which avoids the 

occurrence of convection terms in the flow control equation, and eliminates the numerical 

dissipation phenomenon that may occur in the Euler method. The modeling process is more 

reasonable and the physical meaning of the parameters is clear, which provides a new idea for 

the study of foam dynamics .The main conclusions of this study are as follows. 

 

By simulating the dynamic behavior of three-dimensional single-film bubbles of equal and non-

equal scales, typical flow behaviors including coalescence and connection, and deformation 

characteristics and rules of liquid film are obtained. The effects of basic physical parameters on 

flow and deformation were studied. It was found that decreasing the surface tension coefficient 

or increasing the viscous coefficient would weaken the dominant role of surface tension in 

bubble deformation. As the simulation progresses, the bubble motion tends to be stable due to 

viscous dissipation. 

 

Further, the Plateau channel structure in the foam system is further classified. The liquid 

channels in the foam system are divided into interior node-PB and exterior node-PB as well as 

open node-PB. The formation of different kinds of the Plateau channel structure is simulated 

and the results of each simulation are analyzed and discussed. 

 

 With the continuous approaching of bubbles, the length and cross-sectional area of channels 

formed between bubbles are increasing. Finally, when the multi-bubble system is stable, the 

main characteristics of liquid film channels are as follows: 

 

For the open node-PB, there is no independent channels which connected by nodes. There are 

two nodes. Each node has four channels, and the channel centered on the nodes is umbrella-

shaped. For the interior node-PB, the four bubbles share a node, where each of the three bubbles 

forms a concave triangular inner Plateau border, and the four bubbles form four inner Plateau 

channels. For the exterior node-PB, the different wall wettability will affect the dynamic 

behavior of bubbles on the flat plate when bubbles are in contact with a flat plate. When the 

wall wettability is hydrophilic, it is easy to produce an exterior node-PB during the coalescence 

of multiple bubbles on a flat plate, and the shape of the axial cross section of the channel is 

closely related to the hydrophilicity. On the contrary, when the wall wettability is hydrophobic, 
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it is hard for bubbles to form an exterior node-PB in the process of coalescence on the plate, 

but to spread a layer of liquid film on the plate, and the spreading area of the liquid film on the 

plate is related to of hydrophobicity. The stronger the wall hydrophobicity, the smaller the 

spreading area of the liquid film on the plate. 
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Abstract 

The forced responses of blisks are highly sensitive to inevitable random mistuning, which can cause 

severe damage. Considerable computational efforts are required for the sampling process to acquire 

the statistical vibration properties of mistuned blisks via finite element models. Therefore, efficient 

surrogate models are preferred. In this paper, four methods are utilized to construct the relation 

between random mistuning and forced response amplitudes. These four methods include 

polynomial chaos expansion (PCE), response surface method (RSM), Kriging interpolation and 

artificial neural networks (ANN). A lumped parameter model of a 24-sector blisk is used to 

investigate the vibration patterns. Each sector has 2 degrees-of-freedom (DOF). Mistuning is 

simulated by treating the stiffness of blades as independently identically distributed (i.i.d) random 

variables and Sobol sequence is applied for designing the sample sites. On assessing the result, 

mean squared error (MSE) and Kolmogorov-Smirnov test are applied to numerically determine the 

accuracy. Results show that PCE can yield the most accurate and stable predictions of the statistical 

characteristics of the forced responses; Kriging interpolation and ANN are also remarkable while 

RSM does not show any priority on this issue. 

Keywords: mistuned blisks, forced response, polynomial chaos expansions, response surface 

method, Kriging interpolation, artificial neural networks 

 

Introduction 

Mistuning refers to inevitable variations of blisks and arises during the manufacturing and 

assembly process due to wear, maintenance, machining error, material dispersion, etc. These small 

deviations can lead to much larger response level than the ideal, tuned design[1]. The severe 

amplification of vibration altitude may cause high cycle fatigue (HCF) and premature failure of the 

blades. As was estimated in 1998, about 30% of all engine maintenance costs were caused by 

HCF[2]. Therefore, it is of great interest to accurately predict the adverse effect of mistuning on the 

vibration of blisks. 

 

The mistuning across blades is randomly distributed[3,4], thus we usually have to use the statistical 

properties of the forced responses of blisks to assess the effects of mistuning. The most commonly 

used method is Monte Carlo Simulation (MCS), which requires an amount of repetitive analysis 

and tiny deviations of parameters are needed in each process[5]. Typically, finite element (FE) 

models are applied to carry out the calculation process[3,3,6]. 
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There have been numerous studies on the mistuned blisks using FE models. Slater pointed out that 

a complete FE model instead of a single sector was necessary because mistuning could break the 

cyclic symmetry[7]. Petrov considered it as an optimization problem to search for the best and worst 

vibration pattern using an FE model[8]. Castanier gave a complete FE model of a mistuned blisk[1]. 

He discussed about some of the fundamental issues of mistuned disks, including coupling and mode 

localization, and proposed an algorithm to accelerate MCS. Laxalde built a multistage FE model 

for mistuned blisks and also confirmed the validity[9]. More recently, accurate modeling of small 

manufacturing errors or geometric mistuning of blades is realized using the coordinate 

measurement methods[10]. One of the most significant advantages that make FE models 

irreplaceable is the high accuracy. However, although computational capacity of modern 

computers has greatly improved, it is still challenging to carry out a large number of MCS based 

on full FE models. Therefore, much attention has been paid to reduced order models (ROM) for 

mistuned blisks, mainly including the component-mode-based methods and the system-mode-

based methods[11–14]. 

 

The lumped parameter models are one kind of ROM. They treat each sector as a spring-mass 

oscillator connected to the ground and coupled to neighboring sectors by linear springs. Although 

not capable of precisely representing the actual engineering structures, these models can capture 

some basic features of the mistuned blisks, such as the modal localization and vibration 

amplification[15,16]. Also, the required computational efforts are far less than FE models. Therefore, 

they provide a good insight of the vibrational mechanism of mistuned blisks together with MCS. 

 

Surrogate models are another popular approach for uncertainty analysis in engineering. Instead of 

direct operations on each individual sample, the surrogate models pursue to establish an analytical 

relationship between the random input and output based on the results obtained at designed 

sampling points, which is much easier to use, and once the model is obtained, the computational 

efforts for new points are negligible. Since the forced responses of mistuned blisks are highly 

sensitive to the random mistuning, the relationship between the response amplitude and mistuning 

is highly nonlinear and difficult to define, thus the application of surrogate models for mistuned 

analysis has not drawn much attention. In a previous study, we tried to use RSM and Kriging 

metamodel to obtain the response amplification factor over a frequency range, but only succeeded 

when 4 sectors out of 24 were mistuned. When the number of mistuned sectors increases, the 

accuracy and the required number of samples of the metamodels are not acceptable. Sinha applied 

the method of PCE to analytically compute the statistics of the forced response of a mistuned blisk 

assembly[17]. But the proposed method is an intrusive one, which means that we have to modify the 

solver correspondingly. In practice, we prefer non-intrusive methods, which only need the input 

and output to construct the surrogate models. 

 

In this paper, we will try to build the relation between the forced response amplitude and the 

mistuning via four surrogate models, namely the polynomial chaos expansions (PCE), the response 

surface method (RSM), the Kriging interpolation and the artificial neural network (ANN), and 

compare their validities. A lumped parameter model is used to generate the training data. In later 

parts, we will introduce: 1) The basic theories and implementations in mistuned blisks of the 

aforementioned four methods; 2) A numerical example of lumped parameter blisk model; 3) The 

validation of the four methods, followed by the results and discussions; 4) Some conclusions. 
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Briefs of Response Surface Method, Artificial Neural Networks, Kriging Interpolation and 

Polynomial Chaos Expansion 

Surrogate Models for Forced Vibration Analysis of Mistuned Blisks 

For a blisk, the amplitude of sector 𝑖  can be denoted as 𝐴𝑖 . If only the stiffness mistuning is 

considered, 𝐴𝑖 is determined by system stiffness matrix 𝑲, which consists of stiffness of the sectors: 

𝐴𝑖 = 𝐴𝑖(𝑲) (1) 

If we have 𝑛 random variables 𝒗 = [𝑣1, 𝑣2, ⋯ , 𝑣𝑛]T representing the input random mistuning for 𝑛 

sectors, and the scalar output 𝑢(𝑓𝑗), which is the amplitude of forced response with excitation 

frequency 𝑓𝑗, the target surrogate model can be written as 

𝑢(𝑓𝑗) ≈ 𝑓(𝒗) (2) 

In this paper, 𝑓 refers to PCE, RSM, Kriging interpolation and ANN and can be obtained using the 

designed training points, which will be described in the following subsections.  

We use the cross validation method to verify the surrogate models. Typically, the sample set is 

partitioned into two parts. One part is called the training set, noted as 𝐷, used to build a model, and 

the other is called the test set, noted as 𝑇 , used to verify the model. Generally, 𝐷  and 𝑇  are 

guaranteed to be i.i.d. The sample sizes are respectively written as |𝐷| and |𝑇|. Error on 𝑇 will be 

a significant indicator of the model validity. If the accuracy of the constructed surrogate model is 

acceptable, we can use it for the response analysis with other random mistuning to obtain the 

statistical characteristics. If not, we need to update or add some new training points to create a new 

model and validate it again. The implementation procedure is illustrated in figure 1. 

 

Figure 1. The flowchart for establishing the surrogate models for forced response analysis of 

mistuned blisks 

Polynomial Chaos Expansion 

The method of PCE expands the stochastic process 𝑢 = 𝑢(𝒗) into an infinite series[18]: 

𝑢 = 𝑢(𝒗) = ∑ 𝛼𝑘

∞

𝑘=0

𝜙𝑘(𝒗) (3) 
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where 𝜙𝑘(⋅) is a polynomial basis and 𝛼𝑘 is the corresponding coefficient. Often this expression is 

truncated to 𝑚 terms as an approximation of the infinite orthogonal series: 

∑ 𝛼𝑘

∞

𝑘=0

𝜙𝑘(𝒗) ≈ ∑ 𝛼𝑘

𝑚

𝑘=1

𝜙𝑘(𝒗) (4) 

Apparently, the key to validate Eq. (4) is determine the coefficients 𝛼𝑘’s. 

Generally, the number of terms, 𝑚, is governed by 𝑛𝑟, where 𝑟 refers to the order of polynomial 

basis that are included. In other words, there is an exponential growth in 𝑚 as 𝑟 gets large, making 

high order PCE inappropriate. Second-order PCE is used later in this paper. 

 

In addition, orthogonality of the polynomials has to be guaranteed, namely the inner product of 𝜙𝑘 

and 𝜙𝑙 is always equal to 0 when 𝑘 ≠ 𝑙: 

⟨𝜙𝑘, 𝜙𝑙⟩ = ∫ 𝜙𝑘

∞

−∞

(𝒗)𝜙𝑙(𝒗)𝑝(𝒗)d𝒗 = 0 (5) 

where 𝑝(𝒗) is the weight function, generally substituted by the probability density function (PDF) 

of 𝒗. Make an inner product of 𝑢 and 𝜙𝑙 and one can obtain 
⟨𝑢, 𝜙𝑘⟩ = 𝛼𝑘⟨𝜙𝑘, 𝜙𝑘⟩ (6) 

due to the orthogonality. 

 

Therefore, to compute the coefficients 𝛼𝑘, we only need to divide ⟨𝑢, 𝜙𝑘⟩ by ⟨𝜙𝑘, 𝜙𝑘⟩: 

𝛼𝑘 =
⟨𝑢, 𝜙𝑘⟩

⟨𝜙𝑘, 𝜙𝑘⟩
=

∫ 𝑢
∞

−∞
(𝒗)𝜙𝑘(𝒗)𝑝(𝒗)d𝒗

∫ 𝜙𝑘
2∞

−∞
(𝒗)𝑝(𝒗)d𝒗

(7) 

Now that we have the coefficients, numerical integral schemes are often applied to obtain the upper 

part of Eq. (7). On designing the integral sites of 𝑢(𝒗), we use Sobol sequence to accomplish the 

above integral. 

Response Surface Method 

RSM is a traditional but quite widely-used method. The main idea is to use a sequence of designed 

experiments to obtain an optimal response. Box and Wilson acknowledge that this model is only 

an approximation, but such a model is easy to estimate and apply, even when little is known about 

the process[19,20]. RSM is actually an extension of least square regression. It treats 𝑢(𝒗) as a linear 

combination of first and second order terms of 𝒗: 

𝑢(𝒗) ≈ 𝑓(𝒗) = 𝜷T 𝒗̃ = 𝛽0 + ∑𝛽𝑖

𝑛

𝑖=1

𝑣𝑖 + ∑∑𝛽𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

𝑣𝑖𝑣𝑗 (8) 

where 𝒗̃ = [1, 𝑣1, ⋯ , 𝑣𝑛, 𝑣1
2, 𝑣1𝑣2, ⋯ , 𝑣𝑛

2]T is the augmentation of 𝒗, and 𝜷 = [𝛽0, 𝛽1,⋯ , 𝛽𝑛𝑛]T is 

the coefficient vector. If we note matrices 𝑽 and 𝑭 as the samples from 𝐷: 

𝑽 = [𝒗1̃, 𝒗2̃, ⋯ , 𝒗𝑑̃] = [

1 1 ⋯ 1
𝑣11 𝑣12 ⋯ 𝑣1𝑑

⋮ ⋮ ⋱ ⋮
𝑣𝑛1

2 𝑣𝑛2
2 ⋯ 𝑣𝑛𝑑

2

] , 𝑭 = [𝑓(𝒗1), 𝑓(𝒗2),⋯ , 𝑓(𝒗𝑑)]

Then we have 

𝑭 = 𝜷T𝑽 (9) 

and the least square estimation of 𝜷 is 

𝜷̂ = (𝑽𝑽T)−1𝑽𝑭T (10) 
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Kriging Model 

Kriging interpolation can be expressed as a two-step process: first, the covariance structure of the 

samples in 𝐷 is determined by fitting a variogram; second, weights derived from this covariance 

structure are used to interpolate values for samples in 𝑇. The Kriging model can be considered as 

a parametric model combined with a random process which simulates the prediction error, denoted 

as Eq. (11): 

𝑢(𝒗) = 𝑓(𝜷, 𝒗) + 𝜖(𝒗) (11) 

where 𝑓(𝜷, 𝒗) is a combination of several basis functions; 𝜷 is a vector containing the parameters 

in need; 𝜖(𝒗) is used to model the error. 𝜖(𝒗) satisfies the following properties: 
E[𝜖(𝒗)] = 0

Var[𝜖(𝒗)] = 𝜎2

Cov[𝜖(𝒗(𝑖)), 𝜖(𝒗(𝑗))] = 𝜎2𝑅(𝒗(𝑖), 𝒗(𝑗))

(12) 

The matrix 𝑅(𝒗(𝑖), 𝒗(𝑗)) is a correlation function which evaluates how close 𝒗(𝑖) and 𝒗(𝑗) are to 

each other. And this function is: 

1) always positive but no larger than 1; 

2) negative correlated to the distance between 𝒗(𝑖) and 𝒗(𝑗); 

3) equal to 1 if and only if 𝒗(𝑖) = 𝒗(𝑗). 

 

In a nutshell, Kriging interpolation predicts a desired point by summing all the acquired samples 

based on different weights. One can infer to [21] for more detailed derivation. 

Artificial Neural Networks 

The method of artificial neural networks (ANN) was first invented in the 1940s, as an attempt to 

simulate the network of neurons that made up a human brain, and has been one of the main tools 

used in machine learning in recent years. A typical feed-forward ANN uses multiple layers of 

mathematical processing to make sense of the information it is fed, as is shown in Fig. 2. Here we 

omit the derivation and just come up with the essence that we only have to care about the input and 

the output and leave the calculation. 

 

Figure 2. An example of a 4-layer feed-forward ANN 

The first layer on the left in figure 2 is the input layer, which accepts the input that is fed. The first 

layer on the right gives the output. And the layers between, which are called hidden layers, 

accomplish the calculating process. In this manner, a model 𝑢 ≈ 𝑓(𝒗) is established, where 𝑢, 

obviously, implies the output layer and 𝒗 the input layer. 
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Typically, it plays an important role to design the structure of an ANN and to adjust parameters. In 

this paper, we make use of ‘Sci-Kit Learn 1’, a scientific computation package for Python to 

accomplish the construction, and we only focus on the performance of ANN when applied to the 

analysis of mistuned blisks. 

Numerical Example of a Mistuned Blisk 

Lumped Parameter Model 

The lumped parameter model of the blisk is illustrated in figure 3 with a cyclic chain of spring-

mass oscillators with several degrees of freedom for each sector[22]. For each sector of the blisk, 

the springs are massless, 𝑥1 and 𝑥2 describe the vibration of blade and disk, 𝑚1, 𝑚2, 𝑘1 and 𝑘2 are 

the equivalent mass and stiffness of blade and disk, respectively. 𝑘𝑐 denotes the coupling stiffness 

between every two sectors. 𝑐 is the damping of the blade. Here, we set 𝑛 = 24, 𝑐 = 0.005, 𝑓 =
1,𝑚1 = 1,𝑚2 = 426, 𝑘1 = 1, 𝑘2 = 1.1, 𝑘𝑐 = 493. 

 
Figure 3. A lumped parameter model of a blisk 

The sector stiffness matrix can be written as 

𝑲𝑖 = [
𝑘1 −𝑘1

−𝑘1 𝑘1 + 𝑘2 + 2𝑘𝑐
] , 𝑲𝑐 = [

0 0
0 −𝑘𝑐

] (13) 

Therefore, for an 𝑛-sector blisk, its system stiffness matrix 𝑲, mass matrix 𝑴 and damping matrix 

𝑪 can be denoted as: 

𝑲 =

[
 
 
 
 
𝑲1 𝑲𝑐 0 ⋯ 𝑲𝑐

𝑲𝑐 𝑲2 𝑲𝑐 ⋯ 0
0 𝑲𝑐 𝑲3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝑲𝑐 0 0 ⋯ 𝑲𝑛]
 
 
 
 

,𝑴 = [

𝑴1 0 ⋯ 0
0 𝑴2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑴𝑛

] , 𝑪 = [

𝑪1 0 ⋯ 0
0 𝑪2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑪𝑛

]

where 

𝑴𝑖 = [
𝑚1 0
0 𝑚2

] , 𝑪𝑖 = [
𝑐 0
0 0

] , 𝑖 = 1,2,⋯ , 𝑛  

The equations of motion of the blisk can be written as 

𝑴𝒙
..
+ 𝑪𝒙

.
+ 𝑲𝒙 = 𝑭 (14) 

1 https://scikit-learn.org/stable/ 

ICCM2019, 9th-13th July 2019, Singapore

308



in which, 𝐅 = [𝐹1, 𝐹2, ⋯ , 𝐹𝑛]T refers to the excitation vector whose 𝑖-th component 𝐹𝑖 excites the 

𝑖-th sector. Usually, the excitation on each sector has the same amplitude with a fixed phase lag 

with the following form 

𝐹𝑖 = 𝑓𝑒𝑗𝜓𝑖𝑒𝑗𝜔𝑡 (15) 

where 𝑗 = √−1 is the imaginary unit, 𝑓 is the excitation force acting on the 𝑖-th sector, 𝜔 is the 

excitation frequency and 

𝜓𝑖 =
2𝑖𝜋𝐸

𝑛
 

describes the blade’s relative angle where 𝐸 = 4 is the engine order. 

The forced response of the blisk can be written as 

𝑨 = 𝑯−1𝒇 (16) 

where 

𝑯 = −𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲

𝑨 = [𝐴1, 𝐴2, ⋯ , 𝐴2𝑛]T

𝒇 = 𝑓[𝑒𝑗𝜓1 , 𝑒𝑗𝜓2 , ⋯ , 𝑒𝑗𝜓2𝑛]
T

(17) 

We carried out a simple analysis of the vibration amplitudes. A tuned blisk with 24 sectors was 

investigated to capture the basic rules of excitation-response relations. Then we substituted the 

frequencies back in Eq. (21) to calculate the resonance amplitudes, shown in figure 4. 

 

Figure 4. Natural frequencies and resonance amplitudes of the blisk 
As is shown in figure 4, the largest amplitude is 201.3505, and appears when excitation 
frequency is 0.993. Therefore, we will set a frequency sweep near 0.993 in later sections in 
order to concentrate on the resonance performance of the blisk. 

Stiffness Mistuning 

One can simulate mistuning via a couple of methods, of which the simplest and most common 
one is to choose a different equivalent stiffness for every blade[16]. This method is widely 
applied in relative works because deviations among blades don’t change the vibration modes. 
 
Let 𝛿𝑖 be the relative variation on equivalent stiffness 𝑘1 of the 𝑖-th blade and we can use 

𝑘1
𝑖 = 𝑘1(1 + 𝛿𝑖) (18) 

to represent the stiffness. For convenience, we write Eq. (18) as 
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𝑘𝑖 = 𝑘(1 + 𝛿𝑖) (19) 

Generally, we assume that 𝛿𝑖’s are normally i.i.d, namely 

𝛿𝑖 ∼ 𝑁(𝜇, 𝜎2), 𝑖 = 1,2,⋯ ,24  

In this paper, 𝜇 = 0 and 𝜎 = 0.03. 
 
We’ve known that the response amplitudes vector 𝑨 is influenced by the stiffness matrix 𝑲, 
controlled by the equivalent stiffnesses 𝑘𝑖 ’s. So 𝑨 can be seen as a stochastic process governed 
by 𝑘1 ∼ 𝑘24: 

𝑨 = 𝐴(𝑘1, 𝑘2, ⋯ , 𝑘24) (20) 

In the following section, we will illustrate the results of the four surrogate models, and make 
a comparison. 

Results and Discussions 

In this section, we will build the four surrogate models based on sample set 𝐷 and testify the 
results on 𝑇 which contains 1000 samples. 
 
Two issues will be considered:  
1) to investigate the relation between |𝐷| and the prediction accuracy;  
2) to investigate the forced responses under 5 excitation frequencies near 0.993. 
 
In terms of evaluating the error, we care about the mean squared error (MSE) and K-S test 
result, which is used to assess the similarity of two probability distributions. 

Relation Between Sample Size and Accuracy 

It is commonly acknowledged that sample size |𝐷| has a profound impact on the prediction 
performance of models. So firstly we want to explore the relationship between prediction 
accuracy and |𝐷|. 
 
Setting the excitation frequency to be 𝜔 = 0.993, we examine the performance of the four 
methods when |𝐷| = 50,100,200 and 500 respectively. 
 
Figure 5 shows the relative errors comparing the four methods with MCS results under 
different sample sizes. Basically, PCE generates the best result, followed by Kriging 
interpolation and ANN. RSM is barely of use when |𝐷| < 500. The relative error of PCE and 
RSM prediction, as one can see, shrinks dramatically when |𝐷|  increases, meaning that 
simply adding training samples can lead to remarkable performance promotion. The result 
of RSM is hardly credible when 𝐷  contains less samples. On the other hand, Kriging 
interpolation and ANN have similar results. And these two methods perform an 
independence on the sample size, namely, increase of |𝐷| hardly improves the performance. 
Further more, the prediction histograms of the four methods based on different sample sizes 
are plotted in figures 6 to 9. 
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Figure 5. Boxplots of relative errors of the four methods under different sample sizes 

 

Figure 6. Histograms of PCE prediction based on four sample sizes 
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Figure 7. Histograms of RSM prediction based on four sample sizes 

 

Figure 8. Histograms of Kriging prediction based on four sample sizes 
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Figure 9. Histograms of ANN prediction based on four sample sizes 
One can clearly see that the distribution of PCE prediction matches best with that of MCS 
result. When |𝐷| ≥ 200, the data sets look almost identical. So we will use a training set with 
|𝐷| = 200 in later parts. Although there seems to be apparent differences in the middle parts, 
PCE predictions always perform well in the tail parts, namely extreme values. And extreme 
values should draw more attention because they are more likely to cause failure. On the other 
hand, Kriging interpolation and ANN also perform quite good utility. RSM hardly captures the 
essence of the distribution when |𝐷| ≤ 500. 
 
Moreover, MSE and K-S test result of the four methods are listed in table 1, where KST 
represents the result of K-S test. 

Table 1. Similarity of predictions and samples with different sample sizes 

Sample 
size 

PCE RSM Kriging ANN 

MSE KST MSE KST MSE KST MSE KST 

50 6.30e-4 0.95 0.21 0.00 8.12e-4 0.68 9.62e-4 0.00 

100 3.55e-4 0.91 4.36e-2 0.00 5.96e-4 0.91 1.19e-3 0.46 

200 1.04e-4 0.99 1.38e-2 0.00 5.09e-4 0.98 1.54e-3 0.08 

500 2.87e-5 0.99 1.43e-3 0.34 4.53e-4 0.88 7.89e-4 0.31 

Prediction under Different Frequencies 

Next, we set a frequency sweep: 𝜔 = 0.991, 0.992, 0.993, 0.994 and 0.995, trying to figure out 
to which frequency the blades resonate the most and whether the four methods work when 
|𝐷| = 200. The error boxplots and the histograms are shown in figures 10 to 13, and specific 
statistical results are listed in table 2. 
 
The result of PCE is shown in figure 10, containing the relative error and the histograms 
paired with that of MCS. Apparently, the accuracy of PCE is sufficiently guaranteed. 
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Figure 11 shows the prediction of RS. One can clearly see that the result is much worse than 
that of PCE predictions. And RSM gives some predictions that differ from test samples by over 
30%, which are hard to be treated as valid results. Moreover, we can see from the histograms 
that RSM captures the mean values well, but it fails to predict the flank parts. 
 
One can see from figure 12 that Kriging prediction histograms resemble those of test samples 
well, a little worse than PCE but far better than RSM and ANN. 
 
In this paper, a one-hidden-layer ANN is used. The number of neurons in hidden layer is 20; 
activation function is radial basis function (RBF); solver algorithm is gradient descent; step 
size is 0.0001 and max iteration number is 1000. Above work is done in Python, “scikit-learn” 
package specifically. The result is shown in figure 13. 
As is shown in the histograms of figure 13, ANN can yield sufficiently accurate result. In a 
word, this method has a promising convergence comparing to RSM when its model 
parameters are appropriately chosen, which often needs manual intervention, making it not 
as good as PCE and Kriging interpolation. 

 

Figure 10. PCE predictions under different excitation frequencies based on 200 samples 
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Figure 11. RSM predictions under different excitation frequencies 

 

Figure 12. Kriging predictions under different excitation frequencies 
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Figure 13. ANN predictions under different excitation frequencies 
Table 2. Similarity of predictions and samples under different excitation frequencies 

Freq. 
PCE RSM Kriging ANN 

MSE KST MSE KST MSE KST MSE KST 

0.998 6.25e-5 0.99 1.31e-2 0.00 1.13e-4 0.98 9.62e-4 0.08 

0.999 1.07e-4 0.99 1.33e-2 0.00 3.39e-4 0.88 2.77e-3 0.60 

1.000 1.04e-4 0.99 1.38e-2 0.00 5.09e-4 0.98 1.54e-3 0.61 

1.001 9.62e-5 0.98 1.38e-2 0.00 3.36e-4 0.72 4.21e-3 0.00 

1.002 5.59e-5 0.98 1.36e-2 0.88 1.31e-4 0.99 5.73e-3 0.00 

Obviously, PCE provides the most valid and stable results, because MSE and KST of PCE are 
both the best among the four methods. And the distribution best resembles that of test set. 
Kriging interpolation and ANN are also remarkable on this issue. RSM fails to model the 
vibration properly, making it hard to be of actual use. 

Conclusion 

The statistics of forced response of a mistuned blisk have been calculated via second-order 
PCE and three other methods. mean square error in addition with the K-S test result of 
predictions of the four methods have been computed and discussed. With 200 training 
samples, PCE can yield the most accurate and convergent result, followed by Kriging 
interpolation and ANN. RSM seems to be inappropriate on this issue. The accuracy of PCE and 
RSM increases when the sample size gets large. In addition, PCE provides a functional 
relationship between mistuning variables and the response amplitudes, which can be used 
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for further analysis on the sensitivity of amplitudes to the variables for numerical 
optimization. 
 
The analysis and results presented in this paper can be easily applied to lumped-parameter 
models even with more degrees of freedom in future works. Only the 𝑘1

𝑖 ’s will have to be 
redefined. 
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Abstract 
Vortex-induced vibrations (VIV) and galloping are commonly referred to as fluid induced 
oscillation(FIO). For a spring-mounted rigid cylinder inflow, an isolated smooth circular 
cylinder could only undergo VIV but not gallop. However, non-circular sections or circular 
sections with attachments could be subjected to large amplitude galloping oscillations. In this 
paper, two-dimensional RANS equations with SST k – ω turbulence model are used to simulate 
the flow induced oscillation of seven single circular cylinders (P0, P1, P1.4, P2, P3, P5, P10) 
with different height PTC (Passive Turbulence Control) strips and supported by spring stiffness 
in steady uniform flow. The simulation is carried out by the in-house CFD solver naoe-FOAM-
SJTU, based on the open source toolbox OpenFOAM. The oscillation response of P0 to P10 at 𝑅𝑒 = 3.71 × 10ସ and 𝑅𝑒 = 1.03 × 10ହ are being presented and analyzed. The amplitude ratio 
and frequency ratio has different trends following the height of the PTC changes. However, 
vibration responses of P10 are very similar regardless of the Reynolds number. Moreover, KC 
number as an important parameter of vortex regime in FIO, vortex structures are analyzed using 
vorticity images from the CFD result. Single vortex shedding structures are found in the wake 
as 𝐾𝐶 < 1.8. 3P+S vortex shedding appears when 𝐾𝐶 > 4. 
 

Keywords: VIV; galloping; naoe-FOAM-SJTU solver; RANS; passive turbulence control 

1 Introduction 
Vortex-induced vibrations (VIV) and galloping are the two common fluid-structure interaction 
phenomenon which can be observed in crossflow. They are commonly referred to as fluid 
induced oscillation(FIO). The excitation of the VIV is caused by the alternating shedding of 
eddy current from each side of the cylinder. Also, time-varying forces at the frequency of vortex 
shedding give rise to periodic changes in the pressure distribution on the body surface. For a 
spring-mounted rigid cylinder, an isolated smooth circular cylinder could only undergo VIV 
does not gallop. However, such as triangle, square non-circular sections could be subjected to 
large amplitude galloping oscillations (Parkinson and Sullivan, 1979; Bokaian and Geoola, 
1984b) [1][2]. And circular sections with like splitter plate attachments also could experience 
galloping (Nakamura et al., 1994) [3]. Furthermore, the proximity of another cylinder would 
also induce galloping excitation in circular cylinders (Bokaian and Geoola, 1984a) [4]. Therefore, 
the phenomenon of galloping is not due to the normal vortex shedding, which is an instability 
phenomenon caused by the motion of the shear layers on both sides of the cylinder.  
 
Some scholars applied straight rough strips (PTC, passive turbulence control) to the surface of 
the cylinder to change the geometry section (Chang et al., 2010; Chang et al., 2011; Park et al., 
2011) [5-7]. Width, roughness, and circumferential location on the cylinder are the parameters 
tested experimentally in the Water Channel located in the Marine Renewable Energy 
Laboratory (MRELab) of the University of Michigan. Also, many scholars are devoted to 
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studying the motion mechanism of passive turbulence control system and applying them to new 
energy fields. (Bernitsas et al., 2009; Lee et al., 2011, Sun et al.,2017; Sun et al., 2019) [8-11] 

 
However, the replacement of different PTC strip in most experiments is very time consuming 
and requires recalibration, while the CFD method makes this efficient. Meanwhile, CFD make 
the local vortex shedding visualization, so this is easier to analyze the mechanism of FIO. In 
this study, two-dimensional RANS equations with SST k – ω turbulence model are used to 
simulate the flow induced oscillation of seven single circular cylinders (P0, P1, P1.4, P2, P3, 
P5, P10) with different height PTC (Passive Turbulence Control) strips and supported by spring 
stiffness in steady uniform flow at 𝑅𝑒 = 3.71 × 10ସ and 𝑅𝑒 = 1.03 × 10ହ 103000 (primarily 
the TrSL3 flow regime (Zdravkovich, 1997) [12]). The simulation is carried out through the CFD 
solver naoe-FOAM-SJTU developed by the open source toolbox OpenFOAM. The objective is 
to understand the impact of PTC on flow induced oscillation by changing the height of strips 
attached on the cylinder, and analyze vortex structures using high-resolution imaging from the 
CFD result. This paper first introduces the numerical methods used in naoe-Foam-SJTU solver, 
including turbulence simulation method, dynamic overset grid technique and spring system in 
section 2. Section 3 illustrates computational physical model, geometric parameters, 
computational domain, grid and boundary conditions. Then in section 4, the free decay of the 
spring system is verified, the amplitude and frequency response of seven cylinders are conduct 
under two Reynolds numbers to evaluate the effect of the height of PTC on the FIO. Also, 
vortex structures are analyzed from the CFD result. Finally, section 5 concludes this paper.  

2 Mathematical model and numerical method 
All numerical simulations in this study are based on the in-house 6DoF CFD solver naoe-
FOAM-SJTU (Shen and Wan, 2015) [13], which was developed on the open-source CFD 
software OpenFOAM. And the dynamic overset grid technology was implemented into the 
solver in coupled with Suggar ++(Noack, 2005, Noack et al., 2009) [14,15] to facilitate large 
amplitude hull motions. The naoe-FOAM-SJTU has been validated via a majority of marine 
and ocean engineering problems.  (Cao and Wan, 2010; Zhou et al., 2013; Wang et al., 2017) 
[16-18].  

2.1 Governing equations and turbulence modeling 
The turbulent flow is a highly complex three-dimensional unsteady, irregular flow with rotation. 
The simulations for turbulence are currently divided into direct numerical simulation (DNS), 
large eddy simulation (LES), and the use of Reynolds average NS equation simulation (RANS). 
Because DNS and LES have high requirements on a computing resource, so its applicability to 
engineering problems needs to be improved. RANS equation is adopted in this study. The 
Reynolds average NS equation is as follows:  
 
                                                                              డ௨೔డ௫೔ = 0                                                 (1) 

                                       డడ௧ (𝜌𝑢௜) + డడ௫ೕ ൫𝜌𝑢௜𝑢௝൯ = డ௣డ௫ೕ + డడ௫ೕ (2𝜇𝑆௜௝ − 𝜌𝑢௝ᇱ𝑢௜ᇱ)               (2) 

 
In order to solve the equations, a turbulence model is introduced to determine the Reynolds 
stress term −𝜌𝑢௝ᇱ𝑢௜ᇱ. The currently used turbulence models are k − ε and k − ω models. This 
paper uses the SSTk − ω model, which combines the advantages of the above two types of 
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models to ensure the accuracy and reliability of the solution near the wall, and can better solve 
the flow problem with negative pressure gradient. Specifically, the problems discussed in this 
paper require the capture of flow separation and wake near-field detailing. The corresponding 
mesh should satisfy the near-walled body-fitted grid placed within the viscous bottom layer and 
the mesh near the wall is dense. The SST k − ω model can better meet the above requirements. 
The equation for the SST k − ω model in the OpenFOAM solver is referred to Menter,1994. [19] 

2.2 Overset Grid 
In this paper, the overset grid program Suggar++ is used to calculate Domain Connectivity 
Information (DCI). The information mainly includes unit information (hole unit, interpolation 
unit, contribution unit, orphan unit) and interpolation weight coefficient. The solver implements 
fully parallelized flow field solving and overset mesh burrow interpolation calculations by 
running OpenFOAM and Suggar++ in different processes. Grid motion and DCI information 
exchange between different processes are implemented through the Message Passing Interface 
(MPI). 

2.3 Spring system  
The spring system is an important factor in studying the FIO response of a rigid cylinder with 
elastic support. The spring system in the experiment called Vck (Virtual spring-damping device) 
can realize the oscillator of the real spring by changing the parameters such as system stiffness 
and damping (Sun, 2015) [20]. Also, the mooring system of naoe-FOAM-SJTU is adopted to 
simulate the spring and more convenient to adjust the parameters (Zhao et al., 2018) [21]. 
Currently the mooring system supports four types of mooring line, which include linear spring, 
catenary, PEM (piecewise extrapolation method) and LMM (lumped mass method). Moreover, 
it is convenient to extend more complex mooring system and update new mooring line types 
based on the current framework. In the present study, all mooring lines are treated as linear 
springs. 

3 Physical model and simulation design 

3.1 Physical model 
The physical model is referred to MRELab of University of Michigan (Chang, 2011; Bernitsas, 
2009) [6][8]. A simple schematic of the circular cylinder oscillation system in the present work 
is shown in Figure 1. The elements of this oscillator include a rigid circular cylinder of diameter 
D, length L, stiffness K, and system damping C. The cylinder is limited to oscillating in one 
direction, that is, perpendicular to the direction of incoming flow.  

 
Figure 1.  Physical model 

 
PTC strips acts like ‘step’ are attached to the smooth cylinder, the total thickness (T) of PTC 
strips is defined as T=k+P, where k is the roughness height and p is the paper thickness. 
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Meanwhile 𝛼 is the strip placement angle and value of 𝛽  indicates coverage area. The 
parameters for this system are listed in table 1. The roughness act as a ‘catalyst’ to promote 
galloping fully-developed in the experiment (Chang, 2010)[5], but it does not significantly 
influence the oscillation response, so the wall function with roughness temporarily not be 
considered in this paper, which means k in all case should be set as zero. Table 2 shows 7 cases 
(P0, P1, P1.4, P2, P3, P5, and P10), which are the circular cylinder of the same diameter with 
various height T, by changing the parameter p. It should be noted that P0 is a smooth cylinder 
without PTC strip, 0.847mm is setting as P1’s strip height references the experiment (Sun,2016) 
[20], and P1.4 to P10 respectively set the PTC height to 1.4 times to 10 times this value. 
 

Table 1. Parameters of the oscillatory system 

Parameters Symbol(unit) Dimension 
Diameter D [m] 0.0889 
Length L [m] 0.894 

strip placement angle 𝛼[°] 20 
strip coverage angle 𝛽[°] 16 

Spring stiffness k [N/m] 600 
Damping ratio 𝜁 0.02 

Mass m [kg] 7.286 
Mass ratio m* 1.343 

Natural frequency in air fn,air [Hz] 1.44 
Natural frequency in water fn,water [Hz] 1.09 

 

Table 2. Different height of PTC 

 P0 P1 P1.4 P2 P3 P5 P10 
T(mm) 0 0.847 1.198 1.694 2.541 4.235 8.47 

 

3.2 Computational Domain and Grid Generation 
Figure 3(a) shows the computational domain for all simulations in this study, which size is 
20D*32D, D is the diameter of the cylinder. The center of gravity of the oscillating system is 
located 8D downstream of the inlet boundary condition along the longitudinal centerline of the 
domain. The boundary condition for velocity is set as U at inlet and zero gradient at outlet. A 
zero gradient boundary condition is specified for both inlet and outlet for pressure and the value 
is zero. The boundary condition of front and back lateral are set as empty for this case is a two-
dimension simulation. The top and bottom conditions are considered as far-field boundary. For 
the surface of PTC as moving wall, nutUSpaldingWallFunction is a wall function that can solve 
any of the conditions of the near wall surface including the buffer layer, so it is selected as a 
wall function of moving wall. 
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                   a) Computational domain                                  b) Overset grid 

                 P0                                P1                                 p1.4                               P2 
 

P3                                   P5                                   P9 

                c) close-up grid of P0 to p10  

Figure 2. Computational domain and grid 

The overset grid technique has been verified as a reliable grid application in a fixed circular 
flow numerical simulation within a vast Reynold number (6.31 × 10ସ~7.57 × 10ହ) (Ye et al, 
2018) [22], which can achieve better numerical results than dynamic grid techniques. So an 
overset grid system is used throughout the present study to simulate the FIO response of 
cylinders. The overset grid system Contains two sets of independent grids, as shown in Figure 
2(b), the blue grid is the background and the red part is hull grid, which are generated separately 
using the Pointwise grid-generating software. Then background and hull grids are merged into 
one set of grid in naoe-Foam-SJTU solver. The two mesh-blocks do not share any points, edges 
or faces. Flow information are exchanged by interpolation using domain connectivity 
information (DCI) generated by Suggar++. Figure 2(c) shows a close-up of a cylindrical grid 
of seven different PTC heights. For all P0 to P10 cases, the dimensionless wall spacing of the 
first layer close to the wall mesh satisfies y + <5, which makes sure the first layer cells are 
located in the viscous sublayer although nutUSpaldingWallFunction is applied. The total cell 
number is around 80,000 to 86,000. Also, the PIMPLE (merged PISO-SIMPLE) algorithm is 
used to solve the coupled pressure and velocity. PIMPLE treats every single time step as steady-
state and performs SIMPLE correctors outside the PISO loop. It can run robustly at larger time 
step where Courant number is larger than one.  
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4 Results and discussion  

4.1 Free decay 
 For validate spring stiffness, free decay tests are carried out. The free decay test allows the 
object to oscillate according to a specified initial offset or speed without inflow. The spring 
system in noae-FOAM-SJTU only works effectively in the tension state, so symmetrical spring 
with pre-tension force is arranged along the direction of the vibration of the cylinder. The 
stiffness and pre-tension are adjusted to ensure that the system is always effective and accurate. 
The effective stiffness must be consistent with the experiment. Linear spring system test 
parameters refer to experimental data (sun et al, 2015) [23]. That is, mass of cylinder is 5.4878kg, 
mass ratio 𝑚∗ = ௠೚ೞ೎௠೏೔ೞ = 1.012 , 𝑚ௗ௜௦  is the displacement mass of water when cylinder is 
merged in the channel. Spring stiffness is set to 600N/m, damping coefficient is 0.0453, pre-
tension is given 210N to ensure that the linear spring system is always tensioned as long as the 
amplitude of cylinder is less than 4. The parameters and results of free decay test is shown in 
Table 3, while Figure 5 presents the time history curve and spectrum analysis of the free decay 
test. The spring system and experimental error are less than 1.373%, indicating that the current 
spring system provides the correct effective stiffness.  

 

Figure 3. Time history and spectrum of free decay 

Table 3. Free decay parameters 

k[N/m] Damping 
ratio c(Ns/m) m(kg) m* Texp Tcfd Dev. 

600 0.0453 5.204 5.4878 1.012 0.6015 0.6098 0.01373 

4.2 Amplitude response 
The amplitude of the cylinder is one of the critical properties which can adequately describe 
and quantify FIO. The amplitude ratios A/D of seven cases (P0 to P10) are plotted in Figure 4 
at 𝑅𝑒 = 3.71 × 10ସ and 𝑅𝑒 = 1.03 × 10ହ. The corresponding time history is also marked in 
the figure. The experimental values of P1 and the data of seven present numerical case are listed 
in Table 4. At 𝑅𝑒 = 3.71 × 10ସ, the amplitude ratio of P1 in the experiment is 0.352, and the 
value of P1 of the present study is 0.276, which is 20% smaller than experimental data. Since 
this is a complex flow separation of high Reynolds number, it can still be considered that the 
current numerical calculations and experiments consistently achieve the initial branch of VIV, 
even with a 20% error. Then, the amplitude ratio of the cylinders with P0 to P10 can be 
compared and analyzed. As can be seen from the figure4 (a), while the height of PTC increases 
from zero, A/D increase slightly at first, then slowly bend down at P1.4 heights. Till the height 
of PTC up to P3, the amplitude reaches the lowest point, after that, it tends to a steady rise again. 
When the PTC height is up to the highest of this group study, amplitude ratio is also up to the 
maximum. At 𝑅𝑒 = 1.03 × 10ହ, that should be a large amplitude galloping region as depicted 
in experimental data. However, galloping phenomenon has not appeared in any present 
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numerical simulation cases. As can be seen from Figure 4(b), the range A/D keep decreasing 
constantly from P0 to P10, except a slight increase at P2. So the higher the PTC, the more 
obvious the amplitude decline trend. It is revealed here that the increase in the height of the 
PTC possibly causes the vibration to be suppressed at 𝑅𝑒 = 1.03 × 10ହ. 

 
a) 𝑅𝑒 = 3.71 × 10ସ 

 
b) 𝑅𝑒 = 1.03 × 10ହ 

Figure 4. Amplitude ratio and displacement history  
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 Table 4. Amplitude ratio  

 𝑹𝒆 P1exp P0 P1 P1.4 P2 P3 P5 P10 

A/D 3.71 × 10ସ 0.352 0.244 0.276 0.274 0.242 0.231 0.292 0.3581.03 × 10ହ 1.662 0.699 0.696 0.653 0.655 0.583 0.522 0.335

4.3 Frequency response  
The oscillation frequency results are shown in Figure 5. Where the frequency ratio 𝑓∗ =𝑓௢௦௖/𝑓௡,௔௜௥ of the cylinder is plotted vs. Reynolds.  The oscillation frequency 𝑓௢௦௖ is calculated 
by FFT (Fast Fourier Transform) of the time history of the cylinder over the recorded period. 
At 𝑅𝑒 = 3.71 × 10ସ, the frequency ratio is around 1 and from P0 to P5, which assumes a 
practically constant value, which looks like not be affected significantly by the height of the 
PTC except P10. From P5 to P10 height, there is a sharp increase, the change at this time is the 
same as the amplitude ratio. At 𝑅𝑒 = 1.03 × 10ହ, all cases have a very high frequency (Table 
5, and Fig.5b). The data of frequency ratio appears a slow upward trend. According to the 
experimental result (Sun et al. 2016)[20], at the Reynolds number is higher than 10ହ, there should 
be low frequency and high amplitude galloping by changing the height of passive turbulence 
control. However, the numerical results show that the oscillation still maintains high-frequency 
oscillation and does not reach the instability of galloping. 

Table 5. Frequency ratio 

 𝑹𝒆 P1exp P0 P1 P1.4 P2 P3 P5 P10 

f* 3.71 × 10ସ 0.649 1.054 1.043 1.032 1.032 1.021 0.982 1.7941.03 × 10ହ 0.846 1.567 1.567 1.604 1.613 1.604 1.663 1.792
 

 

a) 𝑅𝑒 = 3.71 × 10ସ 
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b) 𝑅𝑒 = 1.03 × 10ହ 

Figure 5. Frequency ratio and spectral analysis  

4.4 Vortex shedding 
The vortex shedding works have been considerable light on the understanding of the complex 
behavior of vortex motion in various regime. Williamson (1985) has described the vortex 
trajectory patterns in quite a systematic manner [24]. And KC number is an important parameter 
of vortex regime in FIO, the physical meaning can probably be best explained by reference to 
Equation 3, where A is the amplitude of the motion. 

                                                                𝐾𝐶 = ଶగ஺஽                                          (3) 

Table 6. KC number  

 𝑹𝒆 P0 P1 P1.4 P2 P3 P5 P10 

KC 
3.71 × 10ସ 1.535 1.735 1.720 1.519 1.452 1.837 2.2471.03 × 10ହ 4.394 4.372 4.105 4.114 3.665 3.284 2.103

 

Low KC number therefore means that the orbital motion of the water particles is small relative 
to the total width of the cylinder D. When 𝐾𝐶 number is tiny, separation behind the cylinder 
may not even occur. On the other hand, large 𝐾𝐶 numbers mean that the water particle travels 
quite vast distances relative to the diameter of cylinder D, resulting in separation and probably 
vortex shedding (Sarpkaya (1986) and Honji (1981)) [25,26], most of their study concentrated 
their attention on the 𝐾𝐶 number dependence or low Re number less than 10ସ. As the Reynolds 
number is less than 10ଷ , 𝐾𝐶 < 1.1  is laminar flow around the cylinder. Vortex shedding 
appears when 𝐾𝐶 > 7.  Moreover, vortex regime can be divided 7 < 𝐾𝐶 < 15 (single pair), 15 < 𝐾𝐶 < 24  (double pair),  24 < 𝐾𝐶 < 32  (three pair),  32 < 𝐾𝐶 < 40  (four pair), etc. 
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However, for higher Reynolds numbers, the relationship between kc and regime is not clearly 
defined. In this study, the Reynolds number exceeded 10ହ, and the 𝐾𝐶 values for several cases 
are given in Table 5, according to the range of kc and the analysis of amplitude and frequency, 
since the vibration is similar, the vortex diagrams of P1, P5 and P10 under two Reynolds are 
given here. At 𝑅𝑒 = 3.71 × 10ସ, when 𝐾𝐶 < 1.8, only S (single vortex) shedding appears. 
When 𝐾𝐶 > 1.8, a slight pair vortex shedding can be found in Figure (b). In the case of P10, 
an asymmetrical vortex appears on both sides of the cylinder. From the figure, it can be seen 
that both P (pair vortex) and S appear simultaneously. At 𝑅𝑒 = 1.03 × 10ହ, when 𝐾𝐶 > 4 (P0, 
P1, P1.4, P2), vortex shedding is 3P+S, when 𝐾𝐶 = 3.284 and 𝐾𝐶 = 2.103, pair vortex and 
single vortex are alternately appearing regularly. Vortex shedding is suppressed and tend to 
single pair vortex shedding at P10. 

                  

                      a) P1                                       b) P3                                           c)P10 

Figure 6. Vortex pattern at 𝑹𝒆 = 𝟑. 𝟕𝟏 × 𝟏𝟎𝟒 

    

                      a) P1                                       b) P3                                           c)P10 

Figure 7. Vortex pattern at 𝑹𝒆 = 𝟏. 𝟎𝟑 × 𝟏𝟎𝟓 

4.5 Comparison in different flow region 
The amplitude and frequency response of 𝑅𝑒 = 3.71 × 10ସ and 𝑅𝑒 = 3.71 × 10ସ  are put 
together for comparative analysis. As can be seen from the figure 8(a), under different Reynolds 
numbers, the amplitude ratio of P0, P1, P1.4, P2, P3 under higher Reynolds number is about 
twice times compared with lower Reynolds number. As the height increases, the amplitude 
difference between the same cylinders becomes smaller and smaller in the case of two Reynolds 
numbers. There is almost no difference in the amplitude of P10, which can be seen from the 
amplitude displacement history of Figure 4(a)(b). The frequency ratio at 𝑅𝑒 = 3.71 ×10ସ  𝑎𝑛𝑑 𝑅𝑒 = 1.03 × 10ହ, as shown in Figure 8(b).  Similarly, the frequency is the same at 
P10 case, regardless of the Reynolds number. It can be seen from the time history curve that 
the vibration of p10 is very stable, and the consistency also is conducted from their analysis of 
the vortex pattern. The vortex structure of Figures 6 and Figures 7 also illustrates the 
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consistency of the P10 oscillation. 

 
                                   a) Amplitude ratio                                 b) Frequency ratio 

Figure 8 Amplitude ratio and frequency ratio of P10 

5 Conclusion  
The Flow Induced Oscillation of a single, rigid, circular cylinder on linear spring with different 
height passive turbulence control (PTC) strips were investigated using Reynolds-Averaged 
Naiver-Stokes equations with 𝑆𝑆𝑇𝑘 − 𝜔 model at 𝑅𝑒 = 3.71 × 10ସ and 𝑅𝑒 = 1.03 × 10ହ. All 
numerical simulations in this study are based on the in-house 6DoF CFD solver naoe-FOAM-
SJTU, which developed by open source toolbox OpenFOAM. The following conclusions can 
be drawn. 

(1) At Re = 3.71 × 10ସ, the amplitude ratio and frequency ratio of P1 can realize the initial 
branch of VIV compared with experimental data. With the height increase of the PTC strips, 
oscillation amplitude first increases slowly and then show a downward trend, but rise again at 
p5 and p10. Moreover, oscillation frequency responds almost keep stable from P0 to P5, only 
with suddenly high-frequency oscillation at P10 case. 

(2) At Re = 1.03 × 10ହ, the amplitude ratio decreases as the PTC height increases. The 
value of amplitude at P10 is almost half of the value of P0, which illustrates PTC can suppress 
the oscillation in this Reynold number.  At the same time, the frequency response at this 
Reynolds number is gradually increasing. 

(3)  KC numbers are introduced to analyze wake vortex shedding.  Single vortex appears as KC < 1.8. Vortex shedding is 3P+S pattern as KC > 4. When KC = 3.284 and KC = 2.103, 
pair vortex and single vortex are alternately appearing regularly at Re = 1.03 × 10ହ. 

(4) The existence of PTC is similar to a “step”, which determines the flow separation point 
of the incoming stream. However, the galloping with large amplitude and lower frequency 
phenomenon does not found in the CFD simulation. The reason may be the FIO at high 
Reynolds number involves strong flow separations and RANS is not appropriate to employ for 
it employs statistical averaging procedure to model the mean flow quantities the turbulent 
fluctuations are eliminated during averaging.  

The above study is the beginning of research on passive turbulence control in the flow around 
a cylinder. The purpose is to better analyze the oscillation response of VIV and galloping by 
parameter adjustment, to study how to suppress or stimulate FIO. Next, delayed DES (DDES) 
based on the two-equation shear stress transport (SST) model would be applied in the FIO 
turbulence modeling and the roughness wall function will be studied in depth. 
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Abstract 

With the increase of oil exploitation, the aspect ratio of marine risers increases so apparently 

that leads to the prediction on VIV response becoming more difficult and the computational 

domain becoming larger. In this paper, numerical simulations on VIV of a flexible cylinder 

experiencing uniform and stepped flow adopting the thick strip method are conducted through 

the in-house viv-FOAM-SJTU solver. Hydrodynamic forces are calculated in each thick fluid 

strip distributed equidistantly along the cylinder. The connection among all thick strips is 

realized through the calculation of the structural vibration in both in-line and cross-flow 

directions, using the finite element method (FEM) with the Euler-Bernoulli beam model. 

Comparisons between experimental results and present studies show good agreement, which 

represents the feasibility of the thick strip method in solving VIV response of flexible cylinder. 

Meanwhile, the apparent three-dimensional effect is captured. It can also be found that vortex 

shedding features vary at each thick strip along different locations of the cylinder. 

 

Keywords: vortex-induced vibration; thick strip method; flexible cylinder 

 

1. Introduction 

Alternant vortex shedding phenomenon will happen when viscous flow goes through the 

circular cylinder, which contributes to the vortex-induced vibration problem especially for the 

offshore structures and risers. VIV of flexible cylinders has been extensively studied during 

the past decades. Overviews on VIV researches can be referred to Sarpkaya (2004), Huang et 

al (2009), Chen et al (2016) and Wan et al (2017). In order to solve the problems of high costs 

of computational resources and long computing time, the traditional strip method, which 

considered that the fluid flow was locally two-dimensional without spanwise correlation and 

simplified the three-dimensional fluid field into several two-dimensional strips, was proposed 

and used to predict the VIV response of risers by Willden and Graham (2001, 2004). 

Adopting the strip method, Duan et al (2016, 2018) developed the viv-FOAM-SJTU solver 

and carried out numerical simulations on VIV of a vertical riser exposed to the stepped 

current basing on the experiments of Chaplin et al (2005). Fu et al (2016) conducted 

parameter researches on VIV of a flexible cylinder using the viv-FOAM-SJTU solver. Fu et al 

(2018) then further expanded the capacity to simulations of a flexible cylinder experiencing 

oscillatory flow and validate its reliability with standard model experiments of Fu et al 

(2013). 

In order to solve the drawback in simulating the axial three-dimensional correlation of vortex 

shedding, the three-dimensional simulation method was adopted and used by researchers in 

predicting VIV response. Holmes et al (2006) combined three-dimensional CFD solutions 
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with structural models in simulating VIV of a straked riser. Huang et al (2007a, 2007b) 

presented a CFD approach for riser VIV prediction using the URANS method on an 

three-dimensional overset grid system. Numerical results on VIV of a flexible riser 

experiencing uniform flow and sheared flow were in good agreement with experimental 

results and previous publications. Wang and Xiao (2016) adopted the large eddy simulation 

(LES) method with the Arbitrary Lagrangian-Eulerian (ALE) scheme in simulating VIV 

response of a riser in uniform flow and sheared flow respectively using the ANSYS MFX 

multi-field solver. 

Although the three-dimensional numerical simulation method can cover disadvantages in 

simulating flow fields comparing with the traditional strip method, the cost of computational 

resources are extremely larger especially for detailed flow fields simulation. Combining 

advantages of the axial correlation for the three-dimensional method and the low 

computational resource cost for the traditional strip method, Bao et al (2016) proposed the 

thick strip model for VIV prediction of long flexible cylinder using the direct numerical 

simulation (DNS) method. Comparisons between experimental results and simulation results 

validate the validity of the thick strip method. 

In this paper, the modified viv-FOAM-SJTU solver is used to predict VIV response of a 

flexible cylinder exposed to uniform flow and stepped flow respectively basing on the thick 

strip method. This paper is organized as follows: The first section gives a brief introduction to 

the referenced experiments and the numerical methodology. The second section presents the 

results and the final section concludes the paper. 

2. Method 

2.1 Thick Strip Method 

The schematic of the strip theory is shown in Fig.1. The flow field is discreted into several 

two-dimensional fluid strips equal-distantly located along the span of the cylinder. The strip 

method owns high computational efficiency and accuracy that has been verified through 

previous researches, such as Meneghini et al (2004) and Yamamoto et al. (2004). The original 

viv-FOAM-SJTU solver developed basing on the OpenFOAM and the traditional strip 

method and detailedly validated by Duan et al (2016). However, the simplification of ignoring 

the spanwise correlation will lead to the lower prediction of hydrodynamic forces in both 

inline and crossflow directions. Then, the predicted vibration amplitude will be smaller than 

that of the experimental results, especially in high Reynolds Number conditions with 

non-negligible three-dimensional characteristic of vortex shedding along the cylinder span. 

Bao et al(2016) proposed the generalized thick strip modelling method considering the 

spanwise correlation in the flow field locally. And this method has been validated in 

simulating VIV responses of a flexible cylinder experiencing the uniform flow by Bao et 

al(2019). In this paper, the thick strip model has been used to modify the original 

viv-FOAM-SJTU solver through transforming the two-dimensional fluid strips into 

three-dimensional thick fluid strips. While the correlation of fluid strips are realized through 

the vibration of the cylinder using the Finite Element Method (FEM). 
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Fig.1 Schematic diagram of the strip theory 

 

2.2 Hydrodynamics Governing Equations 

The Reynolds-averaged Navier-Stokes equations (RANS) are used as the hydrodynamics 

governing equations in all thick flow strips as shown in Eq(1) and Eq(2). The flow field is 

supposed to be incompressible, with constant dynamic viscosity μ and constant density ρ. 
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ij j i t ij iju u S k         , where t is the turbulent viscosity and

 1/ 2 i ik u u  is the turbulent energy, computing from the fluctuating velocity field. 

2.3 Structural Dynamic Governing Equations 

Each two-dimensional fluid strip is independent with the connection between all strips 

realized through the in-line and cross-flow vibration of the cylinder. The flexible cylinder is 

simplified to be an Euler-Bernoulli bending beam model. The vibration of the model is solved 

through the FEM method and the structural governing equations in each element are shown in 

Eq(3) and Eq(4). 

xmx cx kx f                                (3) 

ymy cy ky f                                (4) 

where 𝑚, 𝑐, 𝑘 are the mass, the damping and the stiffness of the structural element; ,x yf f  are 

the in-line and the cross-flow hydrodynamic forces respectively. Hence, the 

mass-spring-damping (MCK) equations of the system can be expressed as Eq(5) and Eq(6): 

HXM{X} + C{X}+ K{X} = {F }                          (5) 

HYM{Y} + C{Y} + K{Y} = {F }                          (6) 

where M, C, K are the mass, damping and stiffness matrixes of the system; ,HX HY{F } {F }  are 

hydrodynamic force vectors in the in-line and cross-flow directions. While, the Rayleigh 

damping is adopted to generate the damping matrix replacing the practical damping as shown 

in Eq(7) and Eq(8). 

0 1=a aC M K                                (7) 
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where 0a  and 1a  are proportionality coefficient;   is the damping ratio; 1nf  and 2nf  are 

the first two order of natural frequencies of the cylinder. 

2.4 Problem Description 

In the present study, two types of flow conditions are mainly considered for VIV of a vertical 

flexible cylinder, such as uniform flow and stepped flow. For the uniform flow condition, the 

model experiments were conducted at the MARINTEK by ExxonMobil (Lehn, 2003). Main 

parameters of the model cylinder and the flow condition are listed in Table 1. Totally, 10 thick 

strips are equal-distantly located along the cylinder. 

For the stepped flow condition, model cylinder experiments are carried by Chaplin et al 

(2005a, 2005b). Main parameters and the selected flow condition are listed in Table 2. In the 

stepped flow condition, only the lower 45% part of the cylinder is immersed in the uniform 

flow with the other part being in the still water. 20 thick strips are adopted to generate the 

computational model, so that the lower 9 strips set the uniform flow condition and other strips 

set the still water condition. 
 

Table 1 Main parameters of model cylinder in uniform flow condition 

Properties Values Unit 

L 9.63 m 

D 20 mm 

EI 135.4 Nm
2
 

T 817 N 

m* 2.23 - 

L/D 481.5 - 

U 0.2 m/s 

 

Table 2 Main parameters of model cylinder in stepped flow condition 

Properties Values Unit 

D 0.028 m 

L 13.12 m 

L/D 469 - 

EI 29.88 Nm² 

m* 3.0 - 

T 405 N 

U 0.16 m/s 

3. Results 

3.1 Vibration response 

For the uniform flow condition, CFD simulation is conducted using a computational mesh 

with 7.9 million cells. The maximum crossflow root-mean-square (RMS) response amplitude 

comparison among experiment (Lehn, 2003), previous simulation of Wang and Xiao (2016) 

and present simulation is shown in table 3. It can be concluded that both the maximum 

crossflow RMS amplitude and the corresponding axial location are in good agreement, which 

validate the validity of the modified viv-FOAM-SJTU solver in predicting VIV response of 

flexible cylinder. For the stepped flow condition, the maximum crossflow vibration amplitude 
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is around 0.7D in present simulation, while the experimental result is around 0.75D and the 

corresponding computational error is acceptable. 

Crossflow spatial RMS amplitude and the corresponding response envelops in both flow 

conditions are shown in Fig.2. The crossflow vibration is dominated by the first mode in the 

uniform flow and the maximum vibration amplitude locates at around the mid-span of the 

cylinder as shown in Fig.2(a) and Fig.2(b). While the dominant vibration mode presents the 

second mode for the stepped flow condition in Fig.2(c), which shows good agreement with 

the experimental results by Chaplin et al (2005). The peak points of the spatial vibration along 

the cylinder span locate at 0.25L and 0.75L respectively as shown in Fig.2(d), where L is the 

total length of the cylinder. 

 

Table 3 Maximum RMS amplitude comparison for the uniform flow condition 
 CF RMS z/L 

Lehn (2003) 0.408 0.549 

Wang and Xiao (2016) 0.4 0.523 

Present simulation 0.417 0.552 

 

 

       
(a)                (b)                (c)                (d) 

Fig.2 RMS amplitude and response envelopes of the cylinder: (a) uniform flow (b) uniform 

flow (c) stepped flow (d) stepped flow 

 

Vibration trajectories of specific nodes along the cylinder span are presented in Fig.3. It can 

be known that the vibration trajectory presents an approximate ‘V’ type at z/L=0.1. With the 

increase of the axial location from the bottom end to the top end, the vibration trajectory turns 

to be thinner in the inline direction (x direction). The vibration trajectory shape changes to the 

converse ‘V’ type at z/L=0.8.  

   
(a)                              (b) 

Fig.3 Vibration trajectories along the cylinder span: (a) uniform flow (b) stepped flow 
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This variation tendency can owe to the interaction between the crossflow vibration and the 

inline vibration. When the crossflow vibration of lower nodes on the cylinder reaches its 

maximum value, the corresponding inline vibration amplitude reaches its maximum value at 

the same time. While, upper nodes on the cylinder present opposite phase between the 

crossflow vibration and the inline vibration contributing to the converse ‘V’ type of vibration 

trajectory. As for the middle node on the cylinder, the standing wave point appears that leads 

to the minimum vibration value and the thinnest trajectory thickness in the inline direction. 

For the stepped flow condition, the vibration trajectory presents the reverse ‘U’ type at 

z/L=0.1, 0.2, 0.6, 0.7 and the ‘U’ type at z/L=0.3, 0.4, 0.8, 0.9. This variation tendency is 

similar to that of the uniform flow condition owing to the second mode vibration in the 

crossflow direction and the fourth vibration mode in the inline direction. The maximum inline 

vibration locates at around z/L=0.3. Both the crossflow thickness and the inline thickness of 

the vibration trajectory turn to the minimum value at the mid span cylinder owing to the 

existence of standing wave points in both directions. 

3.2 Modal response 

In order to get the vibration features of the flexible cylinder, the modal decomposition method 

is adopted, which has been verified to be available by Chaplin et al (2005). The cross-flow 

and in-line time varying shape of the cylinder can be expressed as the sum of a series of mode 

shapes as followed: 

( ) sin( )n

n
z z

L


                              (9) 

1

( , ) ( ) ( )
N

n n

n

x z t u t z


                           (10) 

1

( , ) ( ) ( )
N

n n

n

y z t v t z


                           (11) 

where z is the node location along the flexible cylinder span; L is the length of the cylinder; 

n=1, 2, 3, etc; un(t) is the time-dependent modal weight in the in-line direction; vn(t) is the 

time-dependent modal weight in the cross-flow direction; N is the mode number. 

 
(a)                              (b) 

Fig.4 Modal weight of the cylinder vibration: (a) uniform flow (b) stepped flow 
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Modal weights of the first six order of vibration mode in both flow conditions are shown in 

Fig.4. It can be known that the dominant vibration mode presents the first mode for the 

uniform flow condition. Although the second vibration mode is comparatively apparent 

comparing with other higher modes, it is still unable to transit the vibration of the cylinder to 

the second mode by the controlling effect of the first mode as shown in Fig.4 (a). As for the 

stepped flow condition, the dominant vibration mode of the cylinder presents the second 

mode with effects of other modes on the vibration can be neglected. The mode decomposition 

results agree well with the experimental results of Lehn(2003) and Chaplin et al(2005) 

respectively, which also correspond with the response envelopes of the cylinder as shown in 

Fig.2. 

3.3 Frequency response 

In order to analyze the frequency feature of the crossflow vibration, the Fast Fourier transform 

(FFT) method is adopted to calculate the frequency components at specific nodes along the 

cylinder as shown in Fig.5. From Fig.5 (a), it can be seen that the dominant vibration 

frequency of nodes along the cylinder is around 1.7Hz in the uniform flow condition. And the 

vibration response is more conspicuous when close to the mid-span of the cylinder, 

corresponding to the place where drastic crossflow VIV phenomenon happens. In the stepped 

flow condition as shown in Fig.5 (b), the dominant vibration frequency is around 0.9Hz. The 

apparent crossflow VIV phenomenon happens at around z/L=0.3 and 0.7 where peak and 

points appears as shown in Fig.2 (d). The generation of the standing wave point at z/L=0.5 

leads to the reduction of VIV feature comparing with that of other nodes. The variation of the 

vibration frequency response along the cylinder is quite similar to that of the amplitude 

response. 
 

     
(a)                              (b) 

Fig.5 Vibration frequency along the cylinder span: (a) uniform flow (b) stepped flow 

3.3 Wake fields 

Adopting the flow visualization method, wake flow contours along the cylinder in different 

flow conditions are shown in Fig.6. On account of the crossflow and the inline vibration, the 
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wake field turns to be chaotic and shows apparent three-dimensional features. The axial 

three-dimensional feature becomes more drastic at location close to the mid-span of the 

cylinder in the uniform flow condition where maximum crossflow vibration amplitude 

appears. In the stepped flow condition, apparent three-dimensional wake fields appear in the 

lower 9 strips where vortex shedding direction is the same as the flow speed direction. As for 

the upper strips that locate in the still water, vortices generate due to the vibration of the 

cylinder. Apparent vortex shedding phenomenon happens at around z/L=0.7 where maximum 

crossflow vibration amplitude occurs. And the vortex shedding direction is the same as the 

crossflow vibration direction. 

 

 
(a)                                  (b) 

Fig.6 Wake field contour: (a) uniform flow (b) stepped flow 

4. Conclusions 

In this paper, the thick strip method is adopted to modify the original viv-FOAM-SJTU solver 

based on the two-dimensional strip method. Two simulations based on model experiments of 

VIV of a flexible cylinder in uniform flow (Lehn, 2003) and stepped flow (Chaplin, 2005) are 

conducted using the modified solver. Simulation results are in good agreement with 

experiment results, which verifies the validity of the thick strip method in predicting VIV 

response. 
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Abstract 

The selection of tanks’ shape may affect its life-span and safety because different shape tanks 
show different sensitivity to liquid sloshing. In this paper, responses of different shape tanks 
under external excitation are compared. The in-house solver MLParticle-SJTU solver based 
on moving particle semi-implicit method is employed for the simulation. The convergent 
validation is conducted to verify the reliability of present solver to simulate the sloshing in 
cylindrical tank. Sloshing in the rectangular tank and cylindrical tank with different filling 
ratios is simulated. The characteristics of flow field and pressure time history are presented. In 
addition, Three-dimensional effect can be observed in simulation, which have great influence 
on the sloshing and the load applied on the wall. 
Keywords: Moving particle semi-implicit method; Liquid sloshing; MLParticle-SJTU solver; 
Three-dimensional effect 

Introduction 

Due to the uneven distribution of energy in different region, a large amount of energy needs 
to be transported from one area to another every year. Liquid sloshing is a significant issue in 
the transportation of liquefied natural gas, oil and liquefied petroleum gas. The liquid inside a 
partially filled tank will be induced to violent oscillations and large impact pressure on the 
tank under external excitations which are large amplitude or resonance frequency of sloshing.  
Therefore, many researchers have investigated the characters and mechanisms of sloshing. 
 
There are many methods to investigated sloshing problem. Compared with other traditional 
methods, Computational Fluid Dynamic (CFD) technology has some extra advantages. It can 
provide more detailed flow field information, which facilitate people to analyze the evolution 
process of sloshing fluid flow field, discover the physical mechanism behind sloshing 
phenomenon, and provide guidance for experiment. This is the reason why more researchers 
focus their attention on CFD technology. Faltisnen (1978) firstly applied Boundary-Element-
Method (BEM) to investigate the sloshing problem [1]. Milkelis et al. (1984) used the Marker-
And-Cell (MAC) method to capture the free surface and simulate the 2-D liquid sloshing in a 
rectangular tank and a membrane tank [2]. Liu et al. (1994) adopted Arbitrary-Lagrangian-
Euler (ALE) to capture the free surface and simulate the large -amplitude sloshing [4]. 
Sussman (1998) studied the 2-D liquid sloshing based on the modified Level-set method, which 
can simulate complex free surface deformation successfully [3]. Kim et al. (2001) applied the 
Finite-Difference-Method (FDM) and Impulse-Response-Function (IRF) method to study the 
coupling effects of ship motion and sloshing [5]. Belakroum et al. (2010) used Finite-
Element-Method (FEM) to simulate the sloshing of rectangular tank and proposed a new 
method to reduce sloshing [6]. Zhuang et al. (2016) used the naoe-FOAM-SJTU solver based 
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on Finite-Volume-Method (FVM) to conduct the numerical simulation of FPSO motion 
coupled with LNG sloshing [7].  
 
Particle method has the superiority to handle the problem of large deformation of free surface, 
which is proven to be valid and efficient in simulating liquid sloshing in previous work. 
Iglesias et al. (2004, 2006) used Smoothed Particle Hydrodynamics (SPH) method to simulate 
the sloshing in the anti-rolling tank of a fishing vessel [8] [9]. Delorme et al. (2009) used SPH 
method to investigate the impact pressure in the case of shallow water sloshing. Zhang et al. 
(2012) used Moving Particle Semi-implicit method to simulate liquid sloshing in LNG tank 
[11]. Koh et al. (2013) adopted Consistent Particle Method (CPM) to investigate the sloshing 
problem of a rectangular tank with constrained floating baffles under sway excitation [12]. 
Zhang et al. (2017) applied MPS method and FEM method to study the liquid sloshing in 
rectangular tank with elastic bulkhead [13]. Chen et al. (2017) introduced the GPU 
technology to MPS method to accelerate the simulation in 3-D sloshing [14]. Wen et al. (2018) 
simulate the three-layer-liquid sloshing in the rigid tank with multiphase MPS method [15].  
 
In this study, an in-house solver MLParticle-SJTU based on modified MPS is employed to 
simulate the three-dimensional sloshing. In the first section, the description of modified MPS 
method is presented briefly.  In the second section, the convergent validation is carried out to 
verify the accuracy of present solver in the simulation of cylindrical tank and the simulation 
result shows good agreements with experimental data. Then, the sloshing in three-
dimensional cylindrical tank and rectangular tank with different filling ratios is simulated at 
their respective natural frequencies. The slamming pressure in different location is measured 
and the comparison of those two type tanks is conducted. 

Numerical Method 

MPS method is proposed by Koshizuka et al. (1996) for viscous incompressible fluid [16]. In 
this section, basic theories and discretization process of MPS will be presented in detail. 

Governing Equations 

The governing equations contain continuity equation and Navier-Stokes equation. 

 0V 


  (1) 

 21DV
P V g

Dt



     

  
  (2) 

Where the V


is the velocity vector, the t  is the time, the   is the fluid density, P  is the 
pressure,   is the kinematic viscosity, g

  is the gravity acceleration vector. 

 
Kernel Function 

In MPS method, the interaction between particles is controlled by kernel function, which 
plays a role of weight function in the discretization process. In order to avoid non-physical 
pressure oscillation, the kernel function presented by Zhang et al. (2014) is employed here 
[17]. 
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Where r is the distance between two particles and re is the radius of the particle interaction. 
 
Gradient Model 

The gradient vector of particle i is the weighted average of the gradient vectors between 
particle i and all its neighboring particles j . The model adopted in this paper is proposed by 
Tanaka et al. (2010), which meets the law of conservation of momentum. 
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Where   is a physical quantity, d  is the number of space dimension, 0n is the initial particle 
density, r

  is the position vector relative to origin. 
 
Laplacian Model 

The Laplacian model is the weighted average of the distribution of a quantity   from particle 
i  to neighboring particle j , which is needed in the solution of viscosity term of N-S equation 
and the space discretization of Pressure Poisson Equation. 
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Pressure Poisson Equation （PPE) 

In MPS method, the acquirement of pressure is through solving PPE. In this paper, mixed 
source term method is used to solve PPE, which is developed by Tanaka et al. (2010) [18]. 

 
* 0
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n n
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t t n

     
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 


 (7) 

Where 1kP  is the pressure of the step 1k  ,  is a blending parameter, t is the time step, 
*

iV


is the temporal velocity, *n  is the temporal particle density. In this paper, the value of   
set to be 0.01. 
 
Divergence Model 

Divergence model is similar to the gradient model and it is used to discrete velocity 
divergence in the PPE. 
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Free Surface Detection 

An improved surface particle detection method developed by Zhang et al. (2010) is adopted in 
this paper [19], which can distinguish the particles of free surface from the others efficiently. 
This approach is based on the asymmetry distribution of neighboring particles. 

 * 0 in n    (9) 
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Where  and  are parameters, F


is a vector which represents the asymmetry distribution of 
neighboring particles. When 0.8  or 0.97  , the type of particles can be set to free 
surface. When the 0.8 0.97  ，formulas (9) and (10) are used to judge free surface 
particles. The value of   is set to be 0.9. 
 
Boundary Condition 

There are multilayer particles arranged at the solid boundary. One layer of wall particles is 
arranged near the fluid particles and their pressure is solved by PPE. Two layers of ghost 
particles are configured because fluid particles lack neighbor particles on the side of the solid 
wall. The pressure of ghost particles is obtained by extrapolation. Both the wall particles and 
the ghost particles don’t update their velocity and displacement after they gain the pressure. 

Fluid particle

Wall particle

Ghost particle

Wall

 
Figure 1.  Diagram of boundary particles 

Numerical Simulations 

In this section, the responses of a cylindrical tank and a rectangular tank under external 
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excitation are compared. The cylindrical tank comes from the experiment conducted by 
Kobayashi et al. (1986) [20]. The parameters of the rectangular tank are selected according to 
the cylindrical tank and its cross-sectional area is a square. Figure 2 shows the geometry of 
those two liquid tanks. The dimensions of tanks are 0.94m (L), 0.47m (D), 0.47m (B) and 
0.47m (H). Those two liquid tanks sway harmonically under the external excitation. 

 sin( )x A t  (12) 

Where A  is the amplitude of motion,   is the excitation frequency. 
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Figure 2.  The sketch of numerical models 

Six pressure probes are arranged on walls of both tanks to measure the time history of 
pressure and their specific locations are listed in Table 1. 
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Table 1 Arrangements of pressure probe 

rectangular X/m Y/m Z/m cylinder X/m Y/m Z/m 
P11 0 0.094 0.118 P21 0.0315 0.094 0.118 
P12 0 0.094 0.235 P22 0 0.094 0.235 
P13 0 0.094 0.353 P23 0.0781 0.094 0.353 
P14 0 0.470 0.118 P24 0.0315 0.470 0.118 
P15 0 0.470 0.235 P25 0 0.470 0.235 
P16 0 0.470 0.353 P26 0.0781 0.470 0.353 

 

Verification 

The accuracy of MLParticle-SJTU solver to simulate sloshing in rectangular tank has been 
validated in previous work. In this sub-section, the convergence verification of particle 
distance is conducted and the time history of resultant force in the Z direction is compared 
with the experimental data (Kobayashi et al., 1986) and the reliability of the solver to simulate 
sloshing in cylindrical tank is confirmed. The initial depth of water (h) is 0.235 m, 
corresponding filling ratio is 50%. The tank is forced to sway with the frequency 
( 7.536 rad / s  ) and the amplitude ( 0.015mA  ). The model with initial spacing sizes of 
0.0045 m, 0.005 m and 0.006 m is simulated to check the convergence of numerical results.  
Fig.3 compares the present numerical results with the experimental results. It can be noticed 
that the results of models with different spatial resolutions all agree well with the 
experimental results， which shows the accuracy and stability of the solver. Considering the 
computational efficiency and the refinement of flow field, initial distance between fluid 
particles is set to 0.005 m for the following simulation in this paper. 

Figure 3.  Time history of force in Z direction 
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Numerical conditions 

In present paper, the sloshing in the cylindrical tank and the rectangular tank is compared at 
different filling ratios. The amplitude of motion is set to 0.015m. Considering the most 
extreme condition, tanks are excited at their respective natural frequencies. For rectangular 
tanks, the natural frequencies are calculated according to the formula (13). For cylindrical 
tanks, the natural frequencies are acquired according to the curve (Wiesche et al., 2008 [21]), 
which are presented in the Figure 4. Detailed parameters for numerical conditions are 
presented in Table 2. 

 = tanhg h

L L
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Figure 4.  First transverse natural slosh frequency for 
horizontal cylindrical tanks(Wiesche et al. ,2008) 

Table 2 Numerical conditions 

rectangular tank cylindrical  tank 
filling 
ratio 
(h/H) 

nature 
frequency 

0 (rad/s)  
particle 
number 

filling 
ratio 
(h/H) 

nature 
frequency 

0 (rad/s)  
particle 
number 

0.25 6.558 709005 0.25 6.535 520060 
0.5 7.755 1126389 0.5 7.805 939800 

0.75 8.025 1491600 0.75 9.566 1321792 

 

Numerical results 

In this sub-section, there are some comparisons between cylindrical tank and rectangular tank 
presented. 
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Firstly, the tanks with low filling ratio (0.25) are compared. Figure 5 shows some snapshots of 
numerical flow field. The 3D effect in rectangular tank is more obvious than cylindrical 
tank’s and a jumping phenomenon can be observed in rectangular tank. Besides, it can be 
noticed that slamming in rectangular tank is asymmetric. When the fluid flows to the left wall, 
the fluid in the middle of the wall is faster than that on both sides, impacting the roof of the 
tank. When the fluid flows to the right wall, the fluid on both sides of the wall is faster than 
that in the middle, reaching the higher position of the wall. The pressure time histories 
measured at different probes in the same tank are shown as Figure 6. For rectangular tank, the 
peak pressures and phases measured at P11 and P14 are very different, which indicates that 
traveling waves are generated along the longitudinal direction. For cylindrical tank, the peak 
pressures measured at P21 and P24 are slightly different and the pressure time histories are 
similar in general, which indicates that the waves traveling along the longitudinal direction 
are small and their influence to transverse sloshing is limited. In addition, the pressure time 
histories measured at different probes in different tanks are compared, as shown in Figure 7. 
The peak values of pressure measured at P14 and P24 are very close and the double pressure 
peaks can be observed at both probes when the waves in longitudinal direction haven’t 
formed. Due to interaction of transverse sloshing mode and longitude sloshing mode, one of 
pressure peak disappears. There is a radian on the cylindrical wall and the momentum will be 
changed as fluid climb along the wall, so the peak values of pressure measured at P15 are 
generally higher than those measured at P25. However, the last few peak values of pressure at 
P15 are higher than those at P25 because of 3D effect. The probe P26 arranged at the highest 
position hardly detect the pressure, which indicates that the fluid have detached the wall 
before it arrived at the probe. 

 
(a1) 16.35s (a2) 16.47s (a3) 16.59s 

 
(a4) 16.71s (a5) 16.83s (a6) 16.95s 
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(a7) 17.07s (a8) 17.19s (a9) 17.31s 

(a) Rectangular tank 

   
(b1) 16.35s (b2) 16.44s (b3) 16.53s 

  
(b4) 16.62s (b5) 16.74s (b6) 16.83s 

(b) Cylindrical tank 

 

Figure 5.  The flow fields in rectangular tank and cylindrical tank(h/H=0.25) 
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(a) P11 and P14 (b) P21 and P24 

Figure 6.  Time history of pressures measured at different probes in  
the same tank(h/H=0.25, Left: rectangular tank, Right: cylindrical tank) 
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(a) P14 and P24 (b) P15 and P25 
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(c) P16 and P26 

Figure 7.  Time history of pressures measured at different probes in 
different tanks(h/H=0.25, red line: rectangular tank, blue line: cylindrical tank) 
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Secondly, the tanks with the filling ratio of 0.5 are compared. Figure 8 shows some snapshots 
of numerical flow field and Figure 9 shows the comparisons of pressure time histories 
measured at different probes in the same tank. The conclusions drawn from this simulation 
are similar to those obtained from simulation with low filling ratio. Figure 10 shows the 
comparisons of pressure time histories measured by different probes in different tanks. Before 
15s，the 3D effect is at initial stage and peak values of pressure measured at probes of 
cylindrical tank are all slightly higher than those measured at corresponding probes of 
rectangular tank. After 15s，the 3D effect is at mature stage and the peak values of pressure 
measured by cylindrical tank probes all far less than those measured at corresponding probes 
in the rectangular tank. Besides, it can be noticed that time histories of pressure measured in 
rectangular tank is more randomness than those measured in cylindrical tank. 

  
(a1) 16.20s (a2) 16.29s (a3) 16.41s 

 
(a4) 16.50s (a5) 16.62s (a6) 16.71s 

 
(a7) 16.80s (a8) 16.92s (a9) 17.01s 

(a) Rectangular tank 
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(b1) 16.14s (b2) 16.22s (b3) 16.30s 

  
(b4) 16.38s (b5) 16.46s (b6) 16.54s 

(b) Cylindrical tank 

 
Figure 8.  The flow fields in rectangular tank and cylindrical tank (h/H=0. 5) 
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(a) P11 and P14 (b) P21 and P24 

Figure 9.  Time history of pressures measured at different probes in  
the same tank(h/H=0.5, Left: rectangular tank, Right: cylindrical tank) 
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(a) P14 and P24 (b) P15 and P25 
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(c) P16 and P26 

Figure 10.  Time history of pressures measured at different probes in 
different tanks(h/H=0.5, red line: rectangular tank, blue line: cylindrical tank) 

Finally, the tanks with high filling ratio (0.75) are compared. There is no obvious 3D effect 
observed in either type of tank, as shown in Figure 11 and Figure 12. This is because the roof 
plays a role as a horizontal buffer and prevents the further development of 3D effect. Figure 
13 shows the comparisons of pressure time histories measured at different probes in different 
tanks. It is noticed that the pressure peak of cylindrical tank is higher than rectangular tank’s. 
Besides, two successive peaks of pressure can be observed at each probe and the difference 
between those two peaks of cylindrical tank is much greater than rectangular tank’s. Most of 
water will flow through the roof and fall to the fee surface in cylindrical tank. However, much 
water will go back along the wall in rectangular bank. 
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(a1) 16.41s (a2) 16.47s (a3) 16.56s 

 
(a4) 16.65s (a5) 16.69s (a6) 16.78s 

(a) Rectangular tank 

 
(b1) 16.41s (b2) 16.47s (b3) 16.53s 

 
(b4) 16.59s (b5) 16.68s (b6) 16.74s 

 
(b) Cylindrical tank 

 
 

Figure 11.  The flow fields in rectangular tank and cylindrical tank (h/H=0. 75) 
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Figure 12.  Time history of pressures measured at different probes in  
the same tank(h/H=0.75, Left: rectangular tank, Right: cylindrical tank) 
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Figure 13.  Time history of pressures measured at different probes in 
different tanks(h/H=0.75, red line: rectangular tank, blue line: cylindrical tank) 
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Conclusions 

In this paper, the MLParticle-SJTU solver based on modified MPS is employed to investigate 
difference of sloshing in rectangular tank and cylindrical tank. The convergence verification 
is conducted to confirm the reliability of the solver. The comparison of pressure measured by 
different probes and the numerical flow field are presented. Based on the results of 
simulations, the following conclusions can be summarized:  
 The 3D effect observed in rectangular tank with filling ratio of 0.25 and 0.5 is more 

obvious than that in cylindrical tank and a jumping phenomenon can be observed. The 
same conclusion can be drawn throw the comparison of pressure time history measured at 
different probes in the same tank at the same height. The peaks and phases are different in 
rectangular tank while those show a good agreement in cylindrical tank. 

 When the 3D effect has not formed, the pressure peaks measured in rectangular tank is 
less than or close to those measured by corresponding probes in cylindrical tank. As the 
3D effect become more severe, the pressure peaks measured in rectangular tank is far 
higher than those in cylindrical tank. 

 With filling ratio of 0.75，The difference of two successive pressure peak in cylindrical 
tank is much greater than those in rectangular tank. Because, after slamming the roof, 
most of water will flow through the roof and fall to the fee surface in cylindrical tank 
while much water will go back along the wall in rectangular bank. 
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Abstract 
Yaw is the most common working condition of a wind turbine and the key of reducing the 
fatigue loads and improving the performance of a wind farm is to understand the wake 
characteristics of a wind turbine in yaw condition. A neutral boundary layer flow in the 
atmosphere is simulated by the LES technique using the solver developed based on OpenFOAM 
and the wake flow of a yawed wind turbine modeled by the actuator line is studied. The time-
average velocity field proves the practicability of the yaw control operation in optimizing the 
total power output of a wind farm, but from the cross section contours, the velocity distribution 
in the wake of a yawed turbine is not completely symmetric and the vertical wake deflection 
cannot be neglected, which is the main source of errors of the analytical wake models based on 
the gaussian distribution assumption. The time history curves and frequency spectrum of the 
wake meandering gained from the filtered flow data indicate that the yaw conditions have 
limited impacts on the wake meandering and the downstream position x  is the main factor 
that affects the lateral movement of the wake. As the wake moves downstream, the meandering 
intensity increases and two distinct dominant frequencies of the wiggling wake are found in the 
far wake, of which the Strouhal numbers are 0.09 and between 0.1 ~ 0.3 respectively. 
 
Keywords: Yawed wind turbine; Atmospheric boundary layer; Large eddy simulation; Wake 
meandering 
 

Introduction 

A wind turbine works in yaw condition when the turbine rotor is not perpendicular to the 
incoming wind, which is in fact the most frequent working condition in a real wind farm. The 
inevitable misalignment between the horizontal axis of the wind turbine and the wind speed 
vector could, to a certain degree, reduce the aerodynamic performance and influence the 
development of the wake flow[1]. However, instead of aligning all the wind turbines perfectly 
with the wind direction, appropriate active yaw operation of the wind turbines located upstream 
will significantly decrease the production loss of downstream wind turbines caused by the 
turbine wake and thus achieve the overall optimal performance of the wind farm[2][3]. To build 
up a control algorithm that computes the optimal yaw angle of each turbine given the wind 
regime and the layout of the wind farm, a systematic study of the wake characteristics of a 
yawed wind turbine under various inflow conditions is necessary.  
 
Grant et al.[4] conducted the very early wind-tunnel experiments to observe the vortex structure 
and the deflection phenomenon in the near wake region of a yawed model turbine. Similar 
experimental studies focusing on the near wake flow of wind turbine in yaw condition were 
also performed by Haans et al.[5] and Krogstad & Adaramola[6], with the later work revealing 
that the power output of a yawed wind turbine is proportional to 3cos γ  ( γ is the yaw angle). 
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Bartl et al.[7] used Laser Doppler anemometry in the experiment to investigate the influence of 
the inflow shear and turbulence intensity on the evolution of the deflected wake. Bastankhah 
and Porté-Agel[8]-[10] performed a series of experimental and theoretical researches on both 
the near and far wake flow structure and dynamics of yawed wind turbines and integrated the 
yaw operation into the optimization algorithm of the wind farm. Moreover, the CFD technique 
also plays significant role in related studies. Jiménez et al.[11] introduced the body force 
computed by the actuator disk model to the LES equations for incompressible flow to simulate 
the wake deflection and trajectories and the results agreed well with the experimental 
measurements as well as the prediction of an analytical model. Also from LES case studies, 
which consider the different atmospheric stabilities and the uncertainties of wake defection, 
Vollmer et al.[12] emphasized the importance of the accurate measurement of the shear and 
turbulence of incoming flow in the prediction of the downstream wake position and indicated 
that the active yaw operation could effectively improve the performance of the wind farm in 
condition of an atmosphere with relatively high stability. Based on the work of Bastankhah and 
Porté-Agel[9], Guo-Wei Qian and Takeshi Ishihara[13] proposed an improved  analytical 
wake model for yawed wind turbines able to predict both velocity deficit and turbulence 
intensity, of which the results showed good agreements with those of the RANS simulation 
cases. 
 
The work mentioned above mainly concentrate on the time averaged characteristics of the 
turbine wake, aiming to precisely predict the velocity and turbulence of the wake downstream. 
However, under atmospheric ambient flow, the extension and expansion of the wake is not 
subject to a mathematically expressible rule at a certain instant. The stochastic behavior of 
turbine wake, meandering for example, has noticeable influence on the performance of 
downstream wind turbines. Therefore, in the present work the wake of yawed wind turbine 
under neutral boundary layer flow is simulated and the features of wake meandering as well as 
the time averaged flow field are studied. 

Numerical Method 

Governing Equations 

Considering the superiority in simulating the unsteady large scale turbulent structures in the 
atmospheric flow, large eddy simulation technique is introduced in the present study. In order 
to simulate the ubiquitous effects of the earth’s rotation and the buoyance caused by the spatial 
difference of temperature, the incompressible Navier-Stokes equation consists additionally of a 
Coriolis term and a buoyancy term, which, together with the continuity equation, constitutes 
the governing equation set as follows: 
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        (2) 

The Coriolis force is computed by term Ⅰ, where ijkε   is the alternating tensor and 
[0,cos( ),sin( )]ω φ φΩ = (the planetary rotation rate -57.27 10 /= × rad sω ) is the rotation rate 

vector. The gradient of resolved-scale pressure p  is divided into term Ⅱ, the background 
pressure gradient, and term Ⅲ, which consists of the gradient of one third of the stress tensor 
trace 3kkτ  and 0 0ˆ ( , )p p p x y gzρ= − + .   is the fluid stress tensor and in term  ijτ
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, where  is the Kronecker delta. The Smargorinsky eddy viscosity model is 

used to deal with the D
ijτ  in term : 

                                 (3) 

                             (4) 

Where the sub-filter scale viscosity 2 1/2( ) ( )SFS
s ij ijC S Sυ = Δ , sC  is a constant, set to 0.14 in 

this work. The density ρ  is considered uniform in the whole domain, so the buoyancy effect 
has to be modeled by the Boussinesq approximation as shown in term Ⅴ, where θ  and 

0 300Kθ =  represent the resolved scale potential temperature and reference potential 
temperature respectively. A temperature transport equation decoupled from the N-S equation 
needs to solved to obtain the potential temperature field: 

                              (5) 

                                  (6) 

Equation (6) models the molecular and sub-filter effects in the temperature diffusion, where the 
turbulent Prandtl number Pr 1/ 3t = . Term Ⅵ represents the aerodynamic force of the wind 
turbine blades exerted to the flow field, which is modeled by the actuator line model presented 
in the next part. 
 

Actuator Line Model 

First proposed by Sørensen and Shen[14], the actuator line model is widely used in the 
researches of wind turbine aerodynamics. The main idea is to directly exert the equivalent 
aerodynamic force to the flow field instead of building up the physical model of the turbine 
blades. Concretely, the blade is firstly divided into tens of airfoil segments and of each the lift 
force and drag force generated is expressed as: 

21
2 l relL C U cdrρ=                              (7) 

21
2 d relD C U cdrρ=                             (8) 

Where lC  and dC  are lift and drag coefficients as function of the attack angle α , c  the 
chord length and dr  the width of a airfoil segment. The relative velocity of a certain blade 
segment is computed as: 

2 2( )rel xU U r Uθ= + Ω −                          (9) 

xU  , Uθ   and Ω   are axial velocity, tangential velocity and rotation speed of the rotor 
respectively, among which the relationship is depicted in Fig. 1. The vector sum of the lift force 
and drag force f  is considered equal to the aerodynamic force generated by the corresponding 
airfoil segment. Before applying f  to the flow field, it is necessary to redistribute and smooth 
the concentrated force from one point to a ball-shaped region to avoid the possible numerical 
divergence. As following, the projection is implemented by taking the convolution of f  and 
the regularization kernel εη : 
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                  (10) 

Where d  represents the distance between the grid points and a certain actuator point and ε  
is a constant that controls the concentration of the aerodynamic force. 
 

 
Figure 1. Velocity vector in the cross section of an airfoil segment 

Simulation Setup 

Computation Domain 

Basically, there are two methodologies to realize the atmospheric boundary layer inflow 
condition: (ⅰ) directly producing the pseudo atmospheric boundary layer inflow in the inlet plane 
through mathematical model based on the spectral tensor model[15] or synthetic harmonic 
waves[16]; (ⅱ) simulating a fully developed boundary layer flow in a precursor case and 
collecting the flow data in the cross sections as the inflow condition in the successor case. In 
the present work, the latter is adopted because the synthetic turbulent energy cannot avoid decay 
as flowing downstream since no energy is generated to compensate the dissipation[17]. In order 
to simulate the divers scale turbulent structures in the atmosphere, which could range from a 
few millimeters to more than a kilometer, the width and height of the precursor domain should 
be large enough. Therefore, both the width and height are set to 1008m and the length is set to 
2016m, so as to investigate the flow in far wake region. The layout and main dimensions of the 
domain are indicated in Fig. 2.  
 

 
Figure 2. Layout and main dimensions of the computation domain 

 
The unit grid scale in the background mesh 8mΔ =Ⅰ  and in the region Ⅱ that covers the vicinity 
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of the wind turbine and the whole wake region, the side length of every single mesh cell ΔⅡ  
is set to 4m. Region Ⅲ with the finest mesh resolution 2mΔ =Ⅲ  includes the turbine rotor and 
its vicinity so that the wind turbine aerodynamics and the vortex structure induced behind the 
blade tip and root can be simulated correctly. For analyzing the wake data more conveniently, 
a new coordinate system is created and used in the following work, with the original point 
located at the position of the wind turbine tower and the x-y plane rotating 15.52°around the 
z axis in anticlockwise direction to align the x axis with wind direction. This coordinate system 
is also shown in Fig. 2. 
 

Boundary Conditions and Case Setup  

For the precursor case, all four vertical planes of the domain is set to cycle boundary condition, 
allowing the boundary flow to fully develop within a finit computation domain. The free-slip 
condition is applied to the top, meaning no friction and flux at this plane. Considering the real 
ground is not smooth but with a rough surface which cannot be directly simulated, a wall model 
proposed by Moeng[18] with the roughness length set to 0.001, is introduced to approximate 
the flow near the ground. The mean wind direction is at an angle of 15.52°to the original x-
axis and the wind speed at the hub height is prescribed to the rated wind speed of the NREL-
5MW wind turbine 11.4 /m s  . The computation runs with a time step of 0.5s   until the 
boundary layer flow reached quasi-equilibrium state under the horizontal driving pressure. Then 
the simulation continues but with the time step reset to 0.02s  and the flow data is collected as 
the inflow database of the successor cases. 
 

Table 1: Main parameters of the NREL-5MW wind turbine 
 Values Units
Rating 5.00 MW
Rotor orientation Upwind − 
Blade number 3 − 
Rotor diameter 126 m
Hub height 90 m
Rated wind speed 11.4 m/s
Rated rotation speed 12.1 rpm 

 
Three successor cases were set up, among which the first case contains a wind turbine rotating 
at 12.1rpm  with its rotor directly facing the wind direction and in the other two cases, the wind 
turbine is 30°yawed in clockwise and counterclockwise direction respectively while keeping 
the other conditions unchanged. The main object is to investigate the wake deflection and wake 
meandering phenomenon in the far wake region of the yawed wind turbine under neutral 
boundary layer flow through a comparative study with the non-yaw condition case. The main 
properties of the wind turbine is listed in Table 1.  

Results 

NBL Flow Validation 

The boundary layer flow is considered fully developed after the simulation of 18000s , with the 
wind speed and direction at the hub height stable at the prescribed values. Fig. 4 shows the time 
averaged vertical profiles of streamwise wind speed, wind direction and the streamwise 
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turbulent intensity which is defined as the following formula:  
 

0

( )
( )

( )( )
u

x
u u z

I z
u zu z
σ′ ′

= =                            (10) 

Where the overbar represents time averaging, ( )u u t u′ = − , and 0u u=  is considered as the 
ambient flow velocity in streamwise direction. In order to validate the velocity profile, the 
logarithmic law is also plotted in Fig. 3(a) and the measured velocity in the Prandtl layer accords 
well with the theoretical value. The three red dash lines in the picture mark the top, bottom and 
the hub height of the turbine rotor. Strong wind shear occurs around the hub height and the 
speed difference between the wind speeds at top and bottom of the rotor attains 1.68 /m s  , 
which is a typical characteristic of the neutral boundary layer flow. As shown in Fig. 3(b), under 
the Coriolis effect, the wind turbine also experiences a wind direction shear of two degree. The 
influence of wind direction shear on the development of the wake cannot be neglected, because 
a deviation of 2°across the rotor will stretch the wake transversely by 0.18 ~ 0.28D D  after 
the advection of 5 ~ 8D D , which is the normal streamwise spacing between two wind turbines 
in a wind farm. From the Fig.3(c), the streamwise turbulent intensity near the ground reaches 
10% and decreases rapidly as the height rises to 200m , indicating that properly raising the hub 
height of the wind turbine could significantly reduce the fatigue loads on the blades. The 
turbulent intensity at the hub height in the precursor case is 6.4%, a typical value of the ABL 
flow over a calm sea or an empty ground, which corresponds to the roughness length of 0.001 
prescribed in the wall model. 
 

 
             (a)                      (b)                     (c) 

Figure 3. Time averaged characteristics of the atmospheric boundary layer flow in 
precursor case: (a)streamwise wind speed profile; (b)wind direction profile; 

(c)streamwise turbulent intensity profile 
 

Velocity Deficit and Wake Deflection 

The velocity deficit represents the loss of the streamwise wind speed in the wake region 
normalized by the ambient inflow velocity, as defined by the following expression: 

01du u u= −                               (10) 
The velocity deficit distributions in different downstream positions in the central vertical plane 
and the hub height horizontal plane are plotted in Fig. 4, with the origin of height set to hub 
height and the scale normalized by rotor radius R . As seen in Fig. 4(a), the velocity deficit 
profiles of the non-yawed turbine show symmetry until 6D  downstream, after which the wind 
speed in the upper part of the wake region recovers faster than that of the lower part, because 
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the expansion of the wake is blocked by the ground and the compensation of the kinetic energy 
is mainly acquired through the shear layer turbulent flow in the top part of the wake. The 
velocity deficit in the wake of a yawed turbine is relatively small compared with that of a non-
yawed turbine, because only the velocity component perpendicular to the rotor plane can be 
utilized. Moreover, the crosswise thrust induced by the misalignment between the turbine shaft 
and wind direction push the whole wake aside. For this reason, the flow data probed in the 
central longitudinal plane of the domain shown in Fig. 4(a) show very low level velocity deficit 
in the far downstream positions, which indicates a low power loss of downstream wind turbines 
and demonstrates the practicability of yaw operation in the wind farm optimization algorithm. 
From Fig. 4(b), the wake center in yaw condition deflects aside as moving downstream, with 
the lateral displacement reaching 1R  in 10D  position, and it is clearly seen in all cases that 
the velocity deficit curves transform from M shape in the near wake to gaussian curves after 

4x D= . This self-similarity feature in the far wake is also one of the basic assumptions in the 
analytical models of wind turbine wake. 
 

 
          (a)                                   (b) 

Figure 4. Time averaged velocity deficit in different downstream positions: (a)central 
longitudinal plane; (b) hub height horizontal plane  

 
Fig. 5(a) shows the time averaged velocity deficit contours in the hub height horizontal plane 
of case 1~3. The profile in every x  position is fitted by a gaussian curve, of which the 
parameter μ  indicates the coordinate of the wake center and plotted as black dotted line in 
this figure. The velocity deficit in the near wake in case 0 is much more serious than those in 
the other two cases and due to the larger wake width, it takes longer distance for the shear layer 
to fully develop and recover the wind speed around the wake center. By contrast, the effective 
area against the wind reduces when a turbine yaws, so the wake region narrows and the shear 
layers in both sides meet earlier with each other in the wake core region. Moreover, the wake 
deflection of the yawed turbine is also clearly seen and the time averaged wake traces of the 
two turbines yawed in opposite direction show symmetry in lateral displacement. The wake 
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skew angle ( tan u vθ θ≈ = ) reveals the tendency of the lateral movement of the wake. From 
the wake skew angle contour in Fig. 5(b), in case 0, the outwards radial flow induced by the 
turbine blades weakens immediately behind the rotor, while in cases with yawed turbines, the 
windward part of the rotor induces the air to flow inward and this tendency becomes even more 
strong downstream in the near wake, dominating the whole wake region and gradually 
decreasing in the far wake region.  
 

 
                 (a)                                (b)  

Figure 5. Contours of time averaged wake field in the hub height horizontal plane: (a) 
velocity deficit; (b) wake skew angle  

 

 
Figure 6. Contours of time averaged velocity deficit in different cross sections 
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To illustrate the wake deflection in both y  and z  direction, the contours of time averaged 
velocity deficit of 2 ,  6 ,  10x D D D=  cross sections are shown in Fig. 6, with the hub center 
marked by a plus sign and the rotor edge marked by a black circle. For 2x D=  position, the 
wakes in case 1 and 2, compared with the round wake region in case 0, show the shape of a 
ellipse and the wake center of the turbine with 30γ = °  moves upward and the other moves 
downward. In 6D  downwind location, the wake changes into kidney-shape, caused by the 
forming of a counter-rotating vortex pair in the far wake region of a turbine with high yaw 
angle[8] and the wake remain this cross section shape until 10x D= . Furthermore, the two 
wakes of turbines yawed in opposite directions are not completely symmetric and the vertical 
deflection of the wake center seems to have the same order of the magnitude as the lateral. Thus 
the yaw direction and the vertical wake deflection cannot be neglected when predicting and 
describing the wake flow of a turbine in yaw condition. 
 

Wake Meandering 

As seen in the Fig. 7, which shows the instantaneous velocity deficit field in the hub height 
plane, The trace of the wake center of an instant marked by the solid line is not a smooth line, 
but wiggles around the average center line. This phenomenon called wake meandering is caused 
by the large-scale turbulent structure in the atmosphere and the meandering is not completely 
random but demonstrates certain statistical properties. It should be noted that the velocity data 
used in this part are all filtered temporally with a 𝜏-window: 
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t
u u t dt
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τ
τ

τ
+

−
=                             (11) 

The purpose is to conserve the large scale flow structure and eliminate the high frequent 
turbulence, which could lead to the bias in the estimation of the wake meandering. The value 

0.6 3T sτ = ≈  is chosen as same as the window width used by Foti[19].  
 

       
Figure 7. Filtered velocity deficit field in 

hub height plane of = 380t s   
Figure 8. Time history curves of μδ  in 

different downstream positions 
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The Fig. 7 shows that the levels of the wake meandering in all three cases are nearly the same, 
although the velocity deficit in case 0 is larger than those in yaw condition, and the amplitudes 
of the wiggle increases as it moves downstream. The lateral displacement of an instantaneous 
wake center relative to its average value in a certain downstream position, defined as 

( ) ( ) ( )t t tμδ μ μ= −  is used to describe the scale of the wake meandering. Because 4 ~ 10D D  
is the common streamwise spacing between turbines in the wind farm, the study of the wake 
meandering in this range has more reference value for the engineering practice. The ( )tμδ  in 
the 4 ,  7 ,  10x D D D=  locations are acquired by fitting the gaussian curve to the temporally 
filtered velocity deficit profile of the three positions and the time history curves of ( )tμδ  
normalized by rotor radii R  for case 1~3 are plotted in Fig. 8. The results show that there is 
strong correlation between the curves for the same position of three cases. Considering the 
inflow data of case 1~3 are exactly the same (collected from the same precursor case), the 
similarity of the time history meandering curves of different cases provides the strong evidence 
for the assumption made by Larsen et al. in his work[20], which indicates that the wake acts as 
a passive tracer driven by the large-scale turbulence structures in the atmospheric boundary 
layer. 

Figure 9. Root mean square of μδ    Figure 10. Frequency spectrum of μδ  

 
To investigate the influence of yaw condition and downstream distance on the intensity of the 
wake meandering, the root mean square of ( )tμδ  is computed with the results shown in Fig. 
9. Apparently the wake meandering intensity raises as the wake moves downstream, which is 
also demonstrated in Fig. 7 and 8. Moreover, by comparison, the influence of yaw condition on 
the wake meandering intensity is inappreciable, because the difference of rms among three 
cases is less than 0.05R , which can be neglected in the performance prediction of a wind farm. 
The normalized frequency spectrums gained by the FFT of ( )tμδ  series are depicted in Fig. 
10. The spectrum for 4=x D  shows two distinct peaks corresponding to 0.18=St  and 

0.36=St  respectively in all cases, while in the spectrum for 7=x D , one dominant frequency 
0.09=St  and several subpeaks with 0.1 0.4< <St  and almost the same amplitude are 

detected. The main frequency with the highest amplitude of the meandering for 4D  
downstream position corresponds to a period 0( ) 120= ≈T D u St s , and this dominant frequency 
keeps the same value for 10D  downstream position. But the subpeaks with relatively high 
frequency weaken as x  increases and only the secondary peaks, of which the Strouhal number 
is between 0.1 ~ 0.3, remains remarkable until 10=x D , as illustrated in the last graph in Fig 
10. The dominant low frequent meandering from 4=x D  to 10=x D  with a period up to 120s 
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is supposed to be affected by the kilometer scale flow structure in the atmospheric boundary 
layer, and the secondary frequency component of the wake meandering, with 0.1 0.3< <St , is 
also found in the experimental work by Okulov[21]. 

Conclusion 

Performance optimization of a wind farm through yaw control is a realizable and promising 
technique but still needs a deep understanding of the wake characteristics of a yawed wind 
turbine operating in the atmospheric boundary layer. In the present work, the wake flow of a 
single wind turbine with and without a yaw angle is studied through actuator line model and 
LES technique. The velocity and turbulence intensity profiles of the flow generated in the 
precursor case show a typical stratification of a neutral boundary layer flow in the atmosphere 
and accord well with the prescribed wind velocity and direction. 
 
For a turbine operating in yaw condition, the time-average velocity deficit is generally smaller 
than that of a non-yawed turbine, because the misalignment leads to the decrease of the effective 
wind speed, which is a function of the yaw angle γ . In the central longitudinal plane, the 
velocity deficit in far wake region behind a turbine with a yaw angle of 30± °  is much weaker 
than that behind a non-yawed turbine, indicating the power output of a turbine downwind could 
be raised significantly by yawing the turbines located upstream. Moreover, the profiles of the 
velocity deficit in all cases show self-similarity and obey well with the gaussian distribution in 
the horizontal plane. Nevertheless, through the contours of du  in different cross sections 
downstream, the velocity distribution in the far wake of a yawed wind turbine is not symmetric 
but shows a kidney-shape and the direction of the vertical deflection of the wake center depends 
on the yaw direction, which reduces the accuracy of the analytical wake model based on the 
gaussian distribution assumption.  
 
