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Abstract 

The nonlinear random vibrations of the cable-moored floating structures under wave 

excitations are studied in three dimensions. One ends of four mooring cables are connected to 

the floating structure and the other ends are fixed to the seabed. The nonlinear equations of 

motions of the mooring cables are derived using the 3D cable elements which are formulated 

based on the extended Hamilton principle. The floating structure is simplified as a rigid body 

with six degrees of freedom. Then the equations of motion of the floating structure and 

mooring cables are formulated as a whole system through their connection conditions. In the 

last, the equations of motion of the whole structure under random wave excitation are 

analyzed numerically. The influences of different sag-to-span ratios and inclination angles of 

the mooring cables on the responses of the floating structure and maximum cable tensile force 

are studied. 

Keywords: Cable-moored floating structure, random wave excitation, 3D cable elements, 

connection conditions. 

Introduction 

The cable-moored floating structures can find their applications in ocean engineering to 

exploit marine resources such as oil, gas and minerals. If the floating platform is subjected to 

horizontal excitations, the movements of floating platform can induce the geometry change of 

mooring cables. The geometric nonlinearity of the mooring cables plays an important role in 

the dynamical analysis due to their flexibility. Some researches simplified the mooring cables 

as linear springs [1, 2] or nonlinear springs [3, 4] to support the floating platform, which 

cannot reflect the real behavior and influence of the cables. A numerical approach was 

developed for analyzing the dynamic behavior of marine cables using lumped mass [5-8]. 

With this method, cables are discretized into linear segments connected by nodes and the 

equilibrium equations are established at each node. The mooring cables were fully modelled 

using the finite element method [9, 10], in which the equations of motions of the mooring 

cables and those of floating platform were solved separately and iteratively.  

 

In this paper, the nonlinear random vibrations of three-dimensional floating structure and 

mooring system under wave excitations are studied. The nonlinear random equations of 

motions of the mooring cables are formulated using the 3D cable elements formulated based 

on the extended Hamilton principle [12]. The cable element is simplified as a flexible tension 

member without considering its bending and torsion stiffness because of the extremely large 

ratio of its length and cross-sectional dimension. The floating platform is considered as a rigid 

body with six degrees of freedom, i.e., three translational displacements and three rotational 

displacements. The equations of motions of both the floating platform and mooring system 
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are formulated as whole system through their connection conditions. Finally, the whole 

system under random wave excitation modelled using JONWSAP spectrum is solved 

numerically. 

Problem Statement 

Consider a floating structure and mooring system as shown in Figure 1. It consists of the 

floating platform and four catenary mooring lines C1, C2, C3 and C4. The floating platform 

and mooring cables are connected through four nodes A, B, C and D. O is the mass center of 

the floating platform. The other ends of the mooring cables are fixed on the seabed. wa, wb and 

wc are the length, height and width of the floating platform, respectively. The top view and 

side view of the three-dimensional floating system are shown in Figure 2. The mooring cables 

C1, C2 and C3, C4 are symmetric about the y-axis in the plane x1Oy and x2Oy, respectively. θ, l 

and d are the inclination angle, inclined length and sag of the mooring cable, respectively. wl 

is the length between the nodes A and B.  
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Figure 1. Configuration of the three-dimensional floating system 
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Figure 2. (a) Top view (b) Side view of the three-dimensional floating system 

 

Nonlinear Random Vibrations of the Moored Floating System  

Finite Element Formulation for the Dynamics of Cable 

The equations of motion for the element e in the local coordinate systems O-x1yz1 and O-x2yz2 

are derived based on the extended Hamilton principle and they are given as follows. 

