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Abstract

The discontinuous Galerkin (DG) methods have attained increasing popularity for solving the
incompressible Navier-Stokes (INS) equations in recent years. However, the DG methods
have their own weakness due to the high computational costs and storage requirements. In
order to tackle this problem, in this paper, a hybrid least-squares reconstruction DG (rDG)
method, namely P1P2(HLST), is presented to obtain a quadratic polynomial solution from the
underlying linear DG solution by use of a hybrid recovery and reconstruction strategy. This
hybrid rDG method combines the simplicity of the reconstruction-based DG method and the
accuracy of the recovery-based DG method, and has the desired property of 2-exactness
which is violated by the original least-squares rDG method. The inviscid term of the INS
equations, which is split into the nonlinear convective term and the linear Stokes operator, is
discretized by using a simplified artificial compressibility flux. More specially, the nonlinear
convective term is discretized in divergency form by using the local Lax-Friedrichs flux,
while the Stokes operator is discretized by using the artificial compressibility flux which is
provided by the exact solution of a Riemann problem associated with a local artificial
compressibility perturbation of the Stokes system. The discretization of the viscous term
follows the simple direct DG (DDG) method. A number of incompressible flow problems, in
both steady and unsteady forms, for a variety flow conditions are computed to numerically
assess the spatial order of convergence of the PiP>(HLSr) method, which demonstrate its
ability to achieve the designed optimal 3rd-order of accuracy at a significantly reduced
computational costs.
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Numerical results
Kovasznay problem

The analytic solution for the 2D INS equations was derived by Kovasznay. The analytical
expression for the velocity and the pressure is

u(x, y) =1—e* cos(2ry),

V(X,y) = %e“ sin(2ry),

1,
pP(X,y) = €
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Here, iz%—"RTeJAﬁZ. The computational domain is Q:(—%,g)x(O,Z) with

prescribed Dirichlet boundary conditions on 6Q . The Reynolds number is Re=10 and the
artificial compressibility parameter is ¢?=1.0.

The comparisons among the numerical results obtained by the DG(P1), DG(P2) and
P1P2(HLSr) methods are presented in Tab.1. It can be seen that the P1P>(HLSr) method, as
expected, adding one order of accuracy to the underlying DG(P1) method and even having
higher order of accuracy for the pressure than the DG(P2) method. Although the DG(P>)
method does yield a slightly more accurate solution than the P1P>(HLSr) method at the same
grid resolution, however, it is obtained at the cost of more number of the degrees of freedom
which leads to a dramatic increase of the computational cost. The detailed convergence
history, which contains the number of iteration steps and the CPU time (s) to reduce the
residual by 8 orders of magnitude are presented in Tab.2.

Tabl. Convergence results for the Kovasznay problem.

T €ull2 €nl2 €v.ull2
Grdgize Ne.DOEs “En"Ior Order ”Ei'1|'|or Order HErrol| Order
DG(Py)
8x8 192 3.19e-1 5.02e-1 1.41e-0
16x16 768 78%-2 202 125e-1 201 6.86e-1 1.04
3232 3,072 1.92e-2 204 3422 187 240e-1 152
64 x 64 12,288 456e-3 207 9923 179 7.00e-2 1.78
DG(P)
8x8 384 6.00e-2 6.29¢-2 4.48e-1
16x16 1536 735e-3 3.03 1.18e-2 241 9.25e-2 225
32:% 32 6,144 9.21e-4 3.00 237e-3 232 195e-2 225
64 x 64 24,576 1.26e-4 287 5.15e-4 220 440e-3 215
P, P,(HLST)
8x8 192 1.39%e-1 2.84e-1 8.65e-1
16x16 768 1.71e-2  3.02 429%-2 273 200e-1 211
32x32 3,072 208e-3 3.04 6.63e-3 277 348e-2 257
64 x 64 12,288 224e-4 322 1.02e-3 270 549e-3 2.66
Tab.2 Convergence history for the Kovasznay problem.
Crid size Iteration step CPU time (s)
DG(P]) DG(Pz) P] Pz(HLSr) DG(Pl) DG(Pz) P1 Pz(HLSr)
8x8 95 95 93 9.65 28.08 3.63
16 x16 127 126 126 23.71 103.13 12.25
323432 159 204 156 84.40 557.36 84.91
64 x 64 201 250 190 679.12 5289.36 785.05