A filtering process proposed by Howard[22] is introduced to smear out the high frequent 
turbulence and highlight the wake meandering movement. The time history curves of the 
meandering for case 1~3 show high correlation, demonstrating that the large-scale movement 
of the wake follows the flow structure with the same scale in the incoming flow. The rms values 
of μδ  for all cases increase as the wake flows downstream and show nearly the same 
magnitude until 10=x D . Furthermore, regardless of the yaw condition, the frequency 
spectrum analysis shows a constant dominant frequency in the far wake region, caused by the 
low frequent turbulence in the atmosphere and other subpeaks frequency components with 
0.1 0.3< <St  are found from 4D  to 10D  downstream positions, which is a main factor that 
influences the fatigue loads of the wind turbines in a wind farm. Future work should focus on 
the wake meandering characteristics of wind turbines under different atmospheric stratifications 
and its influence on the performance and aerodynamic loads of downstream turbines. 
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Abstract 
There are strong interactions between the aerodynamics and hydrodynamics in the floating 
offshore wind turbine (FOWT) system. The aerodynamic loads of wind turbine acting on the 
floating support platform via turbine tower enlarge the motion responses amplitudes, which in 
return alters the aerodynamics of wind turbine. How the platform pitch motion interact with the 
wind turbine aerodynamics under operating wind-wave conditions is an attractive research. In 
the present work, the unsteady aerodynamics of the FOWT are investigated numerically with 
an unsteady actuator line model (UALM) that take the additional relative wind speed induced 
by the platform motions into consideration. To investigate the influence of platform pitch 
motion on unsteady aerodynamic characteristic, coupled aero-hydrodynamic simulations of a 
spar-type FOWT with and without pitch motion under shear wind and regular wave are both 
performed. The aerodynamic characteristics including the rotor power, thrust, fatigue loads and 
detailed wake field information are analyzed. Furthermore, the relative wind velocity, attack 
angle and the bending moments at blade root for different simulation conditions are compared 
and discussed to explore the intrinsic relationship between platform pitch motion and unsteady 
aerodynamics. It can be found that the average and oscillating amplitude of pitch responses 
under operating wind-wave loads increase remarkably due to aerodynamic forces. The dramatic 
change of aerodynamic loads significantly alters the forces acting on the rotating blades with a 
result of rapidly increased fatigue loads and instability problem. Thus, complicated control 
strategies are supposed to apply in the FOWT system to suppress the motion responses of 
floating platform. 
 
Keywords: Floating wind turbines; Pitch motion; Unsteady aerodynamics; Fatigue loads; 
Unsteady actuator line model 

Introduction 

Wind energy is thought to be one of the most promising renewable energy due to enormous 
reserves, and the wind power technology have become more mature in the past decade [1]. With 
the depletion of land resources for onshore wind farms, the offshore regions with much stronger 
and smoother wind become a better choice. In shallow waters, bottom-fixed offshore wind 
turbines have achieved great success. However, the noise restriction and visual pollution limit 
its further development and application. The offshore wind turbines are advancing into deep 
water areas [2][3]. Considering that the cost of offshore wind turbines mounted on bottom-fixed 
structures increases sharply with water depth, the floating offshore wind turbine (FOWT) is 
generally believed to an alternative [4][5]. Several countries have planned to build floating wind 
farms. From the perspective of practical deployment, there are still some challenges for the 
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FOWT, especially the stability problem. Different from the onshore wind turbine and bottom-
fixed wind turbine, the FOWT consisting of a wind turbine, a floating platform and a mooring 
system is a rather complex system and suffers various environment excitations from winds, 
waves and currents. There are strong interactions between the wind turbine and floating support 
platform. The aerodynamic loads of wind turbines acting on the floating support platform via 
turbine tower will enlarge the motion responses amplitudes, which in return alters the 
aerodynamics of wind turbine [6]. The study of Sebastian [7] indicated that the unsteady 
aerodynamics of wind turbine were significantly influenced by the surge, pitch and yaw motions 
of the floating support platform. The platform pitch motion that results in a non-uniform flow 
on the turbine rotor and more complex blade-wake interaction significantly affects the 
aerodynamic performance.  
 
In order to investigate how the platform pitch motion influences the unsteady aerodynamics of 
wind turbine and explore the interaction mechanism, a number of experimental and numerical 
researches have been conducted. Leble and Barakos [8] studied the aerodynamic performance 
of DTU 10MW wind turbine with prescribed sinusoidal pitching and yawing motions. They 
found that the mean power for pithing amplitudes of 5 deg is 32.8% larger than that without 
pitching motion. It indicated the pitch motion was advantageous to improve the mean power 
output of the wind turbine. However, the platform pitch motion also had adverse effects on the 
stability of aerodynamic power. The numerical research conducted by Tran and Kim [9] showed 
that the instantaneous aerodynamic power of the NREL 5MW wind turbine varied from 0MW 
to 15MW when the wind turbine experienced a platform pitch motion with an amplitude of 4 
deg and a period of 5s. Besides, they have conducted a series of CFD simulations focusing on 
the influence of platform pitch motion on the unsteady aerodynamics and wake characteristics. 
The rotating blades and generated wake vortices were found to have strong interactions with 
each other. And the aerodynamic loads presented highly unsteady characteristics due to the 
platform pitch motion [10][11]. Consequently, the aerodynamic performance of the FOWT greatly 
affected by the platform pitch motion. Several studies have tried to reveal the interaction 
mechanism between the platform pitch motion and the unsteady aerodynamics of the wind 
turbine. Wen et al. [12] investigated the influence of the platform pitch amplitude and frequency 
on the power performance using Free Vortex Method (FVM). It was concluded that the impacts 
of platform pitch motion on mean power output had great discrepancy when the tip speed ratio 
changed. And they proposed a platform-pitch-induced (PPI) wind shear model in their later 
work to explain the influence of platform pitch motion on unsteady aerodynamics and 
investigated the influencing factors of the PPI wind shear [13]. Wind tunnel experiments were 
also carried out to model the wake characteristics of wind turbine. Rockel et al. [14] used Particle 
Image Velocimetry (PIV) technique to observe the development of a model wind turbine wake 
and discussed the influence of platform pitch motion on aerodynamic power and wake 
characteristics. Khosravi et al. [15] performed an experimental study with 1:300 scaled model 
wind turbine to analyze the influence of platform pitch motion on aerodynamic loading and 
turbine wake characteristics. The fatigue loads were detected to be increased remarkably due to 
the platform pitch motion, which will lead to the decrease of the lifetime of wind turbine blades. 
 
It can be found that the existing researches about the effects of platform motions on the 
aerodynamic performance of wind turbine mainly focus on the prescribed platform pitch motion 
while not the pitch response of floating support platform in realistic environment. In our 
previous work, the coupling effects between the aerodynamics of the wind turbine and the six-
degree-of-freedom platform motions under wind-wave conditions have been investigated by 
comparing the coupled aero-hydrodynamics including aerodynamic forces, platform motion 
responses and mooring tensions [16]. Simplified force model that assumes the time-varying 
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aerodynamic forces acting on the floating support platform as constant loads and coupled 
analysis model FOWT-UALM-SJTU were both applied to simulate the aero-hydrodynamic 
performance of the FWOT to detect the coupling relationship between aerodynamics and 
hydrodynamics in FOWT system. However, how the different degree-of-freedom platform 
motions under realistic wind-wave loads, especially for the pitch responses, influence the 
unsteady aerodynamics of wind turbine is still to be further discussed. And it is exactly what 
we concern in the present work. In order to explore the impacts of platform pitch motion on the 
unsteady aerodynamics and wake characteristics under operating conditions, coupled aero-
hydrodynamic simulations for a spar-type FOWT under combined wind and waves are 
conducted. And the coupled CFD analysis tool FOWT-UALM-SJTU [17] is chosen again to 
model the aero-hydrodynamic performance. The aerodynamic characteristics including the 
rotor power, thrust, fatigue loads and detailed wake field information are analyzed to reveal the 
detailed relationship between the platform pitch motion and the unsteady aerodynamics of wind 
turbine. 

Numerical Method 

Unsteady Actuator Line Model 

Full scale CFD simulations for the wind turbine are quite time consuming and requires a 
significant amount of computing resources while detailed flow field information can be 
obtained. The Blade Element Theory (BEM) and Free Vortex Method (FVM) have the 
characteristics of fast accurately calculating, but the detailed wake characteristics cannot be 
acquired. The actuator line model (ALM) proposed by Sørensen and Shen [18], which combined 
the advantages of these methods, is chosen in the present work to model the aerodynamics 
performance of the FOWT. The real blade surfaces of the wind turbine are replaced with virtual 
actuator lines in the ALM. Each actuator line is further discretized into a serial of actuator points 
and each actuator point represents a section of the blade. The aerodynamic force acting on the 
blades are calculated from the local attack angle and a look-up table of airfoil data. Then the 
calculated body forces smeared by regularization kernel function are introduced into the 
moment equations to reproduce the turbulent wake flow. 

 
Fig. 1 Velocity at cross-sectional airfoil element 

 
In order to model the unsteady aerodynamic characteristics of the FOWT, modifications are 
made to the initial ALM. As Fig. 1 shows, the additional velocity 𝑼𝑴 induced by the platform 
motion, which intensify the interaction phenomenon between rotating blades and wake field, is 
taken into consideration in the calculation of local attack angle. To determine the body forces 
acting on the blades, a blade element approach combined with two-dimensional airfoil 
characteristics is used. To illustrate the relationship between different velocities at cross-
sectional airfoil element, a cross-sectional element at radius r defines the airfoil at the (θ, z) 
plane. Denoting the tangential and axial velocity in the inertial frame of reference as 𝑼𝜽 and 𝑼𝒛, respectively.  
The local velocity 𝑈௥௘௟ relative to the rotating blade is defined as: 
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 𝑼௥௘௟ = 𝑼ఏ − 𝜴 × 𝒓 + 𝑼௭ + 𝑼ெ (1) 

Where 𝛺 is the rotating speed of the wind turbine. Then the attack angle can be calculated by 
the following equation: 

 𝛼 = 𝜙 − 𝜃௧ (2) 

Where 𝜙 is the inflow angle. 𝜃௧  is the local twist angle. The aerodynamic forces can be 
obtained by the following equation: 

 𝒇 = (𝑳, 𝑫) = ఘ|௎ೝ೐೗|మ௖ே್ଶ௥ௗఏௗ௭ (𝐶௅𝒆௅ + 𝐶஽𝒆஽) (3) 

Where 𝑐 is the chord length; 𝑁௕ is the number of blades; 𝐶௅ and 𝐶஽ are the lift and drag 
coefficient, respectively; 𝒆௅ and 𝒆஽ denote the unit vectors in the directions of the lift and 
the drag, respectively.  
To reproduce the turbulent wake flow, the calculated aerodynamic forces need to be smeared 
before they are introduced into the moment equations to avoid singular behavior in numerical 
simulations. 

 𝒇ఌ = 𝒇⨂𝜂ఌ(𝑑) = ଵఌయగయ/మ 𝑒𝑥𝑝 ൤− ቀௗఌቁଶ൨ (4) 

Here 𝒇ఌ is the source term added into the right hand of momentum equation. 𝑑 is the distance 
between the measured point and the initial force points on the rotor. 𝜀 is a constant which 
serves to adjust the strength of regularization function. 
 

FOWT-UALM-SJTU solver 

Using the UALM to model the unsteady aerodynamics of wind turbine, a coupled CFD analysis 
tool FOWT-UALM-SJTU for FOWT is established by interpolating the UALM into in-house 
code naoe-FOAM-SJTU. This tool is utilized in the present work to achieve the coupled aero-
hydrodynamic simulations for the FOWT. The in-house code naoe-FOAM-SJTU solver based 
on the open source CFD toolbox OpenFOAM is developed to investigate typical hydrodynamic 
problems of ship and marine engineering. It is composed of a 3D numerical wave tank module, 
a 6DOF motion module, a mooring system module and the interface module with OpenFOAM. 
It is applied to study the hydrodynamics of the spar-type floating support platform with a 
mooring system. The volume of fluid (VOF) method with bounded compression technique is 
utilized to capture the free surface, and a dynamic deformation mesh approach is employed to 
handle structure motions. The piecewise extrapolating method (PEM) is chosen to solve the 
constraint of the mooring line system.  

 
Fig. 2 Schematic diagram of the coupled analysis tool 
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Governing equations 

Considering the wind speed is low, the air phase is regarded as incompressible liquid as the 
water phase is. The same governing equations are adopted to solve these two-phase flow 
conditions. The three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations are 
selected as governing equations for the FOWT-UALM-SJTU model, and the k-ω SST 
turbulence model is employed for closure of RANS equations.  
 𝛻 ⋅ 𝑼 = 0 (5) డఘ𝑼డ௧ + ∇ ⋅ ቀ𝜌൫𝑼 − 𝑼௚൯ቁ𝑼 = −∇𝑝ௗ − 𝒈 ⋅ 𝑥∇𝜌 + ∇ ⋅ ൫𝜇௘௙௙∇𝑼൯ + (𝛻𝑼) ⋅ 𝛻𝜇௘௙௙ + 𝒇ఙ + 𝒇௦ + 𝒇ఌ (6) 

Where 𝑼 is flow velocity in computation domain; 𝑼௚ is the velocities of flow field on the 
grid nodes; 𝑝ௗ = 𝑝 − 𝜌𝒈 ⋅ 𝑥  is the dynamic pressure; 𝒈  is the gravitational acceleration 
vector; 𝜌 is the mixture density with two phases; 𝜇௘௙௙ = 𝜌(𝜈 + 𝜈௧) is effective dynamic 
viscosity, in which 𝜈 and 𝜈௧ are kinematic viscosity and eddy viscosity respectively; 𝒇ఙ is 
the surface tension term in two phases model and takes effect only on the liquid free surface; 𝒇௦ is the source term for sponge layer, which is set to avoid the wave reflection at the end of 
the computation domain and takes effect only in sponge layer. 
 

Simulation descriptions 

Analysis object 

A spar-type FOWT consisting of the NREL 5-MW baseline wind turbine and the OC3 Hywind 
spar-type floating platform with catenary mooring lines is selected in the present work to 
investigate the influence of platform pitch motion on the unsteady aerodynamics of wind 
turbine. The NERL 5-MW wind turbine is a conventional three-bladed, upwind, variable-speed 
and variable blade-pitch-to-feather controlled turbine [19]. The floating support platform a spar-
type concept platform called Hywindspar [20]. Three catenary mooring lines are arranged around 
the platform to limit the platform motions and keep the stability of the FOWT. The sketch of 
the spar-type FOWT is shown in Fig. 3. To simplify the aerodynamics modelling, the tower, 
hub and nacelle are not taken into account. And there is no control strategy for the wind turbine.  
Different from our previous work [16] that simply the aerodynamics of wind turbine with 
simplified force model to focus on the hydrodynamic responses of floating platform and the 
coupling effects between aerodynamic and hydrodynamics in the FOWT system, the major 
objective of the present work is to investigate the unsteady aerodynamics of the wind turbine 
with realistic platform pitch motion under operating wind-wave loads. In order to detect how 
the platform pitch motion under operating wind-wave conditions affects the aerodynamics of 
the wind turbine, two simulation cases with different platform state are performed using FWOT-
UALM-SJTU model in the present work. In case 1, the floating support platform remains 
stationary. While the platform pitch motion is taken into consideration in case 2. Wind and 
wave conditions in these two cases keep the same, which are referenced to Jonkman’s work [20]. 
The exponential model is adopted to describe the characteristic of height-dependent wind speed. 
The wind speed at the height of z is defined by following equation: 
 𝑢௓ = 𝑢଴ × ቀ ௭ଽ଴ቁ଴.ଵସଷ (7) 
Where 𝑢଴ is the wind speed at the height of the turbine hub. In this study, the rated wind speed 𝑢଴ = 11.4m/s is selected for the analysis of unsteady aerodynamics. The corresponding turbine 
rotor speed is 12.1 rpm. The incident wave is first order Stocks wave. The wave height and 
wave length are 6m and 10s, respectively. There is no control algorithm for the wind turbine in 
the present simulations. 
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Fig.3 Diagram of the FOWT system Fig. 4 Computation domain 

 

Computation Domain 

A hexahedral computational domain is applied for the present numerical simulations. The 
length and width are set to 540m and 400m respectively, about a dimension of 4.3D×3D 
(D=126m is the diameter of the NREL 5-MW wind turbine). Considering the expansion of 
turbine wake, the height of the air phase is set to 280m (about 2.2D). To decrease the grid 
number and limit the computation resources, the depth of water phase is set to 224m that is the 
70% of real water depth (d=320m), for this water depth is deep enough to neglect the influence 
of water depth on platform motion response. A rectangle sponge layer with length is selected 
to avoid the effects of wave reflection. The FOWT system is located in the middle of 
computation domain along the x direction, 1𝜆 (𝜆=156m is the wave length of incident wave) 
behind the inlet boundary. The main parameters of the computation domain are shown in Fig. 
4.  

 
Fig. 5 Grid distribution in longitudinal section and cross section 

 
To capture detailed wake behavior and water surface, the grids behind the wind turbine and 
near the free surface are refined. As Fig. 5 shows, region I is the background mesh, where the 
grid size is 8m×8m×8m. Region II represents the refined mesh with the grid size of 
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2m×2m×2m. And the grids near free surface are generated with the size of 2m×2m×0.5m. 
The total grid number is 3.5 million, which is affordable to achieve the coupled aero-
hydrodynamic simulations for FOWT.  
 

Results and Discussions 

Aerodynamic load characteristics 

In this study, aeroydnamic performance of the FOWT with platform pitch motion is compared 
with that of fixed wind turbine to explore the influence of pitch responses the floating support 
platform in operating wind and wave conditions on the unsteady aerodynamic characteristics. 
Simulation time for all coupled cases is 180s while only the aero-hydrodynamics in the last 20s 
are analyzed, as the coupled performance of the FOWT have stabilized during this period. Duo 
to the contribution of wind loads, the pitch response of floating support platform becomes great 
and oscillates periodically, which furhtermore makes the aerodynamic characteristics change 
in the same tendency. It can be seen from the Fig. 6 that the oscillating amplitude of pitch 
motion for the flaoting support platform under wind and wave loads is nearly 2 degrees, almost 
half of the average value of the pitch response. The similar phenomenon can also be found in 
our previous work [16]. This significantly variation of the platform pitch moiton transfers to the 
turbine rotor via tower and potentially influences the relative wind veloticy at the cross sections 
of rotating blades, amplifying the cyclical change of the local attack angle. To clearly show the 
effects of pitch motion, the relative wind velocity including the axial and tangential wind 
velocities during the rotation of blades and attack angle with respect to azimuth angle for the 
blade #1 at a typical blade section r/R = 0.8 (R=63m is the radius of the turbine blade) are 
presented in Fig. 7 and Fig. 8, respectively. It should be noted here that the cyclical change of 
relative wind velocity consisting of axial wind velocity and tangential wind velocity in fixed 
case is because of the height-dependent characteristics of wind speed. 

 
Fig. 6 Pitch responses of the floating support platform under operating wind and wave 

conditions. 
 
Due to the additional relative wind speed induced by the pitch responses, the amplitudes of the 
axial wind speed and the tangential wind speed experiencing by the turbine blades both become 
larger. The pitch angular velocity for the floating support platform shown in Fig. 6 may explain 
this phenomenon. The relative wind speed reaches the maximum value when the floating 
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platform moves forward passing the equilibrium position (Point A shown in the Fig. 6) 
corresponding to the minimum value of pitch angular velocity, resulting from that the directions 
of platform pitch motion and wind speed are opposite. By contrast, the minimum relative wind 
speed corresponds to the maximum pitch angular velocity (Point B shown in the Fig. 6).  

(a) axial wind speed (b) tangential wind speed 
Fig. 7 Characteristic values of relative wind speed experiencing by blade #1 at a typical 

blade cross section r/R=0.8 during the rotation of wind turbine. 
 
The change of relative wind speed will cause the variation of the local attack angle and 
furthermore influence the lift and drag forces acting on the rotating blades, which leads to the 
unsteady characteristics of aerodynamic loads including the rotor power and thrust. It is easy to 
find out that the variation period of local attack angle is about 5s in the fixed case while it is 
about 10s is the in the pitch case. And averaged value of the attack angle for the rotating blade 
affected by the platform pitch motion decreases by 7% compared to that of the fixed wind 
turbine aerodynamics. Moreover, the same changing tendency can also be found in the variation 
of lift coefficient respected to the azimuth angle shown in Fig. 9. The rotor power and thrust of 
the wind turbine for different simulation conditions are compared in the Fig. 10. It can be 
observed that the averaged aerodynamic responses including rotor power and thrust for rotating 
turbine with platform pitch motion are obviously smaller than those with fixed platform. The 
rotor power and thrust in the pitch case averaged in 160s~180s are decreased by nearly 11% 
and 8%, respectively. It indicates that the pitch responses of floating support platform under 
operating wind and wave conditions have adverse effects on the aerodynamic power output of 
the wind turbine. In addition, the oscillating rotor power and thrust amplitudes of the wind 
turbine with platform pitch motion are about 83% (3.94MW) and 41% (272kN) of the 
corresponding averaged aerodynamic loads. This dramatic change of aerodynamic load will 
significantly alter the forces acting on the rotating blades with a result of rapidly increased 
fatigue loads and instability problem, which may cause severe damage to critical system and 
structures and reduce the service life of turbine blades. As presented in Fig. 11, the characteristic 
values of bending moments acting on the blade root during the rotation of turbine blades are 
plotted to show how the platform pitch responses influence the fatigue loads. It can be seen that 
the axial bending moment responses are obviously greater than that of the tangential bending 
moment due to the structure characteristics of turbine blades. Moreover, the bending moments 
along axial direction and tangential direction for the rotating blades with platform pitch motion 
both have significantly larger variation amplitudes compared to those with fixed platform. The 
variation amplitude of tangential bending moment in pitch case is nearly 2.86 times of that in 
fixed case, and this ratio increases up to 3 times for the axial bending moment. Therefore, 
complicated control strategies are supposed to apply in the FOWT system to suppress the 
motion responses of floating platform. 
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Fig.8 Comparison of the attack angle at 
r/R=0.8 of the rotating blade. 

Fig. 9 Comparison of lift coefficients of 
the blade section at r/R=0.8. 

 

(a) rotor power (b) thrust 
Fig. 10 Comparison of the aerodynamic loads for wind turbine with fixed and pitch 

degree-of-freedom platform. 
 

(a) axial bending moment (b) tangential bending moment 
Fig. 11 Comparison of time-averaged blade root bending moments defined at blade-

aligned coordinate system. 
 

Wake field characteristics 

The computational fluid dynamic method is utilized in the present work to investigate the 
influence of pitch responses of floating support platform under operating wind and wave 
conditions on the unsteady aerodynamic characteristics of FWOT. Modified body forces model 
UALM is employed to model the unsteady aerodynamics of wind turbine, which is an effective 
way to achieve the coupled aero-hydrodynamic simulations for the FOWT with affordable 
computational resources. Detailed wake information and flow field characteristics for different 
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simulation conditions are compared and analyzed to explore the effects of platform pitch motion 
on the wake field. It should be noted here that the hub, cabin and tower are not taken into 
account in the coupled simulations. 

(a) pitch case (b) fixed case 
Fig. 12 Visualization of instantaneous (t=170s) vorticity counter at horizontal plane with 

the height of hub center (z=90m). 
 
As illustrated in Fig. 12, the instantaneous vorticity at the reference horizontal plane with the 
height of hub center for different simulation conditions are presented. It can be seen that clear 
vorticities generated from the blade tip and root are captured and the periodic vortex shedding 
phenomenon is also observed. Duo to additional velocity induced by the cyclic pitch motion of 
floating support platform, the distance between two adjacent wake vortices in pitch case is 
larger than that with fixed platform. In fixed case, the tip vortices quickly merge with the 
adjacent vortex during the development of wake flow. Whereas the vortices generated from the 
rotating blades with platform pitch motion spear further before they are merged in the 
downstream of wake field. In addition, it can be obviously found that the wake filed 
maldistribution is more serious due to the influence of platform pitch motion, which indicates 
the downstream FOWT will suffer more complicated and unsteady inflow condition. Moreover, 
the iso-surface plot of the second-order invariant of velocity gradient tensor Q colored by the 
wind velocity are illustrated in Fig. 13 to visualize the vortices. The vortices generated from the 
wind turbine with fixed platform are rapidly dissipated in the downstream wake filed. And the 
vortical structure is found to lean backward obviously duo to the platform pitch response. 

(a) Pitch case (b) Fixed case 
Fig. 13 Illustration of coupled simulations for the FOWT where the wake vortex is 

counted by Q=0.01 and colored by wind speed. 
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Conclusions 

In this study, computational fluid dynamic method with modified body force model UALM is 
employed to simulate the coupled aero-hydrodynamic characteristics of the FOWT with 
realistic platform pitch responses under combined wind and wave condition. The application of 
UALM for unsteady aerodynamics of wind turbine makes the coupled CFD analysis for FOWT 
much more effectively compared with conventional method that consider the actual blade 
surface. Pitch responses of the floating support platform, unsteady aerodynamic characteristics 
including the attack angle, relative wind speed, aerodynamic loads, blade root bending moments 
and detailed wake information are obtained and discussed to investigate the strong interactions 
between the unsteady aerodynamics and platform pitch motion for FOWT system in operating 
state. It can be found that the average platform pitch response under operating wind-wave loads 
is nearly 4 degrees and the pitch amplitude is almost half of average value, about 2 degrees. 
Due to the contribution of wind loads, both the average and oscillating amplitude of pitch 
responses increase remarkably. And this cyclical pitch motion in return amplified the unsteady 
aerodynamic characteristics of FWOT by altering the relative wind speed. The change of 
relative wind speed causes the variation of the local attack angle and furthermore influence the 
lift and drag forces acting on the rotating blades, which leads to the periodical change of 
aerodynamic loads including the rotor power and thrust. The oscillating rotor power and thrust 
amplitudes of the wind turbine with platform pitch motion are about 83% (3.94MW) and 41% 
(272kN) of the corresponding averaged aerodynamic loads. And the average rotor power and 
thrust in the pitch case are decreased by nearly 11% and 8% respectively, indicating the 
platform pitch responses may have adverse effects on the power output. Furthermore, the 
dramatic change of aerodynamic loads significantly alters the forces acting on the rotating 
blades with a result of rapidly increased fatigue loads. The oscillating amplitudes of axial and 
tangential bending moments at the rotating blade root with realistic platform pitch motion are 
both nearly 3 times of those with fixed platform. In the view of wake characteristics, the tip 
vortices are clearly captured and the wake filed maldistribution is more serious due to the 
influence of platform pitch motion, which leads to more complicated and unsteady inflow 
condition for the downstream FOWT. Thus, complicated control strategies are supposed to 
apply in the FOWT system to suppress the motion responses of floating platform. Moreover, 
the influence of other degree-of-freedom platform motions such as surge and yaw on the 
unsteady aerodynamic performance of the FOWT in operating wind-wave conditions will be 
discussed in the future. 
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Abstract 
With the rapid development of wind power industry in recent years, the aerodynamic 
performance of wind turbines has attracted more attention, on account of its significant effects 
on the power generating capacity. Two of numerical simulation methods are selected in the 
present work to study aerodynamic performance of wind turbine. One is the actuator line model 
(ALM), the other is the overset grid method. In this study, the aerodynamic performance of a 
NREL 5-MW baseline wind turbine under rated wind speed of 11.4m/s is studied with these 
two methods. The time history of aerodynamic power and thrust, contours of axial direction 
wind velocity and vorticity, and wake vortex structures can be obtained and analyzed. Both 
methods can obtain relatively accurate simulation results. ALM method can reduce the number 
of grids and calculation time effectively. Overset grid method can obtain more accurate power 
and thrust forecasting due to simulation of real blades and hub. In addition, detailed flow field 
characteristics including the pressure distribution on the blade surface can be obtained with 
overset grid method. 
Keywords: Aerodynamic loads, Wake field characteristics; Actuator line model; Overset grid 
method. 
 
Introduction 
The rapid development of global economic has led to increasing demand for energy in each 
country. The situation of the energy crisis is becoming more and more serious. As a kind of 
clean and renewable energy with huge reserves, wind energy has great potential for 
development and utilization. Wind energy has become one of the fastest growing renewable 
energy sources in the world, and wind energy technology has received extensive attention of 
many countries. Wind power is mainly used by converting wind energy into electric energy 
through wind turbines. Accurate prediction of wind turbine aerodynamic performance and wake 
field characteristics is very important for the early economic evaluation of wind farms. 
 
In the past few years, many researchers have studied on the aerodynamic performance of wind 
turbines and proposed several methods, including the Blade Element Momentum theory (BEM), 
potential flow theory and CFD numerical simulation methods. The Blade Element Momentum 
theory (BEM) is one of the most classical methods for calculating the aerodynamic load of a 
wind turbine [1]. The Blade Element Momentum theory divides the wind turbine blade into a 
number of micro-segments that do not interfere with each other. The three-dimensional 
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aerodynamic characteristics of the wind wheel can be obtained by integrating the aerodynamic 
characteristics of the blade elements in the radial direction. The numerical simulation results 
based on BEM theory have basically met the needs of practical engineering applications. BEM 
has the advantages of simplicity and ease of application, but it cannot study the details of the 
flow field, nor can it explain the three-dimensional effect of the blade and the stall delay effect 
[2]. The potential low theory introduces the aerodynamic model of the three-dimensional 
potential flow into the calculation of the wind turbine [3]. Although more detailed aerodynamic 
performance of the wind turbine is obtained, the viscosity of the flow field around the blade 
and the phenomenon of flow separation are not considered. 
 
Computational Fluid Dynamics (CFD) is a technique developed by the rapid development of 
computers. It numerically solves the Navier-Stokes equations describing the conservation of 
viscous incompressible fluid momentum, which can accurately describe the complex flow field 
around the wind turbine, simulate the actual motion of the fluid in the field and obtain more 
complete flow field information. Choi et al. [4][5] used the CFD to numerically simulate the wind 
farm of two and three wind turbines, and studied the influence of the distance between the wind 
turbines on the power output and wake field characteristics of the wind farm. Yuwei et al. [6] 
used the DES method combined with dynamic overlapping grid technology to simulate the 
aerodynamic performance of wind turbines. Churchfield et al. [7][8] used SOWFA software to 
analyze the wake characteristics of the wind turbine using the large eddy simulation method.  
 
However, the CFD method has disadvantages of the difficulty of meshing, long calculation time 
and high hardware requirements. Reducing the amount of calculation is a key issue in applying 
the CFD method. Therefore, the actuator line model (ALM), which combines BEM theory and 
CFD method, has been proposed. ALM do not need to establish the real rotor geometry model. 
ALM uses the virtual actuator line to replace the real blade structure, which can avoid solving 
the boundary layer of the blade surface and further reduce the calculation time. The ALM is 
very research-worthy and has attracted the attention of many researchers. Troldbrg and 
Sørensen [9] used the actuation line model to numerically simulate a three-blade wind turbine, 
obtained detailed information on the wake region, and fond a good agreement after comparing 
the power output curve with the experimental data. Mikkelsen et al. [10] used ALM combined 
with CFD technology to study the aerodynamic power output and wake characteristics of a 
wind farm with three wind turbines and obtained satisfactory simulation results. 
 
Another widely used method of simulating the aerodynamic performance of wind turbines is 
the overset grid method. The overset grid method allows unconstrained relative displacement 
between multiple independent grids, and can achieve unconstrained six-degree-of-freedom 
motion of the object, so it is suitable for solving dynamic problems [11][12]. Naoe-FOAM-os-
SJTU is a CFD numerical solver for marine and offshore engineering based on open source 
toolbox OpenFOAM combined with overset grid technology. The solver introduces the overlay 
overlap mesh technology to solve the topology constraint relationship between the object and 
the mesh, and can realize the six-degree-of-freedom unconstrained motion between multi-level 
objects that cannot be processed by the traditional dynamic mesh technology. 
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In this study, the ALM based on the OpenFOAM is used to study the aerodynamic performance 
of a NREL 5-MW baseline wind turbine. The overset grid method is also applied to investigate 
the aerodynamics of full-scale wind turbine model by naoe-FOAM-os-SJTU slover. The 
simulation results obtained from these two different numerical methods are compared to 
illustrate the advantages of different numerical methods. 
 
Numerical Method 
Actuator line model (ALM) 
The actuating line model was first proposed by Sørensen and Shen [13][14]. Its main idea is to 
replace the real blade with a virtual, volumetric actuating line to avoid solving the boundary 
layer of the blade surface, thus reducing the difficulty of the meshing and the computation time. 
The actuator line model discretizes the blades in the radial direction into micro-segments that 
do not interfere with each other, called blade elements. The lift force and drag force of each 
blade element can be calculated as: 

 𝐿 = ଵଶ 𝐶௟(𝛼)𝜌𝑈௥௘௟ଶ 𝑐𝑑𝑟  (1) 

 𝐷 = ଵଶ 𝐶ௗ(𝛼)𝜌𝑈௥௘௟ଶ 𝑐𝑑𝑟  (2) 

Where, 𝐶௟(𝛼)  is the lift coefficient, 𝐶ௗ(𝛼)  is the drag coefficient, 𝛼  is the local angle of 
attack, 𝜌 is the density, 𝑈௥௘௟ is the air flow rate relative to the blade, 𝑐 is the chord length, 
and dr is the blade element width.  
 
The relative velocity can be calculated by the local velocity vector relationship of the rotating 
blades. According to the velocity triangle in the figure1, the relative velocity can be expressed 
by the following formula: 

 𝑈௥௘௟ = ඥ𝑈௭ଶ + (𝛺𝑟 − 𝑈ఏ)ଶ  (3) 

Where, 𝑈௭is the axial velocity, 𝑈ఏis the tangential velocity, and 𝛺 is the rotational velocity 
of the blade. 
 
The angle of attack is calculated from the geometric relationship: 
 𝛼 = 𝜙 − 𝛾  (4) 
Where, φ = 𝑡𝑎𝑛ିଵ((𝑈௭/(Ω𝑟 − 𝑈ఏ))，𝛾 is the blade pitch angle. 

 
Figure1. Cross-sectional aero foil element 

After obtaining the relative velocity and the attack angle, the lift force and drag force of each 
blade element can be calculated by: 
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 𝑓 = (𝐿, 𝐷) = ଵଶ 𝜌𝑈௥௘௟ଶ 𝑐(𝐶௜𝑒𝐿ሬሬሬሬ⃗ + 𝐶ௗ𝑒𝐷ሬሬሬሬሬ⃗ )  (5) 

The volume force generated by each actuator element is discrete and cannot directly act on the 
flow field, otherwise it will cause numerical oscillations, so it needs to be smoothed. The 
expression of the Gaussian smoothing function is as follows: 

 𝜂ఢ(𝑑) = ଵఌయగయ/మ 𝑒𝑥𝑝 ൤− ቀௗ೔ఢ ቁଶ൨  (6) 

After smoothing, the volume force at a point (x, y, z) in the flow field can be calculated by: 

 𝑓ఢ,௜(𝑥, 𝑦, 𝑧, 𝑖) = 𝑓 ⊗ 𝜂ఌ = ∑ 𝑓(𝑥௜, 𝑦௜, 𝑧௜, 𝑖) ଵఌయగయ/మ 𝑒𝑥𝑝 ൤− ቀௗ೔ఢ ቁଶ൨ே௜ୀଵ   (7) 

Where, 𝑑௜is the distance from the point (𝑥, 𝑦, 𝑧) in the calculation domain to the ith actuator 
point(𝑥௜, 𝑦௜, 𝑧௜), and 𝜀 is the Gaussian smoothing parameter. 
 
Overset grid method 
The overset grid method is to mesh each part of the object separately, then embed them in 
another set of grids. After the overlapping areas between the meshes are subjected to pre-
processing such as tunneling, the mesh outside the calculation domain (such as the mesh cells 
located inside the surface of the object) will be dug out and excluded from the calculation, and 
the interpolation relationship is established in the remaining overlapping area. The interpolation 
relationship is calculated by the DCI data obtained by the SUGGAR program, and allows data 
exchange between overset grid to achieve the overall calculation of the flow field. 
 
The process of solving DCI can be divided into four steps. The first step is to mark the grid 
outside the calculation domain as hole cells and exclude them from the calculation. The second 
step is to search for the donor cell and provide interpolation information for the interpolated 
cell. The third step is to calculate the interpolation coefficient (weight coefficient). The fourth 
step is to optimize the overlap area. 
 𝜙ூ = ∑ 𝜔௜ ∙ 𝜙௜௡௜ୀଵ  (8) 
Where 𝜙ூ is the value of a variable 𝜙 of the fringe cell, 𝜙௜ is the value for the ith donor cell, 𝜔௜ is the weight coefficient. 
 
Governing Equation 
The governing equation used in the ALM and AMI is the RANS equations. The RANS 
algorithm treats the turbulence with irregular random pulsation characteristics as laminar flow, 
introduces the concept of pulsation that reflects the turbulence characteristics in the NS equation, 
and averages it over time to get the RANS equation whose expression is: 

 
డ௎డ௑೔ = 0  (9) 

 
డ௎೔డ௧ + డ(௎೔௎ೕ)డ௫ೕ = − ଵఘ డ௣డ௫೔ + డడ௫ೕ ൬𝑣 డ௎೔డ௫ೕ − 𝑢పᇱ𝑢ఫᇱሬሬሬሬሬሬሬሬ⃗ ൰ + ଵఘ 𝑓ఢ   (10) 

Where, U is the flow field velocity, 𝜌 is the fluid density, 𝑝 is the flow field pressure, 𝑣 is 
the kinematic viscosity, and 𝑓ఢ is the volumetric force in the actuator line model. 
 
Solving the governing equation requires the use of a turbulence model to close the equation to 
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achieve the numerical solution of the flow field. The k-ω SST turbulence model which is 
suitable for simulating the aerodynamic performance of wind turbines is used in this paper. 
 
Simulation Setup 
The wind turbine model used in this paper is NERL-5MW wind turbine. The main 
specifications of NERL-5MW turbine are given in the Table 1. 

Table 1 Specifications of NERL-5MW turbine 
Rating 5MW 
Rotor Orientation, Configuration Upwind, 3 Blades 
Control Variable Speed, Collective Pitch 
Drivetrain High Speed, Multiple-Stage Gearbox 
Rotor, Hub Diameter 126m, 3m 
Hub Height 90m 
Cut-in, Rated, Cut-out Wind Speed 3m/s, 11.4m/s, 25m/s 
Cut-in, Rated Rotor Speed 6.9rpm, 12.1rpm 
Rated Tip Speed 80m/s 
Overhang, Shaft Tilt, Precone Angle 5m, 5°, 2.5° 

 
The computation domain is sketched in Figure 2. The height and width of the whole 
computation domain are both 400m. The length of the domain is 1000m.The distance from the 
inlet to the wind turbine is 300m. The height of hub is 200m. 

 

Figure 2. Computational domain 
In this paper, the simulations conducted with ALM method and Overset Grid method share 
same background mesh. In simulation with ALM, a refined region covered the wind turbine 
blades and wake field with three levels refinement is provided as sketched in Figure 3. The total 
number of mesh is about 350 million. In simulation with overset grid method, the impeller of 
wind turbine is meshed and put into cylindrical background grid, and then embedded in the 
whole computational domain, as sketched in Figure 4. The total number of mesh is about 390 
million. 
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(a)cross section                         (b)lengthwise section 

Figure 3. Grid Structure with ALM method 

             
Figure 4. Grid structure with overset grid method 

The inlet boundary adopts free flow boundary conditions, the wind speed is 11.4m/s constantly. 
The outlet boundary is applied to Dirichlet pressure condition, the pressure is equal to the 
atmospheric pressure. The top boundary and the bottom boundary are applied to the sliding 
conditions. The symmetric boundary conditions are set on the left boundary and the right 
boundary. 
 
Results and Discussions 
Aerodynamic power and thrust 
The aerodynamic power and thrust of the wind turbine can be obtained by using both two 
simulation methods. Figure 5 shows the time history of aerodynamic power of turbine rotor in 
two simulations. The aerodynamic power of turbine is over predicted with ALM method than 
that with overset grid method. This is because the effect of the flow analysis phenomenon on 
the blade surface on aerodynamic power is not considered with ALM method. Figure 6 shows 
the time history of aerodynamic thrust of turbine rotor in two simulations. The aerodynamic 
power of thrust is underestimate with ALM method than that with overset grid method. This 
results from the presence of turbine hub accounted in overset grid method. In addition, data 
fluctuations over time can be observed on the curves of overset grid in both Figure 5 and Figure 
6, and the period of the fluctuations equals to 1/3 of the rotating period of turbine rotor. This is 
because the three blades alternately cut in the area with higher wind speed under the effect of 
wind shear.  
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Figure 5. Aerodynamic power            Figure 6. Aerodynamic thrust 

 
Wake Field 
Through the post-processing software Paraview for visual processing, both simulation methods 
can clearly show the wake field information of wind turbine. Figure 7 shows axial direction 
wind velocity counters at the height of the center of rotor in horizontal plane. Figure 8 shows 
Vorticity at height z=0 with two simulation methods. Since the overset grid method meshes the 
real blades and hub of turbine, the wake information obtained is more abundant. It can seen 
wake velocity decrease greatly after wind passes through the turbine. In the Figure 7(a), along 
the direction of the inflow, at the 600m behind the hub(about 5 times the diameter of the turbine 
rotor), the wake velocity has recovered and the color there shows green. While in the Figure 
7(b), there is still significant velocity speed loss. This is because overset grid method takes the 
effect of the hub into account. 
 

  
(a) ALM                          (b)Overset grid 

Figure 7. Contours of axial direction wind velocity in horizontal plane at z=0 
 

  
(a) ALM                          (b)Overset grid 

Figure 8. Contours of vorticity in horizontal plane at height z=0 
 
Figure 9 shows the wake vortex structure of wind turbine at moment of 100s with two 
simulation methods. The wake vortex structure is visualized by the contour of the second 
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invariant of the velocity gradient tensor Q. Distinct blade tip vortices and root vortices are 
observed with both simulations. The wake vortex structure dissipates faster with ALM method 
than that with overset grid method, and three cycles of tip vortex can be observed in the Figure 
9(a), while eight cycles of tip vortex can be observed in the Figure 9(b). 

  

(a) ALM                            (b) Overset grid 
Figure 9. Wake vortex structure with two simulation methods 

 
Pressure Distribution 
Overset grid method can provide more detailed flow information near the blades surface due to 
the simulation of real blades and hub of wind turbine. Figure 10 shows variation of pressure 
distribution on the blades surface at moment of 100s. In the Figure 11, the pressure distribution 
on tip sections are enlarged for better observation. The pressure distribution on the blades is 
mainly concentrated on the tips, and the pressure on the windward side is larger than the leeward 
side. 

  
(a) Front                               (b) Back 

Figure 10. Variation of pressure distribution on the blades surface 
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(a) Front 

 
(b) Back 

Figure 11. Variation of pressure distribution on the tip section 
 
Conclusions 
In this study, aerodynamic and wake field simulations of the NREL 5MW wind turbine are 
conducted with ALM method and overset grid method. With these two methods, the time 
history of aerodynamic power and thrust, contours of axial direction wind velocity and vorticity, 
and wake vortex structures are obtained and compared. Both methods can obtain relatively 
accurate simulation results to analyze of aerodynamic characteristics and wake characteristics 
of wind turbine. The ALM method replaces the real blades with actuator elements, which can 
reduce the number of grids and calculation time effectively. Compared with overset grid method, 
the aerodynamic power of turbine is over predicted, and the aerodynamic thrust of turbine is 
underestimate with ALM method. In addition, overset grid method can reflect fluctuations in 
aerodynamic power and thrust output with time. This indicates that more accurate power and 
thrust forecasting still needs to consider the effect of the blades and hub. Overset grid method 
simulates real blades of wind turbine, therefore it can provide more detailed flow information 
near the blades surface, such as variation of pressure distribution on the blades surface, which 
is helpful to further understand the complex flow phenomena around the wind turbine and 
optimal design for the wind turbine. 
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Abstract 

A nonaffine model is proposed for elastomeric gel to account for the change of the entangling 

structure of molecular chains during the tensional and swelling process, in which the change 

in the number of polymer chains per unit volume, N , is depending on the first invariant of 

right Cauchy-Green tensor, 
1I , and on the volume of the gel, J , separately. It is found that the 

free swelling process may lead to a larger change of the entangling structure of molecular 

chains rather than the tensional process does. Moreover, the various combination of the effect 

of each process on the nonaffine movement of molecular chains may lead to different 

interesting mechanical responses of the gel, such as yield. 

Keywords: Entangling structure, Elastomeric gel, Computational model, Tensional and 

swelling process 

Introduction 

The elastomeric gel, consisting of cross-linked polymer molecules and discrete solvent 

molecules, have a high permeability to small molecules and undergo reversible volume 

change by exuding or absorbing solvent in response to a wide range of stimuli, such as light, 

temperature, pH, ionic strength and chemical reactions. As a result, the gel has been 

developed for diverse applications and used as smart materials in sensors and actuators [1-3]. 

To characterize how mechanical constraint affects the amount of swelling, and how chemical 

processes generate forces, several nonlinear field theories have been developed [4-7]. Flory 

and Rehner proposed a statistical mechanical model for the network of polymer molecules 

and indicated that the swelling capacity of the gel is diminished by the application of an 

external stress [8]. Recently, Cai et al. [9] employed an alternative approach, in which a set of 

equations of state is developed based on two assumptions: the amount of the solvent in the gel 

varies when the gel changes volume, but remains constant when the gel changes shape; the 

Helmholtz free energy of the gel is separable into the contributions of stretching the network 

and mixing the polymer and the solvent. However, in these studies, the computational models 

are just phenomenological ones and the change of entangling structure of molecular chains 

during the swelling process has not been accounted for explicitly. 

Therefore, in this study, we focus on the discussion of the mechanical behavior of elastomeric 

gel based on a nonaffine molecular chain network model (nonaffine model) [10], which was 

originally developed for the orientation hardening of amorphous polymers and may account 

for the change in the entanglement situation for the physical linkages during the deformation 

processes. After formulating the dependence of the number of polymer chains per unit volume 

on the first invariant of right Cauchy-Green tensor and the swelling ratio of the elastomeric 

gel, a computational model is proposed and employed to investigate the mechanical response 

of the gel during constrained swelling process.  
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Conditions of Equilibrium 

The derivation of the conditions of equilibrium for the dry polymer and the solvent has been 

done by Cai et al. [9]. It is convenient to consider that, in the reference state, a block of 

network of dry polymers is a unit cube, and contains no solvent and subject to no applied 

forces. In the current state, the network is submerged in a solvent-containing environment, 

and the six faces of the block are subject to applied forces. When the network, the solvent, 

and the applied forces equilibrate, the network absorbs C  number of solvent molecules, and 

deforms homogeneously into the shape of a parallelepiped. When the deformation gradient of 

the network is expressed by F , the ratio of volume of the swollen gel and that of the dry 

network is determined as FdetJ . Subject to applied forces, the gel changes shape readily, 

but the volumes of individual polymer chains or solvent molecules remain nearly unchanged. 

As an idealization, it is assumed that the volume of the gel is a function of the concentration 

of the solvent: 

 CfJ                                                                       (1) 

That is, the amount of the solvent in the gel varies when the gel changes volume, but remains 

constant when the gel changes shape. 

Eq. (1) determines the concentration of solvent, C , once the deformation gradient is known. 

Consequently, the nine components of the deformation gradient F  specify the state of the gel. 

Let W  be the Helmholtz free energy of the gel in the current state. The Helmholtz free energy 

of the gel can be taken to be a function of the nine components of the deformation gradient, F , 

and is assumed to be separable into contributions from stretching the network and mixing the 

polymer and solvent [8]: 

   JWWW mixstretch  F                                                             (2) 

The free energy due to the stretching of the network,  FstretchW , is a function of the deformation 

gradient, and depends on the density of crosslinks. The free energy due to the mixing of the 

polymer and the solvent,  JWmix
, is a function of the concentration of the solvent in the gel, 

but is independent of the density of crosslinks. Eq. (1) and Eq. (2) form the basis for the 

model of ideal elastomeric gels. In equilibrium, the change of the Helmholtz free energy of 

the composite vanishes and one can obtain that 

 
  ij

ik

stretch
jkij J

FJ

W
F  






F ,                                                      (3) 

where 
ij  is the true stress, which is defined by imagining a small cube cut from the 

parallelepiped, 
ij  is the Kronecker delta and  J  is the osmotic pressure due to mixing the 

network and the solvent. 

Free Energy Functions 

In the original Flory-Rehner model [8], specific functions are adopted for  FstretchW  and  JWmix
. 

The free energy associated with stretching the network is given by the Gaussian-chain model 

[8]: 

   JFFTNkW ikikBstretch log23
2

1
F ,                                               (4) 

where N  is the number of polymer chains per unit volume, 
Bk  is Boltzmann constant and T   

is the temperature. It is obviously that the variation of the effect of the swelling ratio, J , on 

the elastic modulus of the gel has been considered. However, this model is just a 
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phenomenological one and the change of entangling structure of molecular chains during the 

swelling process of gel has not been accounted for explicitly. 

Therefore, in this study, based on the molecular chain network theory [11], the microstructure 

of the gel is assumed to consist of long molecular chains which are randomly distributed in 

space. A single chain, which consists of several segments containing monomers, is defined by 

two linkages which are assumed to be chemically or physically entangled points of molecular 

chains. The physical links are corresponding to the pseudo entanglement points and may 

change depending on deformation. On the other hand, chemical links are permanent and 

preserve the entanglement situation. The physical links may suffer breakdown during the 

thermodynamic process [12]. The decrease in the number of entangled points due to 

deformation causes an decrease in the number of polymer chains per unit volume, N , an 

enhanced extensibility, and a reduction in the stiffness of the material, i.e., softening. To 

account for the effect of the nonaffine movement of the polymer chain on the deformation 

behavior of the gel, we employ the simplest version of the nonaffine model [10] to 

accommodate the change in the number of polymer chains per unit volume, N , depending on 

the first invariant of right Cauchy-Green tensor, 
1I , and on the volume of the gel, J , 

separately as 





























2

max

1

max

11

0 3
11

m

I

II

N

N
 ,                                                       (5) 
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where 
0N  is the number of polymer chains per unit volume of the gel in the reference state,  , 

 , 
1m , 

2m  are the parameters for identification, max

1I  and maxJ  are the limit value of 
1I  and J , 

separately. 

As chemomechanical interactions are material-specific and can be very complex, in this study, 

we just consider some special cases, in which the discussion of the effect of nonaffine 

movement of the polymer chains can be done without any assumption of the function  JWmix
.  

Stress-Stretch Relations 

Inserting Eq. (4) into Eq. (3), we obtain that 

    ijijiKjK
B

ij JFF
J

TNk
  .                                                  (7) 

In relating the model to experiments, we describe the deformation of the gel in the coordinates 

of principal stretches. Let 
1 , 

2 , 
3  be the principal stretches of the gel, so that 

 321 ,,diag F , 
321 J  and 2

3

2

2

2

11  I . Rewrite Eq. (7) in terms of the principal 

stretches and principal stresses: 

   J
J

TNk
i

B
i  12 .                                                         (8) 

Reference State 

Consider the elastomeric gel is in the reference state, i.e. a block of network of dry polymers, 

where the swelling ratio J  is always equal to unit. When the dry block is subject to a uniaxial 

tensile force, the relation between the stretch   and the stress 
T  on the tensile direction can 

be rewritten based on Eq. (8) as: 
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 2  TNkBT
,                                                             (9) 

which can also be used to define the shear modulus of the gel in the reference state, 

TkNG B00  . 

Free Swelling State 

Submerged in the solvent-containing environment but subject to no applied forces, the 

elastomeric gel attains a state of equilibrium, the free swelling state, characterized by an 

isotropic swelling ratio, 3/1

321

 J . When a gel in the free swelling state is subject to 

a uniaxial tensile force, in a short time the solvent in the gel has no time to redistribute, so that 

the concentration of the solvent in the gel remains fixed, and the gel behaves like an 

incompressible material. Therefore, the relation between the additional stretch 
~ , which is 

defined referred to the free swelling state, and the stress 
T  on the tensile direction can be 

rewritten based on Eq. (8) as: 

 23/1 ~~    TNkJ BT
,                                                    (10) 

which can also be used to define the shear modulus of the gel in the free swelling state, 

TNkJG B

3/1 . 

Constrained Swelling State 

Submerged in the solvent-containing environment but subject to constrained displacement at 

one direction, 13  , the elastomeric gel attains a state of equilibrium, the constrained swelling 

state, characterized by an bidirectional swelling ratio, 2/1

21

 J . The relation between 

the swelling ratio   and the stress 
T  on the constrain direction can be rewritten based on Eq. 

(8) as: 

 12   TNkBT
.                                                        (11) 

Results 

In Fig. 1(b), the theoretical predictions are compared with experimental data [13] for the 

elastomeric gel under uniaxial tensile. Even though the affine model can reproduce the 

experimental result at the initial deformation stage very well, the overestimation of the stress 

increases greatly at the large deformation stage. Therefore, we suppose that the number of 

polymer chains per unit volume of the gel, N , in Eq. (9) changes together with the uniaxial 

deformation according to Eq. (5), in which the value of parameters has been identified as: 

21.0 , 2.27max

1 I . It is obviously that the proposed nonaffine model can reproduce the 

experimental data successfully. On the other hand, from Fig. 1(a), it can be understood that 

the dramatic change of the entangling structure of molecular chains during the uniaxial tensile 

process of gel may occur mostly at the early deformation stage, not the later deformation 

stage. 

In Fig. 2(b), the theoretical predictions are compared with experimental data [14] for the 

elastomeric gel under different swelling ratios. Here, we suppose that the number of polymer 

chains per unit volume of the gel, N , in Eq. (10) changes together with the swelling ratio 

according to Eq. (6), in which the value of parameters has been identified as: 8.0 , 

3.27max J . Quite similar to that shown in Fig. 1(b), it is obviously that the proposed nonaffine 

model can reproduce the experimental data successfully. However, compared with the 

minimum value of 
0/ NN  shown in Fig. 1(a), that value shown in Fig. 2(a) decreases 

remarkably, which means that the free swelling process may lead to a larger change of the 

entangling structure of molecular chains rather than the tensional process does. 
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In Fig. 3, the theoretical prediction of the mechanical resistances of the elastomeric gel during 

the constrained swelling process. As the tensional process and the swelling process occur 

simultaneously in this case, we estimate the effect of each process on the change of the 

entangling structure of molecular chains with the weighted parameters, A  and B , separately. 

When the value of A  increases, the mechanical resistance of the gel increases and gets close 

to that predicted by affine model. Interestingly, when the value of B  is equal to unit, the 

stress-stretch relation of the gel shows a yield region, which is left to our future study. 

Conclusions 

In this study, a nonaffine model is proposed for elastomeric gel to account for the change of 

the entangling structure of molecular chains during the tensional and swelling process. It is 

found that the free swelling process may lead to a larger change of the entangling structure of 

molecular chains rather than the tensional process does. Moreover, the various combination of 

the effect of each process on the nonaffine movement of molecular chains may lead to 

different interesting mechanical responses of the gel, such as yield. 
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(a)                                                        (b) 

Figure 1. Characteristics of the gel in the reference state 

(a) variations of the entangling structure; (b) uniaxial tensile responses 

 

 
(a)                                                        (b) 

Figure 2. Characteristics of the gel in the free swelling state 

(a) variations of the entangling structure; (b) variations of shear modulus 

 

 

Figure 3. Mechanical resistances of the gel during the constrained swelling process 
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Abstract 
In this study, structures subjected to bi-directional loading on roof systems can be called as 
two-way beam string structures. The two-way beam string structure is composed of two types 
of cables which have diff erent pressure and directions of cable. The cables are used to force 
the beam through struts supporting both positive and negative loads. This can be solved by 
introducing proper pre-tension forces to the structure because it prevents slacking of the 
cables. In addition, it examined how the behavior of the structure varies with respect to 
changing the angle of the cable.  As a result, the evaluation is performed with this system that 
controls structural behavior by applying the tensile stress of the cables. The parametric studies 
are performed through nonlinear analysis of displacement control by changing the length and 
angle of the members. Moreover, the structure is implemented in the ABAQUS finite element 
package to verify the accuracy and validity of the results. 
Keywords: Beam string system, Finite element model, High strength cable, Abaqus 

 
Introduction 

In large span spatial structures, one of the major issues is how to handle the horizontal thrust 
made by vertical loading economically [1]. Tension structures can be solved the issue due to 
their larger load carrying capacities than typical rigid beam or truss structures. There are two 
types of the tension structures along the usage of the tension elements, namely, membrane 
structures and string structures. The string structures can be further classified into two groups: 
thoroughbred and hybrid tension structures [2]. A beam string structure, which was first 
suggested in 1984 [3], is a typical type of the hybrid tension structures. In the last three 
decades, a series of research for the beam string structure has been reviewed mostly in Japan 
and China. It performed an analytical method in beam string structures [4]. The non-linear 
finite element method appeared to obtain the buckling load. It introduced an experimental 
study in Shanghai Yuanshen Areana [5]. The optimum design, namely, the rise-span ratio, 
beam and string sections, and the pre-stressing force were optimized by the ANSYS program 
and experimental work. More recently, it developed a new type foldable long-span re-
tractable roof based on the beam string structure [6]. Most of those studies are mainly focused 
on one-cable beam string structures or string-beam coupled systems without struts. The beam 
string structure is composed of upper beams and lower strings which are used to stiffen the 
beam through struts. Because of the advantages in which the pre-tensioned strings elicit pre-
camber of the upper beam, the maximum moment and deflection can be greatly decreased. In 
conclusion, the beam string structure has been widely used in large span roofs of arenas 
[2,5,7], airport terminals [8], public halls [9], etc. The major purpose of the beam string 
structure is to carry gravity-load. In contrast, because of their characteristics of light mass and 
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high flexibility, the structures have completed progressively more sensitive to wind loading 
than most large span spatial structure.  

Parametric study 

A two-way beam string structure consists of the beam, three struts, and cables. The beams 
were of the same size with H−150X150X7X10 and a length of 4000 mm. The steel grade was 
SM490B. The beams had a yield strength of 325 MPa with elastic modulus of 200 GPa. Next, 
the cables were used as the sagging cable and the arch-shaped cable. The sagging cable has a 
tensile strength of 1,860 MPa and diameter is the 17.8 mm, while the diameter of arch-shaped 
cable is 12.59 mm. At last, strut was made by a pair of steel channels whose material was 
SS400. The cross-sectional information was 2C−125X65X6X8. At that time, a two-way beam 
string structure with 1860 MPa of cable was named BSS1.  
The first variable is the number of struts. When struts were added to existing structures, it was 
able to check how values of results are changed. Therefore, it is to make a total of five struts 
by adding one strut each next to the post on both ends, which is the structure BSS1-S1. 
Another is a structure that has a total of five struts by adding one strut each side of the center 
strut, which is BSS1-S2. The last BSS1-S3 has a total of seven struts between the two end 
posts by adding struts to all areas.  
In this section, the second variable is cable angle control. When the cable is formed with the 
center of the circle at both ends of the upper beam and the center of the circle, the angle of 
theta is formed. The L (length of as the upper beam) and the H (length from the upper beam to 
the arch-shaped cable) are fixed, and the h of strut length and the c of cable length are 
indicated by the below formula. If the angle of the cable is different, t hen the length of each 
cable and the length of the strut are also different. Consequently, the angles of the sagging 
cable and arch-shaped cable were controlled to make the various structures. 
On this occasion, the angle of the sagging cable is top of angle and the name is θT. On the 
other hand, the angle of the arch-shaped cable is bottom of angle and the name is θB. 
Moreover, the angle of the cable is marked N according to the angle which is θN . In 
additions, it was changed the length of cables and struts as the angle of cable increased and 
decreased. On this occasion, the length of the sagging cable is CT. Contrarily, the length of the 
arch-shaped cable is CB. Similarly, the length of the strut to the sagging cable is HT and the 
length of the strut to the arch-shaped cable is HB. Therefore, the length of each cable and strut 
presented. Depending on the types of cable angle control, the structure appeared to change. 
In the positive pressure, the shape of the structure varies according to the ratio of L/HT , it was 
called the shallow type when the ratio of L/HT ≥ 7.5, it was called the moderate type when it 
was the ratio of 7.5 > L/HT ≥ 3.5, it was called deep type when the ratio of L/HT < 3.5. On 
the other hand, in the negative pressure, it was called the shallow type when the ratio of L/HT 
� 6.3, it was called the moderate type when it was the ratio of 6.3 > L/HT ≥ 3.2, it was called 
deep type when the ratio of L/HT < 3.2. 
According to the formula, the radius of top circle RT and the radius of bottom circle RB are 
computed as 
 

         (1) 

 2 sin θT 2 sin θB The length of the strut at the center of the beam HT is computed as The 
length of the strut at the ends of the beam HB is computed as The length of the sagging cable 
CT and the length of the arch-shaped cable CB are computed as 
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Analytical result and discussion 

In this study, it decided to add struts between posts on both ends of the original structure to 
see how the results change. To increase the number of struts in the original structure, it 
consisted of three types of cable. It appeared that BSS1-S1, BSS1-S2, and BSS1-S3. The 
results showed that BSS1-S3, which added struts to all areas, had slightly larger deflection 
values against load in the positive pressure. Accordingly, three struts were the ideal for this 
structure. Initially, the number of struts was added to both ends, the center, and all areas. 
However, the load-deflection curve showed little change. Therefore, it appeared that the three 
were the most ideal layout.  

In this section, it is a curve of the ultimate load values for all structures by dividing into 
positive and negative pressures. Consequently, the load increased as the angle multiplied. 
This is the most optimized structure with an angle of 60 degrees when considering ultimate 
loads. 

Second, it is a curve of the initial stiffness values for all structures by dividing into positive 
and negative pressures. Similarly, the initial stiffness value of all structures was accurately 
compared by dividing the initial stiffness values by the length of each cable as shown Fig. 16. 
The result was the largest value at 70 degrees. 

The stress values on the top and bottom of the beam and the cable are plotted. First, the stress 
of all members is reduced as the angle increases in the positive pressure. Among these, it is 
illustrated two types of stress diagrams by selecting a structure with a cable angle of 30 and 
80 degrees. Subsequently, a stress diagram of 80 degrees showed that the stress value at the 
bottom of the beam was almost zero. The curve of the next negative pressure shows that the 
stress value is reduced as the angle increases. 

Therefore, it calculated the stress sharing ratio of the top and bottom of the beam and the 
cable with these two curves. In conclusion, the stress divided 60% of the cable and 40% of the 
beam when the angle was 10 degrees in the positive pressure. Contrarily, the stress sharing 
ratio of the beam was close to zero as the angle went over 50 degrees. This is proof that beam 
is not doing the role. In the negative pressure, the stress sharing ratio of the top and bottom of 
the beam was approximately the same depending on the angle. The beam’s ratio was about 
40% when the angle was 10 degrees, but it is found that the ratio dropped to about 20% when 
the angle was 90 degrees. 

 
Table 1. Specification of structures. 

Notation BSS1 

Number of beams 1 

Number of struts 3 

Number of posts 2 

Number of sagging cable 1 

Number of arch-shaped cable 1 

Length of beam (mm) 4000 

Beam  
Material SM490B 
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Size H−150X150X7X10 

Sagging cable  
Yield stress (MPa) 1860 

Size ϕ17.8 

Arch-shaped cable  
Yield stress (MPa) 1860 

Size ϕ12.59 

Strut  
Material SS400 

Size 2C−125X65X6X8 

 

Table 2. Stress sharing ratio of the top and bottom of beam and the sagging cable 

θT L/HT Top(%) Bottom(%) S.Cable(%) 
10 22.9 21 17.4 61.6 
15 15.2 21 16.6 62.4 
20 11.3 20.5 14.5 65 
25 9 19.3 11.7 69 
30 7.5 17.9 9.2 72.9 
35 6.3 15.8 6.6 77.6 
40 5.5 14.1 4.7 81.3 
45 4.8 12.4 2.7 85 
50 4.3 11.5 1.3 87.2 
55 3.8 10.7 0 89.3 
60 3.5 9.5 0 90.5 
65 3.1 9.4 0 90.6 
70 2.9 9.6 0 90.4 
75 2.6 9.9 0 90.1 
80 2.4 10.7 0 89.3 
85 2.2 12 0 88 
90 2 14 0 86 

 

Table 3. Stress sharing ratio of the top and bottom of beam and the arch-shaped cable 

θB L/HB Top(%) Bottom(%) A.Cable(%) 
10 14.5 21.6 21.6 56.8 
15 11 21.9 22.2 56 
20 8.8 21.4 22.5 56.1 
25 7.4 20.5 22 57.6 
30 6.3 19.2 20.8 60 
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35 5.5 17.4 19.3 63.3 
40 4.8 16 18 66 
45 4.3 14.8 16.4 68.9 
50 3.9 13.6 15.4 71 
55 3.5 12.3 13.6 74 
60 3.2 11.6 13 75.5 
65 2.9 11 12.2 76.9 
70 2.7 10.3 11.5 78.2 
75 2.4 10.6 10.9 78.5 
80 2.2 10.8 11.4 77.8 
85 2.1 11.3 11.5 77.3 
90 1.9 12.5 12.7 74.8 

 
Figure 1.  Proposed two-way beam string structures with cable angle control at the top 

and bottom of the beam. 
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Figure 2.  Proposed two-way beam string structures with respect to the three types of 

struts. 

 
Figure 3.  Proposed two-way beam string structures with respect to shallow, moderate, 

and deep types depending on the cable angle control. 
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Figure 4.  Load-deflection curve of two-way beam string structures with respect to the 

three types of struts. 

 
Figure 5.  Pu with respect to the angle 
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Figure 6.  Normalized Pu with respect to the angle 

 
Figure 7. K with respect to the angle 
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Figure 8.  Normalized K with respect to the angle 

 
Figure 9.  Stress values with respect to the angle in the positive pressure 
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Figure 10.  Stress distribution of cross-section in the positive pressure 

 
Figure 11.  Stres values with respect to the angle in the negative pressure 
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Figure 12.  Stress distribution of cross-section in the negative pressure. 

 

Conclusions 

From this previous study, a two-way beam string structure was produced that targeted at a 
two-way roof system. In this study, it performed how the behavior of the structure changes 
with respect to various variables. The propriety of the proposals was verified by means of 
reliability analysis. Consequently, the most optimal structure was made through various 
parametric studies in this study. 
-The three struts were the most ideal except for the posts on both ends. Because the 
performance of the structure was not enhanced when the load-deflection curve was checked 
despite the addition of struts to the original structure. 
-As considering ultimate loads, the load increased as the angle multiplied. However, the 
structure with cable angle of 60 degrees were most advantageous as a result of the normalized 
curve. 
-As considering initial stiffness values, the structure with cable angle of 70 degrees were also 
most advantageous. 
-When considering the stress of top and bottom of the beam and the cables, the larger the 
angle, the closer to 0 the stress of the beam is. 
-According to the angle of cable increases, struts and cables became longer, which was 
disadvantageous for economic and aesthetic values. 
-Thus, the structure with an angle of 30 to 35 degrees was founded to be the most optimal 
structure. 
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Abstract 

The R-function theory is applied to describe a shallow spherical shells on Winkler foundation 

with concave boundary, and then a quasi-Green’s function is established by using the 

fundamental solution and the normalized boundary equation. The quasi-Green’s function 

satisfies the homogeneous boundary condition of the problem. The differential equation of the 

problem is reduced to two simultaneous Fredholm integral equations of the second kind by the 

Green’s formula. The singularity of the kernel of the integral equation is overcome by choosing 

a suitable form of the normalized boundary equation. A comparison with the ANSYS finite 

element solution shows a good agreement, and it demonstrates the feasibility and efficiency of 

the present method.  

Keywords: Green’s function, R-function, integral equation, bending of shallow spherical shell, 

concave boundary 

Introduction 

As a kind of structural forms, the shells and plates are widely used in various fields, such as, in 

the large-span roof, the underground foundation engineering, the hydraulic engineering, the 

large container manufacturing, the aviation, the shipbuilding, the missiles, the space technology, 

the chemical industry, and so on. Only few problems of the shells and plates with a regular 

geometric boundary and a simple differential equation can be solved with an analytical or a half 

analytical method. For most these problems with a geometry of arbitrary shape and a complex 

boundary condition, only numerical methods can be used to solve the problems, such as  the 

boundary element method[1], the finite element method[2] and the finite difference method[3]. 

 

In the present paper, the R-function theory and the quasi-Green’s function method (QGFM) 

proposed by Rvachev [4] are utilized. The bending problem of simply supported dodecagon 

shallow spherical shells on Winkler foundation with concave boundary is studied. The 

governing differential equation of the problem is decomposed into two simultaneous 

differential equations of lower order by utilizing an intermediate variable. A quasi-Green’s 

function is established by using the fundamental solution and the boundary equation of the 

problem. This function satisfies the homogeneous boundary condition of the problem, but it 

does not satisfy the fundamental differential equation. The key point of establishing the 

quasi-Green’s function consists in describing the boundary of the problem by a normalized 

equation 0=  and the domain of the problem by an inequality 0 . There are multiple 

choices for the normalized boundary equation. Based on a suitably chosen normalized boundary 

equation, a new normalized boundary equation can be established such that the singularity of 
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the kernel of the integral equation is overcome. For any complicated domain, a normalized 

boundary equation can always be found according to the R-function theory. Thus, the problem 

can always be reduced to two simultaneous Fredholm integral equations of the second kind 

without the singularity. Using the R-function theory, Li and Yuan described successfully the 

rectangular, trapezoidal, triangular and parallelogrammic domains of plates[5][6] and shallow 

spherical shells[7][8]. For the first time, the R-function theory is applied to describe the 

dodecagon domain of the shallow spherical shells with concave boundary. The numerical 

example demonstrates the feasibility and efficiency of the present method. The R-function 

theory can be used to describe any more complex domains of the plates and shells. 

Fundamental equations 

The governing differential equations of the bending problem of simply supported shallow 

spherical shells on Winkler foundation[9] can be expressed as follows. 

 

                                               0)()( 24 =− xx w
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 ,      x                                               (1) 
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where 22

2

22

1

24 )( xx +=  is the biharmonic operator,   is the stress function, w  is the 

radial deflection of the shell, R  is the radius of curvature of the shell, k  is the elastic 

coefficient of the foundation, ),( 21 xx=x ,   is the domain of the trapezoid of shallow 

spherical shells in Cartesian coordinates, 
ZP  is the radial load; and ))1(12( 23 −= EhD  is the 

flexural rigidity of the shell, in which h  is the thickness of the shell, and E  and   are Young’s 

modulus and Poisson’s ratio, respectively. 

The simply supported boundary conditions can be written as. 
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where 2

2

22

1

22 xx +=  is the Laplace operator, and =  is the boundary of the domain 

 .Making use of Eqs.(1) and (3), we can easily obtain. 

 

  RwEh /2 =                                                                  (4) 

Substituting Eq.(4) into Eq.(2) yields.  

 

                                                  
ZPkwRwEhwD =++ 24 /                                                     (5) 

 

To decompose Eq.(5), let us introduce the following intermediate variable. 

 

)1/()( 21 ++= MMM                                                        (6) 

 

where )//( 2

2

22

1

2

1 xwxwDM +−=   and )//( 2

1

22

2

2

2 xwxwDM +−=  . 

Then, substituting Eq.(6) into Eq.(5), we obtain the following two simultaneous differential 

equations of second rank.  

 

kwRwEhPM Z ++−= 22 /  and  DMw /2 −= ,    x                                  (7) 
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The displacement and the bending moment should be equal to zero along the simply supported 

boundary of shallow spherical shells on Winkler foundation, which can be written as. 

 

0=w  and 0=M ,  x                                                            (8) 

Integral equations 

Let 0=  be the normalized boundary equation of the first-order on the boundary  , i.e.[4] 

 

0)( =x , 1= ,   x  and 0)( x ,    x                                         (9) 

 

The quasi-Green’s function can be established as follows. 

1ln
2

1
ln

2

1
),( RrG


−=ξx                                                           (10) 

 

where 2

22

2

11 )()( xxr −+−=−= xξ  and )()(42

1 xξ += rR , in which ),( 21 xx=x  and 

),( 21 =ξ . Obviously, the quasi-Green’s function ),( ξxG  satisfies the following condition. 

 

0),( =
ξ

ξxG                                                                  (11) 

 

To reduce the boundary value problems Eqs.(7) and (8) into the integral equations, the 

following Green’s formula of sets of function )(2 C , i.e., U and )(2  CV , is applied. 

 





−




=−  

ξξ d)(d)( 22

n

V
U

n

U
VVUUV

Ω
                                        (12) 

 

From Eqs.(7), (8), (11)and (12), and noticing that rln)21(   is the fundamental solution[10] of 

the Laplace operator, then the following integral equations are obtained. 

 

 +−=  
ξξ ξxξξξxx d),()(d)(),(

1
)( KwMG

D
w                                      (13) 

+++−=  
ξξ ξxξξξξξxx d),()(d)]()()()[,()(

2
KMkww

R

Eh
PGM Z

                         (14) 

where  

 
4

1

2222

1 /]))((4)()(4)(4)([),( RRK  −−+= xxrxxξx                            (15) 

 

here )(ξ = , 
ξ= ; and jir )()( 2211 xx −+−=  , in which i  and j  denote unit vectors in 

1x  and 
2x  directions, respectively. 

),( ξxK  in Eq.(15) appears discontinuous only if 0=R , i.e., both ξx =  and 0=  come into 

existence. Actually, when ξx = , Eq.(15) can be reduced to. 

 
222 4/])(1[),(  −+=

=ξx
ξxK                                                       (16) 
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To make the kernel of the integral equations )(),(  CK ξx , A normalized boundary 

equation will be constructed to ensure the continuity of ),( ξxK  in the following. It can be easily 

testified that. 

 

2/])(3[ 2

000

22

00  −+=                                                  (17) 

 

where 00 =  is the normalized equation on the boundary  , i.e., 0  satisfies Eq.(9). 

Obviously, equation   is also a normalized boundary equation of the first-order. 

Based on a suitably chosen normalized boundary equation 00 = , a new normalized boundary 

equation 0=  can be constructed by using Eq.(17), which ensure the continuity of the integral 

kernel ),( ξxK  in the integral domain. 

To obtain the numerical results of the boundary problem, the integral domain   is divided into 

several subdomains ),......,2,1( Nii = , and in each subdomain, a rectangular quadrature formula 

is applied. Thus, the integral equations (13) and (14) can be discretized into the linear algebraic 

equations. Then, the radial deflection )(xw  can be obtained by solving the algebraic equations. 

Numerical example 

We investigate a simply supported dodecagon shallow spherical shell on Winkler foundation 

with the planform shown in Fig.1. Take a =60, =b 80, =c 40 and d =30. The following 

reference parameters are used: the radius of curvature of the shell R =200, the thickness of the 

shell h =2, Poisson’s ratio 3.0= , Young’s modulus E = 6101.2  , the elastic coefficient of the 

foundation k =200, and the radial load 
ZP =70. According to the R-function theory[4], a 

normalized boundary equation of the first rank 00 =  can be constructed from the following 

equation:   

)()( 20102010  =                                                (18) 

 

where 02/)( 2

1

2

1 −= axa  is the vertical band limited by straight lines ax =1
;  

02/)( 2

2

2

2 −= bxb  is the horizontal band limited by straight lines bx =2
;  

02/)( 2

1

2

3 −= cxc  is the vertical band limited by straight lines cx =1
;  

and 02/)( 22

24 −= ddx  is the outer part of the band limited by straight lines dx =2 .  

The Boolean operations  ,   (disjunction and conjunction), which correspond to the union   

and intersection  . These R-operations are defined as follows[1]: 

 )2(
1

1 22 XYYXYXYX 


 −+++
+

= , )2(
1

1 22 XYYXYXYX 


 −+−+
+

= , 

where the parameter  varies within 11 −  . For example, if the value  is equal to 

zero,then the whole domain can be presented as Eq.(18). 1 , 2 , 3 and 4  are a normalized 

equation of the first rank. 01 = , 02 = , 03 =  and 04 =  denote various parts of the 

boundary of the dodecagon shallow spherical shell on Winkler foundation, respectively. The 

radial deflection curves of line 02=x  and line 01 =x  for different k  and different R  by the 

QGFM and by the ANSYS finite element method (FEM) are shown in Figs.2-5 for a 

comparison, respectively; a good agreement is observed between the two methods. 
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Fig.1  Dodecagon planform 
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Conclusions 

In the present paper, the R-function theory is applied to describe a shallow spherical shells on 

Winkler foundation with concave boundary, and it is used to construct a quasi-Green’s function.  

Compared with the FEM solution, the numerical results of the QGFM demonstrate its 

feasibility, efficiency and rationality. The R-function theory can also be used to effectively 

solve various boundary value problems of the plates and shells by constructing a trial function 

2x
 

),( ba −−

 

),( ba −  

d−  

c−  c  

d
 

1x
 

),( ba−

 

),( ba

 

0 

Fig.2  The deflection curve of line 02=x  in 

Fig.1 for different k  

Fig.3  The deflection curve of line 01=x  in 

Fig.1 for different k  

 

Fig.4 The deflection curve of line 02=x  

in Fig.1 for different R  

 

Fig.5  The deflection curve of line 01=x  

in Fig.1 for different R  
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that satisfies the complex boundary shape and by combining with the other method of weighted 

residuals such as the variational method[11] and the spline-approximation[12]. 
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Abstract 

More and more deep drainage and storage pipeline systems play an important role in 

preventing urban flooding and waterlogging in urban ‘sponge cities’. As the main structures in 

this systems, shafts are used to collect, reserve and transport the water. The effect of inner 

water on seismic response of a deep shaft is studied with three different levels of inner water: 

full, half, and empty. The hydrodynamic pressure is simulated with the CAS (coupled 

acoustics and structure) method which can consider not only the impulsive pressure effect, but 

also the convective pressure effect. Results present that the seismic displacement responses of 

shaft under different water levels are nearly consistent, while the shaft inner forces increase 

with the increase of the inner water level. 

Keywords: Vertical shaft, Inner water, Coupled acoustics and structure method, 

Seismic Response 

1. Introduction 

With the construction and development of urban cities, especially the city resilience in 

controlling and preventing the city flood in heavy rainstorm, the construction of the sponge 

city gradually becomes a focus. The underground reservoir shaft, as a main underground 

structure and the important part of the sponge city project, is used to store up and discharge 

the water. Due to the non-renewable characteristic of underground space and the great 

difficulties in restore of the underground structure, the safety of reservoir shaft under 

earthquake excitation has become a rising concern. 

 

Many researchers have studied the hydrodynamic distribution formulation of the aboveground 

tank under seismic excitation [1-3]. They assumed the tank as a rigid body with only 

translation motion. The added mass method was proposed to simulate the effect of 

hydrodynamic impulsive pressure on the above ground tank [4-6], which are usually 

neglected the effect of the connective pressure. 
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Simplified analytical method [7], experiment test [8] and numerical method [9-11] was used 

to explore the seismic performance of shallow underground tanks with inner water. And the 

results showed that the effect of the sloshing of inner water can be neglected, which is the 

same as the above ground tanks. However, as a vertical embedded structure, the shaft not only 

behaves with translation motion but also with rotational motion under earthquake excitation. 

Obviously, the effect of hydrodynamic pressure on the underground reservoir, especially on 

the shaft inner forces and dynamic displacements, should be further researched. 

 

In order to simulate the dynamic responses of shaft inner water, the hydrodynamic pressure 

needs to be simulated accurately. The CEL (Coupled Euler and Lagrange), SPH (Smoothed 

Particle Hydrodynamic), and CAS (Coupled Acoustics and Structure) methods all can be used 

to simulate the dynamic behavior of inner water in detail. For the SPH method [12-14], the 

water is simulated as uniform distributed partials. However, the particles need to be intensive 

in order to obtain the accurate results. For the CEL method [15-17], the shaft is modeled as 

Lagrange element and the inner water is modeled with the Euler element; in order to simulate 

the water motion, the Euler elements need to be refined, which would increase the element 

number especially in 3D model. For the CAS method [17, 18], the Acoustics element with 

pressure DOF can be used to obtain the pressure of inner water, and the calculation efficiency 

is higher than the above two methods. Taking the calculation efficiency into account, the CAS 

method is efficient in simulating the sloshing and hydrodynamic behavior of inner water and 

shafts. Thus the CAS method is adopted in this paper. 

 

In this paper, three cases with full water, half water, and no water have been simulated and the 

effects on the shaft displacement and inner forces distribution pattern has been investigated 

with CAS method. 

2. Numerical modelling 

2.1 Site and drainage shaft 

Here in order to carry out parameter sensitivity analyses, a series of 3D dynamic time history 

analyses of shafts are performed with the large-scale commercial finite element software 

ABAQUS [19]. The model is shown in Fig. 1a. The model is 400 m in the horizontal directions, 

which is more than five times of the shaft diameter to prevent boundary-waves reflection. 

Because the wave velocity of the bottom soil layer is greater than 600 m/s, the bottom soil 

layer is considered as the bedrock; hence, the model is 120 m in the vertical direction. The 

depth of the shaft is 60 m and the baseboard thickness is 4 m. The thickness of shaft side wall 

is uniform along depth. Fig. 1b shows the model of inner water which simulated by the 

AC3D8R element. Fig. 1c shows the central cross-section of the shaft, in which the lining is 

simulated by S4R element and the baseboard is simulated by C3D8R element. The parameters 

of the shaft in drainage system are listed in Table 1. 
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Figure 1. Schematic diagram of vertical section of the three-dimensional model: (a) 

vertical profile of surrounding soil; (b) inner water and (c) vertical profile of shaft 

Table 1. Geometrical parameters of the shaft and surrounding soils 

Name Depth 

D (m) 

Density 

ρ (kg/m3) 

Shear-wave velocity 

vs (m/s) 

Poisson's ratio 

u 

Elasticity modulus 

E (MPa) 

Soil-1 30 1850 250 0.3 300 

Soil-2 30 1900 300 0.3 520 

Shaft 60 2500 - 0.2 34500 

2.2 Inner water 

The inner water is simulated by the Acoustics element AC3D8 with pressure DOF. In this 

model, three different water levels are considered. The height of water level in each case is 0, 

28m, 56m, respectively. The detail parameters of inner water are listed in Table 2. 

Table 2. Parameters of inner water 

Calculation 

Cases 

Water Depth 

H (m) 

Density 

ρw (kg/m3) 

Dynamic viscosity 

µ(N sec/m2) 

Bulk modulus 

K (MPa) 

No water 0 

1000 0.001 2140.4 Half water 28 

Full water 56 

2.3 Boundary conditions 

MPC boundary conditions are obtained for lateral boundary conditions in the dynamic 

procedure, allowing it to move as a free field. The boundary at the model top is free. The 

vertical degree of the model base is fixed, while the input seismic motion is applied in 

horizontal direction. 

 

For the inner water, the impedance boundary conditions are applied for the free surface in 

order to simulate the effect of the sloshing effect. The acoustic particle velocity in the outward 

normal direction of fluid surface, u̇out, is related to the pressure as well as the change rate with 

time of pressure as follows: 

 1 1
out

p
u p

k t c


 


  (1) 

where, p is the acoustic pressure, 1/k is the proportionality coefficient between the pressure 

and the displacement in normal direction to the surface, and 1/c is the proportionality 
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coefficient between the pressure and the velocity in normal direction to the surface 

( 1/k=1/ρwg, 1/c=0) [17-19]. 

2.4 Input seismic motion 

An artificial earthquake motion for Shanghai is input horizontally from the model base. Fig. 2 

shows the time history of the seismic excitation signal and its Fourier spectrum. The ground 

motion is uniform without taking the wave travelling effects into account. The ground motion 

has a duration of 20 s with a maximum value of 0.1g. The frequency is mostly between 0 and 

10 Hz. 

 

Figure 2. (a) Acceleration time history curve and (b) Fourier amplitude of the Shanghai 

artificial earthquake motion 

3. Results and discussion 

3.1 Sloshing displacement 

In the FEM model, the acoustic pressure is obtained directly at the top surface of the liquid 

and the sloshing displacement, h, can be obtained by using the correlation formulation [17]: 

 
w

p
h

g
  (2) 

where, p is the hydrodynamic pressure of free surface, ρw is the density of water, g is the 

gravity acceleration. 

 

Fig. 3 shows the sloshing displacement time history response of the water free surface. A 

probe is placed on the initial free surface connecting the shaft right side wall. Compared with 

the shaft sloshing displacement, the sloshing tendency is nearly the same. It can be seen that 

maximum sloshing displacement amplitude is 10 cm for the full water case, while the 

maximum sloshing displacement amplitude is 6 cm for the half water case. The magnitude of 

the sloshing displacement is relatively small compared with the inner water height. 
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Figure 3. Sloshing displacement time-history responses of the shaft subjected to 

earthquake ground motions 

3.2 Distribution of hydrodynamic pressure 

The maximum hydrodynamic pressure distribution pattern is extracted at the time t=6.84s, 

when the magnitude of the shaft bottom acceleration reaches the maximum. In order to 

represent the distribute pattern, Fig. 4 shows the distribution of normalized hydrodynamic 

pressure along the height of the shaft. From Fig. 4 it can be seen that the normalized 

hydrodynamic pressure in both the full water and half water cases are nearly the same, while 

the negative magnitude at the top in the full water case indicates the effect of the convective 

pressure. 

 

Figure 4. Normalized hydrodynamic pressure in shaft 

3.3 Shaft displacements 

In order to investigate the effect of inner water on shaft displacement, displacement history 

curves of the shaft bottom and top in three cases are compared in Fig. 5. It can be seen from 

Fig. 5a, the shaft bottom displacement curves in three cases are nearly the same, so are the 

shaft top displacement curves (Fig. 5b). It can be seen that effect of inner water on the shaft’s 
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dynamic displacement can be neglected. At the same time, it also indicates that the shaft’s 

dynamic displacement is mainly determined by the surrounding soils. 

 

Figure 5. Shaft displacement time-history responses of the shaft:  

(a) shaft bottom; (b) shaft top 

3.4 Shaft inner forces 

Fig. 6 shows the envelope distribution pattern of the circumferential bending moment, Mcs, 

and the circumferential axial force, Tcs, along the shaft depth in the cross-section of the shaft 

hoop. Calculation results of the three cases show that as the shaft inner water level increases, 

the circumferential inner forces of the shaft decrease also increases. This is because as the 

shaft water level increases, the hydrodynamic pressure increases, and the seismic load on the 

shaft lining increases finally. 

 

Fig. 7 shows the envelope distribution pattern of the vertical bending moment, Mas, and the 

vertical axial force, Tas, along the shaft depth. Calculation results of the three cases show that 

as the shaft inner water level increases, the vertical inner forces along the depth increase. This 

is also because as the shaft water level increases, the hydrodynamic pressure increases, and 

the seismic load on the shaft lining increases finally. 

 

From the perspective of the inner forces of the structure, the magnitude of the inner forces are 

nearly the same and there is no obvious effects on the shaft inner forces. As the shaft inner 

water level increases, the inner forces of the shaft lining increase with the shaft inner water 

level. 
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Figure 6. Envelopes of maximum internal forces in circumferential direction:  

(a) axial force; (b) bending moment 

 

Figure 7. Envelopes of maximum internal forces in vertical direction:  

(a) axial force; (b) bending moment 

4. Conclusions 

The hydrodynamic effects of inner water on the shaft seismic responses are investigated in 

this paper through 3D CAS dynamic time history analysis with different inner water levels. 

The main conclusions are listed as follows: 

• The inner water sloshing displacement is small, which is not the key factor in the seismic 

design of the underground shaft. 
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• The shaft dynamic displacement is not effected obviously by the different inner water 

levels. This also indicates that the shaft dynamic response is controlled by surrounding 

soils.  

 

• The shaft dynamic inner force distribution pattern is mainly determined by surrounding 

soils, meanwhile the magnitude of the hydrodynamic pressure is nearly the same. Its 

effect can be neglected compared with the effect of surrounding soils. 
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Abstract 

Structural damage detection (SDD) is an essential link to structural safety in the field of 
structural health monitoring (SHM). With the development of SHM technologies, higher 
requirements are necessary for the safety of structures. Therefore, many SDD methods have 
been emerging in the last decades. Due to the ill-posedness of SDD problems, regularization 
techniques are introduced to locate structural damages and quantify severities of damages 
with a higher accuracy. However, the influence of regularization penalties on SDD results is 
lack of consideration to date. In this study, based on the model updating technique, an 
intensive study is proposed to investigate the effect of different regularization penalties in 
structural damage patterns. First-order sensitivity analysis is chosen to establish the identified 
equation. Considering structural damage patterns, three regularization penalties, i.e. the l2 
norm, l1 norm and l1/2 norm penalties are adopted for this comparative study. The SDD 
problem is converted into a kind of optimization problems by defining an objective function 
with different regularization penalties, and they are finally solved by the particle swarm 
optimization (PSO) algorithm. The spring-mass model and cantilever beam are taken as 
examples in numerical simulations for comparative studies. The illustrated results show that 
there are significant effects on the SDD results using different regularization penalties. The l2 
norm penalty is more suitable for structural model updating. The l1 norm penalty has positive 
effect on identifying structural damages for contiguous zones, and the l1/2 norm penalty has 
higher accuracy for noncontiguous damage identification than the l1 norm penalty, which 
provides a potential tool for SDD onsite in the SHM field. 

Keywords: Structural health monitoring (SHM), structural damage detection (SDD), 
regularization, norm penalty, structural damage patterns, sensitivity analysis, particle swarm 
optimization (PSO). 
 

Introduction 

In recent years, more and more scholars have been devoting to ensure the safety of in-service 
structures [1]-[6]. As an effective way for monitoring long-term properties and states in the 
service life of structures, structural health monitoring (SHM) uses measured structural 
responses to estimate the change in structural states. Structural damage detection (SDD) is a 
vital step in the SHM field and is applied to locate and quantify damages of structures. 
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Modal-based method [1] is one kind of SDD methods to detect damages by modal parameters. 
The common modal parameters for SDD are frequencies and mode shapes. Effectively 
utilizing both frequencies and mode shapes for SDD has been proposed in many methods, and 
sensitivity analysis is a common technique to establish the identified equations in these 
methods. Cawley and Adams [2] proposed a SDD method using sensitivity analysis and 
frequencies. However, frequencies are global structural properties, and they are not sensitive 
to local damages. To overcome this shortcoming, mode shapes, local structural properties and 
so on, were introduced to the SDD method by Chen et al [3]. Li et al [4] improved SDD 
methods with the advantages of frequencies and mode shapes to improve accuracy of SDD 
results. However, accurate results are not obtained due to the ill-posedness of SDD problems.  
 
Regularization techniques are common approaches to deal with the ill-posed problem. Many 
scholars have introduced regularization techniques into SDD. Tikhonov regularization method 
(referred to as l2 norm regularization method) is a classical regularization technique, and has 
been used in some SDD studies. For example, Li and Law [5] presented an adaptive Tikhonov 
regularization method for solving the nonlinear model updating problem. SDD results 
obtained by the l2 norm regularization method do not match the sparsity property of actual 
damages. Lasso regularization method (referred to as l1 norm regularization method) based on 
modal updating techniques with natural frequencies and mode shapes was proposed by Hou et 
al. [6]. Moreover, the lq (0 < q < 1) norm regularizations have been verified to obtain sparser 
solution than the l1 norm regularization. The experimental study [7] has been conducted to 
show that the l1/2 norm regularization can be taken as a representation among the lq norm 
regularizations, and the l1/2 norm regularization was introduced to SDD [8]. 
 
To compare performances of regularization techniques, Zhang and Xu [9] gave comparative 
studies between the l2 norm and the l1 norm regularization on damage detection. This study 
showed that the l1 norm regularization exhibited superiority over the l2 norm regularization 
for SDD. Sparsity of solutions and appropriate scenarios of regularization methods is diverse 
when different properties of norm penalties are used. Single damage pattern is unable to 
reflect effects of norm penalties, so more damage patterns will be considered in this paper. 
 
On the other hand, swarm intelligence algorithms (SI) are evolutionary algorithms to promote 
the progress and development of scientific research. Due to their advantages of solving 
optimization problems, SI-based algorithms have been widely used in SDD, such as firefly 
algorithm [10], genetic algorithm [11], artificial bee colony algorithm [12] and so on. As one 
of SI-based algorithms, particle swarm optimization (PSO) was proposed by Kennedy and 
Eberhart [13] and widely applied in many fields due to its simplicity and easy implementation. 
PSO has been introduced into SDD for obtaining the optimal solutions [14]-[15]. 
 
In this study, comparative studies on SDD with different regularization methods are 
conducted. Sensitivity analysis is adopted to establish the relationship between structural 
damages and modal parameters. The l2 norm penalty, the l1 norm penalty and the l1/2 norm 
penalty are selected to define objection functions respectively. The PSO algorithm is utilized 
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to solve these objection functions. To compare the appropriate scenarios of regularization 
methods, a spring-mass model and a cantilever beam are simulated. 

Theoretical background 

Sensitivity Analysis 

Structural frequencies and mode shapes are affected by the change in structural physical 
parameters. The sensitivity-based dynamic analysis method defines the first-order sensitivity 
analysis equation based on the correlation between structural modal parameters and physical 
parameters. It can detect damage locations and quantify damage severities based on finite 
element model and the sensitivity equation. 
 
In this study, it is assumed that structural damages only cause the change in stiffness, and it is 
described by the change in elastic modulus. Thus, the global stiffness matrix of a n-element 
structure can be expressed as: 

 ( )
1

0 1
n

j j j
j
α α

=

= ≤ ≤∑K K   (1) 

where Kj, αj represent the jth element stiffness matrix and damage reduction factor, 
respectively. 
 
The first-order sensitivity analysis equation based on derivatives of frequencies and mode 
shapes can be expressed as follows: 
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where Δfυ = {Δυ1, Δυ2, …, Δυm}T
 and Δfφ = {Δφ1, Δφ2, …, Δφl}T are the difference of 

frequencies and mode shapes, respectively. Δυp = υup –υdp (p = 1, 2, …, m), υup and υdp are the 
pth frequencies in undamaged and damaged structures, respectively. m is the order of 
frequencies. Δφq = φuq – φdq (q = 1, 2, …, l), φuq and φdq are the pth mode shapes in 
undamaged and damaged structures, respectively. l is the order of mode shapes. Δα = {Δα1, 
Δα2, …, Δαn}T is the change in damage reduction factors. S is the first-order sensitivity 
matrix. 
 
The least square method can be used to solve Eq. (2): 
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 2
LS 2

1( ) arg min
2

J = −
Δα

Δα SΔα Δf   (3) 

However, it cannot obtain a stable result for inverse problem due to the ill-conditioned matrix 
S and noise [16]. That is to say, due to the influence of noise, the solution of Eq. (2) is 
ill-posed. In this study, the influence of noise can be reduced and a stable solution can be 
obtained by combining sensitivity analysis with regularization methods. 

Tikhonov Regularization 

The principle of regularization methods is to replace the original ill-posed problem with an 
approximate well-posed problem whose solution equals original solution approximately. So 
Li and Law [5] introduced the l2 norm regularization method into SDD for improving the 
identification precision. The l2 norm regularization method [17] is a popular regularization 
method. It adds a quadratic penalty to Eq. (3): 

 2 2
2 2 2

1( ) arg min
2P

J λ
∈

 = − + 
 Δα R

Δα SΔα Δf Δα   (4) 

where real solution and noise can be balanced by the regularization parameter (λ > 0). 
Regularization term controls the norm of solution. P is the dimension of Δα. 

Sparse Regularization 

The l0 norm regularization method is an original definition of sparse regularization: 

 2

2 0

1arg min
2

λ − + 
 X

X B X   (5) 

where, 
0

X  represents l0 norm of vector X . 

 
The l0 norm regularization method recovers sparse vector precisely, but it is a NP-hard 
problem. The l1 norm regularization method, which was first proposed by Tibshirani [18] in 
1996, can be used to approximately replace the l0 norm regularization. The l1 norm 
regularization method obtains sparse coefficient vector because coefficients with small 
absolute value will set to be zero: 

 2

2 1

1arg min
2

λ − + 
 X

X B X   (6) 

where, 
1

X  represents l1 norm of vector X . 

 
Eq. (6) can be solved by the soft-thresholding [19]: 

 ( )
,

, = 0,
,
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λ λ

λ λ
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B B
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To obtain sparser solution, the lq norm regularizations were proposed after the l1 norm 
regularization. Some studies focused on selecting the best value of q. They showed that the lq 
norm regularizations gain sparser solutions as the q-value decreases. There are no significant 
different performances when 0 < q ≤ 1/2, so the l1/2 norm regularization is a representative of 
the lq norm regularizations [7]. The l1/2 norm regularization method is more sparsity and 
viability than the l1 norm regularization method, the l1/2 norm regularization is defined as: 

 2 1/2

2 1/2

1arg min
2

λ − + 
 X

X B X   (8) 

where, 
1/2

X  represents l1/2 norm of vector X . 

 
Compared with Eq. (6), a generalized shrinkage-thresholding operator [20] is given for the l1/2 
norm regularization: 
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where the thresholding τGST is given by: 
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and the sGST(|B|;λ) can be calculated by the following formula:  

 ( ) ( )
1
2; ; 0

2
GST GSTs sλλ λ

−
 − + = B B B   (11) 

 
For the SDD problem, structural damages occur in few locations, so the coefficient vector Δα 
is a sparse vector. By respectively adding the l1 norm and the l1/2 norm regularization into Eq. 
(3), the following equations are obtained:  

 2
1 2 1

1( ) arg min
2P

J λ
∈

 = − + 
 Δα R

Δα SΔα Δf Δα   (12) 

 2 1/2
1/2 2 1/2

1( ) arg min
2P

J λ
∈

 = − + 
 Δα R

Δα SΔα Δf Δα   (13) 

 
Compared Eq. (12) with Eq. (6), it can be found that the objective functions in these two 
equations are different, so Eq. (12) cannot be directly solved by Eq. (6). Similarly, Eq. (13) 
cannot be directly solved by Eq. (7). To solve Eqs. (12) and (13), in this study, the PSO 
algorithm is introduced, by combining PSO algorithm with Eq. (6) and Eq. (7) respectively, 
the SDD results can be obtained by using Eqs. (12) and (13). 
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Particle Swarm Optimization 

PSO is a heuristic algorithm, and it is inspired by group behavior of birds. With information 
sharing system of the bird flock, PSO simulates their foraging process in space. The solution 
process becomes orderly from unorderly, so an optimal solution can be obtained. PSO is 
simple and low computational cost compared to other novel heuristic algorithms. A solution 
of the optimization problem is a particle of search space. Velocity of each particle decides its 
direction and moving step. The best positions of individual particles pbest and the previous 
best solution of the entire warm gbest are used to update particle positions. That is to say, 
particles update their positions and velocities according to the following equations:  

 ( ) ( ) ( )1 1j j jt t t+ = + +x x v   (14) 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 2 21 = +
j jj j best j best jt t c r t t c r t t+ ⋅ ⋅ − + ⋅ ⋅ −v v p x g x   (15) 

where xj and vj are the position and velocity of the jth particle, respectively. t is the iterative 
number. r1 and r2 are uniformly distributed random numbers in the range of [0,1], and the 
cognitive coefficient c1 and the social coefficient c2 are equal to 2. 
 
In this study, Eqs. (4), (12) and (13) are optimization problems, so they can be solved by PSO. 
To obtain accurate solutions and reduce computation time, Eqs. (7) and (9) are added into 
each particle to solve Eqs. (12) and (13), respectively. 

Numerical Simulations 

To compare the appropriate scenarios of different regularization methods, a 2-DOF 
spring-mass model and a cantilever beam with the dimension of 0.7 m×0.05 m×0.01 m are 
adopted to simulate damages. 

Spring-mass model 

A 2-DOF spring-mass model is shown in Fig. 1. The stiffness and the mass of each DOF are 
150 kN/m and 100 kg, respectively. The first two frequencies of the structure are 3.8096Hz 
and 9.9736Hz, respectively.  

 

Figure 1. Spring-mass model 

 
Gaussian white noise is the ideal model for analyzing additive noise in channels, so it is used 
to discuss the effect of noise on SDD results. In this study, measurement noise is considered 
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to be related to the change in frequencies and mode shapes. Frequencies and mode shapes 
with noise are defined as follows: 

 2( )s ea
i i iR

mυυ υ e
−

= +
υ υ

  (16) 

 2( )s ea
ij ij ijR

lNjjj  e
−

= +
φ φ

  (17) 

where, υi
a and υi (i = 1, 2, …, m) are the ith frequency and the one with noise, respectively. 

φij
a and φij (i = 1, 2, …, l; j = 1, 2, …, N) are the jth element of the ith mode shape and the one 

with noise, respectively. N is the length of each mode shape vector. υs and υe are vectors of 
frequencies in undamaged and damaged structures, respectively. φs and φe are rearranged 
vectors of mode shapes in undamaged and damaged structures, respectively. ευ and εφ are 
noise levels of frequencies and mode shapes, respectively. Ri and Rij are random numbers 
subjected to the standard normal distribution. 
 
As shown in Table 1, four damage scenarios are considered to compare properties of the l2 
norm regularization, the l1 norm regularization and the l1/2 norm regularization. Sketch maps 
of cost functions and norm penalties are offered to illustrate the appropriate scenarios of 
different regularization methods. 
 
The SDD results are shown in Figs. 2-7. Where, (a) represents a sketch map of cost functions 
and norm penalties under different scenarios. The blue lines are constant value lines of cost 
functions and their radii are same in Figs. 2-3. The green lines are constant value lines of 
norm penalties and their junctions of coordinating axis are same in Figs. 4-6. The black points 
are possible values of actual Δα with noise and the black dotted lines are possible constant 
value lines of cost functions.  
 

Table 1. Damage scenarios for spring-mass model 

Scenario 
no. 

Damage degrees @ 
damaged elements 

Noise 
levels 

Values of 
m and l 

Norm 
penalties λ 

Predicted 
damage 
numbers 

1 10%@E1, 8%@E2 0% m=l=2 
l2 0.0040 

2 l1 0.0273 
l1/2 0.1000 

2 10%@E1, 2%@E2 0% m=l=2 l1/2 0.4300 1 

3 10%@E2 1% m=2, l=0 
l2 0.0017 2 
l1 30 1 

l1/2 859.1 1 
4 10%@E2 10% m=2, l=0 l1 11.1970 2 

 
Same SDD results can be identified when each DOF is damaged, as shown in Fig. 2. To 
analyze properties of norm penalties, the radii of cost functions are kept same and their 
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regularization parameters are different. It shows that the l2 norm regularization, the l1 norm 
regularization and the l1/2 norm regularization can detect multiple damages in scenario 1. 

       
(a) Sketch map by adding l2 norm penalty    (b) Sketch map by adding l1 norm penalty 

 
(c) Sketch map by adding l1/2 norm penalty         (d) Identified damage results 

Figure 2. SDD results for spring-mass model in scenario 1 

 
(a) Sketch map                    (b) Identified damage results 

Figure 3. SDD results for spring-mass model in scenario 2 by adding l1/2 norm penalty 

By adding the l1/2 norm penalty, the SDD result in scenario 1 are compared with that in 
scenario 2. Different damage degrees lead to different identified results of damage locations 
even if same damage locations are assumed. In scenario 2, great difference of damage degrees 
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between element 1 and element 2 is given, and the l1/2 norm penalty makes the SDD results 
sparse. Distinct from the sketch maps in Figs. 2(c) and 3(a), the cost function and the l1/2 norm 
penalty intersect at coordinate axis. This is the reason why single damage is identified in 
scenario 2. 
 
In scenario 3, multiple damages are identified when the l2 norm penalty is added in the 
objective function, but one damage is identified when other two norm regularizations are used. 
Due to the influence of noise, the identified result Δα will go away from the coordinate axis 
without adding penalty. Therefore, when the penalty is added, the junction between the 
contour lines of cost functions and the l2 norm penalty is not on the axis. Under these 
circumstances, sparse solution cannot be obtained by adding the l2 norm regularization. 

 
(a) Sketch map                    (b) Identified damage results 

Figure 4. SDD results for spring-mass model in scenario 3 by adding l2 norm penalty 

SDD results are similar in scenario 3 when the l1 norm and the l1/2 norm penalty are 
respectively used. Different norm penalties give different spaces for the objective functions. 
Sparse solutions can be obtained due to the angles of the l1 norm and l1/2 norm penalties, 
which is different from the l2 norm penalty. As a result, horned spaces of norm penalties are 
more beneficial to obtain sparse results. On the other hand, Figs. 2(a) and 4(a) shows that 
dense results are easy to be obtained by using the l2 norm regularization. 

 
(a) Sketch map                    (b) Identified damage results 

Figure 5. SDD results for spring-mass model in scenario 3 by adding l1 norm penalty 
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(a) Sketch map                    (b) Identified damage results 

Figure 6. SDD results for spring-mass model in scenario 3 by adding l1/2 norm penalty 

 

 
(a) Sketch map                    (b) Identified damage results 

Figure 7. SDD results for spring-mass model in scenario 4 by adding l1 norm penalty 

Compared Figs. 5 and 7, it shows that the l1 norm regularization does not obtain a sparse 
solution when the noise level increases, and great biases is produced due to the influence of 
noise. The junction between the contour lines of cost functions and the l1 norm penalties is not 
on the axis. It indicates that both dense and sparse results may be identified by using the l1 
norm regularization. 

By comparing Figs. 3, 5, 6 and 7, it shows that the curvatures of norm penalties will affect the 
SDD results. The sharp change in curvature increases the availability of getting sparse results. 
Thus, the l1/2 norm regularization is more suitable for application in detecting sparse damages. 

Some brief conclusions are summarized as follows: firstly, the l2 norm regularization easily 
obtains a dense result, so it may have a good performance in the application of model 
updating. Secondly, dense or sparse solutions may be identified by the l1 norm regularization, 
so it is more suitable to detect contiguous damages than the l1/2 norm regularization. Thirdly, 
the l1/2 norm regularization gets sparser results with a high probability than the l1 norm 
regularization, so it is suitable for detecting noncontiguous damages. 
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Cantilever beam 

To select appropriate regularization methods for different problems, a cantilever beam is 
simulated. As shown in Fig. 8, the cantilever beam is divided into ten elements. Numbers in 
circles represent element numbers. The elastic modulus is 2.01×1011 N/m2 and the density is 
7800 kg/m3 for each element. 
 
As shown in Table 2, seven damage scenarios are considered to select appropriate 
regularization methods for different scenarios. Four structural damage patterns, i.e. model 
updating, contiguous damages, noncontiguous damages and composite damages are offered to 
distinguish properties of different regularization methods. SDD results are shown in Figs. 
9-15. 

Table 2. Damage scenarios for cantilever beam 

Scenario 
no. 

Damage degrees @ 
damaged elements 

Noise 
levels 

Values 
of m 
and l 

Norm 
penalties λ Damage 

patterns 

1 3%@E1-E10 15% 

m=l=9 

l2 
0.3 

model updating 

l1 
l1/2 

2 

0.8%@E1, E9 
0.9%@E3, E5 
1.1%@E4, E8 

1%@E2, E6, E7, E10 

10% 

l2 

0.2 l1 

l1/2 

3 5%@E4, 13%@E5  
7%@E6 15% 

l2 
0.15 

contiguous 
damages 

l1 
l1/2 

4 6%@E7, 4%@E8  
8%@E9 10% 

l2 
0.2 l1 

l1/2 

5 12%@E2, 6%@E4  
10%@E6 15% 

l2 
0.09 

noncontiguous 
damages 

l1 
l1/2 

6 5%@E3, 10%@E5  
7%@E9 10% 

l2 
0.09 l1 

l1/2 

7 10%@E4, 5%@E7  
14%@E8, 6%@E9 15% 

l2 
0.16 composite 

damages l1 
l1/2 
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Figure 8. 10-element cantilever beam 

 

 
(a)                                   (b) 

 
(c) 

Figure 9. SDD results for cantilever beam in scenario 1 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 

 

In scenarios 1 and 2, dense results are obtained when the l2 norm penalty is added into the 
objection functions, and sparse results are obtained by other regularization methods. 
Moreover, the solution by adding the l1/2 norm regularization is sparser than that by adding the 
l1 norm regularization. It can be concluded that the l2 norm regularization is more suitable for 
application in model updating. 

