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Abstract 

Until recently, the use of Computational Fluid Dynamics (CFD) appears to be gaining traction 

over traditional Gaussian Dispersion Modeling to predict and understand pollutant dispersion 

processes in urban environments. Gaussian Dispersion Models, while computationally fast, 

lacks in physical representation and accuracy but still sufficed as evidenced by its use in 

numerous engineering designs and research applications. In CFD, two typical methodologies 

namely the passive scalar transport and the multi-species transport are used to track spatial 

dispersion of pollutants. The focus of this study is to understand and quantify the differences 

between the two models when applied to near-field dispersion of heavy gases. The two 

methodologies are validated by simulating the dispersion phenomena for two test cases which 

largely bears resemblance to urban settings: a three-dimensional street canyon setup and the 

Mock Urban Setting Test (MUST) field experiment. The pollutant used in the CODASC study 

is Sulphur Hexafluoride (SF6) while Propylene (C3H6) is used in MUST, both heavier than air. 

It is found that numerical results are highly sensitive to the value of turbulent Schmidt number 

(Sct) in both test cases. Through parametric studies, the best accuracy is attained when the Sct 

value of 0.5 is used in the street canyon case and Sct value of 1.5 for MUST. Generally, better 

agreement between numerical and experimental results is reflected in the street canyon case 

study compared to MUST. For the CODASC case study, the passive scalar transport model 

yielded better results than the multi-species transport model while the opposite is true for 

MUST. With the preconceived notion that the multi-species transport model should outperform 

the passive scalar transport, a conclusion showing a lack of significant improvement the former 

has over the passive scalar transport model is indeed unexpected. With regards to computational 

efficiency, the passive scalar transport model requires much lesser resources such as CPU time 

and memory compared to the multi-species transport model, thus making it more efficient.  
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Introduction 

Pollutant dispersion modeling holds significant importance when determining the severity of 

disasters, be it natural or man-made. Incidents such as the Fukushima Daiichi accident in 2011 

or the more recent 2018 gas leak in Zhangjiakou, China have shown the devastating 

consequences on air quality through the release of toxic materials into the atmosphere. Even 

eight years after the disaster, atmospheric air quality around the immediate vicinity of 

Fukushima still contains lethal levels of radiation [1] and the effects of the incident in 

Zhangjiakou led to tragic consequences, due to the dispersion of a flammable pollutant which 

was ignited, leading to fatalities [2]. It is therefore of paramount importance to understand and 

assess these effects on public health and safety, immediately following an accident or to conduct 

risk management planning for pre-emptive purposes. The importance of understanding 

atmospheric dispersion processes is further emphasized through the span of research in 

developing state-of-the-art models from regulatory bodies such as the United States 

Environmental Protection Agency (US EPA) and UK Met Office to research organizations such 

as the European Cooperation in Science & Technology (COST). Many of these regulatory 



 

bodies have developed their own atmospheric dispersion models: for instance, the open-source 

AERMOD was developed by US EPA and NAME by the UK Met Office [3]. In general, 

dispersion models are classified into three different families of models: Gaussian, Lagrangian 

and Eulerian. These models have been used to good effect in disasters such as the 

Eyjafjallajökull eruption and the Fukushima nuclear accident to provide crucial information for 

timely and preventive measures. Private research organizations have also funded initiatives to 

understand and improve the quality of models used to predict transport phenomena such as the 

COST Action 732. 

However, effectiveness and reliability of these dispersion models are confined to certain spatial 

scales namely the meteorological mesoscale which would not be suitable for analyzing 

dispersion in the urban environment, the scale of which is two orders of magnitude smaller than 

meteorological mesoscale. Hence Lagrangian and Eulerian models will not work well for 

modeling dispersion on a microscale level. Gaussian-based models do have its merits when 

used on that spatial scale but the interaction between complex flow fields and different building 

configurations limit its accuracy significantly. Besides Gaussian-based models, microscale 

Computational Fluid Dynamics (CFD) are commonly used. The cost involving CFD 

simulations is relatively low, detailed information about the flow field can be obtained 

depending on mesh resolution and scaling of simulations can be carried out with ease [4]. But 

since errors are introduced in each progressive stage of CFD modeling, accuracy and reliability 

of results are often questioned which require validation studies.  

Gaussian Dispersion Modeling 

The underlying equation of Gaussian-based models is given by:  

𝑐(𝑥, 𝑦, 𝑧) =
𝑄

2𝜋𝜎𝑦𝜎𝑧𝑢
exp (−
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2𝜎𝑦
2

) (exp (−
(𝑧 − 𝐻𝑒)2

2𝜎𝑧
2

) + exp (−
(𝑧 + 𝐻𝑒)2

2𝜎𝑧
2

))            (1) 

where 𝑐 is the concentration of a pollutant at a given location, 𝑄 is the rate of pollutant emission, 

𝐻𝑒 is the effective height of release which is the sum of actual stack height 𝐻𝑝 and plume rise 

Δℎ, 𝑢 is the speed of wind in the 𝑥-direction at height 𝐻𝑒. 𝜎𝑦 and 𝜎𝑧 are standard deviations of 

the pollutant concentration profile in the 𝑦 and 𝑧 direction respectively, both represented by a 

Gaussian distribution which depends heavily on atmospheric turbulence. Comprehensive 

experimental measurements have been carried out to relate various values of 𝜎 to atmospheric 

stability. The resulting tabulated data is known as the Pasquill-Gifford-Turner Stability 

Classifications [5]. Stratification of the atmosphere into different stability classes is crucial to 

model the atmospheric boundary layer accurately. The boundary layers are differentiated into 

three main types: unstable, neutral and stable.  

The popularity of Gaussian models is largely due to its low computational costs, with many 

environmental regulatory agencies using it as an initial assessment in determining the severity 

of industrial accidents or pollution levels. Complex dispersion related phenomena can be 

included which adds an edge of versatility to Gaussian models. However, its validity and 

accuracy are dampened by underlying assumptions used in the derivation of Eq. (1). Velocities 

in the 𝑦 and 𝑧 direction are assumed to be zero and diffusion in the 𝑥 direction is ignored. 

Neglecting diffusion in the 𝑥 direction can lead to inaccurate results especially in situations 

where there are low wind speeds which causes significant concern. Atmospheric turbulence is 

also assumed to be uniform and homogenous since 𝜎 is directly proportional to sizes of eddies. 

Furthermore, 𝜎 values are measured from rural terrains with flat and open surfaces, which 

reduce its applicability when the model is used in an urban environment [6, 7]. A sensitivity 

study on the parameters of the Gaussian model by Adel [6] showed that changes as small as 



 

10% could result in 100% under or over prediction. Hence using Gaussian models for dispersion 

in urban environments raises questionable issues in accuracy and applicability.  