Lid-driven cavity flow

The lid-driven cavity flow has been widely used as a validation case for numerical method of
the INS equations. The problem has simple geometry and boundary conditions. The standard



case is fluid contained in a square domain Q = (0,1)> with homogeneous Dirichlet boundary
conditions on all sides except on the upper side where the velocity is prescribed as u=(1,0).

Here, we compare the performances of the DG(P1), DG(P2) and P1P2(HLSr)methods at high
Reynolds number by the lid-driven cavity flow problem with Re=1,000, 5,000 and 10,000.

The u-velocity and pressure profiles along a vertical line and the v-velocity and pressure
profiles along a horizontal line passing through the geometric center of the cavity respectively
are presented in Fig.1-Fig.3. It can be seen that the present method is able to mimic the
available results with great accuracy, the profiles are in good agreement of the reference
results.
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Fig.1 Results for the lid-driven cavity flow at Re=1,000.
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(c) Pressure of Py P,(HLSr) solution (d) Streamlines of P; P>(HLSr) solution

Fig.2 Results for the lid-driven cavity flow at Re=5,000.



F. Bassietal.

08

086

04
[ F. Bassietal.

i v
a2k T 0000 s

(c) Resultant velocity of P; P,(HLSr) solution (d) Streamlines of P; P,(HLSr) solution

Fig.3 Results for the lid-driven cavity flow at Re=10,000.

Steady flow over a circular cylinder

A flow past a circular cylinder at a Reynolds number of 20 and 40 respectively based on a
uniform free-stream velocity u = (1,0) with no-slip boundary conditions on the cylinder
surface is considered in this case. At both of these two Reynolds numbers, the flows are

laminar and steady and were studied quite extensively in both measurements and numerical
calculations.

Fig.4 shows the streamlines and the vortex behind the cylinder computed by the P1P2(HLST)
method at Re = 20 and Re = 40, respectively. It is clear to see that a pair of stationary
recirculating regions appears in the wake of the cylinder for each condition and the length of
the recirculating region increases with the Reynolds number.



(a) Re=20 (b) Re=40
Fig.4 Streamlines plot of steady flow past around a circular cylinder based on P1P2(HLST).
Next, we calculate the friction and pressure drag coefficients, the total drag coefficients, the
front and rear stagnation pressure coefficients, and recirculation lengths obtained for the

steady flows at Re=20 and 40, respectively. The results are summarized in Tab.3.

Tab.3 Comparison of results for steady flow past a circular cylinder.

Source CDF CDP CD CP(O) —Cp(ﬂ’) Lw/D
Re=20

R.P.Bhartietal. 0.8211 1.2244 2.0455 1.2889 05457 09164
DG(P) 0.7882 1.2241 2.0132 1.2918 0.5505 0.9301
DG(P,) 0.8078 1.2257 2.0336 1.2956 0.5492 0.9051
P, P,(HLSr) 0.8074 1.2256 2.0330 1.2943 05496 0.9051
Re=40

R.P. Bhartietal. 0.5316 09976 1.5292 1.1636 04798 22252
DG(P) 0.5072 0.9959 1.5031 1.1649 04821 2.0507
DG(P;) 0.5234 09961 15196 1.1674 04804 2.1233
P, P,(HLSr) 0.5232 09962 1.5195 1.1663 04810 2.2685

An excellent correspondence can be seen to exist between the present and literature results
which demonstrate that our method can provide an attractive alternative for solving the INS
equations on arbitrary grids.