 

As mentioned above, the l1 norm regularization is able to detect sparse and dense damages. It 
has good performances in scenarios 3 and 4. Damage locations can be effectively identified 
and quantify the damage degrees. The l1/2 norm regularization can only detect two damage 
locations with a lower precision in these scenarios. It shows that the l1 norm regularization has 
the ability to identify contiguous damages. 
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(a)                                   (b) 

 
(c) 

Figure 10. SDD results for cantilever beam in scenario 2 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 

 
(a)                                   (b) 

 
(c) 

Figure 11. SDD results for cantilever beam in scenario 3 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 
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(a)                                   (b) 

 
(c) 

Figure 12. SDD results for cantilever beam in scenario 4 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 

 

 

Different from first two scenarios, exact damage results can be identified by adding the l1/2 
norm penalty to objection functions in scenarios 5 and 6. As indicated in the second 
conclusion, the l1 norm regularization can identify contiguous damages. It may lead to 
misjudging near the actual damages. In this pattern of scenarios, the l1/2 norm regularization 
can make good use of its advantage which makes the solution sparser. It is suitable for 
detecting noncontiguous damages. 

 

For contiguous and noncontiguous damages, the l2 norm regularization performs badly to 
detect them. Damage locations are misjudged in scenarios 3-7. The l2 norm penalty is 
different from the l1 norm and l1/2 norm penalties. In the solving process, each element of the 
solution is not equal to zero by using the l2 norm regularization. So the l2 norm regularization 
is unreasonable for detecting sparse damages. 
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(a)                                   (b) 

 
(c) 

Figure 13. SDD results for cantilever beam in scenario 5 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 

 
(a)                                   (b) 

 
(c) 

Figure 14. SDD results for cantilever beam in scenario 6 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 
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Combining contiguous and noncontiguous damages, composite damages are set in scenario 7. 
SDD results by adding the l1 norm penalty are more accurate than ones by adding the l1/2 
norm penalty, but it does not mean that the l1 norm regularization is always able to obtain 
good results for composite damages, because only one damage location is not detected by the 
l1/2 norm regularization. More future work should be done to verify their abilities in the 
further studies. 

 

 
(a)                                   (b) 

 
(c) 

Figure 15. SDD results for cantilever beam in scenario 7 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 

Conclusions 

In this study, based on sensitivity analysis method, different norm regularization methods, i.e. 
l2 norm, l1 norm and l1/2 norm penalties, are compared to distinguish their abilities of detecting 
structural damages. Objective functions are defined by adding different norm penalties, and 
these functions are solved by the particle swarm optimization (PSO). A 2-DOF spring-mass 
model and a cantilever beam are simulated to analyze properties of the l2 norm regularization, 
the l1 norm regularization and the l1/2 norm regularization, respectively. Sketch maps of cost 
functions and norm penalties under different scenarios are drawn to describe their relationship 
with predicted solution intuitively. Due to different application scopes, diverse damage 
scenarios are given in two numerical simulation models. Some main conclusions can be made 
as follows: 
1) Dense solutions can be obtained when l2 norm penalty is used, so the l2 norm 
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regularization has a good performance in the application of model updating. 
2) Dense solutions or sparse solutions can be identified by the l1 norm regularization which 

depends on the deviation of actual solution from the coordinate axis. Sparse results can be 
obtained when the deviation is small. Otherwise, dense results will be obtained. So the l1 
norm regularization has ability to detect contiguous damages. 

3) A dense result will be obtained due to the influence of noise. The l1/2 norm regularization 
can address this issue effectively. Comparing with the l1 norm regularization, the l1/2 norm 
regularization can obtain sparser solution, and it is suitable for detecting noncontiguous 
damages. 
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Abstract

A cut-cell method utilizing 2D cartesian meshes with embedded boundaries is employed to
simulate steady-state, turbulent and cavitating flows over isolated hydrofoils. The multi-phase
Reynolds-Averaged Navier-Stokes equations for a homogeneous mixture are extended with an
additional transport equation accounting for the liquid volume fraction and the Kunz cavita-
tion model. The mean-flow equations are appropriately preconditioned to render the system
hyperbolic in space and time and to alleviate numerical stiffness due to the low speed of sound
of the mixture. The standard k − ε turbulence model is implemented. A one-layer submesh
is generated to solve Spalding’s composite wall function on the embedded boundaries. Mesh
generation employs a hierarchical quadtree-based data structure resulting in a fast and memory-
efficient process. Cut-cells are constructed by intersecting the discretized geometry with the
Cartesian mesh, creating thus faces where boundary conditions are imposed. The capabilities
of the cut-cell solver are demonstrated over two hydrofoils featuring mid-chord and leading-
edge cavitation. Results show satisfactory agreement with numerical and experimental data.

Keywords: Cut-cell method; Cavitation; CFD; Multi-phase flow.

Introduction

Immersed Boundary Methods (IBMs) enjoy a high level of mesh generation automation and
flexibility when simulating complex flows with moving or stationary geometries. Initially de-
veloped by [1], IBMs focused on making flow solvers to accurately predict inviscid [2], viscous
[3] and, more recently, turbulent [4][5] flows. The mesh generation process, employing a hierar-
chical tree-based data structure, demonstrates high efficiency in terms of CPU cost and storage
requirements [6].

IBMs can be classified as continuous and discrete, [7]. In the continuous IBMs, source terms are
introduced into the flow equations to simulate the effect of solid boundaries. Since the source
terms are not imposed directly on the geometry shape, the effect of the source terms is smeared
across multiple neighbouring cells. Difficulties arise in the conservation of mass, momentum
and energy in cells intersecting the solid boundaries, [8]. In contrast, in discrete IBMs, solid
boundaries are represented by sharp interfaces and boundary conditions are imposed, without
altering the governing PDEs. This representation, however, introduces temporal discontinuity,
for the cells without time history, and additional actions are required to simulate moving ge-
ometries. Among the discrete IBMs, the cut-cell method reshapes finite volumes using their
intersections with the geometry. Very small finite volumes may appear near the interface dur-
ing reshaping that can cause numerical instabilities [9], if not properly treated. However, the
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discrete representation of the geometry, employed by the cut-cell method, guarantees the satis-
faction of local and global conservation laws.

In fluid flows, the inception of cavitation occurs when the static pressure of the liquid drops
below the vapor pressure. Sheet, bubble, vortex or supercavitation may appear. In some ap-
plications, such as high-speed underwater bodies, cavitation is beneficial for drag reduction,
while in some others, such as propellers, undesirable since it can reduce their performance and
durability. The ability to predict and control its inception is, thus, of importance. As a result,
cavitation, and its forms, has been studied experimentally in cases, such as the Venturi channel
[10], the flow over hydrofoils [11] and cylindrical head-forms [12], and extensive research has
been dedicated to the development of numerical models [13][14][15][16] capable of simulating
cavitating flows. These models are classified into two categories, namely, interface tracking
and interface capturing methods. In interface tracking methods, the liquid/vapor interface is
explicitly tracked and acts as an internal boundary, whereas, the interface capturing methods
provide the liquid/vapor interface as part of the solution procedure. Differences of the interface
capturing methods lie in the set of governing equations satisfied. In one-fluid models, the con-
servation laws for the mixture are solved and the phase change is controlled by a state law, such
as the barotropic mixture law. In two-fluid models, the conservation laws are solved for each
fluid with appropriate mass transfer rates at their interface, whereas hybrid models, such as that
employed in the present work, are based on the conservation laws for the mixture and a phasic
transport equation coupled with a cavitation model to control the phase change rates. In cases,
such as ventilated cavitating flows, where more than two phases are considered, the models can
be extended either by modifying their state law [17], including additional conservation laws or
by including additional transport equations [13] to account for additional phases. Several for-
mulations for the cavitation model have been proposed, mostly relying on empirical formulas,
see [13] and [15], or bubble dynamics such as the Full Cavitation Model [16].

Previous work combining IBMs and cavitating flows is limited to the use of one-fluid models.
[18] employed a cut-cell method coupled with a modified Tait law, to simulate weakly com-
pressible cavitating flows through a closing fuel injector control valve. Recently, [17] and [19]
presented computational studies on cavitating flows for an external gear pump and a projectile
impacting a water jet, both using a continuous IBM.

The present work employs a hybrid model in conjunction with the cut-cell method to simulate
cavitating flows. The effects of the rapidly varying finite volumes near the solid boundary, as
well as their impact on the mass transfer model are investigated. A hybrid model has been
selected as it may provide high flexibility and capture baroclinic vorticity generation [20]. The
proposed implementation allows the prediction of cavitating flows while also maintaining the
benefits of employing a cut-cell method. Studies of turbulent flows over isolated hydrofoils are
presented.

Mathematical Model

The multi-phase Reynolds-Averaged Navier-Stokes (RANS) equations are adopted to simulate
steady-state cavitating flows. A homogemeous mixture comprises liquid and vapor, both con-
sidered to be incompressible. The mixture is described by the momentum and phasic continuity
equations. The continuity equation for the vapor phase is replaced by the one for the mixture,
rather than using separate continuity equations for each phase. The retained mixture and liquid
continuity equations are enriched with source terms to simulate mass transfer associated with
the cavitation. From the numerical point of view, pseudo-time derivatives are introduced to
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render the system hyperbolic in space and time and alleviate numerical stiffness created by the
low speed of sound of the mixture.

The Jones and Launder k − ε turbulence model [21], coupled with the Spalding’s composite
wall function [22] technique, is employed. The turbulence model takes into account the mixture
densities and viscosities, with the turbulent variables referring to the mixture.

Governing equations

In vector form, the system of the preconditioned multi-phase mean-flow and turbulence equa-
tions for the mixture, is written as:

Γ
∂Q

∂τ
+

∂Fj

∂xj
−
∂Fv

j

∂xj
− S = 0

∂QT

∂τ
+

∂FTj

∂xj
−
∂Fv

Tj

∂xj
− ST = 0 (1)

with Q=[ p u al ]T the mean-flow state vector, QT =[ %mk %mε]
T the turbulent variables state

vector, τ the pseudo-time and xj the cartesian directions. The convective, Fj,FTj
, viscous,

Fv
j ,F

v
Tj

fluxes and source vectors, S,ST are given by:

Fj =

 uj
%mujui + δij p

aluj

 ,Fv
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 0

(µm + µm,t)
(
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)
0
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(ṁ+ + ṁ−)
(

1
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%v

)
0

(ṁ+ + ṁ−) 1
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FTj
=

[
%mkuj
%mεuj

]
, Fv

Tj
=

(µm + µm,t
σk

)
∂k
∂xj(

µm + µm,t
σε

)
∂ε
∂xj

 , ST =

[
P− %mε

(C1P− C2%mε)
ε
k

]
(3)

where p, u
(
=[ u, v]T

)
, a, %, µ, k, ε refer to pressure, velocity vector, volume fraction, den-

sity, viscosity coefficient, turbulent kinetic energy and turbulence dissipation rate, respectively.
Subscripts m, l, v refer to the mixture, liquid and vapor phase, respectively. δ is the Kronecker
delta. Quantities ṁ± are associated with the mass transfer model rates characterizing both phase
changes; for them, the Kunz cavitation model [13] is implemented. The evaporation term m−

is a function of the pressure and the liquid volume fraction whereas the condensation term m+

is a function of the liquid volume fraction, al,

ṁ− =
Cdest%val min [0, p− pv](

1
2
%lU2

∞
)
t∞

, ṁ+ =
Cprod%va

2
l (1− al)
t∞

(4)

The empirical time rate constants Cdest and Cprod are case-dependent and their values are non-
dimensionalized with respect to the mean-flow time scale, t∞= L

U∞
. L is the characteristic length

scale, in the case of hydrofoils their chord length, and pv is the vapor pressure.
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The preconditioning matrix Γ takes the form [13]

Γ =


1

%mβ2 0 0 0

0 %m 0 u∆%
0 0 %m v∆%
al

%mβ2 0 0 1

 (5)

with β the pseudo-compressibility parameter and ∆% = %l − %v. The mixture density and
molecular viscosity are based on a local volume-averaging:

%m = al%l + (1− al)%v (6)
µm = alµl + (1− al)µv (7)

The turbulence production term is P=µm,t

(
∂uj
∂xi

+ ∂ui
∂xj

)
∂uj
∂xi

and the mixture turbulent viscosity

coefficient is µm,t=Cµ%mk2

ε
. The turbulence model constants are: Cµ=0.09, C1=1.44, C2=

1.92. Spalding’s wall function formula, resolves both the viscous and the log layer through a
single formula,

y+
(
u+
)

= u+ + e−κB
(
eκu

+ − 1 − κu+ − 1

2

(
κu+

)2 − 1

6

(
κu+

)3
)

(8)

with u+= ut
uτ
, y+=uτ∆

ν
and uτ , ∆, ν, κ represent the friction velocity, distance from the wall,

kinematic viscosity and von Karman constant, respectively.

Discretization and Numerical Solution

To solve the homogeneous multi-phase flow equations, a cell-centered, finite-volume scheme
on unstructured meshes is employed. Eqs. (1) are integrated and discretized with second-order
accuracy in space. The resulting linearized system is solved using a block Gauss-Seidel method.
The implementation is able to run in parallel on distributed memory systems by partitioning the
mesh into subdomains, communicating using the MPI protocol.

Generation of a Geometry Adapted Computational Mesh

The generation of an adapted computational mesh with embedded boundaries is fully automated
[23]. Initially, a uniform mesh is generated and cells intersected with the body surface are
identified. Then, a recursive algorithm is employed to refine all intersected cells until the user-
defined minimum cell volume has been reached, without allowing the refinement levels of two
adjacent cells to differ by more than one. Once the maximum refinement level is reached at the
intersected cells, the fluid part of the cells is retained, whereas the solid part is discarded, thus
creating the cut-cells. Occasionally, cut-cells with volumes noticeably smaller than originally
can be created that could stiffen the numerical solution of the flow equations [9]. To avoid
convergence difficulties due to these cells, algorithms that merge cut-cells with volumes less
than a user-defined threshold value with one of their immediate neighbours are employed [9].
Merged cells are differently shaped finite volumes, treated identically to all other cut-cells.

This procedure produces Cartesian meshes that are generally unsuitable for CFD simulations
with large flow gradients present, e.g the viscous boundary layers and the cavity interface, since
the cells in the immediate vicinity of solid walls abruptly change refinement levels, Fig. 1a.
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Therefore, the refinement levels across the computational domain are smoothed to increase
mesh resolution close to solid walls, by employing a progressive refinement algorithm. The
algorithm, based on the distance of each cell from the geometry and a sigmoid function, com-
putes the maximum allowable volume of each cell. Cells exceeding this value are refined. In the
absence of smoothing, the refinement levels of neighbouring cells, result in increased numerical
errors near the geometry. The mesh generation and adaptation process is based on a hierarchical
quadtree data structure [9] and follows stages illustrated in Fig. 1.

(a) (b)

Figure (1): Stages of mesh generation. Computational mesh of the NACA0012 hydrofoil
(a) before and (b) after implementing the progressive refinement algorithm.

Discretization of the Governing Equations

Equations (1) are integrated, over a finite volume Ω, yielding:

Γ
V

∆τ
∆Q +

∫
∂Ω

Fjnj dS −
∫
∂Ω

Fv
j nj dS −

∫
Ω

SdV = 0 (9)

where n the unit normal vector to the faces of each volume. The discretization of the turbulence
model equations is similar, thus, omitted.

The discretization of the convective fluxes in Eq. (9) is based on the Roe scheme [24], using a
second-order linear reconstruction. The state variable gradients at each cell centre are estimated
by a linear least-squares method using all face neighbours. In the presence of strong flow gra-
dients, the extrapolation procedure is limited to provide a monotone-preserving TVD scheme.
The pseudo-time step ∆τ is determined by stability criteria.

The inviscid flux, Φ, at each cell face reads

Φ =
1

2

(
FL + FR − ΓRoe

∣∣∣ ˆARoe

∣∣∣ (Q− −Q+
))

Q± = QL/R + ψ ∇Q∆x (10)∣∣∣ ˆARoe

∣∣∣ =
∣∣Γ−1

RoeARoe
∣∣ , |ARoe| = MRoe |ΛRoe|M−1

Roe (11)
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In the equations above, ψ is the Barth-Jespersen limiter [25] value, M, M−1 are the right
and left eigenvectors of the preconditioned Jacobian matrix, Γ−1A, and Λ is the diagonal
eigenvalue matrix, diag (Λ) = [u, u + c, u− c, u]T . The pseudo-sound, c, is computed as
c=
√

(un + β2) and un is the normal to the face velocity, [13]. Superscripts +,− refer to the
reconstructed variables, while L/R to the adjacent to the face cells. Subscript (Roe) denotes
Roe-averaged variables, defined as

ϕRoe =

√
%+ϕ+ +

√
%−ϕ−√

%+ +
√
%−

, ϕ ∈ (u, al, k, ε) (12)

The velocity gradients at each cell face, necessary for the viscous fluxes, are computed using
central differences. At the faces of cut-cells or those separating cells with different refinement
levels, the barycenters of the corresponding cells are not aligned with the face midpoint and,
thus, undergo a non-orthogonality correction.

For the solution procedure, the Jacobians A= ∂F
∂Q

are computed analytically. Source terms are
linearized in order to promote diagonal dominance.

Implementation of Wall Functions

A one-layer submesh, Fig. 2, with constant normal distance from the solid boundary is gen-
erated, as in [26]. Cells dimension (∆x) can be computed based on their refinement level,
by exploiting the quadtree data structure [9]. Then, the normal distance is computed ∆ =
1.6min(∆x), and is the same for all cut-cells, since all cut-cells reach the same level. The nor-
mal distance ensures that the submesh nodes reside outside the (possibly merged) cut-cell. Eq.
(8) is solved to extract the required wall shear stress and turbulent variables boundary condi-
tions, by employing the submesh. Finally, the velocity gradients of the cut-cells are replaced by
the ones provided by the Spalding formula [26]. The submesh node corresponding to the solid-

Geometry
Submesh Node

Mesh

Figure 2: One-layer submesh used to implement the wall function technique. Each
submesh node is connected with a solid face of the cut-cell.

node line closest to each cut-cell barycenter is located and used to compute the friction velocity
uτ . Each cut-cell is associated with a submesh node on which Eq. (8) is solved. The tangent to
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the wall velocity ut at that node is linearly reconstructed from the nearest cell to compute uτ ,
iteratively. The shear stress is computed separately at each solid face to account for cases where
the solid face direction changes inside a cut-cell, providing a more accurate computation of the
corresponding solid face viscous flux.

Numerical Treatment of Cut-Cells - Application of Boundary Conditions

A blow-up view of the area close to the interface with a solid body is presented in Fig. 3a.
Two cut-cells, a merged (blue) and non-merged (brown), are included for illustative purposes.
A merged cell is created when a slave cell (the smaller one) attaches to a master cell to create
a new bigger cell. A master cell accomodates one slave cell at most to prevent the formation
of non-convex finite volumes. The sizes of the faces of a slave cell are compared to determine
which neighbour should become its master cell; the one with the largest common face is selected
as master cell.

Fig. 3b shows a cut-cell finite volume along with two fluxes (4, 5) due to the presence of the
solid boundaries. For brevity, the following refer to inviscid flows where the no-penetration
(u · n=0) condition is applied. For all internal faces, (1, 2, 3, 6), fluxes are cast in Cartesian
coordinates, e.g. flux through face 2 becomes F · n̂=[u, %mu

2 + p, %muv, 0]
T . On solid faces,

boundary conditions are weakly imposed. Flow variables are extrapolated at the midpoint of
each solid face and the appropriate flux, Fw=[0, pface n, 0]T is imposed.

(a)

1

2

3

4

5

6

(b)

Figure (3): (a) Areas near the solid boundary of a mesh with embedded boundaries
where a merged (blue) and a non-merged (brown) cut-cell can be seen. (b) Enlarged view

of a cut-cell; normal vectors represent fluxes. Solid wall conditions are imposed along
faces 4 and 5.

Results and Discussion

The capabilities of the cut-cell solver in the simulation of sheet cavitation are demonstrated in
numerical studies of two isolated hydrofoils, for different cavitation numbers, and results are
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compared with published data, [11][14][27]. Sheet cavitation has been experimentally observed
to exhibit a quasi-steady behaviour and the experimental data [11] obtained regarding sheet
cavitation are time-averaged. Therefore, it is a common practice, e.g [14][27][28], to perform
simulations using a steady-state solver. The cavitation number is defined as σ= p∞−pv

1
2
%lU2

∞
and the

pseudo-compressibility parameter as β2≈10U2
∞.

Cavitating Flow around the NACA0012 hydrofoil

The first case considers mid-chord sheet cavitation on a NACA0012 hydrofoil, based on the
numerical study presented in [14]. [14] employed the same cavitation model in a pressure-
based (SIMPLE) algorithm, with a density ratio equal to %l

%v
=1000, which is also valid here.

The Reynolds number is Rec=2 · 106 based on the chord and the infinite flow angle is 1◦. With
a cavitation number equal to σ=0.42, a thin layer of vapor is created at the mid-chord of the
hydrofoil that exhibits no re-entrance jet/recirculation. A mesh with 42K cells is generated
with sufficient progressive refinement near the solid body and an average y+ ≈ 90 of the first
cell barycenters off the wall (Fig. 5a) to capture the thin vapor layer.

In the literature [14][28], it is reported that the empirical time rate constants (Cprod, Cdest)
of the mass transfer model are case dependent and different values are proposed and used by
different codes for the same test cases. In the current implementation, the proposed time rate
constants also produced unrealistic results. A parametric study was conducted to calibrate the
dimensionless mass transfer time rates constants, C+=

Cprod
t∞

, C−=Cdest
t∞

.

Fig. 4a shows pressure distributions obtained during this study with several pairs of constants
and their impact on the converged solution. In the results presented hereby, the pressure inside
the cavity is equal to pv, but this is not the case if C− becomes lower. The pressure gradients aft
the cavity are influenced by the correct balance between the two source terms. Too small values
of C− shorten the cavity length, while too big values of C+ steepen the pressure gradients at
the cavity closure region.

Fig. 4b compares the results of the surface pressure profile, with the selected time rate con-
stants, of the current implementation with two numerical results obtained on body-fitted mesh
solvers under the same conditions and mass transfer model, though with different time rates.
Differences are limited to the cavity closure region.

In Fig. 5b, the vapor volume fraction field and, therefore, the cavity is presented. A thin layer of
vapor is generated along the suction side of the hydrofoil. The maximum vapor volume fraction
inside the cavity avmax approaches 0.9. The liquid-vapor interface is spread across multiple cells.
This might be due to the smooth pressure gradients observed at the cavity closure, which implies
that the condensation source term is weak enough to avoid an instantaneous phase change and
make it appear gradually. Fig. 5a shows a close-up view of the area near the cavity. By plotting
the liquid volume fraction iso-line al=0.99 over the mesh, it can be seen that the cavity resides
inside the finest refinement levels of the mesh.
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Figure 4: Surface pressure suction side profile over a NACA0012 hydrofoil, α=1◦,
Rec=2 · 106 and σ=0.42. (a) Parametric study to find the best value set of C+ and C−. (b)

Comparison with the numerical studies of [14][28] and the best value-set of time
constants found.

(a)

(b)

Figure 5: NACA0012 hydrofoil: (a) Liquid volume fraction iso-line (orange) al=0.99
which determines the size of the cavity along with the smoothed mesh refinement near

the geometry. (b) Iso-areas of the vapor volume fraction av.

Cavitating Flow around the NACA66(MOD) hydrofoil

In this section, the cavitating flow over a NACA 6-series hydrofoil is presented. The hydro-
foil has been experimentally investigated in [11] for leading edge and mid-chord cavitation
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and time-averaged pressure distributions are available in the literature [11]. The cambered
NACA66(MOD) hydrofoil has a camber ratio of 0.02, a mean line of 0.8, a thickness ratio
of 0.09 and a chord length of 0.1524m. The presented study focuses on steady-state simula-
tions of flows with an infinite flow angle of α=4◦, a Reynolds number Rec=2 · 106, based
on the chord length, a density ratio %l

%v
=1000 and three cavitation numbers, σ=∞, σ=0.91

and σ=0.84. A cartesian mesh with 80K cells is generated with sufficient mesh resolution
near the geometry and y+ ≈ 50. The best value-set of the two time rate constants was found
to be C−=106, C+=9000 after a parametric study. Furthermore, for the cavitation numbers
σ=0.91, 0.84 the surface pressure distributions are also compared with the numerical results of
[27]. The latter employed a commercial CFD solver and calibrated the mass transfer rates for
the same conditions over a NACA66(MOD) hydrofoil.

The first case, σ=∞, is the non-cavitating case and is included to validate the cut-cell solver
with the experimental data of [11]. In the other cases, with σ=0.91, σ=0.84, vapor is gener-
ated since the pressure decreases below the pressure vapor and cavities are observed. Fig. 6a
shows the surface pressure distributions of the non-cavitating case (σ=∞) and the experimental
data from [11]. The surface pressure distribution compares favourably with the time-averaged
experimental data. In Fig. 6b, the surface pressure distribution in the case with σ= 0.91 is
presented and compared with measurements [11] and other numerical results [27]. The results
obtained with the cut-cell method show that the pressure inside the cavity remains constant and
agrees with both numerical and experimental data. Furthermore, comparing with the numerical
results, an underprediction of the cavity length is also observed. Fig. 7a, shows the vapor vol-
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Figure 6: Surface pressure distribution over the NACA66(MOD), (a) The non-cavitating
(σ=∞) case (b) Cavitating cases of σ=0.91 and σ=0.84.

ume fraction with the computational mesh employed. In Fig. 7c the pressure field is presented.
The constant pressure inside the cavity can be seen and its value is approximately equal to the
negative of the cavitation number σ=0.91, as expected.

By further reducing the cavitation number, a larger cavity is created. In Fig. 6b, the surface
pressure distribution for σ=0.84 is compared with experimental time-averaged data [11] and
numerical results [27]. Both numerical results produce the appropriate pressure inside the cavity
and capture the same pressure recovery trend. Fig. 7b shows the vapor volume fraction on the
suction side of the hydrofoil. The pressure flow field is shown in Fig. 7d. Finally, comparing
Fig. 7(a)-(b), it can be seen that decreasing the cavitation number increases the size of the vapor
cavity created.
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(a) (b)

(c) (d)

Figure 7: Cavitating NACA66(MOD) hydrofoil. σ=0.91 (left) and σ=0.84 (right). (a) - (b)
Vapor volume fraction along with the computational mesh used and (c) - (d) Pressure

coefficient iso-areas.

Compared to the experimental data, both numerical solvers underpredict the cavity length at
σ= 0.84. The differences noted, could be attributed to the additional multi-phase turbulent
effects which dominate in these areas. Addressing the additional turbulent effect in cavitating
flows is still an ongoing research area and new findings could improve numerical predictions.
However, this is beyond the scope of the present paper.

The use of flow-based adaptation is common in transonic and supersonic flows [23], where
shock waves are present and require increased mesh resolution locally. IBMs, employing hi-
erarchical data structures, make flow-based adaptation techniques easy to implement and is
considered one of their main advantages over their body-fitted counterparts. Hence, a natural
next step is the addition of flow-based refinement in the multi-phase solver as steep flow gradi-
ents also characterize cavitating flows. The choice and definition of the adaptation sensor, that
identifies the areas of interest and implements the refinement algorithm, require special atten-
tion. An obvious choice may be the normalized ‖∇al‖, where large gradients are present only
near the cavity interface, see in Fig. 8. The pressure gradients could also be considered as an
adaptation sensor since the mass transfer models are closely related to the field pressure.

Figure 8: Iso-areas of the normalized ‖∇al‖ over the cavitating NACA66 hydrofoil.
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Conclusions

A cut-cell solver for a homogeneous mixture model has been implemented to simulate steady,
turbulent, cavitating flows, based on the Kunz model. The cut-cells and the one-layer submesh
that help to employ the Spalding’s composite wall function model for the k − ε turbulence
model, together with the merging of the small cut-cells, are shown to handle the large density
gradients present in cavitating flows.

To assess the programmed method, two hydrofoil cases featuring mid-chord and leading edge
sheet cavitation have been selected and comparisons with experimental and numerical data
are presented. The cavitation model implemented proved to be sensitive to the two time rate
constants which should, therefore, be carefully selected to avoid nonphysical solutions or the
divergence of the numerical scheme. The automatic mesh generation and refinement, even in
complex geometries, offered by the cut-cell method, renders it an appealing alternative to CFD
solvers employing body-fitted meshes. This is particularly important in case of moving bodies,
which is not the case in this paper; to summarize, the programmed software simulates both 2D
and 3D flows, with stationary or moving bodies (see [29], presented in the same conference).
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Abstract 

In this paper, a Graphics Processing Unit (GPU) based novel parallelization scheme is 

proposed to reduce the extensive computational cost associated with the finite element (FE) 

and isogeometric analysis (IGA) simulations of linear and non-linear problems. An innovative 

parallelization strategy is introduced that achieves fine-grain parallelism and is suitable for 

GPU. The proposed strategy is implemented within the MatLab
®

 programming environment 

for the GPU based FE and IGA simulations. It, thus, avoids the need for specialized 

programming languages like CUDA/C++, which require in-depth knowledge for their 

implementation. The capabilities and performance of the proposed strategy are examined by 

solving both linear and non-linear problems. The results demonstrate that the proposed 

strategy achieves a considerable improvement in the assembly and computation of global 

tangent matrices over both the single core CPU and multicore CPU based computations. A 

maximum speedup of 41.4 times over single core CPU and 10.8 times over multicore CPU is 

achieved for linear problem. For non-linear problem of strip peeling from an adhesive 

substrate, a maximum speedup of 12.3 times is obtained in comparison to multicore CPU 

based computation. The proposed strategy can be easily incorporated within the existing 

codes with little modification. 

Keywords: Parallel Programming, GPU computing, IGA, Nonlinear FEA, MatLab.  

 

Introduction 

Finite Element Analysis (FEA) is one of the most popular numerical methods used for the 

solution of a variety of problems governed by the partial differential equations [1]. It is known 

that FEA involves a large amount of computation to find the nearly exact solution of the 

problem. Moreover, the computational efforts increase substantially if the analysis includes a 

large number of finite elements. It, as a resultant, leads to a significant amount of simulation 

time even on fast modern computers. However, this may not be a desirable choice in the 

analysis community. 

In 2005, Hughes et. al [2] introduced the Isogeometric analysis (IGA) technique to circumvent 

the above mentioned issue associated with FEA. Unlike FEA, IGA doesn’t need to perform 

expensive mesh generation of the Computer Aided Design (CAD) model as it directly enables 

the transition of CAD generated model into the analysis framework. Thus, reducing the 

execution time of IGA based simulation significantly compared to FEA [3]. 

However, the computational time in case of IGA solver for large-scale problems can still be 

high [3]. The large simulation time in scientific applications is often reduced by using parallel 

computers. It involves decomposing a large-scale problem into a smaller number of parts and 

solving them in parallel over multiple processors. Recently, GPU based parallel computing 

has achieved great success in accelerating time-consuming scientific applications [4]. The 
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GPU is specialized hardware designed to handle parallel and independent data task in a very 

efficient manner. It is a massively threaded processor having thousands of simpler cores 

instead of few powerful cores like in CPU. A large number of cores in GPU bring the 

performance of a mini computer cluster to the desktop computer at very low capital cost, low 

cooling cost and low power consumption [5]. There are numerous applications accelerated 

successfully by GPU in various fields including aerospace, defense, finance & economics, oil 

& gas, and computer games [6]. However, writing code for a GPU requires knowledge of 

parallel programming strategy and specific programming language like CUDA C/C++. Since 

CUDA C/C++ is a lower level programming language, it demands a great amount of time and 

effort from the user. On the other hand, scripting languages like MatLab
®

 have become more 

popular in the scientific community. MatLab
® 

provides an integrated computing environment, 

which supports the effortless development of code, easier and faster debugging, visualization, 

and a large number of built-in functions. The ease of code development in MatLab
®
 comes at 

the cost of lesser flexibility and reduced control to the programmers, which may lead to sub-

optimal performance. In the current work, a novel parallelization strategy is introduced which 

provides a possibility to achieve accurate result at a considerably lower computational cost 

compared to standard sequential computation approaches. The execution time is further 

reduced significantly by the use of GPU. 

The previous efforts to accelerate FEA on MatLab
® 

have focused on efficient vectorization 

techniques or parallel computation on multicore CPU through parfor or spmd construct of 

parallel computing toolbox [7]. A parallel implementation for coupled electro-mechanical 

finite element analysis of micro-electro-mechanical (MEMS) device is found in [8]. The work 

shows the use of parfor loop to calculate element stiffness matrices in parallel over 40 

MatLab
®
 workers set up to reduce simulation time from 60 hours to 2 hours. A significant 

amount of reduction in FEA assembly time is achieved by vectorization of code in [9]. In 

another work [10], a comparative analysis of multicore parallelization and GPU 

parallelization is done. The implementation uses parfor and spmd construct for CPU and 

arrayfun function wrapper for GPU. The result shows GPU based algorithm performing 

poorly than other two. However, the authors believe that with efficient vectorization GPU 

based parallelization can achieve better performance. 

Most of the previous work on acceleration of FEM using GPU is found to be based on CUDA 

C/C++. The most detailed study of GPU implementation of finite element assembly process is 

presented in [11]. The authors show the speedup of several folds in assembly for lower order 

as well as higher order elements. An efficient implementation of numerical integration on 

GPU is found in [12]. The authors show speedup of 7× over the efficient CPU implementation 

for quadrilateral element. In [13], a novel interaction-wise strategy for assembly of stiffness 

matrix in IGA is presented. The proposed strategy achieves speedup up to 54× over single 

core CPU implementation. The GPU based integration strategy of B-spline basis function in 

IGA is found in [14]. The above-mentioned works along with many others in literature [15] 

signify the effectiveness of GPU in accelerating FEM simulation. However, to the best of 

authors’ knowledge no literature exists that discusses the capabilities of MatLab
®
 to use GPU 

to accelerate FEM. 

FEM consists of a sequence of computationally expensive steps like evaluation of local 

matrices (mass and stiffness), assembly of local matrices into global matrix and solution of 

assembled system of equations [1]. GPU based computing has been found to be very effective 

in accelerating almost every step of FEM [15]. The solution of linear system of equation often 

dominates the simulation time and, therefore, it must be implemented with an optimized 

linear solver [16][17]. However, the time consumed in element matrix creation and their 
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assembly to global matrix cannot be ignored, particularly, in nonlinear problems. In nonlinear 

problems, a large number of time steps are required to reach final solution. Within each time 

step, there are Newton-Raphson iterations that require revaluation of element stiffness 

matrices and their reassembly [1]. Thus, an optimum implementation of this step can lead to 

significant amount of reduction in simulation time. 

The objective of the current work is to accelerate the evaluation and assembly of mass and 

tangent matrices by making use of GPUs through parallel computing toolbox of MatLab
®
. A 

MatLab
®
 code can be made to run on GPUs with the minimum amount of changes requiring 

far less development effort than the language like CUDA C/C++. The function wrappers 

provided by MatLab
®
 like bsxfun, pagefun, and arrayfun have been used for numerical 

integration. Assembly to global matrix is done by sparse function of the MatLab
®
. First, an 

efficient GPU parallel strategy for FEM analysis for 2D elasticity problems is proposed and 

compared with sequential and CPU parallel (parfor) strategy. The proposed strategy is 

further used to accelerate IGA based nonlinear analysis of a strip peeling problem. The 

present work aims to utilize the computational power of GPU for FEA and IGA while 

keeping the development effort minimum by implementing it within the MatLab
®

 

environment. The outcome of this study is expected to help people in academic and industry 

accelerate their FEA based simulation code in MatLab
®
. 

The paper is organised as follows. In next section, problem formulation is presented using 

IGA. Thereafter, the parallel implementation of FEM is explained along with the data 

structure. In second last section, results of the numerical experiments done to evaluate the 

performance of proposed strategy are presented. The last section concludes the paper.  

Problem Formulation 

This section is divided into the two subsections. In the first, a continuum based formulation of 

adhesion model and its weak formulation is briefly overviewed. In the second, finite element 

and the NURBS based discretization of the continuum is presented. 

 

 
 

Fig. 1 Contact kinematics of a deformable body and a rigid substrate pair in their current 

configuration. 

 

Model for Adhesive Contact Problem 

Consider a body   in its current configuration having domain  , surface  , and the part of its 

boundary where contact takes places as   . The schematic arrangement of the body interacting 

with the rigid substrate is illustrated in Fig. 1. The governing equation for the quasi-static 

frictionless adhesive contact problem is given by the equilibrium between the work done by 

the internal, external, and contact forces. For the admissible variation of interaction potential 
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function   , the weak form for the adhesive contact for a deformable body is given by the 

following statement [18]: 

 

∫    (  )  
 

 

   ∫          
 

  

                              ( ) 

where   is the space of kinematically admissible variation function   ,   is the Cauchy stress 

tensor, and    is the contact traction over   . For the evaluation of contact tractions, penalty 

method based regularization of constitutive equation for the contact surface traction is used. 

First, based on the unique projection of slave points on the master surfaces, the unit normal 

   and minimum gap    between the contact surfaces are determined, see Fig. 1. Using the 

definition of the normal gap, the contact traction can be written as: 

 

  (  )   {
                   

                          
                                                               ( ) 

 

where    represents the penalty parameter. For the van der Waals adhesion model and the 

contact traction    is obtained by integrating the Lennard-Jones interaction potential four time 

[18] and is given as  
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Here,   , and    denote the Hamaker’s constant, and the equilibrium spacing of interacting 

particles of contacting bodies, respectively. 

FE discretized weak formulation 

Within the FEA, the domain of the body   is discretized into    number of elements such 

that   ∑   
  
    and the displacement field     its variation     for a standard finite element 

   is given by the summation of product of Lagrange basis function and field variables as 

   ∑        

  

   

       ∑          

  

   

                           ( ) 

 

where    represents the displacement vector of node    and    denotes the total number of 

nodes in an element   . N is the basis function matrix:   [                ]  where    

represents the Lagrangian basis function associated to node   , and   is the identity tensor 

in   . Following the Galerkin approach, the initial configuration  , and current configuration 

  of body   are described in a likewise manner as in Eq. (4). In the context of IGA, NURBS 

basis functions used for the discretization of the geometry are employed for the determination 

of solution field. The displacement field  , its variation   , and the current configuration of 

the geometry   is represented in terms of the NURBS basis functions     (   ), i.e.    is 

replaced by     (   ) in Eq. (4). The reader is referred to [19] for the detailed description of 

the implantation of IGA into the finite element code structure. The discretized weak form Eq. 

(1) for the adhesive contact can be cast into the following matrix form [18]: 

 

     [            ]                 
                                             ( ) 

 

where     ,   , and        are the vectors for internal, contact, and externally applied forces, 

respectively. Internal force vector is described by the constitutive relation of the material 
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model. In the present work, a Neo-Hookean hyperelastic material model is used and the 

Cauchy stress is determined by the following expression [20]  

 

   
 

 
      

 

 
 (     )                                                               ( ) 

 

where   and   are Lam ́’s constants, and   denotes the determinant of deformation gradient 

tensor  . The contact contribution   
  over the contact surface    of an element    can be 

computed by the following expression 

 

    
  ∑  

  

  

   

                      
    ∫        

 

  
 

                              ( ) 

Parallel implementation of FEA 

The proposed strategy has been implemented entirely in MatLab
®
 environment using the 

parallel computing toolbox. The parallel computing toolbox provides various ways to run 

code on the GPU. The simplest way is to use built-in function enhanced to work on GPU with 

gpuArray type of input data. Since the built-in functions are not always sufficient, we have 

written our own MatLab
® 

functions and used them with function wrappers to implement our 

strategy on the GPU. The user-defined MatLab
®

 functions can be used without any function 

wrappers but it may launch multiple CUDA kernels even for simpler function. The function 

wrapper like arrayfun compiles multiple operations of a function into single GPU kernel and 

therefore provides better performance. However, the GPU function wrappers have some 

restrictions. Only those user-defined functions that contain element wise operations can be 

used. The arrayfun wrapper allows the function to take arrays/matrix as input but indexing 

into the array is not allowed. 

 

 
Fig. 2. Calculation of Jacobian. 

 Vectorization of code is critical to achieve better performance by the GPU parallelization. 

Our proposed strategy is based on a vectorization scheme in which computation at the 

elemental level with scalar variable is converted into computation at mesh level with arrays. It 
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enables us to easily implement our strategy by functions with element wise operations and use 

them with arrayfun function wrapper. In our implementation, the numerical integration is 

done by looping over the Gauss points. For each Gauss point, Jacobian is calculated for 

transformation to the reference coordinates. Since we are doing calculation at the mesh level, 

Jacobian is calculated for each element of the mesh simultaneously. The data structure and 

procedure for Jacobian calculation is shown in Fig 2. Here, nodal coordinates are reordered 

and stored in the matrix with each column containing an individual coordinate for all elements. 

The derivative of the basis function in reference coordinate is pre-computed for all the Gauss 

points and reordered to facilitate the computation of Jacobian. As shown in Fig. 2, the 

calculation of an entry of Jacobian is done by multiplying coordinate values with basis 

function derivatives for a particular Gauss point. This evaluates to an array that contains an 

entry of Jacobian matrix for all the elements of the mesh. The other entries of the Jacobian 

matrix are calculated in the similar way. The computation of determinant for all the element 

of the mesh can be done simply by element wise operations over array of entries of Jacobian 

matrix. The computation of inverse of Jacobian is done by co-factor calculation. This can 

again be done in parallel for all the Jacobian matrices by element wise operations.  

The inverse of Jacobian is multiplied with derivative of shape function in reference 

coordinates to calculate shape function derivative in physical coordinates. Since we are 

working with arrays, the above product produces shape function derivative for all the 

elements of the mesh. To facilitate the computation of element stiffness matrix, the derivative 

of shape function is stored as shown in Fig. 3. Each column of the matrix contains derivative 

of particular shape function for all the elements of the mesh. The evaluation of element 

stiffness matrix is done by computing each individual entry of the matrix simultaneously for 

Fig. 3. Calculation of element stiffness matrix. 
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all the elements. The calculation and storage pattern is shown in Fig. 3. Since the elemental 

matrix is symmetric, we calculate only the unique entries.  

All the matrices involved in the computation are stored in GPU memory. The assembly to 

global matrix is done by sparse function of the MatLab
®
. The off-diagonal entries are 

assembled first, so that it can be transposed to generate the symmetric part of the matrix. The 

on-diagonal entries are added later to complete the global matrix. The sparse function 

requires the row and column indices of the values to be assembled. This can be calculated 

beforehand using mesh connectivity. We pre-compute the row and column indices and reorder 

them according to the storage arrangement of element stiffness matrix. The global matrix is 

assembled on GPU.  

Results and Discussion 

To evaluate the performance of the proposed strategy two different problems are solved. The 

first one is linear elastic two dimensional (2D) cantilever beam problem with concentrated 

load at the tip and the second one is a strip peeling problem. The performance is compared 

among a CPU sequential, CPU parallel, CPU vectorized and GPU implementation. The CPU 

sequential approach uses a loop over each element of the mesh for element matrix 

computation and assembly. The CPU parallel implementation uses parfor construct of the 

parallel computing toolbox to utilize multiple processors on the CPU for parallel computation 

of element matrix computation and assembly. The CPU vectorized implementation is based 

on the proposed vectorization scheme but uses the CPU for computation. 

The machine used for the numerical experiment consists of Intel Xeon
®

 E5-2650 processor 

having 2.2GHz of clock speed and a NVIDIA Tesla K40c GPU with 2880 cores clocked at 

745MHz. The proposed strategy has been implemented on MatLab
®
 R2016a using the 

parallel computing toolbox. 

2D Cantilever beam 

A 2D cantilever beam with concentrated load at tip is taken  

as shown in Fig. 4. The geometric and material parameters are given as: length (L) – 10 m, 

breadth (B) – 1 m, Young’s modulus (E) - 210 GPa, Poisson’s ratio (ν) - 0.3 and end load (P) 

- 10
5
 N. Linear quadrilateral element with two degrees of freedom (DOF) per node is used to 

discretize the domain.  

 

 

 

 

 

 

L=10 m

B=1 m

P=105 N

Fig. 4. A 2D cantilever beam with end load. 
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Table 1. Finite element mesh. 

Mesh Elements Nodes Degrees of 

freedom 

Mesh 1 900 000 903 301 1 806 602 

Mesh 2 1 600 000 1 604 401 3 208 802 

Mesh 3 2 500 000 2 505 501 5 011 002 

Mesh 4 3 600 000 3 606 601 7 213 202 

 

The problem is solved for different level of mesh refinement keeping the aspect ratio of the 

elements same. The finite element mesh with varying level of refinement is shown in Table 1. 

Structured mesh has been used for the purpose of numerical experiment but the calculation is 

performed for each of the elements treating them as unstructured. Fig. 5 shows the 

comparison of numerical integration and assembly time as a function of mesh sizes. It can be 

observed that the proposed GPU implementation obtains least timings for all of the mesh sizes. 

The CPU vectorized implementation achieves significantly less time than CPU parallel 

strategy (using 12 workers), highlighting the effectiveness of the proposed vectorization 

scheme. The speedups of the GPU implementation over all other implementations are shown 

in Fig. 6. A maximum of 41.4× (Mesh 1) speedup is obtained over CPU sequential and 10.8× 

(Mesh 1) over CPU parallel implementations. The GPU code could achieve speedup of only 

3.6× - 3.8× over CPU vectorized implementation, which shows that the proposed 

vectorization of FEM is able to scale very effectively also on the CPU. 

 

 

 
Fig. 6. Speedup in numerical integration and assembly 

 

 

Fig. 5. Numerical integration and assembly time. 
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The linear system of equations given by FEM can be solved by either direct sparse solver or 

by iterative solvers. The mldivide(\) operator in MatLab
®
 implicitly chooses the best 

algorithm (direct solver) depending upon the type of input matrix. On CPU, mldivide 

performs much better than the iterative sparse solvers. Since mldivide operator is not 

supported on GPU for sparse matrices, we compared mldivide on CPU with iterative solver 

on the GPU. For Mesh 3 in Table 1, the pcg (preconditioned conjugate gradient) function 

takes 295 seconds on GPU, whereas mldivide takes 25.5 seconds to solve the system of 

equations on CPU. This prompts us to adopt a strategy in which assembly, numerical 

integration is done on GPU, and solution of linear system of equations takes place on CPU by 

the mldivide operator. We call this as GPU + CPU strategy. Fig. 7 shows the comparison of 

overall execution time. The GPU + CPU strategy achieves 2.2× speedup over CPU parallel 

strategy, 5.6× speedup over sequential strategy and 1.4× over CPU vectorized strategy for the 

finest mesh. 

 
Fig. 7. Overall execution time for cantilever beam problem. 

 
Fig. 8. The geometrical set-up of peeling problem. 

Strip peeling problem 

We consider the peeling of a deformable strip (having length        , height        

with      nm) adhering to a flat, rigid substrate. The schematic arrangement of this 

problem is shown in Fig. 8. An isotropic, nonlinear Neo-Hookean material model with     

GPa, and      , under plane strain conditions is used. It is considered that the adhesive 

contact forces are present at the     of the bottom length of strip (from     to         ) 

and are calculated using Eq. (3) with        nm and      
    J. At one end, a rotation 

angle   is applied in such a manner that it yields a constant moment during the peeling 

process and a rotation step size         is chosen for the simulation. The strip is discretized 

with 240 x 12, 320 x 16, 400 x 20, 480 x 24, 640 x 32, and 720 x 36 number of elements 

along each direction and corresponding discretization is referred as mesh 1, Mesh 2, Mesh 3, 

Mesh 4, Mesh 5, and Mesh 6, respectively.  
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In Fig. 9, the comparison of numerical integration and assembly time is done. A considerable 

amount of reduction in assembly timings can be observed for the proposed strategies. For 

Mesh 6, the integration  and assembly time reduces from 21876 seconds to 1780 seconds. The 

CPU vectorized code achieves speedup in the range 5.1× - 4.1× over CPU parallel strategy. 

The GPU based strategy achieves speedup in the range 2.4× - 12.3× over CPU parallel and 

0.47× - 2.9× over CPU vectorized. The device set up time and data communication time 

dominates in GPU +CPU strategy for smaller mesh size which results into inferior 

performance compared to CPU vectorized for Mesh 1 and Mesh 2. When the mesh size 

increases, effectiveness of GPU becomes more apparent. The comparison of total execution 

time is shown in Fig. 10. The GPU + CPU strategy takes the least amount of time and reduces 

the total simulation time from 49343.3 seconds to 28452 seconds for Mesh 6, which is 

remarkable.  

 
Fig. 9. Numerical integration and assembly time for strip peeling problem. 

  

Conclusions 

In this work, a novel vectorization strategy is presented to implement FEA and IGA on GPU 

using MatLab
®
 environment. The proposed vectorization strategy accelerates elemental 

tangent matrix evaluation and their assembly by performing the required computation at mesh 

level rather than at element level. For linear elastic cantilever beam problem, the GPU based 

strategy is found to be 10.1× faster than CPU parallel (parfor) and 38.2× faster than sequential 

strategy in numerical integration and assembly for 7.2 million DOF. For strip peeling 

problem, a maximum speedup of 12.3× is achieved over CPU parallel strategy in numerical 

integration and assembly. This leads to total reduction in overall simulation time from 13.7 

hours to 7.9 hours. Based on numerical simulation done in this paper, we find that a GPU is 

very effective in accelerating the evaluation of element tangent matrix and their assembly to 

global matrix in MatLab
®
. In future, we would like to extend this work to accelerate 

evaluation of contact forces on GPU.  

Fig. 10. Total execution time for strip peeling problem. 
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Abstract

In this work, the unique properties of the scaled boundary finite element method (SBFEM),
a semi-analytical numerical method, which introduces a scaling center in each element’s
domain, are exploited to improve the accuracy of computed generalized stress intensity
factors (gSIFs) on hybrid balanced quadtree-polygon (QT) meshes. The gSIFs are ex-
tracted by harnessing the semi-analytical solution in radial direction. This is achieved by
placing the scaling center of the element containing the crack at the crack tip. Taking
an analytic limit of this element’s stress field as it approaches the crack tip, delivers an
expression for the singular stress field. By applying the problem specific boundary condi-
tions, the geometry correction factor is obtained and the gSIFs are then evaluated based
on their formal definition.
Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when com-
bined with QT meshes employing linear elements, this does not always hold. Neverthe-
less, it has been shown that crack propagation schemes are highly effective even given
very coarse discretizations, utilizing criteria than only rely on the ratio of mode I to mode
II gSIFs. The absolute values of the gSIFs may still be subject to undesirable errors.
Hence, we propose a post-processing scheme, which minimizes the error resulting from
the approximation space of the cracked element. Thus, the errors in the calculation of the
gSIFs is only limited to the discretization error of the quadtree mesh. This is achieved
by h- and/or p-refinement of the cracked element, which elevates the amount of modes
present in the solution. The resulting numerical description of the element is highly accu-
rate, with the main error source now stemming from its boundary displacement solution.
Numerical examples show, that this post-processing procedure can significantly improve
the accuracy of the computed gSIFs with negligible computational cost even on coarse
meshes resulting from QT decompositions.

Keywords: SBFEM, hierarchial meshes, gSIFs, crack propagation, LEFM.

Introduction

The need for robust, economical and high-fidelity numerical methods to simulate failure
processes in linear elastic fracture mechanics (LEFM) arises as as consequence of sus-
tainable design, mandating lighter, stronger and more resilient structures in, e.g., the
aerospace, automotive, and construction industries [7,21,23]. To this end, several numer-
ical methods have been investigated. Some more notable representatives include: The
finite element method, boundary element method, extended finite element method, mate-
rial point method, meshless methods, peridynamics and recently also the scaled boundary

ICCM2019, 9th-13th July 2019, Singapore

464



finite element method, which all consider a discrete crack representation. As of late, meth-
ods considering diffuse crack representations, e.g., variants of the phase field and thick
level set method have been gaining traction, due to their ability to incorporate complex
crack behaviour such as nucleation, propagation, branching, merging and arrest [12, 13].
For a comprehensive treatment, we kindly refer the reader to [4].
Although currently the extended finite element method (XFEM) [8] is arguably the
most popular method, pending widespread adoption in industry and academia alike,
SBFEM [17] offers similar capabilities and additional benefits in LEFM scenarios. SBFEM,
which introduces a scaling center within the element domain and, where applicable, at
the crack tip, permits an analytic solution in radial direction and thus the gSIFs can be
efficiently and effectively evaluated in post-processing as the limit of the singular stress
field as one approaches the crack tip [16, 18]. The benefits include the accurate deter-
mination of gSIFs at bi-material notches [2] and the fact the no a priori knowledge is
required of the order of singularity. Further, SBFEM’s polygon underpinning permits
direct integration with QT meshes, which eliminates issues with hanging nodes, results in
a limited amount of precomputable elements realizations and offers a level of adaptivity
around domain features [1, 9, 11,22].
However, the accurate calculation of gSIFs requires sufficient angular resolution of the
singular stress field. This issue is traditionally circumvented by refining an area around the
crack tip with subsequent homogenization into a cracked macro element. In conjunction
with the balancing operation performed on the QT meshes, this introduces a significant
amount of degrees of freedom (DOFs) thus increasing the computational toll of analysis.
Although the direction of crack propagation is accurately determined by the ratio of
gSIFs, the load-deflection curve can exhibit significant errors. Hence, we aim to increase
the accuracy of the calculated gSIFs, utilizing the same global mesh as previously for
analysis. This is achieved by enforcing the external boundaries of the cracked element to
be compatible with the linear shape functions, yet internally permit the use of arbitrary
higher order approximations to model the singular stress field.
This remainder of the paper is structured as follows: First the problem statement and the
pertinent theory are summarized. Next, the proposed method is detailed. Subsequently,
two numerical examples are investigated. They serve to validate the proposed method
and form the basis for the discussion. Finally, conclusions are drawn.

Problem Statement and Pertinent Theory

Problem Statement

To formulate the LEFM problem, we consider a two dimensional cracked domain Ω
(Fig. 1). The boundary Γ = Γ0 ∪Γu ∪Γt ∪Γc comprises regions of free surface conditions
(Γ0), prescribed displacements ū (Γu) and prescribed traction t̄ (Γt), where applicable.
The strong form with associated boundary conditions follows as:

∇ · {σ}+ {b} = {0} in Ω (1a)

{u} = {ū} on Γu (1b)

{σ} · {n} = {t̄} on Γt (1c)

{σ} · {n} = {0} on Γ0
c (1d)

where {σ} denotes the Cauchy stress tensor, {n} the unit outward normal to the boundary,
{b} the applied body force per unit volume, {u} the displacement field and ∇ the gradient
operator.
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Figure 1: Cracked Body and boundary conditions.

The stress {σ} and strain field {ε}, given small deformations and linear elastic material
behaviour, follow from the modulus of elasticity E and Poisson ratio ν:

{ε} = ∇s{u} and {σ} = [D]{ε} (2)

for which ∇s is the 2D symmetric gradient operator and [D] the elasticity tensor:

[D] =
E

1− ν2


1 ν 0
ν 1 0

0 0
1− ν

2

 , for plane stress. (3)

Summary of SBFEM Theory

SBFEM [17] sets itself apart from other numerical methods by the introduction of a scaling
center. Only one scaling center may be present per polygonal element, termed a subdo-
main. One notable restriction is imposed: The complete boundary must be visible from
the scaling center, i.e., star-convexity. A new polar-like reference system is introduced
with radial coordinate ξ and local tangential coordinate η (Fig. 2).
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η = 1
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ξ = 1

ξ = 0
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Figure 2: Subdomain with scaled boundary coordinates ξ and η.

The radial coordinate, with origin at the scaling center 0 and a value of 1 on the boundary
such that 0 ≤ ξ ≤ 1 is kept analytic throughout the analysis. This reduces the dimension-
ality of the problem by one. In 2D only the boundary remains, which is discretized in the
conventional finite element sense, into independent line elements. Each line element pos-
sesses its own natural coordinate −1 < η < 1 in tangential direction. Mapping between
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Cartesian (x, y) and scaled boundary coordinates (x(ξ, η), y(ξ, η)) requires an analytic,
associated with ξ, and interpolatory, associated with η, component: Any point within the
domain can be expressed by scaling of a point {xb}, {yb} on the boundary by a fraction
of ξ in radial direction and an interpolation using the conventional finite element shape
function [N(η)] along the natural coordinate.

x(ξ, η) = ξxb(η) = ξ[N(η)]{xb} (4)

y(ξ, η) = ξyb(η) = ξ[N(η)]{yb} (5)

An iso-parametric representation is adopted and the displacements are analogously mapped:

{u(ξ, η)} = [N1(η)[I], ..., Nn(η)[I]]{u(ξ)} (6)

The amount of degrees of freedom (DOFs) per line element is denoted by n, while [I] is a
2x2 identity matrix and {u(ξ)} represent nodal displacement functions in radial direction,
which need to be determined by SBFEM analysis.
Applying the transformation to scaled boundary coordinates, the stresses may be written
as [19]:

{σ(ξ, η)} = [D]([B1(η)]{u(ξ)},ξ +[B2(η)]{u(ξ)}/ξ) (7)

where the strain-displacement relation is described by partitioning the linear operator
into [B1(η)] and [B2(η)] [17]. Deriving the weak form involves recasting the strong form
in scaled boundary coordinates and applying the standard techniques in tangential direc-
tion [3, 5, 20]. This gives rise to two equations:

[E0]ξ2{u(ξ)},ξξ +([E0]− [E1] + [E1]T )ξ{u(ξ)},ξ −[E2]{u(ξ)} = 0 (8)

{P} = [E0]ξ{u},ξ +[E1]T{u} (9)

The scaled boundary finite element equation in displacements (Eqn. 8) governs the system
response within the domain, while Eqn. 9 defines the behavior on the boundary. Three
coefficient matrices [E0], [E1], [E2] arise, which bear strong similarity to stiffness matrices
in conventional FEM: They are calculated element-wise with subsequent assembly on
subdomain level. The vector or nodal forces and displacements on the boundary are
given as {P} and {u} = {u(ξ = 1)} respectively. Typically, the solution to the set of
homogeneous Euler-Cauchy differential equations is constructed as a power series:

{u(ξ)} = [Ψ(u)]ξ−[S]{c} =
n∑
i=1

[Ψ
(u)
i ]ξ−[Si]{ci} (10)

The transformation matrix [Ψ] and block diagonal real Schur form [S] arise from rewritting
the quadratic eigen-problem described by combining Eqns. 8 and 9 as a system of first
order differential equations:

ξ

{
{u(ξ)}
{q(ξ)}

}
,ξ = −[Z]

{
{u(ξ)}
{q(ξ)}

}
(11)

with the Hamiltonian coefficient matrix Z defined by

Z =

[
[E0]−1[E1]T −[E0]−1

−[E2] + [E1][E0]−1[E1]T −[E1][E0]−1

]
(12)
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It can be shown that Eqn. 11 decouples the block-diagonal Schur decomposition [15].

[Z][Ψ] = [Ψ][S] (13)

The modes comprise the columns of the transformation matrix, while the corresponding
eigenvalues are contained within the diagonal blocks of the real Schur form. Having
doubled the problem size by considering a system of first order differential equations,
the bounded response is striped from the unbounded one by sorting [S] and [Ψ] and
partitioning according to sign:

[S] = diag([Sneg], [Spos]) (14)

[Ψ] =

[
[Ψ(u)

neg Ψ(u)
pos]

[Ψ(q)
neg Ψ(q)

pos]

]
(15)

Substituting the bounded component of the displacement solution (Eqn. 10) into the equa-
tion governing the boundary response (Eqn. 9), the formulation of the subdomain stiffness
matrix arises, which permits the calculation of the displacement field using conventional
FEM methods.

Kbounded = [Ψ(q)
pos][Ψ

(u)
neg]

−1 (16)

The final expression of the stresses is obtained by substituting Eqn. 10 into Eqn. 7:

{σ(ξ, η)} =
n∑
i=1

[Ψσi(η)]ξ−[Si]−[I]{ci}] (17)

where stress mode [Ψσi(η)] arise from its corresponding displacement mode [Ψ
(u)
i ]:

[Ψσi(η)] = [D](−[B1(η)][Ψ
(u)
i ][Si] + [B2(η)][Ψ

(u)
i ]) (18)

Generalized Stress Intensity Factors

Since the general solution to the SBFEM equation is constructed from a power series,
the singular modes are readily identified: By inspection of Si, any −1 < real(λ) < 0 will
result in a singularity at ξ = 0. By placing the scaling center at a crack tip, this feature
is exploited in calculating the gSIFs (Fig. 2). By including a double node at the crack
mouth, two additional modes, i.e., the singular modes, arise, whose eigen-vectors resemble
the mode I and mode II fracture cases. The singular stress field is extracted from the
general solution (Eqn. 17), where the superscript (s) denotes the singular quantities:

{σ(s)(ξ, η)} = [Ψ(s)
σ (η)]ξ−([S(s)]−[I]){c(s)} (19)

Only the components {σ(s)(r, θ)} = (σ
(s)
θ (r, θ), τ

(s)
rθ (r, θ))T are retained, which correspond

to mode I and II cracks.{
σ
(s)
θ (r, θ)

τ
(s)
rθ (r, θ)

}
=

1√
2πL

ξ−[S̃(s)(θ)]

{
KI(θ)
KII(θ)

}
(20)

Comparing Eqn. 20 to the gSIFs formal definition [18] permits their evaluation as:{
KI(θ)
KII(θ)

}
=
√

2πL{σ(s)} (21)
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Hierarchical Meshes

Hierarchical meshes arising from quadtree decompositions traditionally suffer from hang-
ing nodes, whose treatment typically incurs computational, algorithmic or implementa-
tional overhead. Leveraging the polygon-underpinnings of SBFEM alleviates all issues
commonly associated with hanging nodes, resulting in analysis ready meshes. To avoid
irregularity of the mesh, a balancing operation is performed, which limits the amount of
unique subdomain realization to 16 and enables precomputation. Hence, this approach
garners considerable attention [1, 10,11].
Strong and weak discontinuities are introduced by clipping the QT mesh [9]. Contrary
to the XFEM, double nodes are introduced. Crack tips require special treatment: A
double node is introduced where the crack enters an element and the scaling center is
placed at the crack tip (Fig. 2). Crack tips do not require discretization, however, they
are assumed straight. For crack propagation calculations, sufficiently accurate SIFs are
required. Unfortunately, the elements typically encountered on QT meshes do not permit
sufficient resolution of the singular stress field. Hence, a region around the crack tip is first
locally refined and then homogenized (Fig. 3, bottom left). Imposing a suitable criteria
to determine the critical crack propagation angle in conjunction with a user specified
crack propagation increment ∆a, determines the crack tip location in the subsequent step
(Fig. 3, bottom right). Due to the balancing operation, the homogenization step affects
large portions of the mesh, introduces many spurious DOFs in the process and forces a
substantial system update across iterations. The increased accuracy with which the SIFs
are calculated is attributed to two affects: Mesh refinement about the singularity and
improving the approximation space of the crack tip element.

Refinement
Balancing

Homogenization

Figure 3: Stages in crack propagation by SBFEM on QT meshes.
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Proposed Method

By inspecting the expression of the singular stresses (Eqn. 19), the accuracy of the gSIFs
(Eqn. 21) can be improved in two ways:

1. Finding a better approximation for the integration constants [c] stemming from the
displacement solution of the domain.

2. Enhancing the displacement and thus stress field approximation [Ψ] and [S] within
the cracked element by escalating the amount of DOFs present.

The contribution of the first source can be adjusted by h- or p-refinement on the mesh,
either locally or globally. However, this is a costly procedure due to, e.g., remeshing,
reassembly followed by solution, in the understanding that a significant amount of DOFs
are newly introduced. Considering the convergence rate of the linear elements employed,
this is deemed a sub-optimal approach from a computational resources standpoint. The
second source allows for enhancement directly in post-processing and permits certain in-
sight into how close we might be to the exact solution, by contrasting the gSIFs calculated
using the traditional approach to those using the improved scheme.
The steps comprising the improved scheme are:

1. Perform analysis
A displacement solution for the given mesh is sought.

2. Create a high order cracked element
The existing cracked element is replaced by one elevated by h- and/or p-refinement.
New nodes, lying in-between existing QT mesh nodes, are introduced in the process.

3. Impose linearized displacements on all DOFs
To guarantee compatibility with the surrounding QT mesh, linear displacements are
enforced between its nodes, on the boundary of the elevated cracked element.

4. Back calculate [c] for cracked element
Since the cracked element comprises one subdomain, with all DOFs situated on the
boundary, where the prescribed displacements are imposed, the calculation of the
stiffness matrix is not necessary. Only the block-diagonal Schur decomposition is re-
quired. The integration constants are obtained as [c] = [Ψ(u)

neg]
−1{u} [17]. Typically,

refined crack elements comprising 100 DOFs have sufficiently converged. Since the
original already contains 10-30 DOFs, this does not noticeably impact computation
time.

5. Extract singular stress modes
The identification and extraction of the singular stress modes remains unchanged.

6. Calculate gSIFs
The gSIFs are calculated given Eqn. 21, however, now based on the quantities
originating from the elevated cracked element.

7. Contrast original with improved gSIFs
By contrasting the values for the gSIFs calculated by both methods, we can gauge
the quality of the original analysis. If the discrepancy in gSIFs is deemed too large,
refinement of the original mesh may be warranted.
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Numerical Examples

Edge cracked square plate in mode II

An edge cracked square plate subjected to a plane stress state is examined (Fig. 4).
Along the boundary, the analytic solution [6] of the near-tip crack field is prescribed
given KII = 1 (Tab. 1), imposing pure mode II loading. The material properties are
E = 200 [N/mm2], v = 0.3 and the side length is L = 1 [mm].

KII = 1
E = 200 [N/mm2]
ν = 0.3

L

L

a = L/2

Figure 4: Experimental setup for numerical example A.

Table 1: Analytic solution of the near-tip crack field.

Exact displacement solution for mode II fracture

ux
KII

2µ

√
r/(2π)sin θ

2

(
κ+ 1 + 2cos2 θ

2

)
uy −KII

2µ

√
r/(2π)cos θ

2

(
κ− 1− 2sin2 θ

2

)
Three cracked element discretizations are considered, as they arise typically on QT meshes,
prior to the refinement and homogenization steps (Fig. 3). The exact solution is applied
to the QT mesh nodes identified in Fig. 5. The remaining nodes resulting from internal
element refinement are restricted to move as a linear combination of their neighbouring
QT mesh nodes, enforcing compatibility.

QT mesh node
linear BC

CBA

Figure 5: Typical element types A-C arising from QT meshes.

The convergence behaviour is investigated in Fig. 6. Due to the over-constraining of
the boundary, deviation in convergence behaviour is expected, i.e., by enforcing linearly
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Figure 6: Convergence behaviour of KII on QT meshes employing n-noded
elements as boundary discretization.

dependant displacement boundary conditions between QT mesh nodes, an effective stress
state is imposed that differs mildly from the exact solution. In this example, the gSIFs
are therefore slightly overestimated, which is evident in the asymptotic behaviour on all
three meshes. Nevertheless, the error in KII is significantly reduced for all QT meshes,
as can be seen in Tab. 2. The diverging results for the case of 2-noded elements is
explained by the examination of the absolute values. While the higher order elements
approach the asymptotic solution from the high end, the two-noded elements approach
from the lower end, thus crossing the imposed KII = 1 in the process. The obtainable
accuracy is naturally limited to the asymptotic case by the artificially imposed boundary
conditions. Therefore, the expected convergence behaviour is disrupted accordingly. In
this specific example, the convergence behaviour of even-noded elements was observed to
behave predictably, while the odd-noded elements exhibited slight oscillatory behaviour.
It can be observed that the computed values for KII remain practically stable when more
than 100 DOFs are employed within the cracked element. Preference should be given to
higher order elements due to their enhanced convergence properties. On a contemporary
laptop employing unoptimized Matlab code, this entails calculations completing in less
than 0.1s. Tab. 2 provides the results for KII calculated on the original QT meshes and
contrasts them to the asymptotic solutions for the refined crack elements, given a high
fidelity SBFEM solution. Assuming a user-specified accuracy tolerance, the improved
method of calculating the gSIFs facilitates a decision criterion on whether global mesh
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refinement is required. The difference in achieved accuracy for each QT mesh is primarily
attributed to the manner in which the enforced displacements on the boundary conform
to the exact field solution. Deviations therein are reflected in the integration constants
[c] (Eqn. 19) and comprise the remaining error in the asymptotic solution. In a practical
application of this method, the displacement solution on the QT mesh nodes results from
the FEM solution of the global QT mesh. Since the method proposed to improve the
calculation of gSIFs does not increase the amount of global DOFs, the overall analysis does
not differ. Solely on the cracked element that is refined, “virtual” nodes are introduced
that, however, never manifest in calculation of system displacements as their values are
predetermined due to the linearized BCs. In principle, a more accurate representation
of the displacement modes and eigenvalues is achieved inside the cracked element, while
the boundary constraints remain unchanged. This explains the counter intuitive results
of the asymptotic error for QT mesh type A for which smaller errors are observed than
for the QT mesh type B: For this specific loading, i.e., mode II excitation, on average,
the enforced displacement field on the boundary results in a closer approximation of the
exact stress field. If mode I excitation where, however, considered, for which the right
boundary of the cracked element exhibits concave behaviour, QT mesh Type A results in
a 15% error, since it is not able to reproduce such displacement behaviour. Between QT
meshes type B and C we observe convergence as expected, as QT mesh C can represent
all displacement modes of QT mesh B, while also introducing additional ones.

Table 2: Convergence of gSIFs to imposed solution.

Method KII error [-] error [%]

imposed 1 - -

(v) hi-fi 1.00000000524414 ≈ 0 ≈ 0

(iii) QT mesh A 1.01547261490198 0.0155 1.55
B 0.80116357970950 0.1988 19.88
C 0.92998436271287 0.0700 7.00

(iv) asympt. A 1.01124862611779 0.0113 1.12
B 1.02286467268900 0.0287 2.29
C 1.00598223218854 0.0060 0.60

Edge cracked square plate in mode I

An edge cracked square plate subject to a plane stress state is examined (Fig. 7). The
bottom edge of the plate is fully clamped, while on the top edge forced displacements
uy = 1 and ux = 0 are applied. The Young’s modulus, Poisson’s ratio, fracture energy,
crack propagation increment and side length are given as E = 200 [N/mm2], v = 0.3,
Gc = 2.7 [N/mm2], ∆a = 0.025 [mm] and L = 1 [mm] respectively.
First, the load-deflection curves obtained from several methods are compared: (i) XFEM,
(ii) traditional QT SBFEM, (iii) SBFEM on QT mesh types A-C, (iv) the newly proposed
SBFEM method and (v) a high fidelity SBFEM solution comprising one subdomain with
h- and p-refinement. The load-deflection curves (Fig. 8) are constructed using the follow-
ing procedure:

1. Calculate the critical stress intensity factor Kc from the E-modulus and the critical
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energy release rate Gc:

Kc =
√
EGc for plane stress (22)

2. Formulate the equivalent stress intensity factor Keq:

Keq =
√
K2
I +K2

II (23)

This implies that the crack propagates as soon as Keq ≤ Kc. Hence, the gSIFs and
the sum of the reaction forces are stored at each iteration.

3. Determine the load factor such that crack propagation initiates, i.e., as the ratio
Kc/Keq. The effective displacements and loads at each crack increment step are
calculated by scaling the initially imposed values by the load factor.

4. Employ the minimum strain energy density criterion (or equivalent) to calculate the
crack propagation angle [14]:

θc = 2 tan−1

 −2KI/KII

1 +
√

1 + 8(KI/KII)2

 (24)

uy = 1

E = 200 [N/mm2]
ν = 0.3

L

L

a = L/2

uy
ux

ux = 0

Figure 7: Experimental setup for numerical example A.

For this simple example, the crack paths for all methods coincide, i.e., they propagate in
direct extension of the imposed crack. Investigating the load-deflection behaviour (Fig. 8),
two reference solutions are constructed: a high fidelity SBFEM solution (v) employing 568
DOFs and an XFEM solution (i) employing a domain discretization of 161x161 element
(52’488 DOFs). As expected, the traditional approach (ii) utilizing 1024 DOFs mirrors
the reference XFEM solution. Similarly, the correct load-deflection response is obtained
by the novel approach (iv), however, employing only 880 DOFs, i.e., on the same mesh as
the deficient method (iii). The difference in DOFs is attributed to the balancing operation
following refinement around the crack tip, which propagates across the domain.
Given this specific geometry, an exact solution for the crack tip singularity is available,
i.e., a square root singularity, which we exploit for benchmarking purposes. By inspection
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Figure 8: Load deflection curves for methods (i) - (v).

of Eqn. 19, this is the case when all eigenvalues contained in [S(s)] are equal to 0.5. Since
the singular eigenvalues depend only on the boundary discretization, a SBFEM element’s
ability to reproduce the exact solution is purely a reflection of its approximation space.
Hence, by leveraging hp-elements, the error in calculated gSIFs, due to the choice of
approximation space, can be minimized so that the remaining error stems only from the
surrounding mesh discretization. Tab. 3 summarizes the results for the SBFEM based
methods given different levels of refinement. As expected, the hi-fi (v) solution is able
to approximate the exact solution to nearly machine precision even with very few DOFs.
Both the proposed method (iv) and traditional (ii) approaches deliver approximations
accurate to several significant figures. For method (iv) 3- and 5-noded elements, denoted
by 3n and 5n respectively are considered. For method (ii), studies were conducted using
either {2,3,6,12} linear elements per long side of the cracked domain. It can be observed
that the proposed method (iv) significantly outperforms the traditional (ii) approach at
similar internal discretization levels. The elements, as they are employed in method (iii),
perform poorly and report significantly fewer accurate digits.
We compare KI obtained by our proposed method (iv) and method (iii) to the hi-fi ref-
erence solution (v) (Tab. 4). Since both methods employ the same mesh, we isolate the
gains of proposed method (iv). Indeed, for mesh types A and B we observe an improve-
ment in accuracy of the calculated gSIFs by approximately and order of magnitude. For
mesh C, however, we approach a limit given by the discretization error of the underlying
mesh and therefore the error cannot be reduced to such a degrees as with the previous
meshes. Nevertheless, accuracy < 1% is readily achieved, indicating a sufficiently accurate
solution for most SIF-based applications.
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Table 3: Convergence of eigenvalues to square root singularity.

Method DOFs λ1 λ2

exact - 0.5 0.5

(ii) trad. 2 34 0.502106496308655 0.502106496308665
3 66 0.500547555626861 0.500547555626900
6 162 0.500088619101087 0.500088619101087

12 322 0.500022191325667 0.500022191325716

(iii) QT mesh A 12 0.543331260622274 0.487073508787698
B 18 0.506300843546734 0.506300843547260
C 34 0.501432879576478 0.501432879577241

(iv) asympt. 3n 66 0.499993111156218 0.499991972174270
3n 98 0.499998547338467 0.499998547338467
3n 130 0.499999524753473 0.499999524753473
5n 42 0.500958236174165 0.500555777249317
5n 68 0.500001822342609 0.500001760606780
5n 106 0.500000389900685 0.500000214938575

(v) hi-fi 578 0.499999999998063 0.500000000000369

Table 4: Convergence of gSIFs to high-fidelity solution.

Method KI error [-] error [%]

(iii) QT mesh A 18.824826991544300 3.4427 22.38
B 17.144699325716516 1.7626 11.46
C 15.767196554450349 0.3851 2.50

(iv) asympt. A 15.714940415023673 0.3328 2.16
B 15.629945166079814 0.2478 1.61
C 15.457607616329554 0.0755 0.49

(v) hi-fi 15.382113483624098 - -

Conclusion

This paper demonstrates that the accuracy of gSIFs calculated on hierarchical meshes can
be significantly enhanced by implementing local refinement of the cracked element, while
constraining the boundary displacements to conform with the surrounding mesh. The
error stemming from the element’s ability to accurately represent the singular stress field is
alleviated and the remaining deviation is attributed to the discretization error introduced
by the mesh. The proposed method permits the use of significantly coarse discretizations
of the domain without the need for artificial refinement about the crack tip to obtain
comparable accuracy of the gSIFs. This benefit is compounded, since the balancing
operation employed on the hierarchical mesh, to arrive at a finite number of precomputable
element realizations, is eliminated. Numerical examples have demonstrated that the use
of higher order elements and approximately 100 DOFs in the refined element produce
accurate results, while retaining high computational efficiency. The limitations of this
approach stem from the linear boundary discretization, imposing artificial constraints on
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the solution. The use of higher order elements, such as cubic line elements on hierarchical
meshes could minimize this issue and require the development of targeted implementations
for more involved domain geometries.
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Abstract

In this contribution, we aim at accelerating topology optimization by recasting the forward
problem into a form that directly interacts with the structural solver: The polytope nature
of SBFEM elements is exploited on quad-/octree meshes to alleviate issues associated
with hanging nodes. Furthermore, a balancing operation applied to the mesh results
in a manageable number of precomputable element configurations, which significantly
accelerates the forward analysis. The analysis mesh for each optimization iteration is
obtained via automated image-based decomposition of the design variables.
A number of benefits arise from this combination of methods. The ease with which
higher-order elements may be incorporated, coupled with the use of unstructured meshes,
combats the formation of checker-boarding. Second, computational effort only arises
where required by the problem definition, since adaptivity is automatically provided.
Third, numerical examples in both 2D and 3D indicate that the amount of degrees of
freedom present during analysis is reduced by more than an order or magnitude.

Keywords: Topology optimization, SBFEM, Hierarchical meshes.

Introduction

The adoption of Topology Optimization (TO) into engineering practice stems from the
ever-increasing need for the sustainable, economical and accountable use of resources
across diverse sectors, e.g., construction, aerospace and automotive. The solution of a
computationally expensive forward problem is typically fundamental to TO of continuum
structures [4], which aims at defining an optimal structural layout subject to constraints.
The conventional approach employing a fine grid of design variables, with values of 0
and 1 corresponding to void and solid, respectively, and whose layout remains constant
across all iterations, does not reflect the nature of the evolving topology and leads to an
excessive computational toll. Several adaptive schemes have been proposed to alleviate
this computational burden [8, 19, 27]. In [17] tree-based meshing strategies are explored.
Unfortunately, therein the treatment of hanging nodes severely affects the computational
efficiency, which the herein proposed scheme remedies.
This work is motivated by the adoption of numerical methods capable of treating polytope-
elements to alleviate issues commonly associated with hanging nodes. The proposed
scheme is suited for fusion with, but not limited to, the boundary element method [14],
polygonal finite element method [26], conforming shape functions [7] or virtual element
method [3]. Here, we employ the scaled boundary finite element method (SBFEM) [24],
a semi-analytical numerical method that permits the treatment of star-convex polytopes
by introducing a scaling center in every element, thereby retrieving an analytical solution
in radial direction, while only necessitating discretization of element boundaries. This
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attribute permits the construction of hp-elements. The combination of higher order ele-
ments and unstructured meshes combats the formation of checker-boarding [4]. Although
a mixed SBFEM has been employed for solving TO problems of incompressible materi-
als [12], it follows the conventional fine-grid approach to TO and limits its treatment to
linear elements and 2D applications.
The SBFEM has proven itself as a remarkably versatile tool in automatic image-based
stress analysis [15, 21]. Such hierarchical meshes arising from tree-like image decom-
positions drastically reduce the amount of degrees of freedom (DOFs) present, which
accelerates the solution of the forward problem by alleviating computational effort and
memory requirements. Image decomposition techniques, within the context of TO, pro-
duce fewer DOFs when material transition zones are eliminated. Hence, bi-directional
evolutionary structural optimization (BESO) [10], sequential element rejection and ad-
mission (SERA) [2], solid isotropic microstructure with penalization (SIMP) combined
with grayscale filters [1,13] and level-set methods [16], for example, represent suitable al-
gorithms. Since image decomposition operates on the design variables to produce analysis-
ready meshes at each iteration, this family of techniques only requires interchanging the
solver of the forward problem. Hence, incorporation into existing code bases requires min-
imal modification. Furthermore, as tree-like image decomposition techniques [5] utilize
the uniformity of an element as a criterion for subdivision, multi-material TO [20] may
be incorporated through extension to color-aware tree-like decompositions [11].
This work is structured as follows: The pertinent theory is provided first. This entails the
salient features of TO and automated image segmenting into analysis-ready hierarchical
meshes. These meshes, consisting of significantly fewer DOFs than traditional fine-grid
approaches, are employed during the solution of the forward problem and contribute sig-
nificantly to the reduction in computational cost. Subsequently, the proposed scheme is
introduced in detail. Its novelty is i) the fusion of TO with automated image segmenting
schemes, ii) the use of polytope-elements constructed by SBFEM to alleviate issues asso-
ciated with hanging nodes, iii) color-encoding of domain and analysis parameters into the
input images and iv) the extension to SBFEM-powered 3D TO. Based on three numeri-
cal examples, the proposed scheme is then verified, showcased and discussed. Novelties i)
and ii) are demonstrated to significantly reduce computational effort and memory require-
ments, when compared to traditional fine-grid approaches. Finally, we offer conclusions
and directions for future work.

Theory

Topology Optimization for Compliance Problems

In this paper we consider TO with focus on compliance minimization when subjected to
a volume constraint, i.e., maximizing the structural stiffness when only a fraction of the
original volume is available:

min
x

: c(x) = UTKU =
N∑
e=1

g(xe)u
T
e k0ue

subject to : V (x)/V0 = f

: KU = F

: 0 ≤ x ≤ 1

(1)

where the set of N design variables x spans the design domain and specifies the material
distribution. Three conditions are imposed, constraining the optimal solution. First, each
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element of x, denoted by xe, must fall within limit values of 0 and 1, which correspond to
void and solid regions respectively. Second, a user prescribed volume fraction f follows as
the ratio of current volume V (x) to initial volume V0. Third, the displacement field U,
required to compute the compliance c, follows from the solution of the forward problem
in 3D elastostatics. K denotes the corresponding stiffness matrix and F the load vector
respectively. The compliance can either be calculated globally or locally, as a summation
of element contributions. The elemental nodal displacements are denoted by ue and the
corresponding stiffness matrix, calculated with Young’s modulus equal to one, i.e., a solid
element, is given as k0. g(xe) is a function, which typically scales k0 according to the
specific realization of its design variable xe to account for intermediate material properties,
i.e., Young’s modulus.

Segmenting Images into Analysis-ready Hierarchical Meshes

Tree-based image decomposition techniques typically operate on gray-scale input then
output regions, which fulfill a user specified homogeneity criterion. In this paper, we
limit our focus to quadtrees (2D) and octrees (3D), which follow the same underlying
principles: The region is bisected parallel to the Cartesian axes, if the spread in gray-
scale values of any contained pixels exceeds a user-specified threshold. In 2D this results
in splitting and replacing the region by four equally sized blocks, explaining the prefix
“quad”. If this process is repeated often enough, visually, a tree-like structure emerges
(Fig. 1), which clarifies the suffix. For pixel-based applications, bisection requires the

Figure 1: Example of image decomposition by quadtree algorithm with
sample SBFEM polytope element in gray.

resolution of the input image to comprise a power of two. Since this is generally not the
case, images are padded to the next power of 2, where applicable. Each homogeneous block
is represented by a single element. Assuming nodes in each element corner, the image
decomposition is transformed into a mesh representation (Fig. 2). Due to the irregularity
of the mesh, challenges arise during analysis: Constructing appropriate elements and
satisfying sufficient discretization. Traditionally, balancing such meshes, i.e., enforcing at
maximum at 2:1 ratio of adjacent blocks, tempers most issues. However, hanging nodes
(Fig. 2, red) still persist. One option to alleviate this issue is the adoption of a polytope-
based finite element variant, such as the SBFEM. Since, for example, only 16 possible
element realizations exist in 2D, precomputation may even be exploited in the process.

The Forward Problem for 3D Elastostatics

We consider a three dimensional domain Ω, whose boundary Γ = Γ0 ∪ Γu ∪ Γt comprises
regions of free surface conditions (Γ0), prescribed displacements ū (Γu) and prescribed
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Figure 2: Segmentation of image with resulting mesh for unbalanced and
balanced quadtree decompositions. Hanging nodes in red and additional

elements introduced due to balancing in green.

traction t̄ (Γt). The strong form with boundary conditions may be stated as:

∇ · σ + b = 0 in Ω (2a)

u = ū on Γu (2b)

σ · n = t̄ on Γt (2c)

The Cauchy stress tensor, unit outward normal to the boundary and applied body force
per unit volume are denoted by σ, n and b respectively. u is the displacement field and
∇ the linear gradient operator. Imposing small deformations and linear elastic material
behaviour, the stress σ and strain ε fields are dependent on the modulus of elasticity E
and Poisson’s ratio ν:

ε = ∇su and σ = Dε (3)

where ∇s is the symmetric gradient operator and D the 6x6 elasticity tensor.

The Scaled Boundary Finite Element Method in 3D Elastostatics

In this section, a brief summary of the scaled boundary finite element method in 3D is
given. For a more elaborate derivation and detailed explanations, the readers may consult
references [24,25].
The salient features of an SBFEM analysis are illustrated on the problem domain described
by the volume V depicted in Fig. 3. V comprises the volume spanned by the scaling center
O and the 2D surface element, describing the boundary. One minor constraint is required:
The domain must remain star-convex, i.e., the entire surface must be visible from the
scaling center. The introduction of this scaling center is accompanied by a transition from
a Cartesian reference system into one resembling polar coordinates. In radial direction
the analytic variable ξ is introduced, while for each tangential direction, η respectively ζ
represent the local coordinates on the boundary. Therefore, each surface element may be
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described by 2D interpolation shape functions N (η, ζ) formulated in natural coordinates
−1 ≤ η ≤ 1 and −1 ≤ ζ ≤ 1. The interior of the domain is constructed by scaling the
boundary (x, y, z) along the dimensionless radial coordinate 0 ≤ ξ ≤ 1, which originates
at the scaling center and ends on the boundary. The mapping of points employing the
newly introduced scaled boundary coordinate system is therefore given as:

x̂ (ξ, η, ζ) = ξx (η, ζ) = ξN (η, ζ) x, (4a)

ŷ (ξ, η, ζ) = ξy (η, ζ) = ξN (η, ζ) y, (4b)

ẑ (ξ, η, ζ) = ξz (η, ζ) = ξN (η, ζ) z. (4c)

We denote the vectors of nodal coordinates of a surface element by x,y, z respectively. The
set (ξ, η, ζ) is termed the scaled boundary coordinates in the three-dimensional domain.

O

1

−1

1

1ξ

−1

η

ζ

V

Figure 3: Three-dimensional coordinates for a scaled boundary finite
element.

Similarly, the iso-parametric mapping of the displacements u (ξ, η, ζ) at a point (ξ, η, ζ)
comprises an analytic (ξ) and interpolatory (η, ζ) component:

u (ξ, η, ζ) = [ux (ξ, η, ζ) , uy (ξ, η, ζ) , uz (ξ, η, ζ)]T = Nu (η, ζ) u (ξ) , (5)

where u (ξ) represents an analytic displacement function along ξ, unique to each node
on the boundary. These displacements functions are determined during the SBFEM
solution. The interpolation shape function Nu (η, ζ) in Eq. (5) are defined analogously to
the conventional FEM:

Nu (η, ζ) = [N1 (η, ζ) I, N2 (η, ζ) I, . . . , Nn (η, ζ) I] , (6)

where n denotes the amount of nodes of the surface element and I is the 3 × 3 identity
matrix. Expressing the strains in scaled boundary coordinates requires splitting the lin-
ear differential operator into components B1 and B1, whose combined effect mimics the
original transformation:

ε (ξ, η, ζ) = B1 (η, ζ) u (ξ) ,ξ +
1

ξ
B2 (η, ζ) u (ξ) , (7)
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The stresses are obtained conventionally by pre-multiplying the strains by the constitute
matrix:

σ (ξ, η, ζ) = D

(
B1 (η, ζ) u (ξ) ,ξ +

1

ξ
B2 (η, ζ) u (ξ)

)
. (8)

The weak form for each subdomain may be derived by applying several methods [6,9,29].
Neglecting body loads and surface tractions, two equations arise (Eqs. 9 and 10):

E0ξ
2u (ξ) ,ξξ +

(
2E0 − E1 + ET

1

)
ξu (ξ) ,ξ +

(
ET

1 − E2

)
u (ξ) = 0, (9)

The coefficient matrices E0,E1,E2 bare a striking similarity to conventional FEM stiff-
ness matrices, both in their structure and in that they are calculated for each element
individually, with subsequent assembly for each subdomain. The internal nodal forces
modes at the boundary q (ξ) are derived as:

q (ξ) = ξ
(
E0ξu (ξ) ,ξ +ET

1 u (ξ)
)
. (10)

The scaled boundary finite element equation is solved by the matrix function solution
proposed by Song [23]. Therein, the quadratic eigen-problem is recast into a system of
first-order differential equations in ξ, at the expense of doubling the amount of unknowns:

ξ

{
ξ0.5u (ξ)
ξ−0.5q (ξ)

}
,ξ

= −Z

{
ξ0.5u (ξ)
ξ−0.5q (ξ)

}
, (11)

with the Hamiltonian coefficient matrix Z defined as:

Z =

[
E−1

0 ET
1 − 0.5I −E−1

0

−E2 + E1E
−1
0 ET

1 −
(
E1E

−1
0 − 0.5I

) ] . (12)

The Schur decomposition with subsequent block-diagonalization is employed to avoid
numerical deficiencies in the solution and decompose Z to satisfy:

ZV = VS, (13)

where S and V are the real Schur form and the transformation matrix, respectively. In
order to strip the bounded from the unbounded response, the diagonal blocks containing
the eigen-values of S are sorted in ascending order and the columns of V, which contain the
associated eigen-modes, are reordered accordingly. The following partitioning is devised:

S =

[
S11 0
0 S22

]
, (14a)

V =

[
V11 V12

V21 V22

]
. (14b)

S11 contains all eigenvalues with negative sign, i.e., Re (λ(S11)) < 0, which can be shown to
correspond to the bounded domain solution. The general solutions for the displacements
and internal nodal forces for the bounded domain is sought in the form of a power series
and can be expressed as:

u (ξ) =V11ξ
−S11−0.5Ic, (15a)

q (ξ) =V21ξ
−S11+0.5Ic. (15b)
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The integration constants c, whose values are determined in post-processing, follow from
the effective boundary conditions of the problem. Formulating Eq. (15) at the boundary
(ξ = 1), the nodal displacements u = u (ξ = 1) and the nodal forces q = q (ξ = 1) can be
expressed as:

u =V11c, (16a)

q =V21c, . (16b)

Since the static stiffness matrix K is defined as q = Ku, K of a subdomain is determined
by substituting Eq. (16):

K = V21V
−1
11 . (17)

Upon assembly of all individual subdomain stiffness matrices into a global stiffness matrix,
the displacement solution is sought according to conventional FEM procedures.

Proposed Scheme

The proposed scheme primarily entails a drop-in replacement for calculating the dis-
placement field. By exploiting hierarchical image decomposition techniques, regions with
homogeneous material properties are identified and represented by a single element, such
that coarser, adaptive meshes result with significantly fewer DOFs than with conventional
grid approaches. Although remeshing is required for each iteration, the implemented de-
composition techniques are economical and the resulting computational toll is easily re-
cuperated by solving a forward problem with significantly fewer DOFs, even on modestly
sized example domains. The steps differ slightly between 2D and 3D, since in 3D the pre-
computation procedure employed for 2D would result in 4096 unique element realizations,
whose construction requires building a substantial library and accompanying algorithmic
logic. Instead, the unique element realizations for each 3D mesh are determined, which
are computed once and subsequently cloned for the remaining mesh. Empirically, only a
fraction of possible element realizations exist simultaneously on a mesh.
The proposed scheme comprises the following steps:

1. Precompute
For the 2D case, the 16 possible element realizations are precomputed with Young’s
modulus equal to one.

2. Initialize and begin TO loop
Only the filter must be prepared. Conversely to conventional approaches, remeshing
at each iteration is required, rendering the preparation of sparse stiffness matrix
assembly vectors [1] obsolete.

3. Calculate displacement field
The grid of design variables is fed as a gray-scale image to the decomposition al-
gorithm, which outputs an analysis-ready hierarchical mesh. Color-encoded regions
are automatically recognized and resolved. Their inscribed operations are then ap-
plied. Once the stiffness properties of each element are identified, the displacement
field is calculated analogous to the conventional FEM.

4. Determine compliance
The compliance at each iteration is calculated as the product of the system displace-
ment field and the force vector.
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5. Determine sensitivities
The sensitivities of the design variables are evaluated element-wise, by iterating
over each subdomain. Since the subdomains are of variable size, the calculated
sensitivities must be normalized per unit volume.

6. Filter sensitivities
Standard mesh-independency filtering techniques may be applied as necessary.

7. Design variable pro-/demotion
Solving the optimization problem, for example by optimality criterion (OC) ap-
proach identifies, which design variables to promote or demote, i.e., assign or sub-
tract material. While B/ESO, SERA and level-set approaches result in black-and-
white outputs, SIMP-based approaches introduce intermediate material distribu-
tions. This is rectified by either employing a Heavyside projection [1] or a gray-
scale filter [13,22]. The updated design variables form the input for the subsequent
iteration.

8. Export of results
Upon completing the analysis, the hierarchical mesh is thresholded to yield the
optimized system geometry. Simple methods permit exporting the hierarchical mesh
to STL format for subsequent additive manufacturing.

In order to further accelerate the analysis procedure, which is constrained by the solution
of the forward problem, so-called hard-kill variants have been proposed. These differ from
standard soft-kill approaches in how they treat void elements: Soft-kill approaches assign
a very small stiffness, typically 10−9, which impacts the conditioning of the numerical
problem, while hard-kill approaches disregard such elements entirely. Not all problems,
however, are amenable to this approach, since multiple independent substructures poten-
tially arise during analysis, leading to numerical instabilities.

Numerical Examples

Three numerical examples are examined in this paper:

1. A thick cantilever subject to a point load at mid-height.
2. An L-shaped bracket with prescribed material distributions and multiple load cases.
3. The 3D wheel.

The first example verifies the proposed method, while the second showcases the extended
capabilities, by color-encoding system and analysis information directly into the input
image. Having thoroughly discussed the 2D behaviour, we extend the analysis to the 3D
wheel problem. For each of the numerical examples, we couple the proposed method with
a different TO variant, e.g., B/ESO, SERA and SIMP. One could have equally chosen to
employ a level-set based method as an alternative to the ones listed prior.

Thick Cantilever

A thick cantilever subject to a point load at mid-height (Fig. 4) is considered. The width
and height are discretized by 512 and 256 pixels respectively. The prescribed volume
fraction f is chosen as 0.4. The penalty exponent of both SIMP and BESO approaches is
equal to 3. Following [1], a filter utilizing Matlab’s built-in conv2 function is implemented
with a radius of 16 pixels. For the BESO, the evolutionary volume ratio parameter is set
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to 0.1. Elements arising during quadtree decompositon are limited in size to ≤ 32 pixels.
For the first iteration the discretization of the conventional grid is adopted. This is
necessary, since the initial homogeneous material distribution would lead to a too coarse
discretization, biasing the calculated sensitivities.

Figure 4: From left to right: Thick cantilever setup, SIMP reference solution
and BESO baseline.

Figure 5: BESO+QT optimized topology with evolution of DOFs and
compliance across iterations.

In order to verify the proposed scheme, we investigate an elementary case: TO schemes,
which result in black-and-white output, i.e., do not posses noticeable transitions in mate-
rial distributions, permit the adaptive meshing algorithm to develop its full potential and
minimize the DOFs required for analysis. Therefore, we contrast our scheme, which we
term BESO+QT, to a BESO baseline [10]. Since, BESO follows a heuristic approach to
TO, and it can therefore be mislead to local minima under certain circumstances [18], we
first supply a SIMP reference solution [1]. Both the reference solution and the baseline
depict the same resulting topology (Fig. 4). The BESO+QT (Fig. 5) is indistinguish-
able from the BESO baseline. The difference in compliance (Tab. 1) resulting from the
SIMP and BESO approaches stems from the presence of transition material in the SIMP,
leading to a slightly more flexible structure and therefore higher compliance. Given a
higher value for the penalization parameter, this difference diminishes. The discrepancy
in compliance between BESO and BESO+QT is attributed to the discretization: A coarse
discretization results in a stiffer structure and therefore lower compliance. This is evident,
since the amount of DOFs present during analysis is reduced by more than one order of
magnitude. This in turn significantly alleviates the computational burden and associated
memory requirements (Fig. 5, DOFs evolution). The two additional iterations required
to reach the stopping criterion, i.e., a 5% increase, represents a negligible difference to
the base line case. In this contrived example, in which all three methods share a common
implementation, differing only in the method of solving the forward problem, a glimpse
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of the computational potential of the proposed scheme is possible: For this specific nu-
merical example, an analysis concludes almost 5x faster, when employing the proposed
scheme.

Table 1: A comparison of results for SIMP reference solution, BESO baseline
and proposed BESO+QT.

Method nIt. Compliance DOFs time [s]

SIMP 49 87.6 263’682 110
BESO 40 75.6 263’682 98
BESO+QT 42 74.8 23’846 20

Modified L-bracket

A modified L-bracket setup is considered (Fig. 6). In this example the SERA is employed,
which remedies the drawbacks of the BESO scheme [2], while maintaining black-and-white
solutions. For this analysis, only a color-encoded input image is provided. The proposed
scheme automatically recognizes significant regions and their associated operations during
the automated decomposition phase. The colors blue, red, green, white and gray corre-
spond to boundary conditions, loadings, solid, void and domain pixels respectively. Input
images are easily constructed by small scripts or obtained from, e.g., medical imaging
applications. Especially from the user perspective, manipulating analysis parameters by
color-encoding simplifies the overall process and permits direct visual verification of the
input prior to analysis. Further, it facilitates testing of variants. In this example, the
domain is discretized by 512 pixels in each direction. A volume fraction of 0.3 is specified.
The conv2-type filter is employed with radius equal 12 pixels. The SERA parameters
PR, SR and B are chosen as 0.03, 1.3 and 0.003 respectively. All quadtree elements are
of size ≤ 128.

Figure 6: Topology optimization of an L-bracket via automated image-based
analysis. Input image (left) and resulting topology (right).
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For more involved geometries, gratuitous discretization may arise due to slight misalign-
ment with respect to the optimal quadtree meshing strategy. This is apparent surrounding
the blue and red regions (Fig. 6), where a pertubation by 1 pixel triggers excessive re-
finement to accurately capture the domain’s geometry. To demonstrate this general case,
the L-bracket is treated as is by the quadtree decomposition, which results in 32’694
DOFs, while a shifted, scaled and therefore better aligned domain geometry results in
26’554 DOFs respectively. The conventional method employing the fine grid discretiza-
tion treats 526’338 DOFs. In this example, the required DOFs are reduced by over an
order of magnitude. For such small examples, a typical forward analysis completes in
≤ 0.6 seconds on a modest desktop computer running in serial.

3D-Wheel

In this example we extend SBFEM-powered TO to 3D problems. The established 3D
wheel problem is studied (Fig. 7): The width, depth and height are discretized by 80, 80
and 40 pixels respectively. All four corners at the bottom edge are fully restrained. A
point load is applied in downward direction in the middle of the bottom surface. A volume
fraction of 0.075 is sought. The penalty parameters for SIMP and gray-scale filter are
chosen as 3 and 2 respectively. The filter radius is given as 3 pixels. All octree elements
are ≤ 16 pixels in size. A sensitivity filter is employed. A Young’s modulus of E = 10−9

denotes material voids. The analysis concludes after 200 iterations.

x
y

z

nelx = 80
nelz = 80
nely = 40

p = 3
q = 2
rmin = 3

f = 0.075
Figure 7: Problem domain of the 3D wheel benchmark.

The SIMP with gray-scale filter is utilized. The addition of the gray-scale filter is crucial
to obtaining computational efficiency, since regions of transitional material distributions,
which impact the proposed hierarchical meshing techniques, are minimized. The pre-
conditioned conjugate gradients method (pcg) is employed to obtain the solution of the
forward problem. Scaling is performed to combat the conditioning issues due to the
treatment of void elements [28] with secondary preconditioning by incomplete Cholesky
decomposition. This significantly reduced the amount of iterations required for conver-
gence. A strict convergence tolerance of 10−9 was specified to contain any divergence from
the reference solution to the adaptive discretization choice. In Fig. 8 the final topology is
depicted along with a sample of the octree mesh.
It is demonstrated, that the amount of DOFs and number of non-zero entries in the
stiffness matrix (nnz) is significantly reduced (Fig. 9) by employing the proposed scheme,
especially after the initial phase in the TO process. Although up to 4096 unique element
realization are possible on the octree, only a handful exist at each iteration (Fig. 9).
Computational effort is alleviated by only computing the element stiffness matrices for the
unique elements and cloning the remainder. However, the overwhelming computational
burden still resides in the solution of the forward problem.
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Figure 8: Resulting topology for 3D wheel benchmark in blue with sample
octree mesh in red.

0 50 100 150 200

0

100

200

300

400

500

0

0.5

1

1.5

0 50 100 150 200

0

2

4

6

8

10

1
0

5

0

2

4

6

8

1
0

7

Figure 9: Evolution of hierarchical mesh quantities across iterations.

The final topology is readily exported to STL format by operating on the octree, greatly
facilitating subsequent additive manufacturing procedures.

Conclusions

This paper advances the current state-of-the-art in TO by employing hierarchical meshes
coupled with polytope-based numerical methods, which alleviate issues commonly associ-
ated with hanging nodes. Enforcing a balancing operation on the mesh further limits the
amount of feasible element realizations, which is exploited through precomputation of el-
ement stiffness matrices and cloning of element properties. Moreover, we propose a novel
and intuitive scheme for interacting with the analysis parameters by color-encoding input
images, which the decomposition techniques automatically translate into analysis-ready
meshes. Further, we extend SBFEM-powered TO to 3D problems and demonstrate an ef-
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fective means for exporting results to STL format for subsequent additive manufacturing
(3D printing).
TO relying on hierarchical meshes is shown to require only a fraction of the DOFs de-
manded by traditional grid approaches, significantly reducing the computational toll. The
three investigated numerical examples consistently demonstrate a remarkable reduction
in required DOFs and memory requirements, without incurring a perceivable loss of ac-
curacy.
Considering the generality of this approach in handling color-coded input, an extension
to multi-material TO presents an intriguing direction for future work.
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Abstract 
The push towards exascale computing and the recent introduction of multi-petascale 
supercomputers have enabled science applications to run complex simulations. However, the 
gap between compute and I/O has grown wider, even as applications seek to generate and 
persist increasing amounts of data. Optimizing I/O is challenging and remains a bottleneck at 
scale. In this paper, we present initial I/O performance results of running Gyrokinetic Toroidal 
Code (GTC) on Summit, a 200 Petaflop system at Oak Ridge National Laboratory. To 
manage the complex data in GTC, we use ADIOS, an I/O and data management middleware 
that provides a rich set of APIs to manage and interact with scientific data. We discuss 
optimizations performed to obtain improvements in I/O performance and identify a set of 
challenges that will drive the design and development of next generation data management 
libraries. 
 
Keywords: Computational, GTC, ADIOS, I/O, Scientific Data, Fusion Simulation 
Introduction 

With the recent push towards exascale computing, the arrival of systems such as Summit[12], 
Sierra[22], and Sunway TaihuLight[21] has broken the 100 Petaflop peak performance barrier. 
This has paved the way for science applications to run more complex simulations. 
Supercomputer architects are putting more focus on making systems more power efficient, in 
addition to increasing the memory per core on a node. However, the evolution of I/O 
technologies has not kept up with other architectural innovations, and the gap between 
compute capability and I/O bandwidth continues to grow wider. 
 
Science applications that look towards exploiting the compute capabilities of modern systems 
tend to generate increasing amounts of data. It is common for applications running at full 
scale to write half the size of system memory for checkpointing. For example, the Chimera 
molecular modeling and simulation system [15] creates 160 TB checkpoints on the Titan 
supercomputer at Oak Ridge National Laboratory. On Summit, which has 512 GB of main 
memory per node, checkpoint data would be close to a Petabyte in size. 
 
The Gyrokinetic Toroidal Code (GTC)[1] is a well-known particle-in-cell application that 
simulates the movement of magnetic particles in a confined fusion plasma. It generates a 
variety of data that differ in volume and velocity. Checkpoint and particle data generated over 
the course of a running simulation are projected to be in the range of a few Petabytes. 
Management of this data is a daunting task; both the file system capacity and the available I/O 
bandwidth are limiting factors. The GPFS parallel file system on Summit provides a 
theoretical peak bandwidth of 2.2 TB/s. Writing a Petabyte of data at near peak bandwidth 
would take over 500 seconds. The use of non-volatile memory, such as the local NVME chips 
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on Summit nodes, can help in reducing the time to write bursty, high volume data, but the 
efficient utilization of NVME is not straight-forward.  In combination with high volume and 
high frequency particle data, I/O can easily become a bottleneck. In addition, projects on 
Summit have a quota of only 100 TB on the parallel file system, which means the application 
cannot store all the data it generates to persistent storage. Thus, applications need to make 
smart decisions about how to write data and what data must be preserved. 
 
ADIOS (Adaptable I/O System) [20] is a well-known I/O framework that is used across many 
science domains for optimizing I/O and data management. ADIOS provides a self-describing 
data format and a log-based data organization. As part of its data model, ADIOS generates 
metadata to preserve the logical ordering of a file. It provides a rich set of APIs to tune 
various parameters related to I/O to obtain optimal performance. As part of this work, the I/O 
component of GTC has been adapted to utilize ADIOS. ADIOS provides optimized ways to 
store data which are comprised of physics variables recorded over thousands of timesteps. In 
this paper, we present preliminary results of using GTC with ADIOS on Summit. We discuss 
the optimizations performed in ADIOS that lead to performance improvements in GTC. We 
highlight the challenges that are faced with increasing data volumes and metadata overhead, 
and discuss the design of a new metadata format in ADIOS for exascale data. The findings of 
our study provide valuable insight into the I/O characteristics of scientific simulation codes 
and help us estimate the areas where bottlenecks can occur when applications are run at 
exascale. Moreover, we also investigate and evaluate some potential approaches to improving 
the efficiency of scientific data management and discuss the future research directions. 

Background 

Summit 
 
Summit is an IBM system located at the Oak Ridge Leadership Computing Facility [12]. With 
a theoretical peak double-precision performance of approximately 200 PF, it is currently rated 
as the fastest supercomputer in the world as of this writing [13]. The basic building block of 
Summit is the IBM Power System AC922 node. Each of the approximately 4,600 compute 
nodes on Summit contains two IBM POWER9 processors and six NVIDIA Volta V100 
accelerators and provides a theoretical double-precision capability of approximately 40 TF. 
Each POWER9 processor is connected via dual NVLINK bricks, each capable of a 25GB/s 
transfer rate in each direction. Nodes contain 512 GB of DDR4 memory for use by the 
POWER9 processors and 96 GB of High Bandwidth Memory (HBM2) for use by the 
accelerators. Additionally, each node has 1.6TB of non-volatile memory that can be used as a 
burst buffer. Summit mounts a POSIX-based IBM Spectrum Scale parallel file system called 
Alpine. It consists of 77 IBM Elastic Storage Server (ESS) GL4 nodes and has a maximum 
capacity of 250 PB. Each IBM ESS GL4 node is constituted by two dual-socket IBM 
POWER9 storage servers, and a 4X EDR InfiniBand network for up to 100 Gbit/sec of 
networking bandwidth. The maximum performance of the final production system is about 
2.5 TB/s for sequential I/O and 2.2 TB/s for random I/O. 
 