Within urban environments, buildings and obstacles as well as their complex interaction with 

flow fields bring additional challenges in dispersion modeling. Near-field dispersion is 

characterized by interactions between atmospheric boundary layer flows and flow structures 

around buildings while in far-field dispersion, the horizontal motion proves to be more 

dominant over vertical motions and effects of buildings on flow fields are limited [8].  More 

specifically in near-field dispersion, there are features such as a fully three-dimensional flow 

structure around buildings which affects pollutant transport in ways that could not be fully 

described by Gaussian models. Flow separation, recirculation and various patterns of vortices 

(e.g. horseshoe vortices, vortex shedding etc.) generated by the presence of buildings adds 

further complication in determining pollutant distribution at the desired location.  

Computational Fluid Dynamics (CFD)  

Interest in CFD to model pollutant dispersion in urban environments is not newly found as seen 

by the review of Tominaga and Stathopoulos [8], which offered a comprehensive compilation 

of current modeling techniques. The use of CFD has allowed the approximation of flow field 

quantities such as velocities and concentration to be made known throughout the computational 

domain in all three-dimensions, which Gaussian-based models lack. However, CFD is not 

without uncertainties. The validation and verification of CFD models constitute a major role in 

forming a quantitative conclusion on the accuracy and the reliability of results. Availability of 

experimental data while reassuring, is to be used with caution as circumstances surrounding the 

experiment must be replicated in the CFD model through initial and boundary conditions, 

failing which will render the comparison between numerical and experimental data pointless 

[8]. Inherent in such a strict requirement is the assumption that every experiment must be carried 

out under identical conditions. This hints at some form of replicability which is mostly 

impossible when meteorological factors like wind and weather conditions are involved [9]. 

Even under more predictable conditions such as wind tunnel testing, drawbacks still exist, 

nonetheless. Therefore, a certain pre-existing error must be accepted into the overall model 

evaluation.  

The motivation behind this study is largely due to limited efforts thus far to compare the 

differences between passive scalar transport and multi-species transport. With the passive scalar 

transport model, the concentration of pollutant does not have any impact on the flow field. As 

such, flow properties remain unchanged even if a different pollutant is used. The pollutant used 

can be interpreted to be weightless and its transport is mainly governed by advection and mass 

diffusion. Using the multi-species transport model, on the other hand, will result in the flow 

field changing depending on the chemical species being transported. Since the mixing law takes 

effect, any change in composition in the mixture of species will affect the density of the 

resulting mixture. Gravitational effects are also included where physical characteristics of the 

pollutant will affect the flow field. The two species considered in this study will be the pollutant 

and air. Chemical reactions between the two species are however, ignored in this study.  

A review by Lateb et al. [4] on CFD to predict dispersion in urban environments stated that a 

common assumption used by various studies is that the pollutants are assumed to be passive 

and subsequently, the effects physical characteristics of pollutant particles have on the flow 

field are often neglected. A study previously done by Gromke and Ruck [11] [12] investigated 

pollutant dispersion in a three-dimensional tree free street canyon and found that concentration 

values predicted by FLUENT gave good agreement to wind tunnel measurements. Species 

transport was utilized but they did not study the effects of a passive pollutant. Bekka et al. [13] 



 

carried out a study based on the MUST case and found that agreement with full-scale 

experimental data [14] varied with distance from the source. Better agreement was observed 

closer to the source while more deviation was observed further from the source but there was 

no indication on how transport of the pollutant was modeled, raising some doubt over the 

quality of their findings. Tominaga and Stathopoulos [15] carried out a comparison between 

neutrally buoyant (passive) scalars and heavy gases on flow and concentration fields and found 

that prediction performance of heavy gases was worse than that for neutral gases, but their scope 

was limited to just one building configuration. 

Objective  

The objective of this study is to present and evaluate CFD methods for the dispersion of heavy 

gases in urban environments using the commercial code FLUENT. Two different 

methodologies: 1) passive scalar transport and 2) multi-species are proposed to track dispersion 

of pollutant particles. The two methodologies are validated through two test cases 

representative of urban environments: a three-dimensional street canyon and the Mock Urban 

Setting Test (MUST). First, the respective mathematical models are analysed. Following that, 

the characteristics of both case studies used for validation purposes are identified. Besides 

visual observation and comparison of numerical results with experimental data, statistical 

performance measures are subsequently introduced to provide a succinct approach in 

quantifying the performance of each methodology. Results and discussion of the two 

methodologies are subsequently given, where the effects 𝑆𝑐𝑡 values have on concentration 

distributions are discussed. A comparison between both methodologies is rendered and their 

accuracy is evaluated.  

Fundamental Mathematical Models 

The Standard Gradient Diffusion Hypothesis (SGDH) is primarily used to model the turbulent 

scalar fluxes, which are postulated to be directly proportional to concentration gradients with a 

coefficient of proportionality known as turbulent diffusivity, 𝐷𝑡: 

𝑢′𝑐′ = 𝐷𝑡

𝜕𝑐̅

𝜕𝑥
                                                                             (2) 

𝑣′𝑐′ = 𝐷𝑡

𝜕𝑐̅

𝜕𝑦
                                                                             (3) 

𝑤′𝑐′ = 𝐷𝑡

𝜕𝑐̅

𝜕𝑧
                                                                             (4) 

Turbulent diffusivity can be further broken down into a ratio of two terms: turbulent kinematic 

viscosity (𝜈𝑡) over the turbulent Schmidt number (𝑆𝑐𝑡). It should be noted that 𝑆𝑐𝑡 is a free 

parameter, with multiple ranges of values that depend on flow fields and configurations of 

geometries with which the flow interacts with. This seems to suggest that 𝑆𝑐𝑡 can be altered to 

artificially increase or reduce turbulent diffusion which can drastically affect transport 

phenomena and subsequently, numerically predicted concentration.  

Tominaga and Stathopoulos [17] showed that 𝑆𝑐𝑡 ranged from 0.2 to 1.3 which differed from 

the commonly used values of 0.7 to 0.9. Gualtieri et al. [18] discovered in his analysis of 

literature from both water and atmospheric systems that the range of best-fitting 𝑆𝑐𝑡 changes 

for different cases and that there were cases where best-fit 𝑆𝑐𝑡 value was found to be the same 

for extremely different flow conditions (i.e. cases of water and atmospheric systems having 

similar 𝑆𝑐𝑡 values). These two inconsistent observations contributed to a conclusion that it is 

impossible to determine a generic 𝑆𝑐𝑡 value. Gualtieri et al. subsequently questioned if 𝑆𝑐𝑡 had 



 

different values in the same flow domain but was inconclusive as to which parameters 

controlled this variability.  