 ( ) ( )e e e e e e e e e

l a l l l l l l d+ + + =M M d C d Κ d d f   (1) 

where 
e

ld  is the displacement vector of element e in the local coordinate systems O-x1yz1 and 

O-x2yz2; 
e

df  is drag force vector of element e; 
e

aM  is the added mass matrix of element e 

which is expressed as 
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where 1T  is the transformation matrix between the coordinate system ( )1 1 2 2 x yz x yz  and the 

coordinate system 3 3 3x y z , as shown in Figure 3; cC  is the added-mass coefficient of the cable 

in the transverse direction. 
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Figure 3. Differential element e  in the coordinate system 3 3 3x y z  of the cable element and the 

coordinate system ( )1 1 2 2 x yz x yz  of the cable 

 

With Morison’s equation, the drag forces that act along the x3, y3, z3 directions of element e 

are given as follows, respectively 
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where 1D  is the diameter of the cable cross section; dlC  and dtC  are the drag coefficients in 

the longitudinal and transverse directions of the element e , respectively; 3uV , 3vV , 3wV  are the 

fluid velocities in the 3x , 3y , 3z  directions of element e , respectively; 
3

eu , 
3

ev , 
3

ew  are the 

average velocities of element e  in the 3x , 3y , 3z  directions of element e , respectively, which 

are expressed as 
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and ( )sgn •  denotes the sign function given by 
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Therefore, the drag force vector 
e

df  of element e  in the coordinate system ( )1 1 2 2 x yz x yz  is 

expressed as 
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Using the transformation matrix T and the relationship e e

l g=d Τd  in which e

gd  is the 

displacement vector of element e in the global coordinate system O-xyz, Eq. (1) becomes 
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where ( )e T e e

g l a= +M T M M T , e T e

g l=C T C T , e T e

g l=K T K T , and e T e

g d=F T F . The equations of 

motion of the mooring cables are  

 ( )m m m m m m m m+ + =M U C U Κ U U F   (8) 

where the subscript m denotes the number of mooring cables. 

 

Dynamics of the Floating Platform 

The floating platform has six degrees of freedom, which are displacements u, v, w along x, y, z 

axes and rotations α, β, γ in xOy, xOz, yOz plane, respectively. The equations of motion of the 

floating platform are given as follows based on Figure 4. 
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Figure 4. Forces applied on the floating platform (
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 ( )0:x ax Ax Bx Cx Dx dxF M M u c u F F F F F= + + + + + + = 4   (9) 

 ( )0 :y ay Ay By Cy Dy b dyF M M v c v F F F F F F= + + + + + + + = 5   (10) 

 ( )0:z az Az Bz Cz Dz dzF M M w c w F F F F F= + + + + + + = 6   (11) 
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where M is the mass of the floating platform, Max, May, Maz are the added mass of the floating 

platform along the x, y and z axes, respectively, which are assumed as constant because the 

vertical displacement is small [12]. Jz, Jy and Jx are the moment of inertia of the floating 

platform in the xOy, xOz and yOz planes, respectively; Fb, Fb1 and Fb2 are the dynamical 

buoyancy of the floating body; FAx, FAy, FAz, FBx, FBy, FBz, FCx, FCy, FCz, FDx, FDy, FDz are the 

dynamical tensions from the cable at nodes A, B, C, and D in the x, y, z axes, respectively. dxF , 

dyF , dzF , dzM , dyM , dxM  are the hydrodynamic drag forces in the x, y, z axes and xOy, xOz, 

yOz planes, respectively. Fb, Fb1 and Fb2 are the dynamical buoyancy of the floating body due 

to the change of submerged volume of the floating body, which are expressed as 
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Referring to Figure 5 with ( )1 2, ,aP w y z− , ( )2 2, ,aP w y z , ( )3 , 2,bP x w z , ( )4 , , 2cP x y w−  

and ( )5 , , 2cP x y w , the hydrodynamic drag forces or moments that act on the floating 

platform are given as follows. 
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Figure 5. Drag forces act on the floating platform 
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where 1dxdF , 2dxdF , dydF , 1dzdF  and 2dzdF  are expressed by 



 

( ) ( )

( ) ( )

( ) ( )

( )

