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Abstract

The nonlinear random vibrations of the cable-moored floating structures under wave
excitations are studied in three dimensions. One ends of four mooring cables are connected to
the floating structure and the other ends are fixed to the seabed. The nonlinear equations of
motions of the mooring cables are derived using the 3D cable elements which are formulated
based on the extended Hamilton principle. The floating structure is simplified as a rigid body
with six degrees of freedom. Then the equations of motion of the floating structure and
mooring cables are formulated as a whole system through their connection conditions. In the
last, the equations of motion of the whole structure under random wave excitation are
analyzed numerically. The influences of different sag-to-span ratios and inclination angles of
the mooring cables on the responses of the floating structure and maximum cable tensile force
are studied.

Keywords: Cable-moored floating structure, random wave excitation, 3D cable elements,
connection conditions.

Introduction

The cable-moored floating structures can find their applications in ocean engineering to
exploit marine resources such as oil, gas and minerals. If the floating platform is subjected to
horizontal excitations, the movements of floating platform can induce the geometry change of
mooring cables. The geometric nonlinearity of the mooring cables plays an important role in
the dynamical analysis due to their flexibility. Some researches simplified the mooring cables
as linear springs [1, 2] or nonlinear springs [3, 4] to support the floating platform, which
cannot reflect the real behavior and influence of the cables. A numerical approach was
developed for analyzing the dynamic behavior of marine cables using lumped mass [5-8].
With this method, cables are discretized into linear segments connected by nodes and the
equilibrium equations are established at each node. The mooring cables were fully modelled
using the finite element method [9, 10], in which the equations of motions of the mooring
cables and those of floating platform were solved separately and iteratively.

In this paper, the nonlinear random vibrations of three-dimensional floating structure and
mooring system under wave excitations are studied. The nonlinear random equations of
motions of the mooring cables are formulated using the 3D cable elements formulated based
on the extended Hamilton principle [12]. The cable element is simplified as a flexible tension
member without considering its bending and torsion stiffness because of the extremely large
ratio of its length and cross-sectional dimension. The floating platform is considered as a rigid
body with six degrees of freedom, i.e., three translational displacements and three rotational
displacements. The equations of motions of both the floating platform and mooring system
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are formulated as whole system through their connection conditions. Finally, the whole
system under random wave excitation modelled using JONWSAP spectrum is solved
numerically.

Problem Statement

Consider a floating structure and mooring system as shown in Figure 1. It consists of the
floating platform and four catenary mooring lines Ci, C2, Cs and Cas. The floating platform
and mooring cables are connected through four nodes A, B, C and D. O is the mass center of
the floating platform. The other ends of the mooring cables are fixed on the seabed. w,, w, and
w. are the length, height and width of the floating platform, respectively. The top view and
side view of the three-dimensional floating system are shown in Figure 2. The mooring cables
C1, C2 and Cs, C4 are symmetric about the y-axis in the plane x10y and x20y, respectively. 6, |
and d are the inclination angle, inclined length and sag of the mooring cable, respectively. w
is the length between the nodes A and B.

Figure 1. Configuration of the three-dimensional floating system
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Figure 2. () Top view (b) Side view of the three-dimensional floating system

Nonlinear Random Vibrations of the Moored Floating System
Finite Element Formulation for the Dynamics of Cable

The equations of motion for the element e in the local coordinate systems O-xiyzi and O-xzyz2
are derived based on the extended Hamilton principle and they are given as follows.

(M +M;)d; +Crd} + K (d)d; =1 (1)
where d} is the displacement vector of element e in the local coordinate systems O-x1yz1 and

O-x2yzz; f; is drag force vector of element e; M; is the added mass matrix of element e
which is expressed as
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where T, is the transformation matrix between the coordinate system X yz, (xzyzz) and the
coordinate system X,Yy,z,, as shown in Figure 3; C_ is the added-mass coefficient of the cable
in the transverse direction.
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Figure 3. Differential element e in the coordinate system x,y,z, of the cable element and the
coordinate system X yz, (X,yz,) of the cable

With Morison’s equation, the drag forces that act along the X3, ys, z3 directions of element e
are given as follows, respectively

Fes = _%Pscm Dlle (Uae _Vus)z sgn (U; _Vu3)

Fv% = _% pstt DlIe (\739 _Vv3 )2 sgn (\73e _Vv3) (3)

Fus = _%pscdt D,I* (W'i Vs )2 sgn (V_V; _sz)

where D, is the diameter of the cable cross section; C, and C, are the drag coefficients in
the longitudinal and transverse directions of the element e, respectively; V,,, V.5, V,, are the
fluid velocities in the x,, vy,, z; directions of element e, respectively; oy, v;, WS are the
average velocities of element e inthe x,, y,, z, directions of element e, respectively, which
are expressed as

Ui +Ujs . Vig+V Vi W

i e @
and sgn(e) denotes the sign function given by
1, z>0
sgn(z)=40, z=0 ®)

-1, z<0



Therefore, the drag force vector f; of element e in the coordinate system X Yyz, (xzyzz) is
expressed as

e 1 e e e e e e T
fg = TlT E{Fus’ Fis) Fuar Fuss Fias Fws} (6)

Using the transformation matrix T and the relationship di =Td{ in which d is the
displacement vector of element e in the global coordinate system O-xyz, Eq. (1) becomes

Mid? +Cid? + K¢ (d))d; =F; ©)
where M¢ =T (M} +M3)T, C; =T'C[T, K =T'K;T, and F =T'F;. The equations of
motion of the mooring cables are

M,U, +C,U, +K,(U,)U, =F, (8)

where the subscript m denotes the number of mooring cables.

