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WELCOME MESSAGE

Dear Colleagues and Friends,

On behalf of the organising committees, we are delighted to welcome you to the 10" Conference on
Computational Methods (ICCM2019) at Singapore. The ICCM conference series is an international
conference that provides an international forum for exchange of ideas on recent advances in areas related
to computational methods, including computational mechanics, numerical modelling & simulation of
manmade or natural systems, as well as their applications in engineering and sciences. It will
accommodate presentations on a wide range of topics to facilitate inter-disciplinary exchange of ideas in
science, engineering and related disciplines, and foster various types of academic collaborations in the
internationally. All papers accepted for publication in the proceedings have been peer reviewed. Papers
may also be selected and invited to be developed into a full journal paper for publication in special issues
of some peer-reviewed journals.

The ICCM (International Conference on Computational Methods) conference series were originated in
Singapore in 2004 by Professor GR Liu, followed by ICCM2007 at Hiroshima, Japan, ICCM2010 at
Zhangjiajie, China, ICCM2012 at Gold Coast, Australia, ICCM2014 at Cambridge, England, ICCM2015
at Auckland, New Zealand, ICCM2016 at Berkeley, CA, USA, ICCM2017 at Guilin, Guangxi, China,
ICCM2018 at Rome, Italy. Now ICCM2019 comes back to Singapore for celebrating its 10" event.

The ICCM2019 conference program includes over 330 presentations from more than 20 countries and
regions scheduled in 47 technical sessions. There will be 3 Plenary Lectures, 8 Thematic Plenary Lectures,
many Keynote Lectures and Invited Lectures at the conference. The conference sessions will cover a broad
range of topics related to computational methods, including formulation theory, computational techniques,
machine learning, modelling techniques and procedures, materials, deformation processing, materials
removal processes, processing of new and advanced materials, welding and joining, surface engineering
and other related processes.

We would like to express our gratitude to all the members of the Local Organizing Committee,
International Scientific Committee, and the student helpers who have contributed significantly in this
conference. Our sincere thanks and appreciation go to some international reviewers for their prompt
review reports on the submitted abstracts and papers. Our appreciation goes also to all the Mini-
Symposium Organizers for their effort and contribution in the organization. Special thanks go to Dr.
George Xu, the secretary general, for handling a lot of tedious work, Prof Li Hua for the great support by
organizing student helpers.

We hope that this conference will provide a great venue of presenting and exchanging information for
your scientific work. We wish all of you have a great time in this beautiful garden city Singapore. Finally,
we would like to thank you for your contribution to the ICCM2019 conference. We are looking forward
to your participation and continued engagement for the future ICCM conferences.

Dr. Fangsen Cui Professor Gui-Rong Liu
Conference Chairman Honorary Conference Chairman
Institute of High Performance Computing, A*STAR University of Cincinnati
Singapore Association for Computational Mechanics, Singapore USA

Dr. George Xu Xiangguo

Conference Secretary

Institute of High Performance Computing, A*STAR

Singapore Association for Computational Mechanics, Singapore
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A hybrid reconstructed discontinuous Galerkin method for incompressible
flows on arbitrary grids
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Abstract

The discontinuous Galerkin (DG) methods have attained increasing popularity for solving the
incompressible Navier-Stokes (INS) equations in recent years. However, the DG methods
have their own weakness due to the high computational costs and storage requirements. In
order to tackle this problem, in this paper, a hybrid least-squares reconstruction DG (rDG)
method, namely P1P2(HLST), is presented to obtain a quadratic polynomial solution from the
underlying linear DG solution by use of a hybrid recovery and reconstruction strategy. This
hybrid rDG method combines the simplicity of the reconstruction-based DG method and the
accuracy of the recovery-based DG method, and has the desired property of 2-exactness
which is violated by the original least-squares rDG method. The inviscid term of the INS
equations, which is split into the nonlinear convective term and the linear Stokes operator, is
discretized by using a simplified artificial compressibility flux. More specially, the nonlinear
convective term is discretized in divergency form by using the local Lax-Friedrichs flux,
while the Stokes operator is discretized by using the artificial compressibility flux which is
provided by the exact solution of a Riemann problem associated with a local artificial
compressibility perturbation of the Stokes system. The discretization of the viscous term
follows the simple direct DG (DDG) method. A number of incompressible flow problems, in
both steady and unsteady forms, for a variety flow conditions are computed to numerically
assess the spatial order of convergence of the PiP>(HLSr) method, which demonstrate its
ability to achieve the designed optimal 3rd-order of accuracy at a significantly reduced
computational costs.

Keywords: Incompressible Navier-Stokes equations, reconstructed methods, discontinuous
Galerkin method, artificial compressibility, arbitrary grids

Numerical results
Kovasznay problem

The analytic solution for the 2D INS equations was derived by Kovasznay. The analytical
expression for the velocity and the pressure is

u(x, y) =1—e* cos(2ry),

V(X,y) = %e“ sin(2ry),

1,
pP(X,y) = ¢
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Here, iz%—"RTeJAﬁZ. The computational domain is Q:(—%,g)x(O,Z) with

prescribed Dirichlet boundary conditions on 6Q . The Reynolds number is Re=10 and the
artificial compressibility parameter is ¢?=1.0.

The comparisons among the numerical results obtained by the DG(P1), DG(P2) and
P1P2(HLSr) methods are presented in Tab.1. It can be seen that the P1P>(HLSr) method, as
expected, adding one order of accuracy to the underlying DG(P1) method and even having
higher order of accuracy for the pressure than the DG(P2) method. Although the DG(P>)
method does yield a slightly more accurate solution than the P1P>(HLSr) method at the same
grid resolution, however, it is obtained at the cost of more number of the degrees of freedom
which leads to a dramatic increase of the computational cost. The detailed convergence
history, which contains the number of iteration steps and the CPU time (s) to reduce the
residual by 8 orders of magnitude are presented in Tab.2.

Tabl. Convergence results for the Kovasznay problem.

T €ull2 €nl2 €v.ull2
Grdgize Ne.DOEs “En"Ior Order ”Ei'1|'|or Order HErrol| Order
DG(Py)
8x8 192 3.19e-1 5.02e-1 1.41e-0
16x16 768 78%-2 202 125e-1 201 6.86e-1 1.04
3232 3,072 1.92e-2 204 3422 187 240e-1 152
64 x 64 12,288 456e-3 207 9923 179 7.00e-2 1.78
DG(P)
8x8 384 6.00e-2 6.29¢-2 4.48e-1
16x16 1536 735e-3 3.03 1.18e-2 241 9.25e-2 225
32:% 32 6,144 9.21e-4 3.00 237e-3 232 195e-2 225
64 x 64 24,576 1.26e-4 287 5.15e-4 220 440e-3 215
P, P,(HLST)
8x8 192 1.39%e-1 2.84e-1 8.65e-1
16x16 768 1.71e-2  3.02 429%-2 273 200e-1 211
32x32 3,072 208e-3 3.04 6.63e-3 277 348e-2 257
64 x 64 12,288 224e-4 322 1.02e-3 270 549e-3 2.66
Tab.2 Convergence history for the Kovasznay problem.
Crid size Iteration step CPU time (s)
DG(P]) DG(Pz) P] Pz(HLSr) DG(Pl) DG(Pz) P1 Pz(HLSr)
8x8 95 95 93 9.65 28.08 3.63
16 x16 127 126 126 23.71 103.13 12.25
323432 159 204 156 84.40 557.36 84.91
64 x 64 201 250 190 679.12 5289.36 785.05

Lid-driven cavity flow

The lid-driven cavity flow has been widely used as a validation case for numerical method of
the INS equations. The problem has simple geometry and boundary conditions. The standard
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case is fluid contained in a square domain Q = (0,1)> with homogeneous Dirichlet boundary
conditions on all sides except on the upper side where the velocity is prescribed as u=(1,0).

Here, we compare the performances of the DG(P1), DG(P2) and P1P2(HLSr)methods at high
Reynolds number by the lid-driven cavity flow problem with Re=1,000, 5,000 and 10,000.

The u-velocity and pressure profiles along a vertical line and the v-velocity and pressure
profiles along a horizontal line passing through the geometric center of the cavity respectively
are presented in Fig.1-Fig.3. It can be seen that the present method is able to mimic the
available results with great accuracy, the profiles are in good agreement of the reference

results.
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Fig.1 Results for the lid-driven cavity flow at Re=1,000.
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Fig.2 Results for the lid-driven cavity flow at Re=5,000.
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Fig.3 Results for the lid-driven cavity flow at Re=10,000.

Steady flow over a circular cylinder

A flow past a circular cylinder at a Reynolds number of 20 and 40 respectively based on a
uniform free-stream velocity u = (1,0) with no-slip boundary conditions on the cylinder
surface is considered in this case. At both of these two Reynolds numbers, the flows are

laminar and steady and were studied quite extensively in both measurements and numerical
calculations.

Fig.4 shows the streamlines and the vortex behind the cylinder computed by the P1P2(HLST)
method at Re = 20 and Re = 40, respectively. It is clear to see that a pair of stationary
recirculating regions appears in the wake of the cylinder for each condition and the length of
the recirculating region increases with the Reynolds number.
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(a) Re=20 (b) Re=40
Fig.4 Streamlines plot of steady flow past around a circular cylinder based on P1P2(HLST).
Next, we calculate the friction and pressure drag coefficients, the total drag coefficients, the
front and rear stagnation pressure coefficients, and recirculation lengths obtained for the

steady flows at Re=20 and 40, respectively. The results are summarized in Tab.3.

Tab.3 Comparison of results for steady flow past a circular cylinder.

Source CDF CDP CD CP(O) —Cp(ﬂ’) Lw/D
Re=20

R.P.Bhartietal. 0.8211 1.2244 2.0455 1.2889 05457 09164
DG(P) 0.7882 1.2241 2.0132 1.2918 0.5505 0.9301
DG(P,) 0.8078 1.2257 2.0336 1.2956 0.5492 0.9051
P, P,(HLSr) 0.8074 1.2256 2.0330 1.2943 05496 0.9051
Re=40

R.P. Bhartietal. 0.5316 09976 1.5292 1.1636 04798 22252
DG(P) 0.5072 0.9959 1.5031 1.1649 04821 2.0507
DG(P;) 0.5234 09961 15196 1.1674 04804 2.1233
P, P,(HLSr) 0.5232 09962 1.5195 1.1663 04810 2.2685

An excellent correspondence can be seen to exist between the present and literature results
which demonstrate that our method can provide an attractive alternative for solving the INS
equations on arbitrary grids.
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Abstract

To specify causes of heart diseases, it is very important to understand a blood flow state in an
aorta. In this paper, the blood flow which pushed out to the aorta according to a contraction
motion of a left ventricle was simulated. To express its complicated shape and the motion, the
unstructured moving grid finite volume method was adopted. In this method, the control
volume is defined for a space time unified domain. Not only a physical conservation law but
also a geometric conservation law is satisfied in this approach. Then high accurate
computation is conducted under the method. The left ventricle expands and contracts, at the
same time, the ventricle and the aorta perform a translational motion. The model of its motion
captured from the computed tomography images is also introduced to this computation. The
result of flow calculation in left ventricle matches with the measurement result qualitatively.
A flow in an aorta has a dramatic shift on its style in the contraction process of left ventricle.
We also succeeded to capture its shift on our result of the flow in the aorta. Then, the
tendency of the flow also matches with the computation and measurement result of others.
Furthermore, the complicated vortex structure in the left ventricle was shown as the results of
the simulation. Thus, the wvalidity of the computational method and the possibility of
calculation for capturing detail flows in left ventricle and aorta were shown in this paper.

Keywords: Computational fluid dynamics, Blood flow simulation, Left ventricle, Aorta

Introduction

There are a lot of threat serious or life threatening disease in a heart and vascular diseases, for
example arteriosclerosis or an aneurysm. It is known from clinical observation that the heart
and vascular diseases often appear at bifurcation or flexure of thick blood vessel. Thus, the
relation between the origin of the heart disease and blood flow has been pointed out. Then,
various hypotheses regarding the fluid dynamics factor of the heart and vascular diseases have
been made. To prove the validity of the hypotheses, flows in a heart or blood vessel have been
studied through the method of experimentation or numerical simulation. Ku et al. [1] made a
measurement the intimal thickening generated at the branching part of the human arteria
carotis communis, as they were focused on the relations between the intimal thickening of an
artery and the blood flow. Then, it was shown that the intimal thickening has a correlation
with the time fluctuation of shear force measured on a glass tube flow made from specimens
of blood vessel. Fukushima et al. [2] created a visualization of blood flow using the real blood
vessel taken out from the body. The real blood vessel is made transparent by salicylic acid.
Then, they determined whether vortex tube exist at the bifurcation of the blood vessel. While,
by multi scale computing using the finite element method, Sugiura et al. [3] created the
numerical heart in the supercomputer although it took a huge cost.

And now, the aorta connected to the left ventricle is comprised of three parts as the aorta
ascendens expanding upward, the aortic arch taking a bend, and the aorta descendens
expanding downward. Then, the three principal branched blood vessels expand from the
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aortic arch. The blood current in the aorta behaves like an intermittent flow which alternates
start and stop flow, because the aortic valve located between the aorta and the left ventricle
has to alternate close and open to occur the flow from the left ventricle to the aorta. The
complicated flow phenomenon in the aorta is created from the geometric feature and the
pulsatility of the aorta. Then, it is very interesting from the hemodynamic standpoint
regarding the relation between the origin of the heart disease and the factor of the fluid
dynamics. It is at an increased risk for developing of the disease at the left ventricle and the
aorta. Furthermore, it would become more serious when it develops. From the point of the
view, a lot of researches [4] of the left ventricle and the aorta have been conducted. The
objective of our paper is to develop an efficient computation method for flows of the left
ventricle and the aorta with satisfying the expression of the complicated shapes and the
function. To calculate more accurately, not only expansion and contraction of the left
ventricle but also translational motion of the aorta is adopted as the motion for computation.
In particular, to satisfy a physical conservation law and a geometric conservation law, the
unstructured moving grid finite volume method [5][6] is adopted. In this method, a control
volume is defined for a space time unified domain. The method made it possible to compute
accurately for motion of the left ventricle and the aorta. Furthermore, the unstructured mesh
approach was also able to express such the complicated shape. Then, the computation was
carried out under the OpenMP parallel environment [7].

Numerical Approach

Governing Equations

As governing equations, the continuity equation and the Navier-Stokes equations for
incompressible flows are adopted and written as follows:

V.q=0, (1)
oE, OF 0G

8_q+6Ea+8Fa+6Ga: B p 98, 06, +L 6EV+8FV+6GV’ @)

o ox Oy oz Oox oy oz Rel ox oy oz

where ¢ is the velocity vector, E,, F,, and G, are advection flux vectors in the x, y, and z
direction, respectively, E,, F,, and G, are viscous-flux vectors, and E,, F),, and G, are
pressure terms. The elements of the velocity vector and flux vectors are

2

u u uv uw p
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3)
0 0 u, u, u,
F,=p,G,=|0LE =\v |F=|v |G =|v,|
0 p w w w

X y z

where u, v, and w are the velocity components of the x, y, and z directions, respectively, and p
is pressure. The subscripts x, y, and z indicate derivatives with respect to x, y, and z,
respectively. Here, Re is the Reynolds number.
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The Unstructured Moving-Grid Finite-Volume Method

In this simulation, expansion and contraction of the left ventricle and translation motion of the
aorta are expressed using moving mesh approach. To assure a geometric conservation law in
moving mesh, a control volume is defined in a space-time unified domain. For the
discretization, Eq. (2) can be written in divergence form as

V-F=0, (4)
where
_i_ ] 1 )
Ox E,+E,——E,
0 Re
— 1
V= aay’ F- F"+F"_R_eFV ' (5)
“ 1
G +G ——G
% a 4 Re v
— q
| Ot | - -

The flow variables are defined at the center of the cell in the (x, y, z) space, as the approach is
based on a cell-centered finite volume method. Thus, the control volume becomes a four-
dimensional polyhedron in the (x, y, z, f)-domain. For the control volume, Eq. (4) is integrated
using the Gauss theorem and written in surface integral form as:

[ §-Fai =§_F-5,d5 ~ Y (F-i) -0 ©

Here, § 1is an outward unit vector normal to the surface, oG, of the polyhedron control
volume Q, and 7= (ﬁx,ﬁjr,ﬁz i), (I=1, 2,... 6) denotes the surface normal vector of control

volume, and its length is equal to the boundary surface area in four-dimensional (x, y, z, )
space. The upper and bottom boundary of the control volume (/ = 5 and 6) are perpendicular
to the 7-axis, and therefore they have only the 7 component, and its length corresponds to the

volume of the cell in the (x, y, z)-space at time #* and #"*!, respectively.

Computational Model and Conditions
Geometric Model of Left Ventricle and Aorta

The function of the left ventricle is draining blood to the aorta like a pomp. The mitral valve
and the aortic valve are put on the inlet and the outlet of the ventricle, respectively. The shape
of the left ventricle is structured, as shown Fig. 1. Bothe of the diameter of blood vessels at
the mitral valve and the aortic valve are 3.0cm. The length from the base of heart to the
cardiac apex is 7.8cm at lumen maximum volume. The cross-section shape of the left
ventricle is ellipse. Then, the ratio of the major axis and minor axis on the ellipse is 5 to 4.

While, the aorta is comprised of three parts which are the ascending aorta expanding upward,
the aortic arch taking a bend, and the descending aorta expanding downward. Furthermore,
the three principal branched blood vessels which are called innominate artery, left common
carotid artery and left subclavian artery expand from the aortic arch. Then the aortic arch
itself curves three-dimensionally. In other words, the central axis of the aortic arch in not on a
plane surface. Thus, the aorta is complicated shape with bending, bifurcation and three-
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dimensional torsion. In this paper, the shape of the aorta model is created, as shown Fig. 2.
Then, Fig. 3 shows aortic arch with three-dimensional curve around the bifurcation points.

3. Ocr,

Aortic valve

Figure 1. Left ventricle model

11

from left ventricle
to abdominal aorta

= :Flow Direction

Figure 2. Aorta model

Figure 3. Angle of torsion at aortic arch from top view

10
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Motions of Left Ventricle and Aorta

The left ventricle is draining blood to the aorta by expansion and contraction. Then the heart
rate is determined the systole and diastole of the heart. Then, a period from starting point to
the next starting point of heart rate is called the cardiac cycle. If a pulse rate is 60bpm, one
cardiac cycle would be 1.0sec. Then, it is classified 0.49sec as the systole and 0.51sec as the
diastole. The history of the left ventricle cavity volumetric change in one cardiac cycle is
shown in Fig. 4. The expansion and contraction using moving mesh at the simulation are
expressed under the history.

90.
80.
70.
60.

50.

Volume [mm]

“40u r

30. , ‘ - :
00. 02. 04. 06. 08. 10
Time][s] .

Figure 4. History of left ventricle volumetric change
Fig. 5 shows the computed tomography images of the left ventricle and the aorta [8]. The dark

black line is a catheter injecting a contrast medium. The figure on the left is a front view of a
human and the figure on the right is a side view.

Figure 5. CT images of left ventricle and aorta (left: front view, right; side view)

11
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Fig. 6 shows the CT images at the maximum volume of the left ventricle and Fig. 7 shows at
the minimum one. On both figures, the red line indicates the point of the aortic valve at the
maximum one. Then, the blue line indicates at the minimum one. From these figures, the
translation motion of the position of the aortic valve is confirmed from the figures. Then, we
can see the motion within a broader range from the left ventricle to the descending aorta. The
motion can affect to the blood flow since the acceleration of the motion is relatively high.
Thus, in this computation, the motion is introduced.

Figure 7. CT image at minimum volume of ventricle (left: front view, right; side view)

To know the length of the translation motion, the CT images are used. Several points are put
on the images as shown in Fig. 8. These points correspond to the points at the computational
model as shown in Fig. 9. The detail travel lengths are calculated using the height of the left
ventricle as reference length L. Conducting the measurement by two aspects, the translation
motion is estimated as three-dimensional movement.

12
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Figure 8. Measurement length of translation motion from CT image
(left: at maximum volume, right; at minimum volume)

Figure 9. Corresponding points on computational model
Computational Conditions

The computational mesh is generated by MEGG3D [9] using tetrahedral and prism elements.
The total number of the elements are 2,777,089. The heart rate is 60bpm, and the Reynolds
number is 2,030. As an initial condition, pressure p = 0 and velocity for x, y, z directions u = v
= w = 0 are obtained for all elements. In the cardiac diastole, the mitral valve is open and the
aortic valve is closed completely. Then, the velocity at the mitral valve is given as a linear
extrapolation and pressure is fixed as p = 0. While, in the cardiac systole, the mitral valve is
closed and the aortic valve is open completely. These open and closing motion are conducted
instantly. On the four exit of blood vessels, velocity is determined as a linear extrapolation
and pressure is zero. The velocity on all walls of the left ventricle and the aorta is given the
moving velocity decided expansion, contraction and translation motion.

Computational Results
Verification of the validity for the Computation

To verify the validity for the computational approach, results of the flows inside the left
ventricle and the aortic arch are evaluated. Fig. 10 shows streamlines in the left ventricle at
the third cardiac diastole from starting this calculation. By expansion of the left ventricle, the
blood inflow through the mitral valve is seen. Then, we can confirm that the flow makes two
vortexes. One is generated on the center of the left ventricle, which is larger than another one.
Another is created between mainstream and the wall. The relatively large vortex is also seen
in the measurement results of flow in the left ventricle by Kilner et al. as shown in Fig. 11.

13
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Figure 11. Measurement result of flow in left ventricle

Figure 12. Streamline in aorta of the computation
(left: in early systole, center: in mid to late systole, right: in end systole)

14
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Fig. 12 shows streamlines in the aorta at the third cardiac systole from starting this calculation.
In this figure, left one is in early systole, centered one is in mid to late systole, and right one is
in end systole. In the early systole, a strong flow along the aortic arc from the left ventricle is
seen. In the mid to late systole, a spiral flow along the mainstream is confirmed. Then, small
vortex is generated at the entrance of the innominate artery. In the end systole, mainstream
itself becomes weak and circulating flow along the aortic wall. Then, we can hardly see flows
in the tributary. These results are also compared with other computation and measurement
results. The computational results by Wada are shown in Fig. 13, and the measurement results
by Kilner et al. are shown in Fig. 14. The tendencies of our computation results on each
systole are seen in the other computation and measurement results.

Comparing with other computation and measurement results of flows inside the left ventricle
and the aorta, the qualitative correspondences are seen in both case. Thus, the validity of the
computational approach is confirmed.

Figure 13. Streamline in aortic arch computed by Wada
(left: in early systole, center: in mid to late systole, right: in end systole)

Figure 14. Measurement results in aortic arch by Kilner
(left: in early systole, center: in mid to late systole, right: in end systole)

Blood Flow in Left Ventricle

The isosurface of Q criterion in the left ventricle at ¢t = 22.0, 23.0, 24.0, 25.0, 26.0 and 27.0
are shown in Fig. 15. These are from in the third early systole to the third in the mid to late
systole. Vortex structures generated by the cardiac beat from the second period remain in the
left ventricle. Into the domain, the inflow of blood with generating the ring-shaped vortex
tube from the mitral valve is seen. The vortex tube is collapsing according to a decrease in the
inflow of blood from the mitral valve. Then it becomes a complicated vortex structure and

15
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spreads in the left ventricle. Thus, the possibility of calculation for capturing detail flows in
left ventricle is shown.

t=22.0 t=23.0 t=24.0

t=25.0 t=126.0 t=27.0
Figure 15. Isosurface of Q criterion in left ventricle (¢ = 22.0 to 27.0)

Conclusions

To construct the computational approach for specifying cause of heart diseases, blood flows
in the left ventricle and the aorta were calculated. For high order accurately, the unstructured
moving-grid finite-volume method was adopted. Furthermore, not only the expansion of
contraction of the left ventricle but also translation motion of the aorta which is captured from
the computed tomography images was adopted in this paper. From the results of the flow in
the left ventricle compared with measurement result, the large vortex is seen. Furthermore, the
flows in the aorta were estimated using the other computation and measurement results. As
the tendencies on each systole are seen in both results, the qualitative correspondences are
confirmed. Thus, the validity of the computational approach is shown. In the computation for
blood flows inside of the left ventricle at the diastole, complicated vortex structures are
captured by the approach. Thus, the possibility to computed and specify the cause of the
diseases was shown.
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Abstract

Until recently, the use of Computational Fluid Dynamics (CFD) appears to be gaining traction
over traditional Gaussian Dispersion Modeling to predict and understand pollutant dispersion
processes in urban environments. Gaussian Dispersion Models, while computationally fast,
lacks in physical representation and accuracy but still sufficed as evidenced by its use in
numerous engineering designs and research applications. In CFD, two typical methodologies
namely the passive scalar transport and the multi-species transport are used to track spatial
dispersion of pollutants. The focus of this study is to understand and quantify the differences
between the two models when applied to near-field dispersion of heavy gases. The two
methodologies are validated by simulating the dispersion phenomena for two test cases which
largely bears resemblance to urban settings: a three-dimensional street canyon setup and the
Mock Urban Setting Test (MUST) field experiment. The pollutant used in the CODASC study
is Sulphur Hexafluoride (SFs) while Propylene (CsHe) is used in MUST, both heavier than air.
It is found that numerical results are highly sensitive to the value of turbulent Schmidt number
(Scy) in both test cases. Through parametric studies, the best accuracy is attained when the Sct
value of 0.5 is used in the street canyon case and Sc: value of 1.5 for MUST. Generally, better
agreement between numerical and experimental results is reflected in the street canyon case
study compared to MUST. For the CODASC case study, the passive scalar transport model
yielded better results than the multi-species transport model while the opposite is true for
MUST. With the preconceived notion that the multi-species transport model should outperform
the passive scalar transport, a conclusion showing a lack of significant improvement the former
has over the passive scalar transport model is indeed unexpected. With regards to computational
efficiency, the passive scalar transport model requires much lesser resources such as CPU time
and memory compared to the multi-species transport model, thus making it more efficient.

