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Abstract 

To specify causes of heart diseases, it is very important to understand a blood flow state in an 
aorta. In this paper, the blood flow which pushed out to the aorta according to a contraction 
motion of a left ventricle was simulated. To express its complicated shape and the motion, the 
unstructured moving grid finite volume method was adopted. In this method, the control 
volume is defined for a space time unified domain. Not only a physical conservation law but 
also a geometric conservation law is satisfied in this approach. Then high accurate 
computation is conducted under the method. The left ventricle expands and contracts, at the 
same time, the ventricle and the aorta perform a translational motion. The model of its motion 
captured from the computed tomography images is also introduced to this computation. The 
result of flow calculation in left ventricle matches with the measurement result qualitatively. 
A flow in an aorta has a dramatic shift on its style in the contraction process of left ventricle. 
We also succeeded to capture its shift on our result of the flow in the aorta. Then, the 
tendency of the flow also matches with the computation and measurement result of others. 
Furthermore, the complicated vortex structure in the left ventricle was shown as the results of 
the simulation. Thus, the validity of the computational method and the possibility of 
calculation for capturing detail flows in left ventricle and aorta were shown in this paper. 
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Introduction 

There are a lot of threat serious or life threatening disease in a heart and vascular diseases, for 
example arteriosclerosis or an aneurysm. It is known from clinical observation that the heart 
and vascular diseases often appear at bifurcation or flexure of thick blood vessel. Thus, the 
relation between the origin of the heart disease and blood flow has been pointed out. Then, 
various hypotheses regarding the fluid dynamics factor of the heart and vascular diseases have 
been made. To prove the validity of the hypotheses, flows in a heart or blood vessel have been 
studied through the method of experimentation or numerical simulation. Ku et al. [1] made a 
measurement the intimal thickening generated at the branching part of the human arteria 
carotis communis, as they were focused on the relations between the intimal thickening of an 
artery and the blood flow. Then, it was shown that the intimal thickening has a correlation 
with the time fluctuation of shear force measured on a glass tube flow made from specimens 
of blood vessel. Fukushima et al. [2] created a visualization of blood flow using the real blood 
vessel taken out from the body. The real blood vessel is made transparent by salicylic acid. 
Then, they determined whether vortex tube exist at the bifurcation of the blood vessel. While, 
by multi scale computing using the finite element method, Sugiura et al. [3] created the 
numerical heart in the supercomputer although it took a huge cost. 
And now, the aorta connected to the left ventricle is comprised of three parts as the aorta 
ascendens expanding upward, the aortic arch taking a bend, and the aorta descendens 
expanding downward. Then, the three principal branched blood vessels expand from the 



aortic arch. The blood current in the aorta behaves like an intermittent flow which alternates 
start and stop flow, because the aortic valve located between the aorta and the left ventricle 
has to alternate close and open to occur the flow from the left ventricle to the aorta. The 
complicated flow phenomenon in the aorta is created from the geometric feature and the 
pulsatility of the aorta. Then, it is very interesting from the hemodynamic standpoint 
regarding the relation between the origin of the heart disease and the factor of the fluid 
dynamics. It is at an increased risk for developing of the disease at the left ventricle and the 
aorta. Furthermore, it would become more serious when it develops. From the point of the 
view, a lot of researches [4] of the left ventricle and the aorta have been conducted. The 
objective of our paper is to develop an efficient computation method for flows of the left 
ventricle and the aorta with satisfying the expression of the complicated shapes and the 
function. To calculate more accurately, not only expansion and contraction of the left 
ventricle but also translational motion of the aorta is adopted as the motion for computation. 
In particular, to satisfy a physical conservation law and a geometric conservation law, the 
unstructured moving grid finite volume method [5][6] is adopted. In this method, a control 
volume is defined for a space time unified domain. The method made it possible to compute 
accurately for motion of the left ventricle and the aorta. Furthermore, the unstructured mesh 
approach was also able to express such the complicated shape. Then, the computation was 
carried out under the OpenMP parallel environment [7]. 

Numerical Approach 

Governing Equations 

As governing equations, the continuity equation and the Navier-Stokes equations for 
incompressible flows are adopted and written as follows: 
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where q is the velocity vector, Ea, Fa, and Ga are advection flux vectors in the x, y, and z 
direction, respectively, Ev, Fv, and Gv are viscous-flux vectors, and Ep, Fp, and Gp are 
pressure terms. The elements of the velocity vector and flux vectors are 
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where u, v, and w are the velocity components of the x, y, and z directions, respectively, and p 
is pressure. The subscripts x, y, and z indicate derivatives with respect to x, y, and z, 
respectively. Here, Re is the Reynolds number. 