2

1 1 1

2

2 2 2

2

2

1 1

1
sgn

2

1
sgn

2

1
sgn

2

1
sgn

2

dx s dx f fx f fx

dx s dx f fx f fx

dy s dy f fy f fy

dz s dz f fz f

dF C dydz u y z V u y z V

dF C dydz u y z V u y z V

dF C dxdz v x z V v x z V

dF C dydx w y x V w

    

    

    

  

= − + + − + + −

= − + + − + + −

= − + + − + + −

= − + + − ( )

( ) ( )

1

2

2 2 2

1
sgn

2

fz

dz s dz f fz f fz

y x V

dF C dydx w y x V w y x V

 

    

+ + −

= − + + − + + −

  (17) 

where dxC , dyC  and dzC  are the drag coefficients along the x , y , and z directions, 

respectively; 1fxV , 2fxV , fyV , 1fzV  and 2fzV  are the fluid velocities at specific locations along 

the x , y  and z  directions, respectively. 

 

Formulation of the Whole System 

In order to formulate the equations of motion of the mooring cables and the floating platform 

as a whole system, the connection conditions between the mooring lines and floating platform 

are required. Their relationships are   
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where uA, vA, wA, uB, vB, wB, uC, vC, wC, uD, vD, wD are the displacements of the nodes A, B, C, 

and D in the x, y, z axes, respectively. Then the equations of motion about the nodes A, B, C 

and D in Eq. (8) are removed and replaced by Eqs. (9)-(14) using the connections conditions 

given by Eq. (18). The variables of displacements related to nodes A, B, C and D in other 

equations of motion in Eq. (8) are also expressed by Eq. (18). The final equations of motion 

of the whole system are obtained as 

 ( )( ) t+ + =MU CU Κ U U F   (19) 

where U is the global displacement vector; K(U) is the global stiffness matrix; ( )F t  is the 

wave force vector. 

 

Modeling of sea wave excitation 

The sea wave is assumed to propagate in the horizontal direction in the plane yOz. The 

kinematics of the water particles under wave excitation can be calculated based on the linear 

Airy wave theory [13]. The free surface elevation   of the wave is introduced with a wave 



spectrum S . Then the surface elevation at location z and time t is expressed by using wave 

superposition as 
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where   is the frequency interval; i  is the angular frequency of the ith wave component 

which equals ( )tanhi igk k d  and g is the acceleration due to gravity; ik  is the ith wave number 

which equals 2 i   and i  is the ith wavelength; N is the number of frequencies; i  is the 

statistically independent random phase angle which is uniformly distributed between 0 and 

2 . 

 

The condition of deep water depth is considered in this paper because 2h  . Therefore, the 

fluid velocities Vz and Vy along the z and y directions at any point P(x,y,z) and time t are 

expressed as 
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During structural design, the significant height and average period of a random wave are 

specified. Therefore, the following approximate expression for the JONSWAP spectrum 

given by Goda [14] is adopted. 
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where 
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and Hs is the significant height of the wave; 0 02 T =  is the peak angular frequency of the 

wave and T0 is the average period of the wave; 1  is the peakedness parameter which varies 

from 1 to 7; and   is a shape parameter which is expressed as 
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Numerical Example 

Consider a 3D cable-moored floating platform with the parameters listed in Tables 1 and 2. 

The density of seawater is 
31.025 10s =  kg/m3. The power spectral density S  is plotted in 

Figure 6 with 1 3 = , 0.8sH = m and 0 8T = s. Each cable is discretized with 11 elements 

because further increasing the element number cannot make the precision of the results further 

increased obviously. The time step is 0.0008 s and the sample size used in Monte Carlo 

simulation (MCS) is 108. 