Dynamics of the Floating Platform

The floating platform has six degrees of freedom, which are displacements u, v, w along x, y, z
axes and rotations a, S, y in XOy, xOz, yOz plane, respectively. The equations of motion of the
floating platform are given as follows based on Figure 4.
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Figure 4. Forces applied on the floating platform (F, = Mi+c,u—-F,,,
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where M is the mass of the floating platform, Max, May, Ma; are the added mass of the floating
platform along the x, y and z axes, respectively, which are assumed as constant because the
vertical displacement is small [12]. J,, J, and Jx are the moment of inertia of the floating
platform in the xOy, xOz and yOz planes, respectively; F,, Fn. and Fy, are the dynamical
buoyancy of the floating body; Fax, Fay, Fa: Fex, Fsy, Fes, Fex, Fey, Fez, Fox, Foy, Fo: are the
dynamical tensions from the cable at nodes A, B, C, and D in the X, y, z axes, respectively. F,,,
Fy Fur Mg, My, M, are the hydrodynamic drag forces in the x, y, z axes and xQOy, xOz,
yOz planes, respectively. Fy, Fix and Fy, are the dynamical buoyancy of the floating body due
to the change of submerged volume of the floating body, which are expressed as

Fb = ps gWaWch

Fbl = %ps gW:Wca (15)
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Referring to Figure 5 with P,(—w, /2, y,z) P(w,/2,y,2), B(xwW/2,2), P(x Yy —W,/2)

and Ps(x, Y, W, /2), the hydrodynamic drag forces or moments that act on the floating

platform are given as follows.
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Figure 5. Drag forces act on the floating platform
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where dF,,, , dFdxz, dF,,, dF,, and dF,,, are expressed by

y !
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where C, , C, and C, are the drag coefficients along the x , y, and Z directions,

dy

respectively; Vi, , Vq,, Vy,, V,, and V, are the fluid velocities at specific locations along

the x, y and z directions, respectively.

Formulation of the Whole System

In order to formulate the equations of motion of the mooring cables and the floating platform
as a whole system, the connection conditions between the mooring lines and floating platform
are required. Their relationships are

u —u+%a+%ﬂ v —v+%a+% w —W—ﬂﬂﬁ—m
A p YTy P Va p T p P

Wb Wc W',J1 Wc Wa Wb
U =U+—2a——Cf, Vg =V ——Cy, Wy =W+—2f+—2
B 5 5 B, vg > 2 7y Wg 5 B > Vv

(18)
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c 2 5 B ve > 5 7y We 2 B > Y

Wb Wc Wa Wc Wa Wb
Uy =U+—a+—=f, vp=V——"a+—=y, Wy =W+—=2 f+—
D 5 2 B vy 2 5 7y Wp > B 5 4

where Ua, Va, Wa, Ug, Vg, Wg, Uc, Vc, We, Up, Vb, Wp are the displacements of the nodes A, B, C,
and D in the x, y, z axes, respectively. Then the equations of motion about the nodes A, B, C
and D in Eq. (8) are removed and replaced by Egs. (9)-(14) using the connections conditions
given by Eq. (18). The variables of displacements related to nodes A, B, C and D in other
equations of motion in Eq. (8) are also expressed by Eqg. (18). The final equations of motion
of the whole system are obtained as

MU +CU +K(U)U =F(t) (19)

where U is the global displacement vector; K(U) is the global stiffness matrix; F(t) is the
wave force vector.

Modeling of sea wave excitation

The sea wave is assumed to propagate in the horizontal direction in the plane yOz. The
kinematics of the water particles under wave excitation can be calculated based on the linear
Airy wave theory [13]. The free surface elevation 7 of the wave is introduced with a wave



spectrum S, . Then the surface elevation at location z and time t is expressed by using wave
superposition as

1(2.8) =3 \/25, (@) Awcos(kz-at+6) (20)

where Aw is the frequency interval; o, is the angular frequency of the ith wave component
which equals gk; tanh(kd) and g is the acceleration due to gravity; k; is the ith wave number

which equals 27/4 and 4 is the ith wavelength; N is the number of frequencies; 6. is the

statistically independent random phase angle which is uniformly distributed between 0 and
2.