 
Gyrokinetic Toroidal Code 
 
As a particle-in-cell code, GTC [1] tracks individual charged particles in a Lagrangian frame 
in a continuous phase-space, whereas the moments (number density, charge density and 
current density etc) of particle distribution of different species (thermal ion, thermal electron, 
fast ion, fast electron, etc.) are simultaneously computed on a stationary Eulerian field mesh. 
The electromagnetic fields are then solved on the field mesh using proper combinations of 
Poisson equation, Ampere’s law, Faraday’s law and force-balance equations with finite 
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difference and finite element methods. This field mesh is also used to interpolate the local 
electromagnetic fields at the particle positions in phase-space. GTC has been extensively 
applied to study collisional transport [2], energetic particle transport [3], microturbulence [4], 
Alfven eigenmodes [5], kink modes, and tearing modes in fusion plasmas. 
 
GTC carried out the first fusion production simulations at tera-scale on the Seaborg computer 
at NERSC in 2001 [6] and at peta-scale in 2008 as an early science application on the Jaguar 
computer at OLCF [7] GTC is a key production code in the DOE SciDAC ISEP Center [8] 
and one of the two fusion codes selected by the Center for Accelerated Application Readiness 
(CAAR) [9], a DOE ASCR program to prepare prominent codes across all DOE supported 
research portfolio for the emerging exascale computers. GTC is also one of the production 
codes in the Summit acceptance benchmark suite. 
 
GTC uses MPI domain decomposition, particle decomposition, and OpenMP shared memory 
partitioning to scale up to millions of CPU cores to take advantage of the memory hierarchy. 
Thanks to closed collaborations with computational scientists through ASCR CAAR and 
SciDAC ISEP projects, GTC has been ported to GPU-based supercomputers including Titan 
and Summit early access systems at OLCF. The computationally expensive particle and field 
subroutines are fully ported and optimized on GPU using OpenACC and CUDA.  Using 
realistic fusion simulation parameters [10], GTC shows near-ideal weak scaling performance 
up to the full capacity of Titan computer with GPU. GTC has recently demonstrated good 
scalability on more than 20% of Summit and achieved an unprecedented speed of one trillion 
particle pushes in 2 seconds wall-clock time using 928 nodes on Summit [11]. 
 
Preparing GTC for large simulations that generate large volumes of data requires special 
consideration. GTC generates a combination of diagnostics data, field data, checkpoint-restart 
files, and particle data. These data components differ vastly in terms of their output frequency, 
number of variables contained within, and size. Table 1 provides a summary of the various 
data items along with some of their important characteristics in a typical large simulation.  
 

Table 1: Summary of the different types of data generated by GTC 
Data Type Frequency of Output Size of the data per output Number of 

variables 

Diagnostics Every timestep or every few 
timesteps 

Megabytes 50 - 100 

Snapshot Once every hour Megabytes up to many 
Gigabytes 

50 - 100 

Checkpoint Once every hour Terabytes, potentially up to 
Petabytes 

< 20 

Restart Once Terabytes, potentially up to 
Petabytes 

< 20 

Field data Every timestep Gigabytes < 20 

Particles Every timestep Few hundred terabytes up to 
petabytes 

< 20 
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In general, diagnostics data are high velocity data that are written frequently, and read back 
multiple times for analysis, both online as well as offline. Checkpoint data are write-once; that 
is, they are written for resilience purposes with the intention of simulation restarts. 
Checkpoint and particle data are high volume and writing them usually consumes significant 
resources. Furthermore, checkpoint and restart data are high variety data, as their underlying 
variables are comprised of scalars, vectors, and multi-dimensional arrays. 
 
GTC traditionally uses POSIX I/O, where data are written to binary files. Based on historical 
knowledge, multiple processes writing data to the same file generally yields poor performance. 
To circumvent this commonly known N-1 write pattern, all high-volume data in GTC are 
written such that each process writes its data to an independent file. For many outputs such as 
field data, data are written into new files per process per output timestep. However, such an 
approach typically suffers from two issues. One, the metadata overhead for parallel file 
systems on supercomputers is a massive challenge and often forms the bottleneck for 
intensive I/O. At extreme scales, this will be one of the most important challenges. Two, a 
logical file being split into multiple sub-files to improve I/O performance puts additional 
burden on the developers to ensure that data is read back correctly. Inspecting such data 
offline can be highly prohibitive without specialized tools. 
 
For the different types of outputs in GTC, optimizing I/O is challenging as there is no ‘one-
size-fits-all’ approach that can be used to optimize I/O. Different strategies need to be adopted 
for different components. At the exascale, the sheer size of the data can be an issue as many 
Petabytes of data can be generated over the course of a few hours. 
 
 
ADIOS 
 
ADIOS is an I/O framework which provides a simple and flexible way for scientists to 
describe the data in their code. ADIOS provides highly optimized I/O routines that allow 
users to read and write data in an optimal fashion for the target architecture. In the ADIOS 
design, variables and steps are first-class concepts. ADIOS provides the API to define a 
variable which may be a simple scalar or a global array partitioned amongst processes. It 
provides the ability to write variables to a file and append “steps” to it, so that a single file can 
contain information about a physical quantity as it evolves over time. ADIOS stores data in a 
proprietary, log-based, file format named BP (current version 3). For every process that writes 
data to a file, it creates an independent sub-file and writes metadata in the global file container 
to reconstruct the original order of the file. The log-based data organization allows ADIOS to 
write each process’s output into a separate chunk of file or aggregate several processes’ 
outputs into a smaller number of files, which can maximize the I/O bandwidth. These 
operations are kept transparent from the end user. The self-describing nature of the file allows 
users to inspect the file outside the scope of the running simulation using pre-bundled tools 
that come with the library.  
 
The ADIOS API is designed as a publish-subscribe library. Applications can write data 
directly to the underlying storage or publish data so that it can be read by processes that 
subscribe to it. This allows various applications to couple through in-memory transports, 
which plays an important role in providing the ability to analyze data in situ. This is done 
through the use of built-in ADIOS “engines” that provide users with a way to select how data 
must be published. For example, there are engines to read/write data from/to underlying 
storage, communicate with other applications through in-memory data exchange, as well as 
perform a wide area network transfer of data to remote sites. ADIOS also provides the ability 
to transform data through various compression and reduction methods. Users may set these 
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options directly in their code or in an XML file. Furthermore, ADIOS provides ways to tune 
parameters for different engines and operations to optimize I/O performance. 

Data Management in GTC using ADIOS 

In this section, we discuss our efforts at improving I/O performance in GTC through the use 
of ADIOS and present results from experiments run on the Summit supercomputer. 
 
At large scale, GTC suffers from issues arising due to sub-optimal I/O patterns and the 
metadata overhead on the file system. To overcome these limitations, ADIOS is now being 
used to manage data in GTC. The core design features of ADIOS lead to performance 
improvements out of the box for various data output by GTC. As timesteps can be appended 
to existing files, new files per output timestep are no longer required. Additionally, the 
number of writers, and thus the number of sub-files for different outputs in GTC has been 
tuned to obtain good performance by alleviating the metadata overhead on the file system. 
Table 2 lists the number of output files that were created by the original POSIX I/O version of 
GTC and the ADIOS version of GTC for a run that simulated 10,000 timesteps using 3072 
processes on Summit. No particle data was generated was generated for these experiments. 
 

Table 2: Number of output files created by GTC when using POSIX vs. using ADIOS. 

 
It can be seen that the POSIX I/O version of GTC creates almost 50,000 files, whereas the 
ADIOS version creates just over 6000 files on storage with 4 writers per node, with further 
potential to reduce the number of sub-files. This leads to significant improvements in the 
overall I/O performance. This is further demonstrated by the performance improvements in 
writing snapshot data, as shown in Figure 1. Recall from Table 1 that snapshot data are 
written to a new file at every output step. Using ADIOS, snapshot data are appended to an 
existing file which leads to 50x improvement over the POSIX version of the application. 
 

Output filename Number of files in the 
POSIX I/O module 

Corresponding 
ADIOS output file 
container 

Number of files 
created by the 
ADIOS module 

equilibrium.out 1 equilibrium.bp 1 

data1d.out 1 data1d.bp 1 

history.out 1 history.bp 1 

snapshot#.out 10,000 snapshot.bp 1 

phi#.out 32,000 phi3d.bp 2048 

restart1.# 3072 restart1.bp 2048 

restart2.# 3072 restart2.bp 2048 
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Figure 1: Comparison of the time taken to write one snapshot of GTC on Summit to the 

GPFS parallel file system for POSIX vs. ADIOS 
 
Figure 2 shows the I/O performance for writing checkpoint data from GTC to the GPFS 
parallel file system using ADIOS. The simulation was run on 512 nodes with 6 processes per 
node, for a total of 3072 processes. The aggregate size for each checkpoint was 2.6 Terabytes. 
For our tests, we compute 5000 simulation timesteps and write 50 checkpoints. We show 
results for varying number of writers per node in ADIOS. The figure shows that a peak 
performance of 2.27 TB/s is observed when we use 6 writers per node. Using 6 writers per 
node displays high variability in I/O performance with an average bandwidth of 1.1 TB/s, 
whereas using 4 writers per node shows a more consistent average of 1.5 TB/s. 
 

 
Figure 2: Using ADIOS to write checkpoint data from GTC to the GPFS parallel file 

system on Summit. Results show the effect of tuning ADIOS options to control the 
number of sub-files created on the parallel file system for checkpoint data. 
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I/O variability is common on large-scale computing facilities since the I/O bandwidth is 
shared by hundreds of running jobs simultaneously. Previous studies [16] [17] have shown 
significant I/O performance variability on DoE’s Titan [18] and Cori [19] supercomputers. 
This can be mitigated to an extent by the use of the local non-volatile memory on Summit 
nodes. An in-depth study to model the performance of NVME for use in GTC and effective 
ways to utilize it is an important future work for this research. 
 

Metadata Optimizations in ADIOS for Large Data 

An ADIOS file is a collection of sub-files created by writer processes and metadata 
information required to recreate the file in its original intended form. With increasingly large 
output data, the overhead of this metadata is no longer negligible. This will be an important 
consideration as we move towards the exascale. In this section, a study of the metadata 
overhead in ADIOS for different types of output data is discussed, along with a design of the 
next generation file format in ADIOS. 
 
Factors that affect metadata overhead 
 
Experiments have been performed to study the impact of the data size, number of variables, 
number of processes writing data, and the number of timesteps generated by GTC. To study 
the impact of data volume, the simulation was run on 64 compute nodes on Summit (6 
processes per node) for 100 simulation timesteps. In each step, the size of the variables is 
varied, while the number of variables is kept constant. As shown in Figure 3, an increase in 
data size leads to an increase in the overall write time but does not show a significant increase 
in metadata overhead. This is expected, as ADIOS generates metadata for every write issued 
to the underlying file by every writer process. Thus, for a constant number of write operations, 
the metadata overhead remains constant. The increase in overhead seen in the figure is 
attributed to variability in the I/O bandwidth as the size of the metadata is small. However, 
from the figure, we can observe that if the size of GTC output data is relatively small, the 
metadata overhead dominates the total I/O overhead.   
 

 
Figure 3: Impact of increasing data volume on metadata overhead 

 
 
At larger scales, an increase in output data also corresponds to an increase in the number of 
physical quantities written by the application. Figure 4 shows the impact of an increase in the 
number of variables generated by GTC. Increasing the number of variables causes a 
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significant increase in the metadata overhead. The amount of metadata generated increases 
with an increase in the number of variables, as does the time complexity of constructing and 
writing those metadata items. 

 
Figure 4: Impact of increasing number of variables on metadata overhead 

 
 
In order to fully utilize the available I/O bandwidth of parallel file systems, ADIOS allows 
MPI processes of large-scale simulation runs to write data to separate files, which requires 
metadata to associate data chunks with processes, and recording the offset of the data chunk 
in the global file. To study the impact of increasing writers, experiments were run with a 
constant number of variables and timesteps, but varying number of MPI processes. Figure 5 
shows that increasing the number of writers shows almost a linear increase in the metadata 
overhead. 
 

 
Figure 5: Impact of increasing the number of writer processes on metadata overhead 
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Recall that applications can append “steps” to an ADIOS file. In addition to metadata 
associated with variables and writer processes, ADIOS also needs to maintain metadata about 
the steps in the file. At large scale, GTC can run tens of thousands of time steps. To study the 
impact of increasing number of timesteps in the simulation, experiments were run with a fixed 
number of variables, output data sizes, and MPI process count, while increasing the number of 
timesteps simulated by the application. Figure 6 shows that the average metadata overhead 
per simulation step increases with an increase in the total number of simulation steps. This is 
because when ADIOS constructs the metadata at each simulation step, it needs to reorganize 
and serialize metadata of current and all previous steps in memory, and write the serialized 
metadata to file.  
 

 
Figure 6: Impact of increasing number of timesteps in GTC on the metadata overhead 

 
 
When combined with a large number of variables, process counts, and simulation timesteps, 
the metadata overhead in ADIOS can grow quickly. To alleviate the pressure of increasing 
number of processes, users can tune ADIOS parameters to reduce the number of writers. 
However, the overhead due to increasing timesteps is a primary concern as reconstructing the 
full metadata for every step written to an ADIOS file can lead to an exponential increase in 
metadata overhead. At extreme scale, this is projected to be a major limiting factor in 
obtaining good I/O performance. In the next section, we discuss performance improvements 
obtained through a re-designed metadata format for ADIOS that mitigates this issue. 
 
 
BP4: The next generation ADIOS file format with improved metadata capabilities 
 

ICCM2019, 9th-13th July 2019, Singapore

501



 
 

Figure 7: Per-step metadata overhead of current and new metadata construction 
approach 

 
 
The BP4 file format is the next generation file format for ADIOS that is targeted towards 
exascale simulations that generate high volumes of data. Emphasis has been put on 
redesigning the metadata schema to optimize for increasing timesteps. The central concept is 
the introduction of an index table that stores the metadata offsets that represent timesteps in 
the global metadata file. Using an index table removes the need to sort the metadata and parse 
it serially to retrieve information when timesteps are appended to a file. Figure 7 shows that 
the metadata overhead per step with BP4 is constant for an increasing number of timesteps. 
Consequently, the total metadata overhead during the entire simulation run is also 
significantly reduced. 

Conclusions 

In this paper, we use Gyrokinetic Toroidal Code (GTC) as a concrete example to demonstrate 
the data management challenges that arise when we run pre-exascale scientific simulations. 
We use ADIOS to optimize I/O and data management in GTC. Initial experiments on the 
Summit supercomputer show a peak performance in excess of 2 TB/s for writing checkpoint 
data to the GPFS parallel file system. An improvement of 50X is obtained for writing 
snapshot data in GTC with ADIOS. A novel file format named BP4 for ADIOS is introduced 
with the objective of reducing metadata overhead at extreme scale. Preliminary results show 
significant improvement in metadata performance of ADIOS with the new file format. 
Optimizing I/O on leadership class machines is challenging and further research is required to 
efficiently utilize the evolving complex storage hierarchy that includes non-volatile memory 
along with new parallel file systems. 
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Abstract 

Energy-based seismic design has been widely used in ground building structures. The 

vibration characteristics of underground structures are quite different from those of ground 

structures due to the constraints of surrounding soils. When energy-based seismic design is 

applied to underground structures, the energy response characteristics of underground 

structures should be defined first. Based on the probability density evolution method (PDEM), 

this paper studies energy responses (including plastic energy dissipation, elastic strain energy, 

and structural kinetic energy) of a multi-story subway station structure from the perspective of 

stochastic analysis. It is found that the change of kinetic energy, elastic deformation energy, 

and plastic energy dissipation is consistent with the trend of the intensity change of the 

earthquake motion. The distribution range of PDF of kinetic energy, elastic deformation 

energy and plastic energy dissipation becomes wider when the earthquake intensity is larger. 

Plastic energy does not dissipate all the input energy of the station structure, and the 

proportion of plastic energy dissipation is less than 1/3. 

Keywords: Probability density evolution method, Subway station structure, Energy response, 

Stochastic earthquake 

 

1 Introduction 

In the 1995 Kobe earthquake, the subway station structure represented by Daikai Subway 

Station suffered serious damage [1][2], which gives rise to the seismic performance study of 

subway station structures [3][4]. 

 

Since Housner [5] put forward the energy analysis method of structural seismic response, the 

energy-based seismic design method has gradually been accepted and developed rapidly [6-

11]. The response of structures to earthquakes is a process of energy input and dissipation. 

However, due to the constraints of surrounding soils around, the vibration characteristics of 

underground structures are not obvious, and the energy input and dissipation characteristics 

need to be further studied. Considering the randomness of ground motions, the energy input 

and dissipation characteristics of underground structures can be obtained more 

comprehensively by using the stochastic analysis method. 

 

Based on the probability density evolution method (PDEM) and the idea of equivalent 

extreme value events, this paper studies the energy response of a multi-story subway station 

structure under stochastic earthquake from the perspective of stochastic analysis. 
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2 Numerical model 

 

 

Figure 1.  Standard cross section of the subway station, dimensions in mm 

 

Figure 1 gives the standard cross section size of the multi-story subway station structure 

analyzed in this paper, which located in Shanghai, China. The width and height of the 

standard section of the our-story three-span island station is 23.6m and 29.1m, respectively, 

with buried depth of the roof of 3.2m. The inner lining wall is connected to the diaphragm 

wall through the embedded parts, thus both of them bear forces together and form the side 

wall. The longitudinal distance between columns is 8 m. According to “Chinese Code for 

Seismic Design of Urban Rail Transit Structures” [12], the shear wave velocity of the soil is 

150m/s. 

 

Figure 2.  Numerical model of the underground subway station with surrounding soils 

 

The plane-strain dynamic analysis model is established in the finite element code ABAQUS 

[13], which is shown in Fig. 2. Mohr-Coulomb constitutive model with Rayleigh damping is 

applied to the soil. The Poisson's ratio, internal friction angle, and cohesion is 0.3, 15˚, and 

20kPa, respectively. Beam element, B21, is chosen for the structure. Central columns are 

made of C45 concrete and other parts of the structure are made of C35 concrete [14]. The 

concrete damaged plasticity model is adopted to better simulate the dynamic response of the 

structure, and the calculation of damage parameters has been done in previous studies 

[15][16]. Idealized elastic-plastic model was selected for rebar. Rebar used in central columns 
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and other parts were HRB400 and HRB335, respectively, whose yield strength is 400MPa 

and 335MPa, respectively. The soil-structure interaction is defined by the Coulomb friction 

law, and the coefficient of friction is assumed to be 0.4. 

 

In this paper, the depth of soil is 85m, and the single side width of the soil mass is 250 m, 

which is more than 3 times the structural width specified in “Chinese Code for Seismic 

Design of Buildings” [17]. To reduce the boundary effect, infinite element boundary is 

adopted as the lateral soil boundary [13], as shown in Fig. 2. 

 

3 Process of PDEM 

4.1 Numerical analysis process of PDEM 

 

 

Figure 3.  Basic steps of PDEM 

 

Based on the principle of probability conservation, the PDEM is proposed by Li and Chen 

[14], and a relatively complete system of PDEM has been formed After more than ten years of 

development. The basic steps of stochastic response analysis of structures using PDEM are 

shown in Fig. 3. For more detailed contents of the method, please refer to the references [18] 

[19] and previous study [20]. 

 

In the numerical solution process of PDEM, the stochastic process of earthquake motion 

should be discrete in the probability space, then a certain number of stochastic earthquake 

motion samples are obtained. In this paper, Spectral representation - Random function method, 

which is proposed by Liu et al. [21], is used to simulate the random process of ground motion. 

254 representative points are selected in the probability space, after that 254 earthquake 

motion samples are generated for the dynamic time history analysis. Relevant parameters are 

determined according to “Chinese Code for Seismic Design of Buildings” [17] for generating 

the ground motion samples. Figure 4 gives 3 typical ground motion samples. 
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Figure 4.  Typical acceleration time history samples 

 

5 Results and analysis 

The total input energy of the structure consists of three parts [6], as shown in the energy 

balance equation given by Eq. (1): 

 

e p hW W W E+ + =                                                          (1) 

 

where, We is elastic vibration energy, Wp is cumulative plastic energy dissipation and Wh is 

damping energy dissipation. Elastic vibration energy can be divided into kinetic energy Wek 

and elastic deformation energy Wes, as shown in Eq. (2): 

 

=e ek esW W W+                                                            (2) 

 

Damping of underground structures during earthquake is not clear, so this paper does not 

consider the damping of subway station structure at present. The kinetic energy, elastic 

deformation energy, and cumulative plastic energy of the structure are mainly studied. 

 

4.1 Stochastic response analysis of energy response 

Figure 5 (a-c) shows the probability density function (PDF) evolution contours of kinetic 

energy, elastic deformation energy and plastic energy dissipation of the structure, respectively, 

during earthquake. 

 

The PDF evolution of kinetic energy with time is shown in Fig. 5 (a). From Fig. 5 (a), it can 

be seen that the PDF distribution of kinetic energy is highly concentrated near 0 kJ in the 

initial stage of the stochastic process (i.e. 0 < T < 2 s). This is because the amplitude of 

ground motion is very small at the beginning, which leads to the weak motion of structure. As 

time goes on, the amplitude of ground motion increases gradually, and the distribution range 

of PDF of structural kinetic energy is also increased. The PDF with the widest distribution 

range of structural kinetic energy is in the period of 7 < T < 17 s, which is within the period of 

strong amplitude of ground motion (i.e. 3 < T < 17 s). After 17 s, the amplitude of ground 

motion decreases gradually, and the distribution range of PDF of structural kinetic energy 

becomes narrower, which indicates that the magnitude of ground motion amplitude is closely 

related to structural kinetic energy. It is noteworthy that the distribution of PDF is not 

completely reduced to zero after the earthquake, which indicates that the structure is still in 

motion. 
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Figure 5.  PDF evolution contours of (a) kinetic energy; (b) elastic deformation energy 

and (c) plastic energy dissipation of the structure 

 

The PDF evolution of elastic deformation energy with time is shown in Fig. 5 (b). Similar to 

PDF of structural kinetic energy, it can be seen from Fig. 5 (b) that PDF of structural elastic 

deformation energy is highly concentrated in the vicinity of 0 kJ at the initial stage of ground 

motion, indicating that the elastic deformation of the structure is very small at this time. With 

the increase of ground motion amplitude, the distribution range of elastic deformation energy 

PDF becomes wider. In the period of large amplitude of ground motion (3 < T < 17 s), the 

PDF distribution range of elastic deformation energy is obviously narrower than that of 

kinetic energy at the same time. In the later period of earthquake (T > 17 s), the PDF 

distribution range of elastic deformation energy is narrower, but it basically changes little. 

This is because the structural deformation is controlled by the deformation of surrounding soil. 

The surrounding soil appears obvious deformation in the earthquake, which makes the 

structure store higher elastic deformation energy. 

 

The PDF evolution of plastic energy dissipation with time is shown in Fig. 5 (c). The plastic 

energy dissipation increases monotonously with time. From Fig. 5 (c), it can be seen that the 
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time period when the PDF distribution range of plastic energy dissipation of the structure 

changes is mainly in the range of 3 < T < 17 s, which is consistent with the time period when 

the earthquake amplitude is large. When T < 3 s and T > 17 s, the PDF distribution of plastic 

energy dissipation hardly changed. This indicates that plastic energy dissipation mainly 

occurs in the period of large earthquake amplitude. 

 

 

Figure 6.  PDF evolution contours of total input energy of the structure 

 

Figure 6 shows the PDF evolution contours of total input energy of the structure during 

earthquake. The total input energy is the sum of kinetic energy, elastic strain energy and 

plastic energy dissipation at the moment. From Fig. 6, it can be seen that the PDF distribution 

range of total input energy experienced a process of broadening (T < 15 s) and narrowing (T > 

15 s). This indicates that plastic energy dissipation does not dissipate all the input energy of 

the station structure, and the rest of the energy probably dissipates into the soil through soil-

structure interaction. 

 

4.2 Extreme value analysis of energy response 

 

 

Figure 7.  PDF and CDF curves of maximum energy during earthquake 

 

Based on PDEM and the equivalent extreme event thought, the corresponding equivalent 

extremum events are constructed to calculate the distribution of extreme energy value of the 

structure under stochastic earthquake motion. Figure 10 gives the probability density function 

(PDF) and the cumulative probability function (CDF) of the maximum energy during 

earthquake. The extreme energy value corresponding to 50% CDF in Fig. 10 (b) is taken as 
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representative value, and the corresponding representative extreme values of kinetic energy, 

elastic deformation energy and plastic energy dissipation are 348 kJ, 216 kJ, 110 kJ, 

respectively. It is indicated that plastic energy dissipation does not dissipate all the input 

energy of the station structure, and the proportion of plastic energy dissipation is less than 1/3. 

The rest of the energy probably dissipates into the soil through soil-structure interaction. 

 

In terms of energy balance, two aspects can be considered to give advices to the seismic 

design of subway station structure. On the one hand, the total input energy of the structure 

should be controlled by improve surrounding soils. On the other hand, the proportion of 

plastic energy dissipation of structural components should be reduced by means of increasing 

the energy dissipated to the soil and reasonably arranging the energy dissipation components 

such as shear plate dampers (SPDs). 

 

6 Conclusions 

Based on PDEM and finite element elastoplastic dynamic time history analysis, the energy 

response characteristics of a multi-story subway station structure under stochastic earthquake 

motion are studied in the presented paper. The main conclusions are as follows: 

(1) In a seismic process, the change of kinetic energy, elastic deformation energy, and plastic 

energy dissipation of subway station structure is closely related to earthquake intensity. The 

distribution range of PDF of kinetic energy, elastic deformation energy and plastic energy 

dissipation becomes wider when the earthquake intensity is larger. 

(2) Plastic energy dissipation does not dissipate all the input energy of the station structure, 

and the proportion of plastic energy dissipation is less than 1/3. The rest of the energy 

probably dissipates into the soil through soil-structure interaction. 
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Abstract 

The previous earthquake surveys show that the central columns are the weak parts in subway 
stations during the earthquakes. Reducing the seismic responses of the central columns can 
ensure the safety of the stations. Setting friction pendulum bearings at the top of the central 
columns may be a good strategy. In this paper, based on a subway station in Shanghai, the 
friction pendulum bearings is simulated detailedly and the isolation effect of the friction 
pendulum bearings is studied with the three-dimensional dynamic time history analysis 
method. The results show that the friction pendulum bearings can effectively reduce the 
shearing force of the central columns and slightly reduce the bending moment during the 
earthquake. At the same time, they does not cause a significant increase in deformation of the 
side walls. It is stated that the friction pendulum bearings are also effective in the underground 
station structures. 

Keywords: Underground subway station, Friction pendulum bearings, Seismic 
Response 

 
1. Introduction 
In 1987, Zayas et al. developed a friction pendulum bearing at the University of California, 
Berkeley [1]. At present, more than 10 kinds of friction pendulum bearings have been 
developed. The most common friction pendulum bearing is the single curved surface friction 
pendulum bearing, which is mainly composed of a slider, a lower base and an upper base. 

Friction pendulum bearings have been widely used in above-ground structures, but rarely in 
underground structures [2][3]. Since the Kobe earthquake in Japan caused severe damage to 
the Dakai Station in 1995, the seismic capacity of underground structures has gotten more and 
more attention. Previous studies have shown that the damage of the underground station 
structure is mainly caused by the damage of the central columns [4]. Strengthening the 
seismic performance of the central columns can effectively improve the seismic capacity of 
the underground station. Setting friction pendulum bearings at the top of the central columns 
may be a good strategy. 
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2. Fine simulation of FPB 
At present, the most common friction pendulum bearing on the ground is the single curved 
friction pendulum bearing. It is mainly composed of three parts, which are an upper base, a 
lower base and a slider. During the earthquake, the slider is mainly subjected to the vertical 
pressure, horizontal force transmitted by the structure, support force and friction on the 
concave surface. According to the force's equilibrium condition, Eq. (1) can be get that: 

cos cos
WD fF

R θ θ
= +                          (1) 

When the angle of rotation is relatively small, it can be approximately simplified as Eq. (2). 

.
sgn( )WD WDF f W

R R
µ θ= + = +                     (2) 

where, F is horizontal force transmitted by the structure, W is vertical pressure, R is the radius 
of the concave surface, D is the relative displacement of the slider, and μ is the friction 
coefficient of the sliding surface [5]. 
 
The ABAQUS finite element software is used to carry out the refined simulation [6]. The 
finite element model of the friction pendulum bearing is shown in Figure 1. The concave 
radius is 2m and the friction coefficient of the sliding surface is 0.1. 

 

Figure 1. Fine simulation of FPB 

Applying a vertical pressure of 2000kN to the friction pendulum bearing. The 
force-displacement curve of the finite element model is compared with the result calculated 
by the Eq. (2). As shown in Figure 2, the two curves are roughly coincident, indicating that 
the refined finite element model can simulate the mechanical characteristics of the friction 
pendulum bearing well. 
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Figure 2. The force-displacement curve of FPB 

 
3. Numerical Simulation 
3.1 Finite element model 
A cross section of the station is shown in Figure 3. The station is 21.84m wide and 13.1m high.  
The cross section dimensions of the upper and lower central columns are both 0.7m×0.7m, 
and the interval between the central columns is 5.8m. 

 

Figure 3. The cross section of the station 

The ABAQUS finite element software was used to establish a three-dimensional finite 
element model of the station and soil layers. The dimensions of the station model are 
established according to the cross section shown in Figure 3. According to the detailed 
geotechnical survey report of the project, the soil can be divided into ten layers. The thickness 
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and basic physical properties of each layer are shown in Table 1. The overall size of the model 
is 80m long, 60m high and 5.8m wide, since the interval between the central columns in the 
station is 5.8m, as shown in Figure 4. 

Table 1. The basic physical properties of each soil layer 

Soil 
number Soil texture Thickness

（m） 
Density
（g/m3） 

Internal 
friction 
angle(°) 

Cohesion 
(kPa) 

1 Artificial fill 1.3 1900 15 20 

2-1 Yellowish dark brown silty 
clay 1.1 1920 31.3 9.5 

2-2 Yellow gray silty clay 1.1 1800 33.8 15.1 
3 Gray mucky silty clay 3.4 1740 28.3 5.3 
4 Gray mucky clay 8.2 1670 24.9 7.2 

5-1 Gray clay 1.6 1740 29.7 10 
6 Dark green silty clay 4.4 1950 29.1 31.3 
7 Olive drag-gray sandy silt 6.9 1820 31.1 2 

8-1 Gray clay 15 1770 32.5 8.1 

8-2 Gray silty clay and silty sand 
interbedded soil 17 1840 28.1 8 

 
Figure 4. The finite element model of the station and soil 

The boundary conditions of the ground are fixed at the bottom, and an equal displacement 
boundary is adopted to the four side boundaries, so that each layer elements have the same 
horizontal displacement. The equal displacement constraint can avoid the reflection of seismic 
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waves at the boundary [7][8]. 
 
3.2 Constitutive models 
The station is a reinforced concrete structure. To simplify the analysis, the material is 
equivalent to a homogeneous material, and the material parameters are approximated to the 
concrete's. The density of the material is 2500kg/m3, the Poisson's ratio is 0.2, and the 
modulus of elasticity is 31.5Gpa. 

In order to simulate the dynamic properties of the soil, an equivalent linear viscoelastic model 
with damping is used. The dynamic elastic modulus of the soil layers can be calculated 
according to the Eq. (3) 

2
sG Vρ=  

2(1 )E Gσ= +                              (3) 

where, Vs is the shear wave velocity, ρ is the soil density, σ is the Poisson's ratio, and G is the 
equivalent dynamic shear modulus of the soil. The variation of the shear wave velocity along 
the depth is in accordance with the law of exponential or logarithm. For the Shanghai region, 
the exponential form can be selected, as shown in Eq.(4). 

b
sV aH=                                (4) 

where, H is the depth of soil layers, a and b are the calculation parameters. For the area where 
the station is located, a and b are 79.03 and 0.3437 [9]. The soil layer parameters obtained by 
calculation are shown in Table 2. 

Table 2. The parameters of each soil layer 

Soil 
number 

Depth 
(m) 

Shear wave 
velocity 

(m/s) 

Shear modulus 
(Gpa) 

Poisson’s 
ratio 

Elastic modulus 
(Gpa) 

1 1.3 86 14.2 0.32 37.5 
2-1 2.4 107 21.9 0.32 57.8 
2-2 3.5 122 26.6 0.34 71.3 
3 6.9 153 41 0.38 113.2 
4 15.1 201 67.4 0.4 188.8 

5-1 16.7 208 75.2 0.35 203.2 
6 21.1 225 99.1 0.29 255.6 
7 28 248 112.3 0.29 289.8 

8-1 43 288 146.7 0.33 390.2 
8-2 60 323 191.7 0.32 506.2 

The damping of the soil is Rayleigh damping. Using the modal analysis function of ABAQUS, 
the first-order mode frequency of the site is 0.36Hz, and the second-order mode frequency is 
1.08Hz. Rayleigh damping coefficient can be calculated according to the Eq. (5). 
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1

1
2 2
α βξ ω

ω
= × + ×                            (5) 

where, ω1 and ω2 are the main mode frequencies of the soil, and the damping ratio ξ is 0.05. It 
is calculated that the Rayleigh damping coefficient α = 0.1698, β = 0.0129. 
 
3.3 Ground motion characteristics 
In order to study the seismic response of the station, the seismic waves are input in the Y 
direction at the bottom of the model. The Shanghai artificial wave is selected as the input 
ground motion. The acceleration time history curve and the Fourier spectrum of the seismic 
wave are shown in the Figure4. 

 
(a)                                 (b) 

Figure 4. Shanghai artificial wave characteristics: (a) Acceleration time history curve 
and (b) Fourier spectrum 

 
3.4 Cases introduction 
As the station is a frame structure with two floors and two spans, the friction pendulum 
bearings are placed on the top of the central columns, so there are four arrangements, as 
shown in figure5. That is, the friction pendulum bearings are not arranged, the friction 
pendulum bearings are arranged in both floors, the friction pendulum bearings are arranged 
only on the upper floor and the friction pendulum bearings are arranged only on the lower 
floor. And the amplitude of seismic wave acceleration is 0.1g and 0.5g. 

 
(a) None                           (b) Both 
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(c) Up                             (d) Down 

Figure 5. Four different arrangements: (a) FPB are not arranged, (b) FPB are arranged 
in both floors, (c) FPB are arranged in upper floor, (d) FPB are arranged in lower floor 

 
4. Isolation effect of friction pendulum bearings 
4.1 Seismic response of the central columns 
The destruction of the underground stations is mainly caused by the destruction of the central 
columns. The bending and shearing is the major failure form of the central columns. So the 
maximum bending moment and shearing force at the bottom of central columns are extracted 
as the indexes of dynamic response during the earthquake. In different cases, the shearing 
force at the bottom of the central columns in two floors is shown in Table 3. 

Table 3. The shearing force in central columns in different cases 

Case 
0.1g 0.5g 

Lower floor 
(kN) 

Upper floor 
(kN) 

Lower floor 
(kN) 

Upper floor 
(kN) 

none 178 213 854 1105 
both 87 110 427 390 
up 187 81 911 366 

down 88 257 429 1307 

The isolation effect of friction pendulum bearings is defined as Eq. (6) 

0 0( ) /fR R Rγ = −                             (6) 

where, Rf is dynamic response of central columns with friction pendulum bearings and R0 is 
the response without friction pendulum bearings. In each case, the isolation effect on the 
shearing force of the central columns is shown in the Table.4 and Figure 6. 

Table 4. The isolation effect on shearing force in central columns in different cases 

Case 
0.1g 0.5g 

Lower floor Upper floor Lower floor Upper floor 
none - - - - 
both 51.1% 48.4% 50.0% 64.7% 
up - 62.2% - 66.9% 

down 50.4% - 49.8% - 
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Figure 6. The isolation effect on shearing force in central columns in different cases 

It can be found from the results that the friction pendulum bearings can effectively reduce the 
maximum shearing force on the central columns during the earthquake. When the friction 
pendulum bearings are placed on one of the two floors, the maximum shearing force during 
the earthquake in the central columns of this floor is significantly reduced. The maximum 
shearing force in the other floor's central columns is slightly increased. And in different cases, 
the bending moment at the bottom of the central columns in two floors is shown in Table 5. 

Table 5. The bending moment in central columns in different cases 

Case 
0.1g 0.5g 

Lower floor 
(kN*m) 

Upper floor 
(kN*m) 

Lower floor 
(kN*m) 

Upper floor 
(kN*m) 

none 360 275 1780 1322 
both 295 260 1427 1046 
up 369 220 1840 990 

down 299 374 1450 1787 

In each case, the isolation effect of the isolation bearing on the bending moment of the central 
columns is shown in the Table 6 and Figure7. 

Table 6. The isolation effect on bending moment in central columns in different cases 

Case 
0.1g 0.5g 

Lower floor Upper floor Lower floor Upper floor 
none - - - - 
both 18.1% 5.5% 19.8% 20.9% 
up - 20.0% - 25.2% 

down 17.0% - 18.6% - 
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Figure 7. The isolation effect on bending moment in central columns in different cases 

It can be found from the results that the friction pendulum bearings can reduce the maximum 
bending moment on the central columns during the earthquake. The isolation effect on the 
bending moment is not obvious compared with the shearing force. When the friction 
pendulum bearings are placed on one of the two floors, the maximum bending moment in the 
other floor's central columns is slightly increased. 
 
4.2 Seismic response of the side walls 
The station studied in this paper is a two-story and two-span frame structure. The deformation 
of the side walls during the earthquake can be judged by inter-layer displacement and 
inter-layer displacement angle. In different cases, the inter-layer displacement and inter-layer 
displacement angle are shown in Table 7 and Table 8. 

Table 7. The inter-layer displacement in different cases 

Case 
0.1g 0.5g 

Lower floor 
(mm) 

Upper floor 
(mm) 

Lower floor 
(mm) 

Upper floor 
(mm) 

none 5.16 3.41 25.38 17.56 
both 5.26 3.49 26.11 17.72 
up 5.17 3.53 25.43 18.12 

down 5.22 3.37 25.81 17.23 

Table 8. The inter-layer displacement angle in different cases 

Case 
0.1g 0.5g 

Lower floor Upper floor Lower floor Upper floor 
none 1/1198 1/1488 1/243 1/289 
both 1/1176 1/1452 1/237 1/286 
up 1/1194 1/1436 1/243 1/280 

down 1/1183 1/1505 1/239 1/294 

In each case, compared with the station without friction pendulum bearings, the percentage 
increment of the inter-layer displacement and the inter-layer displacement angle after the 
friction pendulum bearings are set is shown in the Table 9. 
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Table 9. The percentage increment of the inter-layer displacement 

Case 
0.1g 0.5g 

Lower floor Upper floor Lower floor Upper floor 
none - - - - 
both 1.9% 2.5% 2.8% 0.9% 
up - 3.6% - 3.2% 

down 1.2% - 1.7% - 

It can be found from Table 9 that the friction pendulum bearings can effectively reduce the 
shearing force and slightly reduce the bending moment of the central columns. And they will 
only increase the interlayer displacement and the interlayer displacement angle by 1-4%. That 
is, they will not cause a significant increase in the internal force and deformation of the side 
wall. 
 
5. Conclusion 
In this paper, through the refined finite element model, the isolation effect of the friction 
pendulum bearings in the underground structure is studied, and the following conclusions are 
obtained. 
(1) The friction pendulum bearings can effectively reduce the shearing force received by the 

central columns in the station, and the reduction can exceed 60%. 
(2) The friction pendulum bearings effectively reduce the shearing force of the central 

columns in the station, but the isolation effect on the bending moment is not obvious. 
(3) The reduction of the internal force of the central columns on which the friction pendulum 

bearings are arranged does not cause a significant increase in the deformation of the side 
walls. 

This paper proves that friction pendulum bearing is also effective in the underground station. 
And they can significantly improve the stations’ earthquake resistance 
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Abstract  

The improved reflectance prediction model for printing dot was established with Monte Carlo 
method. Reflectance model is a useful approach to predict and control printing quality, which 
was widely used in color duplication field. The Monte Carlo prediction model for printing dot 
is a simulation model, satisfying industrial virtual reality needs, which could simulates 
reflectance data as well as dot shape image. This paper mainly focuses on improving the 
existing reflectance model for printing dot with simulation program, expanding dot simulation 
area from one single dot to nine dots. The results showed that the reflectance value closely 
approached to the measured value with high dot area in particular and the correlation 
coefficient improved to 0.924. One hundred thousand times was shown to be the optimal 
number of simulated photon under regular printing condition. The expanding simulation area 
could significantly eliminate interactive influence among the dots. The photon distribution 
and dot shape could be sufficiently simulated through this model, providing a reference for 
quality control. The results indicate that the improved reflectance model increased reflectance 
accuracy and could further promote optical study about color duplication. 
Key words: Tracking photon path, Monte-Carlo method, Reflectance model 

1. Introduction  

Printing works consisting of paper and colorful ink, almost existing widely, is a necessary 
media for distribution of text and image. Although the internet has become a powerful media 
gradually, prints still accounts for 60 percent contribution on information dissemination. 
Whether information can be exactly described and disseminated, depends on the quality of 
printing works with art picture in particular. Before actual print with machine, several 
procedures must be made including color separation, image screening and dot selection. In a 
typical printing process, printing material, printing speed and machine pressure could raise the 
difference. High quality prints must be the optimal combination of all influence factors. 
Because accomplishing one printing job is a large project, which requires huge energy and 
material. Hence it is not effective to judge the final quality with real printed work. For several 
decades, relevant researchers have been working on an approach to predict, judge and adjust 
printing quality before actual print without consuming large energy, and therefore promoting 
energy conservation. The printing model is a good choice. The printing model that can predict 
the printing reflectance before actual print is widely used in printing domain. 
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Fig 1 The distribution and interactive results of different dots. 

The first printing model that can calculate total the reflectance is the Murray-Davies model 
[1], which only paid attention to the direct reflection of paper and ink surface. The printing 
woks have various layers with different reflective characters and multiple reflections between 
different layers cannot be ignored [2]. Although the Clapper-Yule model [3] that was 
improved from the Murray-Davies model taken multiple reflection into consideration by 
introducing correction parameters N, it did not perform better and had low stability in that the 
correction parameters N was obtained by experience which cannot be quantified objectively 
[4]. The point spread function model that used the optical radiation theory to calculate 
reflectance could achieve better performance, but it would need complicated calculation [5]. 
Relevant studies such as DT2002 and Kubelka-Munk model all improved printing model 
accuracy to some extant [6-9]. Not until the Monte-Carlo model was introduced into printing 
field, printing prediction model only output single data. Apart from reflectance prediction, the 
Monte-Carlo model [10-12] that was widely used in finance, mathematic and medical fields 
can simulate printing dot shape, and providing a new approach to adjust printing quality. The 
first Monte-Carlo model used in printing field was proposed by Robert Beuc, which 
successfully simulated paper surface in 2009 [13]. Based on that, Damir Modric accomplished 
single printed line simulation in 2012. Besides, relevant studies [14] with Monte-Carlo 
method achieved different dot shape and photon distribution simulation, which extended the 
printing model researches into micro field. 

The aim of this paper is to propose an improved printing reflectance model with Monte-Carlo 
method by expanding the simulation area, further promoting printing quality control and 
optical study. 

2 Improving reflectance model 

The Monte-Carlo method proposed by Metropolis is essentially a probabilistic method [15]. It 
assumes that a sample can reflect population attributes as long as sample number is sufficient. 
Monte-Carlo method has been applied in various simulation fields that has random properties. 
The comprehensive phenomenon of random problem is affected by various factors. It is quite 
difficult to study the affluence of each factor through doing real experience. Using computer 
simulation technology with Monte-Carlo method could solve random problem effectively. As 
the requirement of environment protection increases, prediction model of Monte-Carlo 
method attracts increasing attentions of relevant researchers all over the world [16]. 

Compared with other printing reflectance model, the reasons why Monte–Carlo model 
perform better rely on that it take different factors into consideration such as, paper property, 
ink attribute and various light phenomenon. The color sense that finally formed in brain is the 
comprehensive results between light of prints surface and visual nerve. There are almost no 
differences of visual nerve for healthy people, therefore the attributes of light coming from 
prints surface becomes the main symbol to predict prints quality. The light that finally coming 
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into eye from prints surface contain different parts including direct reflectance, scattering 
parts and refraction parts showed by Fig 1, all of which can be simulated with Monte-Carlo 
reflectance model. It has been proven that light is composed of photon. The basic principle of 
Monte-Carlo used in this study is to simulate light propagation trajectory in prints. When the 
number of photon trajectory satisfy statistical requirement, reflectance information of prints 
can be obtained through statistic calculation.  

The first simulation procedure proposed by Modric [13] within the Monte-Carlo method 
accomplished modeling of light scattering in paper. That work built the foundation for the 
following study. The simulation procedure mainly contains four steps, initialization, direction 
change, energy record and shape design. In the initialization step, light location and moving 
distance of photon was initialized. The light that reflected from prints surface is assumed to be 
parallel light with the location (x, y, z). The moving distance also called step-size is a 
significant parameter deciding the accuracy of reflectance model. The simulated photon 
cannot be reflected by different layers in paper before leaving prints if step-size is too long. 
Photon moving distance in prints is a random variable. It follows Beer law and decided by 
scattering coefficient ss  and absorption coefficient ασ shown by formula 1. Parameter ε  is 
random value ranging from 0 to 1. 

ln
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s s
−

=
+
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For printing reflectance model, scattering phenomenon play an important role in calculating 
optical dot gain. In the simulation process, the scattering phenomenon in prints involves 
photon direction change caused by the interaction between paper coating and photon. Three 
phase functions can be used to describe photon direction change including, 
Henyey-Greenstein function，  Mie function and exponential cosine function [17,18]. 
Henyey-Greenstein function is short to H-G function. It is widely used in simulation domain 
for its calculation superiority presented by formula 2. The parameter β, g are deflection angle 
and anisotropic coefficient separately.  

2
21 11 0

cos 2 1 2

2 1 0

gg g
g g g

g

β ε

ε

   − + − ≠   = − +    
 − =

    (2) 

Each photon of light is supposed to be carried with energy w to satisfy the statistical 
requirement. Photon energy will decrease with step moving and ink absorption. It is necessary 
to point out that photon energy variation only refers to statistic energy decrease in this study, 
with which printing information can be obtained eventually. After each step movement, 
photon energy can be recorded w' shown by formula 3. 
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Fig 2 The simulated area of different number of photons.(a) one dot.(b) four dots.(c) nine 

dots 

The design of printing dot shape is the final step. Whether photon will go through ink area 
depends on photon location and dot shape. In the case of round shape with radius r, photon 
has to pass ink layer before arriving to paper layer if radius r is greater than the distance from 
center to photon location(x, y, z). The relationship between screening line L and radius r is 
presented by formula 4.  

2.54 ar
L π

=         (4) 

For printing project, dot shape is an important parameter. According to digital screening 
method, there are two types of dot. These are the FM dot and the AM dot [19]. Relevant 
studies have built reflectance model for one single printing dot using Monte-Carlo method, in 
which the reflectance accuracy would still need improvement especially in large dot area. 
Single round dot shape is shown in Fig 2(a). As the dot area grows larger, the interaction of 
dot will affect model accuracy. Modeling for four dots may be an improved approach, while it 
cannot eliminate interactive influence completely. The only revolution is expanding 
simulation area from one dot to nine dots as shown in Fig (c). Based on the above theory and 
the former study [14], an improved reflectance prediction model was established by 
expanding the simulated area from one dot to nine dots. 

3 Results and discussion 

The Monte-Carlo model for printing dot can simulate photon propagation. Apart from 
outputting reflectance value, the Monte-Carlo model can provide dot and photon distribution 
image which broadens the evaluation of quality control. The improved reflectance model for 
printing dot was built by expanding the simulation area. For computational model, the final 
aim is to provide a simulation value for designer to improve product quality. More attention 
should be paid on effectiveness and applicability  

3.1 Optimization of simulation time 

Visible light is a certain portion of the whole spectrum. Wave particle duality is the main 
attributes of light. The Monte-Carlo model for printing dot only concern light particle 
attributes. Therefore light can be regarded as a stream of particles. For printing model with 
Monte-Carlo method, the process of building the model is to simulate the moving path of 
photon in paper. The photon number required for statistic calculation, determining model 
effectiveness, has to be optimized. For medical field, Monte-Carlo model are commonly used 
to simulate radiation particles treatment [20]. Excessive dose will do harm to the body. There 
will be no efficacy if it is not enough. Besides, radiation treatment varies with each individual 
according to physical conditions. Similarly, it is necessary to confirm the required number of 
simulation photon in order to build an effective model for printing dot.  
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Comparative experiment was conducted with in Matlab 2016. The simulated results of 
different number of photon are presented in Fig 3. One of the refreshing aspects of 
Monte-Carlo model is directly outputting simulated results in the form of image. Fig 3(a) 
illustrate that single printing line becomes increasingly distinct with more simulated photons. 
Meanwhile, more time is required. Therefore, the compromise has to be made between 
accuracy and effectiveness. The required time with different number of photon is shown in 
Fig 3(b) showing as exponential function shape, which indicates that simulation number 
should not exceed 20 thousands. According to the simulated image and reflectance deviation, 
10 thousand times is the optimized. Fig.3(c) show the 3D simulated result with 10 thousand 
photons. 

 
Fig.3 The simulation results with different number of photon（a）the simulation of single 
printing line with different number of photon ranging from one thousand to fifty 
thousands，（b）standard deviation of reflectance and requiring time (c) 3-D simulated 
results of single printing line with ten thousand photons 

3.2 Reflectance simulation 

The reflectance model that can provide a reference value before actual printing is a useful tool 
to make quality control. This is because printing is related to systems engineering, which 
needs several different technological processes. Any negligence in a process step could cause 
big effect. For a simple image made by digital camera, three main processes must be 
conducted to obtain high quality duplication. Digital screening is the first process for any 
original prints. That is because that ink cannot reflect different tone if it cover on paper 
uniformly. The ink that covered on the duplication is not continues. The ink distribute 
separately in the form of different dot shapes after digital screening. Under the characteristics 
of low pass filter of human eye, dots with different size could present multiple color tone. 

Besides, digital screening can be divided into two types involving frequency and amplitude 
modulation screening according to screening theory. Both of them have advantage and 
drawback. The frequency screening can satisfy the tendency of fast print and print on demand 
with digital printing press. Although frequency screening is developing continually in recent 
year, amplitude screening still dominate in printing field for its excellent stability. The 
printing press will print sheets with received screening information. Through measure and 
analysis, the reflectance value can be obtained. In the case of amplitude screening, Fig.4 
shows the main process of duplication. The traditional printing process is relatively 
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complicated. With the assistance of computer science especially for virtual reality, printing 
model can simulate printing quality. Fig.5 presents the comparative reflectance value of 
printing dot. 

 
Fig.4 The main process of printing duplication 

Using Monte-Carlo method and optical parameters of printing material, the printing model 
can smoothly simulate reflectance of printing dot with computer. Fig 5 showed the compared 
results of original model and the improved model. For a round dot in Fig.5(a,b), there is no 
apparent difference in the range of 0 to 60 percent area. But above 60 percent, the simulated 
value approach much close to the measured value. In the unit square area, the round dot will 
expand beyond the edge of screening unit when its area is bigger than 60 percent, which 
means that more interaction between dots occur gradually. As shown in Fig.1, bigger dot will 
cover on neighborhood dot and the overlap area could change photon moving path. In 
addition to that, printing ink is a kind of viscous fluid [21]. When ink approach on paper, it 
will spread around the center. Simultaneously, it also could permeate into the paper under the 
pressure of capillary effect of fibers [22]. Therefore, it is difficult to keep a round shape and to 
spread evenly. The original model could not take into account the overlap factors sufficiently. 
The comparative results in large dot area proved that the modified model indeed made an 
improvement.  

 
Fig 5. The reflectance simulation results of original model and modified model. (a) round 
dot with original model.(b) round dot with modified model (c) concentric dot with 
original model (d) concentric dot with modified model. The simulated paper was 
157g/m2 coated paper. The measured value was obtained by IC-Plate and X-rite530.  
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Concentric dot that has double ring structure raises increasing attention in recent year for two 
reasons. Firstly, printing works with concentric dot appears more saturated, which means 
using concentric dot can save printing ink to some extent. Secondly, concentric dot is good at 
duplicating warm tone, which is widely used to depict face figure. The only drawback exists 
in its special structure, costing much time in printing plate production. Moreover, reflectance 
character of concentric dot is unique as shown in Fig.5(c), indicating almost no change above 
80 percent. This maybe caused by the compromise of ink overlap region and blank gap 
between double rings. The prototype model had not focused on the overlap ink region and just 
calculated within single dot unit neglecting interactive effect, which would not achieve ideal 
results for large dot area. The improved model showed better result in Fig.5(d). The 
correlation coefficient between the measured and the simulated value improved from 0.875 to 
0.924. With simulated reflectance value, printing worker can adjust dot compensation to print 
exquisite duplication. 

3.3 Photon distribution 

The improved reflectance model can effectively record photon location when photon leaves 
paper and propagates into the air. Learning from geometric optical theory, three types of 
photon can be defined according to photon position. If photons leave from the upper or lower 
surface, those portions are called as reflection and transmission separately. The absorption 
refers to the photon whose supposed energy exhausted in paper. The simulated result of 9 
round dots with one thousand photons is illustrated in Fig.6. The nine dots are the minimal 
unit for studying interactive effect between dots. Besides, one thousand photons are enough to 
describe the main characters of photon distribution.  

 
Fig. 6. The photon distribution of nine round dots Parameters include photons numbers 
= 1000, dot area = 70%,and 157 g/m2 coated paper.(a) the 3-D distribution of simulated 
photons when photons escape prints.(b) the side view of the absorbed photons.(c) the top 
view of transmitted photons. 

The reflection part domain the whole photons in Fig.6(a), which proved that most of photons 
were reflected by paper surface and only a small portion of photons have opportunity to get 
into the paper. The blank reign among reflected photons shows round shape corresponding to 
original screening state. The side view in Fig.6(b) shows regions where photons are absorbed 
completely. The absorbed photons mainly locate in the middle layer of the paper, providing 
useful reference for paper making process. If paper making factory needs low transparency 
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paper, more light absorbing material such as coating and filler should be concentrated in the 
middle layer. The transmission part of photons did not show apparent shape character in the 
top view Fig.6(c). This is because photons change its original way after several collision 
against fiber or filler. The distribution information outputted by reflectance model provides a 
new approach to research printing dot optical attributes and also make it possible to take 
targeted measure to instruct paper making production. 

4 Conclusions  

In this paper an improved reflectance prediction model for printing dot was proposed with the 
Monte Carlo method. Based on the prototype model, this paper mainly focuses on improving 
reflectance model accuracy by expanding dot simulation area from one single dot to nine dots. 
The results showed that the simulated value closely approached to the measured value with 
high dot area in particular and the correlation coefficient improved from 0.875 to 0.924. One 
hundred thousand photon packets proved to be the optimal number of simulated photon under 
regular printing condition. Apart from outputting reflectance value, the improved 
Monte-Carlo model can simulate dot shape as well as photon distribution, which make it 
possible to further promote optical study about color duplication. Future works could focus on 
simulate reflectance of various colors and finally realize spectrum simulation. 
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Abstract 

Purpose: Microwave ablation is one of the minimally invasive local treatment techniques for 
lung tumors. But lung tissue contains plenty of air. In order to study the problem that poor 
ablation or excessive ablation in the treatment of lung tumors, the lung was used as a porous 
media model for numerical simulation, and compared with the traditional biological tissue 
model. 
Methods: In this paper, based on finite element method, COMSOL Multiphysics is used to 
simulate numerically. Two-dimensional microwave antenna model, porous media lung model 
and biological tissue lung model are constructed. Coupled calculation of electromagnetic 
field, temperature field and flow field is carried out to obtain the temperature distribution of 
lung tissue. The Pennes bio-heat transfer model is used in the temperature field. The 
Brinkman equation is used for the flow field of the porous media model. The ablation 
frequency was 2450 MHz, the ablation power was 30 W, 40 W and 50 W, and the ablation 
time was 6 min. 
Results: The ablation area is approximately spherical. When the power was 30W, 40W and 
50W, the ablation area of porous media lung models were 25.9mm, 31.0mm and 35.1mm in 
transverse diameter, 44.8mm, 50.5mm and 54.4mm in longitudinal diameter, and the 
maximum temperature were 121℃, 149℃, 176℃, respectively. The ablation area of traditional 
biological lung models were 40.5mm, 46.9mm and 51.9mm in transverse diameter, 56.3mm, 
62.1mm and 66.7mm in longitudinal diameter, and the maximum temperature were 183℃, 
232℃, 280℃, respectively. Compared with the biological tissue model, the porous media 
model is 29% smaller in ablation area and 36% smaller in maximum temperature. The 
simulation results of porous media model are more close to the results of ex-vivo 
experiments. 
Conclusions: In the traditional biological tissue model, lung ablation does not consider the 
influence of air, so its ablation area is often large. The porous media model is more suitable 
for lung tissue with sufficient air. The method combines the electromagnetic field emitted by 
microwave, the flow field of air in lung tissue and the heat transfer field of porous media. It 
can accurately simulate the real-time distribution of temperature field in lung tissue under 
microwave irradiation, which plays an important role in real-time monitoring of temperature 
field in the process of microwave ablation of lung tissue. 

Keywords: Microwave ablation; Numerical simulation; Lung; Porous media 
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1. Introduction 

Lung cancer is one of the most common malignant tumors, ranking first in the causes of 
cancer incidence and death. Currently, resection is still the mainstream treatment. However, 
the limitations of resection surgery are very large, only about 20% of patients are suitable for 
surgery [1][2]. Microwave ablation for lung cancer is the use of microwave antenna puncture 
into lung tumors by using medical imaging equipment, such as ultrasound imaging, magnetic 
resonance imaging and computed tomography imaging. Under the action of microwave 
electric field, the tumor tissue produces high temperature above 60 ℃ in a short time, which 
causes the degeneration and necrosis of the tumor tissue. So as to achieve the purpose of 
treatment of tumors [3][4]. 
 
But lung tissue contains enough air, so the conductivity and thermal conductivity of lung 
tissue are very small, the temperature is difficult to control. Therefore, some large tumors and 
irregular tumors will have poor curative effect. It can also cause serious complications due to 
excessive ablation, which limits the application of this technology in clinical practice [5]. 
 
In this study, lung tissue is regarded as porous media, and the porous media model is used for 
simulation calculation, and compared with the traditional biological tissue model, in order to 
establish a more realistic simulation model. 

2. Methods 

2.1 Geometric model 
COMSOL Multiphysics multi-physical field coupling analysis software is used in the 
simulation, and finite element method is used in the calculation. 
 
The microwave antenna used in this study is a commonly used microwave antenna in clinic. 
Its frequency is 2450 MHz. Its geometric model structure is shown in Fig. 1 and Table 1 [6]. 
In this study, microwave antenna model, porous media lung model and biological tissue lung 
model are constructed. Because the action area of microwave antenna is axisymmetric, it is 
simplified to an axisymmetric two-dimensional. At the same time, assuming that the lung is 
isotropic homogeneous organization, the microwave antenna is inserted into the lung tissue 
for 10 cm. The two-dimensional model is constructed as shown in Figure 2. 
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Figure 1. Geometric model of microwave antenna 

 

 
Figure 2. Two-Dimensional Simulated Geometric Model 

 
Table 1. Dimensions of microwave antenna[6] 

Materials Dimensions (mm) 
Inner conductor 0.135 (radial) 

Dielectric 0.335 (radial) 
Outer conductor 0.460 (radial) 

Catheter 0.895 (radial) 
Slot 1.000 (wide) 

 
2.2 Bio-heat equation 
The Pennes bio-heat equation (Eq. (1)) governs heating transfer during the thermal ablation 
[7].The equation is as follows: 
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 ρc 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∇ · (𝑘𝑘∇𝑇𝑇) + 𝜔𝜔𝑏𝑏𝐶𝐶𝑏𝑏(𝑇𝑇𝑏𝑏 − 𝑇𝑇) + 𝑞𝑞𝑚𝑚 + 𝑞𝑞𝑟𝑟 (1) 

In the formula, 𝑇𝑇(℃)、ρ(kg/m3)、𝐶𝐶(J/kg·℃) and 𝑘𝑘( W/m·℃) are the temperature, density, 
specific heat and heat conductivity of tissues, 𝜔𝜔𝑏𝑏 is the blood perfusion rate(kg/m3∙s), 𝐶𝐶𝑏𝑏 
and 𝑇𝑇𝑏𝑏 are the blood specific heat and blood temperature, 𝑞𝑞𝑚𝑚 is the heat production rate of 
tissue metabolism, and 𝑞𝑞𝑟𝑟 is the external heat source. 
 
In the porous media lung model, the flow field is calculated by using Brinkman flow equation 
coupled with temperature field and electromagnetic field. 

3. Results and Discussion  

The temperature distribution and the data analysis of the ablation area at different ablation 
power (30W, 40W, 50W) were studied. The calculation time was 360 s. The temperature 
boundary was 60 ℃. The ablation area parallel to microwave antenna was longitudinal and 
the ablation area perpendicular to the microwave antenna was transverse. The experimental 
data and temperature distribution at different ablation power are shown in Table 2. 
 

Table 2. Experimental data 

Input powers 

30W 40W 50W 
Biologica

l tissue 
model 

Porous 
medium 
model 

Biological 
tissue 
model 

Porous 
medium 
model 

Biological 
tissue 
model 

Porous 
medium 
model 

Transverse 
diameter /mm 40.5 25.9 46.9 31.0 51.9 35.1 

Longitudinal 
diameter /mm 56.3 44.8 62.1 50.5 66.7 54.4 

Highest 
temperature/ ℃ 183.2 121 231.9 149 280.7 176 

 
As can be seen from Table 2, with the increase of ablation power, the range of ablation 
temperature field increases gradually, the maximum temperature rises continuously, and the 
ablation areas are ellipsoidal. When the power was 30W, 40W and 50W, the ablation area of 
porous media lung models were 25.9mm, 31.0mm and 35.1mm in transverse diameter, 
44.8mm, 50.5mm and 54.4mm in longitudinal diameter, and the maximum temperature were 
121℃, 149℃, 176℃, respectively. The ablation area of traditional biological lung models 
were 40.5mm, 46.9mm and 51.9mm in transverse diameter, 56.3mm, 62.1mm and 66.7mm in 
longitudinal diameter, and the maximum temperature were 183 ℃ , 232 ℃ , 280 ℃ , 
respectively. Compared with the biological tissue model, the porous media model is 29% 
smaller in ablation area and 36% smaller in maximum temperature. As shown in Figure 3, 
although the bio-tissue model is higher than the porous media model in terms of ablation 
zone range and maximum temperature field, the growth trend of ablation zone length with 
power of the two models is highly consistent. But comparing the two simulation results with 
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the experimental results in vitro, the results obtained by the porous media model are closer to 
the ablation data in vitro [8]. 

  
(a)Transverse diameter         (b) Longitudinal diameter 

Figure 3. Changes in the length of the lung tissue with power 
 

4. Conclusions  

In the traditional biological tissue model, lung ablation does not consider the influence of air, 
so its ablation area is often large. The porous media model is more suitable for lung tissue 
with sufficient air. The method combines the electromagnetic field emitted by microwave, the 
flow field of air in lung tissue and the heat transfer field of porous media. It can accurately 
simulate the real-time distribution of temperature field in lung tissue under microwave 
irradiation, which plays an important role in real-time monitoring of temperature field in the 
process of microwave ablation of lung tissue. 

Acknowledgement 

This work was supported by the National Natural Science Foundation of China (31771021) 
and Jiangsu Science and Technology Project (BE2017758).  
 
References 
[1] F Bray, J Ferlay, I Soerjomataram, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence 

and mortality worldwide for 36 cancers in 185 countries.[J]. Ca Cancer J Clin, 2018, 68, 394–424. 
[2] Carrafiello G , Mangini M , Bernardi I D , et al. Microwave ablation therapy for treating primary and 

secondary lung tumours: technical note[J]. La Radiologia Medica, 2010, 115(6):962-974. 
[3] Ahmed M, Solbiati L, Brace CL, et al. Image-guided tumor ablation: standardization of terminology and 

reporting criteria-a 10-year update[J]. Radiology, 2014, 273(1): 241-260. 
[4] Brace C L . Microwave Tissue Ablation: Biophysics, Technology, and Applications[J]. Critical Reviews in 

Biomedical Engineering, 2010, 38(1):65-78. 
[5] Huang W, Ma X S, Liu Y E. Application of Microwave Ablation for Lung Cancer [J]. Chinese Journal of 

Clinical Thoracic and Cardiovascular Surgery, 2015(3):265-268. 
[6] Rattanadecho P , Keangin P . Numerical study of heat transfer and blood flow in two-layered porous liver 

tissue during microwave ablation process using single and double slot antenna[J]. International Journal of 
Heat and Mass Transfer, 2013, 58(1-2):457-470. 

[7] Pennes H H . Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948.[J]. 
Journal of Applied Physiology, 1998, 85(1):5-34. 

[8] Luo G C. Experimental study on 2450Mhz microwave ablation for poreine lung in vitro [D]. Taishan Medical 
University, 2014. 

ICCM2019, 9th-13th July 2019, Singapore

535



 

Approximate calculation of certain type of statically indeterminate truss 

 

*Janusz Rębielak1 

Faculty of Architecture, Cracow University of Technology, Poland. 

 

*Presenting author: j.rebielak@wp.pl  

 

Abstract  

The paper presents examples of approximate calculations of force values in members of a 
certain type of truss, which is at the same time an internal and external statically indeterminate 
system. Static calculations are carried out for two selected forms of trusses by the application 
of the two-stage method of computations of such structural systems. The two-stage method, 
due to the application of the principle of superposition, makes possible the calculation of such 
complex trusses by the means of e.g. the Cremona’s method. In this two-stage method the static 
calculations are done in two stages. In each stage a statically determinate truss system is 
considered, a pattern of which is defined by removing from the basic truss a suitable number of 
members. The number equals the degree of statically indeterminacy of the basic truss. In the 
paper are presented results of calculations of statically indeterminate trusses carried out by the 
two-stage method, which moreover are the external statically indeterminate systems. There are 
also presented results of calculations of the same trusses done by means of a suitable computer 
software together with the comparison of outcomes obtained in two different methods.  

Keywords: Statically indeterminate system, Superposition principle, Calculus of vectors, 

Cremona’s method, Approximate solution.  

Introduction 

The values of forces in members of the statically indeterminate trusses have to be determined 
by a suitable computational method, which among others takes into consideration the stiffness 
differences between members connected to the truss nodes. For this purposes are applied such 
methods like for instance, the force method, the displacement method, the iteration methods 
like the method of successive approximations, and the finite elements method, etc. [1]-[8]. 
Mathematic concepts of these methods are adapted in modern types of various computer 
software [9][10]. The two-stage method has been invented during initial static analysis of a 
certain type of a tension-strut structure [11]-[13]. If the basic structure is overloaded then a 
certain number of members are excluded form process of the force transmission. Number of 
these members is equal to the statically indeterminacy of the basic truss system. The point of 
the two-stage method is to carry out static calculations in two independent stages for statically 
determinate trusses, shapes of which are determined by removing from area of the basic truss 
the number of members equal to its statically indeterminacy. In each stage it is considered an 
appropriate statically determinate truss, therefore values of forces in its members can be 
calculated by means of e.g. the Cremona’s method. In the both stages are considered suitable 
trusses having the same clear span and construction depth like the basic truss, but they are 
appropriately loaded by forces having half values in comparison to values of forces applied to 
the basic truss. Final values of forces acting in all members of the basic truss are resultants of 
the force values determined in each stage for the suitable member. The calculation procedure 
of the two-stage method is justified by rules of calculus of vectors and principle of 
superposition. It is one of the approximate methods of calculation of the statically indeterminate 
systems [14]. 

Definition of research problem 

The correctness of the basic theoretic assumption of the two-stage method has been verified  by 
calculating the internal statically indeterminate trusses supported on two supports, while the 
one is the pivot bearing and the second one is the pivot sliding bearing. It implies that there are 
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only three unknown bearing reactions. Two forms of trusses were computed in order to prove 
feasibility study that the two-stage method can be useful for calculations of the internal 
statically indeterminate trusses being at the same time the external statically indeterminate 
trusses. The first one is the vertically positioned truss loaded by the means of horizontally 
applied forces and supported by two pivot bearings. The second one is the horizontally located 
truss loaded by the means of vertically and optionally applied forces, and which is supported 
by two pivot bearings. All the calculations are carried out for the same geometric, structural 
and load conditions. Results obtained in this way are compared with outcomes gained by the 
application of suitable computer software for calculation of the force values in a truss having 
the same geometric, structural and load conditions.   

First subject of static calculation and analysis 

The assumed form of the basic truss is built by the usage of three square strut modules located 
vertically on each other, see Fig. 1. The truss is supported by two pivot bearings A and B and 
it is loaded by three concentrated forces F horizontally applied to nodes of its left vertical chord. 
All calculations have been made for the single load forces F, each of value equal to 1.00 kN, 
applied to nodes of a basic truss. It was assumed that the construction depth of the truss tower 
“H” equals 1.00 meter, while its height “L” is equal to 3.0 meters. The number of nodes was 
assumed to denote by symbol “w”, while symbol “p” to define number of the members. The 
condition for the internal statically determinacy of the plane truss is determined by the following 
equation: 
 
                                                           p = 2 ∙ w – 3                                                                (1) 

 
The considered basic truss system is built by number of nodes w = 11, what implies that the 
statically determinate truss created by the means of this number of nodes has to be constructed 
by the following number of members: 
 
                                                            19 = 2 ∙11 – 3                                                               (2) 
 
The basic truss system is built by the number of members p = 22, what implies that the 
calculated structure is the threefold statically indeterminate system. It implies further that in 
order to create an appropriate statically determined system it is necessary to exclude 3 members 
from area of the basic truss. 
 

 

Figure 1.  The concept of the two-stage method applied for calculation of a vertically 

positioned statically indeterminate truss 
 
According to the rules of the two-stage method in its first stage one should remove three 
members, for instance from the left vertical chord of the basic truss, and then to apply load 
forces of half values (F/2) to suitable nodes of this chord. In the second stage it is necessary to 
remove three members from the right vertical cord and, like previously, to apply load forces of 
half values (F/2) having the same senses, like in the basic truss, to corresponding nodes of the 
left vertical chord. Because the basic truss is supported by two pivot bearings A and B, therefore 
it is also the external statically indeterminate system. That is why similar operations have to be 
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undertaken regarding the changes of statuses of the supports. In the first stage it is proposed to 
keep support A as the pivot bearing and consider support B as the pivot sliding bearing, see Fig. 
2. In the second stage support A is considered as the pivot sliding bearing, while support B 
remains the pivot bearing, see Fig. 3. Values of forces acting in members of the basic truss are 
resultants of forces calculated in corresponding members at each stage. The concept of the two-
stage method is compatible with the rules of calculus of vectors, principle of superposition and 
respects the three fundamental conditions of equilibrium presented below:  
 

                                                           ∑ 𝐹𝑛
𝑖=1 ix = 0                                                                    (3) 

                                                            

                                                           ∑ 𝐹𝑛
𝑖=1 iy = 0                                                                    (4) 

 

                                                           ∑ 𝑀𝑛
𝑖=1 i = 0                                                                    (5) 

 
The results of the calculations of the basic truss, having a tower configuration, see Fig. 1, 
obtained in each stage of the two-stage method by application of the Cremona’s method, are 
presented respectively in Fig. 2 and in Fig. 3. Final values of the forces, defined in this method, 
in all members of the basic truss are shown in Fig. 4a. 
 

 

Figure 2. The values of the forces determined in the first stage of calculations for the 

truss of a tower configuration with suitable Cremona’s polygon of forces 
 
 

 

Figure 3. The values of the forces determined in the second stage of calculations for the 

truss of a tower configuration with suitable Cremona’s polygon of forces 
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The same vertical, tower configuration of the basic truss has been subjected to the static 
calculation carried out by the application of the Autodesk Robot Structural Analysis 
Professional 2019. The computer software is considered to be the very precise tool for 
calculation of the force values acting in members of the statically indeterminate systems. Static 
calculations were made by the assumption that the truss consists of the steel tubular members 
having diameter of 30.00 mm, the thickness of the section equals to 4.00 mm and the steel 
material has the Young’s modulus equal to 210 GPa. The results of the computer calculations 
of the same truss system are presented in Fig. 4b. 
 

 
Figure 4. Comparison of the values of forces in members for the tower truss 

configuration calculated, a) in the two-stage method, b) by the means of computer 
software 

 
In the two-stage method the final values of forces acting in particular members are calculated 
according to the rules of the calculus of forces and to principle of superposition. For instance 
the final value of a compressive force in the cross brace located between node 3 and node 6 is 
equal to -1.41 kN, see Fig. 4a. It is a resultant of the tensile force +0.707 kN determined in the 
first stage in corresponding member located between nodes of the same numbers, see Fig. 2, 
and the compressive force -2.121 kN determined in the second stage, see Fig. 3. In similar way 
the final force is defined in e.g. vertical member placed between node 3 and node 2. In the first 
stage of calculation this member has been rejected from the basic truss, see Fig. 2, therefore it 
is assumed, that in this case the appropriate force value equals 0.000 kN. In the second stage 
the value of tensile force defined in corresponding member is equal to +2.000 kN, see Fig. 3. 
Therefore the final force value in member located between nodes 2 and 3 equals +2.000 kN, 
see Fig. 4a.  
 
From the comparison of the force values gained in both methods for the same truss members 
follows that in general the results are congruent to each other. For instance value of a 
compressive force determined in the member placed between node 3 and node 9 by application 
of the two-stage method is equal to -0.50 kN. The force value defined in the same member by 
application of the computer software mentioned above equals -0.23 kN. The relative difference 
equals up to 54% of the bigger value. One can notice a smaller differentiation between values 
of forces calculated in two different methods for the same member e.g. in vertical member 
placed between node 2 and node 1. The value of the tensile force calculated for this member in 
the two-stage method equals +4.50 kN, while by applying of the computer software it is equal 
to +4.55 kN. In this case the relative difference is equal to only ca. 1% of the bigger value. It is 
worthy to notice that values of all types of the suitable bearing reactions determined in both 
compared methods are the same or they are of very approximated values. 

Second subject of static calculation and analysis 

The scheme of the basic truss presented in Fig. 5 has been selected as an object of further 
comparative investigation in order to estimate the usefulness of the two-stage method for 
calculation of all types of the planar internal and external statically indeterminate systems. The 
basic truss is of similar structure like the previous one but it is located horizontally and 
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supported by two supports, both being the pivot bearings. That is why four unknown bearing 
reactions have to be considered in these supports. It implies that the basic truss, like the previous 
one, is the threefold internal indeterminate system and once-fold external indeterminate system. 
Moreover the truss is loaded by the forces, which may be applied at any directions, what is 
represented by the direction of force F1. This force is inclined at an angle of 45 degrees towards 
the horizontal line. According to the rules of the two-stage method presented above, in its first 
stage it is calculated truss, which form is obtained by removing three members of e.g. the bottom 
chord from the pattern of the basic truss. The shape of truss considered in the second stage is a 
result of the cancelation of three members of the top chord from the basic truss. In both stages 
the calculated truss is loaded by forces of the half values applied in appropriate way to the 
suitable truss system. The results of calculations obtained in the first stage are shown in Fig. 6. 
The values of the forces defined in the second stage of calculations are presented in Fig. 7. The 
final values of forces calculated in the two-stage method are presented in Fig. 8a. The results 
obtained by the application of suitable computer software are shown in Fig. 8b. 

 
Figure 5. The concept of the two-stage method applied for the calculation of horizontally 

positioned statically indeterminate truss supported in two pivot bearings 

 
Figure 6. The values of the forces defined in the first stage of the calculations for 

horizontally positioned truss with suitable Cremona’s polygon of forces 
 

 
Figure 7. The values of the forces defined in the second stage of the calculations for 

horizontally positioned truss with suitable Cremona’s polygon of forces 
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Figure 8. Comparison of the values of the forces in the members of horizontally 

positioned truss calculated, a) in the two-stage method, b) by application of computer 
software 

 
One can notice significant differences of the values and even of senses of the force determined 
in the same members in two compared methods of calculations. For instance, by application of 
the two-stage method value of tensile force in a member located between nodes 3 and 6 equals 
+0.10 kN, while by applying of the computer software it was defined as a compressive force of 
value equal to -0.15 kN. Much smaller difference is noticed between compressive force value 
defined in a member placed between nodes 3 and 2 by the help of the two-stage method, which 
equals -1.18 kN, while the outcome of computer software defines it as a compressive force 
having value of -1.03 kN. One can observe the substantial differentiations in values of forces 
calculated by the application of compared methods in numerous members of the truss. For 
example, in the cross brace placed between nodes 2 and 5 in the two-stage method it is 
calculated as a tensile force of value equal +0.30 kN, while in the same member a force 
calculated by means of computer software is defined as the compression force of the value equal 
to -0.54 kN. The values and senses of the vertical components of the bearing reactions 
calculated in both methods are equal. To the most significant differences one has to count the 
differentiation of values and senses of the horizontal components of the bearing reactions. These 
reactions, defined in the two-stage method, are of equal values and both have same senses, see 
Fig. 8a, what is directly determined by the basic principles of this method. Because the 
investigated truss is also the once-fold external indeterminate system, therefore the real 
horizontal components of the bearing reactions are of the values and senses presented in Fig. 
8b. It implies that the horizontal components of these reactions have to be calculated in another 
way by application of the two-stage method.  

The calculation of the horizontal components of reaction in two stages 

General schemes of a computation procedure proposed for the calculation of approximate force 
values of this type of the bearing reactions in the basic truss system are presented in Fig. 9.  
 

 
Figure 9. Schemes of the computation procedure of calculation of horizontal components 

of bearing reactions in two stages 
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Taking into account general static principles of the two-stage method it was assumed, that the 
basic truss, see Fig. 9a, can be considered as suitable composition of two respectively supported 
cantilever trusses having the same internal structure and loaded in the same way like the basic 
truss. In the first step the truss is considered as cantilever system supported in nodes A and D, 
see Fig. 9b. Because corner node D in the basic truss is not the support node therefore in the 
first step it is treated as the sliding pivot bearing, in which only horizontal component of reaction 
Hd1 can exist. In this case the value of the horizontal reaction is computed in the following way:  

 
                                                                    ∑ MA = 0                                                               (6) 

 

                                       
F1x

2
 ∙ 1.00𝑚 +  

F1y

2
∙ 1.00𝑚 +

F2

2
∙ 2.00𝑚 – Hd1  ∙ 1.00𝑚 = 0                        (7) 

 

                 
√2

4
 𝑘𝑁 ∙ 1.00𝑚 + 

√2

4
 𝑘𝑁 ∙ 1.00𝑚 + 0.5 𝑘𝑁 ∙ 2.00𝑚 – Hd1  ∙ 1.00𝑚 = 0               (8) 

 

                                                             Hd1 ≈ 1.7071067 𝑘𝑁                                                   (9) 

 
In the second step of the proposed procedure the truss is also considered as the cantilever 
system, but this time supported in nodes B and C, see Fig. 9c. Because node C in the basic truss 
is also not the support node, therefore in this stage, like previously, it is considered as being 
supported in pivot sliding bearing where only horizontal component of reaction Hc2 can exist. 
Its value will be defined in the way presented below:  
 
                                                                  ∑ MB = 0                                                               (10) 

 

                      − 
F1y

2
 ∙ 2.00𝑚 + 

F1x

2
∙ 1.00𝑚 −

F2

2
∙ 1.00𝑚 + Hc2  ∙ 1.00𝑚 = 0                     (11) 

 

           − 
√2

4
 𝑘𝑁 ∙ 2.00𝑚 +  

√2

4
 𝑘𝑁 ∙ 1.00𝑚 + 0.5 𝑘𝑁 ∙ 1.00𝑚 + Hc2  ∙ 100𝑚 = 0               (12) 

 
                                                             Hc2 ≈ 0.8535533 𝑘𝑁                                                   (13) 
 
The values of horizontal components of the bearing reactions Ha1 and Hb2, determined in this 
calculation in support A and B, have to be omitted, what is justified by the first condition of 
equilibrium (3). Value of the force Hd1 is bigger than the force value Hc2. Difference of values 
of these two is called Fm and its value equals: 
 
                             Fm = Hd1 − Hc2 = 1.7071067 𝑘𝑁 − 0.8535533 𝑘𝑁                                (14) 
 
                                                             Fm = 0.8535534 𝑘𝑁                                                  (15) 
 
Members located between nodes D and C in the top chord of the basic truss are subjected to act 
of compressive forces, compare Fig. 8. Therefore force Fd1, see Fig. 9d, has to have the same 
value like the force Hd1 but its sense must be inversed and it is applied to the corner node D. 
Similar operation one should make in corner node C. Horizontal force Fc2 is applied to this 
node, its value is equal to value of force Hc2, but its sense is oppositely directed. Force Fm has 
to be appropriately applied to the top chord in order to keep the force balance in this chord. 
From the first condition of equilibrium (3) follows, that in the first stage force Fm has to be 
applied to node C, having the same sense like force Fc2, see Fig. 9d. The condition of 
equilibrium of the whole considered structure justifies suitable application of two oppositely 
directed horizontal forces Fm to the two bearing nodes A and B. From the basis of the same 
condition it follows that horizontal components of the bearing reactions HFa and HFb are of the 
same values, as well as their senses, like it is shown in Fig. 9d. When the horizontal component 
of the load force F1 = √2/2 kN ≈ 0.7071067 kN then the absolute values of the bearing reactions 
HFa and HFb are equal to 0.3535533 kN. Final values of horizontal components of bearing 
reactions acting in these supports, see Fig. 9f, will be the resultants of horizontal reactions 
calculated in the first stage, see Fig. 9d, and calculated in the second stage, see Fig. 9e. 
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                         Ha = Fm –  HFa = 0.8535534 𝑘𝑁 –  0.3535533 𝑘𝑁 ≈ 0.50 𝑘𝑁                     (16) 
  
                         Hb = Fm + HFb = 0.8535534 𝑘𝑁 + 0.3535533 𝑘𝑁 ≈ 1.21 𝑘𝑁                    (17) 
 
The values of horizontal components of bearing reactions computed in this way are almost of 
the same values as if they were calculated by the application of the computer software, compare 
Fig. 8b, for the same type of the internal and external statically indeterminate truss. The 
procedure presented above applies the rules of calculus of forces as well as the principle of 
superposition. That is why it can be considered as an integral part of the two-stage method of 
calculation of statically indeterminate trusses.  

Another  way of calculation of the same basic statically indeterminate truss 

Application of the two-stage method in a direct way gives in result not exact values and senses 
of horizontal bearing reactions, compare Fig. 8a. In order to recognize features of the two-stage 
method it has been applied for calculation of the same basic truss, see Fig. 9a, for values of 
horizontal bearing reactions determined in two stages described above. Intermediate results are 
presented in Fig. 10 and in Fig. 11. Final force values are shown in Fig. 12.  
 
 

 
 

Figure 10. Force values computed in the first stage of calculations for values of bearing 

reactions of basic truss estimated in two stages together with Cremona’s polygon of 

forces 

 

 
 

Figure 11. Force values defined in the second stage of calculations for values of bearing 

reactions of basic truss estimated in two stages together with Cremona’s polygon of 

forces 
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Figure 12. Values of forces determined in members of the basic truss as a result of 

alternative static calculations 
 
Values of forces calculated in members of the investigated basic truss by application of the 
Autodesk Robot Structural Analysis Professional 2019 are considered as the exact results. In 
comparison with them the force values determined in the two-stage method for the same 
members by taking into account the approximate values of the real horizontal components of 
the bearing reaction, while Ha = 0.50 kN and Hb = 1.21 kN and being almost equal to the exact 
values, are considerably different. The degree of differentiation is even bigger than in the results 
of calculations carried out by the direct application of the simple rules of the two-stage method. 
For instance compressive force value computed by means of the computer software in the 
member located between nodes 2 and 3 equals -1.03 kN, see Fig. 8b. In the same member due 
to the application of the simple kind of two-stage method, value of compressive force is defined 
as equal to -1.18 kN, see Fig 8a, while due application of the two-stage method with taking into 
account real values of horizontal components of bearing reactions, the calculated value of 
compressive force equals -0.60 kN, see Fig. 12. Similar remarks refer also regarding various 
senses of the vector forces calculated in both compared kinds of the two-stage method. From 
comparative analysis of the presented results calculated for the horizontal positioned trusses 
loaded by forces applied at optional directions to the truss nodes follows, that somewhat better 
approximate force values to the exact values of forces acting in members of the truss, one can 
obtain by application of the simple kind of the two-stage method, see Fig. 8a. Values of the 
horizontal components of the bearing reactions should then be calculated separately in the way 
described above, the procedure of which is presented in schemes shown in Fig. 9. 

Conclusions 

The two-stage method is an approximate method of calculation of the statically indeterminate 
trusses because in both stages it applies the rules, which are appropriate for the calculation 
procedures of the statically determinate trusses. The degree of approximation of the obtained 
force values to the values of forces defined by means of the exact methods in general is good 
enough when the two-stage method is applied for calculation of the inner indeterminate trusses.  
One can notice significantly differences between the exact and appropriate force values 
calculated for members, where are acting the smallest forces, especially having absolute values 
close to zero. However one should be aware that members subjected to the act of such forces 
are designed mostly according to instructions of the building codes. In these cases the cross-
sectional areas of such members are much larger than they are determined directly on basis of 
the results of static calculations. The accuracy of the force values calculated by application of 
the two-stage method can be significantly improved by taking into account the differences 
between the stiffness of members connected in the truss nodes. It can be made by defining a set 
of appropriate coefficients defining differences of members connected to each particular node. 
When the two-stage method is applied for calculation of the external and internal statically 
indeterminate truss and if directions of the applied load forces are parallel to the line determined 
by positions of two pivot bearings, then the approximate force values are almost in exact 
accordance with outcomes gained by usage of suitable computer software. If this method is 
used in the computation processes of such trusses loaded by forces applied at optional directions 
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then one can notice quite big differences between the force values defined in this way and the 
values of forces calculated by application of an exact computer method. Various possible 
applications of the two-stage method for calculations of different types of statically 
indeterminate trusses are planned to be subjects of further research in order to estimate more 
closely the features and the practical usefulness of this method for static computations. 

References 

[1] Timoshenko, S.P. (1966) History of strength of materials, Arkady, Warszawa, - in Polish. 
[2] Allen E., Zalewski W. and Boston Structures Group (2010) Form and forces. Designing efficient, expressive 

structures, John Wiley & Sons, Hoboken, New Jersey.   
[3] Kolendowicz, T. (1993) Theory of structures for architects, Arkady, Warszawa, - in Polish. 
[4] Hibbeler, R.C. (1995) Structural analysis, Prentice Hall. 
[5] Niezgodziński, M.E. and Niezgodziński, T. (1979) Strength of materials, State Scientific Publishing House, 

Warszawa, - in Polish. 
[6] Przewłócki, J. and Górski, J. (2006) Basis of theory of structures, Arkady, Warszawa, - in Polish. 
[7] Dyląg, Z. and Krzemińska-Niemiec, E. and Filip, F. (1989) Theory of structures, State Scientific Publishing 

House, Warszawa, - in Polish. 
[8] Cywiński, Z. (1976) Theory of structures in problems. Vol. II. The rudiments of statically indeterminate 

systems, State Scientific Publishing House, Warszawa - Poznań - in Polish. 
[9] Makowski,  Z.S. (1981) Analysis, design and construction of double-layer grids, Applied Science Publishers, 

London. 
[10] Zienkiewicz, O.C. and Taylor R.L. (2000) The finite element method,  Oxford Press, UK. 
[11] Rębielak, J. (2014) A two-stage method for an approximate calculation of statically indeterminate trusses, 

Journal of Civil Engineering and Architecture, 78, 567-572.  
[12] Rębielak, J. (2018) Simple method of approximate calculation of statically indeterminate trusses, 

International Journal of Computational Methods, Vol. 15, Issue 1, DOI: 10.1142/S0219876218400261.    
[13] Rębielak, J. (2018) Examples of applications of two-stage method in calculations of statically indeterminate 

trusses, International Journal of Computational Methods, Vol. 15, No. 5, DOI: 10.1142/S0219876218440097.  
[14] Tan, Z-Q., Jiang, X-D., He, Y-S., Ban, S-H., Xu, R. and Xi R-Q. (2018) Generalized variational principles for 

solutions of statically indeterminate trusses under mechanical-thermal-assembly loadings, Journal of 
Engineering Mechanics, Volume 144, Issue 1, 04017145:1-5. 

ICCM2019, 9th-13th July 2019, Singapore

545



Application of PDS-FEM to the Simulation of Dynamic Crack Propagation 

and Supershear Rupture 
†Lionel Quaranta1,2, Lalith Wijerathne1,2, Tomoo Okinaka3 and Muneo Hori1,2 

1Department of Civil Engineering, University of Tokyo, Japan 
2Earthquake Research Institute, Japan 

3Department of Civil and Environmental Engineering, Kindai University, Japan 

†Corresponding author: lionel@eri.u-tokyo.ac.jp 

Abstract 

Classical dynamic crack propagation problems are simulated with PDS-FEM, which uses a 

simple and effective particle-based approach for failure, without the need of a complex 

treatment of the crack. Two Hamiltonian based formulations are proposed for accurate time 

integration: the traditional displacement-momentum form and the strain-momentum form, for 

which consistent momentum conserving and symplectic time integration schemes are derived. 

Numerical results are verified and validated by comparing with high speed photoelastic 

observations of a dynamic mode-I crack captured with a 1Mfps camera. Our results show that 

both methods are successful in reproducing the crack patterns observed experimentally for 

standard 2D and 3D problems, as well as the variation of the stress distribution around the crack 

tip during the propagation. The two methods appear numerically indifferentiable although the 

displacement-based method offers a significantly better computational performance. 

We also show that our approach can be applied to the simulation of super-shear rupture in 

earthquakes. The fault is represented by a crack under mode II loading, and the frictional contact 

follows a classical slip-weakening law. We could successfully reproduce both the intersonic 

and sub Rayleigh regimes, in good agreement with the expected rupture velocity ranges for 

different seismic factors. 

Keywords: Brittle failure, dynamic crack propagation, Hamiltonian, PDS-FEM, supershear 

 

Introduction 

Predicting the potential impact of extreme events, such as near field supershear earthquakes, on 

critical infrastructures is a challenging task. It involves shock waves and large-scale dynamic 

crack propagation simulations, which are computationally demanding, especially in three 

dimensions. Such simulations require a high degree of accuracy to reproduce a crack path and 

a crack tip speed consistent with what is observed experimentally, since both are extremely 

sensitive to the variations of the stress distribution in the material.  

An accurate and relatively light numerical method is required to conduct large scale crack 

propagation simulations, like supershear rupture earthquakes. Adapted advanced discretized 

methods such as XFEM with level-set [1]-[3] or discontinuous Galerkin methods [4] have been 

widely used and refined in recent years, leading to a more accurate representation of crack 

nucleation and propagation. However, most of them involve high numerical overheads, 

especially in 3D problems, making those difficult to be adapted to large scale simulations. Most 

3D studies focus their efforts on the accurate reproduction of the crack path, where the crack is 

often defined by either cohesive elements/interactions or level-set functions. Recently, 

Seagraves et al. [5] simulated the dynamic crack propagation caused by the impact on brittle 

plates, where the crack evolution as a function of time is showed to be quite consistent with the 

experiment. Bede et al. [6] conducted a similar simulation for a notched beam fracture modes. 

We propose an alternative approach based on PDS-FEM [7]-[10], which uses a simple and 

effective particle-based approach for failure, without the need of a complex treatment of the 

crack. Two Hamiltonian based formulations were proposed [11] for accurate time integration: 
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the traditional displacement-momentum form and the rather new strain-momentum form, for 

which numerical accuracy and computational efficiency were not yet estimated. In this study 

the two methods are implemented and compared, both in terms of the accuracy in dynamic 

crack propagation applications and computational performance. 

We also demonstrate that our method can be applied to the simulation of supershear earthquake 

scenarios. The existence of supershear rupture was first theoretically predicted by Burridge et 

al.[12], and although this result could be subsequently reproduced numerically, in particular by 

Andrews[13] and Das and Aki[14], actual observations are relatively recent. Rosakis et 

al.[15,16] experimentally reproduced a supershear rupture of Homalite-100 plates, and 

visualized the characteristic shock wave pattern (Mach cone) with photoelastic fringes. 

Although rare, several occurrences of supershear fault rupture in earthquakes have been 

identified, including the 1979 Imperial Valley[17], the 1999 Izmit and Duzce[18], 2001 

Kunlun[19], 2002 Denali[20], and more recently the 2018 Palu Earthquake[21]. Understanding 

the conditions leading to supershear rupture, and the influence on ground motion close and far 

from the fault, is of particular importance as it will allow the evaluation of the impact on 

infrastructures, which may be significantly different from that of conventional earthquakes. 

Section 1 presents the analytical expressions of the two Hamiltonian formulations; 

displacement-momentum and strain-momentum forms. Section 2 reintroduces the PDS-FEM 

formalism and derives the corresponding discretized Hamiltonian system for the two methods, 

and section 3 describes the time integration schemes. Section 4 presents the verification of the 

two methods with known solutions for a 1D and a 3D problem. Section 5 describes the 

validation of our method by comparison with photoelastic fringe patterns of a propagating crack, 

captured with a 1Mfps camera. Section 6 compares the two Hamiltonian formulations in term 

of numerical accuracy and computational efficiency. Section 7 presents some preliminary 

results of supershear rupture simulations using the above methods.  

 

1. Two Hamiltonian formulations of elastic wave propagation 

Lagrangian based formulations are often used in continuum mechanics to solve dynamic 

problems with FEM based numerical methods. Classically, the Lagrangian is written: 

𝐿(𝒗, 𝒖) = ∫ 𝑙(𝒗, 𝒖)𝑑𝑉

𝑉

= ∫
1

2
𝑉

𝜌𝒗2𝑑𝑉 − ∫
1

2
𝑉

𝛁𝒖:𝑪: 𝛁𝒖 𝑑𝑉 

According to the Hamilton's principle, the Euler-Lagrange equation can be derived as: 

𝜕𝑙̇

𝜕𝒗
=
𝜕𝑙

𝜕𝒖
 

By using a Legendre's transform: 

𝑙(𝒗, 𝒖) = 𝒑. 𝒗 − ℎ(𝒑, 𝒖) 

an alternative formulation using the Hamiltonian operator can be used based on the pair of 

variables momentum 𝒑 and displacement 𝒖, leading to the dynamic system: 

 

{
 

 𝒑̇ = −
𝜕ℎ

𝜕𝒖

𝒖̇ =
𝜕ℎ

𝜕𝒑

 

 

( 1 ) 

 

where ℎ is the Hamiltonian density. 
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An alternative is to use the strain 𝝐 as a variable instead of the displacement. By doing so, the 

variable of interest for most mechanical problems, especially when fracture is involved, is 

directly computed through the formulation. This analytically equivalent system, when used for 

numerical computation, would reduce the number of floating point operations to obtain the 

strain/stress distribution, potentially leading to an improved accuracy. Considering the 

Lagrangian: 

𝐿(𝒗, 𝝐) = ∫ 𝑙(𝒗, 𝝐)𝑑𝑉

𝑉

= ∫
1

2
𝑉

𝜌𝒗2𝑑𝑉 − ∫
1

2
𝑉

𝛜: 𝑪: 𝛜 𝑑𝑉, 

we can obtain the equivalent strain based Euler-Lagrange equation: 

𝜕𝑙̇

𝜕𝒗
= −∇.

𝜕𝑙

𝜕𝝐
 , 

from which we can directly derive the Hamiltonian system (see [11] for more details of the 

derivation):  

 

{
 

 𝒑̇ = ∇.
𝜕ℎ

𝜕𝝐

𝝐̇ = 𝑠𝑦𝑚 {∇
𝜕ℎ

𝜕𝒑
}
 

 

( 2 ) 

 

The set of equations (1) and (2) are the strong forms of the (𝒑, 𝒖) and  (𝒑, 𝝐) based Hamiltonian 

formulations.  

To numerically solve the above two Hamiltonian systems, we derive a discretized system in 

space and time, which is detailed in the two next sections. 

 

2. Space discretization in PDS-FEM 

2.1 Model and consistency condition 

For the spatial discretization, we use a model of FEM based on Particle Discretization Scheme 

(PDS) as proposed in [7], due to its advantages in modeling cracks. PDS uses conjugate 

tessellations to approximate functions and their derivatives respectively. The Delaunay 

tessellation (indexed with 𝛽) is defined by a tetrahedron mesh, and the conjugate Voronoi 

tessellation (indexed with 𝛼), is constructed as indicated schematically in Fig. 1. In 2D, a 

Voronoi element or "particle" is essentially derived from joining the mass centers of the 

neighboring triangle elements. 

 

 

 

Figure 1: Conjugate tessellations in 2D 

(a) Delaunay tessellation (b) Voronoi tessellation 
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In the model formulation, non-overlapping functions are used to approximate the functions and 

their derivatives respectively: 

 

𝒇(𝒙) ≈ 𝒇𝒅(𝒙) = ∑∑𝒇𝜶𝒏𝑃𝛼𝑛(𝒙)

|𝑷𝜶|

𝒏=𝟎

𝑵𝜶

𝜶=𝟏

φα(𝒙) 

 

𝛁,𝒊𝒇(𝒙) ≈ 𝒈
𝒅(𝒙) = ∑ ∑ 𝒈𝒊

𝜷𝒎
𝑄𝛽𝑚(𝒙)

|𝑸𝜷|

𝒎=𝟎

𝑵𝜷

𝜷=𝟏

ψβ(𝒙), 

where φα  and ψβ  are respectively the characteristic functions of Voronoi and Delaunay 

elements. The displacement field is discretized on the Voronoi tessellation while the strain and 

stress distribution are discretized on the Delaunay tessellation. 

PDS obtains bounded and consistent approximations for derivatives, 𝒈𝑑, over the Delaunay 

tessellations by minimizing the following measure of error: 

min
𝑔𝛽𝑚

∫(𝒈𝐝 − ∇𝒇𝒅)2𝑑𝑉

Ψ𝛽

 

which leads to: 

𝒈𝛽𝑚 = 𝑩𝛽𝛼𝑚𝑛⊗𝒇𝛼𝑛 
With 

𝐵𝑖
𝛽𝛼𝑚𝑛

=∑(𝐼𝛽
−1
)
𝑚,𝑚′

∫
𝜕(𝑃𝛼𝑛𝜙𝛼)

𝜕𝑥𝑖
𝑄𝛽𝑚𝜓𝛽𝑑𝑉

𝑉𝑚′

 

𝐼𝛽𝑚𝑚
′
= ∫ 𝑄𝛽𝑚𝑄𝛽𝑚

′
𝑑𝑉

Ψ𝛽

 

 

The complete derivation of the vector 𝑩𝛽𝛼𝑚𝑛 is provided in [10]. Then, applying it to the strain-

displacement relationship, the consistency condition is written: 

 𝝐𝛽𝑚 = 𝑠𝑦𝑚{𝑩𝛽𝛼𝑚𝑛⊗𝒖𝛼𝑛} ( 3 ) 

For the ease of computer implementation, we use the Voigt notation and express the above in 

matrix notation as follows: 

 𝜖𝛽𝑚 = 𝐵̃𝛽𝛼𝑚𝑛. 𝑢𝛼𝑛 ( 4 ) 

 

2.2 Discretized Lagrangian and Hamiltonian forms 

In this model, a discretized Lagrangian can be written 𝐿(𝑣𝛼𝑛, 𝑢𝛼𝑛) or 𝐿(𝑣𝛼𝑛, 𝜖𝛽𝑚) depending 

on the formulation, and the corresponding Euler-Lagrange equations can be written as:  

 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑣𝛼𝑛
=

𝜕𝐿

𝜕𝑢𝛼𝑛
            and          

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑣𝛼𝑛
−∑ 𝐵̃𝑡 𝛽𝛼𝑚𝑛.

𝜕𝐿

𝜕𝜖𝛽𝑚
= 0

𝛽,𝑚

 ( 5 ) 

By applying the Legendre transform: 

𝐿(𝑣𝛼𝑛, 𝑢𝛼𝑛) = 𝑝𝛼𝑛. 𝑣𝛼𝑛 − 𝐻(𝑝𝛼𝑛, 𝑢𝛼𝑛)        or       𝐿(𝑣𝛼𝑛, 𝜖𝛽𝑚) = 𝑝𝛼𝑛. 𝑣𝛼𝑛 − 𝐻(𝑝𝛼𝑛, 𝜖𝛽𝑚) 
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with 

 𝑝𝛼𝑛 =
𝜕𝐿

𝜕𝑣𝛼𝑛
= 𝜌 ∑ 𝑣𝛼𝑛

′
𝐼𝛼𝑛𝑛

′

|𝑃𝛼|

𝑛′=0

,          𝐼𝛼𝑛𝑛
′
= ∫ 𝑃𝛼𝑛𝑃𝛼𝑛

′
𝑑𝑉

Φ𝛼

,  ( 6 ) 

we can obtain the following two equivalent Hamiltonian systems: 

 

{
 

  𝑝̇𝛼𝑛 = −
𝜕𝐻

𝜕𝑢𝛼𝑛

𝑢̇𝛼𝑛 =
𝜕𝐻

𝜕𝑝𝛼𝑛

 ( 7 ) 

 

{
  
 

  
 
𝑝̇𝛼𝑛 = −∑∑ 𝐵̃𝛽𝛼𝑚𝑛𝑡 .

𝜕𝐻

𝜕𝜖𝛽𝑚

|𝑄𝛽|

𝑚

𝑁𝛽

𝛽

𝜖̇𝛽𝑚 =∑∑𝐵̃𝛽𝛼𝑚𝑛.
𝜕𝐻

𝜕𝑝𝛼𝑛

|𝑃𝛼|

𝑛

𝑁𝛼

𝛼

 ( 8 ) 

The derivation for the strain formulation is detailed in Appendix A. 

 

2.3 Discretized Hamiltonian for continuum mechanics 

Using the classical form of the Lagrangian in continuum mechanics (excluding for now the 

boundary conditions whose treatment is detailed in appendix B) and applying the Legendre's 

transform, we can write explicitly the Hamiltonian as: 

𝐻(𝑝𝛼𝑛, 𝑢𝛼𝑛) = 𝑇(𝑝𝛼𝑛) + 𝑈(𝑢𝛼𝑛) 

Where, using Einstein’s summation convention: 

{
 

 𝑇(𝑝𝛼𝑛) =
1

2𝜌
𝑊𝛼𝑛𝑛′ 𝑝𝑡 𝛼𝑛. 𝑝𝛼𝑛

′

𝑈(𝑢𝛼𝑛) =
1

2
𝐼𝛽𝑚𝑚

′
𝑢𝛼𝑛.𝑡 𝐵̃

𝛽𝛼𝑚𝑛𝑡 . 𝑐𝛽 . 𝐵̃
𝛽𝛼′𝑚′𝑛′

. 𝑢𝛼
′𝑛′

 

with  

𝑊𝛼 = 𝐼𝛼−1 

Similarly, the Hamiltonian can be written in term of strain: 

𝐻(𝑝𝛼𝑛, 𝜖𝛽𝑚) = 𝑇(𝑝𝛼𝑛) + 𝑈(𝜖𝛽𝑚) 
where  

𝑈(𝜖𝛽𝑚) =
1

2
𝐼𝛽𝑚𝑚

′
𝜖𝑡
𝛽𝑚
. 𝑐
𝛽
. 𝜖
𝛽𝑚′

 

We can then replace the Hamiltonian derivatives in the Eq. 7 and 8 to obtain the Hamiltonian 

systems in displacement-momentum form as: 

 

{
  
 

  
 

 𝑝̇𝛼𝑛 = −∑∑𝐾𝛼𝑛𝛼
′𝑛′ . 𝑢𝛼

′𝑛′

|𝑃𝛼|

𝑛′

𝑁𝛼

𝛼′

𝑢̇𝛼𝑛 =
1

𝜌
∑𝑊𝛼𝑛𝑛′ . 𝑝𝛼𝑛

′

|𝑃𝛼|

𝑛′

, ( 9 ) 
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where 

𝐾𝛼𝑛𝛼
′𝑛′ =∑ ∑ 𝐼𝛽𝑚𝑚

′

|𝑄𝛽|

𝑚,𝑚′

𝐵̃
𝛽𝛼𝑚𝑛𝑡 . 𝑐𝛽 . 𝐵̃

𝛽𝛼′𝑚′𝑛′
𝑁𝛽

𝛽

, 

and in strain-momentum form as: 

 

{
  
 

  
 
𝑝̇𝛼𝑛 = −∑ ∑ 𝐼𝛽𝑚𝑚

′
𝐵̃𝛽𝛼𝑚𝑛𝑡 . 𝑐𝛽 . 𝜖𝛽𝑚

′

|𝑄𝛽|

𝑚,𝑚′

𝑁𝛽

𝛽

𝜖̇𝛽𝑚 =∑∑
1

𝜌
𝑊𝛼𝑛𝑛′𝐵̃𝛽𝛼𝑚𝑛. 𝑝𝛼𝑛

′

|𝑃𝛼|

𝑛,𝑛′

𝑁𝛼

𝛼

. ( 10 ) 

 

2.4 Crack treatment 

The above derived system of governing equations is valid for time invariant topologies, and 

some adaptations are necessary to simulate dynamic crack propagation. As shown in Fig. 1b, 

the displacement approximated with PDS is discontinuous at the Voronoi boundaries, 𝜕Φ𝛼. 

PDS uses these discontinuities to model a crack propagating along a Voronoi boundary by 

nullifying appropriate mechanical contributions. In the 3D case, each tetrahedral Delaunay 

element contains 6 Voronoi surfaces along which the cracks can appear (see Fig. 2). 

If the maximum principle stress is greater than a given value 𝜎𝑠, the surface whose normal n is 

closer to the principal stress direction 𝑑1 (corresponding to the surface with highest tensile 

stress) is broken, nullifying its contribution to the strain 𝜖𝛽 , by modifying the coefficient 

𝐵𝑖
𝛽𝛼𝑚𝑛

: 

∫
𝜕(𝑃𝛼𝑛𝜙𝛼)

𝜕𝑥𝑖
𝑄𝛽𝑚𝜓𝛽𝑑𝑉

𝑉

= ∫
𝜕𝑃𝛼𝑛

𝜕𝑥𝑖
𝑄𝛽𝑚𝑑𝑉

Ψ𝛽∩Φ𝛼

+ ∫ 𝑃𝛼𝑛𝑄𝛽𝑚𝑛𝑖 𝑑𝑉

Ψ𝛽∩𝜕Φ𝛼−𝑠

+∫ 𝑃𝛼𝑛𝑄𝛽𝑚𝑛𝑖  𝑑𝑉

𝑠⏟          
→0

 

The first right-hand term corresponds to the volume component of the gradient (null for rigid 

particles with constant displacement, unchanged by the crack). The second and third right-hand 

terms correspond to the surface component coming from the interaction between the particles, 

for the unbroken and broken surfaces respectively. The latter contribution is set to zero. 

Figure 2: Surfaces of interaction 
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For the sake of simplicity, the maximum principal stress criterion is used for the simulations 

presented in this paper. However, at the crack tip, larger elements have a lower average stress 

value and so are less prone to crack, making this criterion mesh dependent, although it doesn’t 

affect the crack path as long as the crack prone region is homogeneously refined. 

 

3. Time integration schemes 

Out of the large collection of algorithms for the time integration of Hamiltonian systems, we 

chose to use the Störmer-Verlet integration scheme, which is a second order variational 

integrator (see for instance [22] section VI for reference): 

{
 
 

 
 𝑝𝑛+1/2 = 𝑝𝑛 −

𝑑𝑡

2

𝜕𝐻

𝜕𝑢
(𝑝𝑛+1/2, 𝑢𝑛)

𝑢𝑛+1 = 𝑢𝑛 +
𝑑𝑡

2
(
𝜕𝐻

𝜕𝑝
(𝑝𝑛+1/2, 𝑢𝑛) +

𝜕𝐻

𝜕𝑝
(𝑝𝑛+1/2, 𝑢𝑛+1))

𝑝𝑛+1 = 𝑝𝑛+1/2 −
𝑑𝑡

2

𝜕𝐻

𝜕𝑢
(𝑝𝑛+1/2, 𝑢𝑛+1)

 

In particular, the symplectic property of the flow (𝑝, 𝑢) in time is ensured, which can be written: 

(
𝜕 (𝑝𝑛+1, 𝑢𝑛+1)

𝜕 (𝑝0, 𝑢0)
)
𝑇

𝐽 (
𝜕 (𝑝𝑛+1, 𝑢𝑛+1)

𝜕 (𝑝0, 𝑢0)
) = 𝐽 = (

0 𝐼
−𝐼 0

), 

where I is the identity matrix. 