Keywords: CFD, pollutant dispersion, near-field, urban environment modeling, turbulence
modeling

Introduction

Pollutant dispersion modeling holds significant importance when determining the severity of
disasters, be it natural or man-made. Incidents such as the Fukushima Daiichi accident in 2011
or the more recent 2018 gas leak in Zhangjiakou, China have shown the devastating
consequences on air quality through the release of toxic materials into the atmosphere. Even
eight years after the disaster, atmospheric air quality around the immediate vicinity of
Fukushima still contains lethal levels of radiation [1] and the effects of the incident in
Zhangjiakou led to tragic consequences, due to the dispersion of a flammable pollutant which
was ignited, leading to fatalities [2]. It is therefore of paramount importance to understand and
assess these effects on public health and safety, immediately following an accident or to conduct
risk management planning for pre-emptive purposes. The importance of understanding
atmospheric dispersion processes is further emphasized through the span of research in
developing state-of-the-art models from regulatory bodies such as the United States
Environmental Protection Agency (US EPA) and UK Met Office to research organizations such
as the European Cooperation in Science & Technology (COST). Many of these regulatory
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bodies have developed their own atmospheric dispersion models: for instance, the open-source
AERMOD was developed by US EPA and NAME by the UK Met Office [3]. In general,
dispersion models are classified into three different families of models: Gaussian, Lagrangian
and Eulerian. These models have been used to good effect in disasters such as the
Eyjafjallajokull eruption and the Fukushima nuclear accident to provide crucial information for
timely and preventive measures. Private research organizations have also funded initiatives to
understand and improve the quality of models used to predict transport phenomena such as the
COST Action 732.

However, effectiveness and reliability of these dispersion models are confined to certain spatial
scales namely the meteorological mesoscale which would not be suitable for analyzing
dispersion in the urban environment, the scale of which is two orders of magnitude smaller than
meteorological mesoscale. Hence Lagrangian and Eulerian models will not work well for
modeling dispersion on a microscale level. Gaussian-based models do have its merits when
used on that spatial scale but the interaction between complex flow fields and different building
configurations limit its accuracy significantly. Besides Gaussian-based models, microscale
Computational Fluid Dynamics (CFD) are commonly used. The cost involving CFD
simulations is relatively low, detailed information about the flow field can be obtained
depending on mesh resolution and scaling of simulations can be carried out with ease [4]. But
since errors are introduced in each progressive stage of CFD modeling, accuracy and reliability
of results are often questioned which require validation studies.

Gaussian Dispersion Modeling

The underlying equation of Gaussian-based models is given by:

Q y? (z = He)? (z +H,)?
i rtzon (-2 oS

where c is the concentration of a pollutant at a given location, Q is the rate of pollutant emission,
H, is the effective height of release which is the sum of actual stack height H,, and plume rise
Ah, u is the speed of wind in the x-direction at height H,. o, and o, are standard deviations of
the pollutant concentration profile in the y and z direction respectively, both represented by a
Gaussian distribution which depends heavily on atmospheric turbulence. Comprehensive
experimental measurements have been carried out to relate various values of ¢ to atmospheric
stability. The resulting tabulated data is known as the Pasquill-Gifford-Turner Stability
Classifications [5]. Stratification of the atmosphere into different stability classes is crucial to
model the atmospheric boundary layer accurately. The boundary layers are differentiated into
three main types: unstable, neutral and stable.

The popularity of Gaussian models is largely due to its low computational costs, with many
environmental regulatory agencies using it as an initial assessment in determining the severity
of industrial accidents or pollution levels. Complex dispersion related phenomena can be
included which adds an edge of versatility to Gaussian models. However, its validity and
accuracy are dampened by underlying assumptions used in the derivation of Eq. (1). Velocities
in the y and z direction are assumed to be zero and diffusion in the x direction is ignored.
Neglecting diffusion in the x direction can lead to inaccurate results especially in situations
where there are low wind speeds which causes significant concern. Atmospheric turbulence is
also assumed to be uniform and homogenous since o is directly proportional to sizes of eddies.
Furthermore, o values are measured from rural terrains with flat and open surfaces, which
reduce its applicability when the model is used in an urban environment [6, 7]. A sensitivity
study on the parameters of the Gaussian model by Adel [6] showed that changes as small as
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10% could result in 100% under or over prediction. Hence using Gaussian models for dispersion
in urban environments raises questionable issues in accuracy and applicability.

Within urban environments, buildings and obstacles as well as their complex interaction with
flow fields bring additional challenges in dispersion modeling. Near-field dispersion is
characterized by interactions between atmospheric boundary layer flows and flow structures
around buildings while in far-field dispersion, the horizontal motion proves to be more
dominant over vertical motions and effects of buildings on flow fields are limited [8]. More
specifically in near-field dispersion, there are features such as a fully three-dimensional flow
structure around buildings which affects pollutant transport in ways that could not be fully
described by Gaussian models. Flow separation, recirculation and various patterns of vortices
(e.g. horseshoe vortices, vortex shedding etc.) generated by the presence of buildings adds
further complication in determining pollutant distribution at the desired location.

Computational Fluid Dynamics (CFD)

Interest in CFD to model pollutant dispersion in urban environments is not newly found as seen
by the review of Tominaga and Stathopoulos [8], which offered a comprehensive compilation
of current modeling technigues. The use of CFD has allowed the approximation of flow field
quantities such as velocities and concentration to be made known throughout the computational
domain in all three-dimensions, which Gaussian-based models lack. However, CFD is not
without uncertainties. The validation and verification of CFD models constitute a major role in
forming a quantitative conclusion on the accuracy and the reliability of results. Availability of
experimental data while reassuring, is to be used with caution as circumstances surrounding the
experiment must be replicated in the CFD model through initial and boundary conditions,
failing which will render the comparison between numerical and experimental data pointless
[8]. Inherent in such a strict requirement is the assumption that every experiment must be carried
out under identical conditions. This hints at some form of replicability which is mostly
impossible when meteorological factors like wind and weather conditions are involved [9].
Even under more predictable conditions such as wind tunnel testing, drawbacks still exist,
nonetheless. Therefore, a certain pre-existing error must be accepted into the overall model
evaluation.

The motivation behind this study is largely due to limited efforts thus far to compare the
differences between passive scalar transport and multi-species transport. With the passive scalar
transport model, the concentration of pollutant does not have any impact on the flow field. As
such, flow properties remain unchanged even if a different pollutant is used. The pollutant used
can be interpreted to be weightless and its transport is mainly governed by advection and mass
diffusion. Using the multi-species transport model, on the other hand, will result in the flow
field changing depending on the chemical species being transported. Since the mixing law takes
effect, any change in composition in the mixture of species will affect the density of the
resulting mixture. Gravitational effects are also included where physical characteristics of the
pollutant will affect the flow field. The two species considered in this study will be the pollutant
and air. Chemical reactions between the two species are however, ignored in this study.

A review by Lateb et al. [4] on CFD to predict dispersion in urban environments stated that a
common assumption used by various studies is that the pollutants are assumed to be passive
and subsequently, the effects physical characteristics of pollutant particles have on the flow
field are often neglected. A study previously done by Gromke and Ruck [11] [12] investigated
pollutant dispersion in a three-dimensional tree free street canyon and found that concentration
values predicted by FLUENT gave good agreement to wind tunnel measurements. Species
transport was utilized but they did not study the effects of a passive pollutant. Bekka et al. [13]
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carried out a study based on the MUST case and found that agreement with full-scale
experimental data [14] varied with distance from the source. Better agreement was observed
closer to the source while more deviation was observed further from the source but there was
no indication on how transport of the pollutant was modeled, raising some doubt over the
quality of their findings. Tominaga and Stathopoulos [15] carried out a comparison between
neutrally buoyant (passive) scalars and heavy gases on flow and concentration fields and found
that prediction performance of heavy gases was worse than that for neutral gases, but their scope
was limited to just one building configuration.

Objective

The objective of this study is to present and evaluate CFD methods for the dispersion of heavy
gases in urban environments using the commercial code FLUENT. Two different
methodologies: 1) passive scalar transport and 2) multi-species are proposed to track dispersion
of pollutant particles. The two methodologies are validated through two test cases
representative of urban environments: a three-dimensional street canyon and the Mock Urban
Setting Test (MUST). First, the respective mathematical models are analysed. Following that,
the characteristics of both case studies used for validation purposes are identified. Besides
visual observation and comparison of numerical results with experimental data, statistical
performance measures are subsequently introduced to provide a succinct approach in
guantifying the performance of each methodology. Results and discussion of the two
methodologies are subsequently given, where the effects Sc; values have on concentration
distributions are discussed. A comparison between both methodologies is rendered and their
accuracy is evaluated.

Fundamental Mathematical Models

The Standard Gradient Diffusion Hypothesis (SGDH) is primarily used to model the turbulent
scalar fluxes, which are postulated to be directly proportional to concentration gradients with a
coefficient of proportionality known as turbulent diffusivity, D;:

oc
"¢ = Dy — 2
uc t 3y (2)
oc
v'c' = Dy — 3
dy
oc
"¢ = Dy— 4
wc t3, (4)

Turbulent diffusivity can be further broken down into a ratio of two terms: turbulent kinematic
viscosity (v;) over the turbulent Schmidt number (Sc;). It should be noted that Sc, is a free
parameter, with multiple ranges of values that depend on flow fields and configurations of
geometries with which the flow interacts with. This seems to suggest that Sc, can be altered to
artificially increase or reduce turbulent diffusion which can drastically affect transport
phenomena and subsequently, numerically predicted concentration.

Tominaga and Stathopoulos [17] showed that Sc; ranged from 0.2 to 1.3 which differed from
the commonly used values of 0.7 to 0.9. Gualtieri et al. [18] discovered in his analysis of
literature from both water and atmospheric systems that the range of best-fitting Sc, changes
for different cases and that there were cases where best-fit Sc; value was found to be the same
for extremely different flow conditions (i.e. cases of water and atmospheric systems having
similar Sc; values). These two inconsistent observations contributed to a conclusion that it is
impossible to determine a generic Sc; value. Gualtieri et al. subsequently questioned if Sc; had
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different values in the same flow domain but was inconclusive as to which parameters
controlled this variability.

The relevant governing equations begin with the continuity equation:
V-(p?) =0 (5)
Reynolds Averaged Navier-Stokes, also known as the momentum equations:

, dp
p(¥-Vu) = ot (u+ p)V- (Vu) (6)
, dp
p(v-Vv) = —@+ (e + p)V - (Vo) (7)
, dp
p(v-Vw) = —5, (u+ V- (Vw) (8)
k-€ turbulence model:
V-(pﬁk)=V-(,u+%Vk)+Pk—pe ©)
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% He € g?
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e =pCu— (11)
P = pe(V9)? (12)
Passive scalar transport equation:
v
V-{@e)=V- [(DC + —t) Vc] + S, (13)
Sc;

where c is the concentration of the scalar, D, is laminar diffusivity and S, is the source term.
The multi-species transport model also utilizes Eqgns. (5) to (12) but continues to Egn. (14) and
(15):

V- (pYi¥) ==V J; + 5 (14)
= —(pD: + £\ vy
Ji= (D0t 5o) (15)

where S; is the source term for the it" species, J; is the diffusion flux of species i which is due
to concentration gradients, D; is the mass diffusion coefficient for species i in the mixture and
Y; is the mass fraction of species i. Eq. (14) and Eq. (15) solve for the mass fraction, Y; as each
constituent of the mixture is represented withi = 1,2 .. .etc.

Case Studies
CODASC

As part of a larger effort in air quality studies to quantify the effects of tree planting on
dispersion of traffic emissions by the Karlsruhe Institute of Technology (KIT), a database
named Concentration Data of Street Canyons (CODASC) was established from the results of
wind tunnel experiments with varying parameters and street canyon/tree avenue configurations
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[20]. For the scope of this study, it suffices to consider only a tree-free street canyon
configuration in three dimensions. The street canyon model is scaled down to 1:150, with L =
180 m, H = W = 18 m. Four lines of tracer pollutant release, with the intention of emulating
traffic exhaust, are placed in between the two building blocks and it exceeds the street canyon
by about 10% on each side to consider pollutant release from traffic junctions. SFg was used as
a pollutant in this case and the release is distributed through equally spaced perforations.
Dimensions of computational domain and the street canyon are shown in Fig. 1. Experimental
data for various scenarios was made available through the online database [20].

Velocity Inlet
Outlet

200
Leeward Wall P /

< /
—X/ y /
/ x "
/ Windward Wall
V77—
Y

8H
1.2m (L)

SH

{
& | 2
15H {s — ,,,Vx 0.12m (H)
i

-
0.12m (W) i.

26H

b~ Pollutant Tracer Release

Figure 1. Dimensions of CODASC street canyon model.

Inlet wind velocity is in the x-direction, perpendicular to the building blocks and it follows a
power law profile in a neutrally stratified atmospheric boundary layer:

u(z) :< z )a 16
wCrer)  \rr ce

Zres IS the reference height which is 0.12 m and the flow velocity at the reference height,
U(zrer) 1s 4.70 m/s. Similarly, u(z) is the velocity at a given height z. « is the wind shear
exponent of 0.3. k and e profiles are specified as follows:

2

k=\72_(1—§) 17)
u
€=Z_i(1_§) (18)

where wu, is the friction velocity of 0.52 m/s and C, is 0.09 which is the turbulence model
constant. § is the boundary layer thickness, x is von Karman’s constant and both have values
of 0.96 and 0.4 respectively. The variable of interest is the non-dimensional concentration value
¢t which is normalized:

cuyH

~Q/1

where c is the measured concentration, uy is equivalent to u(zref) and Q /! is the tracer source
strength of SF, per unit length. The main point of interest is the normalized concentration
distribution of the leeward and windward side of the street canyon.

Mock Urban Setting Test (MUST)

+

(19)

MUST is a full-scale, outdoor experiment free from laboratory limitations conducted at the U.S.
Army Dugway Proving Ground (DPG) Horizontal Grid test site [14]. Motivation for MUST
primarily grew out of a need for field data to be obtained outside laboratory conditions for the
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verification and validation of models developed to understand dispersion mechanisms and the
full effects of atmospheric boundary layers and surface roughness on transport phenomena in
an urban setting. The setup configuration of MUST comprises of shipping containers each 12.2
m long, 2.42 m wide and 2.54 m high arranged in a 12 by 10 array in a 200 m squared area.
With reference to the original report [14], trial name #2681829 is selected to be replicated in
this present study by means of numerical methods. Propylene (C;Hy) is used as a tracer gas and
Is released at a height of 1.8 m above ground at a rate of 225 litres per minute and the location
of release is marked by a cross in Fig. 2. 48 sensors were strategically placed at areas of interest
to measure concentrations; 40 of which are distributed evenly across the array at a height of 1.6
m above ground and are denoted by the orange points. The other 8 are placed 1, 2, 4, 6, 8, 10,
12 and 16 m above ground level at a single location in the middle of the array, where the green
point is. The dimensions of the computational domain are shown in Fig. 3.
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Figure 2. Layout of test case Figure 3. Dimensions of computational domain
#2681829 and locations of sensors 1 for MUST.

to 48 (Image taken from [12]).

Given the nature of MUST experiments (i.e. outdoor and full-scale), it is necessary to model
the atmospheric boundary layer (ABL) to obtain accurate and reliable predictions of
atmospheric-related phenomena [21]. More specifically, the modeled ABL must be horizontally
homogenous which is achieved when inlet profiles of mean wind speed and turbulence
quantities are in equilibrium with the wall functions used. With a horizontally homogenous
ABL, streamwise gradients will be prevented from forming in these profiles as the flow
progresses to simulate the phenomena of interest. This study focuses on a neutrally stratified
ABL since thermal and buoyancy effects on turbulence are not considered. The most commonly
used boundary conditions to simulate the ABL is first proposed by Richards & Hoxey [22]. For
fully-developed, steady, incompressible and 2-dimensional ABL flows, the k-& turbulence
model can be simplified to Egs. (21) and (22) when Eq. (20) is assumed:

by QU _ 0k _de_ 20
B T dx  dx dx (20)
0 [u, ok
a_Z<O'_k£> + Gk — pPE= 0 (21)
a(“ta‘g)+c G.o—pC 82—0 22
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Inlet velocity, k and ¢ profiles proposed by Richards & Hoxey in 1993 follow the log-law
profile as specified from Eqgs. (24)-(26). It can subsequently be shown that Egs. (24)-(26) are
the analytical solutions to the k — ¢ turbulence model of Egs. (21) and (22) if Eq. (23) is
satisfied. The constants are specified by Launder & Spalding [16], where C,, = 1.92, C,; =
1.44, k = 0.42 and C, = 0.09 which results in g, = 1.225.

U(z) = u‘j‘{“ In (Z :OZ") (24)
* 2
k(z) = —(ujIZ_L) (25)
u
_ (Wip)®
S(Z) = K(Z—+Zo) (26)

The freestream velocity of wind entering the computational domain has a magnitude and
direction of 7.93 m/s at a height of 4 m above ground level and —41° respectively. u}z, is the
frictional velocity of 1.1m/s and roughness length, z, has a value of 0.19368 m when von
Karman’s constant, x takes a value of 0.42. Concentration is measured in parts per million by
volume (ppmv). Standard wall functions with sand-grain roughness modifications following

the logarithmic law of the wall where the roughness function AB = %ln(l + Cskd) for a fully

rough regime (kJ>90) are used and k; is the non-dimensional roughness height. This results
in Eq. (27) where E = 9.793.

_u*l Ey* 27
e C @7)

Comparing Eqg. (27) with the velocity profiles by Richards & Hoxey, Eq. (24) it is observed
that both are similar and hence must be consistent. If profiles proposed by Richards & Hoxey
are used and through first-order matching, kg is given by:

Ezyz,
Cs()’o + yp)

According to FLUENT [19], the roughness constant C; is set to a default value of 0.5 which
when used with k-¢ turbulence models, Nikuradse’s original experimental data [23] for flow
through a pipe tightly packed with a uniform sand-grain roughness can be replicated. FLUENT
subsequently recommended that the range of C, should lie between 0 and 1 depending on how
roughness varies from the uniform sand-grain. However, this range is limited to a specific case
of pipe flow as evidenced from lack of a clear guideline on setting C, for arbitrary types of
roughness. Using the default value of C, in FLUENT results in kg =~ 3.8 m, based on z, =
0.19368 m. Given the multitude of studies [21] [24] [25] which strongly advised that the
normal distance from the centre point P of the first cell adjacent to the wall z, to be greater than
ks, it follows that z,, > 3.8 m and subsequently the height of the first cell adjacent to the wall,
2z, > 7.6 m. This requirement is not practical, given that the height of a container used in this
case study is only a mere 2.54 m. The result would be a very coarse mesh which would not be
able to resolve the flow field accurately. To overcome this, an alternative solution is considered
and implemented in this study where the restriction on C; is relaxed and set equal to E which
resultsin kg, = z,. This condition is enforced in the far-field region of the computational domain

(28)

N
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surrounding the near-field region, where the arrays of containers are placed. In the near-field
region, k; is set equal to 0 and C, equal to 0.5.

Statistical Performance Measures

To quantify the quality of numerical results and their agreement with experimental data,
statistical performance measurements are introduced. Following recommendations by Chang et
al. [10], the normalized mean square error (NMSE), fractional bias (FB) and the fraction of
predictions within a factor of two of observations (FAC2) are used. The definitions of these
statistical performance measures are defined below:

2
c,—C
NMSE = M (29)
CoCy
c,—C,
0.5(C, + Cp)
O.SSg—pSZ.O
FAC2 = ——2>— (B1)
Ntotal

where C, refers to model predictions while C, are experimental values. A perfect model would

have a value of 1 for FAC2; a value of 0 for FB and NMSE. However, it is well-known that
uncertainties will inevitably be present in simulating transport phenomena.

Results & Discussion
CODASC

Grid independence studies were carried out, ensuring the solution no longer changes with mesh
density. A mesh size of 14 million cells was found to be adequate. As the flow approaches
normal to the street canyon, flow separation results with elements of recirculation inside the
canyon. Pollutants released from the ground will be carried by the downward movement of the
recirculated flow and deposited on the leeward side. This recirculation is responsible for
differences in magnitude of c¢* between both walls as the pollutants gradually accumulate on
the leeward side whilst deposits of tracer gas are removed from the windward side. Flow
recirculation also traverses in the z-direction, along the length of each building as seen in Fig.
4. Since the entering flow is symmetrical about the z-x plane, the traversing of recirculated
flow grows from each end of the street canyon into the z-direction and naturally meets in the
middle, which explains why c* is highest in the middle of the street canyon. Combining all
these elements together will result in concentration distribution in Fig. 5. The streamlines of the
airflow in Fig. 4 are colored by velocity magnitude and the contour plot in Fig. 5 is distinguished
by normalized concentration c*.

26



ICCM2019, 9th-13th July 2019, Singapore

Normalized Goncantration (6+)

me . =
FASE I PP

i N o

Figure 4. Velocity (m/s) streamlines

obtained from a z-x cutting plane at edge of Figure 5. c* distribution in near-field
the model as flow approaches normal to region area of interest.
building.

Dependence of Sc: Value on c*

One of the primary concerns in this study is determining the appropriate value of Sc;, which is
a free parameter, to be used. Given the nature of Sc; as described earlier, this free parameter
can be tuned to artificially reduce or amplify turbulent diffusion or alternatively as it is more
commonly done, the value to be used can be obtained from reviews of past studies. The practice
of tuning the Sc; value is ill-advised as evidenced from multiple studies which have warned
against it in order to fit the experimental data available [17] [18]. But the use of such tuning
practices strengthens the premise that determining the appropriate Sc, value is problem
dependent [17] as flow interacting with different configurations of obstacles have their own
turbulent kinetic energy and turbulent diffusion rates. Referring to past studies, Tominaga et
al. [17] concluded that dispersion in a street canyon configuration compared to that around a
single building will be different, stating that turbulent diffusion is often underestimated in
RANS models when applied to single building configuration. With more obstacles present, the
increase in turbulent Kkinetic energy would compensate for that underestimation, hence it is
expected that a value greater than 0.3 would provide better prediction results for a street canyon
configuration. They went on to conclude that Sc, values should be considered depending on
how dominant turbulent diffusion is in a given flow configuration. But Gromke et al. [12] used
RANS simulations of a street canyon for multiple values of Sc; ranging from 0.2 to 1.0 and
found that the value of 0.3 gave the best agreement with experimental results. However, they
concluded by recommending a critical review of Sc; values for future studies on pollutant
dispersion in urban environments.

In this case study, RANS simulations were conducted for selected Sc; values from a range of
0.1 to 0.9 to validate against past studies and to show the effects Sc; values have on turbulent
diffusion. Normalized concentration, c* was monitored on both leeward and windward side in
the street canyon. On each side, y from 0 to 1.2 were divided into 100 equally spaced discrete
points for every z value from 0 to 0.12 in increments of 0.02. Referring to Fig. 6 below, points
1 to 700 represent distribution of ¢* on the leeward side of the street canyon. Similarly, points
701 to 1400 represent distribution of ¢* on the windward side of the street canyon. For example,
with reference to Fig. 1, point 1 refers to the red cross marked on the leeward wall, where z =
0 and y = 0. Point 2 is subsequently on z = 0 and y = 0.012 and point 100, denoted by the
orange cross is where z =0 and y = 1.2. Point 101 is continued where z = 0.02 and y = 0 and
so on. Point 701 is on the windward wall, where z = 0 and y = 0, is denoted by the purple
cross. Point 800 is denoted by the black cross which is where z = 0 and y = 1.2. Point 801, by
the same logic, is where z = 0.02 and y = 0. This accounts for the total of 1400 discrete points
to determine the concentration distribution on both leeward and windward walls. By visual
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observation, it can be seen that c* distribution has been consistently overpredicted on the
leeward side and this overprediction increases as the Sc; value increases in Fig. 6. The same
observation applies to the windward side but ¢* is underpredicted when Sc, has a value of 0.3.
c* is larger in magnitude on the leeward side and this remains true for all cases simulated.

Figure 6. Plot of ¢* distribution on leeward Figure 7. 45° line plot of c* distribution
side followed by windward side in the street when Sct = 0.5.
canyon.