The condition of deep water depth is considered in this paper because h > A/2. Therefore, the
fluid velocities V: and Vy along the z and y directions at any point P(x,y,z) and time t are

expressed as
N
V,=Y/2S, (@)Aowe"™ " cos(kz-wt+6,)

z : nn
I;l (21)
v, =Y 28, (o ) Awae " sin (kz -t + )
i=1
During structural design, the significant height and average period of a random wave are
specified. Therefore, the following approximate expression for the JONSWAP spectrum
given by Goda [14] is adopted.
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and Hs is the significant height of the wave; @, =27/T, is the peak angular frequency of the

wave and To is the average period of the wave; y, is the peakedness parameter which varies

from 1to 7; and 7 is a shape parameter which is expressed as
0.07, o<,

0" {0.09, 0> o,

(23)

o

(24)

Numerical Example

Consider a 3D cable-moored floating platform with the parameters listed in Tables 1 and 2.
The density of seawater is p, =1.025x10° kg/m®. The power spectral density S,, is plotted in

Figure 6 with », =3, H,=0.8m and T, =8s. Each cable is discretized with 11 elements

because further increasing the element number cannot make the precision of the results further
increased obviously. The time step is 0.0008 s and the sample size used in Monte Carlo
simulation (MCS) is 108,



Table 1. Properties of mooring cables

Parameter Value
Young’s modulus E (N/m?) 1.9x 10
Diameter D1 (m) 0.1
Mass density p (kg/m®) 8.2x10°
Damping ratio & 0.03
Sea depth h (m) 120
Inclination angle & (degree) 45
Sag-to-span ratio d /1 1/90
Longitudinal drag coefficient Cai 0.01
Transverse drag coefficient Cat 1
Transverse added-mass coefficient Cc 1

Table 2. Properties of mooring cables

Parameter Value
Length wa (m) 26
Height ws (m) 5
Width we (m) 10
Mass M (kg) 1.2x10°
Drag coefficient Cax along x axis 1
Drag coefficient Cay along y axis 1
Drag coefficient Cq; along z axis 1

0.2
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Figure 6. Power spectral density of wave surface with , =3, H, =0.8 mand T, =8s

The PDFs of the responses of the floating platform and maximum cable tensile force at steady
state are shown in Figure 7. The mean values of v, , w,, 7 and T, at steady state are 0.0059

m, 0 m, 0°and 7.845x10° N, respectively and the corresponding standard deviations are
0.0112 m, 0.445 m, 1.95°and 1.258x10° N.
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Figure 7. The PDFs of v, , w,, ¥ and T, at steady state with d/I =1/90, 6 = 45°

If the inclination angle of the cables keeps as 45°, the standard deviations of the responses of
the floating platform and maximum cable tensile force at steady state are shown in Figure 8. It
is observed from Figure 8 that the standard deviation of w, decreases as d/I decreases from

1/45 to 1/75. Then it increases as d/I further decreases from 1/75 to 1/150. This is due to the
fact that as d/I decreases from 1/45 to 1/75, the second natural frequency of the linear system

increases from 0.94 to 1.103 rad/s, which is farther away from the dominant frequency 0.79
rad/s of S, . As d/I decreases from 1/75 to 1/150, the fundamental natural frequency of the

linear system increases from 0.586 to 0.83, which is closer to the dominant frequency of S, .
It is also observed from that the standard deviation of v, always decreases and the standard
deviations of y and T_ always increase as d/I decreases.
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Figure 8. The standard deviations of v, , w,, ¥ and T, at steady state for different d/I with
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If the sag-to-span ratio of the cables keeps as 1/90, the standard deviations of the responses of
the floating platform and maximum cable tensile force at steady state are shown in Figure 9
for different inclination angles of the cables. It is observed from Figure 9 that the standard
deviations of v, , w,, y, T, always increases as @ increases from 33° to 54°and they are

much influenced by the inclination angles of the cables. This is due to the fact that as &
increases from 33° to 54°, the fundamental natural frequency of the linear system decreases
from 0.679 to 0.593 rad/s and changes within a small interval, which is farther away from the
dominant frequency of S, , but the second natural frequency of the linear system decreases

from 1.576 to 0.832 rad/s, which is closer to the dominant frequency of S, .
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Conclusions

The nonlinear random vibrations of the cable-moored offshore floating structure are analyzed
under wave excitation. The floating platform is modeled as a rigid body with six degrees of
freedom. The mooring cables are modeled by using the nonlinear 3D cable elements which
are formulated based on the extended Hamilton principle. The effects of added-mass and
nonlinear hydrodynamic drag forces on both the floating platform and mooring cables are
taken into consideration. Firstly, the equations of motion of the mooring cables and floating
platform are formulated separately. After that, the connection conditions between the mooring
cables and floating platform are introduced to make the nonlinear equations of motions of
both the mooring cables and floating platform formulated as a whole system. The equations of
motion of the whole system are solved numerically using MCS. The influences of the sag-to-
span ratio and inclination angle of the mooring cables on the statistical properties of the
moored floating structure and the maximum cable tensile force are studied. It is found from
numerical results that the responses of the floating platform and the maximum cable tensile
force are much influenced by both the initial sag-to-span ratio and inclination angle of the
cables.
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