The Unstructured Moving-Grid Finite-Volume Method 

In this simulation, expansion and contraction of the left ventricle and translation motion of the 
aorta are expressed using moving mesh approach. To assure a geometric conservation law in 
moving mesh, a control volume is defined in a space-time unified domain. For the 
discretization, Eq. (2) can be written in divergence form as 
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The flow variables are defined at the center of the cell in the (x, y, z) space, as the approach is 
based on a cell-centered finite volume method. Thus, the control volume becomes a four-
dimensional polyhedron in the (x, y, z, t)-domain. For the control volume, Eq. (4) is integrated 
using the Gauss theorem and written in surface integral form as: 
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Here, 
un~  is an outward unit vector normal to the surface, ~ , of the polyhedron control 

volume ~ , and n~ = (
xn~ ,

yn~ ,
zn~ ,

tn~ )l, (l=1, 2,... 6) denotes the surface normal vector of control 

volume, and its length is equal to the boundary surface area in four-dimensional (x, y, z, t) 
space. The upper and bottom boundary of the control volume (l = 5 and 6) are perpendicular 
to the t-axis, and therefore they have only the 

tn~  component, and its length corresponds to the 

volume of the cell in the (x, y, z)-space at time tn and tn+1, respectively.  

Computational Model and Conditions 

Geometric Model of Left Ventricle and Aorta 

The function of the left ventricle is draining blood to the aorta like a pomp. The mitral valve 
and the aortic valve are put on the inlet and the outlet of the ventricle, respectively. The shape 
of the left ventricle is structured, as shown Fig. 1. Bothe of the diameter of blood vessels at 
the mitral valve and the aortic valve are 3.0cm. The length from the base of heart to the 
cardiac apex is 7.8cm at lumen maximum volume. The cross-section shape of the left 
ventricle is ellipse. Then, the ratio of the major axis and minor axis on the ellipse is 5 to 4. 
While, the aorta is comprised of three parts which are the ascending aorta expanding upward, 
the aortic arch taking a bend, and the descending aorta expanding downward. Furthermore, 
the three principal branched blood vessels which are called innominate artery, left common 
carotid artery and left subclavian artery expand from the aortic arch. Then the aortic arch 
itself curves three-dimensionally. In other words, the central axis of the aortic arch in not on a 
plane surface. Thus, the aorta is complicated shape with bending, bifurcation and three-



dimensional torsion. In this paper, the shape of the aorta model is created, as shown Fig. 2. 
Then, Fig. 3 shows aortic arch with three-dimensional curve around the bifurcation points. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Left ventricle model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Aorta model 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.  Angle of torsion at aortic arch from top view 



Motions of Left Ventricle and Aorta 

The left ventricle is draining blood to the aorta by expansion and contraction. Then the heart 
rate is determined the systole and diastole of the heart. Then, a period from starting point to 
the next starting point of heart rate is called the cardiac cycle. If a pulse rate is 60bpm, one 
cardiac cycle would be 1.0sec. Then, it is classified 0.49sec as the systole and 0.51sec as the 
diastole. The history of the left ventricle cavity volumetric change in one cardiac cycle is 
shown in Fig. 4. The expansion and contraction using moving mesh at the simulation are 
expressed under the history. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  History of left ventricle volumetric change 
 
Fig. 5 shows the computed tomography images of the left ventricle and the aorta [8]. The dark 
black line is a catheter injecting a contrast medium. The figure on the left is a front view of a 
human and the figure on the right is a side view. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  CT images of left ventricle and aorta (left: front view, right; side view) 



Fig. 6 shows the CT images at the maximum volume of the left ventricle and Fig. 7 shows at 
the minimum one. On both figures, the red line indicates the point of the aortic valve at the 
maximum one. Then, the blue line indicates at the minimum one. From these figures, the 
translation motion of the position of the aortic valve is confirmed from the figures. Then, we 
can see the motion within a broader range from the left ventricle to the descending aorta. The 
motion can affect to the blood flow since the acceleration of the motion is relatively high. 
Thus, in this computation, the motion is introduced. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. CT image at maximum volume of ventricle (left: front view, right; side view) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. CT image at minimum volume of ventricle (left: front view, right; side view) 
 
To know the length of the translation motion, the CT images are used. Several points are put 
on the images as shown in Fig. 8. These points correspond to the points at the computational 
model as shown in Fig. 9. The detail travel lengths are calculated using the height of the left 
ventricle as reference length L. Conducting the measurement by two aspects, the translation 
motion is estimated as three-dimensional movement.  
 