Fig. 7 shows the deviation between numerical prediction and experimental data for the case
when Sc,= 0.5. The leeward side and windward side are separated for ease of analysis. Data
points should ideally lie along the red line and in between the two dotted green lines which
provide a band of error on how far these points deviate from experimental measurements. ¢*
distribution on the windward wall tend to lie along the 45° line compared to that of the leeward
wall, where larger and more frequent deviation is encountered. Due to the extensive number of
data points, statistical measures are necessary in order to give a quantitative view of the results
which are reflected in Table. 1. Comparing the results, NMSE is lowest for Sc; 0.3 while FB
for Sc; 0.5 is lowest. Both Sc; 0.3 and 0.5 share the same value for FAC2 which is close to the
ideal value of 1 compared to other Sc, values. From this analysis, it can be concluded that Sc,
0.5 is the optimum value for this street canyon case study, simultaneously verifying Tominaga
et al. [17] expectations for a Sc; value greater than 0.3.

Table 1. Statistical performance measurements for different Sc: values
Sc; 0.3 Sc; 0.5 Sc; 0.7 Sc; 0.9  Model Perfects

NMSE 0.20 0.31 0.45 0.59 0
FB 0.14 -0.05 -0.17 -0.26 0
FAC2 0.95 0.95 0.92 0.90 1

Contour plots of the leeward wall of the street canyon are presented from Figs. 8 and 9, while
contour plots of the windward wall are presented from Figs. 10 and 11. These are positioned on
the z — y plane. The contour plots are all symmetrical about the z-axis, which serves as a form
of validation between model and physical reality. ¢t at the two ends of both leeward and
windward walls is relatively lower due to more dominant convection forces from vortices
generated from the interaction between the flow and the street canyon.
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Comparison Between Passive Scalar and Multi-Species Transport Models

For the multi-species model, a Sc; value of 0.5 is used based on earlier findings from the passive
scalar model. As seen in Table 2, the passive scalar transport model outperforms the multi-
species model in every statistical benchmark, which is unexpected as it is initially believed that
the multi-species model will instead outperform the passive scalar transport model since the
pollutant considered is denser than air. Density of the flow field is expected to change due to
changes in the mass fraction of pollutant in air because of the coupling of momentum equations
with the continuity equation. Similarly, Fig. 12 to Fig. 15 show the respective contour plots.

Table 2. CODASC: Comparison of passive scalar and multi-species transport model
through statistical performance measures.

Passive Scalar Transport Multi-Species
Model i Transpor? Model Model Perfects
NMSE 0.31 1.99 0
FB -0.05 -0.48 0
FAC2 0.95 0.87 1
- — e
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Figure 12. CODASC: c* distribution on the ~ Figure 14. CODASC: c™ distribution on the
leeward wall (Passive Scalar Model). windward wall (Passive Scalar Model).

PG

Figure 13. CODASC: c* distribution on the  Figure 15. CODASC: c* distribution on the
leeward wall (Multi-Species Model). windward wall (Multi-Species Model).

Mock Urban Setting Test (MUST)

In order to determine if some form of homogeneity has been achieved with the current
parameters set, the profiles of velocity in the y-direction, k and & are monitored. Referring to
Fig. 16, profiles at y_1 and y_2 are tracked as flow progresses from the far-field region to the
near-field region, especially since grid density changes are involved. Fig. 17 shows the y-
velocity profiles with the analytical profile, the k and & profiles with their respective analytical
profiles as z increases. The velocity profiles in Fig. 17 reflects a relatively good agreement
between the analytical profile and y_1 and y_2 save for some deviations on the order of
approximately 0.1. k profiles, on the other hand, show an increasing deviation from the
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analytical profile with increasing z. The profile of y_1 deviate from y_2 near the ground and
generally show an underprediction of turbulent kinetic energy. According to Richards and
Norris [26], the local maximum in turbulent kinetic energy k at y_2 is due to an inconsistency
in the discretization of the production term P, instead of the turbulence model itself. The ¢
profiles show no differences between the analytical profile, y_1 and y_2 except for the near-
ground region.
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Figure 16. Locations in the MUST case Figure 17. Plot of Z against mean
where v, k and ¢ profiles are taken and velocity, k and ¢ profiles for MUST
monitored from. case.

As the incoming flow approaches the near-field region, the presence of containers forces the
flow to be diverted with recirculation around each individual container and is deflected
upwards. Complexity surrounding this flow configuration is significantly greater than the street
canyon case given that the flow enters at an inclined angle. The streamlines of the fluid flow
are shown in Fig. 18, where it is colored by velocity magnitude. According to the coloration of
the streamlines, it is observed that a slight acceleration of the flow persists despite enforcing
the horizontal homogeneity condition when flow transits from the far-field to near-field region.
It is also noted that behind each container, the velocity of streamlines drops to almost zero.

Figure 18. Velocity streamlines of flow entering the near-field domain at a —41° angle of
the MUST case.
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Dependence of Sct Value on ¢*

Given the flow configuration in MUST varies significantly from the street canyon model due
to different geometries, it is expected that the optimal Sc; would be different. Experimental data
is readily available from on-site measurements which adds ease to validation. Based on visual
observations of Fig. 19, the most noticeable trend is that numerical results consistently
underpredict ¢*. Using statistical performance measures in Table 3., NMSE appears to be
lowest for Sc; 1.5, while FB is lowest for Sc; 2. Both Sc; 1.5 and 2 share the same FAC2 of
0.47. Comparing NMSE and FB of Sc, 1.5 and Sc; 2 leads to conflicting results and can be
concluded that there are limited differences between these two Sc, values. However, a
conclusion can be drawn in that Sc, values of 1.5 and higher will result in better agreement with
experimental data. Fig. 20 show the contour plot of Sc; value equal to 1.5 which ranges from 0

ppmv to 6 ppmuv. The inlet flow is at an angle of —41°, which is stated to be the mean angle
based on data obtained by field experiments [14].

Table 3. Statistical performance measurements of various Sct values for the MUST case.

S¢; 05 8¢,07 Sc; 09 Sc; 1.5 Sc; 2 Model Perfects
NMSE 1.68 1.08 0.78 0.55 0.59 0
FB 0.95 0.81 0.70 0.49 0.39 0
FAC2 0.03 0.21 0.35 0.47 0.47 1
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Figure 20. c* distribution with Sct = 1.5
for MUST case.

Figure 19. Plot of numerical c* data from 48
sensors placed at various locations with
increasing Sc: values in the MUST case.

Comparison Between Passive Scalar and Multi-Species Transport Models

Next, a comparison of accuracy in predicting ¢* between the passive scalar transport model
and multi-species model is made. Sc; value of 1.5 is taken for both cases. From Fig. 21, the
multi-species model provides better agreement with experimental results compared to the
passive scalar model. Significant underprediction of numerical results continue to persist, with
increasing deviation away from the source release. A similar conclusion is also reached by
examining the statistical performance measures in Table 4. NMSE and FB indicate that the
multi-species model gave results closer to perfect model values than the passive scalar model
did while both models hold the same values for FAC2 of 0.47. Fig. 22 and Fig. 23 show the
degree of dispersion with different methodologies used.

Table 4. Comparison of statistical performance measures of passive scalar
and multi-species transport model against the model perfects.

Passive Scalar Multi-Species Model Perfects
NMSE 0.55 0.45 0
FB 0.49 0.31 0
FAC2 0.47 0.47 1
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Figure 21. Plot of numerical c* data for passive scalar and multi-species transport model
with Sct = 1.5 of 48 sensors placed at various locations for MUST case.
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Figure 22. c* distribution of passive Figure 23. c* distribution of multi-species
scalar transport model in MUST case with transport model in MUST case with the
the mean inflow angle of —41°. mean inflow angle of —41°.

Variation of Inflow Angles

In an attempt to investigate further the discrepancy in concentration of pollutant far from the
source release, the inlet boundary conditions are examined in further detail. A standard
deviation of 9.5° in the instantaneous wind direction is provided as reflected by Yee and Biltoft
[27]. Likewise, an additional point mentioned by Nadir et al. [13] was the standard deviation of
the inlet flow angle of —41° but this was overlooked as a potential source of error in his paper.
This is considered in the present study and following the deviation of —9.5°, two separate
additional cases with the inflow angle of —31.5° and —50.5° were simulated. In Fig. 24, the
inflow at an angle of —31.5° clockwise from the positive x-axis resulted in better agreement
compared to the case with an angle —41° clockwise from the positive x-aixs. Underprediction
still occurs, albeit at a lower occurrence when inflow angle deviates to —31.5° and it is mostly
limited to the tower of sensors numbered 40 to 48. This is further evidenced in Table 5., where
the case with inflow angle of —31.5° performed significantly better on every statistical
performance measure. When inflow is angled at —50.5°, the opposite occurs in that the model
performed worse. These cases are simulated using a Sc; value of 1.5. This was repeated using
the multi-species transport model and a similar conclusion can be drawn. The above attempts
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in carrying out studies involving the change in inflow angles conclusively show a source of
error originating from comparing field experiments with numerical studies. This error is
expected and inevitable when carrying out full-scale outdoor experiments.

Table 5. Statistical performance measures against model perfects for varying inflow
angles with the passive scalar transport model in MUST case.

o o o Model
—-41 —-31.5 -50.5 Perfects
NMSE 0.55 0.21 2.31 0
FB 0.49 0.28 0.76 0
FAC2 0.47 0.65 0.18 1

-41°49.5° X —-41°
4

l %
3150
35 Wind oo 31.5
Y direction /ST
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Figure 24. Plot illustrating the numerical c* data from 48 sensors placed at various
locations in the MUST case, with different inflow angles using the passive scalar transport

model compared against experimental data.
Conclusion

A comparison between two different transport methodologies was carried out through their
respective validation against two test cases; the CODASC model and MUST. The CODASC
experiment was carried out under controlled conditions in a wind tunnel whereas MUST is a
full-scale outdoor experiment, taking into account effects of the atmospheric boundary layer.
Results from CODASC study proved that the passive scalar transport model outperformed the
multi-species transport model and the opposite for MUST. In reality, it is expected that the
multi-species model will provide better accuracy since density changes caused by species
compositions in the flow field are taken into account. Furthermore, pollutants heavier than air
in terms of molecular weight were used in simulating transport phenomena for both cases,
allowing the physical dispersion process to be more accurately represented.

Hence, it is concluded that since the multi-species transport model did not provide significant
improvement over the passive scalar transport model in general, the multi-species model should
be dismissed until further investigations can prove its worth. Furthermore, for engineering
applications where computational efficiency is a major component in determining which
methodology to use, it should be noted that the passive scalar transport model is much more
efficient compared to the multi-species transport model. Time taken for a simulation using the

passive scalar transport model can be up to three times shorter compared to using the multi-
species model.
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For CODASC case study, limited information on how the four lines of tracer source release
were modeled in both wind tunnel experiments and numerical studies that it is believed the
results from this present study could only be justified with the assumption of a dilute source.
For MUST, given that it is a full-scale outdoor experiment, it would be unrealistic to expect the
magnitude and direction of the inlet wind flow be maintained throughout the course of the
experiment, though it is an assumption necessary for numerical studies lest the level of
complexity be increased. Through investigations on the variations of inflow angles, it suggests
that the inflow angle did not remain constant at —41° during field experiments. Differences in
configuration of obstacles in both cases could play a major role in prohibiting the full realisation
of benefits in utilising the multi-species transport model. Efforts to remove the turbulent
Schmidt number, Sc, should be a priority in reducing ambiguity in dispersion studies using
CFD.
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Abstract

Invariably, any type of microscopic imaging modality can be used to reconstruct
morphological data in three-dimensions (3-D). These techniques allow us to study the
structural characteristics of cells, tissues and organs and gaining meaningful insights into their
form and function. One of the oldest methods for studying biological entities in 3-D is serial
histological-section reconstruction (SHSR) which dates back to the late 19™ century. Despite
the advent of competing modern techniques that are faster, cheaper and easier to apply and
that work in an automated fashion, this method (SHSR) remains indispensable. It is because
reconstructions resulting from sections generally display better contrast and signal-to-noise
ratio. Additionally, dyes and labels can be used more effectively when applied to the surfaces
of sections than to, e.g., resin sample blocks: functional units can therefore be identified by
coloured- or fluorescent signals. SHSR is useful from ~0.2 um resolution and can easily
sample large volumes in the 1000% voxel range. These characteristics make it particularly
effective for preparing accurate, high-resolution 3-D representations of micro-anatomical
data. Here, we report on computational use of SHSR in investigation of the structure of the
airway- and vascular systems of the mature lung of the domestic fowl, Gallus gallus variant
domesticus. The topographical relationships between the structures were thoroughly examined
after preparation of movies that allowed us to rotate the reconstruction around different axes
and extract and re-insert different parts back into the visualization. In the extant air-breathing
vertebrates, the avian respiratory system (the lung-air sac system) is structurally the most
complex and functionally the most efficient. Its unique design largely explains how, among
only a few other extant animal taxa, birds attained volancy. Powered (active) flight is an
exceptionally energetically costly mode of locomotion which requires large amounts of
oxygen to sustain. While it has been continuously studied for over the last four centuries,
some aspects of the structure and function of the avian lung remain uncertain and contentious.
They include the airflow dynamics across the lung, the arrangement of the airway- and
vascular systems and the shapes, sizes and spatial organization of the terminal respiratory
units. We noted that in contrast to the mammalian lung, where arterial- and airway systems
track each other and the venous system runs segmentally, i.e., between the other two systems,
in the avian lung, the corresponding structures do not display similar close following. This
may be explained by the unique development and evolution of the avian lung: two
morphologically- and functionally distinct parts, namely the paleopulmo and the neopulmo,
exist. The parts develop at different times which later combine into one organ. It explains how
and why the airways- and the blood vessels do not track and even pattern each fundamentally
because the conduits are dedicated to the distinctive parts of the lung with which they were
associated.

Keywords: chicken, domestic fowl, bird, lung, serial sectioning, 3-D reconstruction
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Introduction

A number of techniques are available to generate volumetric ultrastructural models,
and combination of a variety of strategies is now possible for tailoring to specific
biological questions and applications. [1]

Through the process of evolution by natural selection [2], living things develop in specific
ways to enable them to best execute functions. Understanding cellular dynamics and processes
is fundamental to characterizing the underpinnings of life. Most diseases and pathologies arise
from cellular abnormalities which trigger intracellular biochemical changes. After the invention
of the compound light microscope, some four-and-half centuries ago by Zacharias Jansen
(1580-1638) in 1595 [3] [4] and for nearly three hundred years thereafter, microscopic study
of biological structures was limited to two-dimensional (2-D) delineation, depiction and
description. In the late 19" century, researchers desiring to understand the three-dimensional
(3-D) attributes of biological entities employed different ingenious visualization aids to
examine serial sections, such as projecting lines from the outlines of structures to produce an
image of the object perpendicular to the direction of sectioning [5] or by tracing outlines of
the object of interest onto stacks of glass sheets [6] [7]. Modifications on these types of
techniques were still being used [8] when Sydney Brenner first applied computers to the
problem of visualizing serial section reconstructions in the early 1970’s [9]. More recently
however, advances in computing power; software; imaging technology as well as
visualization tools have spurred the development of a large number of 3-D reconstruction
approaches. These techniques are revolutionizing the fields of molecular-, cellular- and tissue
biology [1] [10]-[21]: even four-dimensional (4-D) preparations or visualizations are now
possible [21]-[23]. The distinctive functions that are displayed by biological structures stem
from a multitude of minute physical and biochemical events than occur between and among
topologically connected structural components at the different levels of the organization of
highly complex assemblages [24]. The spatial conformation (shape) of the structural
components that comprise living matter is ubiquitously 3-D [25]-[28]. Recently, 3-D cell- and
organoid culture have become particularly popular in studies of cell development,
morphology, differentiation, host-pathogen interaction and effects of drug treatments
compared to the traditional 2-D ones [23] [29]-[41]. It has been recognized that cells which
are cultured in 3-D cell culture assays behave utterly differently compared to those ‘grown’ in
2-D ones [31] [32]. Comparative investigations have indicated that 2-D cell cultures lose
tissue distinctive assemblage, generating changes in mechanical and biochemical signals and
disrupting cell-cell or cell matrix connections [31]. In drug delivery studies, while many
preparations may show success in 2-D cell cultures, this is not the case in in vivo studies
because the 3-D environment of the large number of cells in the body may render it
problematical for the drugs to equally affect all cells [30]. Furthermore, although in 2-D
culture cells acquire a spheroid morphology, the clusters are formed mainly by aggregation of
cell masses instead of dividing from a single cell and the groupings of cells are significantly
larger than those obtained by 3-D culture [36]. 3-D cell culture optimally supports the 3-D
shape of cells, thereby providing a physiologically appropriate environment similar to the one
which exists in the living tissue [34]-[36]. It is by coiling and folding into proper 3-D shape
that proteins can perform their complex biochemical function(s). Here, two examples are
given to underscore the importance of 3-D configuration in proper function of biological
components.

In microscopic biology, 3-D reconstruction is a highly instructive investigative technique [18]
[42]-[45]. It involves constructing a spatial model of a biological entity from a sufficient
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number of 2-D images [46]-[48]. Unfortunately, because of the high cost of time and
materials as well as the special skills required to perform it, 3-D reconstruction has not been
employed in morphological studies as much as it should have been. The 2-D images needed to
prepare the 3-D shape can be acquired by manual preparation of serial sections or by
tomographic methods using any measureable signal that is able to penetrate the specimen such
as: light, ultrasound, gamma rays, X-rays, neutrons or electrons [18] [49]-[52]. Serial section
3-D reconstruction is the oldest method of obtaining 3-D spatial micro-anatomical data and
dates back to the late 19" century [53]-[55]. Recent advances in optical microscopical
sectioning techniques as well as automatic block-face image capturing methods like episcopic
fluorescence image capturing (EFIC) or surface imaging microscopy (SIM) [56] [57] have
considerably increased the efficiency and the accuracy of serial sectioning. Regarding
possible sub-micron resolution, compared to the modern 3-D reconstruction techniques,
conventional light microscopical (histological) sections have certain advantages of which the
main ones are contrast and large sample size which is investigated [11] [18] [58] [59]. Only a
few state-of-the-art 3-D reconstruction techniques, e.g., synchrotron-based microcomputer
tomography (UCT) or focused ion beam scanning electron microscopy (FIB/SEM)
tomography compare in resolution with imaging sections [60]. As more robust ways of
utilizing 3-D reconstruction technology continue to be developed, 3-D imaging and animation
will constitute an indispensable investigative arsenal in the morphologist’s toolbox. Old
questions will be revisited and investigated from different perspectives and new questions will
be formulated and researched. 3-D reconstruction has lately found application in new research
fields such as tissue engineering and regenerative medicine [60]-[63].

In this investigation, we have performed 3-D computer reconstruction on serial histological
sections to study the spatial arrangement of the airway- and the vascular systems of a bird’s
(avian) lung. Among the extant air-breathing vertebrates, the avian respiratory system (the
lung-air sac system) is structurally the most complex and functionally the most efficient [64]-
[72] compared with the mammalian one. Although it has been continuously investigated for
well over four centuries (i.e., since [73]), still, some important aspects of its biology remain
unclear and/or controversial [74]. Like the invaginated gas exchangers of other vertebrates,
the lungs of birds are ventilated tidally, i.e., in-and-out, and in addition the avian lung
(specifically the paleopumonic part of it) is ventilated unidirectionally and continuously in a
caudocranial direction, i.e., back-to-front. This is achieved by synchronized bellows-like
actions of the air sacs. The path followed by the inspired air across the avian lung is
controlled by aerodynamic valving [75] and not by anatomical valves or sphincters, as it was
once believed. Morphometrically, the avian lung has thin blood-gas barrier, large respiratory
surface area and large blood capillary volume, structural parameters which confer an
exceptionally high pulmonary diffusing capacity for oxygen [71] [76]-[78]. Such
specializations explain why except for bats, birds are the only other vertebrate animals that
have attained powered (active) flight which is an energetically highly costly form of
locomotion which requires particular specializations [79]. Some birds can fly nonstop over
long distances and others fly under the extreme hypoxic conditions of the high altitude [78]-
[82]. Here, we present a 3-D reconstruction method for multi-view image acquisition of
microscopic samples combined with pre- and post-processing steps including correlation-
based image registration, filtering and a combination of manual and automated segmentation.
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Materials and methods

Fixation and processing of the lung

The Animal Ethics Committee of the University of Johannesburg approved all experimental
procedures (Clearance Number: 2017-06-29/Maina). A mature domestic fowl (chicken),
Gallus gallus variant domesticus, was killed by intravenous injection with pentobarbitone
sodium (Euthanase®) into the brachial vein at a dosage of 2mg/kg. Thereafter, the lungs were
fixed by intratracheal instillation of phosphate buffered 2.5% glutaraldehyde (350 mOsm L,
pH 7.4) at a pressure head of 3 kPa. The trachea was ligated and the fixative left in situ for six
hours. Afterwards, the lungs were carefully dissected out from their costal attachments.
Whole lungs were processed and embedded in paraffin wax according to routine histological
procedures.

Serial sectioning and imaging

Two-thousand six hundred and eighty-nine (2689) transverse serial sections were cut at 8 pm
thickness, stained with haematoxylin and eosin and mounted onto glass slides. The whole
series of sections constituted the entire lung volume. A total of thirty seven (37) sections were
lost or damaged during sectioning. The rest were mounted onto glass slides. In most cases, the
lost sections were non-consecutive, but in one case nine sections (72 pm) were lost in a row.
An area measuring 12.88 x 9.655 mm, which included the entire transverse section through
the lung was photographed using an Axioskop image analyser (Zeiss Instruments) at a
magnification of x10 in uncompressed Tiff image format at a resolution of 2576 x 1931 pixels
with a calibrated sampling of 5 um/pixel.
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Figure 1: Image processing and alignment. (a). Every 5" image was selected, normalised and down-
sampled. (b). The images were multiplied by a mask function to prevent the image border and particles
of dust from contributing to the alignment score. (c). The previously aligned image (“n”) is used as a
template and the images are correlated with one another: this is illustrated using red/green. The image
to be aligned (n+5) is rotated and translated relative to the template (n) until a maximum correlation
score is obtained (aligned). This newly aligned image is then used as a template to align the next
image (n+10) and the process is repeated.
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Image alignment

Every fifth image was selected. In cases where this section was missing or showed obvious
defects such as folds, tears, compression or inadequate staining, the previous- or subsequent
section was chosen. This produced five hundred and thirty five (535) images (representing 40
pum in the Z-direction), which were manually corrected in brightness and contrast using
ImageJ Version 1.4.0. [83] and imported into Spider V.15 [84]. Images were normalised to a
mean of 0 and standard deviation of 1 and down-sampled by a factor of 8 using bicubic
interpolation to yield a sampling of 40 um in X and Y (Fig. 1a). The images were then
multiplied by a mask function representing a Gaussian falloff (Fig. 1b) and aligned to one
another by maximising the cross-correlation function in X, Y and in-plane rotation (Fig. 1c)
[12]. The resulting alignment was sufficient for resolving the parabronchi and larger blood
vessels (Fig. 2) and permitted satisfactory reconstruction.

Figure 2: A cross-section (image 127) of the lung through the aligned image stack. All 535 individual
sections can be seen as vertical lines. Errors in vertical alignment can be seen as “jitters” in individual
structures. Areas where this is especially apparent are marked (*). Large differences in intensity
between adjacent sections can be seen as vertical bands (arrows).

Segmentation of the reconstruction

To identify and segment the air-conducting elements of the reconstruction, an automated
procedure was used. It involved applying a Gaussian filter and a threshold [12] [14]. In some
cases, where the parabronchi were separated from adjacent ones by interparabronchial septa, a
border was manually drawn around the periphery of the lung. Also, where two air-conducting
elements lay adjacent to one another, to ascertain that they were resolved, lines were manually
drawn between them. This process was iterated until a reasonable match between the
unprocessed images and segmentation [85] was achieved (Fig. 3).

Blood vessel segmentation was achieved by manually defining the border of each blood
vessel in the original (unprocessed) colour images (Fig. 3). These images were then down-
sampled and aligned to one another by applying the alignment parameters obtained
previously. To ensure that no blood vessels were mistaken for air-conducting elements
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(especially those lacking erythrocytes in their lumen), the segmented blood vessels were
subtracted from the air-conducting elements.

Reconstruction processing and display

The above procedure produced three image stacks: “air”, “blood” and “original images”.
These were converted into volumes using Spider V.15 and low-pass Fourier filtered to a
resolution of 160 pm with a Gaussian falloff [84] [85]. All three reconstructions were
simultaneously displayed in UCSF Chimera 1.12 [86], the appropriate surface threshold value
being determined by comparison with the “original images” volume. Larger blood vessels and
airways were visualised by applying an additional low-pass Fourier filter to a resolution of 0.8
mm and adjusting the threshold value. The segmentation function in Chimera was used to
further segment the blood vessels into arteries and veins.

Figure 3: Segmentation of the reconstruction. (a). An unprocessed hematoxylin and eosin stained
image (section 233) showing various air-conducting elements and blood vessels. (b). The same section
shown in (a), but resampled, normalised and aligned. The larger vessels and lumina of the parabronchi
are sufficiently well-resolved. (c). The manual blood vessel segmentation (red) and automated airways
segmentation (cyan) superimposed on (b). An excellent match between the structures identifiable in
the section was obtained. (d). The final image showing the airways (cyan) and blood vessels (red).