 

 



Table 1. Properties of mooring cables 

 Parameter                                                 Value 

 

Young’s modulus E (N/m2)                      1.91011 

Diameter D1 (m)                                            0.1  

Mass density    (kg/m3)                          8.2103 

Damping ratio                                            0.03 

Sea depth h  (m)                                           120 

Inclination angle   (degree)                         45 

Sag-to-span ratio /d l                                  1/90 

Longitudinal drag coefficient Cdl                 0.01 

Transverse drag coefficient Cdt                      1 

Transverse added-mass coefficient Cc           1 

 

Table 2. Properties of mooring cables 

 Parameter                                                 Value 

 

Length wa (m)                                              26 

Height wb (m)                                               5 

Width wc  (m)                                              10 

Mass M (kg)                                            1.2105 

Drag coefficient Cdx along x axis                  1 

Drag coefficient Cdy along y axis                  1 

Drag coefficient Cdz along z axis                  1 

 

 
Figure 6. Power spectral density of wave surface with 1 3 = , 0.8sH = m and 0 8T = s 

 

The PDFs of the responses of the floating platform and maximum cable tensile force at steady 

state are shown in Figure 7. The mean values of 
fv , 

fw ,   and cT  at steady state are 0.0059 

m, 0 m, 0ºand 57.845 10  N, respectively and the corresponding standard deviations are 

0.0112 m, 0.445 m, 1.95ºand 51.258 10 N.  



 
       

 
Figure 7. The PDFs of 

fv , 
fw ,   and cT  at steady state with 1 90d l = , 45 =    

 

If the inclination angle of the cables keeps as 45º, the standard deviations of the responses of 

the floating platform and maximum cable tensile force at steady state are shown in Figure 8. It 

is observed from Figure 8 that the standard deviation of fw  decreases as d l  decreases from 

1/45 to 1/75. Then it increases as d l  further decreases from 1/75 to 1/150. This is due to the 

fact that as d l  decreases from 1/45 to 1/75, the second natural frequency of the linear system 

increases from 0.94 to 1.103 rad/s, which is farther away from the dominant frequency 0.79 

rad/s of S . As d l  decreases from 1/75 to 1/150, the fundamental natural frequency of the 

linear system increases from 0.586 to 0.83, which is closer to the dominant frequency of S . 

It is also observed from that the standard deviation of fv  always decreases and the standard 

deviations of   and cT  always increase as d l  decreases. 

 



 
Figure 8. The standard deviations of 

fv , 
fw ,   and cT  at steady state for different d l  with 

45 =   

 

If the sag-to-span ratio of the cables keeps as 1/90, the standard deviations of the responses of 

the floating platform and maximum cable tensile force at steady state are shown in Figure 9 

for different inclination angles of the cables. It is observed from Figure 9 that the standard 

deviations of 
fv , 

fw ,  , cT  always increases as   increases from 33º to 54ºand they are 

much influenced by the inclination angles of the cables. This is due to the fact that as   

increases from 33º to 54º, the fundamental natural frequency of the linear system decreases 

from 0.679 to 0.593 rad/s and changes within a small interval, which is farther away from the 

dominant frequency of S , but the second natural frequency of the linear system decreases 

from 1.576 to 0.832 rad/s, which is closer to the dominant frequency of S .  

 

  
Figure 9. The standard deviations of 

fv , 
fw ,   and cT  at steady state for different   with 

1 90d l =  



Conclusions 

The nonlinear random vibrations of the cable-moored offshore floating structure are analyzed 

under wave excitation. The floating platform is modeled as a rigid body with six degrees of 

freedom. The mooring cables are modeled by using the nonlinear 3D cable elements which 

are formulated based on the extended Hamilton principle. The effects of added-mass and 

nonlinear hydrodynamic drag forces on both the floating platform and mooring cables are 

taken into consideration. Firstly, the equations of motion of the mooring cables and floating 

platform are formulated separately. After that, the connection conditions between the mooring 

cables and floating platform are introduced to make the nonlinear equations of motions of 

both the mooring cables and floating platform formulated as a whole system. The equations of 

motion of the whole system are solved numerically using MCS. The influences of the sag-to-

span ratio and inclination angle of the mooring cables on the statistical properties of the 

moored floating structure and the maximum cable tensile force are studied. It is found from 

numerical results that the responses of the floating platform and the maximum cable tensile 

force are much influenced by both the initial sag-to-span ratio and inclination angle of the 

cables.  
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