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Abstract 

A high order smooth element is constructed for modeling penny-shaped crack placed on but 
not limited to flat surface using a single element. The smoothness of the element is realized by 
repeated use of real nodes for interpolation in both the radial and circumferential directions of 
the element by taking advantage of geometrical features of the penny shape so that the end 
node/line effects existing in conventional low order elements have been removed. The 
technique of shape function manipulation is proposed to deal with the hyper-singular integrals 
in the boundary element method (BEM) for crack problems. The stress intensity factors under 
various loads are computed and compared with the analytical solutions in the numerical 
examples, showing the accuracy and effectiveness of the proposed high order smooth element. 

Keywords: High order smooth element, Penny-shaped crack, Stress intensity factor, 
Hypersingular integral, Boundary element method 

 

Introduction 

In the three-dimensional fracture analysis of structures, penny-shaped cracks have long been 
one of the most investigated cracks since their good representativeness to the defects in the 
three-dimensional solids. Conventionally, the low-order elements are employed in the 
numerical fracture analysis [1]-[2]. In the case of analyzing fine details near crack tips [3] or 
multiple-cracks [4], huge numbers of elements have to be used, resulting in large solution 
scale of the problem, especially for the FEM. In addition, the hypersingular integrals have to 
be treated carefully in the use of boundary element method (BEM). Based on the Chebyshev 
polynomials, Chen proposed a Gauss type quadrature to evaluate the hypersingular integrals 
encountered over the whole flat crack [5], much like using a single element. Recently, Gao et 
al. proposed a series of isoparametric closure elements [6] and improved by Ma et al. to high 
order smooth elements [7] for modeling closed surfaces using a single element. In the present 
work, the high order smooth elements are extended for modeling penny-shaped crack on flat 
and spherical surfaces, combined with the proposed technique of shape function manipulation 
to deal with the hypersingular integrals in the BEM. The stress intensity factors (SIF) under 
various loads are computed and compared with the analytical solutions [8], showing the 
accuracy and effectiveness of the high order smooth element. 

Construction of smooth element for crack 

Crack discretization 

Only the upper face of the penny-shaped crack needs to be discretized in the radial and 
circumferential directions. An example of the element with total nodes N=12 in the real and 
parametrical spaces are shown in Fig. 1a and 1b, respectively, where the symbols ○ and ◇ 
mean that the nodes are used repeatedly more than once in either circumferential or radial 



directions for interpolations. The local intrinsic coordinates 1  and 2  correspond to the radial 
and circumferential lines. The double solid line Fig. 1b is the polar point of the element 
without placing node and the numbers with an apostrophe is for avoiding confusion of nodes 
which are used repeatedly. The digits in parentheses are the local counting numbers of nodes, 
which correlates with the global counting number, m, as follows 

 1 2 21m k N k    ,  ( 1 11,...,k N ; 2 21,...,k N )                                      (1) 

where N1 and N2 represent the numbers of nodes on the radial and circumferential lines, and 
also the numbers of the circumferential and radial lines, respectively. 
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Figure 1.  Crack discretization in real space (a), parametrical space (b) and along one of 

the circumferential lines (c) 

Shape functions 

The shape functions for the crack are formed by the product of the shape functions in both the 
circumferential and radial directions, just the same with the formation of closure elements [6]. 
However, the key idea for constructing smooth elements is the repeated use of nodes, with 
which the interpolation spans are expanded as shown in Fig. 1b. Along one of the 
circumferential lines as shown in Fig. 1c, three nodes with the global numbers 12, 7 and 8 are 
used twice. The digits in parentheses denote the local counting numbers from 0 to N2+2, 
where the nodes used twice have two local counting numbers. The shape functions along 
circumferential lines are defined as follows 
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       22 2N
k kl   ,      23,..., 1k N                                             (2b) 
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where  2 2N
kl

  represents the Lagrange interpolation polynomials of order N2+2 as follows 
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In radial directions, two auxiliary nodes denoted by ◇ as shown in Fig. 1b are supplemented 
across the pole so that the shape functions for crack surface are defined by 