The relevant governing equations begin with the continuity equation:    

∇ ∙ (𝜌𝑣⃗) = 0                                                                     (5) 

Reynolds Averaged Navier-Stokes, also known as the momentum equations: 

𝜌(𝑣⃗ ∙ ∇𝑢) = −
𝜕𝑝

𝜕𝑥
+ (𝜇 + 𝜇𝑡)∇ ∙ (∇𝑢)                                               (6) 

𝜌(𝑣⃗ ∙ ∇𝑣) = −
∂𝑝

∂𝑦
+ (𝜇 + 𝜇𝑡)∇ ∙ (∇𝑣)                                                (7) 

𝜌(𝑣⃗ ∙ ∇𝑤) = −
∂𝑝

∂𝑧
+ (𝜇 + 𝜇𝑡)∇ ∙ (∇𝑤)                                                (8) 

𝑘-𝜖 turbulence model:  

∇ ⋅ (𝜌𝑣⃗𝑘) = ∇ ⋅ (𝜇 +
𝜇𝑡

𝜎𝑘
∇𝑘) + 𝑃𝑘 − 𝜌𝜀                                               (9) 

∇ ⋅ (𝜌𝑣⃗𝜀) = ∇ ⋅ (𝜇 +
𝜇𝑡

𝜎𝜀
∇𝜀) + 𝐶𝜀1𝑃𝑘

𝜀

𝑘
− 𝐶𝜀2𝜌

 𝜀2

𝑘
                                  (10) 

𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜀
                                                                      (11) 

𝑃𝑘 = 𝜇𝑡(∇𝑣⃗)2                                                                     (12) 

Passive scalar transport equation:  

𝛻 ∙ (𝑣⃗𝑐) = 𝛻 ∙ [(𝐷𝑐 +
𝜈𝑡

𝑆𝑐𝑡
) 𝛻𝑐] + 𝑆𝑐                                              (13) 

where 𝑐 is the concentration of the scalar, 𝐷𝑐 is laminar diffusivity and 𝑆𝑐 is the source term. 

The multi-species transport model also utilizes Eqns. (5) to (12) but continues to Eqn. (14) and 

(15):  

∇ ∙ (𝜌𝑌𝑖𝑣⃗) = −∇ ∙ 𝐽𝑖 + 𝑆𝑖                                                           (14) 

𝐽𝑖 = − (𝜌𝐷𝑖 +
𝜇𝑡

𝑆𝑐𝑡
) ∇𝑌𝑖                                                          (15) 

where 𝑆𝑖 is the source term for the 𝑖𝑡ℎ species, 𝐽𝑖 is the diffusion flux of species 𝑖 which is due 

to concentration gradients, 𝐷𝑖 is the mass diffusion coefficient for species 𝑖 in the mixture and 

𝑌𝑖 is the mass fraction of species 𝑖. Eq. (14) and Eq. (15) solve for the mass fraction, 𝑌𝑖 as each 

constituent of the mixture is represented with 𝑖 = 1, 2 …etc.  

Case Studies 

CODASC 

As part of a larger effort in air quality studies to quantify the effects of tree planting on 

dispersion of traffic emissions by the Karlsruhe Institute of Technology (KIT), a database 

named Concentration Data of Street Canyons (CODASC) was established from the results of 

wind tunnel experiments with varying parameters and street canyon/tree avenue configurations 



 

[20]. For the scope of this study, it suffices to consider only a tree-free street canyon 

configuration in three dimensions. The street canyon model is scaled down to 1:150, with 𝐿 =
180 𝑚, 𝐻 = 𝑊 = 18 𝑚. Four lines of tracer pollutant release, with the intention of emulating 

traffic exhaust, are placed in between the two building blocks and it exceeds the street canyon 

by about 10% on each side to consider pollutant release from traffic junctions. 𝑆𝐹6 was used as 

a pollutant in this case and the release is distributed through equally spaced perforations. 

Dimensions of computational domain and the street canyon are shown in Fig. 1. Experimental 

data for various scenarios was made available through the online database [20]. 

  
Figure 1. Dimensions of CODASC street canyon model. 

Inlet wind velocity is in the 𝑥-direction, perpendicular to the building blocks and it follows a 

power law profile in a neutrally stratified atmospheric boundary layer: 

𝑢(𝑧)

𝑢(𝑧𝑟𝑒𝑓)
= (

𝑧

𝑧𝑟𝑒𝑓
)

𝛼

                                                               (16) 

𝑧𝑟𝑒𝑓 is the reference height which is 0.12 𝑚 and the flow velocity at the reference height, 

𝑢(𝑧𝑟𝑒𝑓) is 4.70 𝑚/𝑠. Similarly, 𝑢(𝑧) is the velocity at a given height 𝑧. 𝛼 is the wind shear 

exponent of 0.3. 𝑘 and 𝜖 profiles are specified as follows:        

𝑘 =
𝑢∗

2

√𝐶𝜇

(1 −
𝑧

𝛿
)                                                                  (17) 

𝜀 =
𝑢∗

3

𝜅𝑧
(1 −

𝑧

𝛿
)                                                                    (18) 

where 𝑢∗ is the friction velocity of 0.52 𝑚/𝑠 and 𝐶𝜇 is 0.09 which is the turbulence model 

constant. 𝛿 is the boundary layer thickness, 𝜅 is von Kármán’s constant and both have values 

of 0.96 and 0.4 respectively. The variable of interest is the non-dimensional concentration value 

𝑐+ which is normalized: 

𝑐+ =
𝑐𝑢𝐻𝐻

𝑄/𝑙
                                                                       (19) 

where 𝑐 is the measured concentration, 𝑢𝐻 is equivalent to 𝑢(𝑧𝑟𝑒𝑓) and 𝑄/𝑙 is the tracer source 

strength of 𝑆𝐹6 per unit length. The main point of interest is the normalized concentration 

distribution of the leeward and windward side of the street canyon.  

Mock Urban Setting Test (MUST) 

MUST is a full-scale, outdoor experiment free from laboratory limitations conducted at the U.S. 

Army Dugway Proving Ground (DPG) Horizontal Grid test site [14]. Motivation for MUST 

primarily grew out of a need for field data to be obtained outside laboratory conditions for the 



 

verification and validation of models developed to understand dispersion mechanisms and the 

full effects of atmospheric boundary layers and surface roughness on transport phenomena in 

an urban setting. The setup configuration of MUST comprises of shipping containers each 12.2 

𝑚 long, 2.42 𝑚 wide and 2.54 𝑚 high arranged in a 12 by 10 array in a 200 𝑚 squared area. 