Results

Airways: bronchial system

The trachea divided into right- and left extrapulmonary primary bronchi (EPPB) at the syrinx.
The EPPB penetrated the lung at the hilus where they lie craniolateral to the pulmonary artery
(PA) and caudomedial to the pulmonary vein (PV). On entering the lung, the EPPB becomes
the intrapulmonary primary bronchus (IPPB) or the mesobronchus which changes in diameter
and course as it passes through the lung to exit the lung at the abdominal air sac. On the
various aspects of its lumen, as it passes through the lung, the IPPB gives off four sets of
secondary bronchi. These are: the medioventral secondary bronchi (MVSB) that originate
from the dorsomedial aspect of the lumen; the mediodorsal secondary bronchi (MDSB) that
arise from the dorsal wall; the lateroventral secondary bronchi (LDSB) that arise from the
caudoventral part and; the laterodorsal secondary bronchi (LDSB) that emanate from the
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lateral aspect of the distal part of the IPPB. The parabronchi or the tertiary bronchi
interconnect the secondary bronchi. The parabronchial system, which connects the MVSB to
the MDSB, forms the paleopulmo or the ‘old lung’ while those which connect the MDSB to
the LVSB and the LDSB form the neopulmo or the ‘new lung’. The paleopulmonic
parabronchi form a stack or pile of air conduits which largely occupy the dorsocranial part of
the lung while the neopulmonic ones are mostly located on the caudoventral part of the lung.
As they (paleopulmonic parabronchi) join the MVSB to the MDSB on the dorsal aspect of the
lung, they form hoop-like shapes: the paleopulmonic parabronchi lie parallel to each other and
sporadically anastomose with each other while the neopulmonic parabroonchi anastomose
profusely, forming a dense network. Generally, the paleopulmonic parabronchi are larger in
size compared to the neopulmonic ones.

Vascular systems: pulmonary artery (PA)

The PA enters the hilus ventral to the root of the first MVSB. On penetrating the lung, it
divides into four main branches (= rami), namely the accessory-, the cranial-, the
caudomedial- and the caudolateral branches. The branches supply blood to different parts of
the lung: the accessory branch, which is the first blood vessel to arise from the PA, supplies
blood to a small part of the lung ventral to hilus; the cranial branch supplies blood to the
craniodorsal region of the lung cranial to the second costal sulcus; the caudolateral branch
supplies blood to the ventrolateral part of the lung and; the caudomedial branch, which is the
most direct extension of the PA, supplies blood to most of the lung caudal to the second costal
sulcus. The four branches of the PA divide the lung roughly into a cranial- and a caudal
arterial vascular region, with a vertical transverse line passing through the second costal
sulcus forming the anatomical landmark or the dividing boundary: the cranial part of the lung
is supplied with blood by the accessory- and the cranial branches while the caudal one is
supplied by the caudomedial- and the caudolateral branches. Along the median longitudinal
plane which divides the lung into a lateral and a medial half along the so-called linea
anastomotica, i.e., the area marking connection between the parabronchi from the MVSB and
those from the MDSB (the paleopulmonic parabronchi) meet, the former part of the lung is
supplied by the caudolateral branch of the PA while the later one is supplied by the
caudomedial branch. In this study, up to about the level of the interparabronchial arteries, no
anastomoses were observed between the four branches of the PA.

Vascular system: pulmonary vein (PV)

At the hilus, the PV is separated from the PA by the intrapulmonary primary bronchus. The
PV is formed by connection of three converging blood vessels (radices), namely the cranial-,
the caudal- and the ventral radices. The radices join outside the lung to form the PV. In our
study, the connection of the radices was not included in the 3-D reconstruction because that
part of the lung was inadvertently cut off during trimming off of adhering connective tissue.
Most of the craniodorsal part of the lung is drained by the cranial radix which is formed by
confluence of three large veins; the caudal radix drains the part of the lung caudal to the third
costal sulcus and is formed by as many as four radices which extend dorsally and ventrally
and; the ventral radix, which drains the cranioventral part of the lung comprises two main
branches which drain the part of the lung located between the second and the third costal
sulci. Up to the level of the interparabronchial veins, no anastomoses were observed between
the radices.

Discussion

Employing different methods, the morphologies of the airways of the avian lung have been
investigated by various investigators [64]-[66] [71] [87]-[90]. Consensus on the numbers of
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airways, their shapes, connections, topographic locations and nomenclature has, however, not
yet been reached [74. While interspecific differences have been reported [64]-[66] [68] [71]
[91] [92], it cannot be completely ruled out that interspecimen differences occur largely from
developmental abnormalities and irregularities and the environmental conditions under which
the avian eggs are incubated. In this study, in addition to 3-D reconstruction of the airways-
and the blood vessels, for more insightful visualization of the morphologies and the spatial
associations between the different parts, movies which allowed the rotation of the
constructions across different planes and extraction (removal) and re-introduction of the
different parts to the constructions were prepared. Although certain weaknesses exist in all the
techniques which have been used to study the morphology of the avian lung, this study
corroborates most of the previous accounts. Indisputably, 3-D reconstruction is a very
powerful means of studying the morphologies of biological structures, including those of
structurally complex avian respiratory system.

The pulmonary vasculature of birds has been studied by [93]-[98]. Various techniques which
included injection with markers and following the paths they follow, e.g., microspheres, in the
blood vessels by light microscopic examination and microfilm, silicone, mercox or latex
rubber injection followed by maceration and preparation of casts or replicas have been used.
While our observations generally agree with those previously made by other investigators,
certain differences exist. Unlike in the mammalian lung where arteries closely follow airways
while veins run intersegmentally [99] [100], i.e., they are located between the airways and the
arteries, in the avian lung, the airway- and the vascular systems do not display such
arrangement. This may be explained by the complex development of the avian lung [101]-
[103], where, in lungs of phylogenetically derived species (evolutionally advanced birds), the
paleopulmonic part develops first to be followed by the neopulmonic one [102] [103]: the
adult lungs of an evolutionally developed bird comprises two distinctive parts, namely the
‘paleopulmo’ and the ‘neopulmo’ which display structural and functional differences: the two
regions are typically located in different regions of the lung [64] [68] [92] and the two parts
are ventilated differently. The paleopulmo is continuously and unidirectionally ventilated in a
caudocranial direction by concerted actions of the air sacs [67] [104] while the neopulmo is
ventilated tidally, i.e., back-and-forward. Taking these properties into consideration, it is
axiomatic that the airways and the blood vessels of the avian lung cannot follow each other in
the same way as in the mammalian lung, where mesenchymal cells which contribute to the
development of the airways and the blood vessels start at the same point (essentially the lung
bud) and in close proximity grow outwards as the lungs develop [105]-[107], forming the
various functional systems. Regarding the observations of [93] [94], in comparison with the
observations noted in this study, certain structural discrepancies exist. The main ones are: a)
while two main radices were reported to converge and form the PV [93] [94], here, three main
blood vessels drained the lung and joined to form the PV and; b) the second costal sulcus and
not the third one formed the boundary between the cranial- and the caudal blood supply- and
the respective drainage regions of the lung by the PA and PV, respectively.

In conclusion, compared to the other techniques which have hitherto been employed to study
the morphology of the airway- and the vascular systems of the avian lung, incontrovertibly, 3-
D reconstruction is the more robust technique. When it is combined with preparation of
movies which can be operated and closely viewed from different angles, the geometries of the
structures can be thoroughly scrutinized and understood. It is important to underscore that
while a powerful technique in its own right, scanning electron microscopy (SEM), which is
conventionally applied for imaging biological structures, does not strictly generate 3-D
images as generally wrongly interpreted: although they may appear so, the resulting images
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do not have an aspect of depth. Presently, there are several SEM techniques that can be used
to obtain 3-D information on a biological sample [108]-[110]. Some of them can be done on
any microscope and some require specialist instrumentation, software, or microscopes.
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Abstract

The nonlinear random vibrations of the cable-moored floating structures under wave
excitations are studied in three dimensions. One ends of four mooring cables are connected to
the floating structure and the other ends are fixed to the seabed. The nonlinear equations of
motions of the mooring cables are derived using the 3D cable elements which are formulated
based on the extended Hamilton principle. The floating structure is simplified as a rigid body
with six degrees of freedom. Then the equations of motion of the floating structure and
mooring cables are formulated as a whole system through their connection conditions. In the
last, the equations of motion of the whole structure under random wave excitation are
analyzed numerically. The influences of different sag-to-span ratios and inclination angles of
the mooring cables on the responses of the floating structure and maximum cable tensile force
are studied.

Keywords: Cable-moored floating structure, random wave excitation, 3D cable elements,
connection conditions.

Introduction

The cable-moored floating structures can find their applications in ocean engineering to
exploit marine resources such as oil, gas and minerals. If the floating platform is subjected to
horizontal excitations, the movements of floating platform can induce the geometry change of
mooring cables. The geometric nonlinearity of the mooring cables plays an important role in
the dynamical analysis due to their flexibility. Some researches simplified the mooring cables
as linear springs [1, 2] or nonlinear springs [3, 4] to support the floating platform, which
cannot reflect the real behavior and influence of the cables. A numerical approach was
developed for analyzing the dynamic behavior of marine cables using lumped mass [5-8].
With this method, cables are discretized into linear segments connected by nodes and the
equilibrium equations are established at each node. The mooring cables were fully modelled
using the finite element method [9, 10], in which the equations of motions of the mooring
cables and those of floating platform were solved separately and iteratively.

In this paper, the nonlinear random vibrations of three-dimensional floating structure and
mooring system under wave excitations are studied. The nonlinear random equations of
motions of the mooring cables are formulated using the 3D cable elements formulated based
on the extended Hamilton principle [12]. The cable element is simplified as a flexible tension
member without considering its bending and torsion stiffness because of the extremely large
ratio of its length and cross-sectional dimension. The floating platform is considered as a rigid
body with six degrees of freedom, i.e., three translational displacements and three rotational
displacements. The equations of motions of both the floating platform and mooring system
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are formulated as whole system through their connection conditions. Finally, the whole
system under random wave excitation modelled using JONWSAP spectrum is solved
numerically.

Problem Statement

Consider a floating structure and mooring system as shown in Figure 1. It consists of the
floating platform and four catenary mooring lines Ci, C2, Cs and Cas. The floating platform
and mooring cables are connected through four nodes A, B, C and D. O is the mass center of
the floating platform. The other ends of the mooring cables are fixed on the seabed. w,, w, and
w. are the length, height and width of the floating platform, respectively. The top view and
side view of the three-dimensional floating system are shown in Figure 2. The mooring cables
C1, C2 and Cs, C4 are symmetric about the y-axis in the plane x10y and x20y, respectively. 6, |
and d are the inclination angle, inclined length and sag of the mooring cable, respectively. w
is the length between the nodes A and B.

O
Zl Wb/ 2I
G k ) AHWIH
C )
WCI y
A
G
(a) (b)

Figure 2. () Top view (b) Side view of the three-dimensional floating system

Nonlinear Random Vibrations of the Moored Floating System
Finite Element Formulation for the Dynamics of Cable

The equations of motion for the element e in the local coordinate systems O-xiyzi and O-xzyz2
are derived based on the extended Hamilton principle and they are given as follows.

(M§+Mg)d; +Cid; + K (df)df =f; (1)

where d; is the displacement vector of element e in the local coordinate systems O-x1yz1 and

O-x2yzz; f; is drag force vector of element e; M; is the added mass matrix of element e
which is expressed as
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where T, is the transformation matrix between the coordinate system X yz, (xzyzz) and the

coordinate system X,Yy,z,, as shown in Figure 3; C_ is the added-mass coefficient of the cable
in the transverse direction.

Zl(ZZ)

Figure 3. Differential element e in the coordinate system x,y,z, of the cable element and the
coordinate system X yz, (X,yz,) of the cable

With Morison’s equation, the drag forces that act along the X3, ys, z3 directions of element e
are given as follows, respectively

Fes = _%Pscm Dlle (Uae _Vus)z sgn (U; _Vu3)

Fv% = _% pstt DlIe (\739 _Vv3 )2 sgn (\73e _Vv3) (3)

Fus = _%pscdt D,I* (W'i Vs )2 sgn (V_V; _sz)

where D, is the diameter of the cable cross section; C, and C, are the drag coefficients in
the longitudinal and transverse directions of the element e, respectively; V,,, V.5, V,, are the
fluid velocities in the x,, vy,, z; directions of element e, respectively; a;, v;, WS are the
average velocities of element e inthe x,, y,, z, directions of element e, respectively, which
are expressed as

Ui +Ujs . Vig+V Vi W

e @
and sgn(e) denotes the sign function given by
1, z>0
sgn(z)=40, z=0 ®)
-1, z<0
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Therefore, the drag force vector f; of element e in the coordinate system X yz, (xzyzz) is
expressed as

e 1 e e e e e e T
fg = TlT E{Fus’ Fis) Fuar Fuss Foas Fw3} (6)

Using the transformation matrix T and the relationship di =Td{ in which d is the
displacement vector of element e in the global coordinate system O-xyz, Eq. (1) becomes

Mid? +Cid? + K¢ (d))d; =F; ©)
where M¢ =T (M} +M3)T, C =T'C[T, K =T'K;T, and F =T'F;. The equations of
motion of the mooring cables are

M,U, +C,U, +K,(U,)U, =F, (8)

where the subscript m denotes the number of mooring cables.

Dynamics of the Floating Platform

The floating platform has six degrees of freedom, which are displacements u, v, w along x, y, z
axes and rotations a, S, y in XOy, xOz, yOz plane, respectively. The equations of motion of the
floating platform are given as follows based on Figure 4.

F, M O F
Fay <C_f7LC_ _'1: ‘;M_ Dynl::sx B
= FCZ 3 ) < (=
AX A FDX D Bz
FAZ FDz
y

Figure 4. Forces applied on the floating platform (F, = Mi+c,u—-F,,,
F,=MV+cV—F, +F,, F,=MW+cWw—F,, M, =J7+cy-M, +F,-2w,/3,

3
M, =J B+c,B-M,, M =Jd+ca—-M,+F,-2w,/3)

dy !

Y F,=0: (M+M,)li+cu+Fy +Fy +Fy +Fo =F, 9)
sz:O: (M +May)\'/'+05\7+FAy+FBy+FCy+FDy+Fb:de (10)
> F =01 (M+M,)W+c+F, +Fy, +F, +Fy, =F, (11)
W W W, W, W, W,
ZMZ:O:Jza+c7a+FAx7b+FBX?h+FA?—FBY?+FCX7b w
12
W, w w 2w,
0 ; We We W, W, We
zMy:O:‘]yﬂ+c8ﬂ+FAX?_FBX?_FAZ7+FBy?_FCx?
(13)
W W W,

+FDX?C_FCz?a+FDZ7a:M

dy
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L A A W W W,
ZI\/IX:O:JX7+097+FAy?—FBy?+ AZ?MFBZ?"—FW?
14
W, 2w, (14)
+F, 2+F > FDZ—+Fb2T:MdX

where M is the mass of the floating platform, Max, May, Ma; are the added mass of the floating
platform along the x, y and z axes, respectively, which are assumed as constant because the
vertical displacement is small [12]. J,, J, and Jx are the moment of inertia of the floating
platform in the xOy, xOz and yOz planes, respectively; F,, Fn. and Fy, are the dynamical
buoyancy of the floating body; Fax, Fay, Fa: Fex, Fsy, Fes, Fex, Fey, Fez, Fox Foy, Fo. are the
dynamical tensions from the cable at nodes A, B, C, and D in the X, y, z axes, respectively. F,,,
Fy Fur Mg, My, M are the hydrodynamic drag forces in the x, y, z axes and xQOy, xOz,
yOz planes, respectively. Fy, Fix and Fy, are the dynamical buoyancy of the floating body due
to the change of submerged volume of the floating body, which are expressed as

Fb = ps gWaWch

Fbl = %ps gW:Wca (15)

1
Fb2 :_pngaWczy
Referring to Figure 5 with P,(-w,/2, y,z) P(w,/2,y,2), B(xW/2,2), P(x Yy —W,/2)

and Ps(x, Y, W, /2), the hydrodynamic drag forces or moments that act on the floating

platform are given as follows.
VA

— /
[ ! Or - >
ol = P T = = B T
A ; dﬁy D D X/ %/
Figure 5. Drag forces act on the floating platform
o= Ll et [0 O
Foy :Ivvvvcc/zj ://zzdFy
P =IX§§IL“ . I I
M=o Jw/zf””;é J“xiif_““;j;«x)da )
Mdy=J_W;ij;fj§_h LA ”“W/;J /
IR A Wifh .
Mo =Ll dmf;;zy Y Jtﬁi!ﬁ“;j;<—z>da

where dF,,, , dFdxz, dF,,, dF,, and dF,,, are expressed by

y !
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1 . . 2 : .
dFy, = _Epscdxdydz (Uf +ya+zp _fol) sgn (Uf +ya+zp _fol)
1 : . 2 . .
dF,, = _Eloscdxdydz (uf +ya+zp _foz) sgn (uf +ya+zp _foz)

dF,

y=

1 . Co 2 . C
—5 P:Cyyicl (Vi +xc+27 =V ) sgn(V, +xa +2y -V, ) (17)
1 . . . 2 . . .
dF,, = _Epscdzdydx(wf +Yyy+xp _szl) sgn (Wf +Yyy+xp _szl)

1 . S 2 . .
dF,,, = _Epscdzdydx(wf +Yy+Xp _szz) sgn (Wf +Yy+xp _szz)

where C, , C, and C, are the drag coefficients along the x , y, and Z directions,

dy

respectively; Vi, , Vq,, Vy,, Vi, and V, are the fluid velocities at specific locations along

the x, y and z directions, respectively.

Formulation of the Whole System

In order to formulate the equations of motion of the mooring cables and the floating platform
as a whole system, the connection conditions between the mooring lines and floating platform
are required. Their relationships are

u —u+%a+%ﬂ v —v+%a+% w —W—ﬂﬂﬁ—%
A p YTy P Va p T p P

Wb Wc W',J1 Wc Wa Wb
U =U+—2a——Cf, Vg =V ——Cy, Wy =W+—2f+—2
B 5 5 B, vg > 2 7y Wg 5 B > vV

(18)
Wb Wc Wa Wc Wa b
Uu-=u+—a——p,, V. =VN+—a—¥Y, W. =W——"" ) +—
c 2 5 B ve > 5 7y We 2 B > Y

Wb Wc Wa Wc Wa Wb
Uy =U+—a+—=f, vyg=V——"a+—=y, Wy =W+—=2 f+—
D 5 2 B vy 5 5 7y Wp > B 5 4

where Ua, Va, Wa, Ug, Vg, Wg, Uc, Vc, We, Up, Vb, Wp are the displacements of the nodes A, B, C,
and D in the x, y, z axes, respectively. Then the equations of motion about the nodes A, B, C
and D in Eq. (8) are removed and replaced by Egs. (9)-(14) using the connections conditions
given by Eq. (18). The variables of displacements related to nodes A, B, C and D in other
equations of motion in Eq. (8) are also expressed by Eqg. (18). The final equations of motion
of the whole system are obtained as

MU +CU +K(U)U =F(t) (19)

where U is the global displacement vector; K(U) is the global stiffness matrix; F(t) is the
wave force vector.

Modeling of sea wave excitation

The sea wave is assumed to propagate in the horizontal direction in the plane yOz. The
kinematics of the water particles under wave excitation can be calculated based on the linear
Airy wave theory [13]. The free surface elevation 7 of the wave is introduced with a wave
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spectrum S, . Then the surface elevation at location z and time t is expressed by using wave
superposition as

1(2.8) =3 \/25, (@) Awcos(kz-at+6) (20)

where Aw is the frequency interval; o, is the angular frequency of the ith wave component
which equals gk; tanh(kd) and g is the acceleration due to gravity; k; is the ith wave number

which equals 27/4 and 4 is the ith wavelength; N is the number of frequencies; 6. is the

statistically independent random phase angle which is uniformly distributed between 0 and
2.

The condition of deep water depth is considered in this paper because h > 1/2. Therefore, the
fluid velocities V: and Vy along the z and y directions at any point P(x,y,z) and time t are

expressed as
N
V,=Y/2S, (@)Aowe"™ " cos(kz-wt+6,)

z : nn
I;l (21)
v, =Y 28, (o ) Awae“ " sin (kz -t + )
i=1
During structural design, the significant height and average period of a random wave are
specified. Therefore, the following approximate expression for the JONSWAP spectrum
given by Goda [14] is adopted.

-5

. exp| —( - )Z/ZTZ 2
Sy, (@) =e4H2 exp| -1.25(afay) " |7 oy fers) (22)

4
0

where
0.0624

© 0.23+0.0336y —0.185(1.9+7) "

and Hs is the significant height of the wave; @, =27/T, is the peak angular frequency of the

wave and To is the average period of the wave; y, is the peakedness parameter which varies

from 1to 7; and 7 is a shape parameter which is expressed as
0.07, o<,

0" {0.09, 0> o,

(23)

o

(24)

Numerical Example
Consider a 3D cable-moored floating platform with the parameters listed in Tables 1 and 2.
The density of seawater is p, =1.025x10° kg/m®. The power spectral density S,, is plotted in

Figure 6 with », =3, H,=0.8m and T,=8s. Each cable is discretized with 11 elements

because further increasing the element number cannot make the precision of the results further
increased obviously. The time step is 0.0008 s and the sample size used in Monte Carlo
simulation (MCS) is 108,

55



ICCM2019, 9th-13th July 2019, Singapore

Table 1. Properties of mooring cables

Parameter Value
Young’s modulus E (N/m?) 1.9x 10
Diameter D1 (m) 0.1
Mass density p (kg/m®) 8.2x10°
Damping ratio & 0.03
Sea depth h (m) 120
Inclination angle & (degree) 45
Sag-to-span ratio d /1 1/90
Longitudinal drag coefficient Cai 0.01
Transverse drag coefficient Cat 1
Transverse added-mass coefficient Cc 1

Table 2. Properties of mooring cables

Parameter Value
Length wa (m) 26
Height ws (m) 5
Width we (m) 10
Mass M (kg) 1.2x10°
Drag coefficient Cax along x axis 1
Drag coefficient Cay along y axis 1
Drag coefficient Cq; along z axis 1

0.2

0 L L L L I 1 L n
0 02 04 06 08 1 12 14 16 18 2
w (rad/s)

Figure 6. Power spectral density of wave surface with , =3, H, =0.8 mand T, =8s

The PDFs of the responses of the floating platform and maximum cable tensile force at steady
state are shown in Figure 7. The mean values of v, , w,, 7 and T, at steady state are 0.0059

m, 0 m, 0°and 7.845x10°> N, respectively and the corresponding standard deviations are
0.0112 m, 0.445 m, 1.95°and 1.258x10° N.
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Figure 7. The PDFs of v, , w,, ¥ and T, at steady state with d/I =1/90, 6 = 45°

If the inclination angle of the cables keeps as 45°, the standard deviations of the responses of
the floating platform and maximum cable tensile force at steady state are shown in Figure 8. It
is observed from Figure 8 that the standard deviation of w, decreases as d/I decreases from

1/45 to 1/75. Then it increases as d/I further decreases from 1/75 to 1/150. This is due to the
fact that as d/I decreases from 1/45 to 1/75, the second natural frequency of the linear system

increases from 0.94 to 1.103 rad/s, which is farther away from the dominant frequency 0.79
rad/s of S, . As d/I decreases from 1/75 to 1/150, the fundamental natural frequency of the

linear system increases from 0.586 to 0.83, which is closer to the dominant frequency of S, .
It is also observed from that the standard deviation of v, always decreases and the standard
deviations of y and T_ always increase as d/I decreases.

0.025 : ; ; : : : 0.6 : : : : : :
0.02 O.S\W//
04 ]
~ 0015 —~
g E
T = 03}
&7 001 &
02
0.005 o1l
0 : : : : : : 0 : : : : : :
1/45 1/60 1/75 1/90 1/105 1/120 1/135 1/150 1/45 1/60 1/75 1/90 1/105 1/120 1/135 1/150
d/l d/l
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Figure 8. The standard deviations of v, , w,, ¥ and T, at steady state for different d/I with

0=45°

If the sag-to-span ratio of the cables keeps as 1/90, the standard deviations of the responses of
the floating platform and maximum cable tensile force at steady state are shown in Figure 9
for different inclination angles of the cables. It is observed from Figure 9 that the standard
deviations of v, , w,, y, T, always increases as @ increases from 33° to 54°and they are

much influenced by the inclination angles of the cables. This is due to the fact that as &
increases from 33° to 54°, the fundamental natural frequency of the linear system decreases
from 0.679 to 0.593 rad/s and changes within a small interval, which is farther away from the
dominant frequency of S, , but the second natural frequency of the linear system decreases

from 1.576 to 0.832 rad/s, which is closer to the dominant frequency of S, .