For the strain formulation, such symplectic property cannot be defined directly as the strain 

(dimension 6) and the momentum (dimension 3) don't belong to the same vector spaces. 

However, it is possible to express the above symplectic property in term of the strain and 

momentum variables. Using Eq. 4, we can write: 

𝜕𝜖

𝜕𝑢′
= 𝐵̃             and             

𝜕𝑢′

𝜕𝜖
= 𝐵̃−1 , 

with 𝑢′  the displacement field excluding the Dirichlet boundary conditions and 𝐵̃ the 

corresponding reduced matrix built with the blocks 𝐵̃𝛽𝛼. 𝐵̃−1 is the left inverse of 𝐵̃ . If 𝜙 is 

the flow of the Hamiltonian system in (𝑝, 𝑢) and 𝜓 the flow of the Hamiltonian system in (𝑝, 𝜖), 
we can write 

𝜕𝜙

𝜕(𝑝0, 𝑢0)
= (

𝐼3𝑁𝛼 0

0 𝐵̃−1 
)

⏟        
𝐴−1

𝜕𝜓

𝜕(𝑝0, 𝜖0)
(
𝐼3𝑁𝛼 0

0 𝐵̃  
)

⏟      
𝐴

. 

Therefore, we can express the symplectic property from the flow 𝜓: 

(𝐴−1
𝜕𝜓

𝜕(𝑝0, 𝜖0)
𝐴) 𝐽 (𝐴−1

𝜕𝜓

𝜕(𝑝0, 𝜖0)
𝐴) = 𝐽 

Following this property, we can derive an algorithm equivalent to the classical Störmer-Vertlet 

scheme for (𝑝, 𝜖) (Einstein convention is used for the summation): 

{
 
 

 
 𝑝𝑛+1/2 = 𝑝𝑛 −

𝑑𝑡

2
𝐵̃.
𝑡 𝜕𝐻

𝜕𝜖
(𝑝𝑛+1/2, 𝜖𝑛)

𝜖𝑛+1 = 𝜖𝑛 +
𝑑𝑡

2
𝐵̃. (

𝜕𝐻

𝜕𝑝
(𝑝𝑛+1/2, 𝜖𝑛) +

𝜕𝐻

𝜕𝑝𝛼
(𝑝𝑛+1/2, 𝜖𝑛+1))

𝑝𝑛+1 = 𝑝𝑛+1/2 −
𝑑𝑡

2
𝐵̃
𝑡 𝜕𝐻

𝜕𝜖
(𝑝𝑛+1/2, 𝜖𝑛+1)
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By ensuring the conservation of the momentum, the average conservation of the total energy, 

and the symplecticity of the two systems, these time integration schemes can maintain accuracy 

and stability in long-time integration. 

Since our Hamiltonians are separable, the integration scheme computation becomes explicit 

(see Eq. 9 and 10). In particular, the time integration scheme can be written in the matrix form 

as: 

{
 
 

 
 𝒑𝒏+𝟏/𝟐 = 𝒑𝒏 −

𝒅𝒕

𝟐
𝑲𝟏𝒒𝒏

𝒒𝒏+𝟏 = 𝒒𝒏 + 𝒅𝒕 𝑲𝟐𝒑𝒏+𝟏/𝟐

𝒑𝒏+𝟏 = 𝒑𝒏+𝟏/𝟐 −
𝒅𝒕

𝟐
𝑲𝟏𝒒𝒏+𝟏

 

where 𝒒𝒏 represents either 𝒖𝒏 or 𝝐𝒏, and 𝑲𝟏, 𝑲𝟐 are two matrices derived from the expanded 

Hamiltonian form. 
  

4. Verification of  dynamic crack propagation simulations 

In order to verify the application of above schemes to simulate dynamic crack propagation 

simulations, we compare the results of the simulation with the known solutions of a 1D 

spallation problem and a 3D torsion problem. 

 

4.1 1D spallation problem 

One mode of material failure during high velocity impact is spallation. As an example, an 

impact on one end of a bar creates a compressive wave which is then inverted and reflected at 

the opposite end, resulting in a high tensile stress wave likely to generate a crack. In this 

verification test, we consider the problem settings shown in Fig. 3, and compare the position of 

the crack and the time of occurrence with the corresponding analytical solution. We chose a 

simple stress criterion with the strength 𝜎𝑐 = 29.5MPa, slightly lower than the amplitude of the 

input wave as we observe a small loss of amplitude with the propagation. Obviously the crack 

opens when the tensile stress, propagating backwards after reflection on the right tip, exceeds 

this limit value. It can be shown that the maximum tensile stress occurs at 𝑡 = 𝐿/𝑐 + 3𝑇/4 =
1.65 10−4𝑠  and 𝑥 = 𝐿 − 𝑐𝑇/4 = 0.171 𝑚  where 𝐿 = 0.2𝑚  is the length of the bar, 𝑐 =
1.75 10−3𝑚. 𝑠−1 the wave velocity and 𝑇 = 6.7 10−5𝑠 the impulse duration. The numerical 

simulations produced the crack at the above theoretically expected time and location (see Fig. 

4), with reasonably small errors of ± 5.0 × 10−7𝑠 and − 1.0 × 10−3m, respectively.   

Figure 3: Problem settings for the spallation test 

(a) Impulse shape (b) Geometrical setting 
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4.2 Torsional cracks in a cylindrical specimen 

To verify that the above schemes can reproduce the 3D geometry of dynamically growing 

cracks, we consider the classical experiment of torsion of a cylinder bar with the standard 

dimensions (in mm, see Fig. 5) and the following material properties:  

 Young Modulus: 3.0 GPa 

 Tensile strength: 30 MPa 

 Density: 1.25 kg.m-3 

The right end of the bar (𝑥 ≥ 115𝑚𝑚) is fixed at all time (i.e. 𝑝 = 0), while the left end of the 

bar (𝑥 ≤ 25𝑚) is rotated at the angular speed 𝜃̇ = 3° 𝑠−1. In order to save computation time, 

we first solve the static problem for a rotation of angle 𝜃 = 6.3°, which brings the principal 

stress on the surface very close to the tensile strength, and then proceed to the dynamic loading. 

In this problem, anywhere on the surface of the cylinder is primed to crack, as the shear stress 

is uniformly distributed. So as to control where the crack will initiate, in particular to avoid 

having a crack propagating near the two extremities, we generate a small initial crack on the 

surface near the middle of the bar. The trace of the crack on the surface after completed fracture 

is shown in Fig. 6. 

Figure 5: Geometrical setting for the torsion simulation 

Figure 6: Trace of the crack on the surface from 4 different angles 

Figure 4: Simulated crack position and stress distribution for spallation 
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Though we lack experimental observations of the crack propagation speed, we observe that the 

crack begin to open at the expected load, and that the total crack path corresponds to the 

classical spiral shape oriented at 45°  observed during torsion test, albeit a few branches. 

Additional experimental measures of secondary crack patterns inside ruptured material would 

be needed to verify this observation. 

 

5. Validation 

5.1 Experimental setting 

The PDS-FEM implementations for dynamic crack propagation simulations are validated by 

comparing with high speed photoelastic observations of a dynamic mode-I crack captured with 

a 1Mfps camera. These photoelastic fringes characterize the stress distribution in the material, 

specifically the difference between the two principal stresses. The experimental setting is shown 

in Fig. 7, and the Epoxy resin (CY232 & HY951) sample has the following properties: 

 Young modulus: 3.84 GPa  

 Poisson ratio: 0.3 

 Static photoelastic constant: 0.53 mm/N (measured by calibration with a Brazilian test) 

Two bars are inserted in the holes of the plate, and then respectively pulled up and down. The 

pulling phase is displacement controlled, and the corresponding applied force loading is also 

measured. In the experiment conducted, the initial crack was 1 mm wide, and 20.5 mm long. 

The displacement is increased at a speed of 0.5 mm/min until the onset of crack propagation. 

Compared to the few hundred μs period required for the crack to move across the sample, our 

external loading can be considered quasi-static and the positions of the bars fixed during the 

duration of the propagation. As the initial displacement required to bring the bars and the holes 

just in contact cannot be accurately estimated from the available experimental observations, we 

use the equivalent force load in our simulations. In the experiment, the crack initiated at 0.54 

kN. The same load is used to calculate the static solution before the crack initiation, which will 

be used as the initial condition of the dynamic problem. The stress criterion for rupture is chosen 

to be the maximum value for which the crack propagates in the simulation (corresponding to 

40 MPa for tetrahedral elements of average size 0.2 mm). We used 0th order PDS-FEM 

discretization, which corresponds to constant values of the variables in each element.  

 

 

Figure 7: Experimental setting 

(a) Geometry of the sample (b) Experimental setting without analyzer 
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5.2 Numerical model 

In order to accurately reproduce the crack tip stress field, we refined the mesh as follows (also, 

see Fig. 8):  

 Most outer elements (|y − 0.07| > 0.01 or z > 0.045): average size 1 mm.  

 Intermediate layer (0.005 < |y−0.07| < 0.01): average size 0.5 mm, refinement required 

for the observation of the fringe patterns, but not very fast variation of stress  

 Inner band (|y − 0.07| < 0.005): average size of 0.2 mm, refinement required to capture 

well the stress distribution around the crack tip, all along its propagation. 

In total, the mesh consists of around 3×106 elements and 5×105 nodes. 288 MPI processes are 

used for the computation. 

 

5.3 Observations 

Crack path 

The horizontal crack path observed in the experiment is correctly reproduced in the simulation.  

 

Stress distribution 

The propagation of the crack and the fringe patterns are captured with a high speed camera, 

with a capturing speed of 1Mfps. Figure 9 compares the observed fringe patterns with those 

corresponding to the crack propagation simulation; (𝑝, 𝜖) form is used. 

Fringe patterns, which characterize the difference of principal stresses in the material, are very 

sensitive to the change of stress distribution. In this experiment, each fringe corresponds to an 

increment of 3.95 MPa of the principal stresses difference. As seen in Fig. 9, the numerical 

results are in good agreement with those observed in the experiment. In particular, the amplitude 

of the main fringes decreases the same amount (the fringes get closer to the crack tip) when the 

propagation begins.  

In the simulation results, we can clearly observe a wave emanating from the moving crack, 

which is completely absent in the experimental observations. This is most likely due to our 

failure criterion. As the stress is considered constant inside an element, a surface rupture 

releases a relatively high amount of energy (corresponding to the strain energy of the entire 

element), creating a source point for a stress wave, whose amplitude might decrease with a 

more refined mesh (for which the rupture is more "continuous"). This wave could also be 

smoothened if higher order functions are considered and the stress release limited to the zone 

Figure 8: Mesh refinement 
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surrounding the surface. Also, the camera recording might have a smoothing effect as the 

assumed wave propagates between two frames and only its average value can be recorded. 

 

Crack propagation speed 

For 𝑡 ≤ 20 𝜇𝑠 , the propagation speed in the simulation is almost twice faster than in the 

experiment. For 𝑡 > 20 𝜇𝑠, the crack tip position in the simulation is about 5 𝜇𝑠 ahead of the 

crack tip position measured in the experiment until 𝑡 = 60 𝜇𝑠, after which  the position of the 

crack in both the simulation and the experiment are in fairly good agreement, showing that the 

average speed of the simulated crack is consistent with the experiment. The record of crack tip 

position is detailed in table 1. 

 

6. Comparison of the two formulations 

Although the strain-based formulation and the displacement-based formulation presented in 

sections 2 and 3 are analytically equivalent, they lead to different numerical schemes. Therefore, 

they may produce stress and displacement distributions with different degrees of accuracy. In 

particular, in the strain formulation, the strain is computed directly by the dynamic system, 

though additional calculations are required to extract the displacement distribution. Therefore, 

(a) Experiment at t = 0µs (b) Experiment at t = 35µs (c) Experiment at t = 65µs 

(d) Simulation at t = 0µs (e) Simulation at t = 35µs (f) Simulation at t = 65µs 

Figure 9: Comparison of the fringe patterns at three stages; (a)-(c) are experimental while 

(d)-(f) are numerical. Each fringe corresponds to an increase of 3.95 MPa 

 

Table 1: Comparison of the crack tip position 
  

ICCM2019, 9th-13th July 2019, Singapore

557



it is expected that the strain formulation would be more accurate for the stress distribution while 

the displacement formulation would be more accurate for the displacement distribution. 

In this section, we compare quantitatively computational efficiency and numerical accuracy of 

these two formulations. For this comparison, we use the dynamic crack propagation problem 

presented in the section 5. Since this problem is very sensitive to changes in the 

stress/displacement distribution which could particularly alter the direction and the speed of the 

crack, it is an ideal problem to identify potential numerical differences. Figure 10 shows the 

maximal magnitude of the difference between stress distributions in the whole sample along 

time. 

We observe that the maximum difference, although increasing with time, remains very 

insignificant compared to the relevant level of stress in the sample (order of a few MPa). Similar 

results can be observed for the displacement formulation although we don’t show it in this 

article. Therefore, on a numerical accuracy perspective, both formulations can be considered 

equivalent. 

On a computational perspective, however, there is a significant difference. The main 

computational task in the respective dynamic systems are the matrix-vector multiplications. 

However, as the mesh contains significantly more tetrahedron elements than nodes, and that 

strain vectors have at least 6 components while displacement only have 3 components, it is clear 

that strain formulation involves much more floating point operation  in the main computation. 

Also, additional overhead is required to compute the strain change due to the rupture of an 

element in the strain formulation. The memory usage and average computation time for a single 

iteration are compared in Table 2. In order to avoid additional overheads related to parallel 

computing, like communication time, the compared values are obtained from one of the MPI 

process (with 2 × 104 elments and 4 × 103 nodes),  out of the 288 MPI processes used for the 

computation.  

 

Table 2: Comparison of computational performance 

Figure 10: Comparison of the stress distribution between the two formulations 
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We observe that the strain formulation is significantly more computationally demanding, both 

in memory usage and computation time. Further, as shown above, both formulations essentially 

lead to a near identical numerical accuracy. Therefore, we conclude that it is more relevant to 

use the displacement formulation in general. 

 

7. Application to supershear rupture simulation 

7.1 Theoretical considerations 

In this section, we apply the developed numerical method to the simulation of an idealized 

supershear rupture in earthquakes. This part should be understood as an illustration of the 

potential capabilities of this method rather than a full study of supershear rupture. 

Supershear rupture is defined as a crack propagation faster than the S-wave velocity, producing 

a characteristic shear wave Mach cone following the crack tip. The possible occurrence of this 

kind of rupture was first theoretically predicted by Burridge et al.[12], who identified three 

steady crack propagation regimes: 

 𝑣𝑟 < 𝑐𝑅: sub Rayleigh regime 

 𝑐𝑠 < 𝑣𝑟 < √2𝑐𝑠: unstable intersonic (supershear) rupture 

 √2𝑐𝑠 < 𝑣𝑟 < 𝑐𝑃: stable intersonic (supershear) rupture 

The zone 𝑐𝑅 < 𝑣𝑟 < 𝑐𝑠 is forbidden as it leads to a negative fracture energy. 

In the case of earthquakes, fault “rupture” corresponds to the part of the fault where slipping 

occurs, where there is a discontinuity of displacement across the fault. For the slipping, the 

linear slip-weakening friction law used by Andrews [13], shown in Fig. 11, is a good first 

approximation of the earthquake slipping law, and has been widely used for the simulation of 

supershear rupture. The initial stress in the material is noted 𝜏0. When a perturbation makes the 

stress exceed the maximum cohesive strength 𝜏𝑢 (static frictional stress), slipping starts and the 

maximum frictional stress decreases linearly until a minimum 𝜏𝑓 corresponding to the dynamic 

frictional stress.  

Although diverse factors, like fault roughness, local material heterogeneities, asperities etc., 

can influence the occurrence of supershear rupture, for the ideal scenario of a perfectly straight 

plane fault in an otherwise homogenous material, the seismic factor, introduced by Das and Aki 

[14]: 

𝑠 =
𝜏𝑢 − 𝜏0
𝜏0 − 𝜏𝑓

 

characterizes the crack propagation regimes. In particular, for a 2D problem, supershear 

propagation is theoretically possible only for 𝑠 < 1.77  [13]. In our simulation, we don’t 

Figure 11: Linear Slip-weakening law 
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observe supershear rupture for 𝑠 ≥ 1.1, which might be partly due to wave defocusing in 3D 

plates compared to an actual 2D setting. 

 

7.2 Numerical problem setting 

We simulate the rupture in a crust layer of dimensions 10 𝑘𝑚 × 4 𝑘𝑚 ×  0.1 𝑘𝑚, centered 

around a fault plane extending all along the layer (see Fig. 12). The parameters for the slip 

weakening law are chosen arbitrarily, which is sufficient for this qualitative study, as they 

influence only the slip-weakening zone length and the seismic factor. We use the following 

material properties corresponding to the Earth crust: 

 

 Young modulus: 75 GPa 

 Poisson ratio: 0.3 

 Density: 2.5 103 kg.m-3 

 𝜏𝑢 = 100𝑀𝑃𝑎, 𝜏𝑓 = 0𝑀𝑃𝑎 

 𝑑0 = 0.2 𝑚 

 𝜏0 = 44 𝑀𝑃𝑎 (𝑠 = 1.27) for sub-Rayleigh, 𝜏0 = 58 𝑀𝑃𝑎 (𝑠 = 0.7) for supershear 

 

The corresponding P-wave and S-wave velocities are, respectively, 𝑐𝑝 = 5477𝑚. 𝑠
−1 and 𝑐𝑆 =

3162𝑚. 𝑠−1. 

At 𝑡 = 0, the fault is perfectly cohesive and the stress/displacement is continuous across the 

fault (no broken element on the fault). We solve a static problem with Dirichlet boundary 

conditions to obtain the initial stress distribution. The fault parallel component 𝑢𝐷 is fixed and 

the two other components are set to 0 on the Dirichlet boundaries.  

At 𝑡 > 0, if the stress exceeds the maximum shear stress in an element, the inner fault surface 

is broken and frictional forces are mobilized and distributed on the nodes on the fault surfaces, 

according to the slip-weakening friction law. 

7.3 Results and observations 

Stress and velocity distributions at 𝑡 = 0.4𝑠 on the surface for sub-Rayleigh and supershear 

regimes are shown in Fig. 13. 

In the sub-Rayleigh scenario, we observe the classical wave pattern, with a clear S-wave front 

progressing ahead of the crack which propagates at 𝑐𝑅. The P-wave front is however not clearly 

observable. In the supershear scenario, we can clearly observe the P-wave front which is just 

ahead of the crack which propagates at a speed close to 𝑐𝑃. The Mach cone, characteristic of a 

shock wave propagation, is also clearly visible. Fault parallel velocity is significantly higher in 

Figure 12: Supershear problem setting 
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the supershear case, especially far from the fault. On the contrary, fault-normal velocity is 

higher for the sub-Rayleigh case near the crack tip, and dissipates rapidly far from the fault. 

 

7.4 Transition phenomenon 

In the supershear rupture scenario, the rupture doesn’t propagate immediately at intersonic 

speed. This transition from the initial sub-Rayleigh propagation to supershear rupture, in a 

homogenous material, is classically explained by the Burridge-Andrews mechanism [13]. At 

first, the crack propagate behind the shear wave, at a speed close to 𝑐𝑅. The P-wave and S-wave 

propagating ahead generate a zone of high shear stress ahead of the crack tip, eventually 

creating a secondary crack, also called daughter crack, if the prestress is sufficiently high. When 

the main crack merges with the daughter crack, there is a jump of the rupture velocity, thereby 

x (km) 

Figure 13: Stress and velocity distributions for sub-Rayleigh and supershear rupture at 

t=0.4s 

(a) Stress distribution (sub-Rayleigh) (b)  Stress distribution (supershear) 

(c)  Fault-parallel velocity (sub-Rayleigh) (d)  Fault-parallel velocity (supershear) 

(e)  Fault-normal velocity (sub-Rayleigh) (f)  Fault-normal velocity (supershear) 

x (km) 
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starting the intersonic propagation. This phenomenon can be observed in our simulation, and is 

detailed in Fig. 14. 

 

Concluding remarks 

We developed two Hamiltonian-based formulations in the frame of PDS-FEM, and derived 

consistent time integration schemes which are momentum conserving and symplectic. The 

separable nature of the Hamiltonian in continuum mechanics ensures that the computation can 

be done explicitly and thus is relatively cheap computationally. The results of the two 

verification tests and the validation test show a good accordance with the analytical solution 

when available, and with the experimental measures in term of crack path, propagation speed 

and stress distribution around the propagating crack tip. The results also showed that both 

formulations are numerically indifferentiable, although the displacement formulation proves to 

have a significantly lower computational cost. This paper also demonstrates that this numerical 

method can be applied to the simulation of supershear earthquakes, and that characteristic wave 

profiles and transition mechanism were qualitatively reproduced for both sub-Rayleigh and 

supershear fault rupture. We are improving computational capabilities of a parallel program 

with the aim of conducting large scale simulation of supershear earthquake scenarios with the 

models of actual faults.  

 

Appendix A: Euler-Lagrange equation of the strain formulation 

For the sake of simplicity, the indexes m and n defining the functions used for interpolation are 

omitted in the following derivation of the Hamilton's principle, as their inclusion is 

straightforward. Einstein summation is assumed in the following. 

By using the Hamilton's principle, and using Eq. 3: 

0 = 𝛿 (∫ 𝐿(𝒗𝜶, 𝝐𝜷)𝑑𝑡
𝑇

) = ∫ (
𝜕𝐿

𝜕𝒗𝜶
∙ 𝜹𝒖̇𝜶 +

𝜕𝐿

𝜕𝝐𝜷
: 𝜹𝝐𝜷)

𝑇

𝑑𝑡

= ∫ (−
𝜕𝐿̇

𝜕𝒗𝜶
∙ 𝜹𝒖𝜶 +

𝜕𝐿

𝜕𝝐𝜷
: 𝑠𝑦𝑚{𝑩𝜷𝜶⊗𝜹𝒖𝜶})

𝑇

𝑑𝑡

= ∫ (−
𝜕𝐿̇

𝜕𝒗𝜶
∙ 𝜹𝒖𝜶 +

𝜕𝐿

𝜕𝜖𝑖𝑗
𝛽
𝐵𝑖
𝛽𝛼
𝛿𝑢𝑗

𝛼)
𝑇

𝑑𝑡

= ∫ (−
𝜕𝐿̇

𝜕𝒗𝜶
∙ 𝜹𝒖𝜶 +

𝜕𝐿

𝜕𝝐𝜷
𝑩𝜷𝜶 ∙ 𝜹𝒖𝜶)

𝑇

𝑑𝑡 

Figure 14: Burridge-Andrews mechanism observed in the simulation 

(a) Sub-Rayleigh propagation 
(𝑡 = 0.05𝑠) 

(b) Apparition of daughter 

crack (𝑡 = 0.1𝑠) 
(c) Transition to supershear 

rupture (𝑡 = 0.25𝑠) 
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Note that only one integration by part is needed, instead of the two needed for the general 

analytical expression. 

By writing 
𝜕𝐿

𝜕𝝐𝜷
 in vector form following Voigt notations: (

𝜕𝐿

𝜕𝜖11
𝛽 ,

𝜕𝐿

𝜕𝜖22
𝛽 ,

𝜕𝐿

𝜕𝜖33
𝛽 ,

𝜕𝐿

𝜕𝜖23
𝛽 ,

𝜕𝐿

𝜕𝜖13
𝛽 ,

𝜕𝐿

𝜕𝜖12
𝛽 ), and 

rewriting 𝑩𝜷𝜶 in the adapted matrix form: 

𝐵̃𝑡 𝛽𝛼 =

(

 

𝐵1
𝛽𝛼

0 0

0 𝐵2
𝛽𝛼

0

0 0 𝐵3
𝛽𝛼

0 𝐵3
𝛽𝛼

𝐵2
𝛽𝛼

𝐵3
𝛽𝛼

0 𝐵1
𝛽𝛼

𝐵2
𝛽𝛼

𝐵1
𝛽𝛼

0 )

  

and finally replacing them in the above integral, the vector form Euler-Lagrange equation (Eq. 

5) can be derived. 

 

Appendix B: Boundary conditions 

Dirichlet BC 

Let 𝑢𝐷 be the value of displacement imposed on the boundary. 

We will set the coefficients 𝑢𝛼𝑛 such as: 

𝜕

𝜕𝑢𝛼𝑛
∫|𝑃𝛼

′𝑛′𝑢𝛼
′𝑛′ − 𝑢𝐷|

2
𝑑𝑠

Γ𝐷

= 0⇒∑𝐼𝑆
𝛼𝑛𝑛′𝑢𝛼𝑛

′

𝑛′

= ∫ 𝑢𝐷𝑝
𝛼𝑛

Γ𝐷

𝑑𝑠 

where 𝐼𝑆
𝛼𝑛𝑛′ = ∫ 𝑃𝛼𝑛𝑃𝛼𝑛

′
𝑑𝑠

Γ𝐷
. 

We note 𝑊𝑆
𝛼 = (𝐼𝑆

𝛼)−1, 𝑢𝛼𝑛 = ∑ 𝑊𝑆
𝛼𝑛𝑛′

𝑛′ ∫ 𝑢𝐷𝑝
𝛼𝑛′

Γ𝐷
𝑑𝑠 

This inverse is ensured to exist only for the 0th order (when 𝑛 = 𝑛′ = 0), as otherwise several 

combinations of coefficients may be solution to the boundary problem. In particular, the 

integration of first degree polynomials on a surface can lead to null columns in the matrix. 

Therefore, for the boundary only, only the 0th order terms are computed while the other 

components are set to 0. 

The momentum corresponding condition is derived using Eq. 6}:   

𝑝𝛼𝑛 = 𝜌∑𝐼𝛼𝑛𝑛
′

𝑛′

∑𝑊𝑆
𝛼𝑛𝑛"

𝑛"

∫ 𝑢𝐷̇𝑝
𝛼𝑛"

Γ𝐷

𝑑𝑠 

 

Neumann BC 

We consider a Lagrangian (with u as an additional variable for the strain-based formulation, 

not necessary for the displacement-based one): 

𝐿(𝒗, 𝝐, 𝒖) = ∫
1

2
𝑉

𝜌𝒗2𝑑𝑉 −
1

2
𝛜: 𝑪: 𝛜 𝑑𝑉 + ∫ 𝑇𝑁 . 𝑢

Γ𝑁

𝑑𝑠 

In PDS-FEM formalism, applying the Hamilton’s principle leads to the updated Euler-Lagrange 

equation: 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑣𝛼𝑛
−∑ 𝐵̃𝑡 𝛽𝛼𝑚𝑛.

𝜕𝐿

𝜕𝜖𝛽𝑚
𝛽,𝑚

− ∫ 𝑇𝑁. 𝑃
𝛼𝑛

Γ𝑁

𝑑𝑠 = 0 

adding the term ∫ 𝑇𝑁 . 𝑃
𝛼𝑛

Γ𝑁∩Φ𝛼
𝑑𝑠 to the calculation of 𝑝̇𝛼𝑛 in the Hamiltonian systems. 
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Abstract 

An object of our consideration is a two-phase laminate of micro-periodic structure in one of 
directions. That periodicity is represented by distinguished unit cell of diameter l much 
smaller when compared with other composite dimensions. In the remaining directions 
laminate has uniform structure. Each component has isotropic material properties, however 
theirs values are uncertain from assumption, e.g. ratios of conductivities 2 1/k k   and 

specific heats 2 2 1 1/c c    are random variables of known probabilistic distribution.  

By any heat flow, transversally to the laminae, there can be two phenomena observed: jump 
of the gradient of temperature field on interfaces, and apparent temperature oscillations 
around averaged temperature, with (local) maximum value on interfaces. That function of 
temperature oscillations depend strongly on parameters   and  , what makes it new random 
variable, cf. [1]. In this presentation we are going to answer if the maximum of these 
oscillations is also Gaussian random variable. Steady state as well as transient state will be 
considered, and all obtained results will be presented. 
The govern equation of heat transfer is described by well-known Fourier’s law. Easy to see 
that for considered structure coefficients in the PDE are discontinuous and highly oscillating. 
Therefore, a tolerance averaging technique (cf. Woźniak et al. [2]) is used in order to get 
averaged model equations of constant coefficients. These new equations will be used in 
further numerical (Monte-Carlo) simulations.  

Keywords: Heat transfer, laminate, uncertain material properties, tolerance averaging 
technique 

 

Introduction 

The object of our consideration is a multi-layered heat conductor, build of two different 
materials distributed alternately along 1:x x  axis, Fig. 1. Composite layout is l-periodic in 

such a way that each interval     of length 0l   consists of two components, and the first 
one is of volume ratio  0,1  . These components, numbered by 1i   or 2, are called sub-

laminae and have isotropic material properties: ik  - conductivity, ic  - specific heat, and i  - 

density.  
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Figure 1. An analysed composite conductor with micro-structure along its thickness 

The govern equation of the heat transfer in a conductor under consideration is a partial 
differential equation (PDE) having, due to micro-structure, highly oscillating and 
discontinuous coefficients. The exact solution to the steady or transient state of heat transfer is 
reachable for uniform conductor, but this is not the case. Naturally, one can build a system of 
PDEs, written for every single sub-layer, satisfying appropriate continuity and boundary 
conditions, but still, one may find a number of problems in resolvability. Even if we narrow 
our restrictions to one-directional heat flow, perpendicular to the layers, it would not relax our 
problem entirely. Therefore, we shall use in this paper the tolerance averaging technique, cf. 
Woźniak et al. [2]-[3], which leads to the system of differential equations with continuous 
coefficients and, what is crucial, for special cases (steady state) to the same solution as the 
exact one. 

Number of publications have been devoted to the problem of heat transfer in micro-
heterogeneous structures and its modelling, for which differential equations are of 
discontinuous coefficients. The most popular averaging approaches are based on the 
asymptotic homogenisation cf. Jikov et al. [4]. For instance, homogenisation theory was 
realised by Matysiak and Yevtushenko [5] or Matysiak and Perkowski [6] by using a concept 
of micro-local parameters. To another approaches, but still popular, belong RVE methods. We 
can mention here for example works of Han et al. [7] or Bayat and Gaitanaros [8]. 

A new class of problems is recently investigated. Namely the uncertainty effect of physical or 
geometrical properties on the overall composite behaviour. For instance, probabilistic 
homogenization with Monte-Carlo simulation in fiber composites is investigated by Kamiński 
in [9]. Dynamics of micro-periodic composite rod with uncertain parameters under a moving 
random load is presented by Mazur-Śniady et al. [10]. A refined averaged theory of a rigid 
heat conductor with a micro-periodic structure is used by Ignaczak and Baczyński [11] to 
solve a one-dimensional heat conduction problem in a periodically layered plate. 

Averaged model equations used in presented paper describe heat transfer in considered 
composite, and theirs origin we find in tolerance averaging technique. This particular method 
is commonly used to other then heat conduction problems: e.g. to dynamics of shells [12] and 
plates [13]-[15], to thermoelasticity [16]-[17]. 

There are two general goals we would like to present. The first one deals with application of 
tolerance averaging technique in order to have equations of constant coefficients describing 
well the heat conduction problem in considered laminate. The second one is to investigate the 
measure of magnitude of temperature oscillations and how these oscillations depend on 
uncertainty of material properties. 
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Preliminaries 

Let 3    be a bounded region in Euclidean space occupied by the conductor under 
consideration, wherein Cartesian coordinate system 1 2 3Ox x x  is introduced. Denote by 

 : 0, H  , 0H  , a bounded and regular region in   assigned to the micro-structure. 

Hence, the region of the composite can be expressed as    , where    : 0, 0,L B   , 

for , 0B L  , is a bounded subspace of 2 . In other words, the conductor has for every 

 1 0,x H  invariant homogeneous structure and material properties, see Fig. 2.  

Through this paper points from   are denoted by Latin letters 1x x  or 1y y , while from 

  by  1 2 3, ,x x xx . Points from   are denoted by  2 3,x xz , and the time coordinate by 

t. Gradient operators used in this contribution are  1,0,0   ,  2 30, ,     and     , 

where /i ix    , 1,2,3i  , stand for partial derivatives. Dots over the function name stand 

for the time derivatives. 

 
Figure 2. Laminar layout of micro-structure 

The heat conduction equation is based in this contribution on the well-known Fourier's law  

   c   K  , (1) 

where ijk   K , :ijk   , stands for the second order conductivity tensor, :c    is a 

specific heat and :    is the density. Since material properties are isotropic we have 

ij ijk k    for some 0k  , where ij  is Kronecker's delta.  

Equation (1) has to be satisfied for every x  and  0 1,t t t  by continuous function of 

temperature  0 1: ,t t   . Easy to see that direct description leads to the system of 

PDEs with highly oscillating coefficients, and it might be far to complicated to solve it in 
engineering applications. Even for a unidirectional problem 

 

 
     
   

1 2 0 1

0 0

,

0, , , for , ,

, for 0, ,

c

t H t t t t

x t x H

    

      

   

K 

  (2) 
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where the number of independent variables decreases to two, x and t. 

Denote the ratios 

 2

1

k

k
    and 2 2

1 1

c

c




   (3) 

as inhomogeneity parameters. They take only positive values, and equal one for homogeneous 
material. 

 

In order to give appropriate motivation to our studies, consider a following problem of heat 
transfer in the laminate build of n two-component layers: find continuous function 

 : 0, H    satisfying boundary conditions, 1     at 0x   and 2    at x H . Easy 

to prove that general solution to Eq. (2) for the case of steady state (time derivative vanishes 
and the problem is independent of time t) can be decomposed into the sum of averaged 
temperature 

    1 2 1avg

x
x

H
       ,  0,x H , (4) 

and oscillating temperature osc . The last one is a “saw-type” function, oscillating around 

zero value, having local extrema on interfaces and depending explicitly on parameter  , e.g. 
for a special distribution of sub-laminae we have 

 
 

   
 0,

11
sup

2 1 1osc
x H

x
n

 
 

 
    

  
, (5) 

where 2 1    . Part of this function,    
 

11

2 1 1
h

 


 
 

 
  

, is depicted in Fig. 

3 where we can see how strong values of osc  depend on  . 

 
Figure 3. Plot of function  h   
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One can also observe that limits 

  
0

lim
2

h





  and   1
lim

2
h







  (6) 

exist and are finite. 

We can imagine now that the magnitude of osc  is sensitive, in transient state as well as in 

steady state, to differences of material properties. The bigger differences we have, the bigger 
magnitude of oscillations we get. In other words, function osc  on interfaces depends on 

parameters   and  .  

In this paper we assume that parameters   and   are uncertain, i.e. they are random 
variables of known probability distribution, lognormal to be precise. Hence, there exist 

 , 0   and  , 0   such that  2,     and  2,    . This denotation 

means that median values of  ,   are respectively exp( ) , exp( ) , while expected 

values are 2exp( / 2)   , 2exp( / 2)   . For the sake of simplicity, initial-boundary 

conditions to Eq. (1) are imposed in such a way to assure unidirectional (along 1x  axis) heat 

transfer problem. 

Modelling concepts 

Throughout this paper, by  rH  , 0r  , we shall understand a Sobolev space of functions 

which are, together with theirs weak derivatives to the rth order, 2L -measurable on  . 
Function space  rH   denotes the space of all  -periodic functions which are  rH V  on 

any arbitrary compact subset V   . Easy to see that 0H  means the same what 2L , however 
there is no equilibrium between  rH   and  rH V  for V   . All essentially bounded 

functions on mX   , 1, 2,3m  , are denoted by  L X . 

Let n  be the number of two-component layers of common width /l H n . Each layer 
(cf. Fig. 2) consists of two sub-layers made of different material. The first one, called 
,,conductor 1'', is of width 1d l  , where  0,1   is fixed. Second sub-layer, called 

,,conductor 2'', has therefore width  2 1d l   . Easy to see that uniform conductor 

provides  0,1  . 

Fix for a moment x . Since the composite is periodic, cf. Fig. 2, representative volume 
element  / 2, / 2l l     , called further a unit cell, can be simply distinguished. To every 

cell   we can assign a local coordinate system Oy , and the cell with a centre at x is denoted 

by  x x    . Note, that above representation of cell   is not the only one, it is only an 

example. It can be any l-length surrounding of 0, i.e.  ,a a l    for  / 2,0a l  . 

In order to derive averaged model equations we apply the tolerance averaging technique, 
which is based mainly on the concept of tolerance and in-discernibility relation. Its definition 
is given below. 
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Definition 1. Let   stands for an arbitrary positive number. We say that numbers ,a b  are 

in tolerance relation a b  if and only if a b   . Parameter   is called the tolerance 

parameter. 

The general modelling procedures, basic definitions and theorems of this technique can be 
found in the book by Woźniak and Wierzbicki [2] or by Ostrowski [18]. We will mention here 
some basic concepts of this technique, but first we introduce a notion of maximum oscillation 
of continuous function f on  x  as follows 

  
   

sup ( ) inf ( )
x y xy x

f x f y f y 
      , (7) 

which is very helpful in constructing definition of slowly-varying function. 

Definition 2. Function  rF C   is called the slowly varying function of rth order, with 

respect to cell   and tolerance parameter  , if for every 0,1,...,p r  following conditions 
hold 

    1, , 0p

x
x F      z z . (8) 

Set of all rth order slowly varying functions with respect to the cell   and tolerance 
parameter   is denoted by  ,rSV   . 

Another important definition in tolerance modelling is the definition of the mean value 
operator 

    
 

1
, : ,

x

f x f y dy
l 

    . (9) 

which can be applied to any locally integrable function  1
locf L  . In applications we 

restrict ourselves to essentially bounded functions, i.e.  f L  . 

The last definition related to tolerance averaging technique is a periodic-like function [2], 
whose name was after years changed into tolerance periodic function. 

Definition 3. Function    rf L H     will be called the tolerance periodic function of 

rth order, with respect to the cell   and tolerance parameter  , if for every 0,1,...,p r  and 

every x   there exists periodic approximation    r
x perf L H     of function f such 

that 

  1 1 , 0p p
x

x
f f        z z . (10) 

Set of all rth order tolerance periodic functions with respect to the cell   and tolerance 
parameter   will be denoted by  ,rTP   . 

The space  perL   mentioned above is a set of all essentially bounded functions defined on 

  which are periodic, in particular  -periodic. By the notion of 0
1 f  we shall understand f, 

and by  O   Landau's symbol is denoted. The tolerance parameter   related to any tolerance 

periodic function can be determined only a posteriori. 
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Another class of functions possessing special properties is a class of fluctuation shape 
functions. 

Definition 4. Function  0g C   is called the fluctuation shape function of weight 

 L   , if following conditions hold 

(a) 0g   on  , 

(b) 1g  is piecewise continuous, 

(c)  g O l . 

Set of all fluctuation shape functions of weight   is denoted by  ,FS 
   . 

For further simplifications we consider only these functions  1 ,g FS    which satisfy 

0g  . An example of such function is shown in Fig. 4. 

 
Figure 4. Fluctuation shape function 

The last part of this section deals with theorem as a conclusion implied from all presented 
definitions and theirs properties. 

Theorem 1 (Tolerance Averaging Approximations). For every  1 ,g FS   , 

 1 ,F SV   ,  0 ,f TP   ,  1L   and  perk L   the following proposition hold 

(a)     , 

(b)  k gF k g F kg F     , 

(c) kF k F , 

(d)  g kf gkf kf g     . 

Proof of this theorem is given inter alia by Ostrowski in monograph [18]. 

Model equations 

In this section we derive averaged model equations describing heat conduction in micro-
structured laminate. We must assume first that temperature field   and its time derivative   
are tolerance periodic functions, i.e.  1 ,TP    and  0 ,TP   . Secondly, by 

tolerance averaging technique we impose on temperature field micro-macro decomposition as 
follows 
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        , , ,t t g t    x x x x  (11) 

for every x  and  0 1,t t t , where      1, , , ,t t SV      . This assumption states that 

  and   are unknown slowly varying functions for every  0 1,t t t . Function  1 ,g FS    

is a priori given, dependent on the micro-structure size parameter l, fluctuation shape function 
as depicted in Fig. 4. Function   is called the averaged temperature in a medium, while   
stands for the temperature oscillation amplitude. 

 

About functions of material properties we assume that each component has isotropic 
properties, i.e. ij ijk k    for some 0k  , where ij  stands for Kronecker's delta. Moreover, 

let  , , perk c L   . 

It is obvious that (1) may not be satisfied by decomposition (11) everywhere on   and for 
every  0 1,t t t . Nevertheless, we expect from residuum function  

   c     K   (12) 

to satisfy on its domain some orthogonal conditions, namely 

 0   and 0g  . (13) 

Bearing in mind all properties from Theorem 1 and by omission all terms  O  ,  O l , we 

conclude to the final averaged model equations 

 
 
 

,

.

g c

gg g g g c gg

   

    

     

           

K K

K K K




 (14) 

The above system has continuous, for periodic structure even constant, coefficients in contrast 
to equations from the direct description (1) which has discontinuous and highly oscillating 
ones. System (14) represents equations for the averaged temperature   and the temperature 
fluctuation amplitude  , and together with micro-macro decomposition (11) constitutes the 
tolerance model (TM) of the heat conduction in considered laminated conductor. 

Along with micro-macro decomposition (11) came two unknown functions,   and  , instead 
of one  . Thus, we need to formulate somehow, based on the known, conditions for these 
new functions. Let    0 0, t      on   be the initial temperature, while    1 0,      and 

   2 ,H      be on  0 1,t t  the temperature on the top and bottom surface, respectively. 

On the remaining boundary surfaces we assume that they are subjected to thermal isolation. 
Conditions for averaged temperature and temperature oscillation amplitude we can evaluate as 

 i i    and i
i

g

gg



 , (15) 

for every 0,1, 2i  . Easy to see that  ,i t   and  ,i t   are for every  0 1,t t t  constant 

functions if  ,i t   is l-periodic. In particular,  , 0i t    iff i  is constant in x. 
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Suppose now 0 1,   and 2  are constant functions in theirs domain and material properties 

are isotropic for each of component, i.e. 1 1 1, ,k c   for the first phase and 2 2 2, ,k c   for the 

second phase. The rest of boundary surfaces are thermally isolated. So formulated Cauchy's 
problem assures unidirectional heat flow in a media (along x-axis) and the tolerance model 
equations (14) reduce to a simpler form 

 
2
1 1 1

1 1 1 1

0,

0.

k k g c

k g k g g c gg

   

   

     

       




 (16) 

and the initial-boundary conditions 

 i i    and 0i  , (17) 

for every 0,1, 2i  . Averaged coefficients  

 

     
 

    

1 1 1

2
1 1

1
1 1

1 , 1 ,

12 1 , ,

12
1 1 ,

1

k k c c

k g k c gg l c

k
k g g

       

  

 
 

         

    

      
 

 (18) 

are in this case constant and depend explicitly on parameters   or  , cf. (18), that play the 
role of random variables. If 1    then we deal with uniform conductor. For further 

applications we introduce the dimensionless spatial /x H   and time  / 3600t s   

coordinates.  

If we neglect time derivatives in (16) and make all functions as time independent, then we 
obtain description to the steady state of heat conduction. Temperature oscillation amplitude   
depends then explicitly on averaged temperature 

 1
1

1 1

k g

k g g
 


  

 
, (19) 

while   must satisfy 

 2
1 0   (20) 

under already known boundary conditions. What is most interesting, the obtained solution 
satisfies all continuity conditions, including heat flux across interfaces. Ergo, by tolerance 
averaging technique we get the exact solution, without solving large system of equations, and 
without solving any eigenvalue problem. 

Monte-Carlo simulation 

The exact solution for the direct description of the heat transfer problem (1) in micro-periodic 
laminate exists, however it usually needs complex algebraic calculations. For example, by n 
cells in our two-phase laminate we have 2 1n   interfaces where continuity of temperature and 
heat flux field should be assured. That makes 4 2n   equations plus two boundary conditions. 
By the use of tolerance averaging technique we obtain system of PDEs (or ODEs) but of 
constant coefficients, wherein the number of equations depends on the number of terms in 
micro-macro decomposition (11). But that is much smaller then 4n , usually it is only two. 

Table 1. Reference material properties 
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 Component 1 (steel) Component 2 (aluminium) 

1 1k W m K      58 200 

1 1c J kg K     500 920 

3kg m      7800 2700 

Example 1. Let us consider periodic laminate of thickness  1H m , consisting of 20n   

two-component layers. Hence, the thickness of a single layer is  5l cm . Volume fraction of 

the first component is fixed at 0.25  . Let  0 0 C    for  0 0t s  and  1 1 C   , 

 2 0 C    for  0x m  and x H , respectively. These imply  0 0 C    for 0 0   and 

 1 1 C   ,  2 0 C    for 0   and 1  , respectively. Material properties are given in 

Tab. 1, and thus parameters 3.448   and 0.637   are fixed. The considered time range 

for this example is one hour,  1 3600t s , and it provides range of  0,1  for  . 

 
Figure 5. The averaged and the temperature oscillation amplitude varying in time 

during one hour for fixed material properties and 0.25   

System (16) were solved under assumption that time derivative of   can be omitted 
(asymptotic model, cf. [1]), i.e. instead of (16)2 we have (19). Fig. 5 depicts changes in time 
of averaged temperature   and temperature oscillation amplitude  . There is apparent 
convergence to the steady state, and the maximum oscillation amplitude appears close to top 
surface ( 0  ). 

These results were prepared only for certain values of material properties. Suppose now that 

1 1 1, ,k c   are fixed while   and 2.811    are uncertain parameters. To be precise, we 

will investigate the impact of randomness of parameter   on the magnitude of temperature 
oscillations 

  
 

   , sup ,
y x

x t g y y t


   , x  ,  0 1,t t t . (21) 
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All following simulations are restricted to the case of fixed spatial coordinate 1/ n  , but the 
whole analysis could be simply transferred for any value of  . 

In the next example we expect to find and investigate an effect of variables   and 
2.811    on the function  , ,     , under given above geometry and initial-

boundary conditions, but for various values of  .  

Example 2. We postulate that  , ,   , given by Eq. (21), is for 1/ n   and every 

 0,1   a new random variable with unknown probability distribution. To variable  , we 

say that it is of lognormal distribution with parameters: mean value    and standard 

deviation   . Moreover, we assume that      for 3.448   and   0    . All 

statistical characteristics, like expected value  E  , standard deviation    , skewness 

   , kurtosis     and coefficient of variation    , will be determined in order to 

qualify   to Gaussian distributed variable. Subsequent numerical experiment is based on the 
Monte Carlo simulation for 1000N   probe values.  

 
Figure 6. The expected values of   against   varying in time for 0.25   and 0.75   

In Fig. 6 we see how the magnitude of temperature oscillation vary in time, and theirs values 
are not necessary negligibly small when compared with total temperature. It seems that they 
are not affected with parameter  . 
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Figure 7. The standard variations of   against   varying in time for 0.25   and 
0.75   

Standard deviations depend on parameter   for sure, but that dependence is almost linear. 
The highest standard deviations we get for first moment of time, then they drop down. 

 
Figure 8. The skewness’s of   against   varying in time for 0.25   and 0.75   

Skewness is first statistical parameter that says a lot about character of randomness. If its 
value is close to zero then we may suspect that this is Gaussian distribution. In Fig. 8 we can 
see that there is no typical pattern for skewness’s but theirs values are sufficiently small. 

 
Figure 9. The kurtoses of   against   varying in time for 0.25   and 0.75   

The second statistical parameter is kurtosis, Fig. 9, determining whether   is Gaussian 
variable. The closer value to zero the better alignment we get. As well as skewness’s, results 
are kind of chaotic but also sufficiently small. 
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Figure 10. The coefficients of variation of   against   varying in time for 0.25   and 

0.75   

The most interesting parameter is the ratio of standard deviation and expected value, called 
coefficient of variation, Fig. 10, because it says a lot about relative dispersion of expected 
values. 

Summary 

We assumed that ratio of conductivities   (ratio of specific heats   depends explicitly on 
 ) is a random variable of lognormal distribution. That distribution was considered in many 
variations, i.e. for different values of  . Its change affects naturally the function of magnitude 
of temperature oscillation  , which is also a random variable. Statistical characteristics were 
calculated and Shapiro-Wilk’s test for normality was made for each case. Only those results, 
for which the test gave positive answer, were presented in Figs 6-10. Plots of coefficient of 
variation reveal interesting conclusion: estimation of   might be of higher probability then 
made for ratio  . But this is only from specific moment of time:      for 2   

regardless from  . 
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Abstract 

Identifying accurate centers of vortices of fluid flow is one of the accuracy measures for 

computational methods. After verifying the accuracy of the 2D adaptive mesh refinement 

(AMR) method by the benchmarks of 2D lid-driven cavity flows, this paper shows the accuracy 

verification by the benchmarks of 2D backward facing step flows. The AMR method refines a 

mesh using the numerical solutions of the Navier-Stokes equations calculated on the mesh by 

an open source software Navier2D which implemented a vertex centered finite volume method 

(FVM) using the median dual mesh to form control volumes about each vertex. The accuracy 

of the refined meshes is shown by the centers of vortices given in the benchmarks being held 

within the twice refined cells. The accuracy is also shown by the comparison between vortex 

center locations calculated from the linearly interpolated numerical solutions and those obtained 

in the benchmark. The AMR method is proposed based on the qualitative theory of differential 

equations, and it can be applied to refine a mesh as many times as required and used to seek 

accurate numerical solutions of the mathematical models including the continuity equation for 

incompressible fluid or steady-state fluid flow with low computational cost. 

Keywords: adaptive mesh refinement, finite volume method, backward facing step flow  

 

Introduction 

The AMR is a computational approach to increase the accuracy of numerical solutions of 

differential equations with low computational cost. A big number of papers on AMRs and their 

applications have been published [1]. Some common AMR methods take local truncation errors 

as a refinement criterion (e.g. Almgren et al. [2]). Other common AMR methods include h-

refinement (e.g. Lohner [3]), p-refinement (e.g. Bell et al. [4]) or r-refinement (e.g. Miller et al. 

[5]), and different combinations of the above (e.g. Capon et al. [6]). These AMR methods aim 

to obtain a balance between the accuracy and the computational cost in finding numerical 

solutions of differential equations.  

 

We introduced AMR methods for calculating accurate 2D (Li [7]) and 3D numerical velocity 

fields (Li [8]) based on a theory derived from Theorem 1.14 in the book by Ye et al. [9]. The 

theorem states that a 2D vector field has no one sided limit cycles if it satisfies the continuity 

equation. In other words, all trajectories of a vector field are closed curves in bounded domains 

if the vector field satisfies the continuity equation. A vector field which satisfies continuity 

equation is called divergence free field. The benchmarks (e.g. Erturk et al. [10]) confirm the 

theorem numerically. The AMR method refines a mesh based on the velocity fields calculated 

numerically on it. The refinement can be performed as many times as required. The more the 
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refinements, the less the area on which the linearly interpolated velocity field is not equivalent 

to a divergence free vector field is. 

 

Locating singular points, and drawing accurate asymptotic lines (planes) and closed streamlines 

of a calculated velocity field are commonly used to measure the accuracy of computational 

methods. We demonstrated the accuracy of the AMR methods using examples of analytical 

velocity fields by comparing the exact results from the analytical velocity fields with the 

corresponding results from the numerical velocity fields that take vectors of the analytical 

velocity fields at nodes of the meshes: the singular points and asymptotic lines for 2D [11]; the 

singular points and asymptotic plane for 3D [12]; and closed streamlines (Li [11]-[12]). We 

also demonstrated the accuracy of the 2D AMR method using numerical velocity fields of 2D 

steady incompressible lid-driven cavity flows (Lal et al. [13]). We obtained numerical velocity 

fields of the Navier-Stokes equations with the boundary conditions using a second order 

collocated FVM (GSFV) with a splitting method for time discretization (Faure et al. [14]). We 

applied the AMR method once to the initial meshes based on the numerical velocity fields 

calculated by GSFV on them, and estimated the singular point locations using the centers of 

refined cells in the corresponding vortex regions. The estimated locations are accurate by 

comparing with the corresponding benchmarks. 

 

Mesh refinement is necessary for calculating accurate numerical solutions since different levels 

of vortices requires different densities of mesh nodes (Li [15]). The same conclusion was 

obtained by Armaly et al. [16]. We conducted a study starting from relatively coarse initial 

meshes and demonstrating that the centers of vortices were held within the refined cells of once 

refined meshes (Li et al. [17]). We also verified the accuracy of the AMR method by applying 

the method twice to the initial meshes. Li et al. [1] applied the AMR method twice to the initial 

meshes and the twice refined meshes show that centres of the vortices are held within the twice 

refined cells. Li [18] considered flow past a square cylinder over symmetrical domain but the 

streamlines drawn on the initial mesh are not symmetrical. The symmetry of streamlines on the 

refined meshes are improved significantly after applying the AMR method once on the initial 

meshes.  

 

This paper demonstrates the accuracy of the 2D AMR method proposed by Li [7] using the 

benchmarks for 2D backward facing step flows. The backward facing step flows have features 

of separation, reattachment, recirculation and shear layers in the flow region. We conduct study 

with constant boundary and initial conditions at the inlet channel and apply the AMR method 

twice to the initial meshes. We compare the profiles of the exact horizontal component of the 

velocity field and the profiles obtained numerically after the flow is well developed at the step 

[19]. Finally we show the differences between calculated locations of all detachment, 

reattachment and centres of vortices and the corresponding benchmarks [19].    

Governing equations 

This paper considers the 2D incompressible or steady backward facing step flow. The governing 

equations are as follows: 

∇ ∙ 𝑽 = 0 
𝜕𝑽

𝜕𝑡
+ 𝑽 ∙ ∇𝑽 =

1

𝜌
∇𝑃 + 𝜈∇2𝑽 

where 𝑽 = (𝑢, 𝑣) is the velocity field, 𝜈 is the kinematic viscosity, and 𝑃 is the pressure. The 

governing equations are implemented in MATLAB, named Navier2D by Darren Engwirda 

[20], and it is used to calculate the velocity field 𝑽 on triangular meshes numerically. 
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The computational domain is illustrated in the top figure of Figure 1. The height of the step is 

designated as ℎ . We choose the length of the upstream channel as 250ℎ  since the initial 

conditions for both velocity components in this study are constants at the inlet so the 𝑢 profile 

can be developed well enough for long channel.  The length of the downstream channels of the 

step is 50ℎ.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Computational domain and boundary conditions 

 

The boundary conditions and the locations of detachments and reattachment are shown in the 

bottom figure of Figure 1. The detachments and reattachments 𝑦0, 𝑥0, 𝑥1, 𝑥2 and 𝑥3 are shown 

in blue, red, cyan, magenta and green dots in the figures in Section 3. The locations of centers 

of vortices are shown by *. The computational domain is normalized using $h=1$. The outputs 

in terms of detachments, reattachments and locations of vortices are also normalized and 

compared with the results in Erturk [19]. 

Review of AMR Method 

This section summarizes the 2D AMR method proposed by Li [7] based on the theory 

developed from qualitative theory of differential equations [9]. 

 

Assume that 𝑽𝑙 = 𝑨𝑿 + 𝒃 is a vector field on a triangle obtained by linearly interpolating the 

vectors at the three vertexes of the triangle, where 

𝑨 = (
𝑎11 𝑎12

𝑎21 𝑎22
) 

is a matrix of constants, 

𝒃 = (
𝑏′1
𝑏′2

) 

is a vector of constants and  

 

 
 

 

 

50h 

 

𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
𝑣 = 0 
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𝑿 = (
𝑥1

𝑥2
) 

is a vector of spatial variables. The continuity equation for 𝑽𝑙  and a steady flow or an 

incompressible fluid is 

∇ ∙ 𝑽𝑙 = 𝑡𝑟𝑎𝑐𝑒(𝑨) = 0.     (1) 

 

Let 𝑓 be a scalar function depending on spatial variables only. Substituting 𝑓𝑽𝑙 into the vector 

field 𝑽  of the continuity equation ∇ ∙ 𝑽 = 0  obtains a differential equation. Solving the 

differential equation for 𝑓 for the four different Jacobian forms of the coefficient matrix 𝑨 gives 

the expressions of 𝑓 as shown in Table 1. In Table 1, (𝑦1, 𝑦2)𝑇 = 𝑽−1𝑿 and (𝑏1, 𝑏2)𝑇 = 𝑽−1𝒃 

 where 𝑽 satisfies 𝑨𝑽 = 𝑽𝑱 and 𝑱 is one of the Jacobian matrices in Table 1. Vectors 𝑽𝑙 and 

𝑓𝑽𝑙 produce same streamlines if 𝑓 ≠ 0, ∞ (refer to Section 2.2 of [11]). The introduction of 

functions 𝑓 reduces the number of refined cells in refined meshes dramatically [21]. 

 

Table 1. Jacobean matrices and corresponding expressions of 𝑓 (𝐶 ≠ 0) 
 

Case Jacobean f  

 

1 








2

1

0

0

r

r
( 00 21  rr ) 




















2

2
2

1

1
1

r

b
y

r

b
y

C
 

 

2 








00

01r
( 01 r ) 

1

1
1

r

b
y

C



 

 

3 

 










r

r

0

1
( 0r ) 

2

2
2 










r

b
y

C
 

 

 

4 












( 0 ,0  ) 

2

22

21
2

2

22

21
1 











































 bb
y

bb
y

C
 

 

 

The conditions (MC)(MC is the abbreviation of mass conservation) are the functions 𝑓 in Table 

1 not equaling zero or infinity at any point on the triangular domains. 

 

We review the algorithm of AMR method for quadrilateral meshes [17]. The algorithm can 

also be used to a triangular mesh after a subdivision scheme for a triangle is defined. We 

describe the algorithm of AMR method into two parts:  

 cell refinement algorithm - describes how to use the conditions (MC) to refine a 

quadrilateral cell in a given mesh.  

 the algorithm of AMR method. 

 

The AMR is an infinite process. To avoid an infinite refinement of a mesh, we choose a pre-

specified threshold number of refinements 𝑇  based on the accuracy requirements. The 

algorithm of cell refinement is:  
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Step 1 Subdivide a quadrilateral cell into two triangles. If 𝑽𝑙 satisfies Eq. (1) on both 

triangles, no refinement for the cell is required. Otherwise, go to Step 2; 

 

Step 2 Apply the conditions (MC) to both of the triangles. If the conditions (MC) are 

satisfied on both triangles, no refinement for the cell is required. Otherwise, we 

subdivide the cell into a number of small cells such that the lengths of all sides of the 

small cells are truly reduced (e.g. connecting the mid-points of opposite sides of a 

quadrilateral by line segments produces four small quadrilaterals and the lengths of the 

sides of the four small quadrilaterals are truly reduced). 

 

The algorithm of AMR method is:  

Step 1 Evaluate the numerical velocity field for a given initial mesh; 

 

Step 2 Refine all cells of the initial mesh one by one using the above algorithm of cell 

refinement; 

 

Step 3 Take the refined mesh as initial mesh and go to Step 1 until a satisfactory 

numerical velocity field is obtained or the threshold number 𝑇 is reached. 

 

In this paper, we subdivide a quadrilateral cell by connecting the mid-points of two opposite 

sides of a quadrilateral [1] and set 𝑇 = 2, that is, we subdivide the cells on which one of the 

MC conditions is satisfied at most twice. 

Accuracy Verifications by Comparison with Benchmarks 

The accuracy is examined by using numerical velocity fields with the residuals less than 10−8 

for both 𝑢 and 𝑣. The initial mesh has a step size of 0.1 in both 𝑥 and 𝑦 directions. The initial 

velocity field is 𝑢 = 𝑣 = 0. The accuracy of the AMR method depends fully on the accuracy 

of the numerical velocity fields calculated by Navier2D. The profiles of 𝑢 of the numerical 

velocity fields show the accuracies of the calculated fields (refer to Figs. 2, 3, 5, 6, 8, 9, 11, and 

12). The refined meshes show the accuracy of the AMR method. 

 

The Reynolds number is defined as 𝑅𝑒 =
𝑈𝐷

𝜐
 where 𝑈 is the inlet mean velocity or in other 

words two thirds of the maximum inlet horizontal component of the velocity field and the 𝐷 is 

the hydraulic diameter of the inlet channel which is equivalent to twice the inlet channel height 

ℎ [19]. However, as you will see, the Reynolds numbers 𝑅𝑒 are not same using the above two 

definitions for each of the cases considered in this section. Therefore, the 𝑅𝑒 in the following 

subsections are estimates. In this study, we make the maximum horizontal component of the 

numerical velocity fields at the step approximately 1.5 by choosing appropriate boundary 

condition at the inlet. We set different CFL numbers in Navier2D for different Reynolds 

numbers. The CFL condition is a necessary condition for convergence and stability of a 

numerical method. We choose suitable CFL numbers to obtain reliable numerical solutions. 

𝑅𝑒 = 100 

Figs. 2 and 3 show the comparisons between the profile of the horizontal component 𝑢 of the 

exact analytical velocity and the calculated ones on the initial and once refined meshes at the 

step. From these figures, we understand the differences between the exact 𝑅𝑒 and calculated 

ones. The difference between the profiles of analytical 𝑢 and the calculated one on the initial 

mesh is smaller than that on the once refined mesh. However, the profile on the once refined 

mesh has better agreement with the profile generated using 500 uniform cells on the inlet 
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channel upstream of the step with length 20ℎ and width ℎ, and the analytical 𝑢 profile as the 

inlet boundary condition (Figure 3 [19]). The 𝑢 profiles for low Reynolds numbers are slightly 

different from the corresponding exact analytical profiles [19]. 

 

 

 

 

 

 

Figure 2.  Comparison of the profiles of 𝑢 at the step for 𝑅𝑒 = 100 between the current 

study and the analytical solutions on initial mesh 

 

 

 

 

 

 

Figure 3.  Comparison of the profiles of 𝑢 at the step for 𝑅𝑒 = 100 between the current 

study and the analytical solutions on once refined mesh 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Twice refined mesh for 𝑅𝑒 = 100 with locations of detachment, reattachments 

and vortex centre 
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The once refined and twice refined meshes are shown in Figure 4. The locations of all 

detachment, reattachment and centers of vortices are held within the twice refined cells. 

𝑅𝑒 = 200 

The 𝑢 profiles for 𝑅𝑒 = 200 are shown in Figs. 5 and 6. They present similar patterns to those 

for 𝑅𝑒 = 100  in Figs. 2 and 3 but bigger differences between the analytical and calculated 𝑢 

profiles at the step for both cases.  

 

The locations of all detachment, reattachment and centers of vortices are held within the twice 

refined cells as shown in Figure 7. 

 

 

 

 

 

 

 

Figure 5.  Comparison of the profiles of 𝑢 at the step for 𝑅𝑒 = 200 between the current 

study and the analytical solutions on initial mesh 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Comparison of the profiles of 𝑢 at the step for 𝑅𝑒 = 100 between the current 

study and the analytical solutions on once refined mesh 

 

𝑅𝑒 = 400 

The 𝑢 profiles for 𝑅𝑒 = 400 are shown in Figs. 8 and 9. Once again, similar patterns to those 

for 𝑅𝑒 = 100 are obtained with even bigger differences between the analytical and calculated 

𝑢 profiles for both cases.  

 

The locations of all detachment, reattachment and centres of vortices below the middle line of 

the channel and 𝑥2 are held within the twice refined cells but the locations of 𝑥3 and the centre 

of vortex 𝑥2-𝑥3 are held within the once refined cells only as shown in Figure 10. Finer initial 

mesh or more accurate computational velocity field is required for 𝑅𝑒 = 400  from the 𝑢 

profiles. 
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Figure 7.  Twice refined mesh for 𝑅𝑒 = 200 with locations of detachment, reattachments 

and vortex centre 

 

 

 

 

 

 

Figure 8.  Comparison of the profiles of 𝑢 at the step for 𝑅𝑒 = 400 between the current 

study and the analytical solutions on initial mesh 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Comparison of the profiles of 𝑢 at the step for 𝑅𝑒 = 400 between the current 

study and the analytical solutions on once refined mesh 

 

 

 

 

ICCM2019, 9th-13th July 2019, Singapore

586



 

 

 

 

 

 

 

 

 

Figure 10.  Twice refined mesh for 𝑅𝑒 = 400 with locations of detachment, 

reattachments and vortex centre 

𝑅𝑒 = 800 

Figs. 11 and 12 show the largest differences between the analytical and calculated 𝑢 profiles 

for all Reynolds numbers considered. The differences may be not acceptable in practice. Finer 

initial mesh or more accurate computational velocity field is required for better outcomes. 

 

 

 

 

 

 

 

 

 

Figure 11.  Comparison of the profiles of 𝑢 at the step for 𝑅𝑒 = 800 between the current 

study and the analytical solutions on initial mesh 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  Comparison of the profiles of 𝑢 at the step for 𝑅𝑒 = 800 between the current 

study and the analytical solutions on once refined mesh 
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The locations of 𝑦0, 𝑥1, and the centre of primary vortex are held within the twice refined cells 

but 𝑥0 and center of vortex 𝑦0-𝑥0 are held within the once refined cells as shown in Figure 13. 

The locations of 𝑥2 and 𝑥3 are held within the twice refined cells but the center of vortex 𝑥2-𝑥3 

is held within a cell without any refinements as shown in Figure 14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  Twice refined mesh for 𝑅𝑒 = 800 with locations of detachment, reattachment 

and vortex centre for 𝑦 in [0, 1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.  Twice refined mesh for 𝑅𝑒 = 800 with locations of detachment, reattachment 

and vortex centre for 𝑦 in [1, 2] 

Estimated Locations of the Centres of Vortices 

Table 2 shows the coordinates of vortex centers from the benchmark [20] and the corresponding 

coordinates for 𝑅𝑒 = 100 , 200 , 400 , and 800  calculated from the linearly interpolated 

velocity fields 𝑽𝑙  on the initial and once refined meshes. The first row in the table are the 
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estimated centres using initial mesh, the second row are the estimated centers using the once 

refined mesh and the last row are benchmarks for each category. There are a number of 

singularities around point (13.8705, 1.6494) in the MATLAB outputs for vortex 𝑥2-𝑥3 and case 

𝑅𝑒 = 800 on the once refined mesh with one example illustrated in Table 2 below. 

 

Table 2. Estimated locations of the centers of vortices 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

We applied the AMR method twice to the initial meshes based on the numerical solutions of 

2D backward facing step flow produced by Navier2D. The accuracy of the AMR method shown 

is sufficient for 𝑅𝑒 = 100 and 200, and is acceptable for 𝑅𝑒 = 400 and 800 based on the 

differences between the profiles of the horizontal component of the velocity fields at the step. 

The conclusion is that one setting for the domain, initial mesh and the residual error cannot 

achieve similar accurate numerical velocity fields for different Reynolds numbers. Therefore, 

the further research topics may include:  

 Use longer lengths of upstream and downstream channels of the step for bigger 

Reynolds numbers.  

 Use finer initial meshes when Reynolds number increases. 

 Calculate more accurate numerical velocity fields when Reynolds number increases.  
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Abstract 

In view of the shortcomings of low uniformity and high discrete of fertilization in orchard, the 
Discrete Element Method was used to study the fertilization mechanism of the orchard 
ditching fertilizer applicator. Firstly, on the basis of studying the existing linear fertilizer 
guiding mechanism, a concave and convex fertilizer guiding mechanism was proposed, and a 
virtual simulation model of three fertilizer guiding mechanisms was established. Secondly, the 
basic parameters of granular organic fertilizers were analyzed, and the kinetic model was 
established by combining the kinetic analysis during the falling process. Finally, the 
uniformity of fertilization was evaluated by discrete coefficient and was set as the target. The 
discrete element simulation optimization experiments were carried out on the concave, linear, 
convex and different curvature radius of the fertilizer guiding mechanism, and the optimal 
concave fertilizer guiding mechanism and its optimal radius of curvature were optimized. 
Simulation and field experiments show that among the three kinds of fertilizer guiding 
mechanisms, the discrete coefficient of the convex fertilizer guiding mechanism is the 
smallest and the uniformity of fertilization is the highest; in the convex fertilizer guiding 
mechanism with different curvature radius, the coefficient of discrete is the smallest and the 
uniformity of fertilization is the highest when the radius of curvature is 600mm; after 
optimization, the discrete coefficient was reduced from 0.51 to 0.26, and the uniformity of 
fertilization was increased by 49.02%. This provides scientific basis for design optimization 
of orchard ditching fertilizer applicator. 

Keywords: Fertilizer Guiding Mechanism; DEM; Simulation optimization; Discrete 
coefficient; Uniformity 

Introduction 

Fertilizer is the grain of fruit trees. Fertilization of fruit trees is the key operation link in fruit 
tree production. The quality of fertilization directly affects the absorption of nutrients in fruit 
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trees. Rational fertilization is the basis for high quality and high yield of fruit trees [1]-[3]. Fruit 
trees fertilizer predominantly are inorganic fertilizer and organic fertilizer: Inorganic fertilizer 
is mainly chemical fertilizer, characterized by strong fertility and fast fertilizer efficiency, but 
it is easy to cause soil structure change, soil organic matter content decline, tree growth and 
fruit quality reduction; application of organic fertilizer can help improve soil physicochemical 
properties, improve leaf physiology, increase fruit yield and improve fruit quality [4]-[6]. 
Fertilization uniformity is a key factor affecting the effect of fertilization operations, and is an 
important indicator for evaluating the performance and effectiveness of work tools [7]-[10]. 
Patterson [11] and the like studied the theoretical motion model and motion mechanism of 
various fertilizer granules, simulated and tested the fertilizer granule distribution and 
fertilization uniformity, and analyzed the average error between the theoretical value and the 
actual measured value, which laid the foundation for the mathematical theoretical model of 
the fertilizer application machine. P. Van Liedekerke [12] and the like used the discrete element 
method to start the flow of granules from the container, and the plate and the inclined disk are 
used to simulate the flow of granules affected by the rotating disk. Artur Przywara [13] and the 
like studied the influence of the structure and operating parameters of the centrifugal disc 
spreader on the spatial distribution of the fertilizer, determined the rotational speed of the disc, 
the feed position of the fertilizer on the disc, the blade angle on the disc and the type of 
fertilizer has an effect on the spatial distribution of fertilizer. Villette [14]and the like proposed 
a new method for simultaneously measuring the horizontal flow and vertical flow distribution 
of a disc-type fertilizer, paving the way for studying the distribution of fertilizer granules and 
testing the uniformity of fertilization. Aphale [15] and the like calculated and tested the 
trajectories of various fertilizer granules, and obtained the average error between the 
theoretical value and the actual measured value under different disk rotational speed 
conditions, which provided a theoretical basis for the test. Zhang Tao [16] and so on simulated 
the fertilization process of the fertilizer-discharging mechanism through discrete elements, 
formulated design variables and optimization targets, developed motion simulation software 
and parameterized platform, optimized the structural parameters of the fertilizer-discharging 
mechanism, and improved the uniformity of fertilization. Chen Xiongfei [17] and so on 
designed a two-stage spiral fertilizer device, and established a mathematical model of the 
single-circle discharge amount of the fertilizer-fertilizing spiral. It was determined through 
experiments that the two-stage spiral fertilizer-removing device had better fertilizer-removing 
effects for various forms and better adaptability with fertilizer. Yang Xinlun [18] and so on 
established the mathematical model of the blade type fertilizer mechanism, formulated the 
design variables and optimization objectives, developed the motion simulation software and 
the parameterization platform, and optimized the structural parameters of the blade type 
fertilizer removal mechanism. Yuan Wensheng [19] and so on designed a scoop wheel fertilizer 
discharge device and established the three-dimensional model for simulation of fertilizer, 
tested cavitation resistance and uniformity of the amount of fertilizer per hole fertilizer 
apparatus, and studied the fertilizer discharge effect of the fertilizer discharger under different 
rotation speeds of the fertilizer components. Lv Jinqing [20] and so on carried out simulation 
tests on the screw-type fertilizer discharge mechanism under different working speed 
conditions, accurately analyzed the mathematical relationship between the rotational speed 
and the displacement, realized the optimal design of the screw-type fertilizer discharge 
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mechanism, and improved the uniformity of fertilization. 

After comprehensively analyzing the research status at home and abroad, and the effect of 
fertilizer-discharging mechanism on fertilization uniformity, a conclusion has been made that, 
at present, the research on the effect of fertilizer-dispensing institutions on fertilization 
uniformity is mature, but the research on the influence of fertilizer guiding mechanism on 
fertilization uniformity is still in its infancy. Based on the study of the influence of the 
fertilizer guiding mechanism on the uniformity of fertilization, this paper optimizes the 
existing fertilizer guiding mechanism and provides a theoretical basis for the design and 
processing of the orchard ditching fertilizer machine. 

Orchard Double-row Ditching Fertilizer Structure Design 

Machine Structure 

Double-row orchards ditching fertilizer overall structure is shown in Fig. 1 and Fig. 2, mainly 
configured by the rack, fertilizer box, transmission, ditching mechanism, mechanism of 
fertilizer, fertilizer guiding mechanism, and soil covering machine, and the technical 
parameters of the whole machine are shown in Table 1. 

 

Figure 1. Main view of the machine Figure 2. Vertical view of the machine 

1 traction rack 2 adjust pull pipe 3 drive shaft 4 rack 5 base fertilizer sprocket 6 O-chain 7 base fertilizer box 8 
fertilizer box 9 base fertilizer outlet 10 auger 11 conveyor board 12 side transmission box 13 fertilizer guiding 
mechanism 14soil cover 15 trench cutter disc 16 trench cutter 17 trench transmission box 18 main transmission 

box 19 middle transmission box 20 wheel 21 fertilizer outlet 22 hydraulic cylinder 23 base fertilizer scraper 

Table 1. Main technical parameters 

Item Parameters Units 
Supporting power ≥58 kw 

Outline size 3820×2040×2510 mm 
Fertilization depth 0~50 mm 

Fertilizer application amount 0.5~2 kg.m-1 
Base fertilizer application amount 3~5 kg.m-1 
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Fertilizer box volume 650 L 
Base fertilizer box volume 2500 L 

Fertilizer Guiding Mechanism 

The fertilization methods in the orchard mainly include the general application of the whole 
garden, the application of the crown, the application of the ring ditch, the application of the 
strip ditch, the application of the radial ditch and the application of the hole. For new orchards 
with wide line spacing and wide plant spacing, strip-shaped furrow fertilization is often used. 
The strip-shaped furrow fertilization method requires strips of 1000~2000mm long, 
300~400mm wide and 300~500mm deep between the rows of fruit trees, then fertilize and 
cover the soil [21]-[22]. 

Because the amount of fertilization in the orchard is large, in order to ensure the smooth fall 
of the fertilizer, the fertilizer guiding mechanism of the existing orchard trenching and 
fertilizing machine is mostly a trough-shaped structure, as shown in Fig. 3. Among them, the 
fertilizer-in port of the fertilizer guiding mechanism is connected with the fertilizer-out port of 
the fertilizer-discharging mechanism, and the fertilizer-out port of the fertilizer guiding 
mechanism is equal to the groove width. The fertilizer plug-in plate in the fertilizer guiding 
mechanism divides the fertilizer-transfer port and the fertilizer-out port into three parts. 

 

1 Fertilizer-in port 2 Fertilizer-transfer port 3 Fertilizer plug-in plate 4 Fertilizer-out port 

Figure 3. Diagrammatic sketch of fertilizer guiding mechanism 

Fertilizer Granules Motion Analysis 

Determination of Parameters of Fertilizer Granules Characteristics 

The fertilizer granules used in the experiment were granular organic fertilizers. 100 granular 
organic fertilizers were randomly selected as the parameter measurement samples, which 
were placed on blank A4 paper and measured by image processing technology to obtain the 
accurate size of the granular organic fertilizer. 

ICCM2019, 9th-13th July 2019, Singapore

594



First, a black square of 10mm×10mm was fabricated on the red A4 paper as an area 
calibration, and blank A4 paper with area calibration was used as the background plate. Next, 
the parameter measurement was randomly scattered on the background board, and the original 
image of granular organic fertilizers was obtained. The color difference between the test 
sample and the background plate was used, and a single original image was divided to obtain 
the threshold value of the other image, as shown in Fig. 4. Finally, according to the area 
calibration on the background plate in the binary image, the equivalent diameter and 
circularity of the granular organic fertilizer were calculated, and the minimum equivalent 
diameter, the minimum circularity, the maximum equivalent diameter and the maximum 
circularity, the average equivalent diameter and the average circularity of the statistical 
parameter measurement sample were calculated, as shown in Table 2. The granular organic 
fertilizer circularity distribution diagram was drawn, as shown in Fig. 5. 

 Circularity Ø = 4πS C⁄ 2                                          (1) 

 Equivalent diameter d =  C π⁄                                                           (2) 

 The average diameter D�  =  D N⁄                                                         (3) 

 D=∑ di
N
i=1                                                                            (4) 

In equations (1), (2), (3), (4): 

S-the area of granular organic fertilizer; C- the circumference of granular organic fertilizer; 
N-the amount of granular organic fertilizer 

  

(a) Original image (b) Binary image 
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Figure 4. Original image and binary image of granular organic fertilizer 

Table 2. Parameter of granular organic fertilizer 

Granular organic fertilizer Circumference C(mm) Equivalent diameter D�(mm) Circularity Ø 
Average value 9.16 2.92 0.93 

Minimum value 7.60 2.42 0.90 
Maximum value 11.92 3.79 0.97 

 

Figure 5. Circularity distribution of granular organic fertilizer 

It can be seen from Table 2 and Fig. 4 that the circularity of the 100-parameter measurement 
samples is 0.93, and the concentration is between 0.90 and 0.97. As the circularity of 
parameter measurement sample gets closer to 1, the closer the parameter measurement sample 
is to the sphere [23]. Since the parameter measurement sample has a high circularity 
distribution, the granular organic fertilizer is assumed to be spherical during the simulation. 

The Equation of Motion of Fertilizer Granules in the Fertilizer Guiding Mechanism 

Granular organic fertilizers fall into the fertilizer guiding mechanism by means of fertilizer 

discharge mechanism, with a certain initial velocity vp. After the granular organic fertilizer 

enters the fertilizer guiding mechanism, it is subjected to gravity Gp, Buoyancy Ffp, and air 

resistance Fzp. After the interaction, it finally falls into the ditch of the orchard trenching and 

fertilizing machine. The specific process is shown in the Fig. 6 [24]. 
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Figure 6. Falling process of fertilizer 

 Gravity Gp = ρpVp;                           (5) 

 Buoyancy Ffp = ρaVpg;                          (6) 

 Air resistance Fzp = 1
2

KρpSpVp
2;                     (7) 

 Air resistance coefficient K = 3
8

CDρa
1

ρprp
;                 (8) 

There is a correlation between drag coefficient 𝐶𝐶𝐷𝐷and Reynolds number 𝑅𝑅𝑒𝑒: Re = 2
rpvpρp

ηa
; (9) 

In equations (5), (6), (7), (8), (9): 

ρp-granular organic fertilizer density; Vp-volume of granular organic fertilizer; ρa-air density; 

ηa -aerodynamic viscosity; vP -granular organic fertilizer velocity; Sp -granular organic 

fertilizer frontal area; rp-granular organic fertilizer radius; g-gravity acceleration; 

Assuming that the positive direction of the Z axis is opposite to the direction of gravity of the 
granular organic fertilizer, the equation of motion of the granular organic fertilizer in the X, Y, 
and Z directions [25]-[26] is 

 X direction d2x
dt2

=-KvPx�vPx
2+vPy

2+vPz
2;                (10) 

 Y direction d2y
dt2

=-KvPy�vPx
2+vPy

2+vPz
2;                (11) 

 Z direction d2z
dt2

=-KvPz�vPx
2+vPy

2+vPz
2;                (12) 
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In equations (10), (11), (12): 

vPx-the velocity component in the X direction; vPy-the velocity component in the Y direction; 

vPz-the velocity component in the Z direction; 

Fertilization Uniformity Evaluation 

The granular organic fertilizer passes through the fertilizer guiding mechanism and finally 
falls into the ditch of the orchard ditching fertilizing machine. In order to evaluate the 
uniformity of fertilization, the distribution range of fertilizer in a ditch is selected as the 
sampling area, and meshing is performed according to 15 rows and 15 columns, as shown in 
Fig. 7. Among them, the width of the sampling area is the groove width, and the cell grid size 
is 20mm×20mm. 

 

Figure 7. Mesh partition of sampling regions 

The discrete coefficient CV is used as a measure of the uniformity of fertilizer distribution. 
The equations for calculating the discrete coefficient is: 

 CV= S
q�
；                           （13） 

 𝑆𝑆 = �∑ (𝑞𝑞𝑖𝑖−𝑞𝑞�)2𝑛𝑛
𝑖𝑖=1
𝑛𝑛−1

；                        （14） 

 q�=�
∑ �qi�

2n
i=1

n
；                          （15） 
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In equations (13), (14), (15): 

S-standard deviation; q�-The average number of samples in the unit area of the mesh 

granular organic fertilizer; n-total number of cell grids in the entire sampling area; qi-the 

number of samples in the i-th unit lattice region granular organic fertilizer; 

To better reflect the distribution of granular organic fertilizer in the entire sampling area, the 
discrete coefficients of the 1th row, and the 15th row are selected as a reflection of the edge 
area of the distribution of organic fertilizer, discrete coefficients of 5th row, 8th row, 11th row 
are used as a parameter to reflect the uniformity of granular organic fertilizer distribution in 
the middle region. 

Experiment and Analysis 

Firstly, the fertilizer guiding mechanism was introduced into the EDEM simulation software 
and the relevant parameters were set. In order to obtain the effect of the granular organic 
fertilizer passing through the fertilizer guiding mechanism into the ditch, an open groove of 
1000mm in length, 300mm in width and 400mm in depth was set to simulate the ditching of 
the ditching and fertilizing machine. The open groove was located directly below the export 
of the fertilizer guiding mechanism, wherein the axis was in the same vertical plane as the 
central axis of the fertilizer guiding mechanism, and the bottom of the opening groove was 
200mm away from the export of the fertilizer guiding mechanism. Secondly, the fertilizer 
guiding mechanism was set as a random granules generator, so that granular organic fertilizer 
was randomly generated at the opening port in the simulation process. Among them, the 
granular organic fertilizer was randomly generated with an average equivalent diameter of 
2.92mm as the mean value, a minimum equivalent diameter of 2.42mm, and a maximum 
equivalent diameter of 3.79mm. Finally, the motion characteristics of the assembly was set up. 
According to the principle of relative motion, the motion of the assembly was converted into 
the relative motion of the geometry, that is, the open groove moved in a reverse direction with 
respect to the fertilizer guiding mechanism at a speed of 0.25m/s [27]. 

In the simulation experiment, in order to ensure the accuracy of the test data under different 
structural parameters, the total simulation time was set to 2s, the fixed time step was set to 
20%, and the target storage interval was set to 0.04s. The material of the mechanism was set 
to steel, and the relevant material parameters in the test were shown in Table 3. The dynamic 
friction coefficient and the static friction factor between the material granules and the 
different materials were determined by the shear box method and the bevel method 
respectively. The dynamic and static friction factor measurement test of the material granules 
and each material was repeated three times, and the test results were averaged; The free fall 
was utilized. The method was used to determine the collision recovery coefficient between 
material granules and different materials. The collision recovery coefficient determination test 
of material granules and the same material was repeated three times, and the test results were 
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averaged. The contact mechanical parameters between different materials were shown in 
Table 4. 

Table 3. Parameter of materiel 

Parameter Granular organic fertilizer Fertilizer guiding mechanism Land 
Poisson ratio 0.25 0.45 0.50 

Shear modulus/Pa 1×107 1×106 1×108 
Density/（kg·m-3） 1300 3500 1200 

Table 4. Parameter of contact mechanics between materials 

Parameter 
Granular organic 

fertilizer—Granular 
organic fertilizer 

Granular organic 
fertilizer—Fertilizer 
guiding mechanism 

Granular organic 
fertilizer—Land 

Recovery coefficient 0.10 0.45 0.02 
Static friction factor 0.30 0.30 1.25 

Dynamic friction factor 0.25 0.20 1.25 

Test and Analysis of Different Shapes of Fertilizer Plug-in Plate 

In the fertilizer guiding mechanism, the fertilizer plug-in plate was one of the important 
factors affecting the uniformity of fertilization. The fertilizer plug-in plate of the existing 
linear fertilizer guiding mechanism was a linear type, and on this basis, a concave and a 
convex fertilizer guiding mechanism are proposed. Among them, the fertilizer plug-in plate of 
the concave fertilizer guiding mechanism was a concave curve type, and the fertilizer plug-in 
plate of the convex fertilizer guiding mechanism was a convex curved type, and the three 
fertilizer plug-in plates basically covered most guiding fertilizer insertion boards, which 
covered the main possible types of fertilizer plug-in plates, namely the concave, linear, and 
convex fertilizer guiding mechanisms, shown in Fig. 8. 

               

(a). concave type (b). linear type (c). convex type 
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Figure 8. Diagrammatic sketch of three fertilizer guiding mechanisms 

The shape of the fertilizer plug-in plate in the fertilizer guiding mechanism was taken as a 
single factor variable, and other parameters were unchanged. The simulation tests were 
carried out on the concave, linear and convex fertilizer guiding mechanisms respectively. 
Among them, the radius of curvature of the fertilizer plug-in plate of the concave and the 
linear fertilizer guiding mechanism was set to 350mm. 

At 1s, the velocity directions of 330 granular organic fertilizers at the fertilizer outlets of the 
concave, linear and convex types were measured, as shown in Table 5. Among them, it was 
represented by -1~1 in the EDEM simulation software. Based on the horizontal speed, the 
entire speed plane was equally divided into six parts at intervals of 30°, as shown in Fig. 9. 

The speed direction in Table 5 through ∠α= νfi

2
×180°（16） was converted to the speed 

plane of Fig. 9, and the amount of granular organic fertilizer in each part was counted. The 
velocity distribution map of different parts of granular organic fertilizer was drawn, as shown 
in Fig. 10. 

In equation (16): 

"∠α"-the angle between the velocity direction of the granular organic fertilizer and the 

horizontal velocity direction; "νfi"-the speed direction of the i-th granular organic fertilizer; 

Table 5. Velocity direction of granular organic fertilizer 

Item 
Velocity direction of granular 
organic fertilizer in concave 
fertilizer guiding mechanism 

Velocity direction of granular 
organic fertilizer in linear 

fertilizer guiding mechanism 

Velocity direction of granular 
organic fertilizer in convex 

fertilizer guiding mechanism 
Minimum value -0.98 -0.98 -0.98 
Maximum value 0.99 0.99 0.99 
Average value 0.18 0.34 0.13 

Variance 0.35 0.40 0.30 
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Figure 9. Partition of velocity direction Figure 10. Distribution of velocity direction in 
different parts  
It can be seen from Fig. 10 that in the concave and linear fertilizer guiding mechanism, the 
granule direction of the granular organic fertilizer is distributed in the third and fourth parts, 
and the number of granules is higher than the first, second, fifth and sixth parts; In the convex 
fertilizer guiding mechanism, the granule direction distribution of the granular organic 
fertilizer is almost equal in the number of granules in each part. The granular organic fertilizer 
in the first and sixth parts of the velocity direction is concentrated on both sides of the bottom 
of the ditch when falling into the bottom of the ditch; the granular organic fertilizer in the 
third and fourth parts of the velocity direction is concentrated in the bottom of the ditch when 
falling into the middle part of the bottom of the ditch; the granular organic fertilizer in the 
second and fifth parts of the velocity direction is concentrated in the middle of the ditch when 
it falls into the bottom of the ditch. In the concave and linear fertilizer guiding mechanism, 
when the granular organic fertilizer falls into the bottom of the ditch, it is concentrated in the 
middle part of the ditch, and the distribution on both sides is less, resulting in uneven 
distribution of granular organic fertilizer; in the convex fertilizer guiding mechanism, the 
velocity direction of the granular organic fertilizer is distributed evenly in all parts, and the 
distribution after falling into the bottom of the groove is relatively uniform. 

In order to further evaluate the uniformity of fertilization, the discrete coefficients of the edge 
region and the middle region in the sampling area were calculated and counted. The results of 
the discrete coefficients of the edge regions of different fertilizer guiding mechanisms are 
shown in Table 6. The discrete coefficients of the middle regions of different fertilizer 
guiding institutions are shown in Table 7. 

Table 6. CV of different fertilizer guiding mechanisms in edge region 

Edge region CV of concave fertilizer 
guiding mechanism 

CV of linear fertilizer 
guiding mechanism 

CV of convex fertilizer 
guiding mechanism 

1st row 0.57 0.43 0.36 
15th row 0.50 0.54 0.43 

Table 7. CV of different fertilizer guiding mechanisms in middle region 

Middle 
region 

CV of concave fertilizer 
guiding mechanism 

CV of linear fertilizer 
guiding mechanism 

CV of convex fertilizer 
guiding mechanism 

5th row 0.43 0.50 0.29 
8th row 0.42 0.52 0.32 
11th row 0.42 0.49 0.28 

From the discrete coefficients of each region in the sampling area, it can be seen that in the 
three fertilizer guiding mechanisms of concave, linear and convex that, the discrete 
coefficients of the edge region and the middle region of the convex fertilizer guiding 
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mechanism are lower than the concave and linear guides. The discrete coefficient of each part 
of the fertilizer guiding mechanism has the highest uniformity of fertilization. 

The shape of the fertilizer plug-in plate changes the speed direction of the granular organic 
fertilizer, thereby affecting the uniformity of fertilization. The convex fertilizer plug-in plate 
is superior to the linear and concave fertilizer plug-in plate, and the convex fertilizer guiding 
mechanism is optimal. 

Test and Analysis of the Fertilizer Plug-in Plate with Different Curvature Radius 

In order to further determine the influence of the fertilizer plug-in plate with different 
curvature radius on the fertilization uniformity in the convex fertilizer guiding mechanism, 
the radius of curvature of the fertilizer plug-in plate was taken as a single factor variable, with 
a radius of curvature of 150mm~800mm at intervals of 50mm. The simulation experiment 
was carried out on the fertilizer plug-in plate, and the simulation results are shown in Fig. 11. 
Separate the discrete coefficients of the edge region and the middle region at different 
curvature radius were analyzed, as shown in Table 8. 

    
R=150             R=200             R=250            R=300 

    
R=350             R=400             R=450            R=500 

    
R=550             R=600             R=650            R=700 
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R=750             R=800             R=850            R=900 

Figure 11. Simulation result under different curvature radius 

Table 8. CV under different curvature radius 

Curvature radius 
Edge region Middle region 

1st row 15th row 5th row 8th row 11th row 
150 0.99 1.02 0.81 0.82 0.86 
200 0.73 0.82 0.67 0.66 0.67 
250 0.64 0.54 0.52 0.54 0.54 
300 0.53 0.50 0.44 0.39 0.44 
350 0.36 0.44 0.29 0.32 0.28 
400 0.30 0.32 0.25 0.24 0.30 
450 0.21 0.38 0.25 0.21 0.23 
500 0.23 0.37 0.19 0.16 0.19 
550 0.18 0.31 0.15 0.21 0.16 
600 0.19 0.29 0.20 0.18 0.15 
650 0.21 0.39 0.16 0.15 0.19 
700 0.24 0.36 0.21 0.19 0.17 
750 0.28 0.28 0.17 0.20 0.21 
800 0.25 0.37 0.14 0.18 0.17 

It can be seen from Table 8 that when the radius of curvature is in the range of 
150mm~550mm, the discrete coefficient of the edge region and the middle region is gradually 
decreased; when the radius of curvature is in the range of 550mm~800mm, the discrete 
coefficient of the edge region and the middle region does not change much; the radius of 
curvature of the fertilizer plug-in plate affects the uniformity of fertilization within a certain 
range. 

To further describe the relationship between the radius of curvature and the uniformity of 
fertilization, a cubic polynomial was used to fit the discrete coefficient curves of the edge 
region and the middle region. 

First, at different radius of curvature, the average of the discrete coefficients of the first row 
and the 15th row is taken as the feature point of the discrete coefficient of the edge region; 
secondly, at the different radius of curvature, the discrete coefficient of the fifth row, the 
eighth row, the 11th row is averaged and used as the feature point of the middle region 
discrete coefficient. Finally, the cubic polynomial fitting is performed on the feature points of 
the edge region and the middle region to obtain the discrete coefficient fitting curve between 
the edge region and the middle region. The results of the discrete coefficient fitting are shown 
in Fig. 12. 

ICCM2019, 9th-13th July 2019, Singapore

604



 

Figure 12. Fitting curve of CV 

It can be seen that the edge region fitting discrete coefficient obtains a minimum value when 
the radius of curvature is 566mm, and the middle region fitting discrete coefficient obtains a 
minimum value when the radius of curvature is 596mm. In order to ensure that the discrete 
coefficients of edge and middle regions are minimized, and combined with processing 
technology and cost, the optimal curvature radius is finally determined to be 600 mm. 

In the convex fertilizer guiding mechanism, the radius of curvature of the fertilizer plug-in 
plate affects the uniformity of fertilization. Under the processing conditions, when the radius 
of curvature of the fertilizer plug-in plate is 600mm, the cost is low and the uniformity of 
fertilization is high. 

Field Trials 

In mid-June 2017, a field trial was conducted in the experimental farm of Henghe in 
Shandong Province, as shown in Fig. 13. The farm was a large-scale standardized planting of 
orchard, with a row spacing of 2.5m and a plant spacing of 1m. The Plant was 3 years old and 
grows well. The test site was loam, the soil had an absolute moisture content of 23.3%, the 
soil firmness was 76.0kPa, and the terrain was flat, which provided favorable conditions for 
the smooth progress of the test. The test prototype was a two-row ditching and fertilizing 
machine for the orchard. The fertilizer guiding mechanism was a linear fertilizer guiding 
mechanism before optimization and an external convex fertilizer guiding mechanism with a 
radius of curvature of 600mm. In order to ensure the accuracy of the experimental data, three 
regions were randomly selected, and repeated verification tests of three discrete coefficient 
measurements were performed for each region, and the discrete coefficient curves before and 
after optimization were plotted, as shown in Fig. 14. 
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(a). Field operation (b). Fertilization effect in sampling area before and after optimization 

Figure 13. Field Test 

 

Figure 14. CV curve before and after optimization in different regions 

The experimental results show that the optimized discrete coefficient curve is below the 
pre-optimization discrete coefficient curve. The optimized discrete coefficient is significantly 
smaller than the pre-optimization discrete coefficient. The average value of the discrete 
coefficient of the sampled area before optimization is 0.51. The average value of the discrete 
coefficient of the sampled area after optimization is 0.26. Fertilization uniformity increased 
by 49.02%. 

After optimizing the parameters of the fertilizer guiding mechanism, under the conditions of 
the same ditch depth and the speed, the discrete coefficient of the sampling area is reduced, 
the uniformity of fertilization is improved, and the technical requirements for the ditching and 
fertilization of the orchard are satisfied. 

Conclusion 

(1) Based on the existing linear fertilizer guiding mechanism, two other fertilizer guiding 
mechanisms, a concave fertilizer guiding mechanism and a convex fertilizer guiding 
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mechanism are proposed. 

(2) By using the shape of the fertilizer plug-in plate as a single factor variable, the three kinds 
of fertilizer guiding mechanisms of concave, linear and convex type are simulated 
respectively to determine the convex fertilizer plug-in plate of the convex fertilizer guiding 
mechanism has the best shape and its uniformity of fertilization is the highest. Among them, 
the shape of the fertilizer plug-in plate affects the uniformity of fertilization by changing the 
velocity direction of the granular organic fertilizer. 

(3) By using the radius of curvature of the fertilizer plug-in plate as a single factor variable, 
the simulation experiment is carried out on the convex fertilizer guiding mechanism with the 
radius of curvature of 150mm~800mm, and the polynomial is used to fit the discrete 
coefficient of the edge region and the middle region to determine the curve. The convex 
fertilizer guiding mechanism has an optimum radius of curvature of 600 mm. According to 
the field test, the discrete coefficient after optimization was reduced from 0.51 to 0.26, and the 
uniformity of fertilization was increased by 49.02%. 
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Abstract 

Purpose: Atrial Fibrillation is the most common clinically cardiac arrhythmia. At present, 

microwave ablation has been widely used in the treatment of atrial fibrillation, but the effect of 

microwave ablation on blood flow velocity is not enough, and blood flow velocity is closely 

related to the ablation effect of atrial fibrillation. In order to study this problem, the temperature 

field of microwave ablation in atrial fibrillation was numerically simulated. 

Methods: This research is based on the finite element method and COMSOL Multiphysics 

software for numerical simulation. In this study, a three-dimensional fat-myocardium-blood 

model is constructed, involving numerical simulation of electromagnetic field, temperature 

field and flow field.  The microwave frequency was 2450 MHz, and fat thickness was 1 mm, 

myocardial thickness was 3 mm. The ablation power was 100 Wand the ablation time was 

15s.The blood convective heat transfer coefficient were 0 W/(m2·℃), 1417 W/(m2·℃), 3350 

W/(m2·℃), 7100 W/(m2·℃). 

Results: In this simulation, the ablation area is hemispherical. When the blood convective heat 

transfer coefficient were 0 W/(m2·℃), 1417 W/(m2·℃), 3350 W/(m2·℃), 7100 W/(m2·℃), the 

maximum temperature were 192℃, 186℃, 184℃, 183℃, the transverse width were 7.5 mm, 

7.2 mm, 7 mm and 6.8 mm, and the axial length were 3.7 mm, 3.4 mm, 3.3 mm, 3.2 mm 

respectively. The maximum temperature, transverse width and axial length decrease with the 

increasing convective heat transfer coefficient. 

Conclusions: A thin cryogenic layer forms between the Myocardium and the blood . The 

maximum temperature of the ablation zone decreases with the increasing convective heat 

transfer coefficient, and the position of the effective ablation zone (≥50℃) moves to the fat 

layer. 

 

Keywords: microwave ablation; numerical simulation; blood; convective heat transfer 

coefficient 

1. Introduction 

Atrial fibrillation(AF) is the most common persistent arrhythmia in clinic. It ranks the second 

in arrhythmia and has a high fatality and disability. At present, drug therapy is the most 

commonly method to cure AF. But 10% to 15% of patients have side effects after taking the 

drug [1] [2]. In non-drug treatment, surgical treatment has become the main means, but it has a 

greater risk. In recent years, minimally invasive ablation, such as microwave ablation, 

radiofrequency ablation[3] and cryoablation[4], has been widely used on the basis of maze 

surgery. Microwave ablation is a kind of high-frequency electromagnetic wave, which 
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generates heat by inducing the vibration of water molecules in tissues and heating tissues 

directly, independent of the current passing through the probe. microwave ablation can achieve 

greater ablation depth, especially in the treatment of ventricular tachycardia. Microwave energy 

attenuates very little when it passes through fat and blood, so it has strong tissue penetration. 

 

But the heart is rich in blood, and the blood flow varies greatly in different heart locations. the 

greater the velocity of blood flow, the greater the heat transfer coefficient of blood convection, 

and the more heat it takes away. 

 

In order to reflect the epicardial ablation, this study constructed a fat-myocardium-blood model 

to explored the influence of blood flow velocity, and simulated the temperature field atrial 

fibrillation. 

2. Methods  

2.1 Geometric model 

The numerical simulation of this study is based on COMSOL Multiphysics Software. 

 

The structure of microwave antenna comes from the literature[5]. Based on the basic 

requirements of electromagnetic wave simulation, the material of antenna is defined as copper, 

and the part between inner and outer conductors was set as Teflon. The structure of THE 

microwave antenna was shown in Figure 1. The antenna, fat, myocardium and blood model 

were established. The front end of the microwave antenna was perpendicular to adipose tissue. 

The thickness of fat was 1 mm, the thickness of myocardium was 3 mm, and the thickness of 

blood was 2 cm. The model was shown in Figure 2. In this study, the convective heat transfer 

coefficients at the boundary of blood and myocardium are applied to simulate the blood flow 

velocity. The coefficients of different atrial parts were shown in Table 1. 

 

 

 

 

 

Figure 1. Structure of microwave ablation antenna 

 

Figure 2. Section drawing of numerical simulation model for microwave ablation of 

epicardial atrial fibrillation 
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Table 1. Convective heat transfer coefficient in different applied location[6][7] 

position 
Convective heat transfer 

coefficient 

within 10mm above the mitral valve on the lateral wall 1417W/(m2·℃) 

CS，Ventricular AP 3350 W/(m2·℃) 

AV node，Atrial AP，RV outflow VT 7100 W/(m2·℃) 

 

2.2 Bio-heat equation 

During ablation of atrial fibrillation, the thermoelectric coupling effect is controlled by 

Pennes' bio-heat transfer equation[8]. The formula is as follows 

 

(1) 

                                                          

T(℃), ρ（kg/m3）, ∁（J/kg·K）, K (W/m·K) and Q (W/m3) are temperature, density, specific 

heat, thermal conductivity and power density, respectively. Qb and Qm represent blood 

perfusion and metabolic heat, respectively. They are neglected for far less than that generated 

by microwave ablation . 

3. Results and Discussion 

The temperature distribution and data of ablation zone were studied under different convective 

heat transfer coefficients (0 W/(m2·℃), 1417 W/(m2·℃), 3350 W/(m2·℃), 7100 W/(m2·℃). 

The ablation power was 100W. And the heating time was 15s. The axial ablation region is 

parallel to the ablation region of the microwave antenna, and the transverse ablation region is 

perpendicular to the ablation region of the microwave antenna. According to the tissue and 

physical characteristics, 50℃  is the threshold temperature for the formation of ablation 

blockade line caused by myocardial injury. Table 2 shows the experimental data at different 

heat transfer coefficient. 

 

Table 2. Experimental data 

convective heat transfer 

coefficient W/(m2·℃) 
0  1417  3350  7100  

transverse width/mm 7.5 7.2 7 6.8 

axial length/mm 3.7 3.4 3.3 3.2 

maximum temperature/℃ 192 186 184 183 

 

As can be seen from Figure 3, with the increase of heat transfer coefficient, the maximum 

temperature deceases, while the lateral width and axial length decrease too. When the 

convective heat transfer coefficient was 0 W/(m2·℃), 1417 W/(m2·℃), 3350 W/(m2·℃) and 

7100 W/(m2·℃), the transverse width of the ablation zone was 7.5mm, 7.2mm, 7mm and 

6.8mm, and the axial length was 3.7mm, 3.4mm, 3.3mm and 3.2mm, respectively. The 

maximum temperature of the ablation zone was 192℃, 186℃, 184℃ and 183℃, 
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respectively. The presence of blood flow lowers the maximum temperature, decreases both 

the axial length and the transverse width, but the amplitude is very small.  

 

Figure 3. Changes of cardiac tissue length with convective heat transfer coefficient 

 

4. Conclusion 

This study simulated the effect of blood flow on microwave ablation of atrial fibrillation in a 

simple three-layer myocardial model. The results showed that the maximum temperature of 

ablation region decreased with the increase of convective heat transfer coefficient, and the 

transverse width and axial length decreased, but the amplitude was small.  
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Abstract 

To improve window performances in reducing noise and allowing for air exchange, most 

current approaches focus on techniques such as double glazed and ducted designs, generally 

leading to bulky designs, visually non-optimised, and with narrow-banded frequency. In this 

research, window systems based on acoustic metamaterials (AMMs) are developed, and both 

natural air ventilation and acoustic performances are evaluated. The systems incorporate 

bistable auxetic metamaterials and acoustic origami metacage designs which are particularly 

interesting for their reconfigurable and deployable nature. Several design cases with different 

design features are examined, and a specific design is then selected for a parametric analysis 

using Finite Element Method (FEM) aiming to optimise the acoustical performance. It is 

demonstrated that significant improvement in acoustic performance can be obtained in terms of 

Transmission Loss (TL). The use of AMMs could lead to designs with manifold merits over 

traditional windows, including compact size with deployability, easy reconfigurability and 

installation, and thus paving new direction in ventilation window design. 

Keywords: Acoustic metamaterials, Ventilation windows, FEM, auxetic metamaterials, 

Transmission Loss.  

 

1. Introduction 

Conventional acoustic techniques allow controlling sound wave propagation for a limited range 

of frequency, due to the device shape and bulky configuration (1,2). Metamaterials can be very 

versatile thanks to its advantages in acoustic properties related to its physical size (3,4). Two 

specific kinds of metamaterials are particularly interesting from the geometrical point of view: 

origami metamaterials and bistable auxetic metamaterials. The first metamaterial changes the 

spatial and the acoustic range of efficacy, while assuming different physical sizes by folding. 

The second metamaterial has the capacity of keeping a permanent, consistent volume, which 

may allow openings thanks to their well-known negative Poisson’s ratio (5,6). Recent studies 

have associated such techniques with acoustic performances for mechanical devices 

improvement (7,8). Actual research is still seeking a significant impact on the combination of 

noise reduction and natural ventilation, in addition to architectonical sustainable solutions (9). 

This study presents a novel acoustic design approach based on two acoustic metamaterials, 

which enable the natural air ventilation while reducing noise transmission significantly. The 

two mechanisms (origami and auxetic) are applied to already tested acoustic structure to 

increase the dynamicity in noise reduction and ventilation capacity (9). A metacage will be 

implemented by origami system, while a metasurface will be implemented with an auxetic 

mechanism. These designs allow expansion and compression of the geometries, which surround 
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(Design 1) or face (Design 2) a sound source. Finite Elements Method (FEM) simulations are 

performed with a frequency range between 100 and 5000 Hz, in order to attest the effectiveness 

of the designs. In the first case, two extreme configurations are tested (folded and unfolded 

configuration). The possibility of using a transparent material to realise both the models give 

hints for also achieving natural lightning.  

 

2. Methodology  

2.1. Geometrical settings  

FEM simulation is employed to investigate the acoustic characteristics of both models. The 

boundary conditions and simulation set-ups are detailed in this section. 

Two design models are proposed to enable noise reduction and natural ventilation between two 

separate spaces. For the origami metamaterial (Design 1) the acoustic performance is tested 

with a monopole sound source in the inside of the mechanism, aiming to screen the radiation 

towards the outer space. In the bistable metasurfaces (Design 2) the acoustic mechanism works 

with a surface sound source facing the structure which reduces noise propagation towards space 

behind it. In both cases, the sound wave and the air are meant to pass through a duct 

characterised by a number of cavities connected to it. This mechanism is supposed to create a 

resonance effect and influence significantly the sound wave propagation and so also the TL. In 

Design 1, the duct system is followed by apertures on the edges of the origami starred points 

(See Figure 1). The origami metacage has two different configurations, folded and unfolded, 

which are both tested through the numerical method to evaluate their acoustic performances. In 

Design 2, the air and sound wave passes from one space to the other through the openings that 

are created from the negative Poisson’s ratio displacements. As in the previous case, the 

openings are supported acoustically from a certain number of cavities, which in this case, 

connect the opening, as shown in Figure 2. Two configurations are tested for Design two. A 

different rotation angle characterises them as10° and 5°, so that the aperture towards which the 

cavities face is wider accordingly. 

 
Figure 1. Geometrical configurations of Design 1 unfolded (a) and folded (b) and boundary 

conditions: central point source, interior sound hard boundaries (blue), and cylindrical free 

wave radiation (dashed line). 

About the geometry in Design 1, it is mainly composed of a deployable system that can achieve 

two configurations: folded and an unfolded. Indeed, the origami structure allows the valley and 

mountain folds to go from eight points star shape (with 0.025 m length of each point’s side) to 

a circular shape of 0.256 m diameter. Internally, each point is characterised by an opening 0.052 

m each long (52% of perforation ratio of the entire boundary structure) and two cavities with 

a 

 

b 
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0.008 m depth created by three layers built starting from the perimeter surface of the metacage. 

These layers are modelled so they can leave at the centre of the point a resulting duct width 

0.008 m which allows the air and acoustic wave to flow freely. When they turn with the structure 

to assume the unfolded configuration, they have direction perpendicular to the centre with an 

angular difference of +30° (see Figure 1). 