With reference to the original report [14], trial name #2681829 is selected to be replicated in 

this present study by means of numerical methods. Propylene (𝐶3𝐻6) is used as a tracer gas and 

is released at a height of 1.8 𝑚 above ground at a rate of 225 litres per minute and the location 

of release is marked by a cross in Fig. 2. 48 sensors were strategically placed at areas of interest 

to measure concentrations; 40 of which are distributed evenly across the array at a height of 1.6 

𝑚 above ground and are denoted by the orange points. The other 8 are placed 1, 2, 4, 6, 8, 10, 

12 and 16 𝑚 above ground level at a single location in the middle of the array, where the green 

point is. The dimensions of the computational domain are shown in Fig. 3. 

 
 

Figure 2. Layout of test case 

#2681829 and locations of sensors 1 

to 48 (Image taken from [12]). 

 

Figure 3. Dimensions of computational domain 

for MUST. 

 

Given the nature of MUST experiments (i.e. outdoor and full-scale), it is necessary to model 

the atmospheric boundary layer (ABL) to obtain accurate and reliable predictions of 

atmospheric-related phenomena [21]. More specifically, the modeled ABL must be horizontally 

homogenous which is achieved when inlet profiles of mean wind speed and turbulence 

quantities are in equilibrium with the wall functions used. With a horizontally homogenous 

ABL, streamwise gradients will be prevented from forming in these profiles as the flow 

progresses to simulate the phenomena of interest. This study focuses on a neutrally stratified 

ABL since thermal and buoyancy effects on turbulence are not considered. The most commonly 

used boundary conditions to simulate the ABL is first proposed by Richards & Hoxey [22]. For 

fully-developed, steady, incompressible and 2-dimensional ABL flows, the 𝑘-𝜀 turbulence 

model can be simplified to Eqs. (21) and (22) when Eq. (20) is assumed:  

𝑉 = 𝑊 =
𝜕𝑈

𝜕𝑥
=

𝜕𝑘

𝜕𝑥
=

𝜕𝜀

𝜕𝑥
= 0                                                         (20) 

𝜕

𝜕𝑧
(

𝜇𝑡

𝜎𝑘

𝜕𝑘

𝜕𝑧
) + 𝐺𝑘 − 𝜌𝜀 = 0                                                           (21) 

𝜕

𝜕𝑧
(

𝜇𝑡

𝜎𝜀

𝜕𝜀

𝜕𝑧
) + 𝐶𝜀1𝐺𝑘

𝜀

𝑘
− 𝜌𝐶𝜀2

𝜀2

𝑘
= 0                                                   (22) 

where 𝐺𝑘 = 𝜇𝑡 (
𝜕𝑈

𝜕𝑧
)
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𝜅2 = 𝜎𝜀(𝐶𝜀2 − 𝐶𝜀1)√𝐶𝜇                                                                (23) 

Inlet velocity, 𝑘 and 𝜀 profiles proposed by Richards & Hoxey in 1993 follow the log-law 

profile as specified from Eqs. (24)-(26). It can subsequently be shown that Eqs. (24)-(26) are 

the analytical solutions to the 𝑘 − 𝜀 turbulence model of Eqs. (21) and (22) if Eq. (23) is 

satisfied. The constants are specified by Launder & Spalding [16], where 𝐶𝜀2 = 1.92, 𝐶𝜀1 =
1.44, 𝜅 = 0.42 and 𝐶𝜇 = 0.09 which results in 𝜎𝜀 = 1.225.  

𝑈(𝑧) =
𝑢𝐴𝐵𝐿

∗

𝜅
ln (

𝑧 + 𝑧0

𝑧0
)                                                             (24) 

𝑘(𝑧) =
(𝑢𝐴𝐵𝐿

∗ )2

√𝐶𝜇

                                                                       (25) 

𝜀(𝑧) =
(𝑢𝐴𝐵𝐿

∗ )3

𝜅(𝑧 + 𝑧0)
                                                                    (26) 

The freestream velocity of wind entering the computational domain has a magnitude and 

direction of 7.93 𝑚/𝑠 at a height of 4 𝑚 above ground level and −41° respectively. 𝑢𝐴𝐵𝐿
∗  is the 

frictional velocity of 1.1𝑚/𝑠 and roughness length, 𝑧𝑜 has a value of 0.19368 𝑚 when von 

Kármán’s constant, 𝜅 takes a value of 0.42. Concentration is measured in parts per million by 

volume (ppmv). Standard wall functions with sand-grain roughness modifications following 

the logarithmic law of the wall where the roughness function Δ𝐵 =
1

𝜅
ln (1 + 𝐶𝑠𝑘𝑠

+) for a fully 

rough regime (𝑘𝑠
+>90) are used and 𝑘𝑠

+ is the non-dimensional roughness height. This results 

in Eq. (27) where 𝐸 = 9.793.  

𝑢𝑝 =
𝑢∗

𝜅
ln (

𝐸𝑦+

1 + 𝐶𝑠𝑘𝑠
+)                                                            (27) 

Comparing Eq. (27) with the velocity profiles by Richards & Hoxey, Eq. (24) it is observed 

that both are similar and hence must be consistent. If profiles proposed by Richards & Hoxey 

are used and through first-order matching, 𝑘𝑠 is given by:  

𝑘𝑠 =
𝐸𝑧0𝑧𝑝

𝐶𝑠(𝑦0 + 𝑦𝑝)
                                                                (28) 

According to FLUENT [19], the roughness constant 𝐶𝑠 is set to a default value of 0.5 which 

when used with 𝑘-𝜀 turbulence models, Nikuradse’s original experimental data [23] for flow 

through a pipe tightly packed with a uniform sand-grain roughness can be replicated. FLUENT 

subsequently recommended that the range of 𝐶𝑠 should lie between 0 and 1 depending on how 

roughness varies from the uniform sand-grain. However, this range is limited to a specific case 

of pipe flow as evidenced from lack of a clear guideline on setting 𝐶𝑠 for arbitrary types of 

roughness. Using the default value of 𝐶𝑠 in FLUENT results in 𝑘𝑠 ≈ 3.8 𝑚, based on 𝑧0 =
0.19368 𝑚.  Given the multitude of studies [21] [24] [25] which strongly advised that the 

normal distance from the centre point P of the first cell adjacent to the wall 𝑧𝑝 to be greater than 

𝑘𝑠, it follows that 𝑧𝑝 > 3.8 𝑚 and subsequently the height of the first cell adjacent to the wall, 

2𝑧𝑝 > 7.6 𝑚. This requirement is not practical, given that the height of a container used in this 

case study is only a mere 2.54 𝑚. The result would be a very coarse mesh which would not be 

able to resolve the flow field accurately. To overcome this, an alternative solution is considered 

and implemented in this study where the restriction on 𝐶𝑠 is relaxed and set equal to 𝐸 which 

results in 𝑘𝑠 = 𝑧0. This condition is enforced in the far-field region of the computational domain 



 

surrounding the near-field region, where the arrays of containers are placed. In the near-field 

region, 𝑘𝑠 is set equal to 0 and 𝐶𝑠 equal to 0.5.  