1

0.025
0.02 + 0.8 F
g 0.015 g 0.6
8" 001t & 04l
0.005 0.2r
0 ‘ ‘ : : : ‘ 0 : : ‘ ‘ : :
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B)
)
2
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0 : : : : : : 0 : : : : : :
33 36 39 42 45 48 51 54 33 36 39 42 45 48 51 54
0 (degree) 0 (degree)
Figure 9. The standard deviations of v, , w,, y and T, at steady state for different & with

d/1 =1/90
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Conclusions

The nonlinear random vibrations of the cable-moored offshore floating structure are analyzed
under wave excitation. The floating platform is modeled as a rigid body with six degrees of
freedom. The mooring cables are modeled by using the nonlinear 3D cable elements which
are formulated based on the extended Hamilton principle. The effects of added-mass and
nonlinear hydrodynamic drag forces on both the floating platform and mooring cables are
taken into consideration. Firstly, the equations of motion of the mooring cables and floating
platform are formulated separately. After that, the connection conditions between the mooring
cables and floating platform are introduced to make the nonlinear equations of motions of
both the mooring cables and floating platform formulated as a whole system. The equations of
motion of the whole system are solved numerically using MCS. The influences of the sag-to-
span ratio and inclination angle of the mooring cables on the statistical properties of the
moored floating structure and the maximum cable tensile force are studied. It is found from
numerical results that the responses of the floating platform and the maximum cable tensile
force are much influenced by both the initial sag-to-span ratio and inclination angle of the
cables.

Acknowledgement

The research work presented in this paper were obtained under the supports of the National
Natural Science Foundation of China (China, Grant No. 51678576), the Research Committee
of University of Macau (Grant No. MYRG2018-00116-FST) and the Science and Technology
Development Fund of Macau (Grant No. 042/2017/A1).

References

[1]1 Yamamoto, T., Yoshida, A. and ljima, T. (1980) Dynamics of elastically moored floating objects, Applied
Ocean Research 2, 85-92.

[21 Tang, H. J., Chen, C. C. and Chen, W. M. (2011) Dynamics of dual pontoon floating structure for cage
aquaculture in a two-dimensional numerical wave tank, Journal of Fluids and Structures, 27, 918-936.

[3] Esmailzadeh, E. and Goodarzi, A. (2001) Stability ananlysis of a CALM floating offshore structure,
International Journal of Non-Linear Mechanics 36, 917-926.

[4] Umar, A and Datta, T. K. (2003) Nonlinear response of a moored buoy, Ocean Engineering 30, 1625-1646.

[5]1 Huang, S. (1994). Dynamic analysis of three-dimensional marine cables. Ocean Engineering, 21, 587-605.

[6] Driscoll, F. R., Lueck, R. G. and Nahon, M. (2000). Development and validation of a lumped-mass
dynamics model of a deep-sea rov system. Applied Ocean Research, 22, 169-182.

[71 Buckham, B., Nahon, M., Seto, M., Zhao, X. and Lambert, C. (2003) Dynamics and control of a towed
underwater vehicle system, part I: model development, Ocean Engineering 30, 453-470.

[8] Zhu, X. Q. and Yoo, W. S. (2016) Dynamic analysis of a floating spherical buoy fastened by mooring cables,
Ocean Engineering 121, 462-471.

[9]1 Garrett, D. L. (2005) Coupled analysis of floating production system, Ocean Engineering 32, 802-816.

[10] Kim, B. W., Sung, H. G., Kim, J. H. and Hong, S. Y. (2013) Comparision of linear spring and nonlinear
FEM methods in dynamic coupled analysis of floating structure and mooring system, Journal of Fluid and
Structures 42, 205-227.

[11] Pai, P. F. (2007) Highly Flexible Structure: Modeling, Computation, and Experimentation. American
Institute of Aeronautics and Astronautics, Inc., Reston.

[12] Sarpkaya, T. and lIsaacson M. (1981). Mechanics of wave forces on offshore structures. Van Nostrand
Reinhold Co.

[13] Borgman, L. E. (1967) Ocean wave simulation for engineering design. No. HEL-9-13. University of
California Berkeley Hydraulic Engineering Lab.

[14] Goda, Y. (1979) A review of statistical interpretation of wave data, Report of the Port and Harbour Research
Institute, 18, 5-32.

59



ICCM2019, 9th-13th July 2019, Singapore
Modeling penny-shaped crack using a single high order smooth element

+*Hang Ma', Donghong He?, and Zhao Guo®

'College of Sciences, Shanghai University, China
2Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, China
*College of Civil Engineering and Urban Construction, Jiujiang University, China

t+*Presenting and corresponding author: hangma@shu.edu.cn

Abstract

A high order smooth element is constructed for modeling penny-shaped crack placed on but
not limited to flat surface using a single element. The smoothness of the element is realized by
repeated use of real nodes for interpolation in both the radial and circumferential directions of
the element by taking advantage of geometrical features of the penny shape so that the end
node/line effects existing in conventional low order elements have been removed. The
technique of shape function manipulation is proposed to deal with the hyper-singular integrals
in the boundary element method (BEM) for crack problems. The stress intensity factors under
various loads are computed and compared with the analytical solutions in the numerical
examples, showing the accuracy and effectiveness of the proposed high order smooth element.

Keywords: High order smooth element, Penny-shaped crack, Stress intensity factor,
Hypersingular integral, Boundary element method

Introduction

In the three-dimensional fracture analysis of structures, penny-shaped cracks have long been
one of the most investigated cracks since their good representativeness to the defects in the
three-dimensional solids. Conventionally, the low-order elements are employed in the
numerical fracture analysis [1]-[2]. In the case of analyzing fine details near crack tips [3] or
multiple-cracks [4], huge numbers of elements have to be used, resulting in large solution
scale of the problem, especially for the FEM. In addition, the hypersingular integrals have to
be treated carefully in the use of boundary element method (BEM). Based on the Chebyshev
polynomials, Chen proposed a Gauss type quadrature to evaluate the hypersingular integrals
encountered over the whole flat crack [5], much like using a single element. Recently, Gao et
al. proposed a series of isoparametric closure elements [6] and improved by Ma et al. to high
order smooth elements [7] for modeling closed surfaces using a single element. In the present
work, the high order smooth elements are extended for modeling penny-shaped crack on flat
and spherical surfaces, combined with the proposed technique of shape function manipulation
to deal with the hypersingular integrals in the BEM. The stress intensity factors (SIF) under
various loads are computed and compared with the analytical solutions [8], showing the
accuracy and effectiveness of the high order smooth element.

Construction of smooth element for crack

Crack discretization

Only the upper face of the penny-shaped crack needs to be discretized in the radial and
circumferential directions. An example of the element with total nodes N=12 in the real and
parametrical spaces are shown in Fig. 1a and 1b, respectively, where the symbols © and <
mean that the nodes are used repeatedly more than once in either circumferential or radial
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directions for interpolations. The local intrinsic coordinates & and &, correspond to the radial
and circumferential lines. The double solid line Fig. 1b is the polar point of the element
without placing node and the numbers with an apostrophe is for avoiding confusion of nodes
which are used repeatedly. The digits in parentheses are the local counting numbers of nodes,
which correlates with the global counting number, m, as follows
m=(k—=1)-Ny+k,, (ky=1,...,N,;k, =1,..,N,) (1)

where N; and N, represent the numbers of nodes on the radial and circumferential lines, and
also the numbers of the circumferential and radial lines, respectively.

()] (0) (1) )
&, ¢ T Ve v
11 5 Iz 8 aQ®
1T O n I]yf 7 ()
g 3 6! 12 qe©
g 2 51 11 Qe
0T ¢5 I 4 10 ;1 9@
12! 6 3 9 Qe
T 5 Iz 3 5 qQ@
% ¥ II‘ 7 qo
9 3 6" 1 g <O
i i —
-1 0 +1
(b)

Figure 1. Crack discretization in real space (a), parametrical space (b) and along one of
the circumferential lines (c)

Shape functions

The shape functions for the crack are formed by the product of the shape functions in both the
circumferential and radial directions, just the same with the formation of closure elements [6].
However, the key idea for constructing smooth elements is the repeated use of nodes, with
which the interpolation spans are expanded as shown in Fig. 1b. Along one of the
circumferential lines as shown in Fig. 1c, three nodes with the global numbers 12, 7 and 8§ are
used twice. The digits in parentheses denote the local counting numbers from 0 to N,+2,
where the nodes used twice have two local counting numbers. The shape functions along
circumferential lines are defined as follows

A9 =1"()+i (8), (k=1.2) (2a)

d2(&) =1 (&), (k=3...N,~1) (2b)

A9 =0"" ()19, (k=) (20)
where I,EN »*2) represents the Lagrange interpolation polynomials of order N>+2 as follows

I(Nz+2)(§)_ }ﬁ (/;—éj) (k=0,1,..,N, +2) 3)
{ - 11 (5 —é)’ =0,1,...,N,
j=0, =k \ ok J

In radial directions, two auxiliary nodes denoted by < as shown in Fig. 1b are supplemented
across the pole so that the shape functions for crack surface are defined by

4= (8),  (k=1..V) @)
represents also the Lagrange interpolation polynomials of order N;+1 as follows

where /(")
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Nl —
)y (5-¢)
ce jllk(fk‘fj)

In this way, the shape functions for the crack surface can be obtained

b (£1:6,) = ¢;Ell) (fl)'¢/£22) (&), (k=3,..N,) (6a)
b (6.6) =0 (£)-00 (&) + ) (8) 0 (&), (i=12)  (6b)

where k&, =1,...,N, and the counting numbers m, k; and k; in Egs. (6a) and (6b) are correlated
by Eq. (1). The subscript M(k) is a mirror function about the pole defined as follows
k+N,/2 k<N,/2
M (k)= , (7)
k=N,/2" k>N,/2
Thus in the construction of smooth element for cracks, the even number should be used for V,.
Although the variation spans of the two intrinsic variables & and &, have been expanded,

however, the integration spans for the smooth element remain still within [-1,+1], a shaded
square region as shown in Fig. 1b. In consideration of the deformation feature of crack tip, the
shape functions for the crack opening displacement (COD) take a different form as

B0 (5:6)=00(8) 42 (&), (k=3,..N) (82)
b (61:62) = ¢Tk(ll) (§1)¢/£22) (52)+¢71(_1;21 (51)‘4’5](\422;{2) (&), (h=12) (8b)

, (k=-10,.,N)) (5)

where
-[(1+9)2] o

JI-[(1+&)/2] '

Therefore the smooth element for crack does not belong to the category of isoparametric
elements. It need to be pointed out that the role of auxiliary nodes denoted by < is nothing
but to improve the fitting effect along radial lines, since the outward normal of the surface in
the region indicated by < turns upside-down from that of the shaded square region as shown
in Fig. 1b. In addition, what needs to be emphasized is that the outward normal just at the pole
is indeterminate since the circumferential line reduces to a single point at the pole. This is
why no node be arranged at the pole for the crack element. It can be seen from the
construction process that there is no end node and end line inside the smooth element. As a
result, the interpolation accuracy of the smooth element will increase greatly with the removal
of end node/line effects and the increase of the order of interpolation polynomials while the
total number of nodes of the element is kept unchanged.

aV(£)= ), (k=1L..,N)) 9)

Dealing with singularities of integrals
Basic equations

The boundary integral equation (BIE) for a crack in full space is given below [9]
7,(y)=—HFP[5, (x)75 (x,)dA(x), vyed (10)
where A4 stands for the upper surface (jf the crack and ¢, the traction on 4. x and y represent
the field and source points, respectively. § =u;—u; denotes the COD defined by the
difference of displacements, »; and u;, over the upper and lower surfaces of the crack. HFP
means that the integral is evaluated in the Hadamard finite part sense. The kernel 7 is

defined by
qu(xa)’):"k(y)f;y‘(x’y) (h
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In Eq. (11), nk stands for the component of the outward normal and

y7, or
l]k (x,y)= m{:"a[(l 21/)5 rk+v(5k,r +§Ikr) Sr’ir,jr,k]
+3V(Ijji:kni +r,kr,inj)+(1—2v)(3r’ir’jnk + 0N +5jkn,-)—(l—4v)é}fnk} (12)

where ;2 and v are the shear modulus and Poisson ratio of the material, respectively. r is the
distance between the field and source points defined as

”:\/(xk—yk)(xk—yk) (13)
In a special case of a flat crack placed in the plane x;-x, with only the normal load applied in

x3 direction, the expressions (10)-(12) can be written in much simplified forms [5][8].
However, in the present work, these forms are kept unchanged to cope with the general cases.

(—1?+1) (+1,/—l)

Figure 2. Domains for evaluating strong-singular (a) and hypersingular (b) integrals

Shape function manipulation and evaluation of strong-singular integral

Now rewrite Eq. (10) after discretizing the COD of the crack using the shape functions (8a)
and (8b) as follows

N

7,(v)=-201} (14)
5,(x)= 30" [ (1):4 (x)] (15)

m=1

where
I = HFPJ;Z’” [fl (x),§2 (x)] rljc (x,y)dA(x)

+1+1

- dm 1076805 (667 (6.6) dcae, 16)

(¢.6)~

It needs to be pointed out that in Eq. (16) the upper crack surface A4 is discretized using the
shape functions (6a) and (6b), different from that for the COD. The integrals (16) are to be

evaluated in polar systems as shown in Fig 2a as follows
0, PL(0

_hmzj jw p,0)75 (p,0)J (p,0) pd pd6 (17)

Lo, ps
where (c1,¢;) stand for the local coordinates of the source point y. Introduce the shape function
manipulation as

Ag" :5 (P, ) ¢ (Cl’cz) (18)
Rewrite integrals (17) as
0., P,(0 0, PL(0
I”’—hme j A"z (p.0)J (p.0) pdpd6 +4" (c hmzj j < (p,0)J (p,0) pd pdd
Lo, p. L g, p,
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= Ity + 4, (v, )lim [ 7 (x,9)dA(x) = [7 + 4" (e ) 1 (19)
x—)yA ! )
by subtracting then adding back a shape function at the singular source point. It is seen that
the first integral 77"V at the right hand side of Eq. (19) is reduced to strong-singular integrals
to be evaluated in the sense of Cauchy principal value (CPV). Expand the integrand of 77"

in (19) in truncated Laurent expansion at a fixed angle 6 as follows

c - 1 Ag” P _47(0) (20)
(p,0 .0 6 o) =
5§ (00380 0.0)p =200/ s(p0) =] =2 o
where
o (7)) =15 (x,) 1)
47(0)=1ime! (0.0 J(pﬂﬁ_ =22(0)77 (6)7(0) (22)
p0 P P
77 (6)=lim22" — P” cosO+ ¢”’sma} (23)
0 p | 0 o5,

In this way, the strong-singular integrals "Y' can be evaluated using the conventional Gauss
quadrature in the following form

6> EL(H) _ Am 6 1 EL(H) —d
1;1CPV= J' { I |:A¢n1rlf(p’0)J(p,0)p— l/p( ):|dp+14.,;”(0)i11—1}0 J‘ ;}d&
z Ps

=2] I ){AJ"’T,? (p.0)J (p,ﬁ)p—4n;§9)}dpd9+ [ 47 (0)n[5,(6)J,(6) WO (24)

Evaluation of hypersingular integral

The second integrals 7/ at the right hand side of Eq. (19) have no shape function, resulted
from the shape function manipulation stated previously. Noticed that the kernels appeared in
these integrals describe a divergence-free field [10], having the properties of

llm(j)r x,)dI’ (x)=0 (25)

over a closed surface, suggesting that the integrals /' are surface independent, which can be

and should be made use of. As shown in Fig. 2b, when the point x move along the boundary S
of the crack, the straight line connecting x and y, or the generatrix, will form a new surface,
over which the evaluation of integrals 7™ can be carried out instead of the original crack

surface 4. The shape of the new surface would be planar or conical, depending on whether the
original crack is a flat or curved surface. In either of the cases, however, the component of the
kernel 7 on the generatrix is constant at a fixed angle ¢ because n‘ (ﬁ" =7’ x?) and ry are

all constants on the generatrix, where n° is the outward normal of the new surface, #° the unit
vector in 7 direction. See Fig. 2b and Eqgs. (11)-(12). Therefore

arﬁ

1§F*’=1gnjq x,y)dA(x _hmj j rc) (0)rdrd®

= j 7 6)d6 +lim j e (0)7)(0)do (26)

where « is the solid angle of the cone surface and in particular & =27 for planar surface. For
a physical problem, the integral above should exist, which means that the infinite term or the
last term at the right hand side of Eq. (26) should be eliminated or should be cancelled out by
free terms [11]. Finally, the integrals /™ can be evaluated using the conventional Gauss

quadrature in the following form
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I;FP = —Cj.)?’z (x)rl;). (x,y)dS(x) (27)

N

Numerical examples
Computation of SIF

In the numerical examples, the SIFs, K, K, and K3 are computed by the corresponding COD
values, 6", 6" and &' in the open, shear and tear modes, respectively, at the point x in the

local coordinate system (5 :?xﬁ) as shown in Fig. 3a using the following approximate

E T . _ E Vs B E V4

where 4 represents a small distance from the point x to the crack front and £ is Young’s
modulus of the material. In the situation that the crack surfaces are traction free in full space
under far-field loads, the computation model needs to be decomposed into two parts in the
numerical analysis of such cracks. In the first part of the model, the tractions equal and
opposite to the applied loads are acting on the crack surfaces without the far-field loads. In the
second part of the model, the full space is loaded by the far-field loads without cracks. The
final response is the linear superposition of the two parts of the model. However, the second
part has no direct contribution to the values of SIF.

equations

—o—N-8
—o—N=12
—v— N=24
—a—N=32
—o— N=40 o

.g-0-0-0-0-0-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0

-0,
'A;O-O-OOO—OrOrOrO—OrO—O—O—O—O—O—O—O—O—O'OOO-O

Relative errors of SIF

Na (b)

Figure 3. Local coordinate system (a) and errors of computed SIF as function of 4 (b)

Suitable distance check

Firstly, the suitable distance 4 is checked by a penny-shaped crack of radius a placed in the
plane x;-x; (x3=0) in full space under a far-field unit normal load in x3 direction, discretized
using a single smooth element with a series of total node numbers from N=8 to N=40. The
relative errors of computed SIF are depicted in Fig. 3b as a function of 4, showing that the
accuracy is satisfactory with such few nodes using a single smooth element. The results are
fairly stable in a wide range of 4 so that Ala=10"is adopted in the following examples.

SIF under various normal loads

Secondly, the SIFs of the penny-shaped crack in full space under various far-field normal
loads are computed using a single smooth element with the total node number N=32 and
compared with the analytical solutions [8]. The normal loads are expressed by

2 2
X X X1 X X X
— 1 2 172 1 2
0-0—C0+cl_+02_+C3_2+C4(_j +C5(_j (29)
a a a a a
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The coefficients for the 4 kinds of loads are listed in Table 1. The SIFs along the crack front
are computed and shown in Fig. 4a while the angle & is starting from the positive direction of
x;. It is seen from Fig. 4a that the computed results are in good agreement with those of
analytical solutions, showing the accuracy and effectiveness of the proposed high order
smooth element for the crack.

Table 1. Coefficients in Eq. (29)

Load o ¢ o 3 cy Cs
1 1 -1 -1 0 0 0
2 1 -1 0 0 0 0
3 1 0 0 -1 0 0
4 1 0.8 -0.9 0.5 0.08 0.02

SIF under unit shear load

Next example considers the penny-shaped crack in full space under far-field unit shear load in
x; direction using a single smooth element with the total node number N=32. It is seen from
Fig. 4b that the computed SIF in shear and tear modes (K, and K3) varies along the crack front
while the SIF in open mode (K;) keeps zero throughout as expected.

1.504
1.00

—o K ()

1.25

0.75 —o—K,(ma)"
050 —o—K ()"
0.251

0.00

-0.251

1.00+

0.75

KI(/zu)" 2

0.50

Dimensionless SIF

0.254 050+

0.754 N=32

0.00 - T T T T T T T T T T T T T
0 60 120 180 240 300 360 0 60 120 180 240 300 360
7 Z
(a) (b)

Figure 4. Comparison of computed SIF under various far-field normal loads («) and
computed SIF under far-field unit shear load (b)

SIF of cracks on spherical surface

In the last example, the curved penny-shaped cracks on a spherical surface of radius R are
computed under far-field unit normal load as shown in Fig. 5a using a single smooth element
with the total node number N=40. The computed SIFs are presented in Fig. 5b with R/a,
where the shape of the crack becomes a half-sphere when R/a=1 but behave towards a flat
crack when R/a is very large. It is shown from Fig. 5b that that the SIF in open and shear
modes (K; and K3) increase gradually with R/a while the SIF in tear mode (K3) keeps zero
throughout as expected.

0.8+

rrror 061 °

0.4

0.2+
0.0

0.2
0.4 N=40
-0.6-]

3 1' 1'0 160
Lol () R (b)
Figure 5. Curved penny-shaped cracks on a spherical surface («) with computed SIF (b)
under far-field unit normal load

Dimensionless SIF
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Conclusions

In the present work, a high order smooth element is constructed successfully for modeling
penny-shaped crack placed on flat or curved surface using a single element. By making full
use of geometrical features such as the symmetry and periodicity, the smoothness of the
element is realized by repeated use of nodes in the radial and circumferential lines for
interpolation. As a result, the accuracy of the crack modeling increases because of the raise of
the order of interpolation polynomials as well as the removal of the end node/line effects
existing in conventional low order elements. The technique of shape function manipulation is
proposed to deal with the hyper-singular integrals in the BEM for crack problems. In the
numerical examples, the accuracy and effectiveness of the proposed high order smooth
element and the technique for hyper-singular integrals are verified by the computed SIFs,
using a single element with such few nodes, compared with the analytical solutions.

Acknowledgement: The support of the present work by National Natural Science Foundation of China
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Abstract

In this paper, two-dimensional, two-layer steady stratified flow about a equal-strength counter-
or co-rotating vortex pair in the lower layer is concerned. Potential flow theory and boundary
integral equation method are applied to establish boundary integral equations about the interfa-
cial wave. These equations are solved numerically based on quasi-Newton method. The effects
on interfacial wave profiles of distance of the vortex pair are analyzed. It is found that the
wave height oscillates with d and the extreme values are almost the sum of that for two vortices
consists of the pair, especially for d large enough. When d is set that the wave height gets its
maximum points the wave profiles is about the superposition of that for the two vortices, where-
as when d get its minimum points the difference between the wave profiles caused by the pair
and the sum of profiles for these two vortices is large.

Keywords: Stratified flow, Point vortex pair, Boundary integral equation, Nonlinear inter-
facial waves

Introduction

When there exists a disturbance source in the steady density-stratified fluids, an internal wave
will be generated. Two-layer model of the vertical structure with different densities are often
employed as a simplified model of internal waves of steady density-stratified fluids. Many
researchers have studied the internal waves generated by various disturbance sources in two-
layer fluids such as the moving point source in the upper[1] and lower layers[2], the moving
dipole [3], the point vortex in the lower layer[4] and upper layer[5] and the hydrofoil in the
lower layer[6].

Forbes applied this boundary integral equation method with arclength parameters to describe
the surface while studying non-linear surface wave caused by a submerged point vortex [7]
and a submerged hydrofoil[8] in two-dimensional ideal irrotational fluid of infinite depth. The
obtained equations were solved numerically based on Newton method. Then this theory is
used to study the interfacial waves in two-layer fluids by different disturbance by following
researcher[9], [4].

The vortex pair is the basic element of fluid mechanics. Study of it to a large extent comes from
the problem of trailing wakes. Many studies are concerned with dynamics and instability of
vortex pairs. The literature [10] reviewed the characteristics and the behaviors of vortex pairs.
Besides, some researchers focused on the interactions and the flow structures between vortex
pairs and other objects like wall[11] and free surface[12],[13].

In this paper, the two-dimensional two-layer steady flow for a submerged vortex pair is con-
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sidered. Both layers are inviscid and incompressible ideal fluids with consistent flow direction.
The upper layer is of finite depth and bounded by a rigid lid, while the lower fluid is infinitely
deep in which there exists a vortex pair set on a horizontal fixed position. The structure of this
paper is as follows: at first integral-differential equations are established using the potential
flow theory and boundary integral equation method. Secondly the problem is solved numerical-
ly based on the quasi-Newton method, which has been verified and gives a well performance in
DoF. Then we compare the effects of different parameters on the wave profile, including Froude
number, vortex strength and distance between two vortices.

Model of the problem

Consider steady two-layer fluids of different densities. Both layers are ideal fluids and irro-
tational. Their upstream uniform speeds have consistent flow direction. Creating a Cartesian
coordinate system such that the x axis is placed at the undisturbed horizontal interface and point
in the same direction of upstream uniform speed, as well as the y axis points up vertically. The
depth of upper fluid is 7" and the upper surface satisfies the rigid-lid assumption. The lower fluid
is infinitely deep with a point vortex pair placed where its center is at (0, —H) . The distance
between the two point vortices is 2D with circulation K; < 0 at (-d,—1 and K, > 0 at (d,—1)
respectively. In following context we use subscripts 1 and 2 to represent the physical variables
associated with the upper fluid and the lower, respectively. Densities and upstream uniform
speeds of two layers of fluid are py, p,, and 1, y».

For the convenience of discussion, use y, as the speed scale, H the length scale to get the
dimensionless model, then introduce following dimensionless parameters:

Nz _ K K o v, T D
F=—"—— 6=——,6=—p=—,y="—, A== d=—
VgH Y.H Y2H Y2 H H

where F is the Froude number, €, €, are the dimensionless vortex strengths of the two point
vortices, p is the ratio of density, vy is the ratio of far upstream uniform speed, A is the nondi-
mensional depth of the upper layer, and 24 is the nondimensional distance between two vortices.
The elevation of fluid interface is described by a function y = n(x).

density p

flow speed ~ o — (s z=2z(t) /=N
SO N

Figure 1. The nondimensional problem of a two-layer flow about a submerged vortex
pair located horizontally.