Design 2 is an auxetic metasurface generated from the coupling of two layers, each one made 

by the repetition and connection of 4x4 basic squared units (each one 0.01 m2 wide and 0.02 m 

thick).  Figure 2 shows how this unit is repeated and connected with the others through hinges 

applied on the four edges of each one. From the negative Poisson’s ratio displacements, 

apertures are generated in between the units, which allow the air and sound wave propagation 

to pass through them. This lead to an opening ratio of 30% for the 10° configuration and of 

15% for the 5° one. Each opening has a 50% of perimeter surface removed to allow the resulting 

cavities to work as a resonator (see Figure 2). Design 2 is characterised by two layers (so four 

cavities facing the aperture, two per two of the blocks composing it). The openings which result 

from the Negative Poisson’s ratio effect are 10° and 5° wide (see Figure 2a-c), due to each 

block rotation (see Figure 2). About the cavities, a further investigation on both Design 1 and 2 

is done afterwards, involving the relationship between TL and scale changing of both the 

models. For Design 1two bigger model are analysed, having respectively 0.4 and 0.8 m diameter 

in the folded configuration (the original one is 0.2 m). While thickness changing is done on 

Design 2 to investigate if a 4-layer or 8-layer model (so for a total metasurface thickness of 0.08 

or 0.16 m) would affect TL. 

 

 
Figure 2. Geometrical configurations of Design 2, frontal view of 10° configuration (a) and 5° 

configuration (b). Schematic of interior sound hard boundaries, highlighted in blue (c). 

a 

 

c 

 

b 
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2.2. Boundary Conditions and Study Settings  

The Acoustics module of a commercial FEM software, Comsol Multiphysics, is used to 

implement the numerical model. For Design 1, a monopole point source is placed at the centre 

of the origami metacage with volume flow rate is 0.01 m2/s. At the outer boundary, cylindrical 

wave radiation is defined to simulate free outgoing waves without reflection. The simulation 

domain is filled with air, where air density and sound speed at room temperature are used. The 

walls of the metacage and material cells are set as interior sound hard boundaries, as depicted 

in Figure 1. Sound transmission through walls of the metacage and possible viscous-thermal 

effect in the narrow resonator channels are neglected in this study. In Design 2, a plane wave 

radiation is applied to one of the ends of the 3D boundary volume (incident pressure = 1 Pa). 

This is a parallelepiped centred with the analysed geometry, having a length of 1 m (x-axis), 

and a width and depth of 0.38 each (y and z-axis).  The opposite end of the boundary volume 

is characterised with air impedance.  

For Design 1, the TL is calculated mathematically within the simulation software, from the 

averaged SPL at the outlet boundary (dashed line in Figure 1) and the monopole source SPL 

(=130 dB), to compare the acoustic response in the unfolded and folded state. In Design 2, TL 

is calculated by the reduction of sound power through the metamaterial interface (in decibel). 

An increase in the TL curve will thus indicate less efficient sound transmission because sound 

energy is more confined in the two systems (Design 1 and 2). The mesh size is determined 

according to the FEM criterion, where at least six nodes are used to simulate a wavelength in 

air. The dimensions and the complexity of the geometric problems have defined two different 

frequency ranges of application. So for Design 1, to reach 5000 Hz, the maximum allowed 

element size is thus 343/6/5000=0.0114 m. Indeed, the study is a frequency domain analysis 

from 100 Hz to 5000 Hz with a step size of 10 Hz. The meshes characterisation of Design 2 

instead, has a maximum allowed element size of 343/6/3000=0.0114 m. Although this model 

results very complex and, since the convergence of results is proved, simplification is needed. 

So the maximum allowed element size is increased at 343/6/2000=0.0285 m. The study has a 

frequency domain that goes from 100 Hz to 3000 Hz with a step size of 10 Hz. In the results, 

the TL and SPL distribution are shown linearly and superficially within the simulation 

frequencies. 

2.3. Parametric studies  

The acoustic effectiveness of different metamaterials, is tested through a parametric study in 

both models. The 2D parameters, ‘cavities thickness’ and ‘duct width’, took in consideration 

three configurations for the first one (a= 0.006-0.008-0.010 m) and three for the second one (b= 

0.006-0.008-0.010 m). In Design 1 each side has two cavities positioned towards the centre 

(upper section and lower section), delimited by layers which start from the sides and extend 

towards the middle of it for respectively 0.008 m, 0.012 m, and 0.016 m, and cavities width as 

0.08 m (see Figure 3). In Design 2, the parametrization is performed with straight sides and 

geometry defined by cavities width and layers length. In this case, the layers’ length is set the 

same for all respectively 0.04 m, 0.06 m, and 0.08 m, and cavities width as 0.01 m, 0.02 m, and 

0.03 m (see Figure 3). (see Figure 3). The parametrisation is set to see if there are any interesting 

correlations between the cavities or the duct’s width and the consecutive TL behaviour. 
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Figure 3. Schematic and dimensions of the metamaterial unit formed in the folded state for 

Design 1 (a), and of Design 2 (b). 

3. Numerical results of Design 1 

3.1. Design 1 (Origami metacage with apertures) 

Figure 4 first shows the simulation results of Design 1 in the folded and unfolded state. The TL 

is between 8 dB and 30 dB, where some variations can be observed due to the resonance of the 

circular enclosure. From the TL graph (Figure 4a), both the folded and unfolded configuration 

effects are analysed. For the folded one the TL reduce significantly at low frequencies (average 

of 20 dB of TL), while in medium frequency it loose efficacy, and from 2500 Hz to go on, an 

increasing sinusoidal behaviour starts, with a TL average of 18 dB and a TL peak of 22 dB at 

3900 Hz. Figure 4b and 4c highlight the confinement effect of the SPL at the different TL peak 

frequencies for both unfolded and folded configurations. In both graphs, it is evident how the 

unfolded state has a slightly higher acoustic impact on the sound wave confinement.                        

                    

 
Figure 4. TL (a) and SPL distribution graph for 0.2 m Design 1 at 3000 Hz of the unfolded (b) 

and 3900Hz of the folded configuration (c). 

a 

 

b

b 

 

c

b 

 

a 

 

b 
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3.2.  Parametric study on cavities’ dimensions ratio 

Figure 5 shows the average behaviours according to two parameters: cavities thickness and duct 

width. From the  nine combinations of the three per three options of two different variables (see 

schematic in Figure 3): a1=b1=0.006 m, a2=b2=0.008 m, a3=b3=0.01 m. From the results, it is 

clear that either the cavities or the central duct width change do not affect the acoustic 

metasurface performance. So the configuration a2 and b2 can be set as standard (a2=b2=0.008 

m) to guarantee a significant sound reduction performance and sufficient ventilation at the same 

time. Indeed, the acoustic and airwave propagation from the inside to the outside of the 

metacage and vice versa is guaranteed by the resulted duct of width 0.008 and cavities total 

thickness of 0.016 m. 

 

 
Figure 5. TL Parametrisation for conical duct as the one in Design 1: (a) geometrical setting 

(internal boundary in blue), (b) SPL distribution at peak frequency 4400 Hz, (c) TL. 

3.3. Comparison of the Different Scaled Models 

The TL increase is correlated with the dimension of the device. For the sake of completeness, 

wider samples of Design 1 are built and analysed through the same acoustic simulation settings. 

So results will be presented, comparing the performance of the original model with those of 

diameter equal to 0.4 and 0.8 m.  

From Figure 6, it is clear that, as expected, the increasing of the dimensions (two and four times 

bigger in this case), causes a shift of the TL peak towards lower frequencies. In particular, for 

the folded configuration, in the 0.4 m model, the peak is at 4000 Hz (Figure 6) with TL of 83dB. 

This phenomenon happens consistently and progressively with the increasing of the models, 

a

b 

 

b

b 

 

b

b 

 

ICCM2019, 9th-13th July 2019, Singapore

619



and it is demonstrated by the other study, with dimensions ten times bigger than the original 

ones. For the 0.8 m models, the peak is at 2000 Hz where SPL is 89dB.  

From Figure 6, the effectiveness of the origami metacage it is demonstrated in this frequency 

range, and the contribution of the folded configuration in this process is proved. 

 
Figure 6. TL comparison of Design 1 (unfolded and folded) with different diameters 

dimensions (0.2, 0.4, and 0.8 m). 

4. Numerical results of Design 2 

4.1. Design 2 (Bistable Auxetic) 

Figure 7 shows the simulation results of Design 2. For the SPL distribution, a slice graph is 

placed at the middle of the metasurface height, to compare the effect of the two models (Design 

1 and Design 2). In both configurations (10° and 5° rotating angles), the TL behaviours are very 

similar but shifted on lower results for the 10° one. Overall, the TL is between 0 dB and 51 dB, 

where some variations can be observed due to the resonance of the openings of the cavities 

composing the duct. The TL has a sinusoidal behaviour at low-medium frequencies (500-1500 

Hz, average of 7 dB), while in the upper-medium frequency range (1500-3000 Hz) it increases 

in efficacy, with a TL average of 23 dB and a TL peak of 51dB at 1700 Hz. Figure 7b highlights 

the confinement effect of the SPL at the TL peak frequency for both 10° and 5° configurations.  
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Figure 7. TL (a) and SPL distribution graph for Design 2 10° at 1800 Hz (b) and Design 2 5° 

at 1700 (c). 

4.2. Parametric study on cavities’ dimension’s ratio 

Figure 8 shows the average behaviours according to the two variables considered: cavities 

thickness and duct width. From the  nine combinations of the three per three different options 

(see schematic in Figure 3): a1=b1=0.01 m, a2=b2=0.02 m, a3=b3=0.03 m. From the results, it is 

clear that either the cavities or the central duct width change do not affect the acoustic 

metasurface performance. So the configuration a2 and b2 can be set as standard (a2=b2=0.02 m) 

to guarantee a significant sound reduction performance and sufficient ventilation at the same 

time. Indeed, the acoustic and airwave propagation from the inside to the outside of the 

metacage and vice versa is guaranteed by the resulted duct of width 0.017 and cavities total 

thickness of 0.04 m. 

a

b 

 

b

b 
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Figure 8. TL Parametrisation for straight duct reproducing the one in Design 2: (a) 

geometrical setting (internal boundary conditions in blue), (b) SPL distribution at peak 

frequency 2300 Hz, (c) TL. 

 

4.3. Comparison of the Different Scaled Models 

Differently from Design 1, the TL increase is not significantly correlated with the dimension of 

the device. For the sake of completeness, thicker samples of Design 2 are built and analysed 

through the same acoustic simulation settings. The results are presented in Figure 9, comparing 

the performance of the original model with those of overall thickness equal to 0.08 and 0.16 m.  

From Figure 9, it is clear that there is no shift of the TL peak while increasing the metasurface 

thickness. In particular, an interesting result is the different tendency of 10° and 5° 

configuration. While the TL associated with the first one decreases its amplitude around the 

peak frequency range (1500-2500 Hz), the second one increase significantly. The peak is 

always around 1700 Hz, but the amplitude is different. For the four-layer models, the TL peak 

is indeed 67dB (1760 Hz) for the 5° configuration, and it is averagely 38 dB for the 10° one 

(much spread and less concentrated than the previous one).  The eight-layer model TL peak is 

lower again for the 10° configuration (averagely 40 dB), while increases with a maximum peak 

of 77 dB for 5° model at 1740 Hz. 

Generally, from Figure 9, the effectiveness of the auxetic metasurface appears not to be 

connected significantly with the thickness increase. A part from the isolated peak, the graph 

shows a similar overall behaviour of TL related to the model with 2, 4, and 8 layers of Design 

2. This means that, differently from Design 1, a two-layer model might be enough to allow 

natural ventilation and reduce noise on a broader frequency band.  
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Figure 9. TL comparison of Design 2 (unfolded and folded) with different diameters 

dimensions (0.2, 0.4, and 0.8 m). 

 

5. Discussion on possible design applications 

The main aims of this research are achieved, and further numerical improvement or 

experimental study on the model will give more completeness to the research. So now new 

possibilities are open for devices’ design which aim noise reduction together with natural 

ventilation. The proposed geometry may be embedded in a window design. The resulting TL 

broad peaks of 54, 67, and 77 dB (two, four and eight-layer model) might result of some impact 

in a situation where the application area is affected by high-level noise. An example for Design 

1 could be to embed a system of origami metacage ducts in window frames or using the structure 

itself with increased width and a transparent back panel to allow also light exchange between 

two environments. The structure of Design 2 could be used as a transparent panel for windows 

enclosures. A further parametrisation and validation work will follow to test the actual building 

feasibility of the prototypes and determine whether the use of transparent materials might affect 

their performance or allow a new generation of tunable window systems. 
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6. Conclusions 

The acoustic characteristics of the proposed acoustic metamaterials with a unique 

reconfigurable mechanism have been investigated. Different configurations with specific 

ventilation designs have been tested to assess the noise reduction and estimate the ventilation 

volume between the two areas separated by the devices: the inside and the outside for Design 1 

(52% of opening ratio) and front and back for Design 2 (from 15% to 30% of opening ratio). 

Both models show high peaks in the TL due to the effective silencing effect provided by each 

metamaterial unit in front of the ventilation apertures. In different effective ways, the frequency 

and bandwidth of the effective region are related to the geometric parameters and scales of the 

systems. The potential of the proposed devices to be used in ventilation window systems is 

proved since natural ventilation is possible without any additional element. Better ventilation 

and noise reduction in the desired frequency range can be achieved by developing further 

numerical models for optimising the devices in terms of size and shape.  
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Abstract 

The buoyant flow and heat transfer in the enclosure filled with nanofluid is investigated 

numerically in this paper. The heated source is located on the left side-wall with constant heat 

flux, the right side-wall kept constant temperature and the top and bottom walls of the 

enclosure are insulated. The governing equations are solved by using the finite element 

method. The influences of the variable Rayleigh number, volume fractions, length of the 

heated source and different types of nanofluids are studied. Results are performed as the 

streamline and isotherm plots as well as the variation of the local and mean Nusselt number. It 

is observed from the result that the increase of Rayleigh number enhances buoyant flow and 

causes increasing mean Nusselt number on the heated source. In addition, the increasing 

heated source length investigated significantly effect on maximum temperature along the 

heated source. It is shown that the increase of volume fraction improves the thermal 

conductivity of the nanofluid. Finally, the nanofluid has a better cooling performance by 

compared with pure water. 

 

Keywords: Natural convection, Nanofluid, Partially heated source, Rayleigh number 

 

 

Introduction 

Natural convection in the enclosure has wide applications in industry and engineering, such as 

electronic cooling system, biological sciences, material science and heat exchangers. 

Enhancement of heat transfer in natural convection is a necessary topic from saving energy 

and improving efficiency. 

 

Majority of the present studies on thermal properties of the nanofluid presence the 

nanoparticles in the fluids can increase the effective thermal conductivity and enhance the 

heat transfer characteristics. Nanofluid is a dilute suspension of solid nanoparticles with a size 

typically of 1-100 nm dispersed in the liquid. The small solid nanoparticles at low volume 

fraction in liquid changes in physical properties, such as density, dynamic viscosity and 

specific heat, which can enhance the thermal conductivity and increase in critical heat flux in 

boiling heat transfer over the base-fluid value [1]-[4]. The nanofluids are a new class of heat 

transfer fluids by consisting of different nanoparticles. Masuda et al. [5] investigated different 

nanofluids CuO-water , Al2O3-water , SiO2-water  and TiO2-water  enhanced the thermal 

conductivity of nanofluids at a small volume fraction. This thermal property enhancement 

phenomenon was also reported by Eastman et al. [6]. 
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Many studies of natural convection in enclosure are considered under the assumption of 

heated by constant temperature or heated by constant heat flux. Oztop and Abu -Nada [7] 

employed the finite volume method to investigate heat transfer and fluid flow due to the 

buoyancy forces in a partially heated rectangular enclosure for different types of nanofluids. 

The results indicated heat transfer enhancement by using nanofluids and was more 

pronounced at low aspect ratios than at high aspect ratios and the mean Nusselt number 

increased as increasing the volume fraction of nanoparticles for the entire range of Rayleigh 

number. Another study of natural convection in a square cavity with partially active side-

walls filled with Cu-water nanofluid is investigated by Sheikhzadeh et al. [8]. The active 

heated sources are on both vertical side-walls of the cavity at the constant temperature. The 

effects of locations of the active heated sources, the Rayleigh number and the nanoparticle’s 

volume fraction were studied and the results showed that the average Nusselt number 

increases with increasing both the Rayleigh number and the volume fraction of the 

nanoparticles.  

 

Cheikh et al. [9] studied natural convection in air-filled square enclosure heated with the 

constant heat flux from below and cooled from above for different thermal boundary 

conditions. The simulations are performed for two different lengths of the heated sources and 

several Rayleigh number. The results are presented by streamline and isotherm plots and the 

maximum temperature along the heated source surface. Aminossadati and Ghasemi [10] also 

investigated a numerical study of natural convection cooling of the constant heat flux source 

on the bottom wall of the enclosure. Various Rayleigh number, location, and geometry of the 

heated source, different types of nanofluids and volume fractions are studied and the results 

showed nanofluids can enhance cooling performance, especially at low Rayleigh number, and 

the maximum temperature at heated source is based on the length and location of heated 

source, and type of nanofluids. 

 

Despite several numerical studies and experimental which investigated natural convection in 

enclosure with different thermal boundary conditions. There is no study has been reported in 

the literature which investigated the enclosure heated by constant heat flux on one side-wall 

and cooling at constant temperature on the other side-wall. This problem may be encountered 

in a number of electronic cooling systems. In this paper, the aim of present study is to study 

fluid flow and heat transfer in the enclosure at a constant heat flux on the left side-wall and 

cooled from the right side-wall by constant temperature. The results are showed by streamline 

and isotherm plots with different Rayleigh number and volume fractions, the maximum 

temperature along heated source and mean Nusselt number also would be analyzed and 

discussed in this paper. 

 

 

Problem Description 

Figure 1 shows the physical model of partially heated source enclosure with the length L. The 

heated source with constant heat flux q'' is located on the left side-wall of enclosure and the 

length of heated source is e. The distance of heated source center from the bottom wall is d. 

The right side-wall is kept at the constant low temperature Tc and the top and bottom walls 

are thermally insulated. The enclosure is filled with nanofluid, which is assumed 

incompressible and flow as laminar within the enclosure. The thermo-physical properties of 

base fluid and various nanofluids are given in Table 1 [11]. Also, the nanofluid’s thermo-

physical properties are assumed constant except for its density variation which is depended on 

the Boussinesq approximation. 
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Figure 1.  Geometry and coordinate system of the enclosure 

 

 

Table 1. Thermo-physical properties of the base fluid and various nanoparticles 

 Density 

 

 

ρ (𝑘𝑔 𝑚3⁄ ) 

Specific Heat 

 

 

C𝑝 (𝐽 𝑘𝑔𝐾⁄ )   

Thermal 

Conductivity 

 

k (𝑊 𝑚𝐾⁄ )   

Thermal  

Expansion 

Coefficient 

β × 10−5 (1 𝐾⁄ ) 

Pure Water   997.1 4179 0.613 21 

Copper 8933 385   401 1.67 

Alumina 3970 765 40 0.85 

Titanium Oxide   4250 686.2 8.9538 0.9 

 

 

 

Governing Equation 

The steady-state natural convection in terms of continuity, momentum and energy equations 

for buoyancy-driven flow within the enclosure are given by: 

 

Continuity equation 

 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 ( 1 ) 

 

where u and v are the velocity components in x and y direction 
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Momentum equations 

 

 𝜌𝑛𝑓 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇𝑛𝑓(

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) ( 2 ) 

 𝜌𝑛𝑓 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇𝑛𝑓 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) + 𝑔(𝜌𝛽)𝑛𝑓(𝑇 − 𝑇𝐶) ( 3 ) 

 

where 𝜌𝑛𝑓  is the density of nanofluid, 𝜇𝑛𝑓  is the dynamic viscosity of nanofluid, p is the 

pressure, β is the thermal expansion coefficient. 

 

 

Energy equation 

 

 𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑛𝑓(

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) ( 4 ) 

 

where T is the temperature and α is the fluid thermal diffusivity. 

 

 

The effective density of nanofluid is given as 

 

 𝜌𝑛𝑓 = (1 − ∅)𝜌𝑓 + ∅𝜌𝑠 ( 5 ) 

 

where 𝜌𝑓  is the density of fluid, 𝜌𝑠 is the density of solid nanoparticle and ∅  is the volume 

fraction. 

 

 

The effective heat capacitance of the nanofluid can be determined by 

 

 (𝜌𝐶𝑝)𝑛𝑓 = (1 − ∅)(𝜌𝐶𝑝)𝑓 + ∅(𝜌𝐶𝑝)𝑠 ( 6 ) 

 

where 𝐶𝑝 is the specific heat. 

 

 

The effective thermal expansion coefficient of the nanofluid given as 

 

 (𝜌𝛽)𝑛𝑓 = (1 − ∅)(𝜌𝛽)𝑓 + ∅(𝜌𝛽)𝑠 ( 7 ) 

 

 

The dynamic viscosity of the nanofluid given by the Brinkman [12] as 

 

 𝜇𝑛𝑓 =
𝜇𝑓

(1 − ∅)2.5
 ( 8 ) 

 

The effective thermal conductivity of the nanofluid can be approximated by the Maxwell-

Garnetts [13] as 
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 𝑘𝑛𝑓 = 𝑘𝑓 [
𝑘𝑠 + 2𝑘𝑓 − 2∅(𝑘𝑓 − 𝑘𝑠)

𝑘𝑠 + 2𝑘𝑓 + ∅(𝑘𝑓 − 𝑘𝑠)
] ( 9 ) 

 

where 𝑘𝑓 and 𝑘𝑠 are the thermal conductivities of base fluid and nanoparticle. 

 

 

The thermal diffusivity of the nanofluid is expressed by 

 

 𝛼𝑛𝑓 =
𝑘𝑛𝑓

(𝜌𝐶𝑝)𝑛𝑓
 ( 10 ) 

 

 

Equations (1) to (4) can be converted to dimensionless forms, and the dimensionless variables 

are (dimensionless coordinate X and Y, dimensionless velocity U and V, dimensionless 

pressure P, reference temperature different ∆T and dimensionless temperature θ) 

 

𝑋 =
𝑥

𝐿
,     Y =

𝑦

𝐿
,     U =

𝑢𝐿

𝛼𝑓
,     V =

𝑣𝐿

𝛼𝑓
,     P =

𝑝𝐿2

𝜌𝑛𝑓𝛼𝑓
2
,     ∆T =

𝑞′′𝐿

𝑘𝑓
,     θ =

(𝑇−𝑇𝑐)𝑘𝑓

𝑞′′𝐿
 ( 11 ) 

 

 

The dimensionless governing equations of continuity, momentum and energy equations are 

given as follows 

 

Dimensionless continuity equation 

 

 
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0 ( 12 ) 

 

Dimensionless momentum equations 

 

 𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+

𝜇𝑛𝑓

𝜌𝑛𝑓𝛼𝑓
(
𝜕2𝑈

𝜕𝑋2
+

𝜕2𝑈

𝜕𝑌2
) ( 13 ) 

 𝑈
𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+

𝜇𝑛𝑓

𝜌𝑛𝑓𝛼𝑓
(

𝜕2𝑉

𝜕𝑋2
+

𝜕2𝑉

𝜕𝑌2
) +

(𝜌𝛽)𝑛𝑓

𝜌𝑛𝑓𝛽𝑓
𝑅𝑎𝑃𝑟𝜃 ( 14 ) 

 

 

Dimensionless energy equation 

 

 𝑈
𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
= −

𝛼𝑛𝑓

𝛼𝑓
(

𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑌2
) ( 15 ) 

 

 

In above equations, the Rayleigh number and Prandtl number are defined by 

 

 𝑅𝑎 =
𝑔𝑞′′𝐿4𝛽𝑓

𝑣𝑓
2𝑘𝑓

× 𝑃𝑟,                  𝑃𝑟 =
𝑣𝑓

𝛼𝑓
 ( 16 ) 

 

where 𝑣𝑓 is the kinematic viscosity of fluid. 
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The boundary conditions for equations (12) – (15) in dimensionless form are as follows 

 

U = V = 0,      
𝜕𝜃

𝜕𝑋
= 0              for X = 0 and 0 ≤ Y ≤ D − 0.5E and D + 0.5E ≤ Y ≤ 1  

U = V = 0,     
𝜕𝜃

𝜕𝑋
= −

𝑘𝑓

𝑘𝑛𝑓
        for X = 0 and D − 0.5E ≤ Y ≤ D + 0.5E  

U = V = 0,     
𝜕𝜃

𝜕𝑌
= 0               for Y = 1 and 0 ≤ X ≤ 1 ( 17 ) 

U = V = 0,      θ = 0                for X = 1 and 0 ≤ Y ≤ 1  

U = V = 0,     
𝜕𝜃

𝜕𝑌
= 0               for Y = 0 and 0 ≤ X ≤ 1  

 

The local Nusselt number of heated source is calculated from the following equations 

 

 𝑁𝑢𝑙𝑜𝑐𝑎𝑙 =
ℎ𝐿

𝑘𝑓
 ( 28 ) 

   

 ℎ =
𝑞′′

𝑇𝑙𝑜𝑐𝑎𝑙 − 𝑇𝑐
 ( 19 ) 

 

where 𝑇𝑙𝑜𝑐𝑎𝑙 is the local temperature along the heated source. 

 

 

The local Nusselt number by using dimensionless variables are given by 

 

 
𝑁𝑢𝑙𝑜𝑐𝑎𝑙 =

1

𝜃𝑠(𝑋)
 

 

( 20 ) 

 

The mean Nusselt number is determined by integrating Nu𝑙𝑜𝑐𝑎𝑙 along the heated source on the 

left side-wall as 

   

 
𝑁𝑢𝑚 =

1

𝐸

𝑘𝑛𝑓

𝑘𝑓

∫
1

𝜃𝑠(𝑋)

𝑌2

𝑌1

𝑑𝑥 

 

( 21 ) 

where E is the dimensionless length of heated source (e/L), D is the dimensionless distant of 

heated source center from the bottom wall (d/L), and 𝑌1 = 𝐷 − 0.5𝐸 and 𝑌2 = 𝐷 + 0.5𝐸.  

 

 

Validation 

COMSOL Multiphysics software is used to solve the governing equation, which employs 

Boussinesq term and dimensionless parameters for buoyant flow driven with the laminar flow 

and the heat transfer coupled interfaces. The present simulation results are also validated 

against the numerical results by Cheikh et al. [9] and S.M. Aminossadati et al. [10]. Figure 2 

presents geometry of the air-filled square enclosure in study of Cheikh. Both two vertical 

side-walls cooled at constant temperature 𝑇𝑐 and the top and the bottom wall are insulated. 

The enclosure heated by the heated source from below. Table 2 gives the value of the mean 

Nusselt number along the heated source on the bottom wall of the enclosure, and the 
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maximum temperature within enclosure for various Rayleigh number and two different 

lengths of the heated source. 

 

 

 
Figure 2.  Geometry and coordinate system of the enclosure in study of Cheikh [9] 

 

 

Table 2. Comparisons of the present simulation results with the other studies 

   Rayleigh Number 

   103 104 105 106 107 

E=0.2 𝑁𝑢𝑚 Present work 5.9487 5.9808 7.6353 12.1218 19.9414 

  Cheikh et al 5.9152 5.9467 7.5805 12.0390 19.9801 

  Aminossadati et al 5.9228 5.9539 7.5910 12.0624 20.0195 

 𝑇𝑚𝑎𝑥 Present work 0.1818 0.1815 0.1484 0.1042 0.0734 

  Cheikh et al 0.1819 0.1815 0.1484 0.1040 0.0730 

  Aminossadati et al 0.1819 0.1815 0.1484 0.1040 0.0729 

E=0.8 𝑁𝑢𝑚 Present work 3.5618 3.8156 6.3079 9.9082 16.6032 

  Cheikh et al 3.5532 3.8047 6.2942 9.9160 16.7432 

  Aminossadati et al 3.5551 3.8060 6.2944 9.9159 16.6779 

 𝑇𝑚𝑎𝑥 Present work 0.3642 0.3634 0.2493 0.1702 0.1162 

  Cheikh et al 0.3642 0.3635 0.2494 0.1701 0.1163 

  Aminossadati et al 0.3642 0.3635 0.2495 0.1700 0.1160 

 

Finally, for the various Rayleigh number considered. The maximum difference between the 

mean Nusselt number and the maximum temperature obtained by the present results and the 

above results are 0.72% and 0.68%, respectively. 
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Grid Independence Study 

In order to select a proper grid density, various grids are employed to simulate the fluid flow 

and heat transfer within the enclosure at E=0.4, D=0.5 and Ra = 106. The nanofluid inside 

enclosure is Cu-water with ∅=0.1. The four different grid sizes are present in Table 3. The 

Grid size 3 changed grid shape from rectangular to triangular, that decreases the thickness of 

the boundary layer computation at higher Rayleigh number. Also the Grid size 3 increases 

grid element in two vertical side-walls, which due to the buoyant flow occur mainly on the 

two vertical side-walls. Figure 5 shows the result of local Nusselt number along the left 

heated source surface. The Grid size 3 has smoother curve of local Nusselt number than 

others especially at two end of the heated source. 

 

 

Table 3. Different gird sizes for grid independent study 

Grid size grid elements in each 

horizontal side-wall 

grid elements in each 

vertical side-wall 

grid shape Total grid elements 

Grid size 1 20 20 rectangular 400 

Grid size 2 40 40 rectangular 1600 

Grid size 3 80 100 triangular 19116 

Grid size 4 120 120 rectangular 14400 

 

 
Figure 3.  The local Nusselt number along the left heated source for various grid sizes 

(Cu-water, ∅ = 𝟎. 𝟏, 𝐑𝐚 = 𝟏𝟎𝟔, E=0.4, D=0.5) 

 

Table 4 presents the result of the maximum temperature within the enclosure for different 

Rayleigh numbers and grid sizes. For each Rayleigh number, the value of maximum 

temperature within enclosure increases from Grid size 1 to Grid size 4, but the value between 

Grid size 3 and Grid size 4 are almost the same. Finally, the simulations show that the Grid 

size 3 is sufficiently fine to describe the buoyant flow inside the enclosure.  
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Table 4. The maximum temperature within enclosure for different Rayleigh numbers 

and grids (Cu-water, ∅ = 𝟎. 𝟏, E=0.4, D=0.5) 

Grid size Ra = 103 Ra = 104 Ra = 105 Ra = 106 Ra = 107 

Grid size 1 0.37399 0.31321 0.19211 0.11654 0.06976 

Grid size 2 0.37441 0.31331 0.19223 0.11688 0.07235 

Grid size 3 0.37441 0.31329 0.19247 0.11702 0.07244 

Grid size 4 0.37442 0.31331 0.1925 0.1171 0.07255 

 

 

Results and Discussion 

The nanofluid-filled enclosure is studied by three different lengths (E=0.2, E=0.4 and E=0.8) 

and different types of nanofluids and various volume fractions. The Prandtl number is chosen 

to be 6.2 for all simulations. 

 

Figure 4 shows the streamlines (on the left) and isotherms (on the right) for Cu-water (∅=0.2) 

nanofluid (plotted by solid line) and pure water (plotted by dashed line) at various Rayleigh 

numbers when E=0.4 and D=0.5. Since the left and right vertical walls of the enclosure are 

located heated and cooled sources, which causes buoyant flow along this two side-walls. As 

the Rayleigh number increases, the buoyant flow strength also increases that causes the 

boundary layers to become more distinguished. When Rayleigh number equal to 106, Cu-

water presents an oval shaped rotating cell in the right-center as shown Figure 4(d). For 

Ra=107, Figure 4(e) presents the oval shaped rotating cell break up into two small rotating 

cells, one flows near the right side-wall and another  was observed near the left side-wall. 

 

Figure 4(a) and (c) shows the isotherm is distributed gather near the heated source on the left 

side-wall and tends to be paralleled near the right cooled side-wall. Equation (17) presents 
𝜕𝜃

𝜕𝑋
= −

𝑘𝑓

𝑘𝑛𝑓
 depends on the ratio of thermal conductivity along the heated source surface 

(for X=0 and D-0.5E≤Y≤D+0.5E).  The value of  
∂θ

∂X
  equal to -1 and -0.5897 for pure water 

and Cu-water nanofluid, which means the tangent angle of isotherm to the X direction along 

heated source are −45° and −30.528° for pure water and Cu-water nanofluid, respectively. 

Cu-water’s isotherms present shaper than pure water.  

 

  
(a) 
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(b) 

  
(c) 

  
(d) 

  
(e) 

Figure 4.  Streamline (on the left) and isotherm (on the right) of pure water (plotted by 

dashed line) and Cu-water (∅=0.2) nanofluid (plotted by solid line) at various Rayleigh 

numbers (E=0.4, D=0.5, (a)Ra=103, (b)Ra=104, (c)Ra=105, (d)Ra=106, (e)Ra=107 ) 
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The result of local Nusselt number along the heated source for different volume fraction is 

shown in Figure 5. It is noted that the maximum value of the local Nusselt number is 

presented as ∅ = 0.2 and the minimum value as shown for ∅ = 0. As the increasing volume 

fraction, the value of the local Nusselt number also increases that due to the enhancement of 

convection within the enclosure. 

 
Figure 5.  The local Nusselt number on the heated source for various volume fraction 

(Cu-water, Ra=106, D=0.5, E=0.4) 

 

 

Figure 6 presents the result of the maximum surface temperature on the heated source for 

various volume fraction and Rayleigh number. The surface temperature on heated source is 

not uniform and the maximum value is reduced by increasing volume fraction for all range 

Rayleigh number. The maximum temperature decreases much more rapidly for a higher 

volume fraction. This reduction is due to the higher volume fraction improves the thermal 

conductivity of the nanofluid and shifts the heat transfer from conduction to convection inside 

the enclosure. 

 

 
Figure 6.  The maximum temperature on the heated source for various volume fraction 

and Rayleigh number (Cu-water, D=0.5, E=0.4) 
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Figure 7 exhibits the streamlines (on the left) and isotherms (on the right) of Cu-water (∅=0.1) 

nanofluid at various heated source’s length. The comparison between 0.8E heated source 

length (plotted by solid line) and 0.2E heated source length (plotted by dashed line) are 

presented that counter rotating cells are formed in clockwise direction for both situations. As 

the increasing heated source length, the cell boundaries become more distinguished on side-

walls, which mean the buoyant flow strength increases in the enclosure. Isotherms show that 

temperature gradients near 0.8E heated source become more sever along both vertical side-

walls that can be explained as the higher heat transport rate is generated by increasing heated 

source. 

 

  
Figure 7.  Streamlines (on the left) and isotherms (on the right) of Cu-water (∅=0.1) 

nanofluid for different heated source length, E=0.2 (plotted by dashed line) and E=0.8 

(plotted by solid line) (D=0.5, Ra=106) 

 

 

Figure 8 shows the results of the maximum temperature at heated source for different heated 

source lengths. As increases the heated source’s length, the maximum temperature also 

increases for all range Rayleigh number. It is due to the longer heated source length causes 

higher heat flux transfer. But the maximum temperature decreases as Rayleigh number 

increases that can be explained as more heat flux away from heated source surface by stronger 

flow strength. 

 

 
Figure 8.  The maximum temperature on the heated source for various heated source 

lengths and Rayleigh number (Cu-water nanofluid, ∅=0.1, D=0.5) 
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In order to study the fluid flow inside the enclosure, Figure 9 presents the result of U-velocity 

(component velocity in x-direction) in mid-section centerline of enclosure (from (0.5, 0) to 

(0.5, 1)) for various heated source lengths. The strength of fluid flow enhances near two 

vertical side-walls and descends in the center of the enclosure, which due to stronger buoyant 

flow near the two side-walls. The U-velocity increases by increasing the length of heated 

source because of higher heat generation rates between left and right side-walls. 

 

 
Figure 9.  U-velocity at mid-section V (0.5, Y) of the enclosure for various heated source 

lengths (Cu-water, ∅=0.1, D=0.5, Ra=106) 

 

 

Figure 10 presents the result of local Nusselt number along the heated source for different 

types of nanofluids. Cu has the highest local Nusselt number value and the lowest value is 

pure water. Compared between three different nanofluids, TiO2 has the lowest local Nusselt 

number because it has the lowest value of thermal conductivity as shown in Table 1. On the 

other hand, Cu has the highest value of thermal conductivity that indicates the local Nusselt 

number increases by increasing thermal conductivity. 

 

 
Figure 10.  The local Nusselt number on the heated source for various types of 

nanofluids (D=0.5, E=0.4, Ra=106, ∅=0.1) 
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The result of mean Nusselt number on the heated source for different types of nanofluids are 

shown in Figure 11. The mean Nusselt number increases with increasing volume fractions and 

the lowest value of mean Nusselt number was generated by TiO2  for all range Rayleigh 

number as the same situation as the local Nusselt number results. That also due to TiO2 has 

lowest thermal conductivity value compared with the other nanoparticles. Figure 11(f) 

exhibits the different of mean Nusselt number become larger as increasing Rayleigh number 

that due to high Rayleigh number causes stronger heat transfer within the enclosure. 

Moreover, the value of thermal conductivity of Al2O3  is approximately one tenth of Cu 

(Table 1), but Al2O3  has low thermal diffusivity that causes the mean Nusselt number of 

Al2O3 is lower than that for Cu at high Rayleigh number but almost the same at low Rayleigh 

number.  

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 11.  The mean Nusselt number on the heated source for different types of 

nanofluids as various volume fractions and Rayleigh number (D=0.5, E=0.4, 

(a)Ra=103, (b)Ra=104, (c)Ra=105, (d)Ra=106, (e)Ra=107, (f)Ra=103, 105 𝒂𝒏𝒅 107 ) 
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Figure 12 shows result of V-velocity at mid-section centerline of the enclosure (from (0, 0.5) 

to (1, 0.5)) for various types of nanofluids. The V-velocity indicated a parabolic variation near 

two vertical side-walls and almost zero at X from 0.4 to 0.6 that means the fluid flow almost 

stopped in the center of the enclosure. The V-velocity of nanofluids is lower than the pure 

water that can be explained as nanoparticle’s suspension affects the buoyant flow. To clarify 

the effects of nanofluid on reduction of temperature along heated source surface, Table 4 

displays the maximum temperature on the heated source for various nanofluids as different 

volume fractions. Compared with the pure water, nanofluids provide temperature reduction on 

the heated source surface and Cu has the best cooling performance. 

 

 

 
Figure 12.  V-velocity at mid-section V(X, 0.5) of the enclosure for different types of 

nanofluids (D=0.5, E=0.4, Ra=106 and ∅=0.1) 

 

 

Table 4. The maximum temperature on heated source (E=0.4, D=0.5) for pure water and 

different types of nanofluids at various Rayleigh number and volume fraction 

  Rayleigh Number 

  Ra=103 Ra=104 Ra=105 Ra=106 Ra=107 

 Pure water 0.488 0.350 0.211 0.128 0.080 

∅=0.05 Cu 0.428 0.332 0.201 0.122 0.076 

 Al2O3 0.431 0.335 0.203 0.123 0.076 

 TiO2 0.439 0.339 0.205 0.125 0.077 

∅=0.1 Cu 0.374 0.313 0.192 0.117 0.072 

 Al2O3 0.379 0.319 0.196 0.119 0.073 

 TiO2 0.393 0.327 0.201 0.122 0.075 

∅=0.15 Cu 0.328 0.293 0.185 0.113 0.070 

 Al2O3 0.333 0.301 0.191 0.115 0.071 

 TiO2 0.352 0.313 0.197 0.119 0.073 

∅=0.2 Cu 0.287 0.270 0.178 0.109 0.067 

 Al2O3 0.293 0.278 0.186 0.113 0.069 

 TiO2 0.315 0.295 0.194 0.117 0.072 
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Conclusions 

Natural convection in a nanofluid-filled enclosure with partially heated source on the left side-

wall has been numerically simulated. The effect of heat transfer and fluid flow within the 

enclosure by various volume fractions, various heated source lengths and different types of 

nanofluids were investigated. The results show as 

 

 The increase of Rayleigh number causes increasing mean Nusselt number on heated 

source and enhances the fluid flow and temperature gradient on the two vertical side-

walls. 

 Increasing the length of heated source enhances heat generation rates, which causes both 

the maximum temperature on the heated source surface and flow strength within the 

enclosure increased. 

 The increase of volume fractions improves the thermal conductivity of the nanofluid and 

shifts more heat flux from conduction to convection, that observed by the increasing 

local Nusselt number and maximum temperature on the heated source. 

 Nanofluids (Cu, Al2O3 and TiO2) reduce the fluid flow strength inside the enclosure and 

the maximum temperature on heated source surface. The best cooling performance by 

using Cu-water because it has the highest value of thermal conductivity among the three 

nanofluids. 
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Abstract 
Finite element analysis (FEA) is one of the most popular numerical methods for solutions of 
boundary value problems in partial differential equations (PDEs). Owing to the computational 
load of handling fine meshes and complex geometries in many real-world problems coupled 
with the data-parallel and throughput-intensive nature of FEA computation, it is considered a 
highly suitable candidate for Graphics processing units (GPU) based acceleration. This work 
aims to accelerate the elemental stiffness calculation and assembly stages of FEA on a single 
GPU by exploiting the symmetric nature of the elemental and global stiffness matrix. The key 
idea of the implementation is to design GPU kernels that calculate and assemble only the 
lower triangular part of the local stiffness matrix into the global stiffness matrix. This leads to 
(a) reduced FLOP count and (b) reduced memory storage and access, which, in turn results in 
an overall reduced execution time. The elemental stiffness matrix is computed by assigning 
each GPU thread to one entry of the elemental stiffness matrix. The assembly stage is 
performed in two steps for computing the indices and values of the global stiffness matrix. 
For handling the race condition in assembly, mesh coloring and atomics-based approaches are 
implemented. The results from the proposed implementation is compared to a standard GPU-
based version of the implementation that computes and assembles the complete elemental 
stiffness matrices. Hexahedral meshes with up to three million nodes are tested for the 
performance analysis. The proposed implementation is found to be approximately twice as 
fast as the standard implementation for both elemental calculation and assembly stages. 
Keywords: Computation, Finite Element Method, Graphics Processing Units, Symmetry  

 
Introduction 

Finite Element Method (FEM) is a numerical method for approximating solutions of 
boundary value problems for partial differential equations (PDEs). It is extensively used in 
fields such as mechanical engineering, civil engineering, electrical engineering, medical 
applications. Due to its natural advantages such as flexibility, adaptability and ease of 
implementation even for complex geometries, it has become an integral part of a large variety 
of specializations. In industries like aviation, automotive and construction, FEM is usually an 
inherent part of the design process [1]. 
 
Although finite element analysis is widely popular in several fields, it often suffers from a 
high computational intensity, especially for real-world problems. This is primarily caused by 
the resolution of system of equations performed in the solver step [2]. Several applications 
[3][4] that make use of FEM, have reported it to be the most time consuming or 
computationally expensive part of the whole applications especially for larger and more 
complex geometries. Due to these reasons, many practical applications see the need for 
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efficient parallelization of FEA. Among the several steps in a complete FEA, the numerical 
solver, global matrix assembly and elemental computation are the three most time-consuming 
and computationally expensive in nature. In the present work, the focus is kept on the 
elemental calculation and assembly into a global stiffness matrix by parallelization on a single 
GPU. For the numerical solver stage, multiple optimized libraries exist that can provide 
solution to the linear system of equation after application of proper boundary conditions.    
 
Numerical Integration, as reported by many researchers, is a suitable candidate for GPU 
acceleration. For low order finite elements, the numerical integration becomes comparatively 
easy, whereas for high order elements, the computation turns equally tedious. This is because 
higher order elements necessitate higher number of Gauss points, which in turn increases the 
memory requirements while also increasing the amount of computation. It was demonstrated 
in [5], that using a 10th order Gaussian Quadrature, the numerical integration step requires 
73% - 83% and 87% of the total time of matrix generation step on a CPU and GPU 
respectively. For low orders of approximations, on the other hand, values of shape functions 
and their derivatives may be pre-computed and stored for reuse since the necessary storage 
requirements would be sufficiently small. Such an implementation, sadly, for higher order 
elements is unrealizable with present hardware. The first work dedicated toward numerical 
integration on the GPU is by using the Gauss-Legendre Quadrature Method [6]. Authors 
demonstrated the complete scalability of the numerical integration process on the GPU. One 
limitation of this study was that it was conducted entirely in single-precision, which can pose 
serious problems for convergence in the solver stage. This is specifically true for iterative 
solvers such as CG solver, which are known to be notoriously sensitive to round-off errors. A 
maximum speedup of 20x was achieved for third order approximation on an NVIDIA 
GeForce GTX8800 compared to an AMD X2 at 2.4 GHz. Authors also concluded that the 
massive amount of parallelism was not fully realized due to the insufficient memory resources 
in individual threads. This finding was later supported by Dziekonski et al. [7], where several 
strategies on efficient generation and assembly of large finite-element matrices were 
presented, while maintaining the desired level of accuracy in numerical integration. Authors 
used higher-order curvilinear elements making the integration step more compute intensive. 
Again the method of Gauss Quadrature was used for analysis. A speedup of 2.5x was 
achieved on an NVIDIA Tesla C2075 over two 12-core AMD Opteron 6174 at 2.2 GHz. 
Among more recent works, Banas [8][9] addressed the problem of implementing numerical 
integration that is portable across several GPU architectures and different orders of 
approximation. This is in general difficult to achieve because of vastly varying memory size, 
memory hierarchy and computational resources available to the programmer across different 
GPU vendors such as NVIDIA, AMD and Intel. The OpenCL implementation in [8] achieved 
a maximum speedup of 4x tested on four GPUs with different architectures (NVIDIA 
GeForce GTX 580, Nvidia Tesla M2075, AMD HD5870 and AMD HD7950). The portable 
OpenCL implementation by Banas [9], targeting numerical integration for only first-order 
approximation, achieved a maximum speedup of approximately 9x when tested on a Tesla 
K20m, compared to an Intel Xeon E5 2620 CPU. Authors provided details on several 
optimization aspects for implementations on different target hardware, while also indicating 
the factors limiting the performance for different problem types on different architectures. 
Apart from these, many works concentrating on applications of FEA have also implemented 
numerical integration on the GPU [3][4][10]. However, in these cases, no relevant details on 
the implementation of numerical integration was provided. 
 
There has been only a handful of works that target the assembly stage of FEA on the GPU, 
despite of the inherent parallelism in this step. This is primarily because of this step being 
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significantly less compute-intensive than the matrix-solver step. In other words, even a small 
to medium speedup in the linear solver stage would benefit the FEA process more than a 
decent to good speedup in the assembly step. The first work concerning assembly on GPU is 
by Filipovic et al. [11], where a speedup of 15x was achieved on an NVIDIA GeForce 
GTX280 compared to an Intel Core2Quad Q9550 CPU at 2.83 GHz. One important 
observation by the authors was that using one single kernel for the entire computation results 
in massive under-utilization of the GPU. Cecka et al. [2] has studied several aspects of 
assembly on an unstructured mesh using single precision arithmetic. Different algorithms for 
efficient use of global, shared and local memory available on the GPU along with methods to 
achieve memory coalescing are introduced by the authors. Four different implementations 
were analyzed for assembly. These are respectively, assembly by elements using graph-
coloring, by NZ using shared memory, by NZ using local memory and by NZ using global 
memory. Among these, the first two were shown to be the most efficient. A speedup of about 
35x was achieved for the best implementation on an NVIDIA GTX8800 compared to an Intel 
Core2 Quad Q9450 CPU at 2.66 GHz. Later, Dziekonski et al. [5] used an NVIDIA Tesla 
C2075 to accelerate both numerical integration and matrix assembly and achieved combined 
speedups of 81x and 19x over single and multi-threaded implementations respectively on a 
12-core Opteron 6174. Markall et al. [12] have discussed several assembly strategies on 
multi-core and many-core architectures. Among more recent studies, Dinh and Marechal [13] 
studied a real-time FEM implementation on GPU, where a sorting-based implementation of 
parallel global assembly was performed. An implementation based on the principle of 
dividing the GPU assembly with standard sparse formats was presented by Sanfui and Sharma 
[14]. The authors used structured meshes with brick elements to demonstrate the advantage of 
workload division at the assembly stage. The implementation divided the assembly operation 
into a separate symbolic and a numeric kernel. Later, Zayer et al. [15] accelerated assembly of 
sparse matrices by modifying the assembly stage as a matrix-matrix multiplication with the 
aim to remove any CPU or GPU-based preprocessing. This approach enabled them to reduce 
storage and movement of data on the GPU. Among more recent works, Kiran et al. [16] 
presented a warp-based assembly approach for hexahedral elements in single precision where 
the numerical integration and assembly were performed in the same kernel. An implicit finite 
element model with cohesive zones and collision response was accelerated using CUDA by 
Gribanov et al. [17]. For handling the race condition in assembly, instead of coloring the 
elements, atomicAdd function was used to resolve it at the hardware level. 
 
There has been several attempts to exploit properties of the stiffness matrix arising in the FEA 
to further accelerate it on the GPU. This essentially translates to two separate goals: Reducing 
the memory and/or reducing the total FLOP count of the application. For example, [18] 
implemented the SpMV stage of the FE solver on GPUs based on a FEA specific prefetching 
strategy to obtain a 3x speedup over the traditional SpMV implementation on the GPU. 
Another example is by [19], where the author exploited the typical sparsity pattern of global 
stiffness matrix depending on the number of degrees of freedom per node to reduce memory 
requirements and computation, thereby attaining a 18% to 51% performance improvements 
over the standard CuSPARSE library. The present work is in line of these work as we try to 
exploit the symmetry property of the local and global stiffness matrix to achieve those two 
goals. The local matrix generation stage, assembly stage and the SpMV stage are 
implemented on the GPU, each using two versions: One that exploits symmetry and one that 
does not. In the next two sections the methodology of implementations for the elemental 
calculations and matrix assembly are presented. This is followed by the results and 
discussion, after which the concluding remarks are presented. 
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Symmetry in FEA 

Symmetry in Elemental Computation 
 
In order to take advantage of the symmetry, a specialized kernel is written which is 
responsible for computing only the lower triangular part of the elemental stiffness matrix. In 
this kernel, each thread block is assigned to one element of the mesh and each thread of that 
thread block is assigned to one entry of the elemental stiffness matrix. A standard version of 
the kernel is also implemented where the entire elemental matrix is computed for comparison. 

 
 
Figure 1.  Distribution of threads in symmetric and non-symmetric kernel 
 
As shown in figure 1, for a one entry per node GPU kernel, each block needs to have exactly 
300 threads (shown in the left) as compared to 576 in the standard version (shown in the 
right). Since each warp has 32 threads, this corresponds to 10 and 18 warps respectively for 
the two versions. It should be noted here that the last warp in the symmetric version only has 
12 threads. Although it is usual practice to take the number of threads as an exact multiple of 
the warp size, taking 320 threads per block and having 20 threads of the last warp as idle does 
not improve the results. So the block size is kept at 300. 
 
Each of the threads in the thread block needs to know what row and column number it needs 
to calculate the elemental stiffness entry for. For example, in figure 1, the thread t4 needs to 
know that it is responsible for computing Ke[2][1]. Similarly, t10 needs to know that it is 
responsible for computing Ke[4][0]. It is important to note here that for a CPU-based 
sequential implementation of the same is not a major issue. A simple conditional statement 
with counters can take care of the issue. But, there is a different scenario for parallel versions 
on the GPU. This is because inside the kernel all the 300 threads need to know their target 
indices simultaneously. An approach could be where the same while loop is run for each 
thread, but with (i < threadIdx.x) as the termination condition. This will have the while loop 
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running for 0, 1, 2, 3... iterations for t0, t1, t2, t3 and so on respectively. The first problem 
with this is that this will create an uneven load on threads. Second and most importantly, this 
will create massive branch divergence within each warp due to the conditional statements. To 
counter this we have implemented a numbering scheme that computes the values of the target 
index from the thread index alone. The row and column index for each thread is computed 
using equations (1) and (2) respectively. 
 
                                          𝑚𝑚 = (√1 + 8 × 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑥𝑥 − 1)/2                                          (1)                                               
 
                                 𝑛𝑛 = 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑥𝑥 + 𝑚𝑚 − (𝑚𝑚 + 1)(𝑚𝑚 + 2)/2 + 1                                (2) 
 
 
It is important to note that all the divisions and the square root is performed as integer 
calculations. This means that if a floating point value is obtained at some point, the fractional 
part is dropped. The values for m and n with corresponding threadIdx.x up to 39 is shown in 
table 1. 
 
Table 1: Value of m and n with threadIdx.x  
 
threadIdx.x m n threadIdx.x m n threadIdx.x m n threadIdx.x m n 
0 0 0 10 4 0 20 5 5 30 7 2 
1 1 0 11 4 1 21 6 0 31 7 3 
2 1 1 12 4 2 22 6 1 32 7 4 
3 2 0 13 4 3 23 6 2 33 7 5 
4 2 1 14 4 4 24 6 3 34 7 6 
5 2 2 15 5 0 25 6 4 35 7 7 
6 3 0 16 5 1 26 6 5 36 8 0 
7 3 1 17 5 2 27 6 6 37 8 1 
8 3 2 18 5 3 28 7 0 38 8 2 
9 3 3 19 5 4 29 7 1 39 8 3 
 
Figure 2 demonstrates the flow of work in the standard and the symmetric kernel. On the left 
side of the figure, the changes from the standard kernel are highlighted in red. As discussed 
the first change is in the kernel launch parameter. Where the standard version require 576 
threads per thread block for eight-noded hexahedral mesh, the symmetric version require only 
300. In the next change the values of m and n are computed from equations (1) and (2). These 
values are stored in per thread registers for faster access. Following this a __syncthreads() is 
called for barrier synchronization. Following this in both approaches 24 threads collaborate to 
compute the Jacobian matrices. After another synchronization is performed, 8 threads 
collaborate to compute the Jacobian inverse and determinants for both the approaches. After 
this another barrier synchronization is performed. Finally in case of the symmetric kernel, the 
value of the entry is calculated using the values of m and n and the values are stored in the 
elemental matrix in parallel. 
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Figure 2.  Flow of work in standard (left) and symmetric (right) kernel 
 
 
Symmetry in the Assembly Phase 
 
Unlike in the CPU, assembly of the local matrices on the GPU is considered to be a tedious 
and complex task on the GPU. This is why often Assembly-free methods are preferred on the 
GPU. Markall et al. [12] has commented in his work that assembly-free methods are more 
suitable for GPUs, whereas, assembly is more suitable for the CPUs. 
 
We have implemented assembly of the local stiffness matrices on the GPU using both 
standard and symmetric versions. The key idea behind exploiting symmetry in the assembly 
stage is that to obtain the lower (or upper) triangular part of the global stiffness matrix, one 
only needs to assemble the lower (or upper) triangular part of all the local stiffness matrix. 
The idea is shown in figure 3, where the example of a simply supported beam is discretized 
using 4 elements in 2D. The four elemental stiffness matrices are shown with their lower 
triangular part highlighted. It is shown that during assembly, if the lower triangular part of the 
local matrix is assembled, the resulting global stiffness matrix is also lower triangular in 
nature, thus obviating the need to compute the upper half of the matrix. 
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Figure 3.  Assembly in the symmetric kernel for only the lower triangular part of the 
elemental stiffness matrix 
 
 
GPU implementations of global stiffness assembly has the inevitable problem of race 
condition due to the parallel nature of the algorithm. We have implemented two strategies to 
counter the data race. The first one using atomic operations, has the disadvantage that it 
cannot use double precision. This creates a major issue in the linear solver stage because the 
method of conjugate gradients is considered to be notoriously sensitive to round-off errors. 
However, it should be mentioned here that on the latest GPUs from NVIDIA such as the 
Pascal P100 with compute capability 6.X, a version of atomic operations with double 
precision is introduced. In the second approach, a coloring scheme is applied. The key idea is 
to partition the elements into several different colors such that no two elements of the same 
color share a common node. Then the algorithm is run for the different colors in a sequential 
manner. The assembly implementation with coloring is run entirely in double precision. 
 
Results and Discussion 
 
For performance analysis of the proposed algorithms based on symmetry exploitation, a 
workstation with Intel Xeon ES1650 (6 core, 3.2 GHz) processor, 12 GB RAM, and NVIDIA 
K40c GPU is used. The GPU has 12 GB of global memory with 15 multiprocessors and 192 
cores per multiprocessor. A cantilever beam with an end load meshed with eight-noded 
hexahedral elements (HEX8) are considered for the analysis. 
 
The symmetry exploiting version of the code is tested and compared with the standard 
implementation that computes the entire matrix. Figure 4(a) shows the variation of the wall 
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clock time versus the number of nodes for both symmetric and standard version. It can be 
seen that both application show the same trend of linearly increasing execution time. It can 
also be observed the symmetric version takes considerably lower time than the standard 
version especially at higher node numbers. Figure 4(b) shows the variation of the GFLOP/s 
count with the number of nodes for both version. Both the curves exhibit the trend of 
increasing GFLOP/s with increasing node numbers at lower mesh size and a more or less 
stable state for higher mesh sizes. However, it can be seen that for a mesh size of more than 
1,000,000, there is an approximately 25% increase in the GFLOP/s count in the symmetric 
version over the standard implementation. Figure 5 shows the variation of speedup of the 
symmetric version over the standard implementation with increasing number of nodes. It can 
be seen that the speedup increases rapidly up to a mesh size of 1,500,000 nodes. After this 
point the speedup increases very slowly with increasing node numbers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Wall clock time (a) and GFLOP/s count (b) for local matrix generation vs 
number of nodes in 10,000 in symmetric and standard versions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Comparison of speedup of symmetric version compared to atomics version 
with number of nodes 
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Two different versions, one symmetric and one standard, has been implemented for both 
coloring and atomics approach of assembly. It should be mentioned that due to lack of double 
precision support for atomics in the testing hardware only single precision has been 
implemented for atomics implementations. Figure 6(a) and figure 6(b) show the comparison 
of wall clock time with the number of nodes for Atomics and coloring respectively. Both 
symmetric and standard implementation is plotted in both of the figures. Although both 
figures 6(a) and figure 6(b) show similar time, it should be noted that figure (b) shows time 
using single precision arithmetic whereas, figure (a) uses double precision. Again a similar 
increasing trend is seen in the execution time for both the plots. The difference between the 
symmetric and standard implementation time increases as the mesh size is increased. The 
comparison of speedup in the entire proposed assembly operation using atomics and coloring 
over the standard implementation using coloring is plotted for different mesh sizes in figure 7. 
It can be observed that the speedup for the coloring approach is slightly higher than in case of 
the atomics approach. Also in both cases the speedup value increases with increasing mesh 
size and becomes stable at approximately 2x for coloring and 1.7x for atomics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Wall clock time comparison for Coloring (A) and atomics (B) version with 
nodes in 10,000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  Comparison of speedup of symmetric version compared to atomics version 
with number of nodes 
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Concluding Remarks 
 
An implementation for accelerating FEA on the GPU based on the exploitation of the 
symmetry in the local and global matrix is presented. The implementation covers the 
elemental computation and assembly stage of a typical FEA. By exploiting symmetry in the 
local matrix generation stage, the execution time can be reduced by an amount of more than 
two. Furthermore there is also the benefit of lower storage space required, as only the 
symmetric part of the matrix is recorded. The symmetric version in the local matrix 
generation stage performs significantly better than the standard implementation. However, 
after the mesh size of approx. 1,500,000 nodes, the speedup is seen to be varying by little. The 
GFLOP/s count is 25% higher in the symmetric version than in the standard version of local 
matrix generation for higher node numbers. For handling race condition, the coloring method 
is the only viable option since atomics is incompatible with double precision, which is very 
important for the CG method. In the assembly stage as well approximately two speedup is 
obtained for the symmetric implementation over the standard one using both atomics and 
coloring. However, the speedup is slightly higher in case of coloring. 
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Abstract 

This paper presents an efficient numerical technique capable of handling the stress analysis of 

three-dimensional cracked bodies strengthened by adhesively bonded patches. The proposed 

technique is implemented within the framework of the coupling of the weakly singular 

boundary integral equation method and the standard finite element procedure. The former is 

applied to efficiently treat the elastic body containing cracks whereas the latter is adopted to 

handle both the adhesive layers and patches. The approximation of the near-front relative 

crack-face displacement is enhanced by using local interpolation functions that can capture 

the right asymptotic behaviour. This also offers the direct calculation of the stress intensity 

factors along the crack front. A selected set of results is reported to demonstrate the capability 

of the proposed technique and the influence of various parameters on the performance of the 

strengthening.  

Keywords: Boundary integral equation method, Bonded patches, Cracked body, Finite 

element method, Stress intensity factors 

Introduction 

Sustainability and integrity of engineering structures are ones among various crucial issues 

that must be properly integrated in the design procedure and the subsequent maintenance 

stage. It has been known that the presence of cracks/flaws/damages is one of the major causes 

of subsequent failures of components, parts of or the entire structures leading finally to the 

loss of their functions. For such reason, the strengthening of damaged/cracked structures at 

the earliest time as soon as they are detected during inspections is considered essential. 

Furthermore, the control of cracked structures after being strengthened is also one of vital 

tasks to evaluate the selected strengthening method so that those strengthened structures can 

maintain their bearing capacity. 

Replacement of cracked or damaged parts can be time-consuming and expensive, and, 

in addition, requires a high level of expertise. It is usually more cost effective to strengthen 

those damaged components by using patching techniques. One of those methods, with 

adhesively bonded repairs, has been widely employed in practices. Many theoretical and 

empirical investigations have demonstrated the advantages of this particular method relative 

to other existing techniques for strengthening cracked structures due mainly to its cost 

effectiveness (e.g., [1-6]). In addition to their high stiffness and strength, the patches are 

structurally efficient and induce much less damages to the strengthened structures. 

In the modeling point of view via a theory of linear elasticity and linear elastic fracture 

mechanics, the stress intensity factors along the crack front can be significantly reduced after 
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the cracked body is strengthened by attaching a patch over the cracked region (e.g., [6-19]). 

This is due to the fact that some of externally applied loads exerted to the cracked bodies are 

either shared by or transferred directly to the patches via the adhesive shear layers rendering 

the enhancement of stiffness near the patching region and the reduction of relative crack-face 

displacements. As a direct consequence, the growth of the cracks can be delayed or even 

ceased if the strengthening is properly designed. Evidences from past studies have indicated 

that various parameters including the dimensions and material properties of the strengthened 

structure, the patches, and the adhesive layers significantly affects the efficiency and 

effectiveness of the strengthening (e.g., [6-19]). The full investigation to understand the role 

of those parameters is considered essential and can assist designers/engineers in the 

optimization of their designs. While experimental studies offer an excellent means to establish 

a set of results reflecting real responses, the methods themselves consume a significant 

amount of resources and are quite limited to test settings. In particular, to assess efficiency 

and influence of the patches in the experiments, a large set of testing specimens including un-

patched and patched cracked structures for various specimen configurations must be 

considered. An alternative approach is to adopt computer-based simulations via reliable 

mathematical models to perform such extensive parametric study. It is remarked, however, 

that to accomplish such an important task within a broad and general framework (e.g., three-

dimensional settings, large-scale and complex cases), powerful and computationally efficient 

tools are prerequisite. 

On the basis of an extensive literature survey, most of existing studies toward the 

development of computational techniques to assist the analysis and simulations of cracked 

components repaired by adhesively bonded patches were focused extensively on the two-

dimensional framework and quite specific to certain settings such as the repair configurations 

and types of repaired structures. The enhancement of existing modeling tools to be capable of 

handling more complex and general scenarios such as fully three-dimensional and large scale 

problems is challenging and requires further extensive investigations. 

Problem Formulation 

Consider a three-dimensional, finite body containing both embedded and surface-breaking 

cracks and strengthened or reinforced by adhesively bonded patches as shown schematically 

in Figure 1. The cracked body is made of a homogeneous, generally anisotropic, linearly 

elastic material. The ordinary boundary of the cracked body, denoted by 0S , consists of a 

surface uS  on which the displacement bu
u  is prescribed, a surface tS  on which the traction 

bt
t  is known a priori, and a flat or planar surface aS  on which the patch is attached. The 

surface of displacement discontinuity used to describe the crack in the undeformed state (i.e., 

stress-free state) is represented by a pair of geometrically identical surfaces, denoted by cS   

and cS  , and, in the present study, the attention is restricted only to the case that the crack 

surface is subjected to the point-wise self-equilibrated tractions; i.e., the prescribed tractions 

,b b 
t t  acting respectively to the surfaces ,c cS S   satisfy the condition b b   0t t . Each 

patch is made of a homogeneous, linear elastic material and fully adhered to the cracked body 

on the surface aS  by means of an adhesive bonding material. The prescribed traction exerted 

to the surface of the patch, opposite to the attached surface, is denoted by 0p
t . In the present 

study, the thickness of the patches and adhesive layers is assumed relatively small in 

comparison with the characteristic dimension of the repaired body; as a result, the bending 

stiffness of the patches can be considered negligible whereas only the shear resistance is 

treated for the adhesive layers. 
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Figure 1. Schematic of a body containing embedded and surface-breaking cracks and 

strengthened by adhesively bonded patches 

      

Since the thickness of each patch is sufficiently small and the bending effect can be 

ignored, its responses can then be properly modeled by a two-dimensional, plane-stress, linear 

elasticity theory. The final governing equation formulated in a local, two-dimensional, 

Cartesian coordinate system containing the patch by taking the in-plane displacement vector 
* p

u  as the primary unknown is given by  

  
* * * * 0T p p pa p

ph   L C Lu s s 0  (1) 

 

where L  is a conventional, two-dimensional differential operator transforming * p
u  into a 

vector containing independent in-plane strain components; the superscript “T ” denotes the 

matrix transpose; ph  is the thickness of the patch; * 0p
s is a vector containing local 

components of the prescribed shear traction 0p
s  (i.e., the tangential component vector of the 

prescribed traction 0p
t  on the plane of the patch),  * pa

s  is a vector containing local 

components of the unknown shear traction exerted by the adhesive layer, and * p
C  is the 

elastic in-plane modulus matrix for the plane-stress case. An alternative weak-form of (1) can 

be readily established via a standard weighted residual technique and used as the basis in the 

discretization procedure. 

 From the assumption that the adhesive layer can transfer only shear across its 

thickness, the state of strain for the entire layer can be completely described by the out-of-

plane shear strain. Since the thickness of the adhesive layer is infinitesimal in comparison 

with its planar dimensions, it is legitimate to assume that the out-of-plane shear strain 

components are uniform across the thickness or, equivalently, the in-plane displacement 

varies linearly across the thickness. The out-of-plane shear stress induced within the layer 
*a  is then governed by 

 

* * *( )a ap aba

a

G

h
 u u  (2) 
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cS 
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cS   
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tS t  
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where ah  is the thickness of the adhesive layer, aG  denotes the elastic shear modulus of the 

adhesive material, and *ap
u  and *ab

u  are values of the in-plane displacement at its interfaces 

connecting to the patch and the cracked body, respectively. Similarly, the weak-form 

statement of (2) can also be formulated by the weighted residual technique. 

For the cracked body, the theory of linear elasticity with the absence of the body force 

is adopted and the key governing equations are formulated within the framework of boundary 

integral equations. In particular, the following pair of weakly singular, weak-form boundary 

integral equations for the displacements and tractions, proposed by Rungamornrat and Mear 

(2008a), is utilized to form a system of integral equations governing the unknown data on the 

boundary and crack surface:    

 

0 0 0
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0

1
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 (4) 

 

where 0 cS S S    denotes the total boundary of the cracked body; p  is any sufficiently 

smooth test function defined on the ordinary boundary 0S ; ku  is any sufficiently smooth test 

function defined on the total boundary S ; b

pu  and b

jt  are components of the displacement and 

traction on the ordinary boundary 0S  of the cracked body; in  are components of the outward 

unit normal vector to the total boundary S ; /m i ism sD n     or /m i ism sD n y    denotes the 

surface differential operator; 
p

jU , 
tk

mjC , 
p

mjG , and 
p

ijH  are known fundamental solutions (see 

details of development and explicit expressions in Rungamornrat and Mear (2008a)); and b

jv  

and b

k  are data defined by  
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in which 
b

j j ju u u     denotes the relative crack-face displacement and 0 0( )b

k k kt t t   ξ  

denotes the jump in the crack-face traction. In particular, for the self-equilibrated crack-face 

tractions, it yields 0( ) 2b

k kt t  ξ . To form a system of integral equations governing all 
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unknown data on the boundary and the crack surface, the displacement boundary integral 

equation (3) is applied to the surface uS  with 0p   on t aS S  whereas the traction 

boundary integral equation (4) is adopted for the remaining surface 
t a cS S S    with 0ku   

on uS . 

A system of governing equations for the whole repaired cracked body shown in Figure 

1 can now be obtained by combining the weak-form equations governing all patches, the 

weak-form equations governing all adhesive layers, and those governing the cracked body 

together with the continuity of the displacement and the traction along all material interfaces. 

The final system contains the following unknown functions: the shear stress within the 

adhesive layers *a , the in-plane displacement of the patch * p
u , the displacement ba

u  on the 

surface aS , the displacement bt
u  on the surface tS , the traction bu

t  on the surface uS , and the 

relative crack-face displacement bu . 

Numerical Implementations 

To discretize the governing weak-form equations for the patches and the adhesive layers, a 

standard finite element procedure for two-dimensional problems (e.g., [21-23]) is adopted. 

The unknown shear stress within the adhesive layer *a , the unknown in-plane displacement 

of the patch * p
u , the unknown displacement on the surface of the cracked body ba

u  and all 

involved test functions are approximated using standard basis functions constructed locally on 

a finite element mesh consisting of standard, isoparametric, 0C -elements.  

To discretize the weakly-singular, weak-form integral equations governing the cracked 

body, Galerkin-based procedure similar to that proposed by Rungamornrat and Mear (2008b) 

is implemented. Due to the weakly singular feature of all involved integrals, both the trial and 

test functions can be approximated by a set of continuous basis functions constructed locally 

on a finite element mesh. In particular, standard isoparametric 0C elements are employed 

everywhere in the solution discretization except in a local region of the crack surface adjacent 

to the crack front where special crack-tip elements, originally proposed by Li et al. (1998) and 

used later by Rungamornrat and Mear (2008b) to treat cracks in anisotropic media, are 

adopted. Element shape functions of such special crack-tip elements were properly enriched 

to contain the square-root-type behavior and accurately capture the near-front relative crack-

face displacement (also see details in Yates et al. (2010) and Rungamornrat et al. (2019) for 

the structure of the near-front elastic field). Special quadrature rules proposed by Xiao (1998) 

are implemented to handle both weakly singular and nearly singular integrals and the efficient 

interpolation-based algorithm similar to that employed by Rungamornrat and Mear (2008b) is 

adopted to calculate all involved fundamental solutions for generally anisotropic materials. 

The final system of linear algebraic equations resulting from the discretization of the 

governing equations of the patches, the adhesive layers, and the cracked body is solved by a 

selected efficient linear solver. The stress intensity factors along the crack front are then 

extracted directly from the solved relative crack-face displacement data together with the 

properties of the special crack-tip elements via the post-process formula proposed by 

Rungamornrat and Mear (2008b).   

Numerical Results 

To verify the implemented technique and also provide a set of results from a preliminary 

parametric study on the strengthening of cracked bodies, the following representative problem 

is chosen in numerical simulations. Consider a cube of an isotropic linearly elastic material 

that occupies the region [ , ] [ , ] [ , ]w w w w w w      in space and contains a penny-shaped 
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crack of radius a  as shown schematically in Figure 2. The crack lies on a plane 3 0x   with 

its center located at point (0.4 ,0,0)w . The crack front can be parametrized in terms of the 

angular position [0,2 ]   by 

 

1 2 30.4 cos ,    sin ,    0x w a x a x      (7) 

 

The cube is loaded by a uniform normal traction 3 0t   on the face 3x w  and the uniform 

normal traction 3 0t    on the face 3x w  . To strengthen the cracked body, a patch of 

uniform thickness ph  is bonded to its entire face 1x w  by the adhesive layer of uniform 

thickness ah . In the numerical study, the aspect ratio / 0.5a w   and Young’s modulus and 

Poisson’s ratio given in Table 1 are considered and three meshes shown in Figure 3 are 

adopted.  

 

 

 

          

                                      

                                                                                                 

                                                                   

 

 

 

 

 

 

 

 

Figure 2. Schematic of cube material containing near-surface penny-shaped crack and 

strengthening by adhesively bonded patch 

 

  

Table 1. Young’s modulus and Poisson’s ratio for cracked body, patch, and adhesive 

layer used in parametric study 

 

Materials 
Young’s modulus 

( 610 psi) 

Poisson’s ratio 

Cracked body 

Patch 

Adhesive layer 

2.0 

17.4 

0.1 

0.25 

0.25 

0.33 

0

2w

3x

1x
2x

0

a
2w2x

1x0.6w

1.4w

w w

a

patch
adhesive layer

crack
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Figure 3. Three meshes adopted in analysis (only mesh of each face of cube is shown and 

it is identical to those for patch and adhesive layer) 

 

Due to the symmetry and the loading condition considered, only the mode-I stress 

intensity factor ( IK ) is non-zero. The normalized IK  obtained from the three meshes are 

reported in Figure 4 along with those generated by ABAQUS for the cases with and without 

the strengthening. It can be concluded from this set of results that numerical solutions 

converge as the mesh is refined and the good agreement between the converged and reference 

solution (with the difference within a fraction of one percent) is observed. Note in particular 

that relatively coarse meshes such as the Mesh-1 and Mesh-2 can also yield quite accurate 

results; this is due mainly to the use of special crack-tip elements in the approximation of the 

near-front relative crack-face displacement. After the cracked body is strengthened by the 

adhesively bonded patch, the stress intensity factor is significantly reduced especially in the 

region near the bonded patch.  

After fully tested, the proposed technique can be further applied to study the influence 

of various strengthening parameters (e.g., thickness of the adhesive layer and thickness of the 

patch) on the strengthening performance. For instance, to explore the influence of the patch 

thickness on the reduction of the stress intensity factor of the crack in the representative 

problem, simulations can be carried out for different values of ph  while all other parameters 

remain fixed. A plot of the normalized mode-I stress intensity factor resulting from such 

simulations are reported in Figure 5, as examples, for / 0.00,0.01,0.02,0.03,0.04ph w  . 

Besides the expected reduction of the stress intensity factor as the patch thickness increases 

(due to the increase in the stiffness after the strengthening), this piece of information is 

potentially useful in the selection of the patch thickness to confine the stress intensity factor 

below the tolerance or to prevent the subsequent crack growth. Similarly, the influence of the 

thickness of the adhesive layer on the response after the strengthening can also be investigated 

by carrying out simulations for various values of ah  while maintaining all other parameters. 

Results shown in Figure 6 are for the representative cracked body with three different values 

of the thickness of the adhesive layer (i.e., / 0.001,0.005,0.01ah w  ). It is evident that as the 

thickness of the adhesive layer increases, the apparent stiffness of the cracked body after 

strengthening tends to decrease.  

Mesh-1 

Mesh-2 

Mesh-3 
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Figure 4. Normalized mode-I stress intensity factors of near-surface penny-shaped crack 

in cube of material under uniform normal traction 0  on its upper and lower faces. 

Results for the case of strengthening are reported for 0 0/ . 01ah w   and 0 1/ .0ph w  . 
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Figure 5. Influence of thickness of patch on normalized mode-I stress intensity factors 

for near-surface penny-shaped crack in cube of material  

0

IK

a 

Without strengthening 

With strengthening 

0

IK

a 

ICCM2019, 9th-13th July 2019, Singapore

659





0 30 60 90 120 150 180

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ha/w = 0.001

ha/w = 0.005

ha/w = 0.01

 

Figure 6. Influence of thickness of adhesive layer on normalized mode-I stress intensity 

factors for near-surface penny-shaped crack in cube of material  

Conclusion and Remarks 

The efficient and accurate BIE-FE coupling technique has been successfully implemented for 

the analysis of three-dimensional cracked bodies strengthened by adhesively bonded patch. 

The boundary integral equation method has been adopted to efficiently treat the cracked body 

whereas the standard finite element method has been utilized to handle both the adhesive 

layer and the patch. The near-front approximation of the relative crack-face displacement has 

been enhanced by means of using special crack-tip elements and this allows relatively coarse 

meshes to be employed in the discretization while still yielding sufficiently accurate fracture 

data along the crack front. Results from a numerical study have indicated that numerical 

solutions obtained from the proposed technique possess the good convergence behaviour and 

are of excellent agreement with reliable benchmark solutions. In addition, the preliminary 

parametric study has shown that the stress intensity factor along the crack front is 

significantly reduced as the thickness of the patch increases while the reverse trend has been 

observed for the adhesive layer.  

Acknowledgements 

The authors gratefully acknowledge the supports provided by the JICA Project for 

AUN/SEED-Net and The Thailand Research Fund (Grant No. RSA5980032).  

References 

[1] Arendt C and Sun CT. Bending effects of unsymmetric adhesively bonded composite repairs on cracked 

aluminum panels, 1994. 

[2] Sun CT, Klug J, Arendt C. Analysis of cracked aluminum plates repaired with bonded composite panels. 

AIAA Journal, 34(2), pp. 369-74, 1996. 

0

IK

a 

ICCM2019, 9th-13th July 2019, Singapore

660



[3] Baker AA, Jones R. Bonded repair of aircraft structures. Dordrecht: Martinus Nijhoff, 1988. 

[4] Rose LRF. An application of the inclusion analogy for bonded reinforcements. International Journal of 

Solids and Structures, 17(8), pp. 827-838, 1981. 

[5] Jones R. Bonded repair of damage. Journal of the Aeronautical Society of India, 1984. 

[6] Young A, Rooke DP, Cartwright DJ. Analysis of patched and stiffened cracked panels using the boundary 

element method. International journal of solids and structures, 29(17), pp. 2201-2216, 1992. 

[7] Liu HB, Zhao XL, Al-Mahaidi R. Boundary element analysis of CFRP reinforced steel plates. Composite 

Structures, 91(1), pp. 74-83, 2009. 

[8] Pisa CD, Aliabadi MH. Boundary element analysis of stiffened panels with repair patches. Engineering 

Analysis with Boundary Elements, 56, pp. 162-175, 2015. 

[9] Salgado NK, Aliabadi MH. The application of the dual boundary element method to the analysis of cracked 

stiffened panels. Engineering Fracture Mechanics, 54(1), pp. 91-105, 1996. 

[10] Salgado NK, Aliabadi MH. The boundary element analysis of cracked stiffened sheets, reinforced by 

adhesively bonded patches. International journal for numerical methods in engineering, 42(2), pp. 195-217, 

1998. 

[11] Sekine H, Yan B, Yasuho T. Numerical simulation study of fatigue crack growth behavior of cracked 

aluminum panels repaired with a FRP composite patch using combined BEM/FEM. Engineering Fracture 

Mechanics, 72(16), pp. 2549-2563, 2005. 

[12] Jiann-Quo T, Kam-Lun S. Analysis of cracked plates with a bonded patch. Engineering Fracture Mechanics, 

40(6), pp. 1055-1065, 1991. 

[13] Alaimo A, Milazzo A, Orlando C. Boundary elements analysis of adhesively bonded piezoelectric active 

repair. Engineering fracture mechanics, 76(4), pp. 500-511, 2009. 

[14] Useche J, Sollero P, Albuquerque EL, Palermo L. Boundary element analysis of cracked thick plates 

repaired with adhesively bonded composite patches. SDHM: Structural Durability & Health Monitoring, 

4(2), pp. 107-116, 2008. 

[15] Wen PH, Aliabadi MH, Young A. Stiffened cracked plates analysis by dual boundary element method. 

International journal of fracture, 106(3), pp. 245-258, 2000. 

[16] Wen PH, Aliabadi MH, Young A. Boundary element analysis of flat cracked panels with adhesively bonded 

patches. Engineering fracture mechanics, 69(18), pp. 2129-2146, 2002. 

[17] Wen PH, Aliabadi MH, Young A. Boundary element analysis of curved cracked panels with adhesively 

bonded patches. International journal for numerical methods in engineering, 58(1), pp. 43-61, 2003. 

[18] Widagdo D, Aliabadi MH. Boundary element analysis of cracked panels repaired by mechanically fastened 

composite patches. Engineering analysis with boundary elements, 25(4-5), pp. 339-345, 2001. 

[19] Yu QQ, Zhao XL, Chen T, Gu XL, Xiao ZG. Crack propagation prediction of CFRP retrofitted steel plates 

with different degrees of damage using BEM. Thin-Walled Structures, 82, pp. 145-158, 2014 

[20] Rungamornrat J, Mear ME. Weakly-singular, weak-form integral equations for cracks in three-dimensional 

anisotropic media.  International Journal of Solids and Structures, 45(5), 1283-1301, 2008a.  

[21] Hughes TJ. The finite element method: linear static and dynamic finite element analysis, Courier 

Corporation, 2012. 

[22] Bathe KJ. Finite element procedures, Klaus-Jurgen Bathe, 2006. 

[23] Zienkiewicz OC, Taylor RL. The finite element method: solid mechanics, Butterworth-heinemann, 2000. 

[24] Rungamornrat J, Mear ME. A weakly-singular SGBEM for analysis of cracks in 3D anisotropic media.  

Computer Methods in Applied Mechanics and Engineering, 197(49-50), pp.4319-4332, 2008b. 

[25] Li S, Mear ME, Xiao L. Symmetric weak-form integral equation method for three-dimensional fracture 

analysis. Computer Methods in Applied Mechanics and Engineering, 151(3-4), pp.435-459, 1998. 

[26] Yates JR, Zanganeh M, Tai YH. Quantifying crack tip displacement fields with DIC. Engineering Fracture 

Mechanics, 77, pp. 2063-2076, 2010. 

[27] Rungamornrat J, Sukulthanasorn N, Mear ME. Analysis for T-stress of cracks in 3D anisotropic elastic 

media by weakly singular integral equation method. Computer Methods in Applied Mechanics and 

Engineering, 347, pp. 1004-1029, 2019. 

[28] Xiao L. Symmetric weak-form integral equation method for three-dimensional fracture analysis. Ph.D. 

Dissertation, University of Texas at Austin, USA, 1998. 

 

ICCM2019, 9th-13th July 2019, Singapore

661



Wrinkle generation mechanism during draw bending forming 

 

†*Xia Zhu¹, Keiji Ogi1 and Nagatoshi Okabe1 

1Department of Mechanical Engineering, Faculty of Engineering, Ehime University, JP 

*Presenting author: zhu.xia.mx@ehime-u.ac.jp 

†Corresponding author: zhu.xia.mx@ehime-u.ac.jp 

Abstract 

The purpose of this research is to focus on wrinkles, which are the main processing limit factor 

of draw bending, and to elucidate the mechanism of the generation. The forming experiments 

provided data for verifying the validity of the analytical model and the limits of crease 

formation. In addition, the effect of the friction coefficient between the pipe and the bending 

die on the occurrence of wrinkles was confirmed by finite element analyses. Furthermore, by 

analyzing the deformation behavior inside the material during the draw bending process, the 

mechanism of the wrinkle was clarified. The following findings were obtained from this study. 

First, wrinkles occur not at the bend but at the straight pipe part on the raw pipe side. Next, the 

coefficient of friction between the pipe and the bending die promotes wrinkles and the growth 

of the generated wrinkles.  Finally, the wrinkles are formed by the transition of the flexure due 

to the drawing-rolling phenomenon in the draw bending forming.   

Keywords: Draw bending forming, Wrinkles, Finite-element method  

Introduction 

Metal pipes, such as plumbing, have been used for fluid transportation for a long time and form 

a transportation path together with fittings, such as elbows, within the structure. However, in 

view of the demands for energy saving and cost reduction in recent years, reduction of joints 

and thinning of pipes are required. Therefore, a method has been adopted in which the pipe is 

processed by draw bending processing, and the number of joints used is suppressed by forming 

a bent portion at an arbitrary position [1-5]. Here, when the wall thickness of the pipe becomes 

thin, problems such as high flattening rate, wrinkles, and plastic buckling occur. A wrinkle is 

considered undesirable except for special processing, such as wrinkle bending, and the wrinkle 

is classified as defective at the stage of wrinkle generation. Compared to plastic buckling, 

wrinkles are more likely to occur, which is a major factor in the processing limit of rotary 

drawing and bending. 

The purpose of this research is to determine the state inside the material using finite-element 

analysis and to improve the performance of draw bending forming by clarifying the mechanism 

of wrinkle generation. An analytical model of rotational drawing was made by using the 

general-purpose nonlinear finite-element analysis software MSC Marc 2016, and the analytical 

results were compared with experimental results to verify the validity of the model. Furthermore, 

the mechanism of wrinkle generation was investigated. 

Verification of analytical model validity 

Fig. 1 shows a process schematic view of the draw bending process. Here, R is the bending 

radius of a bending die, ω is the rotational speed of a bending die, and θ is the bending angle of 

a bending die. Prior to investigating the mechanism of wrinkle generation, the validity of the 

analytical model was verified. In this study, plastic deformation behaviors of the material and 

the friction coefficient between the pipe and the bending die were focused on as parameters 
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affecting the wrinkles generated during the draw bending forming.  

Under the processing conditions in which no wrinkling occurs, the influence of the friction 

coefficient is smaller to the plastic deformation behavior. Therefore, the frictional force 

generated between the pipe and bending die is small under the processing condition in which 

wrinkles do not occur, even in actual processing. Therefore, to verify the validity of the material 

properties used for the analysis, the flattening ratio f = (D max – D min) / D 0 of the bent portion 

of the pipe specimen after processing was investigated under the processing condition in which 

wrinkles do not occur. Here, D max, D min, D 0 are the major axis, minor axis, and outer diameter 

of the original pipe in the cross section of the bent portion. 

Experimental conditions  

A SUS 304 (Japanese Industrial Standards, JIS G 3448：2012) seamless steel pipe with an 

outside diameter D 0 = 10 mm, which is widely used for pipes, was used, with a wall thickness 

t 0 = 1.0 mm. A bending radius R of the bending die was fixed at 20 mm, the rotational angular 

velocity ω was fixed at 120 rpm, the bending angle θ was changed from 15 ° to 120 ° at intervals 

of 15 °, and processing experiments were conducted. 

Analytical conditions  

As shown in Fig. 1, a bending die, a clamping die, and a pressure die were defined as rigid 

bodies, and the pipe was defined as an elastoplastic body with twenty-node three-dimensional 

isoparametric elements in the analytical model. In consideration of symmetry, a 1/2 model was 

used. D 0 and t 0 are identical to the experimental conditions, and the axial length is 130 mm. 

Table 1 shows numbers of element and the minimum mesh size.  An ideal condition was set  

 

θ 

Pressure die Clamp die 

R 

ω 

Pipe specimen Bending die 

Fig. 1 Schematic diagram of draw bending forming 

Table1 Numbers of element and minimum element size 

 

 Numbers of elements Minimum element size 

Axial direction 
65 

(Bend part divided in half again) 
1 mm 

Circumferential direction 18 0.698 mm (10°) 

Radial direction (thickness) 6 0.1667 mm 
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when the coefficient of friction μ between the pipe and the bending dice was 0.0. Young's 

modulus E = 193 GPa, Poisson's ratio ν = 0.29, and yield stress σ y = 320 MPa were used as 

material properties. For the plastic deformation behavior, the relationship between the true 

stress σ and the true strain ε in the plastic region is shown in Eq. 1, and an approximation 

formula of the Ludwik type [6] is used. 

 

 

 

 

Where ε y is the yield strain, K p, and n is the material constant. In this study, K p = 1600 MPa 

and n = 0.85 were used. 

Evaluation of the validity of the analytical model 

Figure 2 shows flattening ratios f obtained by experiments and analyses. Increments of ±10% 

of the analysis value are indicated by a broken line. It is suggested that the average value of the 

experimental results is within ±10% of the analysis results. From the Fig.2, it is judged that the 

analysis model can sufficiently reproduce the draw bending process. Therefore, this analytical 

model was used in examining the wrinkle occurrence mechanism to be described later. 

Investigation on mechanism of wrinkles  

Criterion for wrinkles 

Wrinkles are believed to be due to buckling that occurs on the inside (the compression side) of 

the bend. However, in the actual bending process, shear stress, axial force, etc. are added to the 

bending moment, and in the rotational pull bending process, the machined part changes 

dynamically as the piping material is drawn into the bending die as the process progresses. Here, 

we focused on the borderline of wrinkle. Table 2 shows the dimensions of the pipe specimens 

and bending dice. In addition to the conditions in Table 2, experiments were conducted with ω 

= 7000 ° / min and θ = 120 °, and the occurrence of wrinkles at the bend was investigated by 

𝜎 = 𝜎𝑦 + 𝐾𝑃 𝜀 − 𝜀𝑦 
𝑛

 (1) 

Bending angle θ (°) 
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D 0 = 10 mm, t 0 = 1.0 mm 

Fig. 2 Comparison of flattening ratio for experiment and analysis results  
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the forming experiments. Figure 3 shows the bending radius ratio 2 R / D 0 and the thickness 

ratio 2 t 0 / D 0 in which the bending radius R and the thickness t0 are made nondimensional by 

the radius D 0 / 2 of the piping material, respectively. The experimental conditions where 

wrinkles did not occur are indicated by hollow markers, and the experimental conditions where 

wrinkles occurred are indicated by solid markers, a boundaries of wrinkles in this experiment 

are shown by solid lines in the figure. From Fig.3, even if the dimensions of the material and 

the bending die are different, if the ratio of D 0, t 0 and R is the same, the wrinkle borderline is 

the same.  

On the other hand, simulation analysis was performed on a thin-walled pipe with D 0 = 10 mm, 

t 0 = 0.5 mm (2 R / D 0 = 4.0, 2 t 0 / D 0 = 0.1, R = 20 mm), and an example of the result is shown 

in Fig. 4. As the forming process progressed, wrinkles were generated not from the bend of the 

pipe but from the straight pipe part on the raw pipe side. This was the same even at the stage 

where the first wrinkle occurred under the same conditions. Therefore, it was found that 

wrinkles were generated not at the bend but at the straight pipe section on the base pipe side. 

Effect of friction coefficient on wrinkles 

The borderline of the presence or absence of wrinkles was investigated by FEM analysis 

assuming that the coefficient of friction μ = 0, 2.0, and is shown by the broken line in Fig.5. 

The borderline of μ = 2.0 is almost in agreement with the experimental result shown by the solid  

Table 2 Dimensions of the pipe specimens and bending dies 

Initial outer diameter 

D 0 (mm) 

Initial thickness 

t 0 (mm) 

Bending radius 

R (mm) 

10 0.5, 0.8, 1.0, 1.2 15, 20, 25 

14 0.5, 0.8, 1.0, 1.2, 1.5 20, 28, 35 
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Fig. 3 Wrinkle borderline  

No wrinkle 
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line. The smaller the value of μ, the lower the crease of creases, and the less the creases become. 

In addition, the smaller the bending radius of the bending die, the more sensitive the borderline 

of crease formation to friction, and the more it changes with the size of the coefficient of friction. 

 Mechanism of wrinkles 

This study has clarified that the wrinkles occur not inside the bend but inside the straight pipe. 

Therefore, using the contact point between the pipe and the bending die at θ = 0 ° as the 

reference point, the displacement Δx of the bending inner surface of the pipe in the x-axis 

direction (see Fig. 4) was investigated from the reference point to the base pipe side. Fig. 6 

shows the x-axis displacement Δx for each bending angle at D 0 = 14 mm, t 0 = 0.5 mm, R = 28 
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Fig. 4. Equivalent plastic strain contour (D0 = 10 mm, t0 = 0.5 mm). 

Fig.5 Comparision of borderline curves for initiation of wrinkles 
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mm (2 R / D 0 = 4.0, 2 t 0 / D 0 = 0.071), and μ = 2.0 obtained by analysis. The broken line is Δx 

at the stage where wrinkles have not occurred.  

Immediately after the start of bending, deformation caused by the Hertzian contact occurred, 

which is also referred to as the drawing-rolling phenomenon, in the draw bending processing. 

The deflection to the side of the bending die due to the drawing-rolling phenomenon changes 

with the progress of processing, becomes maximum around the bending angle θ = 10 ° to 15 °, 

and then decreases. Furthermore, with the increase of the bending angle θ, the deformed portion 

due to the drawing-rolling phenomenon is made uniform by the contact with the bending die, 

and the straight pipe portion on the raw pipe side begins to bend outward on the opposite side 

of the bending die.  

The deflection converges to a constant value under processing conditions where wrinkles do 

not occur. On the other hand, under the processing conditions where wrinkles occurred, the 

deflection continued to increase and eventually became wrinkles. In addition, in this study, it 

was confirmed that wrinkles occurred in the region from the flexible portion to the straight pipe 

portion, which was slightly deviated from the maximum flexible portion, but not from the 

maximum flexible portion.  

In the experiment, wrinkles occurred, but in the analysis of μ = 0.0, deformation similar to that 

in the case of wrinkles was observed even under processing conditions in which no wrinkles 

occurred. However, under this condition, the deformation was equalized by the bending die as 

the processing progressed, and no wrinkles were finally confirmed. From these facts, it was 

found that the wrinkles are formed by the transition of the flexure due to the drawing-rolling 

phenomenon. 

Conclusions 

The following findings were obtained from this study. 

Wrinkles occur not at the bend but at the straight pipe part on the raw pipe side. 

The coefficient of friction between the pipe and the bending die promotes the occurrence of 

wrinkles and the growth of the generated wrinkles. 

Fig.6 x-axial displacement (2 R / D 0 = 4.0, 2 t 0 / D 0 = 0.1, 𝜇 = 2.0) 
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The deflection of piping starting from the drawing-rolling phenomenon converges to a constant 

value in the processing condition where wrinkles do not occur.  

Wrinkles are formed by the transition of flexures due to the drawing-rolling phenomenon in 

rotary bending. 
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Abstract 

Low-speed wind energy can be captured to power wireless sensors or remote micro electro 
mechanical systems by utilizing vortex-induced vibration phenomenon of a cylinder tip 
connected to a piezoelectric cantilever. Researchers have developed several configurations to 
study the behavior of vortex-induced energy harvesters. However, these theoretical analysis or 
experimental prototypes only consider the interface circuit as a pure resistance. The interface 
circuit for practical usage may be more complex or the powered wireless sensor needs direct 
voltage input. The solve the complex interface circuit problem, this paper presents an 
equivalent circuit modeling and analysis study for vortex-induced energy harvesting.  The 
mechanical parameters are substituted by standard circuit elements. The nonlinear vortex-
induced aerodynamic force is represented by self-defined function sources. The total 
equivalent circuit is simulated by circuit simulation software. The simulation results are 
consistent to our previous experimental results, which can verify the accurateness of the 
presented equivalent circuit model.  

Keywords: equivalent circuit modeling; energy harvest; vortex-induced vibration 

 

Introduction 

Wireless sensing nodes or electronic instruments have been used in structural health 

monitoring, medical health examination and micro electro mechanical systems, which 

promote the research of energy harvesting from the ambient environment or vibrations [1-3].  

Different energy convention mechanisms including electrostatic [4,5], electromagnetic [6,7] 

and piezoelectric [8-10] mechanisms. Energy harvesting via piezoelectric mechanism has 

attracted much attention because of easy construction, clean and high output power density. 

Quite numbers of researchers focus on energy harvesting from base excitations [11-13]. 

However, the stable base excitation exists rarely in nature and thus limits its usage situations. 

Wind exists widely in nature and has the potential to be utilized for energy harvesting to drive 

sensors in inaccessible mountain, canyon or seabed. In terms of energy harvesting from fluid 

flows, Akaydin et al. [14] proposed a piezoelectric energy harvester consisted of a 

cantilevered beam with attachment cylinder and the results showed a non-rigid bonding model 

had a better agreement with experiments than non-rigid bonding model. Wang et. al [15] 

studied a d31 mode piezoelectric energy harvester generating voltage from pressure 

oscillation in pressure chamber and the energy harvester could generate 2.2 V. Li et. al [16] 

tested a bio-inspired piezo-leaf architecture using flexible piezoelectric materials and a single 

leaf had 2 mW/cm3 power density. Weinstein et al. [17] studied the interactions between a fin 

and downstream vortex shedding. The results showed the addition of the fin could make a 

significant improvement output power from a piezoelectric energy harvester. Gao et. al [18] 

presented an upright energy harvester with cylinder extension. The experimental results 
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showed the piezoelectric energy harvester generated higher voltage in turbulent flow because 

of additional contribution in the lock-in region than in laminar flow. Dai [19,20] studied the 

output power from both vortex-induced vibration and base excitation. Among other different 

shapes of attachments, Liu et al. [21] proposed a Y-type three-blade bluff body and the 

experiment showed its superiority than a square prism. Abdelkefi et al. [22] proposed an 

energy harvester with an equilateral triangle cross-section and found that the minimum 

transverse displacement amplitude resulted in maximum harvested power. Yang et al. [23] 

compared the output abilities of energy harvesters with different cross sections. The 

experimental results demonstrated the superiority of the square-sectioned tip. However, most 

researchers only consider the external circuit as a pure resistance because external circuits are 

difficult to be modeled in mechanical systems. 

Therefore, this paper puts forward a novel modeling method for vortex-induced vibration 

energy harvester according to the principle of equivalent circuit, which can handle complex 

external circuit. The mechanical parameters in practical situations are replaced by electrical 

circuit element. The piezoelectric coefficient parameter is replaced by an ideal transformer. 

The vortex-induced force is represented by oscillation circuit. The equivalent circuit model is 

simulated in analog software for circuits. The results of an equivalent circuit model are 

consistent with our previous experimental results, which can prove the validity of the 

modeling method. 

Conventional Modeling of Vortex-induced Vibration Energy Harvesting  

As Fig. 1 shows, the vortex-induced vibration piezoelectric energy harvester consists of a 

piezoelectric cantilever beam with cylinder extension. The cylinder attachment undergoes 

periodic pressure when the wind flows through it, and there occurs vibrations when the 

frequency is near to the natural frequency of energy harvester. The strains in the piezoelectric 

layer generate output voltage across the interface circuit. Here we directly use the governing 

equation through the nonlinear distributed parameter model by our previous work [24], as 

shown in Eqs. (1-3). 

 

R

Substrate layer

Cylinder

Voltage

Piezoelectric 

layer
Fixed end

Wind direction

 

Figure 1. Composition of piezoelectric energy system [24] 
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where r(t) is model coordinate; ζ is the damping coefficient; ω is the natural frequency of 

energy harvester; η is fluid resistance coefficient; μ the coefficient of gravity effect; θ is 

piezoelectric coefficient; V(t) is output voltage; CL0 is lift coefficient; D and Lc is diameter and 

length of cylinder, respectively; Cp is capacitance of piezoelectric sheet; ρf and U are the 

density and velocity of air flows, respectively; ε and A are constants; ωf is frequency of vortex; 

q(t) is a parameter used to describe the behavior on the near wake of the cylinder. 

Equivalent Circuit Modeling 

In this part, the equivalent circuit method is proposed. Equivalent electrical components for 

vortex-induced force and mechanical parts of energy harvesting system are listed in Table 1. 

Table 1. Analogy between mechanical domain and electrical domain 

Mechanical parameters Electrical parameters 

r(t) Charge: Q1(t) 

dr(t)/dt Current: i1(t) 

q(t) Charge: Q2(t) 

dq(t)/dt Current: i2(t) 

1 Inductance: L1, L2 

2ζω+η Resistance: R1 

1/(ω2+μ) Capacitance: C1 

1/ωf
2 Capacitance C2 
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2 2
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c s
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D
t

A
r

 
 +
 
   Voltage: V(A2) 

-θ Turn ratio: N1 

Eqs. (1-3) can be rewritten by replacing electrical parameters into mechanical parameters as 

Eqs. (4-6). 

 ( ) ( ) ( ) ( ) ( )1 1 1 1 1 A3L Q t R Q t C Q t NV t V+ + − =   (4) 

 
( ) ( )

( )1 0
RL RL

P

dV t V t
C NQ t

dt R
+ + =   (5) 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2A1 / V5 A2L Q t V I Q t C Q t V+ + =   (6) 
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Model validation  

In this part, the equivalent circuit model is validated [24]. The pure resistance is chosen as the 

external circuit for comparison with our previous experimental results. According to the analogy 

between the mechanical and electrical domains, the parameters of the equivalent circuit model are 

obtained from Table 1. Fig. 2 shows the circuit diagram of equivalent circuit when wind 

velocity is 4.2 m/s. Fig. 3 shows time-voltage diagram across RL when wind velocity is 4.2 

m/s. As time goes on, the voltage fluctuates about 3.5 seconds and then forms a steady 

periodic fluctuation. 

 

Figure 2. Circuit diagram of equivalent circuit when wind velocity is 4.2 m/s 

 

Figure 3. Time-voltage diagram 
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To investigate the effect of external resistance RL on energy harvesting ability, a serious of 

external resistance is chosen to calculate output power P. Fig. 3 shows the output power from 

circuit simulation and experimental versus load resistance RL when the wind velocity is 4.2 

m/s. The circuit simulation shows that the maximum power is 626.58 μW at 250 kΩ while 

605.0 μW at 250 kΩ from circuit result. The optimum resistance from experimental results is 

consistent with that from circuit simulation. 
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Figure 4. Output power from circuit simulation and experimental versus load resistance 

For further investigating the influence of wind speed U, the output power of load resistance at 

various wind speeds are calculated through circuit simulation. Both circuit simulation and 

experimental resistance is chosen to 250 kΩ, which is the optimal resistance from fig. 3. 

Figure 4 indicates the relationship between output power and wind speed from circuit 

simulation and experimental result. The maximum output power P is 635.04 µW when the 

wind speed U is 4.2 m/s, which is obtained in the experiment. The maximum average output 

power calculated by circuit simulation is 628.91 µW when the wind speed U is 4.3 m/s. The 

maximum output power and optimal wind velocity from circuit simulation matches  well with 

that from experiment. 
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Figure 5. Time-voltage diagram 
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Conclusions 

This paper investigates the equivalent circuit modeling method for vortex-induced 

piezoelectric energy harvesting. First the analogy between mechanical domain and electrical 

domain is presented and used to replace the aerodynamic fluid-solid-electricity governing 

equations by equivalent circuit equations. Next, the equivalent circuit is simulated in circuit 

simulation software. The output voltage becomes steady sine wave in a few seconds. Finally, 

the effects of external load resistance and wind velocity are studied and compared with 

experimental results. The comparative results illustrate that the optimal load resistance, the 

optical wind velocity and maximum output power from circuit simulation are consistent with 

that from experimental results, which validities the accurateness of the equivalent circuit 

simulation. This work provides basic simulation method for designing external circuit for 

vortex-induced piezoelectric energy harvesting. 
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Abstract 

The dispersion phenomenon in the pressure-driven microchannel flow of solute with interphase 
transport is numerically studied using a transient 2D model. The interphase mass transport 
between the mobile phase and the stationary phase of the microchannel plays a critical role in 
the process of solute dispersion. The traditional studies of the solution dispersion with the 
interphase transport are based on the moment analysis which actually uses the 1D model and 
cannot provide detailed understandings of the solute dispersion in the microchannel. In this 
work, the 2D numerical model enables a more detailed characterization of the transient 
evolution of the solute dispersion in a microchannel by predicting the 2D transient 
concentration contours of the solute. The model characterizes the effect of interphase mass 
transport on the solute dispersion with two parameters, i.e., the partition coefficient (K) and the 
kinetic mass transfer rate (kf). From the 2D concentration contours, we observe that the solute 
is more dispersed in the mobile phase along the microchannel axis and also moves slower with 
K increasing, which indicates significant dispersion and retention of solute in the microchannel 
respectively. For a smaller kf which means a high mass transfer resistance between the mobile 
and stationary phases, the solute concentration in mobile phase is more dispersed and also the 
corresponding concentration profile along the channel axis is more skewed. It is also noticed 
that a thicker layer of stationary phase (df) corresponding to a larger solute capacity of the 
stationary phase, causes more significant retention of solute in the microchannel. The results 
from this study provide a straightforward picture of the solute dispersion phenomenon in 
microchannel with interphase transport and are of high relevance to practical applications such 
as chromatography and microfluidics.  

Keywords: Microchannel; Dispersion; Interphase Transport; Concentration Contour 
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Introduction 

With the rapid development of microfluidic lab-on-a-chip (LOC) technology, study of fluids 
and solute transport in microchannels have received widespread attention since miniaturization 
of fluid channels in microfluidic LOC devices leads to new problems for the fluid and mass 
transport. The dispersion of solutes in fluids flows in microchannels is one of the most widely 
studied topic due to its key roles in the trace detection of samples, chromatography, multiphase 
microfluidics and soil remediation[1-3], etc. 

The study of solute dispersion has been a constant focus since Taylor who investigated 
analytically and experimentally the solute dispersion in the water flowing in a tube due to the 
hydrodynamic convection and molecular diffusion [4-6]. Basing on Taylor’s studies, Aris [7] 
presented a theoretical study of the solute dispersion by means of moments analysis. The works 
by Taylor and Aris form the theoretical basis for the solution dispersion, their approach is jointly 
termed as the Taylor-Aris theory. Later Aris studied the solute dispersion in two coaxial layers 
of immiscible fluids flowing in an annulus. In addition to the traditional solution dispersion 
mechanisms of hydrodynamic convection and molecular diffusion, the interphase exchange 
between two fluids was also taken into account as a new mechanism. The consideration of this 
new mechanisms is due to a number of applications such as distillation and partition 
chromatography in which interphase mass transport has a crucial contribution [8]. In such 
researches, moments are adopted as the theoretical tool because of their ability in providing 
good statistical descriptions of the solute concentration distribution in the term of time. Kučera 
[9] derived explicit moments expressions as part of his study on non-equilibrium 
chromatography considering the longitudinal diffusion in the mobile phase, the radial diffusion 
inside the porous grains of the packing material, the finite rate of mass transfer through the 
boundary. Grushka [10] related the moments of a chromatographic peak to the determinative 
experimental parameters, i.e., partition coefficients, column length, etc. J. A. Jonsson proposed 
that considering the solute dispersion, the median of the chromatographic peak should be taken 
as the best measurement of retention time[11] and gave the moments to specifically study the 
dispersion and to determine the isotherm[12]. The moment analysis not only provides insightful 
understanding of fundamental characteristics of solution dispersion in channel flows, but also 
is practically useful in determining the diffusivity of solutes in specific solutions and the 
partition coefficient of solute between two phases [13-16] by the inverse chromatography. 

Another popular method to study solute dispersion in microchannel flow is based on the concept 
of height equivalent to a theoretical plate (H.E.T.P.) [17-19]. Different from the moment 
analysis which focuses only on the statistical description of solution dispersion on time scale, 
H.E.T.P describes the instant equilibrium of solution dispersion on length scale. The 
introduction of H.E.T.P to the solute dispersion study is due to its wide use as an indicator for 
separation performance in the chromatography. Various investigations performed fundamental 
study of the solution dispersion in chromatography using the H.E.T.P. and particularly 
discussed the effects of various factors, such as solute diffusivity and phase ratio, on the 
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H.E.T.P. [20-22]. Fabrice presented a comprehensive summary for the solution dispersion 
studies based on the H.E.T.P. in the field of chromatography [23]. Recently, Beauchamp 
investigated the solute dispersion in both short and long capillary with the H.E.T.P under the 
slip boundaries and reached the conclusion that only in tube of very small diameters the use of 
slip flow boundary to reduce chromatography dispersion is suitable [24]. 

The aforementioned moment analysis and H.E.T.P methods focus on different aspects of the 
solute dispersion, but are all the simplified models of the more general convection-diffusion 
theory of mass transport. As has been reviewed previously, there has been significant 
development in the moment analysis and H.E.T.P. for investigating solute dispersion. Yet, these 
two methods are derived from the general convection-diffusion theory with a cross-section 
average treatment, and thus cannot provide detailed information of the solute concentration 
distribution in the whole channel domain. Especially, the details of the solute exchange between 
two phases (mobile phase and stationary phase) are missing from these simplified models. The 
present work is to study the solute dispersion in a pressure-driven microchannel flow with 
interphase transport with a full numerical model based on the convection-diffusion theory. The 
model is able to give an intuitive understanding of the solution transport with the numerically 
predicted transient concentration contours in the microchannel. More interestingly, the 
interphase transport of solute is to be studied in an unprecedented detail. Our numerical analyses 
also systematically address the effects of various model parameters on the solution dispersion 
characteristics. 

Methods 

Mathematical model 

Considering a circular straight microchannel whose inner wall holds an extremely thin layer of 
static polymer liquid, gases flow in the microchannel without causing the flow of liquid. The 
gases are termed as the mobile phase and the polymer liquid as the stationary phase.  