Statistical Performance Measures 

To quantify the quality of numerical results and their agreement with experimental data, 

statistical performance measurements are introduced. Following recommendations by Chang et 

al. [10], the normalized mean square error (NMSE), fractional bias (FB) and the fraction of 

predictions within a factor of two of observations (FAC2) are used. The definitions of these 

statistical performance measures are defined below:  

𝑁𝑀𝑆𝐸 =
(𝐶𝑜 − 𝐶𝑝)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐶𝑜
̅̅ ̅𝐶𝑝

̅̅ ̅
                                                                  (29) 

𝐹𝐵 =
(𝐶𝑜

̅̅ ̅ − 𝐶𝑝
̅̅ ̅ )

0.5(𝐶𝑜
̅̅ ̅ + 𝐶𝑝

̅̅ ̅)
                                                                   (30) 

𝐹𝐴𝐶2 =

𝑁
0.5≤

𝐶𝑝

𝐶𝑜
≤2.0

𝑁𝑡𝑜𝑡𝑎𝑙
                                                                    (31) 

where 𝐶𝑝 refers to model predictions while 𝐶𝑜 are experimental values. A perfect model would 

have a value of 1 for FAC2; a value of 0 for FB and NMSE. However, it is well-known that 

uncertainties will inevitably be present in simulating transport phenomena.  

Results & Discussion 

CODASC 

Grid independence studies were carried out, ensuring the solution no longer changes with mesh 

density. A mesh size of 14 million cells was found to be adequate. As the flow approaches 

normal to the street canyon, flow separation results with elements of recirculation inside the 

canyon. Pollutants released from the ground will be carried by the downward movement of the 

recirculated flow and deposited on the leeward side. This recirculation is responsible for 

differences in magnitude of 𝑐+ between both walls as the pollutants gradually accumulate on 

the leeward side whilst deposits of tracer gas are removed from the windward side. Flow 

recirculation also traverses in the 𝑧-direction, along the length of each building as seen in Fig. 

4. Since the entering flow is symmetrical about the 𝑧-𝑥 plane, the traversing of recirculated 

flow grows from each end of the street canyon into the 𝑧-direction and naturally meets in the 

middle, which explains why 𝑐+ is highest in the middle of the street canyon. Combining all 

these elements together will result in concentration distribution in Fig. 5. The streamlines of the 

airflow in Fig. 4 are colored by velocity magnitude and the contour plot in Fig. 5 is distinguished 

by normalized concentration 𝑐+.  

 



 

 
 

Figure 4. Velocity (𝑚/𝑠) streamlines 

obtained from a z-x cutting plane at edge of 

the model as flow approaches normal to 

building. 

Figure 5. c+ distribution in near-field 

region area of interest. 

Dependence of Sct Value on c+ 

One of the primary concerns in this study is determining the appropriate value of 𝑆𝑐𝑡, which is 

a free parameter, to be used. Given the nature of 𝑆𝑐𝑡 as described earlier, this free parameter 

can be tuned to artificially reduce or amplify turbulent diffusion or alternatively as it is more 

commonly done, the value to be used can be obtained from reviews of past studies. The practice 

of tuning the 𝑆𝑐𝑡 value is ill-advised as evidenced from multiple studies which have warned 

against it in order to fit the experimental data available [17] [18]. But the use of such tuning 

practices strengthens the premise that determining the appropriate 𝑆𝑐𝑡 value is problem 

dependent [17] as flow interacting with different configurations of obstacles have their own 

turbulent kinetic energy and turbulent diffusion rates.   Referring to past studies, Tominaga et 

al. [17] concluded that dispersion in a street canyon configuration compared to that around a 

single building will be different, stating that turbulent diffusion is often underestimated in 

RANS models when applied to single building configuration. With more obstacles present, the 

increase in turbulent kinetic energy would compensate for that underestimation, hence it is 

expected that a value greater than 0.3 would provide better prediction results for a street canyon 

configuration. They went on to conclude that 𝑆𝑐𝑡 values should be considered depending on 

how dominant turbulent diffusion is in a given flow configuration. But Gromke et al. [12] used 

RANS simulations of a street canyon for multiple values of 𝑆𝑐𝑡 ranging from 0.2 to 1.0 and 

found that the value of 0.3 gave the best agreement with experimental results. However, they 

concluded by recommending a critical review of 𝑆𝑐𝑡 values for future studies on pollutant 

dispersion in urban environments.  

In this case study, RANS simulations were conducted for selected 𝑆𝑐𝑡 values from a range of 

0.1 to 0.9 to validate against past studies and to show the effects 𝑆𝑐𝑡 values have on turbulent 

diffusion. Normalized concentration, 𝑐+ was monitored on both leeward and windward side in 

the street canyon. On each side, 𝑦 from 0 to 1.2 were divided into 100 equally spaced discrete 

points for every 𝑧 value from 0 to 0.12 in increments of 0.02. Referring to Fig. 6 below, points 

1 to 700 represent distribution of 𝑐+ on the leeward side of the street canyon. Similarly, points 

701 to 1400 represent distribution of 𝑐+ on the windward side of the street canyon. For example, 

with reference to Fig. 1, point 1 refers to the red cross marked on the leeward wall, where 𝑧 = 

0 and 𝑦 = 0. Point 2 is subsequently on 𝑧 = 0 and 𝑦 = 0.012 and point 100, denoted by the 

orange cross is where 𝑧 = 0 and 𝑦 = 1.2. Point 101 is continued where 𝑧 = 0.02 and 𝑦 = 0 and 

so on. Point 701 is on the windward wall, where 𝑧 = 0 and 𝑦 = 0, is denoted by the purple 

cross. Point 800 is denoted by the black cross which is where 𝑧 = 0 and 𝑦 = 1.2. Point 801, by 

the same logic, is where 𝑧 = 0.02 and 𝑦 = 0. This accounts for the total of 1400 discrete points 

to determine the concentration distribution on both leeward and windward walls. By visual 



 

observation, it can be seen that 𝑐+ distribution has been consistently overpredicted on the 

leeward side and this overprediction increases as the 𝑆𝑐𝑡 value increases in Fig. 6. The same 

observation applies to the windward side but 𝑐+ is underpredicted when 𝑆𝑐𝑡 has a value of 0.3. 

𝑐+ is larger in magnitude on the leeward side and this remains true for all cases simulated.  

  
Figure 6. Plot of c+ distribution on leeward 

side followed by windward side in the street 

canyon. 