Because two layer fluids are both ideal fluids and flows are irrotational, from potential flow
theory two potential functions ¢, ¢,, the stream functions ¢, ¢, satisfy the Cauchy-Riemann
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equation: (9/0x)¢; = (8/dy)y;, (0/0y)p; = —(0/0x)y; j = 1,2. Thus two analytic functions
fi(@) = ¢j(x,y) + i (x,y), z = x + iy, complex velocity potential functions for upper and lower

fluid separately are introduced. z; = —d — i, z = d — i, the position of the two point vortices,
are two singularities of f, where i is the imaginary unit, i* = —1. f, satisfies
iEl i€2
Lozt -In-z)+ —Inz-2), z—=z,.2 (D
2n 2n

at z; and z,. The upstream conditions are

fi = vz, fp—> 2z, Re[z] » —o0 (2)

here Re[z] means the real part of z.

The kinematic boundary condition for upper surface

Vo, -n = 0. 3)

At the interface y = n(x) it is

Ve, m=0, j=12, @)

_(9 8
where V = (7, o)
Introduce the arclength parameter s to parameterize the fluid interface y = n(x), so the fluid

interface is represented as (x, y) = (x(s), y(s)). The arclength condition is

dx\’ dy g B

The fluid interface satisfies the Bernoulli equation

2 2 o) -1
p(%) _ (@) + —(‘0 )y = pyz -1, (6)

ds ds F?

according to setting the pressure and velocity equally on the interface. For more details can be
found in [4] and referring in it.

Choose a fixed point z = z(s) = x(s) + iy(s) randomly on the fluid interface, where s corre-
sponding arclength parameters. The Laplace equation for the upper and lower layer fluid could
be replaced by 9? f(z)dz = 0 and } Resf, z;. Both two integral equations come form Cauchy
integral and residue theorem with respect to integral contour-path on z; and z,. Writing two
functions ¢’s as forms of integral equations, two integral-differential equations are established
for the upper and lower layers by the boundary integral equation method The detailed derivation

process is similar to [4].
Introduce the analytic function G(z) = dd—é —, then apply the Cauchy integral formula and take

its imaginary part to establish the governing equation. Applying the equality
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AB=A-B+iA X B = (ac — bd) +1i

a -b
d

where A = a +ib, B = ¢ + id € C, the governing equation can be written as follow

+00

n(y — x'($)¢1(s)) = Im { JE G (z(n) x d(In(z(r) — Z(S)))}

—00

oo @)
+Im { f G1(2(t)) x d(In(Z(¢) — Z(S)))}

(%)

where Z(¢) = x(t) + i(24 — y(¢)) is the mirror point of z(s) about y = A. The first integral on the
right side of the equation is the singular integral in the sense of the Cauchy principal value.

For the lower layer, introduce the analytic function G,(z) = %2 — 1 similarly, apply the residue

theorem, and the equation Sﬁ_z Qe _ opi Zi:l Res { ffz(("?), 43

. &=2(s)
1, 2 = d—1.

} i1s obtained, where z; = —d —

Calculating the residue and integrals in the above formula and taking the imaginary part. The
residue contribution obeys the superposition law. The lower layer fluids following governing
equation

+00

m(x' (5)¢3(s) — 1) =Im { f G (z(0) x d(In(z() - Z(S)))}

€ (y(s) —Im zy) N € (y(s) —Im z,)
|2(s) — 21 |2(s) — 21

®)

Whereas the vortex pair contains two isolated singular points z; and z,, which requires two
calculation of residual number and add one more term in the governing equation.

The governing equations (5), (6), (7) and (8) are derived. Based on them and the corresponding
boundary condition (2), the unknowns x(s), y(s), ¢1(s) and ¢,(s) can be calculated.

Numerical procedure

The numerical calculation method is similar to [4], while the difference is that this paper applies
the quasi-Newton iteration method [14, 15] to solve (5), (6), (7) and (8). If y" is determined ,
then from (5) x’ is obtained, as well as x(s) = f_ Sw X'(t)dt and y(s) = f_ Soo Y (t)dt are also acquired.
(7) can be written as integral equations with respect of ¢’1 , then from (6) gb’z can be solved easily.
As ¥’ is unknown, take the approximation of y’ as y’ and (8) as the cost function to update the
approximation with quasi-Newton method. The following is the detailed process.

The integral area (—oo, +00) is truncated to the finite interval [sy, sy], then N —1 equally dividing
it to get N grid points s, = s; + (k — 1)As,k = 1,...N. Here As = (sy — s1)/(N — 1) means
the step size. xi, y, X, V;» d)’l’k, ¢’2’k are the approximation value of the responding unknown
quantities. According to the infinity boundary condition (2), the equation (5) and (6) determine
=y =0,x =1x =s,¢, =7 ¢, = 1. To eliminate the effects of singularity in
the integral, half grid points at ats,_1,, = (Si=1 + %) /2: Xp_ls Vi1, x/;_ 1 yl’c_ 1 ¢’1 et ¢;7k_ -
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k =2,...,N are also calculated. Here Xl = (xx—1 + x)/2. So as other variables. The initial
approximation of y),---,y, = 0.

Asy,,---,yy 1s determined, calculate numerical integration on the finite interval [s;, sy] with
trapezoidal rule to get discrete equations A[qbl1 P ¢’1 v17 = ¢ while taking the approximation
value of quantities at s as its value in (7). Deafing with 7(8) in a similar way yields the equations
of matrix form E(y}, -+ ,yy) = B[‘/’,z,l’ e, ¢'2’N]T — d, where ¢'2,k calculated from Bernoulli’s
equation (6). In these equations coefficient matrices A, B, constant terms b, d are all concerned
with y;, X}, X, yi , which can be calculated by (5) and trapezoidal rules: Finally, we get a system

of equations for y}, ..., y). Solve it applying quasi-Newton method, and the iteration formula
is[14]:
i1 = U — A7 E(wy),
s =t = A EGw) i=0,1,2,... ©)
A1 = A+ (bi - AiSi)S,-T/(SiTSi)
where u = (y),...,y}), u; represents ith iteration approximation of u, E(u) = (Ez[y5, ..., yyl,

o ENIYS oo YWD, Si = uig — w;, and b; = E(uiy) — E(u;). For i=0, Ay could be chosen as
((E"( + he:) = ET(y)/h), the (N—1xN—1) difference matrix of cost function E, i = 2,-+- , N,
where y* = [y},...,yy] and ¢; is N — 1 dimensional unit vector. This Calculating progress
terminates when Calculate |[E||, ||E||, is less than the given number €.

Results analysis

In the numerical calculation, the upper depth is set 4 = 20, and far upstream uniform speed
ratio y = 1, namely two-layer fluids with equal spped. If we setd = 0, ¢, < 0, &, = 0, in fact it
is the case for a single vortex € < 0. The calculation error precision is setting to be o = 107,
The calculation domain is [-25, 30] and the grid number N = 2201, as well as As = 0.025.

-0.04 L L L L L -0.04 1 ! ! L L
-20 -10 0w 10 20 0 oy -10 0z 10 20 30
= 0-03 —eod J\/\/\/\/\A/VWVVWV\ = 0 — 159 J\z\/\/\/\/\/\/\/\/\/\/\/\/\/\/\
L : L . X -0.04 " L : N |
o -10 0z 10 20 30 gou—2 -10 0z 10 20 30
°-°3|_d:2,05| I J\/\/vvvvvvvvvvvvv s o= AN AVAVATAVAVAVATAVAVAVATAYAY
=
_004| L L L L L -0.04 1 L s L L
-20 -10 0x 10 20 30 -20 -10 0z 10 20 30
004 —gt003] ) ' ' ' 004 —q=1066] A ' ' '
> 0 _L/\N\/\/\/\N\/\/\_/\/\/VV\/\/\/W = 0 —_L/\N\AA/VW\/\,\/\/\/\/\/\/\/\/\N
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Figure 2. Comparison of interfacial wave profiles when d changes, where parameters
F=0.13,p=0.9,¢; = —0.24,¢e; = 0.24

For counter-rotating vortex pair with €, < 0 and & > 0, figure 2 represents how wave profiles
change with d. As d increasing the amplitude of upstream wave profiles increases and gradually
stabilizes, as well as that of downstream steady wave profile oscillates. When d is large enough
there’s steady wave profile between two vortices, which is close to that for the single vortex
€ < 0. For d = 10.13, the wave height and length of this steady wave profile are &7 = 0.01587,
L = 2.018, close to that of the steady wave profile 2_ = 0.01580, L_ = 2.019 for a single vortex
€ = —0.24 at (0, —1). Figure 3 describes the periodical change of wave height & of downstream
wave profiles with d clearly. When d changes, the phase difference of two wave profiles caused
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by two vortices changes periodically. If the phase difference is one/half a period, the amplitude
of sum of these two profiles is the maximum of 4. The period is close to L_/2. That is to say
that this period is almost the distance of two vortices(2d). As d is large enough, the extreme
values of downstream wave height /4 are approximately A, + h_, which are downstream steady
wave height for a single vortex € = —0.24 and € = 0.24, respectively. Whereas for d = 0.51,
h/thy + h.) = 0.9775 and d = 1.01,h/|h, — h_| = 0.8459. These values of d are the maximum
and minimum of figure 3.

O ' ' ' ' '

0 1 2 d 3 4 5
Figure 3. Relationship of A /h_ and d. Two horizontal lines of dashes represent h, & h_.
h is the downstream wave height and h_ = 0.01580, h, = 0.03038 are wave height for

a single vortex e = —0.24 and € = 0.24, respectively. Other parameters F' = 0.13,
p=0.9,e; = —0.24,e; = 0.24.

0 1 2 d 3 4 5
Figure 4. Relationship of h /h_(solid line) and h;,/h_(dash line) with d, where h is the

downstream wave height and ~A_ = 0.01580 is the wave height for a single vortex
€ = —0.23. Other parameters F' = 0.13, p = 0.9, €; = €3 = —0.23.

For co-rotating pair, figure 4 shows that the wave height % also change with d periodically and
the extreme values are almost the sum and difference of wave height for the single vortex except
d = 0.413 and 0.93. On the other hand, let (x(s), y(s)), (x1(s), y1(s)) and (x,(s), y2(s)) represent
the interfaces for the vortex pair € and e,, the single vortex at z; and z,, respectively. Figure
4 shows the variance of wave height of y;(s)) + y;(s)) (written as h;,) oscillates like 4 with
d and moves backward except for about d < 0.5. To examine this behavior, try to construct
an approximate analytic expression considering that for a single vortex € < 0 the wave profile
consists of a large crest like a solitary wave and the downstream steady waves. Assume that this
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crest can be written as y = Asech®(x — xo) and the downstream wave y = Asin((2n)x/L + ¢),
calculate curvature of highest point, the amplitude and wavelength and the positions of the
maximum points to obtain the expression y = Asech®(x—x()+0.0794sin(2r/2.025+0.562)H(x—
x1), where xo = 0.275, A = 0.0205, @ = 2.957 and x; = (7 — ¢)L/2n. Figure 5 describes the

T T T -
0.02} wave profiles for the single vortex
’ - - = -Aysech®(x — xg)+Agsin((2m)x/L + ¢)H (x — x1)
0.01F ]
= 0
-0.01 : :

-20 -10 0z 10 20 30

Figure 5. Comparison of interfacial wave profiles calculating by boundary integral
method(solid line) and the expression patched (dash line), where parameters F' = 0.13,
p=0.9,e=—-0.23.

fitting effects. From figure 6, the wave profile is close to the superposition of two wave profiles

0031 ; 0.02}
002} 00Lf
SN

001} 170

N " n oo - oo -001 i
0 : . vy 0,02b— : : ' '
20 -0 0z 10 20 3 20 -0 0z 1020
(a)d =0413 (b)d =0.93

Figure 6. Comparison of interfacial wave profiles calculating by boundary integral
method(solid line) and the expression patched (dash line) for (a) d = 0.413, (b) d = 0.93

for the single vortex as d makes 4 around its maximum (for instance d = 0.93) and significantly
different as h gets is minimum points(for example d = 0.413).

Conclusion

In the steady two-dimensional two-layer flow with ideal irrotating fluids, a vortex pair sub-
merged in lower layer generates interfacial waves . In this paper, two integral equations coupled
with Bernoulli equations of nonlinear boundary waves are established by applying potential
flow theory and boundary integral equation method, then a numerical method based on quasi-
Newton method is carried out. The influences of d, which is the half of distance between two
vortices on symmetric and asymmetric pair is discussed.

For symmetric/antisymmetric vortex pair, as d increases the wave height of downstream wave
h oscillates and the extreme values are close to the sum/difference of wave heights for two
vortices of the pair. When d is taken near its maximum points, the wave profiles is close to the
superposition of that for these two vortices, whereas if d is taken other values the difference is
large.
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Abstract

The current paper presents the solution of elastic buckling of columns using stochastic B-
spline wavelet on the interval (BSWI) based wavelet finite element method (WFEM). In this
work, the spatial variation of modulus of elasticity is modelled as a homogenous random
field. BSWI scaling functions are used for the discretization of the random field. Columns
under different boundary conditions are considered as numerical examples. The stochastic
Eigen value problem is solved for the response statistics of buckling load with perturbation
approach and the results are validated using Monte Carlo simulation (MCS). A parametric
study is carried out by considering different coefficient of variation values by varying the
standard deviation. A comparative study of computational time needed for the execution of
perturbation approach and MCS is also done.

Keywords: B-spline wavelet on the interval; Multiresolution analysis; Random field; Auto-
covariance function; Perturbation method; Monte Carlo simulation; Elastic buckling

Introduction

Buckling is one of the predominant modes of failure which is observed when a structure is
subjected to an axial compressive type external loading. It is a stability failure wherein, the
entire structure collapses suddenly and the critical value of the applied external load causing
this failure depends on the geometry of the structure and the stiffness of the material but not
its strength [1]. Engineering structures have a high degree of uncertainty associated with its
material properties, loads, geometry, operating environments, etc. [2]. The uncertainty in the
design parameters will also result in uncertainty in buckling loads and its mode shapes.
Therefore, a stochastic modelling approach leads to a robust design by providing additional
statistical information on the stability of the structures. At the same time, a stochastic
modelling also increases the complexity of the mathematical model and needs a higher
computational effort to obtain the system response when compared with a deterministic
approach. Nonetheless, widespread research has gone into the development of stochastic
based numerical methods over the past few decades due to the availability of powerful
computational resources.

Extensive research has gone into the development of stochastic finite element methods
(SFEM) [3], wherein a stochastic mesh is generated to discretize the input random field and
calculate the response statistics. Vanmarcke and Grigoriu [4] analysed simple beams with
random elastic moduli using SFEM. Lin [5] developed a SFEM for the buckling analysis of
frames with random initial imperfections, uncertain sectional and material properties.
However, due to the high mesh dependency of finite element method (FEM), mapping the
random field discretization onto response discretization becomes difficult. Hence, there is a
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need for the development of stochastic based numerical methods, which can address the mesh
dependency and re-meshing issues of FEM. Meshfree methods have been used in the
stochastic analysis [6,7] to alleviate the mesh dependency of FEM. Gupta and Arun [8]
proposed a stochastic meshfree method for elastic buckling of columns. In addition to
meshfree methods wavelet finite element method (WFEM) is another alternate numerical tool
which has shown to reduce the issues related to FEM considerably.

Wavelets are mathematical functions that are used in the approximation of other unknown
functions at different levels of resolution. The multiresolution analysis (MRA) and two scale
relation properties of wavelets lead to the development of a hierarchy of solutions during the
approximation process. Wavelets have a scale varying local basis functions having a compact
support that leads to a refinement of solution locally in the regions of high gradient.
Therefore, issues related to slow convergence and re-meshing can be addressed using wavelet
based numerical methods. B-spline wavelet on the interval (BSWI) has gained widespread
popularity from among different wavelets that exist in the literature [9], due to its underlying
properties [10,11] and hence, it is selected to be used in the current paper.

One-dimensional (1D) Cy and C; BSWI elements for structural analysis using BSWI WFEM
were constructed by Xiang et al. [12]. Deterministic buckling analysis of functionally graded
beams and functionally graded plates was done by Zuo et al. in their papers [13] and [14]
respectively. Yang et al. [15] carried out a deterministic study of free vibration and buckling
analysis of plates.

Besides the discretization of random field, evaluation of response statics also needs to be
computationally efficient. Monte Carlo simulation (MCS) has been used for the calculation of
response statistics. Elishakoff [16] solved the problem of buckling of finite columns with
initial imperfections, resting on a softening nonlinear elastic foundation by Monte Carlo
method. But the usage of MCS makes the modelling process computationally expensive with
increase in MCS sample size and number of random variables. Hence, a more viable
procedure is needed that requires less computational effort. In this regard, perturbation
methods have been extensively used for SFEM or stochastic meshless methods.

From the existing literature, it is noticed that a stochastic BSWI WFEM formulation for
elastic buckling of columns using the perturbation method for calculating the response
statistics, while material properties are modelled as random field does not exist. Hence, in the
present study, the solution of elastic buckling of columns using stochastic BSWI WFEM is
presented. The spatial variation of modulus of elasticity is modelled as a homogenous random
field. BSWI scaling functions are used for the discretization of the random field and response.
Columns under different boundary conditions are considered as numerical examples. The
stochastic Eigen value problem is solved for the response statistics of buckling load with
perturbation approach and the results are validated using MCS. A parametric study is carried
out by considering different coefficient of variation (CV) values by varying the standard
deviation. A comparative study of computational time needed for the execution of
perturbation approach and MCS is also done.

In the next section, for the benefit of the reader, a brief description of BSWI and its properties
is given.

B-spline wavelet on the interval [0, 1]

The theory of spline wavelets for whole square integrable real space L*(R)was developed by

77



ICCM2019, 9th-13th July 2019, Singapore

Chui and Wang [17-19]. Wavelets defined on LZ(R) cannot be directly used as interpolating

functions as it results in numerical instability [20]. Hence, Chui and Quak [10] addressed this
issue by constructing wavelet bases for the bounded interval [0, 1], which came to be known
as BSWI. Spline wavelets are semi-orthogonal wherein, they retain inter-scale orthogonality
and there is no necessity for the basis functions to be orthogonal to its translates within the
same resolution level. By introducing multiple knots at the endpoints, splines can readily
adapt to the case of the bounded interval [0, 1]. As a result, no truncation is needed when the

function on L*(R) is restricted. By way of suitable adaptation at the endpoints, MRA of

LZ(R) can be implemented over to [0, 1]. Multiple knots exist at end points (0 and 1 in the

case of BSWI) and they do not diminish the overall order of smoothness of the elements on
[0, 1]. The continuity of B-splines depends on the selected order m in such a way that B-

splines with order m are in C__, continuity. The analytical expressions for the BSWI scaling

functions ¢ and wavelet functions v for given order m and resolution j=0 can be found in
the paper by Goswami et al. [21] and the expressions for order m and any resolution j were
given by Xiang et al. [12] as,

¢, (27¢), k=—m+1..,-1 (0 boundary scaling functions)
B 1=271E), k=2 -m+1,..,2' -1,

(1 boundary scaling functions)

¢, (27E-27"k), k=0,..,2" —m, (inner scaling functions)

rrj1,k (5) = (1)

Y (27¢), k=—m+1,..,-1 (0 boundary wavelets)
| il ; .
i Vo @-278), k=2 -2m+2,..,2' -m
Yo (&) = mamami )
(1 boundary wavelets)

yho(27E-2"k), k=0,..,2' =2m+1, (inner wavelets)

The compactly supported intervals of wavelets are,

[0, (2m—1+k)27'], (0 boundary wavelets)
supp y) , (£) = [k277, 1], (1 boundary wavelets) (3)
[k277, (2m—-1+k)27'], (inner wavelets)

BSWI scaling functions are categorized as the boundary scaling functions that exist at
boundary points 0 and 1 on the domain and inner scaling functions that are dilations and
translations of cardinal B-splines as shown in Eqg. (1), (2) and (3). Eventually, the
corresponding wavelets can be constructed from the scaling functions. BSWI scaling
functions of different order and resolution which are used in the current study are shown in
Figure 1.

78



ICCM2019, 9th-13th July 2019, Singapore

08 08
0.6 0.6
04 0.4
02 02
% 02 04 0.6 08 | % 02 04 06 08 1
a) m=4, j=4 by m=2, j=2

Figure 1.BSWI scaling functions using different order and resolution

Formulation of stochastic BSWI WFEM element for elastic buckling of columns

In BSWI WFEM, the problem domain Q is divided into sub-domains €2, (i=1, 2...) and each

Q. is then mapped into the standard element solving domain Q. = {&|& € [0, 1]}, where
instead of using the traditional polynomial interpolation, scaling or scaling and wavelet
functions of BSWI can be used to form the shape functions over the elements Q.. Here & is
the local co-ordinate used for solving 1D BSWI on [0, 1] along y axis.

Deterministic modelling

The generalized functional of potential energy governing static buckling of columns is given

as [22],

j El(d WO] dx ——j (dw‘)j (4)

Here, w, is the transverse deflection, | is the second moment of area, P is the axial

compressive load, E is the Young’s modulus. One BSWI WFEM beam element based on
Euler-Bernoulli theory (EBT) which was developed by Xiang et al. [12] is used in the present

study. One BSWI EBT beam element with C; continuity is divided into 2’ + m—3nodes with
end nodes having both transverse and rotational degrees of freedom (DOF) and internal nodes
having only transverse DOF as shown in Figure 2, where m, j are the order and resolution of

BSWI scaling functions respectively.
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Figure 2.Distribution of nodes and degrees of freedom for one BSWI EBT based beam
element with C; continuity using m=4, j=4

The unknown transverse deflection field function of Euler-Bernoulli beam element is
approximated in the element solving domain & in terms of wavelet scaling functions as,

W@ = 3 bl 4l (&) =pb (5)

k=-m+1

where, @ ={¢’, . .(&)....... ¢’ (&)} is the row vector of BSWI scaling functions and

S | L L b"mvzjfl}T is the column vector of wavelet coefficients that needs to be

determined. The unknown transverse deflection field function can be expressed in terms of
C, element type transformation matrix and physical DOF as,

W,(§) =@(R°) "W =@ T°W* = N°w* (6)
where,

.
we:{wlé’lwzw3 ...... w, W, 6 }

n+l “n+l

91 ZE(M]’QH+1 :i{dwo(é:nﬂ)j’
L\ d¢ L\ deg

I, =X, —%, W =Rb®, T*=(R®)7, (7)
dp'(&)) - 1(dp ' (&)
[ (&) ( E ](o (&)@ (&) @7 (50) [ ac ﬂ
:(pTe

The elemental transformation matrix transforms the stiffness matrix from wavelet space into
physical space. The transformation matrix also maintains the continuity and compatibility
within the element and by using an assembly matrix, at the interface between the
neighbouring elements. Upon substituting the deflection field of Eq. (6) into the weak form
and invoking the stationary condition for variation of admissible deflections, the solution of
static buckling of columns is obtained in the form of an Eigen value problem as,
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(K®-PG*)w* =0 (8)

where,

() ©

Here, K®is the elemental stiffness matrix and G*is the elemental geometric stiffness matrix.

The Eigen values P from Eq. (8) correspond to the buckling loads and the Eigen vectors w*
correspond to the mode shapes.

Stochastic modelling

In the present work, the Young’s modulus E(X) is considered as a spatially varying

homogeneous lognormal random field. As a result, the generalized functional of total
potential as given in Eq. (4) along with response, will also become stochastic in nature. When
E(x) is a homogeneous lognormal field with mean 4. and standard deviation o, it can be

expressed in terms of «(x) as,

E(x) =C,e"® (10)

with
2
U
C = 2 - 2
U +og (12)

E

The auto-covariance kernel for «(x) can be written as [23],

I, =In 1+G'§' ex 2“|Ai|
ay ,U2 p i Ci (12)

g

where, neR", A, is the distance between two points x,, X, along i, c, is the correlation
length parameter which determines the statistical correlation of field variable in the domain.
Here, a(X) is a random field that does not possess an explicit expression and hence requires

an approximation, which can be achieved by approximating a function over a set of random
variables distributed in the domain obtained by discretization of the random field. In the
current study, for modelling the random field a shape function method is proposed to be used.
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Shape function method using Lagrange interpolation and moving least square shape functions
has been employed in SFEM [24] and stochastic meshless methods [6] respectively. However,
in the present study, BSWI scaling functions are used to model both the random field and
response.