 
 
 
 
 
 
 
 
 
 
 

Figure 8. Measurement length of translation motion from CT image 
(left: at maximum volume, right; at minimum volume) 

 
 
 
 
 
 
 
 
 
 
 

Figure 9. Corresponding points on computational model 

Computational Conditions 

The computational mesh is generated by MEGG3D [9] using tetrahedral and prism elements. 
The total number of the elements are 2,777,089. The heart rate is 60bpm, and the Reynolds 
number is 2,030. As an initial condition, pressure p = 0 and velocity for x, y, z directions u = v 
= w = 0 are obtained for all elements. In the cardiac diastole, the mitral valve is open and the 
aortic valve is closed completely. Then, the velocity at the mitral valve is given as a linear 
extrapolation and pressure is fixed as p = 0. While, in the cardiac systole, the mitral valve is 
closed and the aortic valve is open completely. These open and closing motion are conducted 
instantly. On the four exit of blood vessels, velocity is determined as a linear extrapolation 
and pressure is zero. The velocity on all walls of the left ventricle and the aorta is given the 
moving velocity decided expansion, contraction and translation motion.  

Computational Results 

Verification of the validity for the Computation 

To verify the validity for the computational approach, results of the flows inside the left 
ventricle and the aortic arch are evaluated. Fig. 10 shows streamlines in the left ventricle at 
the third cardiac diastole from starting this calculation. By expansion of the left ventricle, the 
blood inflow through the mitral valve is seen. Then, we can confirm that the flow makes two 
vortexes. One is generated on the center of the left ventricle, which is larger than another one. 
Another is created between mainstream and the wall. The relatively large vortex is also seen 
in the measurement results of flow in the left ventricle by Kilner et al. as shown in Fig. 11. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Streamlines in left ventricle on this computation result 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Measurement result of flow in left ventricle 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Streamline in aorta of the computation 
(left: in early systole, center: in mid to late systole, right: in end systole) 



Fig. 12 shows streamlines in the aorta at the third cardiac systole from starting this calculation. 
In this figure, left one is in early systole, centered one is in mid to late systole, and right one is 
in end systole. In the early systole, a strong flow along the aortic arc from the left ventricle is 
seen. In the mid to late systole, a spiral flow along the mainstream is confirmed. Then, small 
vortex is generated at the entrance of the innominate artery. In the end systole, mainstream 
itself becomes weak and circulating flow along the aortic wall. Then, we can hardly see flows 
in the tributary. These results are also compared with other computation and measurement 
results. The computational results by Wada are shown in Fig. 13, and the measurement results 
by Kilner et al. are shown in Fig. 14. The tendencies of our computation results on each 
systole are seen in the other computation and measurement results. 
Comparing with other computation and measurement results of flows inside the left ventricle 
and the aorta, the qualitative correspondences are seen in both case. Thus, the validity of the 
computational approach is confirmed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Streamline in aortic arch computed by Wada 
(left: in early systole, center: in mid to late systole, right: in end systole) 

 
 
 
 
 
 
 
 
 
 
 

Figure 14. Measurement results in aortic arch by Kilner 
(left: in early systole, center: in mid to late systole, right: in end systole) 

Blood Flow in Left Ventricle 

The isosurface of Q criterion in the left ventricle at t = 22.0, 23.0, 24.0, 25.0, 26.0 and 27.0 
are shown in Fig. 15. These are from in the third early systole to the third in the mid to late 
systole. Vortex structures generated by the cardiac beat from the second period remain in the 
left ventricle. Into the domain, the inflow of blood with generating the ring-shaped vortex 
tube from the mitral valve is seen. The vortex tube is collapsing according to a decrease in the 
inflow of blood from the mitral valve. Then it becomes a complicated vortex structure and 



spreads in the left ventricle. Thus, the possibility of calculation for capturing detail flows in 
left ventricle is shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   t = 22.0                                     t = 23.0                                     t = 24.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   t = 25.0                                     t = 26.0                                     t = 27.0 

Figure 15. Isosurface of Q criterion in left ventricle (t = 22.0 to 27.0) 

Conclusions 

To construct the computational approach for specifying cause of heart diseases, blood flows 
in the left ventricle and the aorta were calculated. For high order accurately, the unstructured 
moving-grid finite-volume method was adopted. Furthermore, not only the expansion of 
contraction of the left ventricle but also translation motion of the aorta which is captured from 
the computed tomography images was adopted in this paper. From the results of the flow in 
the left ventricle compared with measurement result, the large vortex is seen. Furthermore, the 
flows in the aorta were estimated using the other computation and measurement results. As 
the tendencies on each systole are seen in both results, the qualitative correspondences are 
confirmed. Thus, the validity of the computational approach is shown. In the computation for 
blood flows inside of the left ventricle at the diastole, complicated vortex structures are 
captured by the approach. Thus, the possibility to computed and specify the cause of the 
diseases was shown. 
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