Figure 7. 45° line plot of c+ distribution 

when Sct = 0.5. 

Fig. 7 shows the deviation between numerical prediction and experimental data for the case 

when 𝑆𝑐𝑡= 0.5. The leeward side and windward side are separated for ease of analysis. Data 

points should ideally lie along the red line and in between the two dotted green lines which 

provide a band of error on how far these points deviate from experimental measurements. 𝑐+ 

distribution on the windward wall tend to lie along the 45° line compared to that of the leeward 

wall, where larger and more frequent deviation is encountered. Due to the extensive number of 

data points, statistical measures are necessary in order to give a quantitative view of the results 

which are reflected in Table. 1. Comparing the results, NMSE is lowest for 𝑆𝑐𝑡 0.3 while FB 

for 𝑆𝑐𝑡 0.5 is lowest. Both 𝑆𝑐𝑡 0.3 and 0.5 share the same value for FAC2 which is close to the 

ideal value of 1 compared to other 𝑆𝑐𝑡 values. From this analysis, it can be concluded that 𝑆𝑐𝑡 

0.5 is the optimum value for this street canyon case study, simultaneously verifying Tominaga 

et al. [17] expectations for a 𝑆𝑐𝑡 value greater than 0.3.  

Table 1. Statistical performance measurements for different Sct values  
𝑺𝒄𝒕 𝟎. 𝟑 𝑺𝒄𝒕 𝟎. 𝟓 𝑺𝒄𝒕 𝟎. 𝟕 𝑺𝒄𝒕 𝟎. 𝟗 Model Perfects 

NMSE 0.20 0.31 0.45 0.59 0 

FB 0.14 -0.05 -0.17 -0.26 0 

FAC2 0.95 0.95 0.92 0.90 1 

 

Contour plots of the leeward wall of the street canyon are presented from Figs. 8 and 9, while 

contour plots of the windward wall are presented from Figs. 10 and 11. These are positioned on 

the 𝑧 − 𝑦 plane. The contour plots are all symmetrical about the 𝑧-axis, which serves as a form 

of validation between model and physical reality. 𝑐+ at the two ends of both leeward and 

windward walls is relatively lower due to more dominant convection forces from vortices 

generated from the interaction between the flow and the street canyon. 

 

 

 

Point 



 

  

  
Figure 8. c+ distribution of experimental 

result for leeward wall. 

Figure 10. c+ distribution of 

experimental result for windward wall. 

  
Figure 9. c+ distribution of numerical 

result on leeward wall when Sct = 0.5. 

Figure 11. c+ distribution of numerical 

result on windward wall when Sct = 0.5. 

Comparison Between Passive Scalar and Multi-Species Transport Models 

For the multi-species model, a 𝑆𝑐𝑡 value of 0.5 is used based on earlier findings from the passive 

scalar model. As seen in Table 2, the passive scalar transport model outperforms the multi-

species model in every statistical benchmark, which is unexpected as it is initially believed that 

the multi-species model will instead outperform the passive scalar transport model since the 

pollutant considered is denser than air. Density of the flow field is expected to change due to 

changes in the mass fraction of pollutant in air because of the coupling of momentum equations 

with the continuity equation. Similarly, Fig. 12 to Fig. 15 show the respective contour plots. 

Table 2. CODASC: Comparison of passive scalar and multi-species transport model 

through statistical performance measures. 

 Passive Scalar Transport 

Model 

Multi-Species 

Transport Model 
Model Perfects 

NMSE 0.31 1.99 0 

FB -0.05 -0.48 0 

FAC2 0.95 0.87 1 

 

 
 

 
 

  
Figure 12. CODASC: c+ distribution on the 

leeward wall (Passive Scalar Model). 

Figure 14. CODASC: c+ distribution on the 

windward wall (Passive Scalar Model). 

  

Figure 13. CODASC: c+ distribution on the 

leeward wall (Multi-Species Model). 

Figure 15. CODASC: c+ distribution on the 

windward wall (Multi-Species Model). 

Mock Urban Setting Test (MUST) 

In order to determine if some form of homogeneity has been achieved with the current 

parameters set, the profiles of velocity in the 𝑦-direction, 𝑘 and 𝜀 are monitored. Referring to 

Fig. 16, profiles at 𝑦_1 and 𝑦_2 are tracked as flow progresses from the far-field region to the 

near-field region, especially since grid density changes are involved. Fig. 17 shows the 𝑦-

velocity profiles with the analytical profile, the 𝑘 and 𝜀 profiles with their respective analytical 

profiles as 𝑧 increases. The velocity profiles in Fig. 17 reflects a relatively good agreement 

between the analytical profile and 𝑦_1 and 𝑦_2 save for some deviations on the order of 

approximately 0.1. 𝑘 profiles, on the other hand, show an increasing deviation from the 



 

analytical profile with increasing 𝑧. The profile of 𝑦_1 deviate from 𝑦_2 near the ground and 

generally show an underprediction of turbulent kinetic energy. According to Richards and 

Norris [26], the local maximum in turbulent kinetic energy 𝑘 at 𝑦_2 is due to an inconsistency 

in the discretization of the production term 𝑃𝑘 instead of the turbulence model itself. The 𝜀 

profiles show no differences between the analytical profile, 𝑦_1 and 𝑦_2 except for the near-

ground region.  

 

 
Figure 16. Locations in the MUST case 

where v, k and ε profiles are taken and 

monitored from. 

Figure 17. Plot of Z against mean 

velocity, k and ε profiles for MUST 

case. 

As the incoming flow approaches the near-field region, the presence of containers forces the 

flow to be diverted with recirculation around each individual container and is deflected 

upwards. Complexity surrounding this flow configuration is significantly greater than the street 

canyon case given that the flow enters at an inclined angle. The streamlines of the fluid flow 

are shown in Fig. 18, where it is colored by velocity magnitude. According to the coloration of 

the streamlines, it is observed that a slight acceleration of the flow persists despite enforcing 

the horizontal homogeneity condition when flow transits from the far-field to near-field region. 

It is also noted that behind each container, the velocity of streamlines drops to almost zero. 

 
Figure 18. Velocity streamlines of flow entering the near-field domain at a −41° angle of 

the MUST case. 