On similar lines, as the deflection field is approximated in Eqg. (5), the unknown random field
can be approximated in the element solving domain in terms of BSWI scaling functions as,

2

a(@)= Y b 8" (&) =egb; (13)

k=-m, +1

where, @, :{¢jrmr,—m,+l(§) ....... ¢jrmr12jr_l(§)} is the row vector of BSWI scaling functions,

bs :{bjrmr,—mr+lbjrmr,—mr+2""bjrmr’21r_1}T is the column vector of wavelet coefficients that needs

to be determined and m,_, j. are the order and resolution of BSWI scaling function chosen

for the discretization of random field. The subscript ris used here to denote the function or
variable associated with the random field. Also, it can be noted that the order and resolution
that is used for the discretization of the deflection field and random field can be different from

each other. The unknown random field function is expressed in terms of C,element type
transformation matrix as,

-1
a(O=0, (R) ot =9 T'a; =N (14)

.
where, a; ={alR Opgeee a(nﬂ)R} is the set random variables distributed over the domain of

the element. Thus, element stiffness coefficients and hence the element deflections will
become functions of random variables ¢ and Eq. (8) becomes a stochastic Eigen value
problem as,

| K*(af)-P(at)G* |we(az)=0 (15)

When E(X) is modelled as a homogeneous lognormal field as given in Eq. (10), the K® in
Eg. (15) can be written as,

I 1 T¢ 0 (d2p \ (d?
K¢ = ’uEl Joexp(‘pre R R)(Te) (d 4 J (d 4 j(-l—e)dé; (16)

Here, K®is the elemental stochastic stiffness matrix for beams based on EBT formulation.

The element stiffness matrices K®and G° are obtained for all the sub-domains and assembled
together to obtain the global stochastic Eigen value problem as,
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[K(aR)-P(aR)G}W (er,)=0 (17)

From Eq. (17), the second moment characteristics of buckling loads (Eigen values) P and
mode shapes w (Eigen vectors) are obtained using the perturbation method which is discussed
in the next section.

Perturbation method

Perturbation method uses the expansion of the global stiffness matrix K , Eigen values P and
Eigen vectors w via Taylor series [8]. It is based on the assumption that the variance of the

random field should be small. Let AZ{%}L denote the vector of N zero mean random

variables representing the random field in the global domainQ . The Taylor series expansion
of K, P and w can be obtained as,

N 1 N N
i=1 i=1 j=1
N 1 N N
P=P,+> Plag + > > Plaa+ .., (19)
i=1 i=1 j=1
N 1 N N
W =W, + > W/'a + > D Wl + ., (20)
i=1 i=1 j=1

where, K, , P, ,W, are deterministic values evaluated at K (0), P (0),W (0); (/). :@(0),

o%(.
and (.)_'_I :A(O). Upon substituting Eq. (18), (19) and Eq. (20) into Eqg. (17) and
' 00

rearranging the terms of the same order gives,

[K, - P,G]W, =0 (21)
[Ky-PGIW,' + [K/-R'G W, =0 (22)
[Ky-PGIW," +[K!-P'G W/ +[K|-P/G W, +[K;-P'GwW,=0 (23)

It is to be noted that K, - P,G is symmetric, which leads to,
[K, - P,G]=[K, - PG (24)

Pre-multiplying Eq. (22) and (23) by W," and using Eq. (24) leads to,

[(Ko -PG)W, | W, + W, [K! -P'G W, =0 (25)
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[(K, - POG)WOT W'+ W, [K! PG W/ + W, [K-P/G W, + W, [K{'-P'G W, =0
(26)
Upon simplification of Eq. (25) leads to,

P! =[w, oW, | [w, KW,] (27)

By substituting Eq. (27) into Eq. (25), W,'can be obtained, which can be further substituted
into EqQ. (26) to obtain,

Py =[ W, GW, | (W, [K/ - R'G W/ + W, [ K] - PG W, + W, KW, ) (28)

Upon the substitution of Eg. (28) into Eq. (26) Wij“ can be obtained. By applying the

expectation and variance operators on the first order or second order approximation of Eq.
(19), the first and second order statistics of critical buckling load can be obtained as,

First order approximation

Mo =Py

cr

Ve, = ZN‘,EN', R (P )Tra (@) (29)

i=1 j=1

Second order approximation

7o =22 P (P) Lol + ( (30)

J

Similarly statistics of other response functions of interest, like W can also be found out. In the
next section, a few 1D numerical examples are solved based on the preceding formulations
and the results are analysed.

Numerical examples

Two numerical examples are solved with the proposed stochastic BSWI WFEM formulation
for elastic buckling of columns. Columns with pinned-pinned (p-p) and fixed-pinned (f-p)
boundary conditions under axial compressive loading as shown in Figure 3 are considered for
the study. The response statistics for buckling loads and mode shapes are calculated via
perturbation approach and the results are compared with the statistics obtained from MCS.
From a convergence study, based on the calculation of relative percentage error
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in L, norm of mean and standard deviation values of Young’s modulus for various MCS
sample size; it is noted that an error of less than 1% is obtained when the MCS sample size is
5000. Hence, MCS sample size of 5000 is considered in the current study. The mean value of
Young’s modulus is taken as e, = 2x10°MPawithL = 100 mm, b=1mmandh=1mm. The

entire domain of the column is modelled using one BSWI C; type continuity element. The
deflection field is approximated using cubic ( m=4) BSWI scaling functions with a
resolution of j = 4and the random field is approximated with linear (m=2) BSWI scaling
functions with a coarse resolution of j =2.

a) Pinned-Pinned b) Fixed-Pinned
Figure 3.Columns with various boundary conditions under axial compressive loading

The mean values of the buckling loads (first, second and third) for a pinned-pinned (p-p)
column obtained by using the perturbation approach are shown in Figure 4. These values are
compared with the values obtained from MCS and the results are plotted for different values
of CV, obtained by varying the standard deviation of Young’s modulus E(X) . The correlation
length parameter considered is 50. It can be observed from Figure 4 that at a CV of 20% the
results obtained from perturbation approach are in good agreement with MCS for all the
buckling loads. However, at a CV of 25%, a deviation of 3% is observed between the
perturbation and MCS results in the case of third buckling load. The variation of standard
deviation values of buckling loads against CV are shown in Figure 5. It can be observed that
even at a CV of 25%, the values obtained from perturbation approach concur well with the
MCS values for all the buckling loads.
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b) Second buckling load
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Figure 4.Variation of mean values of buckling loads for columns with different boundary

conditions against CV
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c) Third buckling load

Figure 5.Variation of standard deviation values of buckling loads for columns with different
boundary conditions against CV

The variation of mean and standard deviation values of buckling loads obtained by using the
perturbation approach against varying correlation length parameter is shown in Figure 6 and
Figure 7 respectively. A value of 5% is considered for CV during the process. Figure 6 and 7
shows that even at a small correlation length parameter the values obtained from WFEM

based perturbation approach remain

in good agreement with the MCS values. This shows that

a coarse discretization of random field using BSWI WFEM s able to accurately capture the
results even at extreme correlation length parameters unlike SFEM, wherein the dependency
of correlation length parameter on random field mesh is well documented [3,24] and would
require a higher number of random variables to be used for accurate results.
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Besides the buckling loads, the first three mode shapes are also plotted for the pinned-pinned
column in Figure 8. It can be seen that WFEM based perturbation approach accurately
captures the first three mode shapes when compared with MCS results.
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Figure 6.Variation of mean values of buckling loads for columns with different boundary
conditions against correlation length parameter
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Figure 7.Variation of standard deviation values of buckling loads for columns with different
boundary conditions against correlation length parameter
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Figure 8. Mode shapes for a pinned-pinned column

The mean values of the buckling loads for a fixed-pinned (f-p) column obtained by using the
perturbation approach are shown in Figure 4. It can be observed from Figure 4 that at a CV of
25% there is a deviation of around 5% between the results obtained from perturbation
approach and MCS for the third buckling load. However, no such deviation is observed in the
standard deviation values obtained from perturbation approach and MCS as seen in Figure 5.
Similar to the case of pinned-pinned columns, the mean and standard deviation values of
buckling loads against varying correlation length parameters for a fixed-pinned column show
a good agreement between the perturbation and MCS results as observed in Figure 6 and
Figure 7. Furthermore, the first three mode shapes as shown in Figure 9 reinstates the
accuracy of the WFEM based perturbation approach.
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a) First mode b) Second mode
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Figure 9. Mode shapes for a fixed-pinned column

Computational time

Besides evaluating the mean and standard deviation values of the buckling loads, the
normalized computational times required by the perturbation approach (FOP and SOP
combined) and MCS (5000 simulations) is also calculated. It is noted that in the case of a
pinned-pinned column, the execution time of MCS is 39.63 times more in comparison with
WFEM based perturbation approach. Similarly, for a fixed-pinned column, the execution time
of MCS is 38.28 times more than the perturbation method. Hence, the proposed BSWI
WFEM based perturbation approach is not only accurate but also computationally more
efficient in comparison with the MCS based approach.

Conclusion

The current paper proposes the formulation of stochastic BSWI WFEM formulation for
elastic buckling of columns wherein, the spatial variation of modulus of elasticity is modelled
as a homogeneous random field. In the present work, BSWI scaling functions are used for the
approximation of deflection field as well as random field. The response statistics are
calculated using the perturbation approach and validated by comparing with the results of
MCS. The results obtained from the numerical examples show that WFEM based perturbation
approach can be used to accurately capture the response statistics of the buckling load for
values of CV up to 25%.

The domain of the column is discretized using only one BSWI WFEM element, due to which,
there are no meshes and the programming effort needed in the pre-processing stage to form a
global matrix from the assembly of multiple elements is reduced. The parametric study on
correlation length parameters show that the values obtained from perturbation approach based
on WFEM concur well with MCS values at extremely small or large correlation length
parameters even when the random field is modelled using a coarse nodal discretization.
Further, the normalized computational times are calculated for both the numerical examples
and WFEM based perturbation approach takes less time in comparison with MCS in both the
cases, thereby making it more efficient.
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Abstract

In this paper, a novel substructural damage detection method combining autoregressive
moving average with exogenous inputs (ARMAX) model residual and Kullback-Leibler
divergence (KLD) is proposed to identify the damages of shear building structures. Firstly,
based on the partition strategy of multi-input multi-output (MIMO) model, the overall
structure is divided into series of substructures such that structural damage diagnosis process
is able to be implemented on each substructure independently. For the sake of better resisting
noise interference and enhancing damage detection robustness, every substructure is modeled
by autoregressive-moving average with exogenous inputs (ARMAX) model, and its model
residuals contain sensitive structural damage feature characterized by the changes in
chi-square distribution function (CSDF) of the model residuals. Furthermore, KLD is utilized
to measure the similarity between two probability distributions and used as structural damage
indicator to quantify the damage in detail. Numerical simulation is conducted to evaluate the
performance of proposed damage identification approach, and it shows the satisfactory results
of structural damage localization and quantification.

Keywords: Damage detection; shear structure; substructure; ARMAX model residual;
chi-square distribution function (CSDF); Kullback-Leibler divergence (KLD)

1. Introduction

In recent years, due to the aging of aerospace, civil, and mechanical infrastructures especially
for the structures serving human society activities for a long time, structural health monitoring
(SHM) has become an essential research field in maintaining the integrity of structures.
Structural damage detection generally provides the fundamental information for SHM
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practices and is one of the most challenging components in the construction of SHM system

[1].

As the nondestructive evaluation (NDE) techniques, vibration based damage detection
methods have become more effective and flexible than the traditional detection approaches in
engineering applications in the latest decades. Modal properties are easily obtained from
structural responses, and modal frequencies, mode shapes or mode shape curvatures are
chosen as damage sensitive features for wide applications of damage detection. In addition,
substructuring technique has been also developed for subtly designing and analyzing the
complex large-scale structures in an efficient way that the whole structure is decomposed into
a series of smaller substructures. By adopting a strategy of ‘divide-and-conquer’, the
performance of dynamic system model fitting and the accuracy of structural parameters
identification are not reduced especially for actual large-scale engineering structures, such as
high-rise building structures and long span bridges. For damage detection, most damage
indicators of previous substructuring method are based on modal parameters. A substructuring
method combined with the difference between squared original frequency and squared
damaged frequency was proposed in [2]-[3] for damage identification of shear structures.
However, modal parameters usually represent the property of the whole structure such that the
modal parameters based damage indicators indicate the global structural damage, which is not
sensitive enough for local damage identification under complicated environmental conditions
[4]. In contrast to modal parameters identification based detection methods, the time domain
or frequency domain methods extract local damage sensitive features via signal processing
and only concentrating on measured data of structural responses, meanwhile, these methods
are in a data-driven way without a model of the structure and different from the model based
method requiring an accurate finite element model. For linear time-invariant (LTI) systems,
autoregressive process can well model the structural systems and distinguish various system
dynamics through the ‘black box’ model structure containing system inputs and outputs;
besides, the autoregressive model based methods are more intuitionistic than the frequency
domain method by generating underlying observations process directly from the model
parameters without spectral representation. The autoregressive model parameters, such as the
model residuals and model coefficients, have been well utilized as the damage sensitive
indexes for local damage detection. In the previous researches, most model residuals-based
damage detection methods are based on pattern recognition approaches [5], and their damage
indicators usually rely on pattern recognition tools, which often require a large amount of
training data to extract damage sensitive features and inevitably produces huge computational
complexity.

In order to improve the computational flexibility of existing methods and potentially locate
and quantify damages for shear structures, this paper proposes a new substructural damage
detection method based on autoregressive moving average with exogenous inputs (ARMAX)
model and Kullback-Leibler divergence (KLD). At first, the substructural division strategy in
[2]-[3] is employed so that the damage detection process can be carried out on each
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substructure independently, which is suitable for a parallel and distributed SHM system. The
ARMAX model combined with substructure of MIMO system is built to remove strong
correlation of the responses and needed not to use pre-whitening filter, which is more
convenient in signal processing than the autoregressive (AR) method of single output [6]-[7].
Besides, an ARMAX model is able to enhance the noise immunity of damage detection
results by its moving average term of model residual. Furthermore, this study proposes an
innovative damage indicator by incorporating ARMAX model residual and Kullback-Leibler
divergence (KLD) for sensitive damage quantification in a data-driven way. KLD is an index
widely used for measuring the similarity between two probability distributions in statistics;
the value of KLD is close to zero when the two probability distributions are similar, otherwise,
the value of KLD is close to one [8]. In this study, the distribution of model residual can be
well described by the chi-square distribution function (CSDF), the KLD value between
CSDFs in damage state and undamaged state can clearly indicate the damage, including the
location and extent of substructural damage. Simulation of six degrees of freedom (DOFs)
shear building structure subjected to mutually correlative white noises is conducted to verify
the performance of proposed damage substructural damage detection approach, and specific
conclusions are finally discussed.

2. Theoretical fundamentals
2.1. Dynamic system modeling with ARMAX model

For the linear discrete-time system with multiple-input and multiple-output, the dynamic
process can be described by an ARMAX model as following:

y(t) + X2 apy(t — k) = X bu(t —my — k + 1) + 32, cpe(t — k) 1)

where y(t) represents the system output at time t, u(t) denotes the system input; ay, by, and
¢ indicate the coefficients of autoregressive term, system input term, and moving-average
term, respectively, n,, ny and n. depict their corresponding model orders, respectively, ng
means the time delay steps; e(t) are the residuals of the estimation process at time t; the
ARMAX model is efficient for its flexibility to availably handle the disturbance modeling
through its moving-average coefficient cy.

2.2. Substructure division
Generally, the shear building structure can be simulated as a one-dimensional shear model
with lumped masses through the below motion equation:

Mi + Cx + Ki = —Mr¥, )
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where M, y,, K,xn, and C,,respectively depicted the mass, stiffness, and damping
matrixes, n depicts the number of DOFs, r denotes the n x 1 unit vector (r = [1---1]7), X
indicates the displacement vector of lateral vibration relative to the ground, X, means the
ground acceleration.

The motion of each DOF is affected by the motion of adjacent DOFs; every mass and its
adjacent masses are separated from the overall structure to construct series of substructures, as
shown in Fig. 1. According to the principle of force balance at the lateral direction, the motion
equation of substructure i (1 <i<n-1) can be expressed as

my; + (¢; + cip)yi + (ki + kin))yi = —miZi_q + Civ1Vier + Kiv1Vier (3)

where m; is the i story mass, k; is the stiffness coefficient of the i story, ¢; is the
damping coefficient of the i story; y; represents the displacement of the i story relative to
the (i-1)™ story; Z; means the absolute acceleration of the i" story, and especially Z, denotes
the ground acceleration X,. Considering that the top mass m,, is the free end and only one

mass is adjacent to it, the motion equation of the top substructure is represented by following:

MpYn + CpVn + knyn = —MmpZ,_4 (4)

Introducing the difference expression

. () (t=T)

Ju(t) = LD ©
. it+T)-2y;(t)+y;(t-T)
i) =*> o (6)

where v; and ¥; means the velocity and acceleration of the i story relative to the (i-1)"
story, respectively, t represents the time index, T depicts the sampling interval. By
substituting Eq. (5) and Eq. (6) into Eq. (3), the motion equation of substructure i (1 <i <n-1)
can be rewritten as

Vi) + a1y (t — 1) + a2y (t — 2) = by1Z;_1(t — 1) + byZ; 1 (t — 2)

+b21Vis1(t — 1) + bpoYip1 (t — 2)
+cie(t —1) + ce(t — 2) @)
In this, Eq. (7) can be regarded as an ARMAX model with two-input (Z;_; and ¥;,,) and
single-output (¥;) [2]-[3], where e(t) represents the ARMAX model residuals. Likewise, the
motion equation of top substructure n can be rewritten by substituting Eq. (5) and Eq. (6) into

Eq. (4), and it can be identified as a single-input (Z,_;) and single-output (j5,) ARMAX
model, that is
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V(@) + ayyn(t — 1) + axin(t —2) = byZ,_1(t — 1) + byzZ,_1(t — 2)

+cie(t—1) + cye(t — 2) (8)
xn
o my _—
kn, cn Xn-1
() my_, —>
kn-1,Cn-1 Xn_2
() Mp—2
kn_2,cn
_\]\_

X — _
i+1 YVit1 = Xj41 — Xj—1

0 miyq —_— —_—
kit1)Civa
Xi Vi =X~ Xi—q
0 m; —_— —_—
4 ki! Ci Z: = x: —x
Xi—1 i-1 -1 g
D) My —— —>

Figure 1. Substructure division method

Herein, in order to characterize each substructure with MIMO model and promptly acquired
essential structural features, only three accelerometers are needed to establish the related
ARMAX model while two is enough for the top substructure.

2.3. Damage indicator

In this paper, a novel structural damage indicator based on ARMAX model residual and
Kullback-Leibler divergence is proposed to identify the damages of shear structures. Initially,
the predicted system output 9,(t) modeling with ARMAX model in undamaged state can be
calculated as

Pu(t) = —2221 apy(t —k) + ZZil bu(t —n, —k+1) + ZZil cre(t —k) %)

The model residuals of the undamaged state and damaged state can be generated between the
measurement system output y and the predicted system output y by comparing with the
reference ARMAX model of undamaged state, that is
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eu(t) = Yu(t) - yu(t) (10)
eq(t) = ya(t) — 9 () (11)

where y,,(t) and y,(t) are the measurement output of undamaged and damaged state from
the substructure being analyzed, respectively. For damage case caused by the degradation of
story stiffness, structural responses generated from damaged system generally vary from
responses of undamaged system, and it is hard to fit the structural responses in damaged state
well by using the reference ARMAX model in undamaged state. In other words, model
residuals from damaged system responses (Eg. (11)) are different from residuals of responses
in undamaged state (Eq. (10)), which contains important structural information for damage
examination. In addition, the model residual vector are normalized to a dimensionless vector
S0 as to remove the effects of various response amplitudes, as shown as follows

— ey
€u = 1l (12)
—_ _ eq

€d = 1l (13)

where e, and e, represent the ARMAX model residual vector in the undamaged and
damaged state, respectively; ||y, and ||yq4|| mean the norm of output response vector in
the undamaged and damaged state, respectively, e, and e; denote the corresponding
normalized dimensionless residual vector, respectively. On the other hand, the discrepancy
between the distributions of residual vectors in undamaged and damaged state is able to
qualitatively reflect the existence of structural damage, and in this work we utilize the
chi-square distribution function (CSDF) to characterize ARMAX residual vectors for
structural damage identification:

xzk c x>0
fG) =9 22rd (14)
0 x<0

where x represent the random variable, f(.) denotes the chi-square distribution function, 77(.)
indicates the gamma distribution function, k depicts a positive integer that specifies the
number of degrees of freedom and affects the shape of the chi-square distribution function
curves of residual vectors. Moreover, KLD is utilized to quantify the difference of
distributions of ARMAX model residuals and used as the structural damage indicator in this

study. At first, for the discrete random variable X = {xy, x5, ...,x,} (n >2) and
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Y = {y1, ¥5, ..., ¥} from an uncertainty system, their corresponding probability distribution

of each element are given as

PX) = {p1(x), p2(%), ..., Pa(x)} (15)

QYY) = {1, ¢2(3), .-+, 4 ()} (16)

where p;(x) and q;(y) represent the probability distribution function of the element x;

and y;, respectively; and 0 < p;(x), ¢;(y) <1, Y=, pi(x) (orq;(¥)) =1, i=1,..,n. The

KLD [8] between the probability distributions of discrete random variables X and Y is defined
as

D (PCONQ(Y)) = By pi(®)In 27 (17)

For the discrete random variables of ARMAX model residuals applied in linear time-invariant
system,

e, = {e,(t), eyt — 1), ..., e, (t — n + 1)} (18)

eq = {eq(t), eq(t — 1), ..., eq(t — n + 1)} (19)

where t indicates time index, n > 2 denotes the length of the residual vector, the

corresponding probability distributions of each element of undamaged and damaged state are
described as

P(ey) = {p1(ew), p2(ew), -, pulew)} (20)

P(eq) = {pi(ea), p2(ea), .-, Pn(ea)} (21)

Eventually, the structural damage indicator using KLD between distributions of ARMAX
model residuals is defined as following:
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D (P(@)IIP(8)) = By pi(@)In 22 (22)
e, = sort(abs(e,)) (23)
e, = sort(abs(ey)) (24)

where &, and &, represent the rearrangement vectors of absolute value of e, and e, in
ascending order, respectively; P(.) means the corresponding chi-square distribution function.

3. Numerical simulation

3.1. Simulation setup

In order to substantiate the performance of proposed method for damage detection, numerical
simulation of damage detection on a six-story shear building structure has been conducted. As
is depicted in Fig. 2, it is a six-story shear building model which can be simplified as a 6-DOF
structure system, and the structure system is subjected to white noise excitation. The
structural parameters are given as follows: the mass of every story is 1x10% kg, and the lateral
stiffness is 1x10° N/m; damping ratio is assumed to be 3% for all modes; the first six natural
frequencies of the shear model in undamaged state are given as 3.84 Hz, 11.29 Hz, 18.08 Hz,
23.83 Hz, 28.18 Hz and 30.91 Hz for the 1% mode to the 6™ mode, respectively; the data
sampling frequency is 200 Hz; taking into account the influence of environmental disturbance,
measurement noises of 5% noise level are added into the acceleration data of all stories; there
are totally 5x6=30 damage cases which consist of 10%, 20%, 30%, 40% and 50% reduction
of lateral stiffness on every story. Fig. 3 shows the time series excitation of white noise.