 

 
Figure 1. Schematic of physical model and computational domain 
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The physical model and the corresponding computational domain of this study are showed in 
figure 1. The mobile phase is mixed of the carrier gas inert to the stationary phase and the 
injected gaseous solute. In this study, the mobile phase is incompressible and under isothermal 
condition. The diffusions along both axial and radial conditions are considered and the 
diffusivities of solute in both mobile and stationary phase are concentration independent. The 
stationary phase is homogenous and has constant thickness along axial direction of the 
microchannel. What’s more, no chemical reaction occurs during the flow through the 
microchannel. Due to the magnitudes of the diameter and the flow rate in microchannel, the 
velocity distribution of mobile phase obeys Poiseuille's law. Considering that the solute is 
dilute, the mass convection-diffusion equation is only performed on solute. Based on above 
assumptions and equations from results of Aris[8], and with dimensionless parameters 
introduced as following,  
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the dimensionless PDEs, I.C. and B.C.s of this study are:  
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Initial condition is set that no solute is in microchannel before injection: 
 
 𝑐𝑐𝑚𝑚(𝑅𝑅,𝑍𝑍,𝑇𝑇) = 𝑐𝑐𝑠𝑠(𝑅𝑅,𝑍𝑍,𝑇𝑇)/𝐾𝐾 = 0   𝑎𝑎𝑎𝑎 𝑇𝑇 = 0, 0 < 𝑍𝑍 < 1  (3) 

At the inlet of the microchannel, the Dirac delta function is adopted to express the 
instantaneously uniform injection.  
 

 𝑐𝑐𝑚𝑚(𝑅𝑅,𝑍𝑍,𝑇𝑇) = 𝑈𝑈1
𝐿𝐿
𝛿𝛿(𝑇𝑇)  𝑎𝑎𝑎𝑎 𝑍𝑍 = 0  (4) 

At the interface of the mobile and the stationary phases, a kinetic equation is used to govern the 
interphase transport complying with the mass conservation law. The direction of interphase 
transport is decided by the value of cm-cs/K. The partition coefficient, K, physically brings solute 
to bear a linear limit concentration relationship between the mobile phase and the stationary 
phase. Kf represents the dimensionless mass transport rate at the interface of the mobile and the 
stationary phase. When Kf goes infinite the boundary condition (5) degenerates to the ideal 
one[14]. 
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Symmetric condition is set at the axis of microchannel. 
 

 𝜕𝜕𝑐𝑐𝑚𝑚
𝜕𝜕𝜕𝜕

 = 0  𝑎𝑎𝑎𝑎 𝑅𝑅 = 0   (6) 

And no reaction or adsorption occurs between solute and microchannel wall. 
 

 𝜕𝜕𝑐𝑐𝑠𝑠
𝜕𝜕𝜕𝜕

= 0  𝑎𝑎𝑡𝑡 𝑅𝑅 = 𝑟𝑟1+𝑑𝑑𝑑𝑑
𝑟𝑟1

  (7) 

 
where r1 is the inner radius and L the length of microchannel and df is the thickness of the 
stationary phase. 𝑐𝑐0 is the injection concentration of the solute and U1 the mean velocity of the 
mobile phase. The concentrations are 𝑐𝑐1 and 𝑐𝑐2 while the diffusivities of solute are 𝐷𝐷1 and 𝐷𝐷2, 
respectively in the mobile phase and the stationary phase.  

The definition of dimensionless parameters are Pe1=r1u1/D1, Pe2=r1u1/D2, Kf = kft0/r1, h0=L/r1, 
where t0=L/U1represents the time for carrier gas to flow through the microchannel. Here one 
should distinguish the Peclet number Pe1 from Pe2 which only takes the symbol of Peclet 
number, and the physically meaning of Pe2 is the ratio of the convection in the mobile phase 
over the solute diffusivity in the stationary phase. 

 
Figure 2. Mesh independence verification 

Model verification 

The finite element method is adopted for the computation operated by COMSOL Multiphysics 
5.4 in this study. The mesh is constructed quadrilateral in the computational domain in figure 
1. The distribution of mesh elements is symmetry in both axial and radial directions while near 
the interface of the mobile and the stationary phase the mesh is more compact. To conduct a 
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transient computation, the relative tolerance in solver is set 0.001 with respect to time. Figure 
2 shows the verification of mesh independence with varying total mesh elements from 110,000 
to 2,200,000. From the contours and the concentration profile in terms of time at the outlet of 
the microchannel, namely, the elution curve, of different cases, the mesh independence is 
verified. We take 1,100,000 as the number of mesh elements to perform computation and set 
𝑡𝑡0 = 40, ℎ0 = 100 constant in all the computational cases. Values of other parameters are set 
based on practicability. Pawlisch[14] once gave a computational result in his paper and we 
recurred his result with the  1-D model as the reference. Then we computed the dimensionless 
2-D model before-mentioned under the same condition of Pawlisch’s result for contrast. The 
results and comparation are shown in figure 3. The picture shows good agreement of two 
models indicating that the dimensionless 2-D model is correct. 

 

 
Figure 3. Verification of proposed 2-D model by Recurrence of Pawlisch’s Case 

Results and discussion 

Solute dispersion in microchannel with interphase transport is affected by three simultaneous 
process, i.e., the hydrodynamic convection/molecule diffusion in the mobile phase[4], the 
molecule diffusion in stationary phases and the interphase transport between the two phases[8]. 
The discussion in this section consists of three subsections. In the first subsection, we show the 
general influence of interphase transport by comparing the concentration contours of solute 
dispersion with and without interphase transport. In the second subsection, we use 
concentration distribution contours to illustrate the impact of Pe1 and Pe2 on dispersion. In the 
third section, we discuss the influence of K, Kf and df/r1 on dispersion. In all figures of contours 
shown below, the time-varying contours of the same parameter are placed in the same row while 
the parameter-varying contours of the same time are placed in the same column. 

Dispersion with interphase transport 

In this subsection, impacts of interphase transport on solute dispersion is discussed without loss 
of generality. Figure 4 shows two series of contours of which (a) is related to the solute 
dispersion without interphase transport and (b) is related to the solute dispersion with interphase 
transport. The two cases share the same parameters that 𝑃𝑃𝑒𝑒1 = 100 while only the case (b) has 
a set of parameters, i.e., 𝑃𝑃𝑃𝑃2 = 10000,𝐾𝐾 = 100,𝐾𝐾𝑓𝑓 = 106. It should be noted here that the 
value of  𝐾𝐾𝑓𝑓 indicates extremely large rate of interphase transport which can be regarded that 
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𝑐𝑐𝑚𝑚 = 𝑐𝑐𝑠𝑠  is tenable at the interface of two phases all along. The contours show clearly that 
interphase transport results in the enhancement of solute dispersion and solute retention in 
microchannel. 

 
Figure 4. Contrast contours of solute dispersion without and with interphase transport 

At the inlet of the microchannel, injected solute is not dispersed yet (a1, b1). With the 
proceeding of flow, the Poiseuille’s law acts on the solute that a parabolic but uneven 
concentration distribution can be observed in (a2) and (b2) whose contours in main stream are 
almost the same. However, solute dispersion caused by interphase transport show up that the 
solute concentration is smaller and the concentration distribution band is wider in (b2) near the 
interface than that in (a2) near the wall. The concentration gradient near the wall decreases 
slowly compared to that in the main stream thus a concentration gradient pointing from the wall 
to the main stream formed as shown in (a3). The diffusion of solute into the stationary phase 
causes the decrease of solute concentration in the mobile phase near the interface since with a 
Pe1 equals 100, diffusion in mobile phase is not strong enough to compensate the depletion of 
solute into the stationary phase. Consequently, the solute is more dispersed and the transport of 
solute into the stationary phase delays the formation of concentration band in the mobile phase 
with the contrast of (a3) and (b3). The concentration band is more even and narrower in (a4) 
than that in (b4). Once the parabolic solute concentration band is formed, longitudinal 
concentration gradient becomes significant thus the dispersion evolves broader in axial 
direction till the outlet of the microchannel as shown in (a5) and (b5). However, the 
concentration band in (b5) moves much slower and is also wider than the band in (a5). In sum, 
the existence of interphase transport causes the solute moves with a smaller velocity and 
disperses much stronger in the microchannel.  
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Impacts of Pe1 and Pe2 

The radial motion of solute consists of three parts, i.e., diffusion in the mobile and the stationary 
phases and the interphase transport. The direction of solute radial motion is controlled by the 
difference of solute concentrations at the interface between the mobile phase and the stationary 
phase, namely, the value of cm-cs/K. Each of the three parts has a resistance to solute 
diffusion[25]. Based on the mass conservation law, the solute diffusion from one phase to the 
other is analogous to the electric current through three tandem different resistances. We set 
𝐾𝐾 = 100,𝐾𝐾𝑓𝑓 = 106 (infinitely large interphase transport rate) to investigate the impacts of Pe1 
and Pe2 on the solute dispersion. 

 

 
Figure 5. Concentration distribution contours of solute with different Pe1 

Firstly, figure 5 shows the concentration contours of different Pe1 with Pe2=105. In row (a1) 
and (b1), the concentration band is of plug shape. In (c1) Pe1 equals 100, the concentration band 
is of parabolic shape. This is the evidence of solute dispersion by a stronger convection. Since 
the impact of diffusivity in the mobile phase will appear later with increase of Pe1, the 
concentration band is narrower and more bent in column (1). Later with the proceeding of flow 
the concentration band reforms dramatically wide in the case of Pe1=100. The concentration 
bands in (a2) and (b2) keep their shape and moves with weaker dispersion. Consequently, a 
much small or much big Pe1 will both cause a stronger solute dispersion while a much big one 
is worse for the trace detection. It takes longer with larger Pe1 for diffusion in the mobile phase 
to compensate the depletion of solute due to interphase transport into the stationary phase and 
thus the reformation of concentration band is slower and the reformed band is dramatically 
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wide. This indicates an optimal concentration Pe1 to be chosen which is consistent with the 
result of H.E.T.P.[17] to choose an optimal flow rate.  

Secondly, Figure 6 gives a comparation of the solute dispersion of different Pe2 and constant 
Pe1=100. It can be seen from (1) and (2) that with increasing of Pe2 from 105 to 106, the 
concentration band has little difference. However, with increasing of Pe2 from 106 to 107, the 
concentration band is wider and one can observe a relatively high concentration in mainstream 
(3) rather than near the interface (2). The big Pe2 indicates a relatively slow diffusion in the 
stationary phase so it takes longer for solute to change the diffusion direction from into the 
stationary phase to out of the stationary phase. Additionally, in (3) the concentration distribution 
is wider at the upstream of the most concentrated part than that at the downstream. This is 
because that the point satisfying cm=cs/K moves upstream as a result of the big Pe2. In sum, the 
change of Pe2 below 106 has neglectable influence on solute dispersion while increasing of Pe2 

from 106 to 107 causes a stronger solute dispersion and an asymmetric concentration 
distribution. This can be verified by the elution curve shown in figure 7. 

Figure 8 shows a series of solute concentration contours ordered chronologically with Pe1=100 
and Pe2=107. The contours in the enlargement part of figures are depicted with the replacement 
of cs by cs/K for sake of observation. As aforementioned, Pe2 is the ratio of the convection in 
the mobile phase over the solute diffusivity in the stationary phase. Due to a big Pe1, when 
T=0.1 the solute flows in the mobile phase with a parabolic but uneven distribution as shown 
in the contour (1) and the concentration of the solute left in the stationary phase is satisfied with 
the relationship cm<cs/K. In other words, this part of solute is lagged by the stationary phase. 
When the concentration band forms as shown in (2), the solute diffuse into the stationary phase 
at the downstream where cm>cs/K and out of the stationary phase at the upstream where 
cm<cs/K. This indicates that there would be a point satisfying the condition cm=cs/K. With the 
proceeding of flow, the concentration band broadens and the difference of cm and cs/K vanishes 
gradually as shown in (3) and (4). By far, the process of solute dispersion with interphase 
transport has been clearly illustrated. 

Impacts of K, Kf and df/r1 

This subsection will discuss the impacts of K, Kf and df/r1 with Pe2=105. The partition 
coefficient, K, indicates the limit of interphase transport and the dimensionless kinetic mass 
transfer rate, Kf, represents the ratio of interphase transport rate over the diffusion rate in terms 
of r1/t0. Both of the two parameters characterize the interphase transport. The ratio of df over r1 
represents the relative thickness of the stationary phase. With a constant diffusion rate in the 
stationary phase, it takes longer time to reach an even radial distribution in the stationary phase 
under the condition of a larger df/r1.  

Firstly, figure 9 shows the contours of different K with Pe1=1 and Kf=106. With 𝐾𝐾 increasing 
from 100 in row (a) to 400 in row (d), the concentration band moves slower gradually. The 
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solute velocity is proportional to the fraction of solute in the mobile phase[26]. As a result, the 
solute with a larger 𝐾𝐾 will be retained in the microchannel longer. Solute diffuses into the 
stationary phase more with the K increasing. 

 
Figure 6. Concentration distribution contours of solute with different Pe2 

 
Figure 7. Elution curve of solute with different Pe2 

 

 
Figure 8. Evolution concentration contours of solute dispersion with Pe2=107 

Consequently, the solute velocity in the mobile phase decreases thus the solute band in the 
stationary phases get wider. The wider band in stationary phase causes a wider solute 
concentration band in the mobile phase. In sum, solute of stronger affinity to the station phase, 
namely, larger partition coefficient 𝐾𝐾 , will be dispersed wider and stay longer in the 
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microchannel. This can be verified by the elution curve in Figure 10(1). Partition coefficient is 
the key factor that makes solutes separation in microchannel feasible.  

 
Figure 9. Concentration distribution contours of solute with different K 

Secondly, figure 11 shows the concentration contours of solute of different Kf with Pe1=1 and 
K=100. In this study Kf = kft0/r1, we assume 𝑡𝑡0 and 𝑟𝑟1 constant to specifically investigate the 
impact of kf on the solute dispersion. From the enlargement part of contours in column (1), it 
can be observed that with increase of Kf, the difference between cm and cs/K goes smaller. In 
column (2) with Kf increasing from 1.6 to 160, the solute concentration band becomes narrower 
but the band widths of (a2) and (b2) differs to a larger extent than those of (b2) and (c2). 
However, the solute concentration band in (c2) and (d2) have few differences in width and 
value. In addition, (a2) tells that a small Kf causes the asymmetry of solute concentration band 
with respect to the most concentrated point. However, the change of Kf does not cause the 
change of the retention time of solute in microchannel. This can be verified by the elution curve 
in figure 10 (2). The combinative function of K and Kf results in the retention and asymmetric 
solute dispersion in the microchannel. As aforementioned, there would be an ideal point 
satisfying cm=cs/K at the interface. Solute diffuses into the stationary phase at the downstream 
(cm>cs/K) of the ideal point while the solute diffuses out of the stationary phase at the upstream 
of the ideal point. The position of the ideal point is the most concentrated point of solute band 
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under the ideal condition, namely, Kf is infinitely large. Under the real condition that Kf is finite, 
the ideal point moves to the upstream of the most concentrated point. 

 
Figure 10. Elution curves of different K in (1) and of different Kf in (2) 

 
Figure 11. Concentration distribution contours of solute with different 𝐾𝐾𝑓𝑓 

In the other word, the condition, cm=cs/K, at the interface is delayed thus the diffusion of solute 
out of the stationary phase is delayed. Consequently, the solute concentration band is tailed at 
the upstream and the elution curve is left-leaning as shown in figure 10 (2). In sum, for a smaller 
Kf which means a high mass transfer resistance between the mobile and stationary phases, the 
solute is more dispersed in the mobile phase and also the corresponding concentration band 
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becomes asymmetric. As Kf is beyond 160, the further increase of Kf affects the solute 
dispersion marginally. 

 
Figure 12. Concentration distribution contours of solute with different df/r1 

Thirdly, figure 12 shows the concentration contours of solute of different df/r1 with Pe1=100 
and Kf =1600. We assume r1 constant to specifically investigate the influence of df. In column 
(1) when the solute dispersion is mainly caused by convection, the solute concentration in 
mobile phase near the interface increases as df/r1 decreases. And when the solute band forms, 
the solute concentration band goes wider as df/r1 increases from 0.0002 of (a2) to 0.002 of (b2). 
However, the band in (c2) is far from formation due to the extremely strong retention of solute 
caused by relatively thick stationary phase. Additionally, in (a2) according to the contour the 
solute has begun to diffuse out of the stationary phase while in (b2) not yet. Contours show that 
at the same dimensionless time T=0.7, when the concentration are distributed evenly, the most 
concentrated point of solute band in (b3) is further from the outlet of the microchannel than that 
of solute band in (a3). Consequently, the increase of the df/r1 also causes the delay of solute 
from flow out of the microchannel. This is consistent with the mathematical expression of the 
first moment[14]. However, in (c3) the solute in main stream has flow out of the microchannel, 
which indicates that with a relatively thick stationary phase, the retention of solute is so strong 
that the solute band is not formed in the microchannel. In sum, as df/r1 increases the solute  
capacity of the stationary phase increases and consequently, on one hand the solute is more 
significantly retained in the microchannel, but on the other hand the solute band may be not 
able to form in the microchannel. 

Conclusions 
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A transient 2-D numerical model based on the convection-diffusion theory is formulated to 
study the solute dispersion in pressure-driven microchannel flow with the interphase transport. 
The solute dispersion in the mobile phase is shown to be affected by three processes, i.e., the 
hydrodynamic convection/molecule diffusion in the mobile phase, the molecule diffusion in 
stationary phases and the interphase transport between the two phases. In the present analysis, 
various nondimensional parameters are defined to facilitate the discussion of effects of the three 
processes on the solution dispersion. Specifically, 𝑃𝑃𝑃𝑃1  represents the combined effect of 
hydrodynamic convection and molecule diffusion in the mobile phase, 𝑃𝑃𝑃𝑃2  represents the 
effect of molecule diffusion in stationary phase, K and 𝐾𝐾𝑓𝑓 represent the effect of interphase 
transport.  

From the 2D transient concentration contours, we observe that with increase of Pe1 from 1 to 
10, the solute concentration band becomes narrower and bent slightly. With the Pe1 further 
increasing to 100, and the concentration band becomes extremely irregular. As Pe2 is below 
106, Pe2 has negligible effect on the solute dispersion. However, with the increase of Pe2 from 
106 to 107, the solute shows a significant increase of dispersion in mobile phase. With K 
increasing from 100 to 400, the solute becomes more dispersed in the mobile phase along the 
microchannel axis and also shows prolonged retention in the microchannel. For a smaller Kf 
which means a high mass transfer resistance between the mobile and stationary phases, the 
solute is more dispersed in the mobile phase and also the corresponding concentration band 
becomes asymmetric. As Kf is beyond 160, the further increase of Kf affects the solute 
dispersion marginally.  

It is also noticed that a thicker layer of stationary phase (df) corresponding to a larger solute 
capacity of the stationary phase, on one hand causes a more significant retention of solute in 
the microchannel, but on the other hand leads to no formation of the solute band. 
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Abstract 

This paper presents a circular piezoelectric diaphragm which has a radial polarization 
distribution by using inter-circulating electrodes. An equation for calculating the resonant 
frequency of the radial field piezoelectric diaphragm is obtained based on the thin plate 
elastic theory combined with the Rayleigh-Ritz method. The finite element analysis (FEA) 
was used to predict the resonant frequency of the radial field piezoelectric diaphragm. To 
verify the theoretical analysis, the impedance characteristic of the radial field piezoelectric 
diaphragm was measured using an experimental method. The results obtained from 
theoretical analysis were in good agreement with those from the FEA and experimental 
results. The effect of geometrical changes to the first resonance frequency of the diaphragm is 
also described. The calculated results were found to be in good agreement with the FEA 
results. The results indicate that the resonant frequency of the radial field piezoelectric 
diaphragm decreases from 16.43 kHz to 11.92 kHz when the diameter increases from 9.2 mm 
to 10.8 mm. 
 
Keywords: Radial field diaphragm, Piezoelectric transducer, Resonant frequency, 
Rayleigh-Ritz method. 
 
Introduction 

Circular piezoelectric diaphragms are commonly employed for the purpose of sensing and 
actuating, such as electroacoustic devices [1], micromotors [2,3], microfluidic pumps [4] and 
so on. They are also widely used as energy harvesters [5,6]. Cui et al. [7] proposed a 
multi-layer piezoelectric structure working as an actuator for valveless pumps. They 
established an analytical model and verified it by finite element analysis. Kim et al. [8] 
analyzed a clamped circular piezoelectric plate with different electrode patterns to enhance 
the power generation of energy harvesters. Papila et al. [9] addressed the design of a clamped 
circular piezoelectric composite diaphragm with oppositely polarized piezoceramic patches. 
Smyth et al. [10] modeled a micromachined piezoelectric ultrasonic transducer with circular 
and ring electrodes. Piezoelectric elements in these transducers work in d31 mode. However, 
because the d33 parameter is usually two times that of the d31 parameter, the PZT elements 
which work in d33 mode are more efficient when the transducers have the similar geometrical 
structure under the same pressure [11].  
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For the circular diaphragm structure, it is generally difficult to do in-plane poling due to the 
much bigger scale in the radial direction. Bryant et al. [12,13] designed equivalent d33 mode 
piezoelectric diaphragms poled by interdigitated ring electrodes or inter-circulating electrodes. 
Hong et al. [14-16] designed micromachined radial field piezoelectric diaphragms with 
interdigitated ring electrodes. Wang et al. [17] proposed radial field piezoelectric diaphragms 
with interdigitated ring electrodes using bulk PZT materials. Shen et al. [18,19] designed 
piezoelectric diaphragms with spiral electrodes to perform in-plane poling. For piezoelectric 
transducers, the fundamental resonance is generally the most important one [19]. However, 
most of the studies utilized finite element analysis and experiments to characterize the radial 
field piezoelectric diaphragm. Theoretical analysis of calculating the fundamental resonant 
frequency of the radial field piezoelectric diaphragms has been rarely reported.  

Hence, in this paper, an equation for calculating the fundamental resonant frequency of the 
radial field piezoelectric diaphragms was established. Finite element analysis was used to 
analyze the vibration mode. Experiments were conducted to verify the theoretical analysis. 
Besides, the influence of geometrical parameters of the diaphragms was also discussed. 
 
Theoretical Analysis 

Figure 1 shows a schematic diagram of a piezoelectric diaphragm. Figure 2 shows a 
schematic diagram of the electrode pattern on the surfaces of PZT with polarization 
orientation. A circular piezoelectric wafer was bonded with a polymethyl methacrylate 
(PMMA) substrate which had a through hole. There are inter-circulating electrodes on the 
surfaces of the piezoelectric wafer. When a poling electric field is applied to the electrodes, 
the result is a radial polarization distribution. Hence, a radial field piezoelectric diaphragm is 
obtained. The diaphragm has a diameter of d1 and thickness of h. Its diameter is much larger 
than its thickness. Because the thickness of the electrodes is as small as 400 nm, the mass and 
stiffness of the electrodes have little influence on the system dynamic properties and they will 
be ignored during the theoretical analysis. 

 
Figure 1. Schematic diagram of a piezoelectric diaphragm 

 
Here, a cylindrical coordinate system was adopted in order to conveniently conduct 
theoretical analysis due to the circular diaphragm structure. When an electric field is applied 
to the electrodes, the induced strain in the piezoelectric diaphragm will lead to a flexural 
deformation. The deformation is much smaller than its thickness. According to the 
Kirchholf-Love thin plate elastic theory, the strains and stresses in some directions in the 
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piezoelectric element are given as 

0z zr z rS S S Sθ θ= = = =  (1) 

0zT =  (2) 

 
Figure 2. Electrode pattern on the PZT with polarization orientation 

 
Based on the d-type piezoelectric equations, the constitutive equations are obtained as [20,21] 

11 13 31
E E

r rS s T s T d Dθ θ= + +  (3a) 

13 33 33
E E

r r rS s T s T d Dθ= + +  (3b) 

31 33 33
T

r r rD d T d T Eθ ε= + +  (3c) 

where Sθ and Sr are the circumferential and radial strains of the piezoelectric element, 
respectively; Tθ and Tr are the circumferential and radial stresses of the piezoelectric element, 
respectively; Dr and Er are the electric displacement and electric field, respectively; sE 

11, sE 
13, 

and sE 
33  are the compliance coefficients at constant electric field; d31 and d33 are the 

piezoelectric coefficients; εT 
33 is the permittivity of the piezoelectric element at constant stress. 

According to Eq. (3), the stresses in the piezoelectric element can be described as 

1 2 3r rT S S Dθ θλ λ λ= + +  (4a) 

2 4 5r r rT S S Dθλ λ λ= + +  (4b) 

6 7 8r r rE S S Dθλ λ λ= + +  (4c) 

where λ1, λ2, λ3, λ4, λ5, λ6, λ7, and λ8 are a series of constants. They are expressed as follows 

33
1

11 33 13 13

=
E

E E E E
s

s s s s
λ

−
 (5a) 

ICCM2019, 9th-13th July 2019, Singapore

693



13
2

11 33 13 13

-=
E

E E E E
s

s s s s
λ

-
 (5b) 

13 33 33 31
3

11 33 13 13

=
E E

E E E E
s d s d
s s s s

λ −
−

 (5c) 

11
4

11 33 13 13

=
E

E E E E
s

s s s s
λ

−
 (5d) 

13 31 11 33
5

11 33 13 13

=
E E

E E E E
s d s d
s s s s

λ −
−

 (5e) 

31 1 33 2
6

33

-= T
d dλ λλ

ε
-

 (5f) 
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33
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There is no free charge on the surfaces of the piezoelectric diaphragm, hence the charge 
equation of electrostatics is [22] 

1 ( ) 0rrD
r r
∂

=
∂

 (6) 

Based on the thermodynamic equilibrium principle, Dp, which is the strain energy density of 
an infinitesimal volume element in piezoelectric material, is written as 

p
1 1
2 2r rD T S T Sθ θ= +  (7) 

By substituting Eq. (4) into Eq. (7), the Dp is obtained as 

2 2
p 1 4 2 3 5

1 1 1 ( )
2 2 2r r r rD S S S S S S Dθ θ θλ λ λ λ λ= + + + +  (8) 

The strains in the diaphragm has the relationship with the curvature of the mid-plane as 

=r rS zµ  (9a) 

=S zθ θµ  (9b) 

where z is the distance from the natural surface; μr and μθ are the curvatures of mid-plane, and 
they are defined as [23] 
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2

2=-r
w

r
µ ∂

∂
 (10a) 

1=- w
r rθµ
∂
∂

 (10b) 

where w is the displacement in the z-axis direction. The diaphragm is in the status of simple 
harmonic vibration 

sin( )zw w tw=  (11) 

where wz is the vibration mode displacement function, t is time, ω is angular frequency. 
By substitution of Eq. (9) into Eq. (8) and integration in the thickness direction, the unit area 
of the strain energy in the piezoelectric element is given by 

3
2 2

p 1 2 4
1 1d ( )

24 2 2p r r
z

hu D z θ θλ µ λ µ µ λ µ= = + +∫  (12) 

The total strain energy of the piezoelectric diaphragm can be obtained by an area integration 

1
3 /2 2 2

1 2 40

π 1 1= d ( ) d
12 2 2

d

p r r
s

hU u s r rθ θλ µ λ µ µ λ µ= + +∫∫ ∫  (13) 

The kinetic energy of the radial field piezoelectric diaphragm can be denoted as 

1
2 2

/2

0

1= d π d
2

d

s

w wT s h r r
t t

r∂ ∂   =   ∂ ∂   ∫∫ ∫  (14) 

where ρ is the density of the PZT. 
The electric energy of the radial field piezoelectric diaphragm can be calculated as 

12π /2 /2E

0 0 /2
= d d d d

d h

r r r rh
V

U E D V r E D r zθ
−

=∫∫∫ ∫ ∫ ∫  (15) 

Based on the Rayleigh-Ritz method and the symmetrical structure, the functional analysis of 
the radial field piezoelectric diaphragm can be given as [23] 

E
max max max=L U T U− −  (16) 

where Umax is the maximal strain energy, Tmax is the maximal kinetic energy, UE 
max is the 

maximal electric energy, respectively, of the radial field piezoelectric diaphragm. 
By substituting Eqs. (10), (13), (14), (15) into Eq. (16), the functional analysis is obtained as 

1

1 1

223 2 2/2

1 2 42 20

/2 /22 2 2
80 0

π 1 1 1 1= d
12 2 2

π d 2π d

d
z z z z

d d

z r

h w w w wL r r
r r r r r r

h w r r h D r r

λ λ λ

r w λ

  ∂ ∂ ∂ ∂ − + + −    ∂ ∂ ∂ ∂     

− −

∫

∫ ∫
 (17) 

When the diaphragm has a clamped boundary, the boundary condition can be written as 

0zw =  (18a) 
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d 0
d

zw
r
=  (18b) 

where r = d1/2. 
The approximate vibration mode displacement function can be written as [8] 

2 2 2
1

1 )
4zw A d r= −（  (19) 

By substituting Eq. (19) into Eq. (17), then solve the equation 

d 0
d

L
A
=  (20) 

Finally, the fundamental resonant angular frequency ω will be obtained. 
 
Finite Element Analysis 
Finite element method was also employed here to analyze the influence of geometrical 
parameters on the fundamental resonant frequency. The element SOLID 226 was selected to 
conduct the modal analysis. A circular diaphragm model with inter-circulating electrodes was 
established and the edge of the circular diaphragm was set as clamped boundary. The radial 
polarization distribution was released by rotating the local element coordinate systems after 
comparing the poling electric field strength with the coercive field strength. The PZT5A 
parameters are given below as: sE 

11=15.4×10-12 m2/N, sE 
12=-4.8×10-12 m2/N, sE 

13=-8.4×10-12 m2/N, 
s E 

33 =15.4×10-12 m2/N, s E 
44 =47.8×10-12 m2/N, s E 

66 =40.4×10-12 m2/N, d31=-191×10-12 C/N, 
d33=430×10-12 C/N, d15=590×10-12 C/N, ε11=1780ε0, ε33=1950ε0, ε0=8.854×10-12 F/m, where s
E 
ij , dij and εij are the elastic compliance, piezoelectric and permittivity constants, respectively, 
where i, j (i, j = 1, 2, 3, 4, 5, 6) denote tensor notation. Diaphragm models with different 
diameters and thicknesses were built and their fundamental resonant frequencies were 
calculated. 

Figure 3 shows some modal analysis simulation results. Figure 3a shows the fundamental 
resonant vibration mode of the piezoelectric diaphragm with a diameter of 10 mm and 
thickness of 0.3 mm. Figure 3b shows the fundamental resonant vibration mode of the 
piezoelectric diaphragm with a diameter of 10 mm and thickness of 0.127 mm. From Figure 3, 
one can know that the fundamental resonant frequency will increase with the increase of 
thickness. More detailed results will be discussed in next section. 
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(a) 

 
(b) 

Figure 3. Modal analysis simulation results: (a) Fundamental resonant frequency of the 
piezoelectric diaphragm with diameter of 10 mm and thickness of 0.3 mm: f1 = 15.02 
kHz, (b) Fundamental resonant frequency of the piezoelectric diaphragm with diameter 
of 10 mm and thickness of 0.127 mm: f1 = 6.52 kHz. 
 
Experiments and Results 

Inter-circulating electrodes on the surfaces of PZT were fabricated using micro-fabrication 
technology in a clean room. Figure 4 shows a schematic diagram of the fabrication procedure. 
Photolithography, magnetron sputtering and lift-off process were conducted. More details 
were described in [24]. 

 
Figure 4. Schematics of the device fabrication process. (a) Photoresist spin coating; (b) 
Photolithography; (c) Magnetron sputtering; (d) Lift off process; (e) Backside 
photoresist spin coating; (f) Backside alignment photolithography; (g) Backside 
magnetron sputtering; (h) Lift off process 

 
Then the PZT wafer was bonded with a PMMA substrate. Wire connection and poling 
process were conducted. Hence a radial field piezoelectric diaphragm was obtained. The 
diaphragm has a diameter of 10 mm and thickness of 0.3 mm. An impedance analyzer 
(Agilent 4294A, Agilent Technologies Inc., Santa Clara, CA, USA) was utilized to measure 
the resonant frequency of the diaphragm.  

Figure 5 shows a photograph of the impedance and phase spectrum testing. Figure 6 shows 
the impedance and phase spectrum of the diaphragm. The frequencies of the theoretical 
analysis, finite element analysis and experiment results are 13.91 kHz, 15.02 kHz and 14.36 
kHz, respectively. The results of theoretical analysis were in good agreement with those of 
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finite element analysis and experiment results. 
 

 
Figure 5. Impedance and phase spectrum testing 

 

 
Figure 6. Impedance and phase spectrum of the diaphragm 

 
As mentioned in previous sections, the diameter of the piezoelectric diaphragm has a 
profound effect on the fundamental resonant frequency. Figure 7 shows the results obtained 
from the theoretical analysis and finite element analysis with different diameters. From 
Figure 7, one can know that the theoretical results are in good agreement with the finite 
element analysis results. The fundamental resonant frequency will decrease from 16.43 kHz 
to 11.92 kHz when the diameter increases from 9.2 mm to 10.8 mm. 
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Figure 7. Frequency-diameter curves of the piezoelectric diaphragm 

 
Conclusion 

Based on the Kirchholf-Love thin plate elastic theory and piezoelectric equations combined 
with the Rayleigh-Ritz method, an equation for calculating the fundamental resonant 
frequency of a radial field piezoelectric diaphragm was obtained. Finite element analysis 
(FEA) was conducted to calculate the resonant vibration mode. Prototype was fabricated by 
microfabrication technology in a clean room and its impedance spectrum was examined by an 
impedance analyzer. The theoretical analysis results were in good agreement with the FEA 
and experimental results. The effect of geometrical parameters on the fundamental resonant 
frequency was also analyzed. The results showed that the fundamental resonant frequency of 
the radial field piezoelectric diaphragm decreases from 16.43 kHz to 11.92 kHz when the 
diameter increases from 9.2 mm to 10.8 mm. 
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Abstract 

This paper will develop a topology optimization method for computational design of architected 

microstructures based on isogeometric analysis (IGA). The NURBS (non-uniform rational B-

splines) is applied to represent the geometry in both the design and analysis processes, as well 

as interpolate a material density distribution function (DDF) with the desired smoothness and 

continuity to represent the material layout in the design domain. An isogeometric topology 

optimization formulation is then formulated based on the DDF, with the energy-based 

homogenization method (EBHM) to evaluate the effective properties of the microstructure. 

Several numerical examples are used to demonstrate the effectiveness of the proposed method 

for computational design of micro-structured periodic composite structures. 

 

Keywords: Topology optimization; Isogeometric analysis; Microstructures 

 

Introduction 

 

Architected materials with a series of periodically distributed microstructures, a kind of 

rationally artificial materials, are featured with the superior performance, such as the higher 

specific stiffness and strength, the better fatigue strength and improved corrosion-resistance and 

etc. [1, 2]. It is known that the performance of architected materials is mostly dependent on the 

microstructural information, namely the configuration, rather than the constituent properties. 

Hence, how to develop a rational design framework for architected materials has accepted 

enormous attentions in recent years. 

 

Topology optimization has made remarkable progress in creating architected materials with 

new properties [3], which can be viewed as a numerically iterative procedure to optimize 

material layout in a given design domain, under the specified objective function and 

constraint(s) [4], Several topology optimization methods have been developed, like the 

homogenization method [4], the Solid Isotropic Material with Penalization (SIMP) method 

[5,6], the Evolutionary Structural Optimization (ESO) method [7] and the level set method 

(LSM) [8-10]. Since an inverse homogenization method was proposed for the architected 

materials [11], topology optimization combined with the homogenization method has become 

more and more popular for the design of architected materials with the specific properties [12, 

13] and even more advanced topological designs [14,15]. 
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Although the research on how to obtain architected materials has been extensively studied in 

recent years, only a limited number of works are devoted to obtaining architected materials with 

the low density. In this paper, we aim to develop an effective and efficient isogeometric 

topology optimization (ITO) method for the rational design of the low-density architected 

materials. Firstly, most of the previous works are studied based on the conventional finite 

element method (FEM). However, the FEM is also one factor to influence the effectiveness of 

the topology optimization for the design of architected materials. This is because: (1) The finite 

element mesh is just an approximation of the original shape of the design domain; (2) The 

lower-order (C0) continuity of the responses between the neighboring finite elements; (3) The 

lower efficiency to achieve a finite element mesh with the high quality. Isogeometric analysis 

(IGA) [16] has attracted much interests, due to its favorable features in numerical analysis, such 

as the consistency between the computer-aided design (CAD) model and the computer-aided 

engineering (CAE) model, and the high-order continuity between different elements. Secondly, 

in the developed ITO method, a sufficiently smooth and continuous DDF is constructed to 

represent the topological changes during the optimization. Thirdly, the IGA is applied to 

numerical implement the energy-based homogenization method. Finally, the corresponding 

isogeometric topology optimization is developed for the design of architected materials with 

the low-density. Several numerical examples are tested to show the effectiveness and efficiency. 

 

NURBS-based IGA 

 

(1) NURBS 

An example of a square modelled by NURBS is shown in Figure 1. The NURBS basis 

functions are linearly combined with a series of control points plotted with the red color to 

construct the geometrical model shown in Figure 1 (b), and the mathematical form of the 

NURBS surface 𝐒(𝜉, 𝜂) is given as: 

 

𝐒(𝜉, 𝜂) = ∑ ∑ 𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝐏𝑖,𝑗

𝑚
𝑗=1

𝑛
𝑖=1                      (1)  

 

where 𝑛 and 𝑚 are the numbers of control points in two parametric directions, and 𝜉 and 𝜂 

denote the corresponding parametric directions. 𝑝 and 𝑞  are the polynomial orders. The 

detailed information for the square is listed below Figure 1. 𝐏𝑖,𝑗 correspond to the (𝑖, 𝑗)𝑡ℎ 

control point. It should be noted that control points are not necessarily on the structural design 

domain. 𝑅 are the bivariate NURBS basis functions, and which are constructed by the B-spline 

basis functions, as: 

 

𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂) =

𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝜔𝑖𝑗

∑ ∑ 𝑁𝑖̂,𝑝(𝜉)𝑀𝑗̂,𝑞(𝜂)𝜔𝑖̂𝑗̂
𝑚
𝑗̂=1

𝑛
𝑖̂=1

                    (2)  

 

where 𝜔𝑖𝑗  is the positive weight for the (𝑖, 𝑗)𝑡ℎ  control point 𝐏𝑖,𝑗 . 𝑁𝑖,𝑝 and 𝑀𝑗,𝑞  are the 

univariate B-spline basis functions in two parametric directions, respectively. The B-spline 
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basis function is defined by the Cox-de-Boor formula [16], and the recursive formula in 𝜉 

direction with a non-decreasing knot vector Ξ = {𝜉1, 𝜉2, ⋯ , 𝜉𝑛+𝑝+1} is defined as: 

 

{
𝑁𝑖,0(𝜉) = {

1 𝑖𝑓 𝜉𝑖 ≤ 𝜉𝑖+1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,                                         𝑝 = 0

𝑁𝑖,𝑝(𝜉) =
𝜉−𝜉𝑖

𝜉𝑖+𝑝−𝜉𝑖
𝑁𝑖,𝑝−1(𝜉) +

𝜉𝑖+𝑝+1−𝜉

𝜉𝑖+𝑝+1−𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉), 𝑝 ≥ 1

         (3)  

 

It is noted that the fractions with the form 0/0 in Eq. (3) are defined as zero. Similarly, the basis 

functions 𝑀𝑗,𝑞 in the 𝜂 direction are also defined by Eq. (3) with the knot vector. The NURBS 

basis functions of the square in two parametric directions are respectively displayed in Figure 

1 (d) and (e). The bivariate basis functions are also plotted in Figure 1 (f).  

 

We can easily see that the NURBS basis functions are featured with several important 

properties: (1) Nonnegativity: 𝑁𝑖,𝑝(𝜉) ≥ 0; (2) Local support: the support of each basis 

function 𝑁𝑖,𝑝 is contained in the interval [𝜉𝑖, 𝜉𝑖+𝑝+1]; (3) Partition of unity: for an arbitrary 

knot span [𝜉𝑖, 𝜉𝑖+1] , ∀𝜉 ∈ [𝜉𝑖, 𝜉𝑖+1], ∑ 𝑁𝑗,𝑝(𝜉)
𝑖
𝑗=𝑖−𝑝 = 1 ; (4) Continuity: The continuity 

between knot spans is equal to 𝐶𝑝−𝑘 where 𝑘 is the multiplicity of the knots. 

 

(2) Numerical discretization in the IGA 

The NURBS basis functions are firstly applied to parametrize the structural domain, and then 

construct the space for structural responses. As far as the latter, the key principle is that the 

continuous solution space is approximately defined by a linear combination of all NURBS basis 

functions with the nodal responses on control points. The mathematical formula of the space 

keeps the same as the geometrical model in Eq. (1), while control coefficients correspond to the 

structural responses on control points, expressed as: 

 

𝐱(𝜉, 𝜂) = ∑ ∑ 𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝐱𝑖,𝑗

𝑚
𝑗=1

𝑛
𝑖=1                        (4)  

 

where 𝐱  is the field of structural responses in design domain, and 𝐱𝑖,𝑗  is the structural 

response on the control point (𝑖, 𝑗)𝑡ℎ . Considering the linearly elastic in IGA, the system  

stiffness matrix is obtained by assembling the element stiffness matrix which is calculated by 

the Gauss quadrature method, as: 

 

  𝐊𝑒 = ∑ ∑ {𝐁𝑇(𝜉𝑖, 𝜂𝑗)𝐃𝐁(𝜉𝑖, 𝜂𝑗)|𝑱1(𝜉𝑖, 𝜂𝑗)||𝑱2(𝜉𝑖, 𝜂𝑗)|𝜔𝑖𝜔𝑗}
3
𝑗=1

3
𝑖=1        (5)  

 

where 𝐁 is the strain-displacement matrix calculated by the partial derivatives of NURBS 

basis functions with respect to parametric coordinates. 
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Figure 1. NURBS-based IGA for a square: Ξ = {0,0,0,0.1429,⋯ ,0.8517,1,1,1}, ℋ =

{0,0,0,0.1429,⋯ ,0.8517,1,1,1}; 𝑛 = 𝑚 = 9; 𝑝 = 𝑞 = 2. 

 

IGA-based EBHM 

The principle of the homogenization is that the macroscopic effective properties of the bulk 

material are determined by using the information from the microstructure, where the 

microstructure is described in the coordinate system 𝐲. Considering the linear elasticity, only 

the first-order variation term with respect to the parameter expansion 𝜖 is considered. The 

effective elastic tensor of the bulk material 𝐷𝑖𝑗𝑘𝑙
𝐻  can be computed as: 

 

𝐷𝑖𝑗𝑘𝑙
𝐻 =

1

|Ω|
∫ (𝜀𝑝𝑞

0(𝑖𝑗)
− 𝜀𝑝𝑞(𝑢

𝑖𝑗))𝐷𝑝𝑞𝑟𝑠 (𝜀𝑟𝑠
0(𝑘𝑙) − 𝜀𝑟𝑠(𝑢

𝑘𝑙))
Ω

ⅆΩ        (6)  

 

where |Ω| is the area (2D) or volume (3D) of the microstructure, and 𝐷𝑝𝑞𝑟𝑠 is the locally 

varying elastic property. 𝜀𝑝𝑞
0(𝑖𝑗)

 is the linearly independent unit test strain field, containing three 

components in 2D and six in 3D. 𝜀𝑝𝑞(𝑢
𝑖𝑗)  denotes the unknown strain field in the 

microstructure, which is solved by the following linear elasticity equilibrium equation with y-

periodic boundary conditions (PBCs): 

 

∫ 𝜀𝑝𝑞(𝑢
𝑖𝑗)𝐷𝑝𝑞𝑟𝑠𝜀𝑟𝑠(𝛿𝑢

𝑖𝑗)
Ω

ⅆΩ = ∫ 𝜀𝑝𝑞
0(𝑖𝑗)

𝐷𝑝𝑞𝑟𝑠𝜀𝑟𝑠(𝛿𝑢
𝑖𝑗)

Ω
ⅆΩ,   ∀𝛿𝑢 ∈ 𝐻𝑝𝑒𝑟(Ω,ℝ

𝑑)   (7)  

 

where 𝛿𝑢  is the virtual displacement in the microstructure belonging to the admissible 

displacement space 𝐻𝑝𝑒𝑟  with y-periodicity, and ⅆ  denotes the dimension of material 
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microstructure. 

 

The homogenization is numerically performed by discretizing and solving Eq. (8) using the 

finite element method (FEM), and the utmost importance is the imposing of the PBCs on 

material microstructure. As an alternative method, the EBHM with a simplified periodic 

boundary formulation [13] is developed. Here, the numerical analysis of material 

microstructure is performed by IGA. In IGA, the displacement field in material microstructure 

is approximately expressed by a combination of the NURBS basis functions with the 

displacements at control points: 

 

𝐮 = ∑ ∑ 𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝐮𝑖,𝑗

𝑚
𝑗=1

𝑛
𝑖=1                         (8) 

 

 

 

where 𝐮𝑖,𝑗  denote the displacements of the (𝑖, 𝑗)𝑡ℎ  control point. As we can see, NURBS 

basis functions are linearly combined with nodal displacements to approximate the 

displacement field in the microstructure. In the application of the EBHM to evaluate material 

effective properties, the displacement field in material microstructure needs to satisfy the PBCs, 

and a general form is expressed as: 

 

𝐮𝑘
+ − 𝐮𝑘

− = 𝜀(𝐮0)∆𝑘                               (9)  

 

where 𝑘  denote the normal direction of the structural boundary. 𝐮𝑘
+  indicate the 

displacements of points at the structural boundary with the normal direction 𝑘, and the normal 

direction is in the positive direction of the coordinate axis. 𝐮𝑘
− correspond to the displacements 

of points at the opposite structural boundary. ∆𝑘 is the scale of the material microstructure 

along the direction of 𝑘. 

 

ITO formulation for architected materials 

 

Before developing the DDF, the definition of nodal densities assigned to control points needs 

to satisfy two basic conditions: (1) non-negativity; and (2) the strict bounds ranging from 0 to 

1. Meanwhile, the Shepard function is used to improve the overall smoothness of nodal 

densities, so as to make sure the smoothness of the DDF. The corresponding mathematical 

model is given as: 

 

𝒢(𝜌𝑖,𝑗) = ∑ ∑ 𝜓(𝜌𝑖,𝑗)𝜌𝑖,𝑗
ℳ
𝑗=1

𝒩
𝑖=1                       (10)  

 

where 𝒢(𝜌𝑖,𝑗) is the smoothed nodal density assigned to the (𝑖, 𝑗)𝑡ℎ control point, and 𝜌𝑖,𝑗 

is the initial nodal density. 𝒩 and ℳ are the numbers of nodal densities located at the local 

support area of the current nodal density in two parametric directions. 𝜓(𝜌𝑖,𝑗) is the Shepard 

function of the (𝑖, 𝑗)𝑡ℎ nodal density. 
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Assuming that the DDF in the structural domain is denoted by 𝒳, the DDF is constructed by 

the NURBS basis functions with a linear combination of the smoothed nodal densities, 

expressed as: 

𝒳(𝜉, 𝜂) = ∑ ∑ 𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝒢(𝜌𝑖,𝑗)

𝑚
𝑗=1

𝑛
𝑖=1                   (11)  

 

It can be seen that the DDF has the same mathematical formula for NURBS in Eq. (1). The key 

difference is the physical meaning of control coefficients. 

 

Here, the objective function for the topology optimization of architected materials with the low-

density, which is defined by a function of the homogenized elastic tensor, given as: 

 

{
 
 
 

 
 
 𝐹𝑖𝑛ⅆ: 𝝆 {[𝜌𝑖,𝑗]2D   [𝜌𝑖,𝑗,𝑘]3D}                                                                             

𝑀𝑖𝑛: 𝐽(𝐮,𝒳) = 𝑓 (𝐷𝑖̂𝑗̂𝑘̂𝑙
𝐻 (𝐮,𝒳))                                                                       

𝑆. 𝑡: {

𝐺(𝒳) =
1

|Ω|
∫ 𝒳(𝝆)𝑣0Ω

ⅆΩ − 𝑉0 ≤ 0                                                  

𝑎(𝐮, 𝛿𝐮) = 𝑙(𝛿𝐮), ∀𝛿𝐮 ∈ 𝐻𝑝𝑒𝑟(Ω,ℝ
𝑑)                                      

0 < 𝜌𝑚𝑖𝑛 ≤ 𝝆 ≤ 1, (𝑖 = 1,2,⋯ , 𝑛; 𝑗 = 1,2,⋯ ,𝑚; 𝑘 = 1,2,⋯ , 𝑙)

 

   (12)  

 

where 𝝆  denotes the nodal densities assigned to control points, working as the design 

variables. 𝐽  is the objective function. ⅆ  is the spatial dimension of materials. 𝐺  is the 

volume constraint, in which 𝑉0 is the maximum value and 𝑣0 is the volume fraction of the 

solid. 𝒳 is the DDF. 𝐮 is the unknown displacement field in material microstructure, which 

have to satisfy the PBCs given in the above. 𝛿𝐮 is the virtual displacement field belonging to 

the admissible displacement space 𝐻𝑝𝑒𝑟 with y-periodicity, which is calculated by the linearly 

elastic equilibrium equation. 𝑎 and 𝑙 are the bilinear energy and linear load functions, as: 

 

{
𝑎(𝐮, 𝛿𝐮) = ∫ 𝜀(𝐮)(𝒳(𝝆))

γ
𝐃𝟎𝜺(𝛿𝐮)Ω

ⅆΩ

𝑙(𝛿𝐮) = ∫ 𝜺𝟎(𝒳(𝝆))
γ
𝐃𝟎𝜺(𝛿𝐮)Ω

ⅆΩ          
              (13)  

 

It should be noted that the elastic tensor is assumed to be an exponential function with respect 

to the DDF, and γ is the penalization parameter. 𝐃𝟎 is the constitutive elastic tensor of the 

basic material. 

 

Numerical Examples 

In this section, several numerical examples are provided to demonstrate the effectiveness and 

efficiency of the ITO method. In all examples, the Young’s moduli 𝐸0 and the Poisson’s ratio 

𝜐0 for the basis material are defined as 1 and 0.3, respectively. In the numerical analysis, 3×3 
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(2D) or 3×3×3 (3D) Gauss quadrature points are chosen in an IGA element. For numerical 

simplicity, the dimensions of material microstructures in all directions are set to be 1. The 

penalty parameter is set as 3. Considering 2D materials, the structural design domain is a square 

with 1×1, shown in Figure 1. Here, NURBS surface is applied to parametrize the design 

domain, where the quadratic NURBS basis functions are chosen and the knot vectors are set as: 

Ξ = ℋ = {0,0,0,0.01,⋯ ,0.99,1,1,1}. The corresponding IGA mesh for the design domain has 

100×100 elements, and 101×101 (10202) control points are contained in the NURBS surface. 

In all examples, the maximum material consumption 𝑉0 for different cases is defined as 10%. 

       
Figure 2. Initial design 1 and Initial design 2 

 

       

Figure 3. The optimized design 1 

In this example, we study the effectiveness of the defined formulation on topology optimization 

of architected materials with the maximum bulk modulus in an extremely low volume fraction. 

As shown in Fig. 2, two different initial designs are defined and then discussed into two 

different cases, respectively. As shown in Figs. 3 and 4, the optimized results of the low-density 

architected materials with the maximum bulk modulus are provided. It can be easily seen that 

the optimized results are very similar to the known lattice structures, but the current design is 

obtained from a rational design using the isogeometric topology optimization framework. 
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Figure 4. The optimized design 2 

 

Moreover, we also perform the discussions of the ITO method on the optimization of 

architected materials with the maximum shear modulus. In this example, the parameters are 

consistent with the above example, and the objective function is defined based on the shear 

modulus. Two different cases are both discussed with two distinct initial designs, and the 

optimized topologies of the low-density architected materials with the maximum shear modulus 

are displayed in Figs. 5 and 6. As we can see, the optimized design with the bars in 45o can 

provide the sufficient stiffness for affording the load, which shows the effectiveness of the 

current work. Additionally, the optimized low-density architected materials are also analogous 

to the known lattice materials, which has gained the extensive applications in the aerospace 

engineering. Hence, we can easily see that the current ITO method has the capability to seek 

the low-density architected materials with the sufficiently stiffness. 

       

Figure 5. The optimized design 1 

 

Conclusions 

 

In this paper, an effective and efficient ITO method is developed for the rational design of the 

low-density architected materials with the optimal stiffness, where a DDF with the desired 

smooth and continuous is constructed to represent the structural topology and IGA is applied 

to solve the displacement responses in microstructures. The EBHM to predict the macroscopic 

ICCM2019, 9th-13th July 2019, Singapore

708



effective properties is numerical implemented by the IGA, with the consideration of the periodic 

boundary conditions. Several numerical examples are given to show the basic features and 

effectiveness of the proposed ITO method. We can obtain the optimized low-density architected 

materials, very similar to the lattice materials. 

 

       

Figure 6. The optimized design 2 
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Abstract 

This paper theoretical studies the performance of automatic adaptive edge-based smoothed 

finite element method (ES-FEM) for the solutions of elastic in-plane engineering mechanics 

problems. An ES-FEM adopting a strain smoothing technique over the edges of a generic 

triangular mesh presents coarse mesh accuracy in numerical analysis results. The automatic 

refinement of model construction from coarse-to-fine of meshes associated with high intensity 

of stresses and vice versa for others with low stress intensity. The specific L2-norm error, in a 

similar fashion to Zienkiewicz–Zhu, estimator indicates the difference between numerical von 

Mises stress solutions and recovery stresses underpinning the structural model with applied 

forces. A number of benchmarks, i.e. especially those subjected to stress singularity and/or 

incompressibility conditions, have been adopted for the comparisons in views of solution 

accuracy and computational robustness between ES-FEM and some standard isoparametric 

finite element model. Significant improvement in the computing efficiency and hence solution 

convergence has been clearly evidenced as when the ES-FEM analysis was encoded with the 

automatic model adaptation and vectorization within MATLAB environment, simultaneously. 

Keywords: ES-FEM, Automatic Adaptive Mesh, Posterior Error Estimator, Vectorization. 

 

Introduction 

Smoothed finite element methods (S-FEMs) have been successfully applied in solving many 

engineering mechanics problems. [1] combined the finite element method (FEM) to some of 

the meshfree techniques. Besides the information at nodes on each element S-FEM models 

consider nodal unknowns of neighboring elements to construct smoothed strain field to 

enhance stability, convergence and accuracy of the solutions. The diversity of two-

dimensional S-FEMs which are edge-, nodal- and cell-based S-FEMs with different properties 

is created by applying the strain smoothing technique from [2]. With the smoothed strain 

field, these models exhibit desirable properties and work well with a general n-side polygonal 

elements, especially for the three-node triangular (T3) meshes. Among the above S-FEM 

models, the Edge-based Smoothed Finite Element Method (ES-FEM) have arisen as the most 

outstanding S-FEM model which possesses so many advantages such as stable both spatially 

and temporally, much more accurate compared with many available FEMs. The ES-FEM 

creates models with close-to-exact stiffness so that it is efficient for solving both static and 

dynamic problems. 

 

For mechanics problems associated with physically instabilizing stress singularity, the 

standard model construction has experienced the low accuracy of results using standard finite 

elements. A process of iterative mesh reconstruction will automatically decide where high 
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density of mesh are required to obtain a proper mesh distribution in each step of analysis. A 

layer of singular five-node elements will be applied around the crack-tip to capture the 

theoretical occurrence of unbounded stresses. Modifications in error assessment procedure for 

these elements are presented to accurately converge the stress response results over the local 

areas of structures considered. 

 

The method [3] employed standard Delaunay triangulation procedure without any error 

indicator, considered as a geometric dependent refinement. In addition, a singular ES-FEM 

[4] adopted a recovery-based error indicator in an energy norm to predict accurately singular 

stress field around re-entrant corners. The applications of the node-based smoothed finite 

element method (NS-FEM) using the similar recovery-based error function were described in 

[5]. where it demonstrated clearly the good convergence capability and upper-bound strain 

energy solutions over iterative mesh reconstruction processes. 

 

However, it is uncommon that the researchers interested in adaptive analysis showed the 

results in terms of runtime or computing resources in the past. The ES-FEM-T3 models 

incorporating a simple yet effective recovery-based error function of von Mises stresses were 

encoded within a vector-oriented MATLAB environment. The newest node bisection 

algorithm was adopted to the automatic AMR procedures. In essence, a parent triangle 

element is sub-divided into several children triangle elements along the longest edge to 

eliminate hanging nodes. The effciency of the present  models is tested by using the two 

problems, from which successfully solved by [6]-[7], in providing solutions of such 

challenging problems under the presence of stress singularity and discontinuity field. 

Moreover, the proposed analysis framework also describes a significant reduction of 

computing resources as compared to an uniform model construction strategy. 

 

The following section includes a brief description of ES-FEM-T3 formulations and 

displacement interpolation within a singular element. Then, an overview of the recovery-

based stress adaptive mesh algorithm incorporated with the longest-edge refinement technique 

is provided. In the next Section, two numerical examples subjected to the challenging of 

elastic stress singularity and discontinuity are given to illustrate applications of the developed 

analysis scheme. They also highlight the accuracy and robustness of the proposed ES-FEM-

T3 framework. The main conclusion and suggestion for future research are drawn in the end 

part. 

Brief description of the ES-FEM model 

An Overview of The ES-FEM Using Triangular Elements 

A set of =s egN N  for both ”non-overlap” and “no-gap” smoothing domains  s

k  will fill in the 

whole problem domain 1= =  sN s

k k  and ,  s s

i j i j  =  . The strains of generic ES-FEM-

T3 elements are smoothed over the smoothing domains by connecting between two endpoints 

of the edge and central points of neighboring elements.   

The smoothing strain operator over the edge-based smoothing domain  s

k  can be defined by: 

    ( ) ( )
s
k

k x W x d 


=       (1) 

where ( ) x  is the compatible strain field in FEM-T3, and ( )W x  is a weight function as 
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s

k

A
W x W x

x
d

x



 
=  =



 


1
1

0
     (2) 

A Green’s divergence theorem is applied and yields the following smoothed strains: 

     ( ) ( ) ( ) ( ) ( )       
s s s
k k k

k d ns s

k k

x d L u x W x d L x u x d
A A

 
  

= =  =   
1 1

     (3) 

where ( )nL x  is a matrix of containing the outward normal vectors to the boundary  s

k  as 

depicted in Fig. 1, 
1

1

3
=

=  = 

k
e

s
k

N
s

k j

j

A d A  is the area of smoothing domain  s

k , k

eN is the 

number of elements containing edge k. 

 

 

Figure 1.  Outward normal to the edge DI’’ under the smoothing domain DI’’-FI’ in x-y 

coordinates 

The smoothed strain–displacement matrix ( ),iB x y  of node i-th is constructed by having 

 

    ( ) ( )
s
k

ix

i n i iys

k

iy ix

b

B L x N x d b
A

b b

 
 

=  =  
 
 



0
1

0  with 
( ) ( ) ( ) ( )

1



= 
s
k

ix y x y is

k

b n x N x d
A

     (4) 

One single Gauss’s integration point is applied for each q-th segment ,s

k q  of the boundary  s

k  

    ( )( ) ( ),p ( ) l

sn
Gauss

ix y x y i p ps
pk

b n x N x
A



=

= 
1

1
     (5) 

where 

sn  is the total number of boundary segments ,s

k q   s

k , 
Gauss

px are the coordinates of a 

Gauss’s point on the boundary segment ,s

k q , ( ),x y pn and pl  denote the unit normal and the 

length of the boundary q-th segment ,s

k q . 

An ES-FEM Formulation Using A Layer of Singular Elements 

Problems with a re-entrant corner as introduced by [8] have the singular stress field of 

arbitrary order. The power singular term  , depends only on the vertex angles of 2    . 

[9] and [10] theoretically showed the occurrence of elastic stress singularities at angular 

corners resulting from various BCs rather than only the free-free BC as normally encountered 

in crack problems. The   (in the term 1 −r ) is interpolated from the graph as provided in 

ICCM2019, 9th-13th July 2019, Singapore

713



[9] or computed from the characteristic equations in [10] depending on the value of vertex 

angle and the BCs on the two radial edges.  

 

The linear interpolation used in standard finite elements cannot reproduce such a singular 

field. The most widely used technique to simulate this kind of stress singularity is the so-

called (quadratic) 6-node crack-tip element in which the additional midpoint are shifted by a 

quarter edge-lengths toward the crack-tip. The singularity is then achieved nicely by the well-

known iso-parametric mapping procedure [11]. In the present singular ES-FEM-T3 method, 

however, no mapping is needed and only the shape function values (not the derivatives) are 

required. Making use of this important feature of ES-FEM-T3, the stress singularity at the 

crack tip can be created by a simple point interpolation method with extra basis functions of 

proper fractional order polynomials. 

 

The domain with a horizontal opening crack is discretized using a layer of five-noded 

triangular elements that contribute to the crack-tip and standard three-node triangular 

elements in the remaining area as in Fig. 2a). Only an additional node on each edge that 

directly connected to the singular point is added in general at any point Fig. 2b) that can 

produce a proper order of stress singularity near the crack tip.  

 

 

Figure 2. a)  Triangular mesh with layer of five-node elements in the ES-FEM-T3,  

b) Additional node at arbitrary location in radial coordinate originated at the crack-tip 

The displacement field, u, along the crack-tip element edge is approximated using: 

    ( ) ( )Tu x P x c c c r c r= = + +0 1 2      (6) 

where 0 r l  is the radial coordinate originated at the crack-tip (node 1 in Fig. 2b), and 

( , , )0 1 2=ic i  are the coefficients yet to be determined, /1 2 1   is a singularity parameter. 

 

The unknown coefficients c  can be obtained by substituting the radial coordinates of nodes 

into Eq. (6). Then, we replace it in the same equation to get the matrix form as given follows: 

    ( )    ( )
T

u x u u u x d=    =1 2 3 1 2 3      (7) 

where ( , , )1 2 3 =i i  are shape functions corresponding to the three nodes on the edge that 

directly connected to the crack-tip and is defined as follows: 
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( ) ( )

( ) ( ) ( )
, ,

r l r r l r l r r

l l l l l l

       

    

   

     

− − −− + − − −
 = +  =  =

− − −

1 1 1

1 2 3

1 1
1      (8) 

and ( , , )1 2 3=iu i  are the nodal displacements, l  is the  length of the element edge, and 

0 1   is the propotion of the edge 1-2 over the edge 1-3.  

 

For fracture mechanics problems with in-line crack faces, /1 2 = , and simply take /1 4 = , 

the shape functions become 

    ,    ,    
r r r r r r

l l l l l l
 = + −  = − +  = −1 2 31 2 3 4 4 2      (9) 

These ( , , )1 2 3 =i i  satisfy all the basic properties of a shape function such as linear 

reproducibility, Partition of Unity, Kronecker Delta properties and can actually produce the 

singularity of stress field with the power of 1/2 near the crack-tip. 

 

In the radial direction, the displacement field takes the enriched form as given in Eq. (6), 

while in the tangential direction it is assumed to be linearly dependent to ensure the 

compatibility along the two-node edge of crack-tip elements. Now, we consider the five-node 

element 1-4-2-3-5 and two layers of singular smoothing domains are good enough to ensure 

both stability and accuracy in approximating the singular term around the crack-tip as 

depicted in Fig. 3a) 

 

 

Figure 3.  

a)  Two layers of singular smoothing domains using three Gauss-point interpolation,  

b) Additional node at arbitrary location in radial coordinate originated at the crack-tip 

Along the arbitrary radial line 1-N-M, displacement is obtained using the Eq. (6) as 

    N Mu u u u=  + +1 1 2 3      (10) 

and        ,N N M M
N M

l l l l
u u u u u u

l l l l

− − − −

− − − −

   
= − + = − +   
   

4 4 2 2
4 5 2 3

5 4 5 4 3 2 3 2

1 1      (11) 
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Similar triangle rule leads to 4 2

5 4 3 2

− −

− −

= =N M
l l

l l
. Substituting Eq. (11) into Eq. (10) yields 

    ( ) ( )u u u u u u   = + −  +  + −  + 1 1 3 2 3 3 2 4 2 51 1      (12) 

In matrix form:     
T

u N N N N N d d d d d Nd= =1 2 3 4 5 1 2 3 4 5
     (13) 

where N  is the matrix of shape functions of the singular element. 

 

The smoothed strain–displacement matrix of each layer of singular smoothing domain is 

    

a

ix

a a

i iy

a a

iy ix

b

B b

b b

 
 

=  
 
 

0

0  with 
,

,

( ) ( ),
( ) ( ) ( )

s a
k

a k a

ix y k i x ys a

k

b x N x n x d
A



= 
1

     (14) 

where , , ,  s a s a

k kA  is the area and the boundary of the a-th layer of the singular SD , s a

k , 

respectively, the shape functions ( )iN x  in Eq. (12) are adopted in this case, 
,

( )

k a

x yn  is the unit 

normal vector of the boundary segment ,s a

k  

 

Similarly, we apply the Gauss integration along the segments of boundary ,s a

k , then 

    ( ),

( ) ,b , ( ) ,,
( )

s
Gaussnn

a k a Gauss

ix y p p x y i p bs a
p bk

b w n x N x
A



= =

 
=  

 
 

1 1

1
     (15) 

where 3=Gaussn  is the number of Gauss-points on each boundary segment Fig. 3a), ,bpw  is 

the corresponding weight coefficient of the Gauss-points, ,

Gauss

p bx  is the b-th Gauss-point of the 

pth boundary segment of 
,

,s a

k p  and 

sn  is the number of boundary segments of , ,

,

1



=

 = 
sn

s a s a

k p k

p

 

 

In this model, the Galerkin Weak Form is employed in a similar fashion to standard FEM-T3. 

However, the formulations of a stiffness matrix are associated with the smoothing domains, 

rather than individual members by 

    
sN

k

k

K K
=

=
1

     (16) 

and the nodal load vector f  is the same as that of the corresponding standard FEM-T3 as 

given below 

    
node

e e
N

e e

e

N

N
T e T e e

N

N

N i

i

N b d N t d pf
= 

+  +=   
1

     (17) 

Adaptive Procedure 

Recovery Based Strain Error Indicator 

The global ZZ-type error indicator, Z , is the sum of the local ZZ-type error indicators from 

all individual elements in L2-norm, namely 
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/
eN

Z l

l

 
=

 
=  
 


1 2

2

1

     (18) 

    ( ) ( )
/

( )l

l

T
R R R

l v v v v v vL
d      




 
= − = − −  

  
2

1 2

     (19) 

where   is the numerical solution of stress and is area-weight averaged using the stresses 

from the two layers of singular SDs that connected to the crack-tip by 

    
 


+

=
,1 1 ,2 2s s

k i k i
i s

k

A A

A
     (20) 

and  R  is the recovery field of stress that is continuous over the entire domain and converges 

to an exact solution for a sufficiently fine mesh in ES-FEM-T3 obtained by 

    ( , ) ( )

e
nn

R R

i

i

N x y i 
=

=
1

     (21) 

with ( , )iN x y  is the shape function at the i-th node (the same with standard FEM-T3), ( ) R i is 

the vector containing the nodal stresses of an element (presenting the area-weight averaged 

stresses within smoothing singular ES-FEM-T3 domains see Fig. 4a,b,c) 

    (i) A
A

i
sn

R

k kns
ki

 
=

= 
1

1
     (22) 

in which i

sn  is the number of smoothing domains  s

k  around the i-th node, A
1=

=
i
sn

ns

i k

k

A  is the 

total area of all the smoothing domains sharing the i-th node, and Ak  is the area of the k-th 

smoothing domain sharing the i-th node 

Note that: (1) the layer of singular SDs that close to the node will be considered case b) & c) 

Fig. 4. (2) for the standard ES-FEM-T3, the procedure simply take the case a) Fig. 4.  

 

The formulation for a direct determination of the recovery-based error indicator is given by 

   
,

, , ,( ) ( ) ( )
|| || || ( , ) ( ) || || ( , ) ( )    ||

l l l q

R R R

l v v v i v v q i q v qL L L
i q i

N x y i N x y i      
  

= = =

= − = − = −  2 2 2

3 3 3
2 2 2 2

1 1 1

(23) 

where , l q  is the q-th sub-smoothing domain (sub-SD) of the l-th element and , ( ) R

v q i  is the 

recovery nodal von Mises stress at the i-th node of the q-th sub-SD.  
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Figure 4. The smoothing domains used to calculate the nodal stress for nodes in the 

singular ES-FEM-T3 

For each triangle element, there are three sub-SDs with constant smoothed stress and the 

recovery-based error indicator can be computed from their summation. 

From the partition of unity property 

    , ( , )  i q

i

N x y
=

=
3

1

1      (24) 

    

,

,

, , , ( )

,q,i ,q, j , ,

,

|| ( , )( ( ) ( )) ||

. ( , ) ( , )

l q

l q

R

l i q v q v q L
q i

l l i q j q

q i j

N x y i i

r r N x y N x y d

  


= =

= = 

 = −

 
 = 
  

 
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2

3 3
2 2

1 1

3 3

1 1

     (25) 
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where ,q,i , ,( ) ( ) = − R

l v q v qr i i  at i-th node 

  

The shape function for each sub-SD satisfies 

    

,

,

,

,

,

/       /      
( , ) (  

/ /  
,

   
)

 
l q

l q l

l q

i q j q

l

A A i j

A
N x y N x y d

A i j


= =
= 

= 





6 18

12 36
     (26) 

where ,l qA  is the area of the q-th sub-SD (covering one-third area) of the l-th element, and 

hence 

    
,q, ,q, ,q, ,q, ,q, ,q, ,q, ,q, ,q,( . . . ).( / )l l l l l l l l l l l

q

r r r r r r r r r A
=

= + + + + +
3

2 2 2 2

1 2 3 1 2 1 3 2 3

1

18      (27) 

Refinement Strategy 

Using the element refinement indicators, l , the well-known Dorfler criterion [12] defines the 

elements  e

M  for refinement, where the minimal set  M  satisfies 

    
l l M

l l  
   

 2 2
 with ( , )  0 1      (1) 

A new mesh '  is generated from the refinement of at least the marked elements so-called M-

Group  M  to reduce the total numerical error in the whole domain. 

Newest Vertex Bisection Algorithm 

 

Figure 4. Four basic longest-edge mesh refinement patterns. 

The Newest Vertex Bisection strategy [13], chooses to divide the parent element along the 

longest (reference) edge. This eliminates the capacity of producing triangles with smaller 

angles and the problem associated with hanging nodes [14]. Four typical types of partitioning 

a parent element into so-called child elements as in Fig. 4 are formed of lines connecting the 

newest (peak) vertex to the mid-point of the longest (reference) edge. 

 

Refinement procedure:  

(1) At least one reference edge (or dash-line) is marked for refinement. 

(2) The newest vertex (midpoint) of reference edge becomes the peak for the next refinement 

step. 

(3) The 2-nd refinement step is then implemented on the two other marked edges, if any from 

the newest peak. 

* The same refinement procedure for each adaptive iteration.  
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Illustrative Examples 

Two problems with difficulties under the presence of discontinuity and singularity stress field 

are tested. The ES-FEM-T3 model were applied and encoded within a MATLAB environment 

using built-in function and vector language. A layer of five-node singular elements is 

employed in crack problems to validate the accuracy and robustness of the proposed analysis 

framework. 

Example 1: Prandtl’s Punch 

A plane-strain Prandtl’s punch problem with flexible foundation is drawn in Fig. 5. A total of 

uniformly distributed loads of 10 represents for the footing length of 2. The material 

properties employed were: E = 104, v = 0.25 and t = 1. Due to the symmetry of both geometry 

and loading configurations, only half of the structure is modeled. The characteristic discrete 

structural model in Fig. 5b) contains 256 simple triangle elements. 

1
4

2

8

2

2

 

Figure 5. Example 1: Prandtl’s punch (a) geometry and loading, (b) characteristic ES-

FEM-T3 model, where thick solid lines denote nodal restrained directions. 

 

   
 

Figure 6. Example 1: Convergence of 

strain energy results from various 

analysis methods. 

Figure 7. Example 1: Convergence rate 

of runtime versus strain energy between 

adaptive ES-FEM-T3 and uniform ES-

FEM-T3. 

The proposed automatic adaptive ES-FEM-T3 analysis approach was successfully processed 

to obtain elastic strain energy response solutions. The analysis results computed are plotted 

with their associated DOFs in Fig. 6, where those of some other standard FEMs, namely 

FEM-T3 with mesh adaptive scheme and ES-FEM-T3 with uniform mesh refinement. It is 

clear that all methods yield the solutions converged to the reference value at the sufficient fine 
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numbers of discrete elements. In addition, the proposed automatic adaptive ES-FEM-T3 

approach provided the fast-converged strain energy solutions as compared to ES-FEM-T3 

with uniform mesh refinement. The computing times as required for successfully converging 

the results by automatic mesh adaptive recovery-based strain algorithm, as displayed in Fig. 7, 

were less than those from standard uniform mesh refining technique. 

 

 

Figure 8. Example 1: Convergence of relative error results from adaptive ES-FEM-T3 

and uniform ES-FEM-T3. 

   
(a) 256 ele. (error 5.17%)    -   (b) 379 ele. (error 4.18%)   -   (c) 758 ele. (error 3.14%) 

Figure 9. Example 1: Automatic adaptive meshes with the corresponding contour line of 

von Mises stress distributions. 

The present adaptive mesh implementation dramatically reduces the recovery-based relative 

error compared to a slow reduction using the normal uniform refinement strategy. The values 

from adaptive ES-FEM-T3 fast approach the zero value, while those from uniform ES-FEM-

T3 is still at a very high value in Fig. 8. The von Mises stress results corresponding to 

automatically adaptive meshes are depicted in Fig. 9. It illustrates the mesh refinements 

localizing over strong discontinuity areas of applied load. 

Example 2: Double-Edge Notched Specimen 

The second example considers a plane strain double-edge notched specimen as depicted in 

Fig. 10 subjected to the total uniform lateral load of 1.44 on both end edges. The material 

properties of E = 70, v = 0.3 and t = 1 were adopted. Because of symmetry in both x-axis and 

y-axis, only a quarter of the specimen without undue loss of accuracy was analyzed. The 

initial characteristic ES-FEM-T3 with 150 elements is displayed in Fig. 10b) 
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Figure 10. Example 2: Double-edge notched specimen (a) Initial mesh and loading         

(b) ES-FEM-T3 model, where thick solid lines denote nodal restrained directions. 

The ES-FEM-T3 incorporated the automatic adaptive scheme adopting recovery-based strain 

error functions. The lateral displacements v and strain energy responses (displayed in Figs.11 

and 12, respectively) were successfully computed for various mesh refinements, and 

compared with those found from other standard FEM-T3 with the similar adaptive mesh 

algorithm. 

 

   
 

Figure 11. Example 2: Convergence of 

lateral displacement results for various 

automatic adaptive mesh algorithms. 

Figure 12. Example 2: Convergence of 

strain energy results for various 

automatic adaptive mesh algorithms 

 

   
 

Figure 13. Example 2: Convergence of 

lateral displacement results from 

adaptive ES-FEM-T3 and adaptive 

singular ES-FEM-T3 

Figure 14. Example 2: Convergence of 

strain energy results from adaptive ES-

FEM-T3 and adaptive singular ES-

FEM-T3 

ICCM2019, 9th-13th July 2019, Singapore

722



After adopting a layer of singular five-node elements around the crack-tip, the results 

obtained from the adaptive singular ES-FEM-T3 converge with a more reasonable computing 

efforts (DOFs) in terms of both the lateral displacements v and strain energy solutions (as 

depicted in Figs. 13 & 14, respectively). In addition, both models incorporated the same 

automatic adaptive scheme adopting recovery-based strain error functions converge to the 

reference values. 

 

   
 

Figure 15. Example 2: Convergence of 

relative error results from adaptive 

singular ES-FEM-T3 and uniform 

singular ES-FEM-T3 

Figure 16. Example 2: Convergence rate 

of runtime versus relative error between 

adaptive singular ES-FEM-T3 and 

uniform singular ES-FEM-T3.

Within the framework of singular ES-FEM-T3, the present adaptive mesh implementation 

dramatically reduces relative error with less computing efforts (i.e. both DOFs and runtime as 

in Figs. 15 & 16) compared to standard model adopting uniform refinement strategy. Relative 

errors from adaptive singular ES-FEM-T3 navigates to the zero value, while those obtained 

from uniform singular ES-FEM-T3 are still at a very high value (i.e. less than 5% can be 

obtained with about 500 DOFs as shown in Fig. 15. It is clear that the convergence rate in a 

log scale equals 1:1 for adaptive singular ES-FEM-T3 and around 1:3 for uniform singular 

ES-FEM-T3 from Fig. 16. 

    
(a) 150 ele. (error 34.65%)    -  (b) 218 ele. (error 11.68%) 

 
(c) 568 ele. (error 4.57%) 

Figure 17. Example 2: Automatic adaptive meshes with the corresponding contour line 

of von Mises stress distributions. 

The mesh discretized patterns in Fig. 17 as expected progressively refined over the 

concentrated stress singularity and discontinuity areas.  
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Conclusions 

The novel ES-FEM-T3 and singular ES-FEM-T3 approaches employed automatic AMR 

algorithm to efficiently and accurately provide the response solution of elastic structures. The 

automatic AMR adopted the newest vertex bisection algorithm and recovery-based error 

function in L2-norm. A number of numerical examples (including both benchmarks and 

practical in-plane structures) were successfully solved using the proposed analysis scheme. 

Three of which are given in this study. These illustrate robustness of the proposed analysis 

method, in which the adaptive singular ES-FEM-T3 approach provided the superconvergence 

of elastic response solutions as compared to the other models for crack problems and the 

adaptive ES-FEM-T3 approach for general discontinuity problems (i.e. discontinuity applied 

load). The computed results agreed well with all reference values, and thus evidenced the 

computational advantages in yielding the close-to-exact solutions for modest computing 

resources. 

 

A nontrivial extension of the proposed analysis framework is to apply into contact or 

nonlinear fracture problems (i.e. using cohesive fracture model). A new error estimation (i.e. 

the simple splitting the normal and singular parts of stress field, similar to [15]) that is 

suitable for the five-node singular elements is also our interest. 
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Abstract 

In this note, the problem of heat conduction in periodic laminated layer is considered. This 
layer is characterized by a microstructured composition and the microstructure is realized as 
a uniform distribution of the cells. The Robin boundary conditions, which are analyzed in this 
work, are combined with the convective heat exchange and there is an analytical solution for 
a homogeneous layer and this type of boundary conditions. To consider the heat conduction 
issue in presented laminated layer the tolerance averaging technique is used. The equations, 
obtained by using this technique, are solved by using finite difference method. As  the results, 
the distributions of the temperature are obtained. The algorithm, which is created to obtain the 
distribution of the temperature can be verified by using the results from the analytical solution 
for a homogeneous structure and the Robin boundary conditions. 

Keywords: Heat conduction, Robin boundary conditions, mathematical modelling, 
composite, microstructure 

 

Introduction 

The two-dimensional issue in periodic laminated layer is considered in this work. Every cell 
of this layer is made of two different materials and the proportion between the first and the 
second material in the cell is constant. The thickness of the cells is also constant and denoted 
by Δ, what is shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

Figure 1.  The cross-section of considered layer 

The various issues related to this type of structures are considered in relation to 
micromechanical models with idealized geometry.  

 
 
       

material No. 1 material No. 2 

Δ 
1x  

L1 

L2 

2x  
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The Robin boundary conditions are analyzed in this note, there is an analytical solution for 
a homogeneous layer and this type of boundary conditions [13] and it is possible to obtain the 
distribution of the temperature according to the Eq. (1): 

   
          

      
 

1
2 2

2 2

2 2
1 01 2 2

α cos α α cosh α sinh α
θ 2 ( )cos α ,

α α cosh α sinh α

L
n n n n n

n
n

n n n n

h x L y h L y
f x x dx

h L h L h L





   


    
      (1) 

where L1, L2 are dimensions along directions x1, x2, h is the quotient of heat transfer 
coefficient and the thermal conductivity, and αn are the solutions of the Eq. (2): 

     1α tg αL h.       (2) 

The solution is limited to the finite number n equals 20 and shown in Fig. 2. As a material and 
geometry, it was assumed L1=L2=1 [m] and steel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The temperature for homogeneous layer 

To analyze the laminated layer, where the distribution function of material properties is 
periodic, the tolerance averaging technique is used [13]. This technique gives us a possibility 
to take into account the effect of the microstructure size. The tolerance modelling is expanded 
and applied in many publications to analyze various issues concerning both periodic and 
functionally graded structures. Among them are thermal issues [13]-Błąd! Nie można 
odnaleźć źródła odwołania. and dynamic problems [13]-Błąd! Nie można odnaleźć źródła 
odwołania..  

The main aim of this work is to obtain the equations of the tolerance model with the 
macrotemperature and the fluctuations amplitudes of the temperature as unknowns.  

Modelling procedures 

The stationary heat conduction issue for laminated layer can be described by Eq. (3): 

     θ 0,  K      (3) 

θ(x1, x2) 

x1 x2 
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where K is a tensor of conductivity, wherein components are denoted by ijk . 

The main aim of the application of the tolerance modelling is to replace the system of 
differential equations (3) with non-continuous coefficients, by equations, where the 
coefficients are slowly-varying. The basic assumption of the tolerance modelling is the micro-
macro decomposition, where the temperature θ (the main unknown) can be expressed as 
a sum of the averaged part ϑ (the macrotemperature) and the oscillating part, according to the 
Eq. (4): 

           1 2 1 2 1 1 2, , + ,x x x x g x x x .         (4) 

On the other hand the oscillating part can be defined as a product of the know fluctuation 
shape function g and the fluctuation amplitudes of the temperature ψ (the new basic 
unknown). In this work the fluctuation shape function is assumed as a saw-type function. The 
second assumption of the tolerance modelling is the periodic approximation of some 
derivatives of function of the temperature, where some terms can be treated as negligibly 
small. Additionally, the tolerance averaging technique introduces some new concepts, among 
them the tolerance-periodic and slowly-varying function.  

By using the micro-macro decomposition to the Eq. (3), using the orthogonalisation method, 
formulating the residuum function of temperature and the condition, which have to be 
fulfilled by this function, by doing appropriate averaging and transformations, the equations 
of the tolerance model for considered laminated layer are obtained in the form of Eqs (5): 

    
  0,

0

g

g g g .

    

       

K K

K K
     (5) 

Example 

Let L1=L2=1 [m]. The problem under consideration was a stationary heat conduction issue for 
laminated layer characterized by periodic structure of size Δ=L1/20. For both sublayers the 
material properties (steel and aluminum) were defined and the constant distribution function 
of material properties was assumed (v1=0.5). Based on Eqs (5) and by using the assumption of 
the asymmetrical character of the fluctuation shape function, the equations of the tolerance 
model for considered issue are in the form of Eqs (6): 

    
   
 

1 11 1 11 2 22 2

2 22 2 11 1 11

0,

0

k k g k

k gg k g k g g .

         

          
     (6) 

The boundary conditions were assumed as follows: known temperature on the upper edge of 

the laminate (
2 0x u   ), thermally isolated left edge (

1 11 0 0
1

0x t xq q
x 


  


), the Robin 

boundary conditions on the right edge (x1=L1) according to the Eq. (7) and on the bottom edge 
(x2=L2) according to the Eq. (8): 

     11
1

= ,ek H
x


 


     (7) 

     22
2

= ,ek H
x


 


     (8) 
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where ϑe is the external temperature and H is the heat transfer coefficient. In this note the 
external temperature is assumed to be equal zero. Then the boundary conditions for the 
fluctuation amplitudes of the temperature were assumed as: the known fluctuation amplitudes 

on the upper edge (
2 0 0x   ), on the left edge (

1 0 0x   ), on the right edge (
1 1

0x L  ) 

and the term on the bottom edge (x2=L2) following Eq. (8): 

    
2 22

=0.
Hgg

x k gg


 


     (8) 

To solve the equations of the tolerance model (Eqs (6)), the finite difference method was used. 
Along both directions (parallel and perpendicular to the laminas) the grid nodes distribution 
was uniform. By using this method the set of non-homogeneous discretized equations was 
obtained with the macro-temperature and the fluctuation amplitudes of the temperature as 
unknowns in the form of Eq. (9): 

    ,K X Q       (9) 

where K is a matrix of coefficients, X is a vector of unknowns ranked alternately at individual 
points, and Q is a vector of free terms.  

The results were shown in Fig. 3 in the form of plots of the total temperature.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  The total temperature  

Conclusions 

By using the tolerance averaging technique it is possible to replace the system of differential 
equations with non-continuous coefficients, by the equations where the coefficients are 
constant or slowly-varying. By using the equations of the tolerance model it is possible to take 
into account the effect of the microstructure size in thermal problems.  
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Abstract 

A tall building with an irregular form requires optimisation due to the impact of wind loads. The 
aerodynamic analyses should be carried out at an early concept stage. The decision which wind 
analysis method to choose is a key issue. This issue will be discussed on the example of an 
irregularly shaped skyscraper in Warsaw. The aim of this research was to determine and compare 
the results of three methods. The three methods were: the analytical analysis according to the 
European building codes (Eurocode 1), wind tunnel tests (a simulation in an aerodynamic tunnel at 
the Institute of Aeronautics and Applied Mechanics of the Warsaw University of Technology) and 
Computational Fluid Dynamics (numerical wind tunnel flow simulation in FLUENT). The 
possibility of examining the air flow around the building, wind pressure distribution on facades and 
net force values were analysed. 

The methods differ in their accuracy and types of the obtained results. The Eurocode noticeably 
lacks methods for tackling irregular forms. Because the influence of the form of the building is 
treated very generally and the aerodynamic interference with the surrounding buildings is not taken 
into account, the results from the Eurocode calculations are characterized by a large safety factor. 
The results of a wind tunnel test are much more accurate. Values of pressures, forces and moments 
can be measured, but the presentation of the results requires statistical and/or graphic processing. 
Currently, it is the only method combining the accuracy and reliability of the obtained results. 
However, the precise, time-consuming tunnel tests should be conducted on the final form as the 
final verification of the adopted architectural and structural solutions. At the concept stage the 
architects need tools to quickly estimate the air flow and wind effects on the building. Computer 
simulations are easier and cheaper to conduct than tunnel tests. Moreover, the results of 
computational simulations can become the basis for understanding the air flow around the building. 
This method would be used more frequently if it did not require verification of its results. 

Keywords: skyscraper, tall building, wind influence, Eurocode, wind tunnel testing, computational 

fluid dynamics 

 

Introduction 

In the context of obtaining an original architectural form and reducing construction costs the 

possibility of eliminating the adverse impact of wind raises investors’ and designers’ interest in 

wind engineering. This field which is particularly important in the case of tall buildings. It should 

be noted, however, that the influence of wind is strongly conditioned not only by the height of the 

building but also its shape, and the surrounding buildings. The unique shape and the vicinity of each 

skyscraper, especially the proximity of dense urban fabric, is associated with the need to conduct 

precise aerodynamic analyses [9]. 

 

The forms of contemporary European high-rise buildings become more varied. It happens so, 

among others, due to the resignation from simple forms, characterized by regular, repetitive floors. 

An effective form of a skyscraper requires the cohesion of a functional and spatial solution. As a 

basis for the design of a skyscraper, one should strive to limit stresses in structural elements [10], 
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and in skyscrapers the magnitude and distribution of forces are affected to a large extent by its 

form [2]. The interaction between the wind and form determines the air flow and distribution of the 

wind pressure on facades. Optimizing the shape of a skyscraper may lead among others to i.e. an 

optimization of the load-bearing structure or the technical solution of the facade. Aerodynamic 

optimization analyses at the stage of developing the architectural concept are of particular 

importance in achieving more effective and economical spatial solutions. Aerodynamic 

optimization helps to reduce adverse impact of wind in the context of obtaining more rational 

design of load-bearing structures and the reduction of construction costs. A balanced approach to 

design, and often above all economic conditions, raise interest in reducing the adverse impact of 

wind. 

 

In order to optimize the form and structure of a skyscraper, it is necessary to look for tools that 

allow for an accurate understanding of the wind effects. With the buildings forms becoming more 

complex and irregular the ability to accurately calculate and predict aerodynamic phenomena relies 

on the chosen method of aerodynamic analysis. In Europe, for buildings taller than 200 m, wind 

tunnel tests should be recommended. Designer can also chose to use computational methods, that 

are developing dynamically. When designing buildings of less than 200 meters (which account for 

over 96% of European tall buildings), wind loads can be calculated according to design standards 

described in Eurocode 1. There is a lack of scientific studies which would analyse both the effects 

of calculating the wind loads in accordance with Eurocode 1 and on the basis of the results obtained 

in the tunnel test and numerical simulations. 

 

 

 

Figure 1. Analysed building - relation to the 

directions of the world and the coordinates 

system 

Figure 2. Model of the analysed building 

Subject of the study 

In particular, the forms which cause unfavourable aerodynamic phenomena, such as  the non-

aerodynamic, asymmetric, irregular buildings, should be carefully analysed[11]. Detailed analyses 

are also required for objects located in an urban space, in a context causing difficult to predict, 

variable and asymmetrical wind effects. This is evident in the example of the analysed building - a 

skyscraper constructed in the centre of Warsaw with a height of almost 200 m and an irregular, 

asymmetrical shape and geometry based on a right angles. The skyscraper was shaped from slender 

solids with different heights and widths (Fig. 2). The planned ground floor area is over 2,500 m2. 

Functionally and spatially the building has been divided into: a base  part with a height of 10 floors 
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(41 m) and a dominant with a height of 36 floors. The shape of the floor plan is similar to an 

elongated rectangle with the proportions of sides 1:3.5 (ca. 85 x 35 m in the base part, 65 x 30 m in 

the tower part). 

 

The analysed skyscraper is located in the centre of Warsaw, in the intensive building zone. In the 

surroundings of the building there are tall office buildings, residential buildings and low shopping 

centres. From the north-east side (Fig. 1), a complex of multi-storey buildings is located, from the 

east there are mainly low and medium-rise buildings. On the south side there are low-rise buildings. 

On the north side there is a high-rise building complex, and another one is built from the west. 

 

The research compared the results obtained for 10 selected floors and all facades [12][14]. The 

results presented in the article were limited to 4 selected floors (some of them were given only for 

the 25th floor) and the southern façade (Fig. 3). 

 

 

 

Figure 3. Floors selected for the analyses 

and presented in the article 

Figure 4. Analysed wind directions 

Study Description 

The task of wind engineering is to provide methods and tools for testing the wind-form-structure 

relationships and to find the criteria for deciding which procedure to choose [9]. Currently, 

engineers use three methods, and the purpose of this research was to compare them. The first 

method – based on design codes and standards, uses analytical methods in accordance with 

applicable regulations, recommendations or other similar documents. The second - empirical 

(experimental) method includes simulations conducted in a wind tunnel. The third method - a fully 

computational analysis, uses known mathematical models to define the impact of wind [7]. This 

group comprises primarily digital computational analyses. 

 

According to European design standards analyses have been carried out for 12 wind directions 

(Fig. 4). The presented results of wind impact on the given object are: qualitative comparison of 

pressure distributions on facades (for 3 methods), peak pressures (calculated using code procedure 

and measured in a tunnel), comparison net forces transferred to the structure on the selected floor’s 

levels. The possibility of analysing the air flow around the building was also examined. 
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Methods 

PN-EN 1991-1-4: 2008 Eurocode 1 

The first analysis included the analysis of the wind loads according to PN-EN 1991-1-4:2008  

Eurocode 1 [13][17][18]. The code procedure did not take into account the detailed configuration of 

the surrounding buildings, only a very generally defined class of terrain. In accordance with the 

national annex to the Eurocode, 1st wind zone and terrain category IV were assumed. In all methods 

the characteristics of the atmospheric boundary layer were reproduced by adopting the standard 

mean velocity and turbulence intensity profiles . In order to accurately represent the actual structure 

of the wind at the ground-level, the results of climate analysis developed at the Faculty of Power 

and Aeronautical Engineering, WUT were used. 

 

 

 

Figure 5. Model of the analysed building 

and the surrounding in the wind tunnel 

Figure 6. Pressure sensors – installed inside 

the model and connected to quick-release 

couplings 

 

Wind tunnel testing 

The empirical method consisted of experimental research in the wind tunnel at the Institute of 

Aeronautics and Applied Mechanics of the Warsaw University of Technology. The wind tunnel is a 

closed-loop tunnel measuring 2.60 x 2.25 x 11.00 m. Passive methods were used to map the 

atmospheric boundary layer characteristic in the tunnel. The analysed building together with the 

neighbouring buildings (within a radius of 500 m) was mapped in a 1:350 scale (Fig. 5). The model 

contained all the designed tall buildings, concepts of which were known at the time of the 

experiment. The tests were carried out using rigid models of buildings which allow the 

measurement of wind pressure on walls by means of pressure sensors (Fig. 6) and measurements of 

resultant forces and aerodynamic moments using aerodynamic balance [7]. The signals from the 

measurements were subjected to numerical processing, the aim of which was to obtain pressure and 

force values on the entire surface of the model. 

Computational Fluid Dynamics 

The computational method included simulation performed in the Ansys Fluent program, which is 

used by engineers at the Institute of Aeronautics and Applied Mechanics of the Warsaw University 

of Technology and is widely described in the scientific literature as a tool to analyse the impact of 

wind on cuboid high-rise buildings with proportions enabling precise determination of wall 

boundary layer separation points (e.g. [5][6]). The simulation was carried out according to the 

recommendations of  [1][3][4][8][13][15][16]. 
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Figure 7. The computational domain - 

boundary conditions (description in the 

article) 

Figure 8. The structural grid generated to 

discretize the computational domain 

 

The goal of the computational analysis was to recreate the conditions of the wind tunnel 

experiment. The computing domain simulated the dimensions of the actual tunnel. The boundary 

conditions had been assigned to the appropriate surfaces limiting the computational domain (Fig. 7): 

inflow (the plane marked in yellow) and outflow (blue). The remaining boundaries of the domain 

(green) have been given the boundary condition of the wall without slipping. The grid compaction 

areas (grey) were modelled as surfaces fully permeable to the fluid (internal condition) (Fig. 7 and 

8). The vertical profiles of mean wind velocity and turbulence intensity were set at the inflow. To 

obtain the results more similar to the results of the experiment, it was decided to choose the 

improved k – ε realizable model from the RANS group [1][16]. A standard wall function was used 

to model the boundary layer. The flow was modelled as laminar. A pressure based solver was used. 

The SIMPLE algorithm, based on the segregated method, was used to solve the equations 

describing the flow. The finite volume method was used to discretize the model. Standard method 

recommended by Fluent producers was used for interpolation of pressure. The upwind method was 

used to discretize equations: moments, kinetic energy of turbulence and turbulence kinetic energy 

dissipation. The course of residual values was monitored until their convergence reached the value 

of 1e-5. 

 

In order to check the numerical calculations the global net forces acting on the analysed model were 

compared with the forces measured in tunnel test. The comparison of the results showed their 

certain convergence. The results obtained in the computational analysis reflected the nature of the 

occurring aerodynamic phenomena and were then used for qualitative analyses. However, they were 

not included in more detailed quantitative analyses. 

Results 

Wind pressure distributions on facades 

The first analysis was aimed at comparing the results obtained with the 3 methods (Fig. 9). Due to 

the limitation of the impact of the surroundings, the analysis was limited to the comparison of 

pressure distributions on the south facade with wind from the same direction. The results obtained 

in the Eurocode analysis are characterized by significant inaccuracy. However, after adopting 

appropriate assumptions, in a tunnel test and in a computational analysis one can get similar 

precision of the results, which can then be the basis for a detailed optimization of a complex 

building. The numerical calculations have been quite accurate as to the reproduction of the 

qualitative nature of the phenomenon. The zones of pressure and suction on facades and their 
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changes have a similar distribution. One can also notice how the results obtained from the norms 

are simplified when compared to the exact simulation of real conditions. The differences in pressure 

distribution resulting from irregularities of the form are not visible in the design code results. 

Moreover, the changes in pressure values are a very big simplification in relation to reality. 

 

 

 

Figure 9. Maps of the wind pressure distributions on the southern façade, obtained according 

to: Eurocode procedure, wind tunnel testing and computational simulations. 

160° wind direction 

 

Peak pressure envelopes 

Since similar results are obtained both in the analytical method and tunnel tests, further analyses 

have been limited to the comparison of the methods giving extreme results, i.e. the Eurocode and 

the wind tunnel testing. 

 

First, the peak pressures envelopes for selected floors were analysed (Fig. 10). It can be observed 

that the effect of suction is particularly important. Practically all the corners achieve much higher 

values than the flat sections. For short sections of the façades, the analytical method does not reflect 

differences in the suction volume. The distribution of suction force for long facades is also different. 

In terms of pressure, according to analytical method its values remain the same along the length of 

the facade, while in the tunnel results there is significant differentiation. 

Peak pressure 

For long facades – the northern and southern (Fig. 11) one the peak pressure values obtained from 

the calculations are even twice as large as those measured in the wind tunnel (Table 1 and 3). In the 

case of the shorter (eastern and western) facades and corners (Fig. 12) the results are similar (Table 

2 and 4). Strict norms regarding the edges and corners of the building have been confirmed 

experimentally. 
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Figure 10. Peak pressure envelopes according to wind tunnel tests results and Eurocode 

procedure obtained for floors: 10th, 25th, 40th and 50th  

 

  

Figure 11. Facades for which the results are 

presented in Tables 1 and 3. 

Figure 12. Facades and corners for which the 

results are presented in Tables 2 and 4 
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Table 1. Peak pressure values for the 

northern facade  
Table 2. Peak pressure values for the 

western facade 

 

Pressure [kPa] Suction [kPa]  

 

Pressure [kPa] Suction [kPa] 

Euro

code 

Tunnel 

Test 

Euro  

code 

Tunnel 

Test 
 

Euro      

code 

Tunnel 

Test 

Euro      

code 

Tunnel 

Test 

10th 

floor 
0,83 0,37 - 0,53 0,55 - 1,02 0,41 - 0,60  

10th 

floor 
0,50 0,27 - 0,50 0,83 – 1,02 0,73 – 1,03 

25th 

floor 
0,85 0,40 – 0,62 0,57 – 1,05 0,37 – 0,73  

25th 

floor 
0,52 0,35 – 0,55 0,83 – 1,05 0,80 – 1,00 

40th 

floor 
1,12 0,64 – 0,75 0,74 - 1,38 0,38 – 0,70  

40th 

floor 
0,68 0,39 – 0,54 1,09 – 1,38 0,39 – 0,54 

50th 

floor 
1,12 0,61 – 1,00 0,74 - 1,38 0,27 – 0,44  

50th 

floor 
0,68 0,40 – 0,50 1,38 0,35 – 0,66 

Table 3. Peak pressure values for the 

southern facade 

 Table 4. Peak pressure values for the 

chosen corners on the 25th floor 

 

Pressure [kPa] Suction [kPa]  

 

Pressure [kPa] 

Euro

code 

Tunnel 

Test 

Euro     

code 

Tunnel 

Test 
 Eurocode Tunnel Test 

10th 

floor 
0,65 0,20 – 0,39 0,57 - 1,02 0,55 – 0,69  W corner 1,05 1,09 

25th 

floor 
0,67 0,29 – 0,44 0,59 – 1,05 0,54 – 0,70  N corner 1,29 1,27 

40th 

floor 
0,88 0,36 – 0,48 0,78 - 1,38 0,60 - 0,65  N-E corner 0,63 0,58 

50th 

floor 
0,88 0,35 – 0,66 0,78 - 1,38 0,36 – 0,70  S-E corner 0,63 0,73 

 

Net force values 

The impact of the selected test method on the design of an irregular structure of the building is 

better reflected by the analysis of the forces acting on the load-bearing structure. They can be 

considered, among others in the form of net forces e.g. separately for each floor. The Tables 5 and 6 

present the components Fx and Fy of the net forces for the selected floors. The observed differences 

in the results are significant. Usually the results obtained from the standard calculations are 2-3 

times larger than those measured in the tunnel (e.g. Fy component force for the 340° direction), and 

in extreme cases the differences are 7-10 fold (70° direction - Fx component force for the 50th floor 

and Fy component force for 10th floor) and even the forces have an opposite vector direction 

(component force Fx for the 340° direction). The analyses confirm the hypothesis that the results 

obtained with different methods are divergent and the choice of method has a significant impact on 

the adopted technical solutions. 
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Table 5. The components Fx and Fy of the 

net forces for the selected floors - 340° wind 

direction 
 

Table 6. The components Fx and Fy of the 

net forces for the selected floors - 70° wind 

direction 

340° 

DIRECTION 

( N ) 

Fx [kN] Fy [kN]  
70° 

DIRECTION 

( E ) 

Fx [kN] Fy [kN] 

Euro-

code 

Tunnel 

Test 

Euro-

code 

Tunnel 

Test 
 

Euro-

code 

Tunnel 

Test 

Euro-

code 

Tunnel 

Test 

10th floor -98,06 13,80 330,25 175,80  10th floor 75,25 26,30 -106,58 -10,20 

25th floor -72,88 26,50 245,46 75,90  25th floor 55,93 16,00 -79,21 -11,30 

40th floor -66,43 15,30 223,72 74,80  40th floor 50,98 15,10 -72,20 -25,50 

50th floor -70,79 -4,90 211,93 66,10  50th floor 43,62 6,80 -68,17 -28,50 

 

 

 

Figure 13. The components Fx and Fy of the net forces for the 25th floor, depending on wind 

direction 

 

The impact of the surrounding 

Analysing the chart of the component net forces values, e.g. for 25th floor, the influence of the 

surroundings on the obtained results can be noticed (Fig. 13). The most varied are the results for the 

northern (300°, 330° and 0°/360°) and western (210°, 240° and 270°) directions, which results, 

among others, from close proximity to high-rise buildings. On the other hand, the smaller 
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differences of resultant forces for the south-eastern wind directions (120°, 150° and 180°) result 

from the lack of significantly tall objects in the immediate vicinity, however, setting the building 

perpendicular to the wind direction results in some variation of the obtained results. For the winds 

from the east (60° and 90° directions), the results are even more convergent. There are no tall 

objects from this side, and the wind flow is parallel to the longer side of the analysed building. 

 

There are also some similarities between results from both methods. One can notice a difference in 

the stiffness of a building with a plan similar to an elongated rectangle - the components Fy (parallel 

to the shorter side) reach much higher values than the components Fx (parallel to the long side). 

Air flow around the building 

Detailed results of pressure and forces values do not always show what they result from. To explain 

the obtained results it is important to understand the aerodynamic phenomena occurring around the 

building. The precise data on this subject is provided only by digital computational methods. In 

addition, this methods allow for quick changes and analysis of many variants. Due to their graphical 

form (Fig. 14) of presentation they can be more understandable and useful for architects. The 

obtained results can be used for general optimization of the building form at the conceptual stage. 

 

Figure 15 shows wind speed distributions obtained in the Fluent program. On the presented 

visualizations one can notice an increase in the value of the wind velocity vector as a function of 

height, differences resulting from: the lack of symmetry of the building (flow around the model, the 

shape of the wake), the irregularity of the form (the boundary layer separation point and 

turbulences), the changes of wind direction. 

 

 

 

Figure 14. Air flow around the building depending on the wind direction 

 

Summary 

The analysed methods differ in accuracy and types of obtained results. 

PN-EN 1991-1-4: 2008 Eurocode 1 

The calculations according to design codes do not require access to a laboratory, special software or 

a lot of time, and financial expenses. However, analytical procedures have been developed to 
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analyse simple, basic geometries, and the results obtained in them are not always reliable. In the 

standard calculations, the effects of the wind on the building are examined, not the character of the 

flow. The influence of the surrounding is not taken into account and the results obtained lead to a 

too large safety factors being incorporated. A simplified representation of the wind's influence as to 

the value and spatial distribution also results in imprecision and overestimation of the calculated 

quantities. 

 

 

 

Figure 15. Wind velocity map obtained from computational analyses in Ansys Fluent program 

in the planes of cross-sections and 25th floor  - wind direction parallel to the plane mapped 

 

Wind tunnel testing 

The wind tunnel testing allows to study objects with an unusual geometry located in a complex 

environment. Accuracy of the results obtained in the experiment allows for a  relatively precise 

determination of pressure distribution and calculation of resultant forces transmitted to the structure. 

However, the measurements refer only to discrete points, usually located on the surface of the 

building model. Presentation of the results requires statistical and/or graphical processing, e.g. the 

obtained results can be interpolated to the distributions on whole facades. With a sufficiently large 

number of measurement points, the result can be very precise. Using the aerodynamic balance, one 

can measure the magnitudes of resultant forces and moments that accurately reflect reality. However, 

this method is time-consuming and requires large financial expenses. 

Computational Fluid Dynamics 

Less time-consuming and cheaper analysis can be carried out using computational methods. The 

CFD numeric programs used in these methods, such as Ansys Fluent, are used to reproduce real 

conditions or wind tunnel tests. The results of the computational simulation help the designers 
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understand the nature of the flow in the entire domain, as well as to simulate the measurements 

performed using the aerodynamic balance. Thanks to the flow simulations, it is possible to collect 

detailed data impossible to measure in the tunnel and to visualize the occurring phenomena in a 

relatively simple way. This is especially important in enabling the designers to understand the 

qualitative aspect of the occurring phenomena. In order to perform quantitative analyses, it is 

necessary to generate data in a tabular form and then subject it to processing. 

 

Computer simulations also enable relatively fast variant testing and would probably be used much 

more often if it was not necessary to verify the assumptions and the results. Appropriate definition 

of boundary conditions and adoption of preliminary assumptions are generally based on the 

experience of aerodynamic experts. Checking the correctness of the results is problematic if we do 

not compare them with measurements in reality or in a tunnel simulation. In addition, an 

appropriate tool for the analyzed geometry should be selected, because the turbulent flow models 

used in CFD programs have been calibrated to a certain type of task, e.g. Fluent is dedicated to 

simulating the air flow around cuboid bodies. 

Conclusions 

Optimization of the form of a tall building due to the impact of wind requires as accurate as possible 

recognition of the magnitude of the loads. The key issue here is the choice of the wind analysis 

method, because the results return different values. 

 

Although the wind standards in Europe can be applied to buildings with a height of up to 200 m, the 

procedures described are sufficient only for the calculation of wind loads for a simple object with a 

regular shape. For buildings with a complex, irregular geometry, the standard procedures do not 

specify a more precise procedure. Because the Eurocode methods do not analyse numerous factors 

as accurately, the safety factors are far larger than necessary. It should be noted, however, that 

design in accordance with the Eurocode standards is a safe procedure, and accepting loads lower 

than standard provisions should always be justified by detailed analyses. 

 

Precise determination of loads for irregularly shaped buildings located in the vicinity of tall 

buildings becomes possible after tunnel tests or numerical simulations using various CFD programs 

(after verifying the reliability of results). 

 

Currently, tunnel tests are the only method that combines the accuracy and reliability of the results 

obtained. However, taking into account scientific and technical progress, we can expect further 

development of computational methods in the field of CFD. Thanks to the simulation of the wind 

flow the designers can collect detailed data on the flow of air masses around a building, impossible 

to measure in the tunnel test. Also when comparing different concepts CFD allows to effectively re-

examine the modified model. Accurate understanding of the nature of the phenomena occurring 

around the designed skyscraper allows for effective optimization of its form and supporting 

structure. Then by interpreting the results graphically they can be more easily understood by 

designers. 