 



 

Dependence of Sct Value on c+ 

Given the flow configuration in MUST varies significantly from the street canyon model due 

to different geometries, it is expected that the optimal 𝑆𝑐𝑡 would be different. Experimental data 

is readily available from on-site measurements which adds ease to validation. Based on visual 

observations of Fig. 19, the most noticeable trend is that numerical results consistently 

underpredict 𝑐+. Using statistical performance measures in Table 3., NMSE appears to be 

lowest for 𝑆𝑐𝑡 1.5, while FB is lowest for 𝑆𝑐𝑡 2. Both 𝑆𝑐𝑡 1.5 and 2 share the same FAC2 of 

0.47. Comparing NMSE and FB of 𝑆𝑐𝑡 1.5 and 𝑆𝑐𝑡 2 leads to conflicting results and can be 

concluded that there are limited differences between these two 𝑆𝑐𝑡 values. However, a 

conclusion can be drawn in that 𝑆𝑐𝑡 values of 1.5 and higher will result in better agreement with 

experimental data. Fig. 20 show the contour plot of 𝑆𝑐𝑡 value equal to 1.5 which ranges from 0 

𝑝𝑝𝑚𝑣 to 6 𝑝𝑝𝑚𝑣. The inlet flow is at an angle of −41°, which is stated to be the mean angle 

based on data obtained by field experiments [14].   

Table 3. Statistical performance measurements of various Sct values for the MUST case. 
 𝑺𝒄𝒕 0.5 𝑺𝒄𝒕 0.7 𝑺𝒄𝒕 0.9 𝑺𝒄𝒕 1.5 𝑺𝒄𝒕  2 Model Perfects 

NMSE 1.68 1.08 0.78 0.55 0.59 0 

FB 0.95 0.81 0.70 0.49 0.39 0 

FAC2 0.03 0.21 0.35 0.47 0.47 1 

 

 
 

Figure 19. Plot of numerical c+ data from 48 

sensors placed at various locations with 

increasing Sct values in the MUST case. 

Figure 20. c+ distribution with Sct = 1.5 

for MUST case. 

Comparison Between Passive Scalar and Multi-Species Transport Models 

Next, a comparison of accuracy in predicting 𝑐+ between the passive scalar transport model 

and multi-species model is made. 𝑆𝑐𝑡 value of 1.5 is taken for both cases. From Fig. 21, the 

multi-species model provides better agreement with experimental results compared to the 

passive scalar model. Significant underprediction of numerical results continue to persist, with 

increasing deviation away from the source release. A similar conclusion is also reached by 

examining the statistical performance measures in Table 4. NMSE and FB indicate that the 

multi-species model gave results closer to perfect model values than the passive scalar model 

did while both models hold the same values for FAC2 of 0.47. Fig. 22 and Fig. 23 show the 

degree of dispersion with different methodologies used.  

Table 4. Comparison of statistical performance measures of passive scalar 

and multi-species transport model against the model perfects. 
 Passive Scalar Multi-Species Model Perfects 

NMSE 0.55 0.45 0 

FB 0.49 0.31 0 

FAC2 0.47 0.47 1 



 

 

 
Figure 21. Plot of numerical c+ data for passive scalar and multi-species transport model 

with Sct = 1.5 of 48 sensors placed at various locations for MUST case. 

 

  
Figure 22.  c+ distribution of passive 

scalar transport model in MUST case with 

the mean inflow angle of −41°. 

Figure 23. c+ distribution of multi-species 

transport model in MUST case with the 

mean inflow angle of −41°. 

Variation of Inflow Angles 

In an attempt to investigate further the discrepancy in concentration of pollutant far from the 

source release, the inlet boundary conditions are examined in further detail. A standard 

deviation of 9.5° in the instantaneous wind direction is provided as reflected by Yee and Biltoft 

[27]. Likewise, an additional point mentioned by Nadir et al. [13] was the standard deviation of 

the inlet flow angle of −41° but this was overlooked as a potential source of error in his paper. 

This is considered in the present study and following the deviation of −9.5°,  two separate 

additional cases with the inflow angle of −31.5° and −50.5° were simulated. In Fig. 24, the 

inflow at an angle of −31.5° clockwise from the positive 𝑥-axis resulted in better agreement 

compared to the case with an angle −41° clockwise from the positive 𝑥-aixs. Underprediction 

still occurs, albeit at a lower occurrence when inflow angle deviates to −31.5° and it is mostly 

limited to the tower of sensors numbered 40 to 48. This is further evidenced in Table 5., where 

the case with inflow angle of −31.5° performed significantly better on every statistical 

performance measure. When inflow is angled at −50.5°, the opposite occurs in that the model 

performed worse. These cases are simulated using a 𝑆𝑐𝑡 value of 1.5. This was repeated using 

the multi-species transport model and a similar conclusion can be drawn. The above attempts 



 

in carrying out studies involving the change in inflow angles conclusively show a source of 

error originating from comparing field experiments with numerical studies. This error is 

expected and inevitable when carrying out full-scale outdoor experiments.  

Table 5. Statistical performance measures against model perfects for varying inflow 

angles with the passive scalar transport model in MUST case. 

 
−𝟒𝟏° −𝟑𝟏. 𝟓° −𝟓𝟎. 𝟓° 

Model 

Perfects 

NMSE 0.55 0.21 2.31 0 

FB 0.49 0.28 0.76 0 

FAC2 0.47 0.65 0.18 1 

 

 
Figure 24. Plot illustrating the numerical c+ data from 48 sensors placed at various 

locations in the MUST case, with different inflow angles using the passive scalar transport 

model compared against experimental data. 

Conclusion 

A comparison between two different transport methodologies was carried out through their 

respective validation against two test cases; the CODASC model and MUST. The CODASC 

experiment was carried out under controlled conditions in a wind tunnel whereas MUST is a 

full-scale outdoor experiment, taking into account effects of the atmospheric boundary layer. 

Results from CODASC study proved that the passive scalar transport model outperformed the 

multi-species transport model and the opposite for MUST. In reality, it is expected that the 

multi-species model will provide better accuracy since density changes caused by species 

compositions in the flow field are taken into account. Furthermore, pollutants heavier than air 

in terms of molecular weight were used in simulating transport phenomena for both cases, 

allowing the physical dispersion process to be more accurately represented.  

Hence, it is concluded that since the multi-species transport model did not provide significant 

improvement over the passive scalar transport model in general, the multi-species model should 

be dismissed until further investigations can prove its worth. Furthermore, for engineering 

applications where computational efficiency is a major component in determining which 

methodology to use, it should be noted that the passive scalar transport model is much more 

efficient compared to the multi-species transport model. Time taken for a simulation using the 

passive scalar transport model can be up to three times shorter compared to using the multi-

species model.   



 

For CODASC case study, limited information on how the four lines of tracer source release 

were modeled in both wind tunnel experiments and numerical studies that it is believed the 

results from this present study could only be justified with the assumption of a dilute source. 