6" floor

5" floor

47 floor

374 floor

2™ floor

15¢ floor

D T D LT

Figure 2. 6-story shear building structure subjected to white noises excitaion
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3.2. Procedure and results

Primarily, the overall structure is divided into 6 substructures using the partition method
mentioned in Section 2.2 (Egs. (2) ~ (8)), as shown in Fig. 4. For each substructure from
number 1 to 5, it can be modeled in good condition as a 2-input and 1-output ARMAX model,
while the substructure 6 is modeled as 1-input and 1-output ARMAX model. For example, the
ground acceleration (Z,) and the acceleration of the 2" DOF relative to the ground (j,) are
modeled as the input of substructure 1 while the 1% DOF relative to the ground () is
modeled as the output. Besides, the absolute acceleration (Z;_;) (2 < i < 5) of the (i-1)™ DOF
and the acceleration of the (i+1)™ DOF relative to (i-1)™ DOF (j,.,) are modeled as the input
of substructure i while the acceleration of the i™ DOF relative to the (i-1)™ DOF () is
modeled as the output. Especially for the top substructure, the absolute acceleration (Zs) of the
5" DOF is modeled as the input and the acceleration of the 6™ DOF relative to 5" DOF (§) is
modeled as the output of substructure 6.
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Figure 3. Input excitation of white noises

Figure 4. Substructure division for 6-DOF simulated shear building structure
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The undamaged limit of each substructure is independently calculated through the mean value
of KLD values between 10 data subsets in undamaged state, and the time duration of each
subset is 20 secs. The changes in ARMAX model residuals from the undamaged system to the
damaged systems can be reflected by its chi-square distribution function. All CSDF curves of
10% damage at the 1% ~ 6™ floors are shown in Fig. 5 to indicate the damages existing in the
structure. It can be observed from Fig. 5 that the CSDF curves shapes of damaged floors are
conspicuous compared with others of undamaged floors. This is in good agreement with the
theoretical expectation that ARMAX model residual of substructure in damaged state varies
from the one of substructure in undamaged state since the substructural responses in damaged
state cannot fit well the ARMAX model in undamaged state, as shown in Egs. (9) ~ (14).
Nevertheless, it is hard to exactly calculate the gap between the CSDF curves of different
damage cases by only using the distinction of curves shapes. In view of this, KLD derived
from Egs. (15) ~ (24) is adopted to quantify the difference of CSDF curves between
undamaged state and damaged state, and the complete identification of 10%, 20%, 30%, 40%
and 50% damage cases is shown in the bar plots of Fig. 6. As a result, it reveals that there
exists evident regularity in the damage location while the damage indicator can clearly
quantify the damage with the damage degree increasing though it was interfered by the 5%
noise. Therefore, it is explicitly reasonable that the proposed residual-based KLD is
acceptably to reveal the linear relationship between the values of damage indicator and the
structural stiffness reductions even in the case of a high severity of damage.
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Figure 5. Chi-square distribution function (CSDF) of ARMAX model residual (white
noise excitation, 5% noise, ARMAX model, data length = 4000, na = 2, nb = 3, nc = 3, and nk
= 0; k =2 (number of DOFs of CSDF))
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Figure 6. Damage indicator of Kullback-Leibler divergence (KLD) (white noise excitation,
5% noise, ARMAX model, data length =4000,na=2,nb=3,nc=3,and nk =0; k=2
(number of DOFs of CSDF))

4. Conclusions

This paper proposed an innovative substructural damage detection method based on damage
indicator of ARMAX model residual-based KLD. Simulation of damage identification on a
six-story shear building structure subjected to white noise is conducted to evaluate the
performance of proposed damage detection strategy and damage indicator, and the results
show that it can locate and quantify the damages of shear structures effectively by the
proposed method. Due to the damage detection procedure can be implemented on each
substructure independently, which suits for monitoring of key areas of actual engineering
structure. On the other hand, the proposed CSDF curves of ARMAX model residual can
clearly locate the structural damages in a visualized way with its distinguished tendencies; the
proposed damage indicator of residual-based KLD can locate and quantify the damages in a
data-driven way, which is suitable for local damage detection and does not rely on previous
training data of various damage patterns. These mean that the proposed substructural damage
detection approach is easy and efficient for local substructure damage detection of shear
structures. In the following research, it is needed to further investigate about the identification
of nonlinear damage in complex engineering structures with the proposed substructure
damage identification method.
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Abstract

The finite difference method (FDM) is a renounced numerical method for solving of complex
problems of numerous fields. However, the efficacy of this method depends on the resolution
of the mesh i.e. the size of the mesh used to obtain the solutions. In general, very small sized
mesh, i.e., high mesh resolution is necessary to obtain an acceptable solution for various
multi-scale physical problems. This high resolution of mesh consumes a significant amount of
computational memory. Thus, huge wastage of computational resources occurs in refinement
of sections of the domain where computation of the solution does not require high resolutions.
This problem is effectively addressed by mesh refinement (MR) technique, a technique of
local refinement of mesh only in sections where needed, thus allowing concentration of effort
where it is required. The objective of this paper is to develop a mesh refinement algorithm for
fourth order biharmonic equation which is widely used to solve boundary value elastic
problems by using finite difference approach. Initial tests using the MR algorithm establish
that the model adopted has considerable potential for mixed boundary value elastic problems.
The results of initial test also show that consumption of computational resources is
significantly less compare to uniform mesh (UM) while maintaining the quality of the
solution.

Keywords: Finite Difference Method; Mesh Refinement; Fourth Order Biharmonic Equation;
Mixed Boundary Value Problems

Introduction

Finite difference method is extensively used to solve mixed boundary value elastic problems
because of the simplicity of this method[1],[2],[3],[4],[5]. Usually mixed boundary value
elastic problems are governed by fourth order biharmonic equation (FOBE) of potential
function, ¥. Analytical solution is not possible for FOBE which makes numerical method
very popular for mixed boundary value problems. For instance, Ahmed et al. [1] analyzed
stress-strain distributions of a both end fixed deep beams with mixed boundary conditions by
applying FDM. Later, a generalized mathematical model for the solution of mixed-boundary-
value elastic problems is depicted by Hossain et al. [4]. However, in these examples, the
physical domains are discretized with high resolution uniform mesh, which consumes a
significant amount of computational resources to store data. Moreover, high resolution of
mesh involves the solution of a large matrix which ultimately accumulates huge amount of
round of error during computation.

Previously, remedies of fine uniform mesh induced problems are sought by zooming the

critical region, stress concentrated area [6]. However, the adaptability of this method is
limited by the requirement of solutions for several times. Moreover, for this method, the
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boundary conditions for current solution step depend on the previous step solution. So, if the
solution of previous step is not acceptable due to less resolution, then current step solution
would not be also acceptable. Recently, memory exhausting problems is significantly reduced
with the development of powerful computers, however, an algorithm for the solution of mixed
boundary value problems with less memory consumption is still demanding. To address this
memory exhausting problem, the mesh refinement technique is extensively used in various
field of study[7],[8],[9],[10].

Mesh refinement is a technique of local refinement of a mesh to allow computational
resources and efforts where it is required. Sections of the physical domain needing high
resolution are generally determined by means various criteria which includes comparing the
solution to a threshold or the local rate of change to a solution. A mesh refinement algorithm
based on the idea of multiple component grids for the solution of fourth order biharmonic
equation using finite difference techniques is presented in this article. The solution of this
equation is often smooth and easily approximated over large portions of their domains if there
is no steep gradients, cracks or other discontinuity in the solution. However, most often the
physical problem contains support boundary or locally isolated internal regions with steep
gradients, cracks, or discontinuities, where the solution is difficult to approximate. We place
locally finer grids in these regions over a coarse grid covering the domain. The solution on
each line sub grid can then be approximated by standard finite difference techniques, as done
on the coarse grid.

Mathematical Formulation

In terms of potential function, ¥ under plain stress or plain strain condition, solution of
boundary value elastic problems requires to solve the following fourth order biharmonic
equations with appropriate boundary conditions [1].

ghy a4 g4y
: 2T a0 (1)
dx Bxtdy? dy

The relation between potential function and displacement components are as follows

8ty

Uz = dxdy (2)

_ 1 gty 8ty
=25+ @ -w 5] ()

where 1, and u,, are the displacement components in the x- and y- directions respectively.
The relation between stress components, displacement components are as follows

E fdu, By E R a5y

r = — — —r = -
O [.’1’,}:] 1—p® ( 8z TH ay ) (1+p)? (ﬂxzﬂ}' K B_}'E) 4)

N_ _E By, By ___E 8% 25w
a,(x,¥) Py (—}—a}_ e J ZPWE (a}j +(2+u) E':r:ﬂ_}') (5

E Bu, | Buy E a5y R
) = _— 2= -

Jx}' (I’}j 2|:1+.'-»!:'( By T dx ) (1+u)*® (F Bxdy? 315) (6)

Since, the target of this paper is to develop a mesh refinement algorithm for fourth order
biharmonic equation, we select a very simple mixed boundary value elastic problem as shown
in Fig. 1. In the considered problem, a simple elastic member of length ‘2b’ and width ‘a’ has
an embedded crack under the uniform axial loading. For simplicity, we considered there is no
crack growth under this uniform loading condition. The material geometry of the problem is
taken as a/b=1.0 and size of the crack is taken as one fourth (a/4) of the width of the member.
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Referring to Fig. 1, for this problem, both the top and bottom edges are free and the both
lateral edges are subjected to uniform tensile loading. Taking the advantages of symmetry, the
right half section of the elastic member is solved under MR and finite element method (FEM)
with necessary BCs as shown in Fig. 2.

b — -

h

T <« >
<« —>
a |-f Va¥a — Loading
<+ —>
<« —>
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X

Figure 1: Simple bar with embedded crack under uniform tensile stress
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Figure 2: Half section of the problem with necessary boundary conditions

As far as numerical solution is concerned, it is evident from the expression of boundary
conditions (please see Fig. 2) that all the boundary conditions of interest can easily be
discretized in terms of displacement function, ¥ by the finite-difference method.

Numerical Method

The replacement process of continuous problem by a discrete problem whose solution
approximates the solution of continuous problem under numerical method is known
discretization. Under mesh refinement technique, first the domain is discretized with a coarse
grid. Then, finer grids are added in the region which requires more resolution. An example of
discretization of the considered problem under mesh refinement is shown in Fig. 3. From
theory of elasticity we know that the crack location is the critical region for this problem. So,
under the mesh refinement technique, the finer mesh is taken in that region. Since, no time
scale is associated with the problem, instead of adaptive mesh refinement, we introduce
statistically refined mesh. Under any numerical method, the governing equation (Eq. 1) must
be satisfied each interior nodal point. Since, the domain is discretized into variable sized
mesh, uniform grid-based stencil (Stencil-1 of Fig. 4) cannot be used throughout the domain.
Thus, to satisfy the governing equation throughout the domain, several stencils are formulated
as shown Fig. 4 (Stencils 2-6). Details of the stencil formulation can be found in reference
These stencils can fully satisfy the governing equation throughout the domain.
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Figure 3: Discretization of domain under mesh refinement technique with three different size
of mesh.
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Figure 4: Types of stencils for governing equation

As seen from the problem definition, each physical boundary is defined by two conditions.
This double conditions problem is satisfied by bringing an imaginary boundary [4]. The
stencils of various boundary parameters over uniform mesh are shown in Fig. 5. However,
these uniform mesh-based stencils are not applicable on the transition node, a node that

connects two sizes of mesh. Special stencils are required for these transition nodes which is
shown in Fig. 6.
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Figure 5: Stencils for displacement and stress components
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Figure 6: Special stencil for stress component

Results and Discussions

In MR FDM, finest mesh size is taken as 0.01 % 0.01, fine mesh size is taken as 0.02 X 0.02
and coarse mesh size is taken as 0.04 X 0.04. A uniform mesh of size 0.01 X 0.01 is taken for
FEM discretization. Mesh sensitivity analysis is performed for both methods (data not
shown). The displacement components at y/b = 0.0 with MR FDM with refine mesh (RM)
and FEM are shown in Fig. 7 as a comparative study. Fig. 7a shows displacement component,
uy/a distribution at section y/b = 0.0. Except at the tip of the crack both methods show same
amount of displacement in x-direction. At the tip of the crack FEM shows a little bit higher
displacement, however, this disagreement is not significant. Fig. 7b shows displacement
component u,/b distribution at section y/b=0.0 and the results of both are in good agreement.
In other section of the member, both methods provide exactly same amount of displacement
(data not shown). In every case, MR results are as good as FEM results although greater no
of nodal points is considered under FEM discretization.

a) b)

x/a
x/a

04 03 -02 01 00 01 02 03 04 0.1 0.0 01 0.2 03 04 0.5 06
4 4
usax 10 u/bx10

Figure 7: Comparison of MR FDM results with FEM results at section y/b=0.0: a) uy
distribution and b) uy distribution.
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The comparison of stress components at y/b = 0.0 is shown in Fig. 8. For this type of
problems, the most desired parameter is the stress component in direction to applied stress
and, in this case, it is 6, which is shown in Fig. 8a. From this figure it is seen that results of
both methods are in good agreement. The maximum stress is observed as 3.75 times of
applied stress for FEM and around 3.8 times of applied stress for MR FDM. The normal
stress, oy distribution is shown in Fig. 8b. From figure 8b, it is seen that the pattern of
distribution is similar for both methods, but FEM give somewhat larger stress than that of
mesh refinement technique. As stated in earlier example, this discrepancy arises due to the
application of three BCs at the singularity points.
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Figure 8: Comparison of MR FDM results with FEM results at y/b=0.0 in terms of stress
components: a) 6,0, distribution and b) 6,0, distribution.

Conclusions

A mesh refinement algorithm is developed for fourth order biharmonic equation which is
widely used to investigate the displacements and stress analysis of mixed boundary value
problems. The governing equation is discretized by finite difference method in various way to
develop various stencils which are required to satisfy the governing equation throughout the
domain. Due to mesh refinement, the boundaries are also discretized into irregular meshes. As
a result, the boundary conditions also need to be discretized in different way than regular
mesh. Our results show that the developed method can easily be used to obtain the solution of
mixed boundary value elastic problems in terms of displacement and stress components. Our
results also show that a reduced number of nodes can yields results as good as finite element
method.
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Abstract

In order to solve the problem of large limitation of simulation results caused by load factors
and corrosion conditions respectively in the study of corrosion failure of metallic materials,
the idea of combining cellular automata and edge-based smoothed point interpolation method
(ES-PIM) is adopted. The corrosion process of aluminum under environmental action was
simulated by cellular automata method and the corrosion topography was obtained which was
used for the establishment of calculation model. To overcome overly-stiff property existing in
the widely used finite element method (FEM) with linear triangular elements, the edge-based
smoothed point interpolation method (ES-PIM) is used for calculation which has been found
both spatially and temporally stable, and works well for both static and dynamic problems.
Keywords: Widespread corrosion damage  Cellular Automaton ~ Meshfree method

1.Introduction

As a kind of nonferrous metal structural materials, aluminum and its alloys are widely used in
aviation, aerospace, automobile, machinery manufacturing and so on. In the process of its use,
it will suffer different forms of damage due to the influence of the service environment,
among which corrosion is a common form of damage. However, the failure of aluminum
structure is not caused by the single factor of corrosion, usually accompanied by the action of
load on it. Most scholars have simulated the corrosion behavior of aluminum based on the
corrosion mechanism of aluminum, but have not carried out mechanical analysis on the
corrosion defect structure generated subsequently. Therefore, it is of great significance to
simulate the corrosion and failure behavior of aluminum and its alloys in the service
environment.

In the field of aluminum corrosion behavior simulation, Engelhardt et al.['}] established a
damage function analysis model to predict local corrosion such as pitting corrosion, crevice
corrosion and stress corrosion. Urquidi-macdonald et al.'¥) studied the relationship between
the crack growth rate caused by pitting corrosion and various parameters (corrosion potential,
pH, temperature and conductivity) using artificial neural network technology (ANN).In
Cellular Automata (CA) model, space is divided into cells with finite states. These cells
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evolve according to certain local rules. By the CA model based on the rules of local reactions
in the system, can reflect the influence of different scales complex physical and chemical
systems, by defining the molecular scale or the interaction of the atomic scale, within the
scope of the macro qualitatively describe the nature of the complex system, so using the CA
technology to rot corrosion in the process modeling more intuitive and convenient, like Wang
Hui et al. 5 adopted cellular automata (CA) method to obtain the growth and evolution
curve of corrosion pits and the change curve of geometric morphology with time.

After years of development, finite element method (FEM) has become an important tool for
modeling and simulation of solid and complex geometric structures. However, the finite
element method has some inherent defects. For example, the finite element model is
"overly-stiff", which affects the accuracy of strain, especially for stress results; When the
mesh is severely deformed, the precision of the solution will be affected.

During mesh generation, using triangle (for 2D) or tetrahedron (for 3D) elements, mesh
generation becomes much easier and is usually done automatically without manual
manipulation. But at the same time, the accuracy of finite element calculation results is often
Very poor.

Professor G.R. LIUland his team used point-based polynomial interpolation (PIM)!'% or
radial basis interpolation(RPIM)!'!! to construct the shape function, and introduced smoothed
Galerkin weakform and generalized gradient smooth operator 1'*!31. Thus, the node-based
smoothed point interpolation method H*!3](NS-PIM) can be obtained.

In practical application, this method shows that it can withstand mesh deformation better and
still has good calculation results under triangular mesh. Moreover, this method provides the
upper bound of energy norm. However, the stiffness matrix K obtained by this method is
smaller than the actual stiffness matrix K, that is, the smoothed system is "overly-soft",
resulting in a displacement larger than the actual displacement. In order to solve this problem,
Edge-based smoothed Point Interpolation Method!'*!® (ES-PIM) is introduced.

In ES-PIM, every edge-related problem domain of the background grid is smoothed.
Compared with the node-based smooth operator, the smoothness of edge-basis strain can
weaken the degree of softening, so that the ES-PIM model is closer to the exact stiffness and
has a good calculation effect in both static and dynamic problems.

For the above methods, professor G.R.LIU and his team established Galerkin weakened weak
(W?) formulation constructed by generalized gradient smoothing operator.

Weakened weak (W?) formulation seeks solutions in G spacel'?which is a function space
containing both continuous and discontinuous functions. G space includes all the continuous
and discontinuous displacement cases under the framework of FEM and Meshfree. Therefore,
in the framework of finite element and meshless method, it is suitable for both compatible and
incompatible displacements. By using the generalized strain smoothing technique, we can
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obtain the generalized smooth Galerkin weak form for all the above methods.

In this paper, the widespread corrosion behavior of aluminum is simulated by using cellular
automata method, and a computational model is established based on the simulated corrosion
topography. The model is analyzed by introducing edge-based smoothed point interpolation
method and the results are obtained. The combination of the two methods provides a new way
to analyze the mechanical properties of structures with corrosion defects.

2. Establishment of widespread corrosion model

2.1 Definition of cellular automata

Cellular Automata (CA) is defined as a dynamic system that evolves in discrete time
dimensions in accordance with certain local rules in a cellular space composed of cells with
discrete and finite states.

In the process of its evolution, each cell can change according to local rules state, namely
based on cellular automata and its neighbor cell state with this to determine the next state of
cellular automata, all belong to sync status updates, in accordance with local rules the entire
cellular space show the change of state in discrete time.

2.2 Boundary conditions

When simulating a given cellular automata rule, one cannot deal with an infinite lattice. The
system must be finite and have boundaries. Clearly, a site belonging to the lattice boundary
does not have the same neighborhood as other internal sites. In order to define the behavior of
these sites, a different evolution rule can be considered, which sees the appropriate
neighborhood. This means that the information of being, or not, at a boundary is coded at the
site and, depending on his information, a different rule is selected.

Each variable of cellular automata has a finite number of states and is local in time and space.
In order to keep each variable in the cellular space free from the influence of the external
environment, the boundary conditions of the model are usually defined as follows: Periodic
boundary conditions are used for the left and right boundary to keep the properties of the
system and the element unchanged, and the theoretical infinity of cellular space is realized.
The upper and lower boundaries adopt fixed boundary conditions to ensure the
non-correlation of upper and lower boundary cells, as shown in Figure 1.

A cellular automata rule is local, by definition. The updating of a given cell requires one to
know only the state of the cells in its vicinity. The spatial region in which a cell needs to
search is called the neighborhood. In principle, there is no restriction on the size of the
neighborhood, except that it is the same for all cells. However, in practice, it is often made up
of adjacent cells only. If the neighborhood is too large, the complexity of the rule may be
unacceptable (complexity usually grows exponentially fast with the number of cells in the
neighborhood).
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Figure 1. Schematic Diagram of boundary conditions

For two-dimensional cellular automata, two neighborhoods are often considered: the von
Neumann neighborhood, which consists of a central cell (the one which is to be updated) and
its four geographical neighbors north, west, south and east. The Moore neighborhood contains,
in addition, second nearest neighbors northeast, northwest, southeast and southwest, that is a
total of nine cells.[”!

Figure 2. illustrates these two standard neighborhoods.

(@) (b)
Figure 2. (a) Von Neumann and (b) Moore neighborhoods. The shaded region
indicates the central cell which is updated according to the state of the cells located
within the domain marked with the bold line.

2.3 transformation rule

In the study on the formation process of metal corrosion products, the cellular transformation
process is realized, which is expressed by the following conversion equation:

M+C—>P (1)

In the top formula, M is the metal cell; C is corrosive cell; P is the cell of corrosion product.
In particular, the concentration of oxygen in the atmosphere changes very little, and the key
factor affecting the corrosion rate of metal oxygen absorption is the relative humidity of water
molecules. Therefore, in order to simplify the CA model, only water molecules involved in
the reaction are represented by C in the equation, and the effect of oxygen on corrosion is no
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longer considered.

Cellular conversion rules: only corrosion cell C in cellular space has random mobility (top,
bottom, left, right). If C moves in the direction of neighbor metal cell M, both M and C are
converted to P. Conversely, if the neighbor is C, all cells remain unchanged. If the neighbor in
the direction of C is a space bit, then C will jump to the space bit, and the original position
will randomly become a space bit; If all neighbors of M are C, all cells remain unchanged. If
at least one neighbor of M is C, and C does not move toward M, M also remains unchanged.

3. Numerical model
3.1 Brief on Basic Equations

The stress-strain problem of corrosion-damaged structure belongs to the linear elastic problem
of solid mechanics, so we first brief the basic equations for solid mechanics problem of linear
elasticity.

Consider a two-dimensional solid mechanics problem with a physical domain of QeR?
bounded by I'.The static equilibrium equation for 2D solids in the domain Qe R?® can be
written as:

00;; .-
—1+b =0, i,j=12 )

OX j

where b, are given external body force and 9j is the stress tensor which relates to the strains
tensor &; via the constitutive equation or the Generalized Hook’s law:

Ojj = Cijklgkl (3)

1

where Cyy is elasticity tensor of material property constants.

The strains tensor ¢ relates to the displacement by the following compatibility equation.

1({ou, ou
Ea=7| —t 4
2\ 0X,  OX,
where U,, i =1,2 is the displacement components in the xi-directions at a point in Q .

In matrix form, the equilibrium Eq.(2) becomes:

L,c+b=0 (3)
where L, is a matrix of the differential operator defined as:
0
%,
0 0 0
Lol = = |7| 0 = (6)
oX,  0OX, OX,
CEC
| OX, 0%
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The constitutive equation becomes:
c=Ceg (7)
Where C is matrix of material properties which entries of Cy,,6={0,;, o0, alz}Tand
e={e, &, 5IZ}T
The compatibility equation (4) can also be written in the matrix form of :
e=L,u (8)
where u={u, u,}' is the displacement vector. Substituting Eq.(8) into (7) and then into (5):
L.CL,u+b=0 €))

There are two types of boundary conditions: Dirichlet (or essential / displacement ) boundary
conditions and Neumann (or natural / stress) boundary conditions. Let I'; denote a part
of I' , on which homogenous Dirichlet boundary condition is specified, then we can obtain:

I,el on u, =0, (10)
Let T'y denotes a part of I', on which Neumann boundary condition is satisfied,
oN;=t, on I'yel (11)

where N; is unit outward normal vector, and U is the specified boundary stress on I,
respectively. The matrix form of Eq.(11) is as follows:

|_Tno-:t, on Iy el (12)
Where
n, 0
L.(n, n)=| 0 n, (13)
n, n

3.2 Displacement field approximation using the PIM

The point interpolation method (PIM) obtains the approximation by letting the interpolation
function pass through the function values at each scattered node within the local supporting
domain.

Different types of point interpolation can be constructed by using different types of base
functions. There are two common types: Polynomial point interpolation method (PIM) based
on polynomial basis function and radial point interpolation method (RPIM) based on radial
basis function.

For the polynomial PIM, the formulations start with the following assumption:

u(x) = i P(X)a, =P (x)a (14)
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Where u(x) is a field variable function defined in the Cartesian coordinate
space X' ={x y}, R(x) is the basis function of monomials which is usually built utilizing
Pascal’s triangles, a; is the corresponding coefficient, and N is the number of nodes in the
local support domain. The complete polynomial basis of orders 1 and p can be written as:

PIg=(1 x x* - x"), 1D (15)

Pr=(1 x y x* xy - x* y"), pD (16)

For the radial PIM, using radial basis functions augmented with polynomials, the field
function can be approximated as follows:

u(x) :Zn:Ri (X)a, +il3i(x)bj =R"(x)a+P" (x)b (17)

Where R (x) and P,(x) are radial basis functions and polynomial basis functions respectively,
a, and b,are corresponding coefficients, n is the number of nodes in the local support domain
and m is the number of polynomial terms.

The coefficients in Eqgs.(14) and (17) can be determined by enforcing the field function to be
satisfied at the n nodes within the local support domain. Finally, the PIM shape functions can
be obtained and the field function can be expressed as:

u(x) :Zn:gpi (X)d, =®" (x)d (18)

where d, is a nodal function value and ¢,(x) is the PIM shape function which possesses the
Kronecker delta function property. In the above formulation, it is noticed that we need to
properly select N nodes for interpolation ensuring a nonsingular moment matrix.

3.3 T schemes for node selection

In this paper, three-point triangular background element is adopted to discretize the problem
domain. The element can be generated automatically without manual operation, and the mesh
density of triangular background element can be adjusted according to the need of
computational accuracy.

The T scheme used in ES-PIM method mainly includes T3 scheme, T6/T3 scheme and T6
scheme. The following mainly introduce the T3 and T3/T6 scheme which used for
programming.

The T3 scheme mainly uses the three vertices of the triangular mesh where the calculation
point is located to represent the displacement function of the calculation point, and its
displacement field is a linear displacement field. This method has many similarities with the
first-order finite element interpolation method. The T3 scheme is used only for creating linear
PIM shape functions by using polynomial basis functions. As illustrated in Figure 3.
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Figure 3. Illustration of the T3 scheme Figure 4. Illustration of the T6/T3 scheme
of node selection of node selection

Whether the point of interest (X) is located in an interior cell (element i ) or a boundary cell
(element ] ), only the three nodes of the home cell ( i, —i, or j, — j,) are selected.

In the T6/T3 scheme, the point of interest located in the boundary cell only needs three nodes
to interpolate and the linear displacement approximation function also constructed by these
three nodes. For the point of interest located in an interior cell needs six nodes to interpolate
and been used for construct a quadratic displacement approximation function. As illustrated in
Figure 4.

It not only successfully overcomes the singular problem which exists in the process of PIM