 

Optimization of an irregular form due to wind loads requires a very accurate recognition of 

aerodynamic interactions. Aerodynamic analysis should be considered at the conceptual stage when 

changes in the geometry of the building are possible. The results of standard calculations are so 

imprecise that they do not constitute a good basis for spatial and structural optimization. At this 

stage, complicated, expensive and long-lasting tunnel tests will also be of limited use. Only the 

digital tools for computational analysis can be used to quickly estimate the basic flow 

characteristics. Simple analyses of the flow around a building do not require interdisciplinary 

cooperation if the architect has the right tools which can support the design process. The obtained 
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results may even be slightly inaccurate. Precise model tests may be used to obtain the skyscraper’s 

final form and constitute the final verification of the adopted architectural and structural solutions. 
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Abstract 
Developing new generation nonuniform metasurface with skin-like stretchability and 
conformability has become the research hotspot in many areas, such as bio-sensoring, 
medical bandages, wearable devices and soft robotics. In this study, a computational method 
was proposed to design nonuniform 2D metasurface, which could perform a similar 
deformation as the target skin surface during the rotation of joint. Considering the nonuniform 
auxetic deformation behavior of the skin around joint area, the designed metasurface should 
also have the same Poisson’s ratio (PR) distribution. By mapping unit cells with different PR 
to the target surface, the obtained structure would have the same mechanical property and 
deformation behavior as the covered skin. With the unique capabilities of additive 
manufacturing (AM), the generated 2D metasurface can be easily fabricated. Especially, new 
generation wearable electronics with superior conformability was developed based on this 
nonuniform structure. Besides, the proposed method is also promising to be applied to design 
novel biomaterials, such as wearable electronics, smart bandage, skin scaffold, etc. 
Keywords: Nonuniform metasurface, Poisson’s ratio distribution, nonuniform auxetic 
deformation, additive manufacturing 
 

1. Introduction 
Thin film structures are used in diverse technological applications such as stretchable 
electronics, soft robotics, smart bandages, wearable devices and living devices. In all these 
areas, achieving a “human-skin-like” deformation behaviour is the main design objective of 
the manufactured film structure. Mainly, researches have tried to solve this problem from two 
aspects: soft materials or stretchable structures. 
To obtain better comfortability, many researchers in stretchable electronics area have 
dedicated to develop new materials with better stretchability. As early as 1994, Garnier, 
Hajlaoui, Yassar and Srivastava [1] had fabricated a field-effect transistor from organic 
materials with printing technology. This flexible device can be bended or twisted without 
causing much difference on the conductivity. From then on, organic electronics have proven 
useful in a number of applications, such as light patterning techniques and organic 
semiconductors [2]. The strain sustainability of organic electronics, despite much better than 
common wafer-based devices, is still not enough to conform the complex 3D surface of 
human body [3]. 
Changing the structure of the film metasurface is another way to achieve better stretchability. 
The most commonly applied strategy is converting the traditional all solid surface into “wavy” 
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structures [4]. In the research [5] of Kim et al., several different circuit designs were 
introduced to construct the “epidermal electronic system”. While, all these circuit patterns 
were developed based on the significant stretchability of “wavy” structure. Someya et al. [6] 
manufactured a networks of pressure and thermal sensors with conductive rubber. Similarly, 
the impressive skin-like conformability and flexibility was gained from the “wavy” layout of 
the material. Besides, many fabric-based electronics [7,8] also have shown good conductivity 
during deformation. The reason is that the conductive wires enabled in fabrics are always at a 
loose- knit state, which is still a nonconstant “wavy” structure essentially. To eliminate this 
deformation property difference between substrate and conductive wires, Jeong, Kim, Cho 
and Hong [4] introduced the “wavy” structure to the construction of both substrate and 
electrode. This wavy substrate was fabricated through casting, and base material was chosen 
as PDMS for better flexibility. Consequently, the deformation behaviour of both substrate 
and silver electrodes can be maintained as uniform, which will dramatically decrease the 
sheer stress at the connection areas. Similarly, a spiral shape wiring system was proposed in 
the study of Sawada et cl. [9], and both substrate and conductive wires were manufactured 
into same structure. The only difference is that the spiral shaped substrate was made of 
photosensitive polyimide and exposed with copper foil. Resistance of the constructed 
stretchable wiring network changed little, even after 200 cycles of 20% stretching. 
Compared with stretchability, conformability is a more important property for wearable 
devices or medical bandages. Especially, some joint areas of human body have very complex 
3D surfaces, and skin around these areas always bear extremely high stretching. Besides, the 
skin at joint area is always unevenly stretched at all directions, which means this is a 
nonuniform auxetic deformation. To mimic such a unique deformation behaviour, negative 
Poisson’s ratio (NPR) structures became necessary to construct the suitable wearable 
electronics [10]. Yang, Choi and Kamien [11] utilized fractal cuts to develop super 
conformable materials that could be applied to design stretchable electronics. After the 
proposed fractal cut process, a common silicone rubber sheet can be easily stretched and 
conformed to a spherical surface. In Vogiatzis, Ma, Chen and Gu’s study [12], topology 
optimization method was applied to design NPR structures with optimized conformability. 
The optimized 2D metasurface can conform to the complex surface of a human face, which 
provided great potential for the structural design of wearable electronics. However, all these 
conformable NPR structures were uniformly constructed. Considering the nonuniform 
auxetic deformation of the skin, there will beinevitable deformation behaviour difference 
between the thin film and human skin. This difference will definitely cause sheer stress at the 
connection area between substrate and skin surface, which will reduce the stability of the 
device and may even cause detachment of the wearable electronic. To make sure the designed 
metasurface have the same deformation behaviour as the target skin surface, substrate 
structures with nonuniform PR distribution [13– 15] can be introduced. 
In this study, a novel method was proposed to design and manufacture thin film structures 
with customized deformation behaviour, which can conform with the highly-stretched skin 
surface at human joint areas. By analysing the deformation behaviour of the skin during the 
rotation of joint, elongation (along the rotation surface) and expandation (vertical to the 
rotation surface) values of each small subsurface were measured. With this deformation data 
of all subsurfaces, strain and PR distribution of the target skin were calculated. To mimic the 
nonuniform PR distribution of the skin, the structure of substrate was organized by 
connecting unit cells with different PR values. Tuneable PR of unit cell was obtained by 
changing the interior angle of re- entrant honeycomb structure, which was still a mutation of 
“wavy” structures. Skin around a person-specific elbow was chosen as the target surface. 
After deformation analysis and structural construction, finite element analysis (FEA) was 
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conducted to validate the conformability of the designed nonuniform substrate. With PolyJet 
printed flexible nonuniform metasurface, stretching test was carried out to measure 
deformation behaviour, and both computational and experimental tests have shown a perfect 
conformability. 

2. Materials and methods 
2.1 Materials 
To enhance the stretchability and flexibility of the elastomer film, rubber-like material 
Agilus30 was selected. This newly developed material is one of the most flexible materials 
available for Objet Connex 260 (Stratasys Inc., Edina, MN, USA). As tested in [16], this 
material can be assumed as linear elastic when the applied strain is smaller than 100%, and 
the material Young’s modulus is 423MPa and Poisson’s ratio is 0.34. 

2.2 General processes of the proposed method 
In this study, a structural design method was proposed to develop metasurface structure with 
nonuniform PR distribution to conform with skin surfaces around highly stretched joint areas. 
Particularly, the method was mainly composed of six steps as shown in Figure 1. Firstly, 3D 
scanning was conducted to get the point cloud data of the skin surface around joint. The joint 
surface was scanned at two positions: fully-straightened and fully-bended. The fully- 
straightened position was set as initial state with assumed strain and deformation of zero. On 
the other hand, the fully-bended position was the objective state. From the initial state to the 
objective state, the deformation behaviour of the skin can be analysed. The skin surface was 
descriptive into finite subsurfaces to analyse how the strain and deformation was distributed 
over the surface area. By setting as joint bending direction the applied strain direction, PR of 
each subsurface could be calculated easily. To mimic the nonuniform auxetic deformation of 
the skin, the PR distribution in the substrate should also be nonuniform correspondingly. As 
been done in our previous research [17], re-entrant honeycomb structure was introduced to 
achieve tuneable PR by manipulating the interior angle of each unit cell. The size of unit cell 
was defined based the geometry of subsurface to make sure that each subsurface was covered 
by one unit cell. Considering the relative large deformation, geometrically nonlinear FEA 
was applied to get the relationship between unit cell’s PR and the interior angle. With this 
relationship, Unit cells with the same PR values were mapped to cover the all the subsurfaces 
of the skin. Both computational and experimental tests were conducted to validate the 
conformability of the design substrate structure. Two comparison structures, uniform NPR 
anduniform PPR, were also tested to demonstrate whether the generated nonuniform structure 
had better conformability.  
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Figure 1. General process of the proposed design and manufacturing method 

2.3 Skin surface scanning and analysis 
Commonly, human skin is in the form of complex 3D surface. It is extremely challenging to 
model the such a complex geometry manually, especially with the consideration of the slight 
difference between each individual. To customize the metasurface structure for each person- 
specific design, 3D scanning was utilized in this study to collect the geomaterial data of the 
target skin surface. An ArtecTM Space Spider (Artec Inc., Luxembourg) was applied to 
conduct the 3D scanning of the skin surface. This portable/handheld scanner has outstanding 
capabilities to render complex geometry, sharp edges and thin ribs. 

 
Figure 2. Scanning results of the skin surface around a person-specific joint area: 

(a) straightened state, (b) bended state. 
Figure 2 shows the scanning results of the skin surface around a person-specific joint area. 
For the convenience of feature recognition, a blue rubber film with marked uniform grid was 
attached to the target area. Considering the difficulty of analysing the point cloud data, 
curvilinear surface fitting was necessary. Nonuniform Rational B-splines (NURBS) are 
mathematical models usually used in computer graphics [18], which was chosen to 
mathematically represent the scanned surface. However, it’s not possible to fit NURBS 
surface to the whole point cloud directly because of the massive separated point data and 
requirement of NURBS surface approximation. To make the surface approximation more 
efficiently computer aided feature recognition was introduced to find the coordinates of all 
intersection points “+” in the scanning results, as shown in Figure 2a. By fitting a NURBS 
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surface that crossed all the recognized points, geometrically analysis could be processed. 
Detailedly, for a 3D NURBS with the order of (𝑝𝑝, 𝑞𝑞), the mathematical definition is given in 
Equation (1). 

S�𝑢𝑢, 𝑣𝑣� =
∑ ∑ 𝑁𝑁𝑥𝑥,𝑝𝑝(𝑢𝑢)𝑁𝑁𝑦𝑦,𝑞𝑞(𝑣𝑣)𝑤𝑤𝑥𝑥,𝑦𝑦𝐶𝐶𝑥𝑥,𝑦𝑦

𝑚𝑚
𝑦𝑦=0

𝑛𝑛
𝑥𝑥=0

∑ ∑ 𝑁𝑁𝑥𝑥,𝑝𝑝(𝑢𝑢)𝑁𝑁𝑦𝑦,𝑞𝑞(𝑣𝑣)𝑚𝑚
𝑦𝑦=0

𝑛𝑛
𝑥𝑥=0

𝑤𝑤𝑥𝑥,𝑦𝑦

 

0 < 𝑢𝑢, 𝑣𝑣 < 1                                                          (1) 

     𝑝𝑝 ≤ 𝑛𝑛; 𝑞𝑞 ≤ 𝑚𝑚 

where, 𝑛𝑛 and 𝑚𝑚 denote the number of control points at direction of 𝑢𝑢 and 𝑣𝑣. To construct a 
NURBS surface with the order of (𝑝𝑝, 𝑞𝑞), the number of control points must be larger or equals 
to the order. 𝑁𝑁𝑥𝑥,𝑝𝑝 are the non-rational B-spline basis functions defined on the knot vectors. 𝐶𝐶𝑥𝑥,𝑦𝑦 is 
the coordinate of control point, and 𝑤𝑤𝑥𝑥,𝑦𝑦 is the weight of the point. In this paper, to obtain a 
linear solution, all the weights were set to 1. With the coordinates of all recognized points 𝑃𝑃𝑖𝑖,𝑗𝑗, 
the NURBS surface can be approximated in the least-squares sense: 

min∑ ∑ (𝑃𝑃𝑖𝑖,𝑗𝑗 − 𝑆𝑆(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑗𝑗))𝑙𝑙
𝑗𝑗=1

𝑘𝑘
𝑖𝑖=1                                              (2) 

where, 𝑘𝑘 and 𝑙𝑙 are the number of recognized points on the surface at the direction of 𝑢𝑢 and 𝑣𝑣 
respectively. With a total number of fitting points equals 𝑘𝑘 ×  , a 3D NURBS was 
approximately constructed. Figure 3a shows a 7 × 7 order NURBS that fitted from 7 × 7 
points on the scanned skin surface of the bended elbow (Figure 2b). The fitted NURBS had a 
significant advantage that it can be evenly subdivided into any number of subsurfaces, with 
mathematical interpolating process. As demonstrated in Figure 3b & 3c, the fitted NURBS 
was divided into smaller subsurfaces and each subsurface still could represent the deformed 
geometry of a smaller skin area. 

 
Figure 3. NUMBS fitting and dividing. (a) a NUMBS fitted from 𝟕𝟕 × 𝟕𝟕 points on the 

surface. (b) the fitted NUMBS was divided into 𝟔𝟔 × 𝟔𝟔 subsurfaces. (c) the fitted NUMBS 
was divided into 𝟏𝟏𝟐𝟐 × 𝟏𝟏𝟐𝟐 subsurfaces. 

To analysis the deformation behaviour of the target skin area, the straightened joint was set as 
the initial state (Figure 2a). As this state, the skin was assumed as non-stretched and the side- 
lengths of all square subsurfaces were kept as uniform with the value of 𝑙𝑙𝑖𝑖𝑛𝑛𝑡𝑡, as shown in Figure 
4a. The side-lengths of each square would keep changing along with the bending of the joint. 
When the maximum bending was applied as suggested in Figure 2b, the skin would also be 
stretched to the maximum extent. The side-lengths of each subsurface of the deformed skin 
were measured based on the interpolation of the NURBS. As marked in Figure 4b, the length 
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of each edge of subsurface 𝑆𝑆𝑢𝑢𝑏𝑏𝑆𝑆𝑤𝑤,𝑧𝑧 became different to each other. 

 

Figure 4. Measuring the side-length of each subsurface: (a) initial state, (b) target state. 
The length change of each edge represented the elongation (along longitude direction) and 
expandation (along parallel direction) of the subsurface. To simplify the deformation analysis, 
the deformation of the subsurface was assumed as axisymmetric. Therefore, average 
elongation values were used to calculate the applied strain of each subsurface, as demonstrated 
in Equation (3). Besides, Poisson’s ratio of the subsurface could also be derived from the 
side-lengths of the deformed subsurface (Figure 4b) with Equation (4). 

𝜀𝜀𝑤𝑤,𝑧𝑧 = (𝑙𝑙𝑑𝑑𝑒𝑒𝑓𝑓
𝐿𝐿1

+ 𝑙𝑙𝑑𝑑𝑒𝑒𝑓𝑓
𝐿𝐿2

− 2𝑙𝑙𝑖𝑖𝑛𝑛𝑡𝑡) 2𝑙𝑙𝑖𝑖𝑛𝑛𝑡𝑡�                                                (3) 

𝜈𝜈𝑤𝑤,𝑧𝑧 = (𝑙𝑙𝑑𝑑𝑒𝑒𝑓𝑓
𝑃𝑃1

+ 𝑙𝑙𝑑𝑑𝑒𝑒𝑓𝑓
𝑃𝑃2

− 2𝑙𝑙𝑖𝑖𝑛𝑛𝑡𝑡) (𝑙𝑙𝑑𝑑𝑒𝑒𝑓𝑓
𝐿𝐿1

+ 𝑙𝑙𝑑𝑑𝑒𝑒𝑓𝑓
𝐿𝐿2

− 2𝑙𝑙𝑖𝑖𝑛𝑛𝑡𝑡� )                                   (4) 

As shown in Figure 5, (𝑤𝑤, 𝑧𝑧) is the number of the analysed subsurface. 𝑙𝑙𝑖𝑖𝑛𝑛𝑡𝑡 denotes the initial 

length of all subsurface edges. Respectively, 𝑙𝑙𝑑𝑑𝑒𝑒𝑓𝑓
𝐿𝐿

 and  𝑙𝑙𝑑𝑑𝑒𝑒𝑓𝑓
𝑃𝑃

 represent the elongation and 
expandation the subsurface after the bending of joint. Even though the calculation of both 
strain and PR was based on the assumption of axisymmetric deformation, the influence could 
be ignored if the size of subsurface was small enough. By analysing all the subsurfaces one 
by one, the nonuniform strain and PR distribution of the target skin surface was demonstrated.  

2.4 Unit cell analysis and structure generation 
To mimic the nonuniform deformation behaviour of the skin around joint area, the designed 
metasurface should also possess a similar PR distribution to generate no sheer stress over the 
connection area of substrate and human skin. As the basic strategy of the proposed method, 
the nonuniform of PR distribution was achieved by connecting unit cells with different PR 
into an integrated structure. The PR of re-entrant honeycomb structure can be easily modified 
from negative to positive by just changing the interior angle [17]. To analyse the PR of unit 
cells with different interior angle 𝜃𝜃 and under different strain, geometrical nonlinear FEA was 
conducted. Agilus30 was selected as the base material, and the load and boundary conditions 
of the analysis is demonstrated in Figure 5. The unit cell can cover a square area with side-
length of 𝑙𝑙𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙 = 10𝑚𝑚𝑚𝑚. By applying a +𝑋𝑋 direction displacement 𝐷𝐷𝑖𝑖𝑠𝑠_𝑖𝑖𝑛𝑛 on the left 
boundary of the unit cell, the output displacement 𝐷𝐷𝑖𝑖𝑠𝑠_𝑜𝑜𝑢𝑢𝑡𝑡 was measured. The applied strain 
𝜀𝜀𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙 and PR 𝜈𝜈𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙 of the unit cell was calculated with Equation (5) & (6). 

𝜀𝜀𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙 = 𝐷𝐷𝑖𝑖𝑠𝑠_𝑖𝑖𝑛𝑛 𝑙𝑙𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙�                                                                (5) 
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𝜈𝜈𝑐𝑐𝑒𝑒𝑙𝑙 = 𝐷𝐷𝑖𝑖𝑠𝑠_𝑜𝑜𝑢𝑢𝑡𝑡 𝑖𝑖𝑠𝑠_𝑜𝑜𝑢𝑢𝑡𝑡�                                                          (6) 

 

Figure 5. Load and boundary conditions for the nonlinear FEA of unit cell 

Thirteen unit cells with different interior angle, form 𝜃𝜃 = 120° to 𝜃𝜃 = 240°, were analysed. 
Because geometrical nonlinearity was considered, PR of each unit cell was different with the 
change of applied strain, as shown in Figure 7. With the summarized “ν-𝜃𝜃-ε” relationship in 
Figure 7, the nonuniform substrate structure was generated by assigning the corresponding 
unit cell to mimic the properties of each subsurface, letting 𝜀𝜀𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙 = 𝜀𝜀𝑤𝑤,𝑧𝑧 and 𝜈𝜈𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙 = 𝜈𝜈𝑤𝑤,𝑧𝑧.  

 
Figure 6. The relationship between applied strain, PR value and unit cell’s interior 

angel 
3. Numerical and experimental validation 
To validate the proposed structural design method, a more challenging task, designing a 
nonuniform metasurface structure that suitable for a person-specific elbow, was introduced. 
The skin surface of the person-specific elbow is shown in Figure 2. A 60 × 60𝑚𝑚𝑚𝑚2 area was 
chosen as the target surface to the attach the film structure. With the surface scanning and 
analysis method discussed in Section 2.3, the point cloud data of the scanned target surface 
was fitted into a 7 × 7 order NUMBS (Figure 3a). The reason why such a relatively low order 
was chosen to represent this NUMBS is that the precision of our equipment can only 
guarantee the stretchability and conductivity of the structure with relatively large unit cell 
(Figure 5). 
For each subsurface of the target NUMBS, length of each edge was measured. Based on 
Equation (3) & (4), applied strain and PR of the subsurface can be obtained. Figure 7b shows 
the length of each edge for subsurface 𝑆𝑆𝑢𝑢𝑏𝑏𝑆𝑆1,1. With Equation (3) and (4), we could get the 
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applied strain (𝜀𝜀1,1 = 0.175) and PR (𝜈𝜈1,1 = −0.543) of the subsurface 𝑆𝑆𝑢𝑢𝑏𝑏𝑆𝑆1,1. From the 
resulted “ν-𝜃𝜃-ε” relationship summarized in Figure 6, the corresponding unit cell (with 
𝜀𝜀𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙 = 0.175 & 𝜈𝜈𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙 = −0.543) has the interior angle of 𝜃𝜃𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙 = 206.8°, as shown in Figure 
7c.  As a result, this unit cell will be mapped to the position of 𝑆𝑆𝑢𝑢𝑏𝑏𝑆𝑆1,1. One by one form 
𝑆𝑆𝑢𝑢𝑏𝑏𝑆𝑆1,1  to 𝑆𝑆𝑢𝑢𝑏𝑏6,6 , every subsurface were analysed and unit cell with the same 
deformation behaviour was mapped. The stretched strain and PR of all subsurfaces were 
summarized in Appendix 1. Besides, the corresponding interior angle of unit cell were also 
listed in the appendix. By connecting all the unit cells, the nonuniform structure of substrate 
were generated.  

 
Figure 7. The construction process of the nonuniform substrate. (a) shows the geometry 
of target NUMBS. (b) & (c) demonstrates the detailed generation process of the unit cell 

𝑪𝑪𝒆𝒆𝒍𝒍𝒍𝒍𝟏𝟏,𝟏𝟏. (d) is the layout of the final substrate structure. 

First, nonlinear FEA was conducted to test the conformability of the generated substrate. The 
setup of the test is illustrated in Figure 8a. The fitted NUMBS was defined as rigid body, and 
user-defined displacements were applied on both ends of the flexible substrate. All these 
displacements were defined through user-subroutines in Abaqus, and the objective was to 
make sure two ends of substrate were exactly connected with top and bottom edges of the 
target NUMBS. The dynamic-explicit solver was utilized to solve this nonlinear problem. As 
comparisons, structures with both uniform PPR and uniform NPR were also analysed. All 
these three FEA results were showed in Figure 8. To quantitatively evaluate the conformality 
of each stretched substrate, reciprocal of the maximum distance between the substrate and the 
edge of objective surface was introduced. As listed in Table 1, the substrate with nonuniform 
PR distribution had the best conformality to cover the target skin surface. 

Table 1. FEA resulted maximum distance and conformability of all three structures. 
Substrate structure Uniform PPR Uniform NPR Nonuniform 
Maximum distance (𝑚𝑚𝑚𝑚) 9.51 3.12 0.92 
Conformability (𝑚𝑚𝑚𝑚−1) 0.039 0.321 1.097 
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Figure 8. (a) illustrates the initial state and boundary conditions of the dynamic FEA 
test. Respectively,  (b), (c) and (d) show the FEA results of uniform PPR, uniform NPR 

and nonuniform substrates. 
Experimental tests were also carried out to validate both the conformability and conductivity 
of the designed nonuniform structure. Still, uniform NPR and PPR structure were tested as 
comparison. The deformation results of all three substrates were demonstrated in Figure 9, 
and measured maximum distance and resulted conformability were listed in Table 2. Same as 
the FEA test, the deformation behaviour of the designed nonuniform substrate wes more alike 
to the target skin.  With large gap areas or out-of-bound areas (rad circle areas in Figure 9), it 
needs extra forces be applied on both free boundaries for uniform structures to obtain better 
conformation. However, this will bring sheer stress at the substrate-skin connection area, 
which will decrease the stability of the wearable devices dramatically. Therefore, the 
nonuniform structure, with a similar deformation behaviour to the target skin, is the most 
preferred design for wearable electronics at highly-stretched joint areas. Moreover, this 
nonuniform structure can exactly conform with the target surface without causing any 
wrinkle on the skin, which is impossible for those uniform structures, such as bulking 
structures, open-mesh structures, sponge structures etc. 

 
Figure 9. Experimental tests of the conformability of three different structures: (a) 

uniform PPR, (b) uniform NPR, and (c) nonuniform. 
Table 2. Experimentally resulted maximum distance and conformability of all three 

structures. 
Substrate structure Uniform PPR Uniform NPR Nonuniform 
Maximum distance (𝑚𝑚𝑚𝑚) 7.02 5.60 1.32 

Conformability (𝑚𝑚𝑚𝑚
−1

) 0.142 0.179 0.758 

 
4. Conclusions 
In this paper, a novel method was proposed to develop metasurface structure for highly- 
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stretched skin around joint areas. Both structural design and manufacture processes were 
included in this novel method. The PR distribution in the designed thin film structure was 
organized base on the analysis of the target skin surface. By mapping re-entrant unit cells 
with different PR to the subsurface areas with the same mechanical properties, the generated 
structure could mimic the deformation behaviour of the target skin. As a result, the sheer 
stress at the connection areas between substrate and the attached skin would be eliminated, 
which is the main challenge for those common film structures with uniformly distributed 
material. This property brings good flexibility and conformability to the designed 
metasurface. The proposed structural design method can be introduced to solve problems in 
different areas. One of our future works is to develop patient-specific skin scaffold that can 
perfectly conformed to the 3D complex surface of human body. Soft robotics and 4D printing 
are also the possible application areas. 
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Abstract 

A mathematical model integrating both Gurtin-Murdoch surface elasticity and consistent 

couple stress theories is proposed to simulate the simultaneous effects of the surface energy 

and the material microscopic structure on the mechanical response of an elastic half-plane 

under arbitrarily surface normal loadings. The displacement-based governing equations for 

the bulk material and the top material layer are established and then solved, via the method of 

Fourier integral transform together with the prescribed boundary conditions, to obtain the 

closed form solution of the elastic field in the transform space. To obtain solutions in the 

physical space, an efficient quadrature is adopted to evaluate all involved integrals associated 

with the Fourier transform inversion. A selected set of results is reported and they have 

indicated that both the surface and couple stresses significantly influence the elastic field 

within the bulk when the size of the loading region is comparable to the internal length scales 

of the surface material and the bulk.  

Keywords: Elastic half-plane, Surface stresses, Couple stresses, Surface elasticity, Couple 

stress elasticity. 

 

Introduction 

In past several decades, micro- and nano-technologies have received increasingly growing 

attention due to their vast applications in various disciplines. In the field of material sciences 

and engineering, understanding the fundamental characteristics and mechanical behavior of 

materials at those tiny scales is considered essential in the design procedure and fabrication of 

micro- and nano-scale devices and systems such as MEMS and NEMS. Unfortunately, many 

difficulties and challenges arise in the study of small-size objects since the response at those 

scales is significantly complex, generally size-dependent, and mostly influenced by various 

actions such as the surface free energy [1]-[3], existing defects and flaws, and material 

microscopic structures [4]. Experimental-based approaches are ones of the most popular 

candidates extensively and successfully employed to investigate the physical phenomena in a 

tiny scale (e.g., [5]-[8]). While results gained from those approaches have been found reliable 

and closely resembling the actual response, tests can only be performed in fully equipped 

laboratories and significant amount of resources associated with sophisticated testing setups 

and procedures and preparations of specimens must also be paid. This therefore renders 

purely experimental-based approaches less cost efficient in comparison with those combined 

with theoretical-based simulations. The latter, once properly equipped with physically 

admissible and sufficiently validated mathematical models, can be used not only to obtain the 

first-order prediction of the actual phenomena but also to assist the reduction of the number of 

cases to be considered in the experiments. 
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It has been well recognized that classical size-independent theories in continuum mechanics 

adopted specifically for simulating mechanical response of macro-scale problems have failed 

to simulate situations when the external length scale (e.g., size of loading region, crack length, 

contact length, etc.) is comparable to the internal length scale of materials (e.g., granular 

distance, lattice parameters). Attempts have been devoted to modify/enhance existing 

continuum-based mathematical models by integrating the influences observed in a small-scale 

before used in the simulations. Several continuum-based models have been proposed and 

successfully employed to capture the size-dependent behavior due to the presence of both 

surface-free energy and microstructures of constituting materials. For instance, the model 

established by Gurtin and his colleagues (e.g., [9][10]), called the theory of surface elasticity, 

has been successfully utilized to capture the surface stress effects. Due to its mathematical 

simplicity and capability in handling small-scale influence, the Gurtin-Murdoch model has 

become popular and extensively applied to investigate various problems in mechanics, e.g., 

thin films [11][12], thin plates [13], dislocations [14], nano-scaled elastic layer [15]-[17], 

half-space [18][19], and layered elastic half-space [20]. To handle the influence of material 

microstructures, various theories have been considered including the Cosserat theory [21], the 

couple stress theory [22]-[24], the strain gradient elasticity theory [25]-[27], the modified 

couple stress theory [28], and the consistent couple stress theory [29]. During the past 

decades, these theories have been extensively employed in the simulations and modeling of 

nano/micro-structured systems, especially for small-scaled beams and plates [30]-[32] and the 

size-dependent contact problems of elastic solids [33]-[35]. 

 

Towards the modeling of micro-/nano-scale layered media, results from an extensive 

literature survey have indicated that most of existing studies considered separately either the 

effect of the surface-free energy or the influence of the microscopic structures of constituting 

materials (e.g., [13]-[20], [33]-[38]). Applications of both Gurtin-Murdoch surface elasticity 

and the couple stress theory to simultaneously handling those small-scale influences, 

especially within the framework of surface and contact mechanics, have not been well 

recognized and this, as a consequence, leaves a significant gap of knowledge for further 

investigations. The idea of integrating both the surface-free energy and the micro/nano-

structure of the bulk material in the modeling has been found in the study of size-dependent 

responses of nano-scale structures such as nano-beams (e.g., [39]) and nano-plates (e.g., [40]-

[42]). This set of investigations not only confirms the applicability of the two theories but also 

provides the useful basis and ingredients essential for the extension to treat nano-scale 

problems of interest. 

 

The present study aims to investigate the mechanical response of an elastic half-plane loaded 

on its surface by taking the influence of both surface and couple stresses into account. Gurtin-

Murdoch surface elasticity theory is employed together with the consistent couple stress 

theory to form the underlying mathematical model and the analytical solution of elastic fields 

is obtained via the method of Fourier integral transform and a selected efficient numerical 

quadrature. The complete elastic fields under the simultaneous effects of surface stresses and 

couple stresses within the half-plane are thoroughly studied. 

 

Problem Formulation 

Consider a linearly elastic half-plane loaded by an arbitrarily distributed normal traction p  

over the length 2a  on the top surface as shown schematically in Fig. 1. For convenience, a 
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reference Cartesian coordinate system { , , ; }x y z O  is chosen such that the origin is at the 

center of the loading region and the x , y , and z -axes direct rightward, downward, and 

normal to the half-plane, respectively. The bulk material is assumed homogeneous and its 

response is described by the consistent couple stress theory (e.g., [29]) whereas the material 

layer at the top surface of the half-plane is governed by the theory of surface elasticity (e.g., 

[9][10]). In the present study, it is assumed that the body force and the body couple are 

negligible and the plane-strain deformation prevails.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic of an elastic half-plane loaded on its surface by normal traction 

 

For the bulk medium, basic field equations (i.e., equilibrium equations, constitutive laws, and 

kinematics) from the consistent couple stress theory (e.g., [29]) when specialized to the two-

dimensional body under the plane strain condition are given by   
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where { }xx yy xy yx, , ,     are the force-stress components; { }xz yz,   are the couple-stress 

components; { }xx yy xy, ,    and   are the infinitesimal strain components and the rotation 

about the z -axis, respectively; { }xz yz,   represent the curvature components; { }x yu ,u  are the 

in-plane displacement components;   and v  are the elastic shear modulus and Poisson’s ratio 

of the bulk material, respectively;  is a length-scale parameter in the couple stress elasticity; 

and   denotes two-dimensional Laplacian operator. It is worth noting that the presence of the 

couple stresses renders the force-stress tensor non-symmetric and this is in contrast to the 

classical linear elasticity. Note also that by setting the parameter 0 , one can readily 

recover the classical case.  

x  
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For the material layer at the top surface of the half-plane, basic equations governing its 

response can be established from Gurtin-Murdoch surface elasticity theory [9][10] and, when 

specialized to this particular case, they are given by   
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where the superscript ‘s’ is utilized to designate the surface quantities; { , }s s   and 
s  denote 

surface Lamé constants and the residual surface tension, respectively; 2s s s     denote 

the surface elastic modulus; and { , }s s

x yt t  are tractions acting to the bottom side of the material 

layer induced by the underlying bulk material. 

 

Solution Procedure 

A set of displacement-based governing equations for the bulk material can be readily obtained 

by properly combining all basic field equations, Eq. (1)-(3), and its general solution can be 

established in a closed-form via the method of Fourier integral transform (e.g., [43]). The 

final expression for the in-plane displacements { }x yu ,u  is given by 
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where 1i    denotes an imaginary number;   is a transform parameter; 2 21   ; 

3 4v   ; and , ,A B C  are arbitrary unknown functions of   to be determined from 

boundary conditions. The general solution for the rotation , the force stresses 

{ },xx yy xy yx, , ,     and the couple stresses { }xz yz,  can be obtained from Eq. (7)-(8) together 

with Eq. (2)-(3). 

 

To form sufficient conditions for determining the unknown functions ,  ,  ,A B C  the continuity 

of the displacements and tractions at the interface of the bulk and the material layer is 

enforced along with the surface equations, Eq. (4)-(6). For the case of a constant residual 

surface tension, the following set of three boundary conditions is obtained: 
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It is worth noting that the couple traction boundary condition Eq. (11) results directly from 

that the material layer cannot resist the bending moment. By substituting Eq. (7)-(8) and the 

general solution for the force and couple stresses into Eq. (9)-(11), it gives rise to a system of 

three linear algebraic equations: 
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where /s    is defined as the material length-scale parameter corresponding to the 

presence of the surface stresses and ˆ ( )p   is the Fourier transform of the prescribed normal 

traction ( )p x  given by 

 

ˆ ( ) ( ) i xp p x e dx
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By solving the system of linear equations, Eq. (12), the unknown functions ,  ,  A B C  are 

obtained in a closed-form as functions of  , two length-scale parameters   and , and 

transformed traction ˆ ( )p  . Substituting these functions into the general solutions gives the 

integral expressions for the displacements, rotation, force-stress and couple-stress fields at any 

location within the half-plane. Interestingly, it can be observed that all elastic field quantities 

contain both   and  representing the length-scale parameters corresponding to the presence 

of the surface stresses and couple stresses, respectively. Therefore, it is anticipated that the 

influence of simultaneous effects of the surface and couple stresses can be captured in 

predicted solutions as well as the size-dependent behavior. 

 

Numerical Results and Discussion 

To obtain numerical results for elastic field within the bulk material, standard Gaussian 

quadrature is adopted to efficiently evaluate all involved integrals resulting from Fourier 

integral inversion. In the numerical study, following material properties associated with 

Silicon [44] (i.e., v  0.33, 40.23  GPa, 78.08  GPa, 2.78s  N/m, 4.49s  N/m, 

0.61s   N/m) and the length-scale parameter associated with the presence of couple stresses 

50 nm [45] are chosen. A representative surface load, corresponding to a uniformly 

distributed normal pressure 0( )p x p  over the length 2a , is chosen and its Fourier transform 

is given explicitly by   
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Numerical results for the force stresses and couple stresses of an elastic half-plane under the 

uniformly distributed normal pressure 0( )p x p  and the simultaneous influence of both 

surface and couple stresses are reported in Fig. 2 and Fig. 3, respectively. The stress 

distributions along the positive x-direction of the surface-loaded half-plane are considered at 

different normalized depths, / {0.2;0.4;0.8}y a  with 0.5a    and 0.25 nm  . Results 

represented by the dash lines denote the classical solutions corresponding to 0  . It is 

worth noting that while the classical solutions are independent of the length scale  , the use 

of   in the normalization is only for the purpose of comparison. 
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Figure 2. Normalized force stresses of elastic half-plane under uniformly distributed 

normal traction at various depths 
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Although the normalized vertical stress 
0/yy p  and the shear stress 

0/xy p  from the proposed 

model and the classical solution display similar trends for all values of the normalized 

coordinate /x a  as displayed in Fig. 2(a) and Fig. 2(c), the magnitude of the normalized 

stresses 
0/yy p  and 

0/xy p  with the influence of the surface and couple stresses are lower and 

higher, respectively, than those of the classical case. In contrast, the normalized horizontal 

stress 0/xx p  and the shear stress 
0/yx p  possess different characteristic in comparison with 

the classical solutions. In addition, the non-symmetric character of the force-stress tensor is 

confirmed by results shown in Fig. 2(c) and Fig. 2(d). Variations of the couple stresses 

 xz yz,   within the elastic half-plane at various depths are also displayed in Fig. 3. For the 

classical case, the couple stresses within the bulk vanish identically. It is also evident from 

this set of results that solutions predicted by the proposed model exhibit the significant 

departure from the classical solutions. 
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Figure 3. Normalized couple stresses of elastic half-plane under uniformly distributed 

normal traction at various depths 

 

Conclusion and Remarks 

An elastic half-plane under the plane-strain deformation and loaded on its surface by the 

normal traction has been studied by integrating the influence of both surface stresses and 

couple stresses. Gurtin-Murdoch surface elasticity theory and the consistent couple stress 

theory have been used in the problem formulation and the closed-form integral expressions of 

the elastic field have been derived via the method of Fourier integral transform. An efficient 

quadrature has been adopted to evaluate all involved integrals resulting from the Fourier 

transform inversion. A set of preliminary results has indicated the significant influence of the 

surface and couple stresses on the behavior of predicted solutions; in particular, the obvious 

deviation from the classical solutions has been observed. The size-dependence behavior of 

predicted responses and the effects of the two material length scales are also of key interest 

and still under investigation. It should be remarked that the analytical solutions established in 
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the present study can be used either as benchmark results in the verification process or as the 

fundamental solutions in the formulation of related problems such as contact and indentation 

problems.     
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Abstract

This work presents a data-driven approach for the automated risk estimation of the voyage of a
vessel or ship. While the industry is moving from a compliance-based framework with existing
rules to a risk-based one, there is also a need to monitor the risk of a vessel from the perspective
of the navigation. This is of even higher importance for the case of autonomous ships. Built
based on the state-of-the-art mathematical representation, the navigation feature, each existing
voyage is transformed into a corresponding series of points in d-dimensional space. During the
stage of pre-processing, given a set of historical Automatic Identification System (AIS) data,
those records that belong to the same vessel within a certain period of time are taken as a voy-
age and mapped to the corresponding space of the navigation feature. After the pre-processing
and during the online monitoring, the current trajectory of the vessel is transformed into the
corresponding representation in the same way. Based on a nearest-neighbour search scheme,
the distance from the nearest neighbour is taken as the risk of the current voyage. In other
words, the deviation from the closest route in the historical data is taken as the risk. The devel-
oped method has demonstrated encouraging performance on a set of challenging historical AIS
data from the Australian Maritime Safety Authority, covering three regions in the Australian
territory, namely the Bass Strait, the Great Australian Bight and the North West.
Keywords: Autonomous ships, navigation planning, historical AIS data, machine learning.

1 Introduction

Autonomous ships have attracted significant amount of attention from the marine and offshore
industry lately. Compared to conventional manned vessels, the huge potential of these au-
tonomous vessels towards a new level of operational efficiency makes them a promising candi-
date as a technological solution for the next step of the industry.

As each ship and offshore platform is a massive engineering system by itself, the need of ensur-
ing the seaworthiness of the vessel or platform is of ultimate importance. Usually performed
by an independent third party such as a classification society [10], the process of engineering a
ship is required to be certified and classed. However, a trend or movement from a compliance-
based framework to a risk-based one has been observed in the domain. As the complexity of
the massive engineering systems nowadays is going beyond the capability of a binary (pass or
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fail) evaluation, there needs to be a way to ensure the reliability of these systems, beyond a
compliance according to established rules. A risk-based approach can come in as an effective
alternative, as it does not only take the part of compliance into a consideration, but also looking
at the risk of the system, sub-systems and components quantitatively. This would give the en-
gineers and the relevant authorities a sense on the level of confidence in terms of performance
and reliability of the system.

Navigation at sea typically requires compliance with applicable rules and regulations including
but not limited to Convention on the International Regulations for Preventing Collision at Sea,
1972 (COLREGs) [11] from the International Maritime Organisation [12]. These are essen-
tially the rules of traffic at sea, globally and regionally. As an inappropriate movement of a
vessel can lead to risky situations such as two vessels being too close and a potential collision,
ensuring a real-time compliance by all the vessels is of significant importance for the safety
and the smoothness of operations of all.

Hence, while the industry is moving from a compliance-based system towards a risk-based
one, together with the recent focus on autonomous vessels, there is a need for an approach to
do automated risk estimation and monitoring of the voyage of each vessel on a (near-) real-time
basis. This work aims to address the issue through a historical data-driven approach. Based on
a set of historical AIS (Automatic Identification System) data, the correspondence among the
AIS points which belong to the same vessel is established to turn the collection of points into
a voyage. After a list of historical voyages is obtained, given the current location of the vessel,
the distance from the nearest point of a historical voyage in the space of navigation feature is
returned as the risk estimation of the current voyage at the moment. The developed method has
demonstrated encouraging performance on an existing set of historical AIS data from the Aus-
tralian Maritime Safety Authority [3], covering three regions in Australian territory, namely the
Bass Strait, the Great Australian Bight and the North West [4] [1]. Figure 1 shows the three
regions studied, and figure 2 to 4 show the visualisation of the historical AIS data for each of
the regions.

Figure 1: Maritime regions studied in this work [4].
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Figure 2: A visualisation of the historical AIS data for the Bass Strait [4].

Figure 3: A visualisation of the historical AIS data for the Great Australian Bight [4].
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Figure 4: A visualisation of the historical AIS data for the North West [4].

2 Related work

There is a significant volume of existing work on the domain of autonomous ships, covering
things like situations at high seas [9], path generation [22] to collision detection and avoidance
[13] [14]. In addition, the aspect of connectivity of autonomous ships has been looked into
[6]. An interesting idea to augment the sensing capability of an autonomous ship via the sup-
port from an unmanned aerial system has also been explored [8]. Along the topic of landing a
quadrotor on the deck of an autonomous ship, an invariant ellipsoid method has been developed
[16].

Closely relevant to the aim of this work, risk based methods have been seen in maritime for
different purposes such as autonomous systems [21] and unmanned merchant ships [15]. Sim-
ilarly, an approach of learning using corrosion feature with non-linear (Support Vector Ma-
chines) SVM [5] has been introduced to determine the potential corrosion mechanisms which
may happen based on a set of design and operating conditions in an automated manner [19].

In a recent approach to augment the existing navigation planning with the use of historical
AIS data, a weighted nearest-neighbour search in the space of ship and navigation feature has
been introduced for the retrieval of a suitable route for an upcoming voyage from a database of
historical routes [20].

As the industry typically deals with massive engineering systems such as ships or offshore
platforms, the importance of compliance according to established applicable rules has been put
at the first place. A Histogram of Connectivity and linear SVM based approach has been intro-
duced for the evaluation of the piping design of a ship [17]. On the same topic, by fine-tuning
pre-trained deep convolutional neural networks, the hypothesis that common visual features
learnt can be reused for ship design has been validated to a significant extent [18].
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Based on the discussion above, there appears to be a gap between the state-of-the-art and the
aim of this work, which is to do an automated estimation of the risk of a voyage based on
historical AIS data.

3 Methodology

Details of the main method developed in this work are presented in this section.

3.1 Representation: Navigation Feature

Before the idea of doing a risk-based estimation for a voyage can be achieved, there is a need
to establish a representation or a feature space. This starts with linking those AIS points that
belong to the same vessel as a voyage. Next, for each voyage identified in the database, a rep-
resentation is established accordingly.

Similar to previous work, the idea of navigation feature [20] is adopted as the representation
here. Assuming that there are d attributes that need to be taken into consideration, each of these
attributes constitutes a dimension and this leads to a navigation feature for that set of attributes.
In other words, a set of d navigation attributes is transformed into a point x∈Rd . For each point
in a voyage, a navigation feature is established and this process is repeated for all the points in
the voyage. The process of forming navigation features for a voyage is illustrated in algorithm
1 and 2.

The current form of navigation feature has the advantage of being flexible in terms of attributes
to be taken into consideration. Depending on the actual situation, the variables such as the
speed or the operating status of the engine on-board can be included for a better analysis. This
can be very helpful when certain signals become unreliable and these sources can just be ex-
cluded from the analysis meanwhile. Four variables are taken into consideration in this work,
including the longitude, the latitude, the speed and the course, hence the analysis is done in
four-dimensional space.

Algorithm 1 Formation of a Navigation Feature.
1: Given d attributes
2: Initialise x∈Rd

3: for 0≤i<d do
4: xi = i-th attribute
5: end for
6: return x

Algorithm 2 Pre-processing of a voyage.
1: Given a voyage with Np points
2: for 0≤i<Np do
3: Form i-th navigation feature for the i-th point, fi∈Rd

4: Store fi
5: end for
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3.2 Risk-based estimation via nearest-neighbour search

The idea of doing risk estimation of the current voyage based on a list of historical voyages in
the space of navigation feature is introduced in this section. Based on a database of historical
voyages or AIS data, the deviation of the current voyage from the closest historical one is de-
termined as the risk. Theoretically, the risk is determined by the distance between the query
and the closest point in the space of navigation feature.

The process is mainly divided into two stages, including the pre-processing and the online
estimation. The stage of pre-processing involves the process of establishing a correspondence
among all the AIS points which come from the same vessel, registering them as a voyage and
repeating the process for all the points in the database. These points are mapped to the space
of navigation feature subsequently. This is summarised in Algorithm 3. During the online re-
trieval, given the current AIS location of the voyage, the information is transformed into the
same representation as a navigation feature, which is used as the query to search for the nearest
neighbour from the database of registered voyages subsequently. The distance to the nearest
neighbour is returned as the risk estimation. This is summarised in Algorithm 4.

Algorithm 3 Pre-processing.
1: for each voyage in the historical data do
2: Establish the series of navigation features and store
3: end for

Algorithm 4 Risk estimation with nearest-neighbour based search.
1: Given a navigation feature as the query
2: Search for the closest points in the historical voyages
3: Return the distance between the query and the nearest neighbour

4 Experimental study

The details of the experimental study carried out are presented in this section.

4.1 Setup

The implementation of algorithm 1 to 4 was done in Python. Each online retrieval took less
than five seconds. The three existing sets of historical data were separated randomly into two
equal sets, one for training (or establishing the database during pre-processing) and another for
testing.

4.2 Results

Table 1 shows the performance of the developed algorithms. The results are reported in the form
of the mean and the standard deviation, for the distance of the query point to the closest voyage.

In addition, as a visualisation towards the method for monitoring the real-time risk of a voyage,
figure 5 to 7 show an example of the risk estimation for the case of the Bass Strait, the Great
Australian Bight and the North West. The red point in each of the figures refers to the query
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point, green points refer to the closest voyage found and blue points are the AIS data in the
training set.

Table 1: Performance of the risk estimation of a voyage.
Dataset Distance (σ±ν)

Bass Strait 0.0067±0.012
Great Australian Bight 0.0095±0.014

North West 0.0046±0.0064

Figure 5: An example of the risk estimation for the Bass Strait.
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Figure 6: An example of the risk estimation for the Great Australian Bight.

Figure 7: An example of the risk estimation for the North West.

5 Discussion

As demonstrated in the previous section, the developed method has demonstrated encouraging
performance on the three existing sets of historical AIS data covering three Australian regions.

As one may notice, the distance of the query to the nearest neighbour found is returned as
the estimated risk. There has not been a clear lower and upper bound determined for the navi-
gational risk. A necessary step to take next is to identify a suitable lower and upper bound for
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the variable. This can be done by a mapping of the risk to a range between 0 and 1, a limit
could be determined from the historical AIS points.

While the developed method has demonstrated encouraging performance, there is a need to
test further. In particular, it would be necessary to compare the risk estimation with those from
experienced mariners before the further development and deployment to the industry. This
work serves as the first step towards the possibility of a risk-based navigation for autonomous
ships, a further understanding of the requirements from the relevant industries and the authori-
ties would also be an essential step.

Besides, there is a need to consider more parameters when the data is available. These include
and are not limited to weather conditions and the time. Mathematically, this translates into a
representation that moves to a higher dimensional space, covering more parameters. Achieving
a balance among the various parameters or dimensions would also be necessary. While the
current version of the work maps the historical data in the range of 0 to 1 individually before
further processing, a better or a more suitable form could benefit the developed algorithms sig-
nificantly.

The interaction between the vessels is not taken into consideration in the current version of
the work. In fact, for a complete assessment, the risk coming from the other vessels especially
in terms of being too close and hence a collision would need to be considered. For example,
having two vessels which are relatively close especially and high estimated risks could be a
good indication.

Next, while the computations so far were relatively fast, the computational complexity is still
of linear basis. For a real-time monitoring or operation, an improvement to a (near-) constant
complexity in terms of the time for an online search is preferred. Recent breakthroughs in
achieving a reasonably close search with some additional assumptions such as approximate
near-neighbour search [2] and Locality Sensitive Hashing [7] may help.

6 Conclusion

In summary, this work presents an approach for the risk estimation of a navigation. Starting
by mapping the list of historical AIS points into a list of corresponding voyages, each of the
points in a voyage is transformed as a point in the space of navigation feature. After the pre-
processing, given a query in the form of a navigation feature, a search for the nearest neighbour
from the list of historical voyages is performed and the distance to the nearest neighbour in
the list of the pre-processed historical voyages is returned as the estimated risk at the moment.
The developed method has demonstrated encouraging performance on a challenging dataset
of historical AIS data covering three regions in Australia, namely the Bass Strait, the Great
Australian Bight and the North West.
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ABSTRACT

This work presents an assessment of the capabilities of mixture processes to solve two-phase

flows developing shocks and discontinuities. The mixture equations are based on a two-phase

flow model with full non-equilibrium processes expressed in conservative form. This mixture

model is computed by using Godunov-type finite volume methods. A four shock waves test

problem is simulated to highlight the performance of the proposed mixture model for one-

dimensional compressible two-phase flows. The results from the simulations appear to be qual-

itatively in agreement with those available in literature.

Keywords: Gas-liquid, Non-equilibrium, Mixture equations, Shock waves, Simulation

Introduction and Equations

The demand for two-phase fluid flow computations and their understanding is growing because

of their attractive challenges in both basic research and engineering applications. Two-phase

flows investigations have relied comprehensively on either the two-fluid model or homoge-

neous mixture model types. However, both types are always expensive due to their theoretical

and physical nature in addition to their own difficulties [1, 2]. Alternatively, two-phase flows

such as gas and liquid can be formulated in terms of mixture parameters of state. In this ap-

proach, mixture models are based on non-linear partial differential equations and are able to

describe dynamically the evolution of non-equilibrium behaviour between the different phases.

See [3, 4] and references therein. These models assume knowledge of several parameters, for

instance, the relative motion between phases, and compressibility for all phases can be taken

into account. These models also are practical because they contain more information about both

the different phases and their combination, i.e., the mixture flow. In this framework, the mixture

model consists of equations for the conservation of mixture mass (ρ), conservation of mixture

momentum (ρu), conservation of mixture energy (ρE) and a gas void fraction equation (ρα), a

gas mass fraction equation (ρc) and a relative velocity (ur) between the gas and liquid. These

are written in a compact vector form as [5]:

∂U

∂t
+
∂F(U)

∂x
= S, t > 0, x ∈ R. (1)
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where

U =
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
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
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






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


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
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
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ρuα

ρu2 + P + ρc(1 − c)u2
r

ρuc+ ρc(1 − c)ur
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r + ψ(P )

ρuE + Pu+ ρc(1 − c)ur
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



















. (2)

In the above, U is the vector of conservation variables; F and S are the mathematical flux func-

tion in the x-direction and the vector of source terms assumed to be at this time, respectively.

Other notations denote ρ = mixture density, u = mixture velocity, ur = relative velocity, E =

mixture energy, P = mixture pressure, c = gas mass fraction and α = gas void fraction which

satisfies α + (1 − α) = 1. The term ψ links the two phases through the relative velocity equa-

tion. The above system has the common form of a conservation law and fulfill an addition

conservation law [6, 7]:

∂

∂t
(ρS) +

∂

∂x
(ρSu) = Q, (3)

which is the conservation of mixture entropy and Q is the entropy introduction. Furthermore,

each phase has its own thermodynamics properties described through different equations of

state. An often employed equation of state in simulating realistic two-phase problems is the

stiffened equations of state (EoS) [8]. This is due to its simplicity and ability to capture strong

and weak shock-waves in addition to its resemblance to other equations of state. Thus, the EoS

is given by:

Pj = Kj





ρj

ρ̄j





γj

exp
(

Sj

cj,v

)

− P̄j,

where γj, Kj, cj,v, ρ̄j and P̄j are characteristic constants of the thermodynamic behaviour of

each phase and Sj is the entropy of the different phases [6, 7]. This equation becomes the EoS

for the gas phase if P̄ is set to zero. It is worth noting that the above mixture model is different

from the homogeneous relaxation model and the homogeneous equilibrium model. Certainly,

the model in hand processes advantages, for instance, the well-posedness and conservativity

natures makes of interest to different applications.

Computations and Results

The model equations (1)- (3) constitute a non-linear hyperbolic system written in a conservation

form which can be solved by any numerical method of interest. These equations are solved by

means of Godunov-type approach where the hyperbolic conservative left hand side is integrated

using finite volume, high-resolution, shock-capturing methods. In a finite volume Godunov-

type approach, there are mainly central and upwind intercell flux computations which are car-

ried out by a discretization of a spatial computational domain and time computational domain

of interest, respectively. In the context of Godunov-type centred methods, this discretization in

processes without relaxation takes the following form [9]:

U
n+1

i = U
n

i −
∆t

∆x

(

F
n

i+ 1

2

− F
n

i− 1

2

)

, (4)
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where U
n
i denotes the integral average of the solution U and F is the numerical flux function

which is a scheme-dependent function of the conservative variables. This is the Slope-Limited

Centered (SLIC) scheme where the solution of the Riemann problem is fully numerical rather

than analytical as in upwind methods. The SLIC scheme is a second-order in time and space and

Total Variation Diminishing (TVD) using any limiter of interest. For further work on the SLIC

scheme for fluid flow problems see, for example, [9]. To illustrate the type of outputs which the

model equations produces for two-phase flow problems, a benchmark test is considered from

the literature on the basis of the Riemann problem. Further, the SLIC scheme is employed for

the resolution of shock waves problem presented in [7]. For this test problem, CFL = 0.9,

SUPERBEE limiter along with transmissive boundary conditions are considered in the compu-

tational domain of [−10, 10]. Finally, simulation results are evaluated by comparing them with

other numerical methods that do not depend on the structure of the Riemann problem. Numer-

ical results are presented in figures 1. The results are displayed for three different numerical

methods, namely, the Lax-Friedrichs which avoids solving the Riemann problem at every cell

interface, First-Order Centered (FORCE) and Total Variation Diminishing (TVD) SLIC meth-

ods with 100 coarse grid cells and compared with the reference solution which is provided on

a very fine mesh of 5000 cells. Clearly, the results agree well with the reference solutions and

with those presented earlier in [7]. It is worth nothing that the relative velocity and different

EoS have strong effect on the complete wave structure of this shock waves problem. Finally,

the mixture equations together with the mixture entropy provided similar wave structure by the

different numerical methods without any source terms effects.

Concluding Remarks

A non-equilibrium fully compressible mixture model is presented and simulated with Riemann

problem based methods. Four shock waves problem is tested with liquid water and vapour

using real and ideal equations of state. Simulation results show that the mixture formulations

together with the mixture entropy can accurately resolve the left and right shocks as well as

contact discontinuities. It is observed that the model in hand agree well with the calculus of

the eigenstructure of the system by providing six waves. This demonstrate the capabilities of

mixture formulations to resolve two-phase flow discontinuities when using the mixture entropy

equation. Ongoing and future research will include the simulation of rarefaction wave propaga-

tion using a temperature gradient.
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Figure 1: Shock-tube problem of [7] at time t = 9.0 × 10−5s ms. The TVD SLIC, FORCE

and Lax-Friedrichs methods are compared with the reference solution results. Coarse

meshes, symbols, are provided on 100 cells and very fine meshes of 5000 cells for the solid

lines. The waves seen from left to right, two left shock and two right shock waves separated

by a multiple contact discontinuity for the mixture velocity u.
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Abstract 

We present a morphological rank-space segmentation method for automatically detecting and 

segmenting connected filamentous structures with application to unsupervised analysis of 

microscopic vaginal flora samples. This approach begins with a binarization process with 

adaptivity to local noise and object orientation. A novel morphological rank-space is proposed 

to decompose the connected filaments through morphological thinning, axial linking, 

labeling, and selection, resulting in a discrete rank-space representation. A ribbon delineation 

method is devised to reconstruct the boundaries of filaments through the rank-space. Our 

approach has been successfully applied to detect and segment the pseudohyphae for diagnosis 

of fungus Candida vaginitis.  

Keywords: Segmentation, morphology, rank-space, fluorescent microscope, filament, 

pseudohyphae  

 

1.  Introduction 

Candida albicans is a pleiomorphic fungus and is the most common cause of vaginal fungal 

infections. Approximately 75% of women have at least one Candida vaginitis (CV) during 

their lifetimes while nearly half have at least two [4]. Candida overgrowth appears as mats of 

yeasts measuring 3 to 5 μm in diameter intermingled with pseudohyphae [6], that consist of 

invasive filaments comprising chains of conjoined, elongated yeast cells. Pseudohyphal 

growth is regarded as a defined developmental state and important fungal pathogen for CV 

[12]. The multiband fluorescent microscope is used to provide multi-band digital scans of 

sample microorganisms that have been pre-processed with immunofluorescent labeling or 

staining techniques. The fluorescence of the specific dyed microorganisms under the 

excitation of lights of various wavelengths better reveals the structures of cells of interest. 

Sample yeast cells and pseudohyphae are shown in Figure 1.  

 

Manual finding and quantification of the pseudohyphae for CV screening and diagnosis is 

prohibitively time consuming. It is practically desired to develop automated techniques for 

segmenting the pseudohyphae from microscopic vaginal flora images towards providing 

visual evidence of fungal pathogens.  
 
Unsupervised segmentation and quantification of the pseudohyphal structures is essential to 

perform automated high-throughput analysis, in order to compute, for instance, the 

distributions of lengths, widths, curvatures, budding scars, etc. The challenge for such 

unsupervised methods attributes to the fact that the pseudohyphae vary in shapes and sizes, 

form clumps, and the images often contain fiber contamination. 
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                                    (a)                                                                      (b) 

Figure 1. A representative fluorescent image of yeast and pseudohyphae. (a) 470 nm green 

and 395 nm blue fluorophores; the former specifies the yeast and pseudohyphal cells and the 

latter indicates the nuclei (DNA). (b) The green channel. 

 

The global thresholding methods are not appropriate for finding individual pseudohypha from 

multicellular clumps of pseudohyphae (colonies). The image decomposition approach through 

curvelet and wavelet transform is applied for segmenting actin filaments [2]. This method is 

inappropriate for extracting highly curved filaments due to poor computational efficiency as 

the so-called curvelet transform is actually the size-varying block-wise ridgelet transform 

through the scale space. Applying Hessain-based scale-space enhancement filters [5, 8] results 

in disconnections due to the low filter response along the bifurcation regions. These filters 

have been combined with tracking [3], bifurcation enhancement and suppression of non-

tubular structures [15]. All enhancement filter methods require further decomposition and 

delineation. Other developments include fuzzy shape representation [1] and fuzzy 

connectedness [7]. An extensive review can be found in [10]. To date, not a single method is 

capable of successfully segmenting filamentous structures from every imaging modality and 

every organ. 

 

In this paper, we explore innovative techniques using mathematical morphology and domain 

knowledge for automatically detecting and segmenting the pseudohyphae, or filamentous 

structures in general, from microscopic images. We present a paradigm composed of adaptive 

binarization, clue extraction, morphological rank-space transform, and rank-controlled ribbon 

contouring of filaments. The binarization is less sensitive to noise and object orientation. The 

new rank-space allows user specifications to be incorporated into the decomposition; a higher 

ranked filament is segmented with more integrity at places such as junctions. We demonstrate 

using clinical data that our system achieves visually agreeable results that enable the 

feasibility for providing assessment evidence for quick and accurate CV screening.  

 

The rest of the paper is organized as follows. In section 2, we outline the framework for 

automatically detecting, segmenting, and quantifying pseudohyhae in the microscopic scans 

of vaginal flora samples. In section 3, we demonstrate the efficacy of our method using 

clinical data. Conclusions are drawn in section 4. 
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2.  Methodology  

Figure 2 depicts the overall structure of the process for segmenting connected filaments. The 

details of each block are described below. 

 
Figure 2. Flowchart of processing algorithms. 

2.1  Binarization  

The vaginal flora sample is labeled with the Caza Health® antibody package and illuminated 

with lights. A black and white digital camera captures and grabs the data. The image contains 

mainly the yeast, budding yeast, pseudohyphae and fibers (possibly from the swab used to 

collect the sample). The fluorescent microscopic scan must first undergo a series of pre-

processing to correct image artifacts caused by channel cross-talk, LED non-uniform 

illumination, background auto-fluorescence, and so forth. The green channel (see Figure 1) 

captures most effectively the fluorescence emitted by the yeast and pseudohyphae.  

 

The binarization process masks the interest areas of pseudohyphal colonies, resulting in a 

binary ridge image. This procedure adopts local adaptive thresholding algorithms to achieve 

the robustness to the local noise variation. The detection technique needs to be sensitive to the 

object orientation, as well as lowering the impact of interfering objects present in the test 

window upon the noise statistics. It is accomplished through the following steps. We slide M 

tilted line-segment windows over the image domain; at each point, we collect N reference 

samples per window to compute local statistics as a function of the window tilt angle. We 

then select the window that is most orthogonal to the pseudohyphal axis direction, and 

implement the adaptive threshold test, as described by 

 𝐼 − 𝑍⊥ > 𝐶 ∙ (1 + (
𝑍⊥

𝑍𝑚𝑎𝑥
)
𝑟

),     (1) 

where I is the green channel image with intensity normalized to [0, 1]. 𝑍⊥ corresponds to the 

test statistics obtained in the window that is most orthogonal to the pseudohyphal segment,  

𝑍⊥: = min
1≤𝑘≤𝑀

𝑍𝑘,  

𝑍𝑚𝑎𝑥 = max
1≤𝑘≤𝑀

𝑍𝑘; 

𝑍𝑘 is the mean intensity in the N-pixel line segment window 𝑊𝑘 centered at position (𝑖, 𝑗) in 

the image domain with a tilt angle of  
𝑘−1

𝑀
𝜋 from the x-axis, i.e.,  

𝑍𝑘 = mean{𝐼𝑖𝑗 ∈ 𝑊𝑘}. 

Clue extraction 

Rank-based 

Contouring 

Binarization 

Segmentation 

 

Input image 

Rank-space 

transform 
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The r in Eq. (1) is a positive real factor; C is a threshold that is proportional to the noise 

standard deviation. It is set to maintain an acceptable filament detection probability for low 

SNR with a consistent false detection rate. The orientation adaptivity manifests through the 

multiplier of C. For elongated structures, 𝑍𝑚𝑎𝑥 > 𝑍⊥, and the right-hand side of Eq. (1) is 

approximately equal to C. For round objects, 𝑍𝑚𝑎𝑥 = 𝑍⊥, and the right-hand side is doubled C 

so that the round or close to round ones are not being detected as pseudohyphae. In this study, 

we choose the parameters experimentally: M = 8~16, N = 15, C = 0.01~0.05, and r = 2. The 

resulting binary ridge mask is shown in Figure 3(a). 

 

         
                                        (a)                                                              (b) 

         
                                        (c)                                                              (d) 

Figure 3. (a) Binary ridge mask, (b) Spotness map, (c) Ridgeness map, (d) Gradient 

magnitude of Figure 1(b). 

2.2  Spotness and ridgeness features  

We adopt a newly devised spotness feature [14] and ridgeness feature for providing 

segmentation criteria for the next section. They are illustrated in Figure 3 (b) and (c). The 

spotness appears bright on compact structures such as yeast while showing dark boundaries 

on elongated structures such as pseudohyphae. Thus, the spotness feature is tailored to 

discriminating between yeast and pseudohyphae. The spotness image is a rotational 

morphological top-hat transform of an input image 𝐼, defined as 

 𝑝 = 𝐼 −max⁡{𝛾𝑖,𝐵(𝐼)}𝑖=0
𝐾−1,     (2) 
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where 𝛾𝑖,𝐵(𝐼):= 𝑅−𝜃𝑖(𝑅𝜃𝑖(𝐼) ○ 𝐵); 𝑅𝜃𝑖  is the rotation w.r.t. the image center by an angle 

𝜃𝑖 ≔ 𝑖
𝜋

𝐾
; K is the number of angles. The operator ○ denotes opening by a horizontal line 

structure element B of l-pixel long and 1-pixel wide. The second term in Eq. (2) suppresses 

spot structures of size less than l while preserving the interiors and augmenting the borders of 

filamentous structures of dimension longer than l, regardless of orientations. In our study, we 

set K = 36 and l = 20. 

 

The ridgeness feature is based on the multi-resolution enhancement filter response [5]. For an 

input image 𝐼, the Hessian matrix H is defined as 

 𝐻𝑖𝑗(𝑥, 𝜎) = 𝜎2𝐼(𝑥) ∗
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐺𝜎(𝑥), 𝑖, 𝑗 = 1, 2,     (3) 

where 𝐺𝜎(𝑥) is the 2D Gaussian of standard deviation 𝜎  and * denotes convolution. The 

eigenvalues of H are sorted, |𝜆1| ≤ |𝜆2|. The larger intensity variation takes place along the 

second eigenvector, corresponding to the direction across the intensity boundary. To enhance 

the elongated more than the spherical structures, a ridgeness indicator function is computed as 

 𝑅 = max
𝜎∈𝐷

𝑒
−
(𝜆2/𝜆1)

2

2𝛼2 (1 − 𝑒
−
√𝜆1

2+𝜆2
2

2𝛽2 ),     (4) 

where α and β are sensitivity parameters. The set 𝐷 is preset according to the expected range 

of filament width. R lies between 0 and 1. We set α = 2, β = 8, and 𝐷 = {1,2,3,4}. 

2.3  Segmentation of connected filaments  

The pseudohyphae tend to clump together in the developed state of Candida infection. In 

order to assess the infection by taking the geometrical and other measurements of individual 

pseudohypha, it is necessary to split and segment the clumped cells. Our segmentation 

algorithm comprises two steps: analysis and synthesis. In the first step, the binary mask of 

ridges is decomposed into distinct, thin ridge markers of descending rank-scale orders; each 

marker represents a disjoint cell axis (or central line). The synthesis of the rank-scale space 

restores the filamentous shapes while preventing the merging of the boundary contours of 

split ridge markers.  

 

The analysis procedure is described as follows. We first extract appropriate pseudohypha-like 

ridge markers by morphological thinning and pruning of the binarized yeast mask map, and 

then link the 1-pixel wide ridge elements to form chains of connected ridges. Finally, a 

morphological rank-space representation of pseudohypha-like filaments is generated by 

conditioned, scale-rank prioritized reconstruction and filtering based on significance metrics 

and thresholds derived from clinical relevance. 

 

The thinning algorithm removes pixels on the boundaries of connected components without 

breaking them apart. This operation is repeated until the image is stable, followed by 

morphological pruning that removes the end points of lines without removing small objects 

completely.  

 

The linking algorithm takes the thinned binary mask of ridges and ridge direction angle image 

(obtained from multi-resolution enhancement filter), and outputs a list of labeled ridge chains, 

as shown in Figure 4. The ridge-linking algorithm is outlined below: 
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1) Start a row-wise raster scanning of the binary ridge map from the upper left corner, 

i.e., the image origin. 

2) Follow the ridge with 8-connectivity to the end. Search through its neighbors within a 

preset distance for the points that are most compatible with respect to the ridge 

direction.  

3) A chain of ridges either terminates at a joint or branch to grow if its continuity is 

stronger than that of other chains connected to the same joint.    

4) Flip the tracked pixels, and track the rest of the ridge segment, if any, to the end of the 

ridge chain. 

5) Finally make sure that the starting point of each ridge chain is closer to the image 

origin than its end.  

 

         
                                        (a)                                                              (b) 

Figure 4. (a) Zoomed-in map of thinned ridges representing the axial lines of the filamentous 

pseudohyphae. (b) Segmented ridge central lines with random color-labeling. 

 
The morphological rank-space filament clump decomposition depends on the priority criteria 

that are devised specifically according to application. We elaborate in this paper the 

morphological multi-rank space with focus on segmenting pseudohyphae. This paradigm is 

applicable to general curved filament segmentation tasks.   

 

Three metrics are measured for each ridge marker: the length, average fluorescence intensity, 

and average ridgeness. The prioritizing algorithm performs as follows: 

 

1) Each ridge chain receives three separate scores {𝑡𝑖}𝑖=1,2,3, respectively, according to 

its index in the descending order of length, average fluorescent intensity, and average 

ridgeness.   

2) A total score 𝑡 = ∑ 𝑡𝑖
3
𝑖=1  is assigned to each ridge chain. The ridge chains are then 

sorted again in the ascending order based on their total scores.  

3) The first P ridge chains are selected from the final sorted list. The number P depends 

on a predefined maximum number of pseudohyphae. 

 

With these metrics, the long, bright ridges (or filaments) receive a higher priority than short, 

dark, non-filamentous ones (such as edges). We define the rank of a ridge to be its index of 

the descending total scores. In the rank-space, the originally crowded ridge markers are split 
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and redistributed into multiple rank subspaces. The markers with higher priority reside 

sparsely in the high-rank subspace.          

 

In the synthesis process, the exterior boundaries of the disjoint filamentous structures are 

reconstructed in a bottom-up manner through the rank-space. Starting from ridge marker(s) 

with the highest rank, we delineate the boundary contours of filaments that have the same 

rank s, then append them to the output sequence indexed with ranks (1, 2, … , 𝑠 − 1). During 

this process, contours do not merge. The algorithm is provided below. 

 

1) Compute the gradient magnitude 𝑔(𝑥) of the green channel image. An example is 

shown in Figure 3(d).  

2) Remove 1 pixel at the joint end of each line marker of rank s resulting in a trimmed 

ridge marker. Then compute a rank-based binary influence zone 𝐵𝑠(𝑥), which is given 

by the watershed transform of the distance map of the union of trimmed ridge markers 

at rank s and the already-segmented filament ribbons from rank 1 to 𝑠 − 1.  

3) At rank s, loop through each point along the curve marker, and search in the direction 

perpendicular to the curve, within the influence zone 𝐵𝑠(𝑥), to locate the maximum 

gradient magnitude (boundary) points on both sides of the curve marker. The 

boundary contour of the marker is described by a marker curve {𝑥𝑠,𝑖; 𝑖 = 1, … , 𝑙𝑠}, 
where 𝑥𝑠,𝑖 represents the row and column index of the ith ridge point along the central 

line of rank s; 𝑙𝑠 is the length of that marker. The variable radius is given by 

 𝑟̂𝑠,𝑖 = min {max
𝑟𝑖

{𝑔(𝑥𝑖
+)} , max

𝑟𝑖
{𝑔(𝑥𝑖

−)}},     (5) 

where  𝑥𝑖
± = 𝑥𝑖 ± 𝑟𝑖

(𝑥𝑖−𝑥𝑖−1)
⊥

|𝑥𝑖−𝑥𝑖−1|
; the symbol ⊥  denotes transverse of a vector. For 

simplicity the subscript s is omitted. The geometry is illustrated in Figure 5.  

4) Append {(𝑥𝑠,𝑖, 𝑟̂𝑠,𝑖); 𝑖 = 1,… , 𝑙𝑠} to the previously reconstructed contours. 

5) Compute the average width and minimum spotness for each segmented filament. The 

combination of length, average fluorescence intensity, average ridgeness, average 

width, and minimum spotness fully characterizes each segmented pseudohyphal 

suspect.  

6) Finally, identify the pseudohyphal filaments by means of length thresholding or width 

thresholding.     

 

Figure 5. Geometry of filament segmentation. 

3.  Results  

We evaluate the morphological rank-space segmentation method using two sets of images. In 

the first test, images of size 1024 by 1024 pixels were acquired using a Nikon inverted 

 

𝑥𝑖 𝑥𝑖+1 𝑥𝑖−1 

𝑥𝑖
− 

𝑟𝑖 
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microscope, charge-coupled device camera and 4X objective lens. The proposed method is 

applied to a selection of the images. The magnified results are shown in Figure 6.  

 

We compare our method to the marker-controlled watershed transform [9] and morphological 

multiscale decomposition (MSD) [11, 13]. Our approach outperforms the other methods in 

terms of preserving the integrality of long filaments and providing visually agreeable splitting 

of clumped cells. An average ribbon width is computed and adopted per pseudohypha display 

for easy visualization in comparison. The actual ribbon size distribution can be used for 

pseudohyphae quantification. The 15-scale MSD as applied to the binary ridge detection 

breaks the long continuous filament into multiple segments. The watershed transform fails 

with the same markers as used in our method. 

 

         
                                        (a)                                                              (b) 

         
                                        (c)                                                              (d) 

Figure 6. Method comparison. (a) Input image, (b) Marker based watershed, (c) 15-scale 

MSD, (d) Our method. 

 

In the second test, we apply the method to clinical vaginal samples from Discovery Life 

Sciences (DLS), Inc. The samples are prepared using Axon Pac and scanned using nCyte 

microscope. The image size is 2048 by 2048 pixels. One of the test images is shown in Figure 

7(a). In this fluorescent image, the pseudohyphae are highlighted in red, the nuclei (DNA) in 

green, the epithelial tissue cells in blue, and trich markers in white. Our analysis is performed 
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for the entire image. For detail viewing, magnified displays of the region in the red box are 

illustrated in Figures 7(b)-(d).  

 

A color-enhanced view is shown in Figure 7(c). In this view, different color encoding allows 

the pseudohyphae to be highlighted in green so that the viewer can see the ground truth more 

clearly. The blue dots are nuclei (DNA); the red are epithelial tissue cells; the white blobs are 

trich markers. In Figure 7(d), the pseudohyphae detected and segmented by our method are 

highlighted as white contours and overlaid on the original image, along with their count 

numbers. This provides key information for CV diagnosis. A comparison of Figure 7(d) with 

7(c) indicates that our algorithm achieves consistent performance.  

 

         
                                    (a)                                                                      (b) 

         
                                    (c)                                                                      (d) 

Figure 7. Test on DLS clinical vaginal sample scan. (a) 2048 by 2048 input image. (b) 

Magnified view of the red box in (a). The pseudohyphae are highlighted in red, nuclei (DNA) 

in green, epithelial cells in blue, and trich markers in white. (c) Color-enhanced view. The 

pseudohyphae are highlighted in green, nuclei (DNA) in blue, epithelial cells in red, and trich 

markers in white. (d) The pseudohyphae detected and segmented by our method are overlaid 

as white contours, along with their count numbers in red. 
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4.  Conclusions 

We have demonstrated a generic morphological rank-space decomposition technique for 

segmenting connected filamentous structures. This approach enables a user-specific interest 

priority and natural scales to be integrated in a novel segmentation paradigm. Our method is 

evaluated using clinical fluorescent microscopic images of vaginal samples. It is 

computationally efficient. The results are visually expected, consistent and promising. They 

provide clues for diagnosis and aid in quantitative Candida vaginitis screening. 
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Abstract 

This study was performed to improve the adhesiveness of a diamond-like carbon (DLC, a-C:H) 

multilayer film with an a-SiC interlayer. DLC (a-C: H) multilayer film with an a-SiC interlayer 

were deposited, and residual stresses the influence of the residual stresses on the adhesion of 

the film were investigated. The following conclusions can be drawn from the results presented 

herein: first, the a-SiC interlayer affects the DLC film structure. When the thickness of the 

interlayer t <= 0.25 m μm, the proportion of sp 3 bonds in the DLC film is approximately 

constant and about 10%. In the case of t> 0.25 μm, the proportion of sp3 bonds in the DLC film 

tends to decrease slightly. Second residual compressive stress exists in the DLC film, but 

residual tensile stress or compressive residual shrinkage stress exists in the a-SiC interlayer. 

Third, the residual stress of the DLC film is not due to the peeling failure of the film. Fourth,  

the residual tensile stress of the a-SiC interlayer does not cause the peeling failure of the film, 

but a part of the compressive residual stress causes the local buckling of the interlayer film and 

may also cause the peeling failure of the film. Finally, the strength and rigidity of the a-SiC 

interlayer dominate the adhesion between the a-SiC-DLC multilayer film and the substrate. 

Keywords: Diamond-like carbon film, Amorphous silicon carbide interlayer, Raman spectral 

analysis, I (D) / I (G) ratio, FWHM (G), residual stress  

 

Introduction 

Diamond-like carbon (DLC) is an amorphous carbon material containing a mixture of sp2 

hybridized graphite, and sp3 hybridized diamond. DLC exhibits good abrasion resistance and 

high chemical safety due to its diamond content and flatness/low counterbody aggressiveness 

due to the presence of graphite. Thus, DLC is expected to be useful as a coating material [1]. 

However, a large obstacle for applications of DLC film is its low adhesiveness to various 

substrates, which is caused by two main factors: intrinsic residual stress and stable carbon bonds 

[2]. Several reports [3] have detailed attempts to prevent layer separation and improve the 

adhesiveness of DLC thin layers by forming an interlayer of silicon carbide (SiC) with high 

substrate adhesiveness, and then covering the interlayer with the DLC. However, uncertainties 

remain regarding the optimal conditions for forming a SiC thin film and DLC/a-SiC stacked 

thin layer. In particular, no reports have been published to date regarding the effects of an a-

SiC thin film on the structure and film thickness. The goal of this study is to improve the 

adhesiveness of a DLC/a-SiC layered film formed by ion plating. In previous studies, the 

formation of a hydrogen-containing DLC (a-C: H) /a-SiC layered thin film was achieved, and 

the effects of an a-SiC interlayer on its structure and mechanical properties were determined. 
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Film Deposition and Evaluation Methods 

Experimental Apparatus for Film Deposition and Evaluation Methods  

The ion plating methodwas used to form the a-SiC interlayer and DLC/a-SiC stacked layer. A 

schematic of the experimental apparatus is shown in Fig. 1, consisting of a vacuum chamber, 

rotary pump, turbo molecular pump, high-voltage power device, gas supply system, negative 

electrode substrate, and positive electrode chamber inner wall. Using rotary and turbo molecular 

pumps, it was possible to reduce the pressure in the chamber to 1.0 x 10-3 Pa. We built a power 

device consisting of a variable pressure system/bridge rectifying circuit that was capable of 

outputting a maximum of 500 V. The gas supply system could supply argon (Ar), benzene 

(C6H6), and tetramethylsilane (TMS, Si (CH3)4). 

A stainless steel SUS304 (JIS G 4304, width 10 x length 30 x thickness 1.5 mm) substrate was 

pulverized and ultrasonically cleaned in an acetone solution. Subsequently, the substrate was 

fastened inside the chamber and the pressure inside the chamber was reduced using rotary and 

turbo molecular pumps. Inert gas was introduced into the chamber and the pressure adjusted. 

Voltage was applied to turn the inert gas into plasma and the substrate was washed by sputtering. 

To form the Si-C layer, tetramethylsilane was introduced into the chamber, turned to plasma, 

and deposited onto the substrate as an interlayer. For the DLC layer, benzene was introduced 

into the chamber, turned into plasma, and deposited on the substrate. 

In this experiment, argon/TMS (mixing ratio of 1:1) gas was introduced, an interlayer was 

formed for 0 to 3 min, and a-SiC films 0.05 to 0.45 µm in thickness were formed. Subsequently, 

argon and benzene (mixing ratio of 1:1) were introduced, and a DLC film with a thickness of 2 

µm was formed in 30 min. 

Chemical Structure Analysis on film 

Visible Raman spectral analysis is effective for analyzing the structure of DLC films [4-10]. 

Typical Raman spectra were observed for the prepared DLC when as shown in Fig. 2 [11]. 

From Fig. 2, the Raman spectrum of the DLC film could be divided into a D peak near 1350 

cm-1 arising from the stretching and contracting of the six membered ring, and a G peak 

between 1500 and 1600 cm-1 originating from the vibrations of the sp2 carbons on the chain 

and ring. The G-peak position and the FWHM (G) were used as parameters to qualitatively 

evaluate the degree of amorphous nature of the film (or crystallization). In addition, the 

hydrogen density of the film was evaluated using the photoluminescence (PL) of the Raman 

Fig. 1 Schematic diagram of the experimental setup for the ion plating 

method with introduction of reactive gas 

TMP: Turbo molecular pumps 

RP: Rotary pumps 
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curve. The baseline slope m [8] of the Raman spectrum and the ratio (log N/S) [9] of the 

photoluminescence component N to the strength of the Raman scattering at the G peak position 

were used as Raman parameters. In this study, a Raman spectrometer was used to evaluate the 

structure of the film with an oscillating Ar ion laser (514 nm), laser output of 1.0 mW, and an 

analysis range of 20 µm Φ. 

Calculation of residual stress in film  

The average residual stress σ i of a film can be calculated from the curvature of the substrate 

(substrate deformation method), that is, the radius of curvature using the following Stoney 

equation (1) [12]. 

 

 

 

 

 

Where, E s and ν s are the Young's modulus and Poisson's ratio of the substrate, t s and t F are 

the substrate thickness and thin film thickness, respectively, and R is the curvature radius of 

substrate warpage. The residual stress can be determined by measuring the curvature R of the 

specimen on which DLC is deposited. Here, assuming that the substrate has a convex shape 

upward, the curvature of the R is defined as positive, and the negative σ i indicates that the 

residual stress is a compressive stress. In order to measure R, a contact-type surface roughness 

tester was used.  

In this research, the DLC film deposited is a film of two layers from the a-SiC intermediate 

layer and the DLC film, and the formula (1) cannot calculate the residual stress of each layer. 

Therefore, the residual stress was calculated using the residual stress calculation equation (2) 

corresponding to the film of the two-layer structure proposed by Nakamura et al. [13]. 

 

 

 

 

 

where, σ i is a residual stress of the intermediate layer, and σ F is a residual stress of the 

outermost layer. Therefore, the residual stress of the intermediate layer can be calculated by 

equation (1), the radius of curvature of the substrate of the thin film having a two-layer structure 

can be measured, and the residual stress of the outermost layer can be calculated using equation 

(2). In the case of the test piece with only the a-SiC intermediate layer, there was a case that it 

(1) σ𝑖 = −
𝐸𝑠𝑡𝑠

2

3(1 − 𝜈𝑠)𝑡𝐹
∙
1

𝑅
 

(2) 𝜎𝐹 = 𝜎𝑖 ∙
𝑡𝑖
𝑡𝐹
−

𝐸𝑆𝑡𝑠
2

3(1 − 𝜈𝑠)𝑡𝐹
∙
1

𝑅
 

Fig. 2 Raman peak obtained for the DLC film [11] 
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did not have a clear arc shape because the deformation of the substrate was partially waved. 

The stress value was set to zero for such specimens.  

Evaluation of adhesion between film and substrate 

During the film deposition, a residual stress generated inside the film reduces the adhesion 

between the film and the substrate, and in some cases, the film peels off the substrate. In this 

study, the adverse effect of the residual tensile stress on film adhesion is evaluated by a stress 

intensity factor. On the other hand, the adverse effect of the compressive residual stress is 

evaluated by a buckling load. Assuming that the mode of a crack surface displacement due to 

tensile residual stress is the opening mode, the stress intensity factor K I is expressed by 

equation (3) [14]. 

 

 

 

 

where, σ is an average stress in the film, and a is a length of the latent crack in the film.  

In the a-SiC intermediate layer, it is an internal penetration crack with the length a = 1 / 2t a-SiC, 

and in the DLC film, it is a surface penetration crack with the length a = t DLC. If the stress 

intensity factor is large, the risk of film peeling due to crack growth due to the tensile stress 

increases. On the other hand, even if a compressive stress is applied to the crack surface, crack 

propagation does not occur, so the stress intensity factor in that case is set to zero. However, 

the compressive stress may cause the film to buckle and also cause the film to peel off the 

substrate.  

The Euler buckling load Pc of a beam fixed at both ends is expressed by the equation (4) [15].  

 

 

 

 

 

Where, E is an elasticity modulus, I is a second moment of area, and l is a length of the beam. 

In this study, the elastic modulus of a-SiC interlayer and DLC film were set to 80 GPa and 100 

GPa, respectively. In addition, l was 10 μm in consideration of the surface roughness of the 

substrate. As the compressive load on the cross section of the film due to residual the 

compressive stress approaches the Euler buckling load, buckling of the film is more likely to 

occur.  

Results and Discussion 

Changes in chemical structure 

Generally, it is possible to gain information regarding the structure of the film and chemical 

bonding of the carbon atoms from the position of the G-band, the behavior of the I (D)/I (G), 

and FWHM(G), which can be obtained from the results of the Raman spectrum. Ferrari et al. 

[6] developed a model wherein upon introduction of defects into graphite to create disorder, an 

amorphization trajectory can be classified into three stages according to strength (Fig. 3). 

Specifically, from the monocrystalline to nanocrystal graphite, this model describes the series 

of disordering processes, with a third stage leading to the formation of tetrahedral amorphous 

carbon (ta-C) with sp3 bonding, via amorphous carbon (a-C), which contains mainly sp2 bonds. 

These structural and chemical bonding state changes can be observed in the visible (514 nm) 

Raman spectrum. The G-peak is a parameter depends on the length of the sp2 bonds between 

the carbon atoms in the DLC film, and shifts to higher frequencies as the bond lengths shorten. 

𝐾I = σ  𝜋𝑎 (3) 

𝑃c =
4𝜋2𝐸𝐼

𝑙2
 (4) 
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Therefore, the DLC film where the G-peak is located at high frequency indicates a higher degree 

of graphite crystallization. In contrast, the FWHM (G) indicates the degree of amorphous 

character of the graphite. When various bond lengths exist, as in DLC films with marked 

amorphous character, the G peak appears over a broad range. Therefore, the G peak becomes 

broadens for the DLC film overall, and, as a result, the FWHM (G) increases. The G peak 

position shifts to higher frequencies as the amorphous character of the film increases. Generally, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 I (D) / I (G) ratio and FWHM (G) for each interlayer thickness 
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amorphous films contain a high degree of sp3 bonds, which is positively correlated with FWHM 

(G) and hardness [7]. This model of structural changes from stages 1 to 3 shown in Fig. 3 was 

studied by correlation with the Raman spectra of the DLC films.  

Figs. 4 and 5 respectively show I (D) / I (G) ratio, FWHM (G) and Raman shift at G peak 

position values for each interlayer thickness. When the intermediate layer is thin (t <= 0.25), I 

(D) / I (G), FWHM (G) and Raman shifts ω at G peak positions are almost constant, with some 

variations. As the intermediate layer becomes thicker, it tends to increase in I (D) / I (G) and 
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Fig. 6 Changes of residual stress in a-SiC intermediate film and DLC film. 
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Raman shifts ω, but decreases in FWHM (G). Compared to FIG. 3, the proportion of sp3 bonds 

in the DLC film is approximately 10%.  

Changes in residual stress in a-SiC fime and DLC film  

Fig.6 shows the residual stress σ a-SiC in the a-SiC thin film and the residual stress σ DLC in 

the DLC thin film by the intermediate layer thickness. In any thickness of the a-SiC interlayer, 

the intermediate thin film had a considerably higher residual stress than the DLC thin film.  

The stress intensity factor in the residual stress field is shown in Fig.7. Since no tensile stress 

is applied to the DLC film, the stress intensity factor is zero. Therefore, even if there is a latent  

Fig. 7 Changes of residual stress in a-SiC intermediate film and DLC film 
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surface penetration crack of the DLC film, the crack does not become the origin of the peel 

fracture of the film. On the other hand, although the a-SiC intermediate thin film has a larger 

tensile stress than the DLC film, the maximum stress intensity factor does not exceed the 

fracture toughness value, so even if there is a latent penetration crack in the film, the crack does 

not progress.  

Figures 8 and 9 show the Euler buckling load and compressive residual stress of both films 

applied to the cross section of the film. In the case of a DLC film, no buckling occurs because 

the compressive load due to residual stress is much smaller than the buckling load.  

On the other hand, at t a-SiC = 0.05, 0.2, 0.25, 0.4 μm, compressive residual stress is applied to 

the a-SiC intermediate thin film, and local buckling of the film does not occur only at t = 0.4 

μm, and in other cases, local buckling of the membrane occurs.  

In the experimental results of film depositions, peeling failure of the film was confirmed only 

at t = 0.05 μm. From the results, in the case of t = 0.05, the buckling of the whole film was 

caused by the local buckling of the interlayer. On the other hand, in the case of t = 0.2 and 0.25, 

local buckling occurred in the film but it did not reach the entire film.  

From the above, the strength and rigidity of the a-SiC interlayer greatly affect the adhesion of 

the multilayer film than the DLC film. The reduction of the residual stress of the a-SiC interlayer 

can improve the film adhesion. 

In the future, using quantum chemical calculation program Gaussian and finite element method 

program MSC. Marc, we will investigate the mechanism of interfacial peeling failure of the 

film and find the optimum deposition conditions for improving the adhesion of the film. 

Conclusion 

DLC (a-C: H) multilayer film with an a-SiC interlayer were deposited, and residual stresses the 

influence of the residual stresses on the adhesion of the film were investigated. The following 

conclusions can be drawn from the results presented herein: 

 (1) The thickness of the a-SiC interlayer affects the DLC film structure. When the thickness of 

the interlayer t a-SiC <= 0.25 m μm, the proportion of sp 3 bonds in the DLC film is approximately 

Fig. 9 Euler buckling loads and compressive loads in a-SiC film 
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constant and about 10%. In the case of t a-SiC > 0.25 μm, the proportion of sp3 bonds in the DLC 

film tends to decrease slightly. 

(2) In the film deposition process, residual compressive stress exists in the DLC film, but 

residual tensile stress or compressive residual shrinkage stress exists in the a-SiC interlayer. 

(3) The residual stress of the DLC film is not due to the peeling failure of the film. 

(4) The residual tensile stress of the a-SiC interlayer does not cause the peeling failure of the 

film, but a part of the compressive residual stress causes the local buckling of the interlayer film 

and may also cause the peeling failure of the film. 

(5) The strength and rigidity of the a-SiC interlayer dominate the adhesion between the a-SiC-

DLC multilayer film and the substrate. 
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ABSTRACT   
 
Ship energy-saving has always been one of the performance improvements that researchers are trying to improve. It is 
an effective energy-saving way to maintain a certain chord length at the tip of the propeller blade and install an arc end 
plate at the tip of the blade. With the development of CFD(computational fluid dynamics), many researchers combine 
the design and research of energy-saving devices with the CFD methods. This paper calculated the hydrodynamic of 
propeller with endplates based on OpenFOAM, the flow field and models are processed by sliding grid technology. By 
comparing the open water characteristics and thrust performance of standard MP687 propeller and improved propeller, 
it is found that the propeller with endplates can maintain a larger circulation strength and prevent the transverse 
disturbance at the end of the blade; at the same time, it can reduce the cavitation zone at the blade of the propeller and 
play the role of noise reduction, erosion reduction and vibration reduction; besides, it can also eliminate tip vortices, 
achieve the effect of energy-saving. 
 
KEY WORDS:  endplates at blade tips; energy-saving; sliding mesh; OpenFOAM 
 
 
INTRODUCTION 
 
For the high-energy-consuming shipping industry, researchers pay more and more attention to the "Green 
Ship" design, which can reduce energy consumption and cost. Among all the methods of energy saving and 
fuel consumption reduction, the improvement of propeller and propeller is the most effective. At present, 
most of the energy-saving propulsion technologies focus on improving the propeller inlet, improving the 
pressure on the blade, reducing the friction force on the blade surface[1, 2], so as to make more use of the 
energy that can not be used and improve the transmission shafting. Although many propulsion devices have 
been developed, there are still many problems affecting the efficiency of propulsion, but this shows that 
energy-saving propulsion devices still have great potential for development. 
 
Early researchers mainly carried out research on energy-saving devices through ship model test or theoretical 
research. In recent years, the numerical simulation method for simulating fluid flow by means of computer 
has gradually emerged. It can greatly reduce the design time and cost, so it has attracted the attention of many 
scholars. Current numerical simulation methods mostly use viscous flow method. Viscous flow numerical 
simulation methods can be divided into three categories: DNS (direct turbulence numerical simulation), 
RANS (Reynolds average N-S equation) and LES (large eddy numerical simulation). DNS method is a direct 
discrete solution to the N-S model, which can accurately obtain the flow field information; RANS method 
can be solved by a smaller calculation process; LES method can save the calculation process by filtering 
small vortices and only calculating large vortices, and the results obtained are more accurate than RANS 
method. At present, many scholars [3] are continually studying and improving the viscous flow simulation 
methods.Chang [4] et al. simulated the cavitation flow around the propeller by RANS method, and analyzed 
the image results of cavitation on the suction surface of the propeller under the numerical simulation, which 
verified the feasibility of RANS simulation. Peters [5] et al. successfully simulated the cavitation flow around 
a marine propeller using a RANS-based solver and Volume Fluid (VOF) method. 
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Combining with the numerical simulation method, many energy-saving propellers have been designed and 
studied by researchers. Berger et al. [6] studied the optimal design process of hub cap fins by using CFD 
methods. Takafumi Kawamura et al. [7] used CFD methods to study the difference of energy-saving effect of 
hubcap fins on ship models and real-scale ships. Anirban et al. [8] discussed the influence of scale effect on 
hydrodynamic characteristics of ducted propeller based on CFD methods. Fahri [9] used commercial software 
to study the front catheter installed on chemical tankers. Sunho [10]et al. used commercial software STAR-
CCM+ to study the wake field of the pre-rotating stator in the self-propelled sailing process of KVLCC2 in 
real ship scale. Based on OpenFOAM open source platform, the numerical simulation of MP687 propeller 
with end plates and standard MP687 propeller is carried out in open water. By comparing the force and 
vorticity changes of the propeller before and after adding endplates at blade tips, the energy-saving 
mechanism and energy-saving effect are analyzed. 
 
 
NUMERICAL METHOD 
 
Governing Equations 
The governing equation of numerical simulation is incompressible fluid continuum equation. As for RANS 
turbulence model, the equations are presented below. 
 

( )
0i

i

u
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ρρ ∂∂ + =
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In the above formulas, ui and uj are the i and j components of velocity, P is the hydrostatic pressure, μ is the 
hydrodynamic viscous coefficient.  −𝜌𝑢௜ᇱ𝑢௝ᇱ  is the Reynolds stress term. Reynolds stress term ensures the closure of RANS equation by 
turbulence model. 
 
SST k-omega turbulence model 
In SST k-omega model, k-omega model is used near the wall and k-epsilon model is used in the far field. At 
present, it is one of the models with high usability, which is mainly used to simulate Reynolds stress. The 
main equations for this model are as follows. 
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The decoupling of velocity and pressure adopts PIMPLE algorithm, which combines the advantages of PISO 
algorithm and SIMPLE algorithm. SIMPLE algorithm is used in the time step, and PISO algorithm is used 
in the time step, so that the time step can be increased properly on the premise of ensuring stability. 
 
Hydrodynamic Characteristics of Propellers 
The evaluation of propeller and improved propeller can be considered from thrust coefficient, torque 
coefficient and propulsion efficiency. The propeller's speed coefficient is J, thrust coefficient is KT, torque 
coefficient is KQ, and propulsion efficiency is η0. 
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ρ is density, n is speed of propeller, D is diameter of propeller. 
Density is 998.2kg/m3, and the kinetic viscosity coefficient of water is ν=1.106×10-6 m2/s. 
 
 
CASE DESCRIPTION 
 
Computing Model  
The propeller used in this paper is MP687 propeller. The improved propeller is MP687 propeller with 
endplates at blade tips. The specific parameters of the propeller and the improved propeller are shown in 
Tables 1 and 2. 
 

Table 1. MP687 propeller model parameters  

MP687 

Diameter (m) D 0.203 

Hub ratio rh/R 0.180 

Pitch ratio P0.7/D 0.750 

Disk ratio Ae/Ao 0.500 

Trim angle（deg） θ 5 

Number of propeller blades Z 5 
 

Table 2. MP687 propeller model parameters 
endplates 

Extend (m) a 0.09 

Intermediate (deg) α 87 

Height (m) b 0.03 

Number of propeller blades Z 5 
 
The geometric model of MP687 propeller and MP687 propeller with endplates at blade tips is built by using 
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commercial software CATIA according to the spatial coordinates of propeller and hub cap fin, as shown in 
Figure 1 and Figure 2. 
 

 
Fig. 1 MP687 propeller model. 

 
 

 
Fig. 2 MP687 propeller model with endplates at blade tips. 

 
Mesh Generation 
Arbitrary Mesh Interface (AMI) is a sliding mesh method, which can be used to solve unsteady flow problems. 
The computational domain is divided into two sub-regions. The propeller is completely enveloped in a 
cylindrical rotating sub-region, as shown in Fig. 3. Because the geometry of propeller blade is complex and 
has irregular surface, unstructured mesh is used in calculation. The mesh generation is shown in Fig. 4 and 
Fig. 5, and the total mesh is about 4 million. 
 

 
Fig. 3 Computational domain. 

 

 
Fig. 4 Computational grid of MP687 propeller. 
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Fig. 5 Computational grid of MP687 propeller with endplates. 

 
Accuracy Verification of AMI Method 
In order to verify the accuracy of the AMI method in dealing with rotating grids, the open water performance 
of propeller is simulated and compared with the experimental data provided by NMRI. The calculation of 
open water propeller MP687 is performed by pimpleDyMFoam solver in OpenFOAM. During the calculation, 
the speed of the propeller is fixed and RPS=20 is maintained. 
 

 
Fig. 6 Open Water Characteristic Calculating Curve of Propeller. 

 
The numerical simulation is carried out under the condition of J=0.2, J=0.3, J=0.4, J=0.5. In Fig. 6, the error 
between the open water characteristics of propeller calculated by AMI method and the test results is within a 
small range, which verifies the accuracy and reliability of the AMI method in the calculation of rotating mesh. 
 
 
RESULT AND DISSCUSIONS 
 
Analysis and comparison of hydrodynamic characteristics 
The speed of the propeller remains unchanged at 20r/s, and J is adjusted by changing the flow velocity. The 
hydrodynamic performance of propeller with and without endplates under J=0.2 is compared in Table 3. The 
thrust of the propeller itself increases significantly, the torque decreases significantly, and the propulsion 
efficiency of the whole system improves significantly. 
 

Table 3. comparison of hydrodynamic characteristics (J=0.2) 

 J Thrust(N) Torque(N*m) KT 10KQ η0 

Without 

endplates 
0.2 195.380 4.848 0.2881 0.3522  0.2604 

With 

endplates 
0.2 198.831 4.763 0.2932 0.3460 0.2697 
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Force Analysis of Propeller 
The surface pressure of two kinds of propellers are analyzed and the pressure distribution maps are drawn, 
as shown in Fig. 7 and Fig. 8. By comparing Fig. 7 with Fig. 8, it is not difficult to find that in 7, the high 
pressure area at the guide edge of the blade is obviously larger than that of the standard propeller due to the 
addition of endplates, which means that the pressure difference between the front and rear of the propeller 
will increase, thus leading to the increase of the propeller thrust. The reason for this phenomenon is related 
to the addition of endplates, which can increase the high pressure area and improve efficiency. 
 

 
Fig. 7 Surface Pressure Diagram of MP687 Propeller with Endplates. 

 

 
Fig. 8 Surface Pressure Diagram of MP687 Propeller. 

 
Contrast of Vortex Ejection 
The vortex spray charts of the two models are shown as fellows. It is easy to find that the improved propeller 
tail vorticity is more uniform, and because the end plate can eliminate the tip vorticity, thus eliminating 
unnecessary energy consumption, greatly improving the energy saving and propulsion capacity of the 
propeller. 
 

 
Fig. 9 Vortex Spray Chart of MP687 Propeller with Endplates. 

 

 
Fig. 10 Vortex Spray Chart of MP687 Propeller. 

 
 
CONCLUSION AND PROSPECT 
 
(1) Using solver under OpenFOAM platform, based on RANS equation, adding A turbulence model and 
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combining with the AMI meshing method is an effective numerical simulation approach for propeller, 
which can achieve good accuracy. An effective way to predict propeller performance and design energy-
saving device is discussed for researcher to carry out numerical simulation of propeller in this paper. 

(2) The improvement of propeller propulsion efficiency by endplates is mainly based on two aspects: on the 
one hand, endplates can increase the high pressure area and increase the pressure difference between 
front and rear blades. On the other hand, the endplates can reduce the tip vorticity and eliminate the tip 
vorticity, so as to improve the propulsion efficiency of the propeller. 

(3) In the follow-up work, the influence of endplates on wake field of propeller can be further studied. 
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Abstract 
In this paper we carry out an H-adaptive strategy for acoustic problems with the Edge-based 
smoothed point interpolation method. The key features of the adaptive procedure are an error 
indicator, H-type refinement strategy, local critical values, Delaunay mesh generation and 
ES-PIM analysis. The computations are performed on meshes with three-node triangles are 
adapted to the solution by locally changing element sizes, taking advantage of the background 
mesh which is convenient to discrete and conducts numerical simulation for any complicated 
model. The error indicator has been performed considering the maximum values of velocity 
difference among the vertexes in each cell. The adaptive meshes are then obtained through 
global mesh regeneration using a Delaunay mesh generator. The adaptive analysis is applied 
to 2D acoustic frequency response analysis, especially for expansion chamber. Numerical 
examples are shown to illustrate the properties of the error indicator technique and the 
procedure of the proposed adaptive strategy. The results highlight the efficiency of adaptive 
analysis, which reduces computation consumption significantly, and the results also have 
shown the validity and efficiency of the proposed error indicator.  
Keywords: Adaptive analysis; Error indicator; H-refinement; Point interpolation method; 
Acoustic 

Introduction 

Numerical computation has been widely applied for scientific research and solving practical 
engineering problems in many fields. A large number of research results show that the 
adaptive analysis is an effective way to improve the efficiency and precision of the numerical 
calculation[1]-[7]. Through a lot of theoretical and numerical analysis, the ES-PIM can reduce 
the softening effects and give a quite close-to-exact stiffness by using the edge-based strain 
smoothing operation [8]-[12],it is found that ES-PIM is more suitable for solving acoustic 
problems, and a series of innovative research results have been obtained [13]-[14]. He and Liu 
applied the generalized gradient smoothing technique to the field of acoustic numerical 
computation [15]-[16]. 
Adaptive analysis is a reliable way to improve the accuracy and efficiency of acoustic 
problems, and error estimation with high reliability is also a very important factor in the study 
of acoustic adaptive analysis.In summary, ES-PIM have many aforementioned features which 
make it become an ideal candidate for adaptive analyses.  
In the following section, we describe the implementation of the adaptive analysis based on 
ES-PIM in acoustic problems. Our adaptive strategy contains two main issues:error indicator 
and refinement strategy.The proposed adaptive procedure construct an error indicator 
combining refinement strategy and remeshing technique with the available open source 
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packages.  

Adaptive scheme 

1. Error indicator 
Error indicator plays a crucial role in adaptive procedure.It is able to accurately detect the 
regions for mesh refinement. According to the characteristics of acoustic problems, a new 
error indicator has been designed considering the maximum values of velocity difference 
among the vertexes in each cell.Generally, the high error region is consistent with the area of 
steep gradient velocity.  
For each three-node triangular element, we can obtain the difference value of velocity 
components between two different nodes, namely node 1 and node 2 by the following 
equation.  

(12) (1) (2)

(12) (1) (2)

xx xx xx

yy yy yy

v v v

v v v

∆ = −

∆ = −
     (1) 

Eq(2) means the absolute value of the difference of velocity components between any two 
nodes in the same element is modulo. 

2 2= xx yyE v v∆ + ∆      (2) 

 Substituting (1) into (2), we can obtain the following Eq(3). 

( ) ( ) 2 22 2(12) (12) (1) (2) (1) (2)
12 = xx yy xx xx yy yyE v v v v v v∆ + ∆ = − + −      (3) 

In the same way, we can calculate 13E  and 23E  for every two nodes in a cell. Finally for 

every background cell, we use the maximum modulo values of all nodes as the error indicator 

of the three-node triangular cell. Thus the error indicator iE  for the ith cell can be obtained 

as following equation. 

( )12 23 13, ,iE Max E E E=      (4) 

2. Refinement strategy 
In this section, we will describe a very simple and rapid method to implement refinement. As 
shown in Fig 1, white node denotes initial node, black node denotes new node which is 
inserted into the high error area, three additional black nodes will be inserted at the midpoints 
of the three edges and the original cell will be further divided into four triangles. 

 
                          Initial nodes   Added new nodes  

Figure 1. Illustration of the h-refinement strategy for three-node triangle 
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Local critical values , refinement rate and Delaunay mesh generator used in this part are 
similar to the counter part of adaptive ES-PIM on solid mechanics,details can be found in the 
previous work[2]-[5]. 

Numerical examples 

（1）Case1: Two dimensional cavity 

 

Figure 2. Geometry,boundary conditions of the two dimensional cavity 

The first example is a room of length L=5 meters and width W=3 meters, which is considered 
as a two dimensional cavity.As shown in Fig 2, the acoustic excitation is at the top end of the 

room by a vibrating panel with velocity 0 1 /m sυ = .On the other boundaries, the normal 

velocity is set to be zero. Fluid density in cavity is 3
0 1.225 /kg mρ = , the sound travels speed 

in this medium is 0 340 /c m s= . 

 
Figure 3. Nodes distribution and corresponding meshes of each adaptive step 

for two dimensional cavity at 40Hz 
We studied this problem using 40Hz frequency, the ES-PIM adaptive analysis started from 
quite coarse mesh of 269 nodes and is performed for 4 steps with the refinement rate 

v=v0 
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0.1η = .Four uniform refinement models with 269, 820, 2001 and 2910 nodes are studied 

respectively. The nodal distributions and corresponding meshes for 4 adaptive steps are shown 
in Fig. 3. The figure illustrates that our error indicator can accurately catch the steep gradient 
of velocity, the dense nodes are inserted near the top end of the room where the velocity 
gradient is high.  

  
Adaptive first mesh:  269 nodes 

  
Adaptive final mesh :  615 nodes 

  
Uniform final mesh:  2910 nodes 

  
Reference solution mesh: 13123 nodes 

Figure 4. Comparison of velocity distributions at the first and final stage for 
the problem of two dimensional cavity at 40Hz 

Fig. 4 compares the contours of velocity components at the first and final adaptive mesh with 
the final uniform mesh and FEM reference solution mesh results of 13123 uniformly 
distributed nodes. It clearly indicates that the velocity contours at the final stage with adaptive 
mesh(only 615 nodes) and uniform mesh(2910 nodes) are in good agreement with the 
reference solution results obtained using a very fine mesh.  
（2）Case2: Expansion chamber 
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Figure 5. Geometry,boundary conditions of expansion chamber 

The second problem is a 2D expansion chamber,whose geometry and boundary conditions are 
shown in Fig.5. Acoustic excitation is presented at the left side by a vibrating panel with 
velocity 0 0.1 /m sυ = . In order to better simulate the real situation,the boundary condition of 
the equation /q n jkq∂ ∂ =  is presented at the right side, meanwhile, at the other side the 
normal boundary velocity is set to be zero. Fluid density in this model is 

3
0 1.225 /kg mρ = ,the sound travels speed in this medium is 0 340 /c m s= . 

 
Figure 6. Nodes distributions at each adaptive step for the problem of 
expansion chamber  

In this example, we studied expansion chamber using frequency of excitation is 200Hz. The 
adaptive procedure starts from an initial mesh of 300 nodes, and is performed for 4 steps with 

0.1η = . The adaptive meshes for each step are shown in Fig. 6. One can notice that the 
proposed error indicator effectively detects all the regions for high velocity gradient and 
implements the refinement of nodes. For comparison, four models of uniformly refined 
models with 300, 1177, 2658 and 4076 nodes are also adopted to study this problem. 

  
Adaptive first mesh:  300 nodes 

0v v=  
/q n jkq∂ ∂ =
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Adaptive final mesh:  716 nodes 

  
Reference solution mesh:  39305 nodes 

Figure 7. Comparison of velocity distributions at the first and final stage for 
the problem of expansion chamber at 200Hz 

In Fig. 7 we compare the contours of velocity components at the first and final adaptive mesh 
with the FEM reference solution mesh results obtained using a very fine mesh. It can be seen 
that the velocity contours at the final stage with adaptive mesh (only contains 716 nodes) is in 
good agreement with the reference solution mesh of 39305 uniformly distributed nodes. 

Conclusions 
In this paper, an adaptive procedure using ES-PIM is proposed for acoustic problem. Our 
adaptive strategy uses initial meshes and remeshing which are implemented by the open 
source package TRIANGLE, FEM reference solution results using the software SYSNOISE. 
Numerical problems demonstrated that the proposed error indicator is able to detect the 
location steep gradient of velocity, h-refinement is performed by adding in new nodes. 
According to the practise in the research about 2D problems, which provides experience for 
extending to 3D problems in future.  
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