For MUST, given that it is a full-scale outdoor experiment, it would be unrealistic to expect the 

magnitude and direction of the inlet wind flow be maintained throughout the course of the 

experiment, though it is an assumption necessary for numerical studies lest the level of 

complexity be increased. Through investigations on the variations of inflow angles, it suggests 

that the inflow angle did not remain constant at −41° during field experiments. Differences in 

configuration of obstacles in both cases could play a major role in prohibiting the full realisation 

of benefits in utilising the multi-species transport model. Efforts to remove the turbulent 

Schmidt number, 𝑆𝑐𝑡 should be a priority in reducing ambiguity in dispersion studies using 

CFD.  

References 

[1] https://www.independent.co.uk/news/world/asia/fukushima-nuclear-disaster-radiation-lethal-levels-leak-

japan-tsunami-tokyo-electric-power-company-a8190981.html (Date of last access: 10/4/2019) 

[2] https://www.nst.com.my/world/2018/11/436113/gas-leak-caused-deadly-blast-china-olympic-city (Date of 

last access: 10/4/2019) 

[3] Á. Leelőssy, F. Molnár, F. Izsák, Á. Havasi, I. Lagzi, and R. Mészáros, “Dispersion modeling of air pollutants 

in the atmosphere: a review,” Central European Journal of Geosciences, vol. 6, no. 3, pp. 257–278, Sep. 2014. 

[4] Lateb, M., et al. “On the Use of Numerical Modelling for near-Field Pollutant Dispersion in Urban 

Environments −A Review.” Environmental Pollution, vol. 208, 2016, pp. 271–283., doi: 

10.1016/j.envpol.2015.07.039. 

[5] M. Mohan, “Analysis of various schemes for the estimation of atmospheric stability 

classification,” Atmospheric Environment, vol. 32, no. 21, pp. 3775–3781, 1998. 

[6] Adel A. Abdel-Rahman, “On the Atmospheric Dispersion and Gaussian Plume Model,” in 2nd International 

Conference on Waste Management, Water Pollution, Air Pollution, Indoor Climate (WWAI'08), Corfu, 2008.  

[7] R. MacDonald, “Theory and Objectives of Air Dispersion Modelling”, Modelling Air Emissions for 

Compliance MME 474A Wind Engineering, Dec. 2003.  

[8] Y. Tominaga and T. Stathopoulos, “CFD simulation of near-field pollutant dispersion in the urban 

environment: A review of current modeling techniques,” Atmospheric Environment, vol. 79, pp. 716–730, 2013. 

[9] Y. Tominaga and T. Stathopoulos, “Ten questions concerning modeling of near-field pollutant dispersion in 

the built environment,” Building and Environment, vol. 105, pp. 390–402, 2016. 

[10] J. C. Chang and S. R. Hanna, “Air quality model performance evaluation,” Meteorology and Atmospheric 

Physics, vol. 87, no. 1-3, pp. 167–196, Jun. 2004. 

[11] C. B. Gromke, “CODASC: a database for the validation of street canyon dispersion models,” In Proceedings 

of the 15th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory 

Purposes (HARMO), May 2013. 

[12] C. Gromke and B. Ruck, “Dispersion study in a street canyon with tree planting by means of wind tunnel and 

numerical investigations – Evaluation of CFD data with experimental data,” Atmospheric Environment, vol. 42, 

no. 37, pp. 8640–8650, Dec. 2008. 

[13] N. Bekka, P. Kumar, A. A. Feiz, S. Singh, M. Sellam, E. Barbosa, P. Ngae, G. Turbelin, A. Chpoun, “A CFD 

MODELING APPROACH FOR A CONTAMINANT RELEASED IN A CITY”, in 17th International Conference 

on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Budapest, Hungary, 9-12 

May 2016.  

[14] C. A. Biltoft, “Customer Report for Mock Urban Setting Test,” DPG Document No. WDTCFR- 01-121, West 

Desert Test Center, U. S. Army Dugway Proving Ground, Dugway, Utah, 58 pp., 2001 

https://www.independent.co.uk/news/world/asia/fukushima-nuclear-disaster-radiation-lethal-levels-leak-japan-tsunami-tokyo-electric-power-company-a8190981.html
https://www.independent.co.uk/news/world/asia/fukushima-nuclear-disaster-radiation-lethal-levels-leak-japan-tsunami-tokyo-electric-power-company-a8190981.html
https://www.nst.com.my/world/2018/11/436113/gas-leak-caused-deadly-blast-china-olympic-city


 

[15] Y. Tominaga and T. Stathopoulos, “CFD simulations of near-field pollutant dispersion with different plume 

buoyancies,” Building and Environment, vol. 131, pp. 128–139, 2018. 

[16] B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Computer Methods in 

Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269–289, 1974. 

[17] Y. Tominaga and T. Stathopoulos, “Turbulent Schmidt numbers for CFD analysis with various types of 

flowfield,” Atmospheric Environment, vol. 41, no. 37, pp. 8091–8099, 2007. 

[18] C. Gualtieri, A. Angeloudis, F. Bombardelli, S. Jha, and T. Stoesser, “On the Values for the Turbulent Schmidt 

Number in Environmental Flows,” Fluids, vol. 2, no. 2, p. 17, 2017. 

[19] ANSYS® FLUENT Release 18.2 Theory Guide, August 2017. 

[20] https://www.windforschung.de/CODASC.htm (Date of last access: 10/4/2019)  

[21] B. Blocken, T. Stathopoulos, and J. Carmeliet, “CFD simulation of the atmospheric boundary layer: wall 

function problems,” Atmospheric Environment, vol. 41, no. 2, pp. 238–252, 2007. 

[22] P. Richards and R. Hoxey, “Appropriate boundary conditions for computational wind engineering models 

using the k-ε turbulence model,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 46-47, pp. 145–

153, 1993. 

[23] J. Nikuradse, “Laws of Flow in Rough Pipes,” VDI Forschungsheft, July/August 1933. 

[24] Parente, Alessandro, “CFD boundary conditions, turbulence models and dispersion study for flows around 

obstacles,” 2013. 

[25] B. Blocken, J. Carmeliet, T. Stathopoulos, “CFD evaluation of wind speed conditions in passages between 

parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow” 

Journal of Wind Engineering and Industrial Aerodynamics, vol. 95, no. 9–11, pp. 941–962, 2007, 

https://doi.org/10.1016/j.jweia.2007.01.013. 

[26] P. J. Richards and S. E. Norris, “Appropriate boundary conditions for computational wind engineering models 

revisited,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 99, no. 4, pp. 257–266, 2011. 

[27] E. Yee and C. A. Biltoft, “Concentration Fluctuation Measurements in a Plume Dispersing Through a Regular 

Array of Obstacles,” Boundary-Layer Meteorology, vol. 111, no. 3, pp. 363–415, 2004. 

 

 

 

https://www.windforschung.de/CODASC.htm
https://doi.org/10.1016/j.jweia.2007.01.013