       11 1N
k kl   ,      11,...,k N                                                    (4)  

where  1 1N
kl

  represents also the Lagrange interpolation polynomials of order N1+1 as follows 
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In this way, the shape functions for the crack surface can be obtained 

         
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1 2
1 2 1 2,m k k        ,   1 13,...,k N                                     (6a) 

               
   

1 2 1 2

1 2 1 2
1 2 1 2 1 21,m k k k M k

              ,  1 1,2k            (6b) 

where 2 21,...,k N  and the counting numbers m, k1 and k2 in Eqs. (6a) and (6b) are correlated 
by Eq. (1). The subscript M(k) is a mirror function about the pole defined as follows 
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Thus in the construction of smooth element for cracks, the even number should be used for N2. 
Although the variation spans of the two intrinsic variables 1  and 2  have been expanded, 
however, the integration spans for the smooth element remain still within [–1,+1], a shaded 
square region as shown in Fig. 1b. In consideration of the deformation feature of crack tip, the 
shape functions for the crack opening displacement (COD) take a different form as 
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where 
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Therefore the smooth element for crack does not belong to the category of isoparametric 
elements. It need to be pointed out that the role of auxiliary nodes denoted by ◇ is nothing 
but to improve the fitting effect along radial lines, since the outward normal of the surface in 
the region indicated by ◇ turns upside-down from that of the shaded square region as shown 
in Fig. 1b. In addition, what needs to be emphasized is that the outward normal just at the pole 
is indeterminate since the circumferential line reduces to a single point at the pole. This is 
why no node be arranged at the pole for the crack element. It can be seen from the 
construction process that there is no end node and end line inside the smooth element. As a 
result, the interpolation accuracy of the smooth element will increase greatly with the removal 
of end node/line effects and the increase of the order of interpolation polynomials while the 
total number of nodes of the element is kept unchanged. 

Dealing with singularities of integrals 

Basic equations 

The boundary integral equation (BIE) for a crack in full space is given below [9] 

       HFP ,C
i j ij

A

y x x y dA x     ,    y A                                 (10) 

where A stands for the upper surface of the crack and 
i  the traction on A. x and y represent 

the field and source points, respectively. 
j j ju u     denotes the COD defined by the 

difference of displacements, 
ju  and 

ju , over the upper and lower surfaces of the crack. HFP 

means that the integral is evaluated in the Hadamard finite part sense. The kernel C
ij  is 

defined by 
      *, ,C

ij k ikjx y n y x y                                                    (11) 



In Eq. (11), nk stands for the component of the outward normal and 
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where   and v are the shear modulus and Poisson ratio of the material, respectively. r is the 
distance between the field and source points defined as 

   k k k kr x y x y                                                      (13) 

In a special case of a flat crack placed in the plane x1-x2 with only the normal load applied in 
x3 direction, the expressions (10)-(12) can be written in much simplified forms [5][8]. 
However, in the present work, these forms are kept unchanged to cope with the general cases. 
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Figure 2.  Domains for evaluating strong-singular (a) and hypersingular (b) integrals 

 

Shape function manipulation and evaluation of strong-singular integral 

Now rewrite Eq. (10) after discretizing the COD of the crack using the shape functions (8a) 
and (8b) as follows 
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where 
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It needs to be pointed out that in Eq. (16) the upper crack surface A is discretized using the 
shape functions (6a) and (6b), different from that for the COD. The integrals (16) are to be 
evaluated in polar systems as shown in Fig. 2a as follows 
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where (c1,c2) stand for the local coordinates of the source point y. Introduce the shape function 
manipulation as 
                                                      1 2, ,m m m c c                                                        (18) 

Rewrite integrals (17) as 
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by subtracting then adding back a shape function at the singular source point. It is seen that 
the first integral CPVm

ijI  at the right hand side of Eq. (19) is reduced to strong-singular integrals 

to be evaluated in the sense of Cauchy principal value (CPV). Expand the integrand of CPVm
ijI  

in (19) in truncated Laurent expansion at a fixed angle   as follows 
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where 
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In this way, the strong-singular integrals CPVm
ijI  can be evaluated using the conventional Gauss 

quadrature in the following form 
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Evaluation of hypersingular integral 

The second integrals HFP
ijI  at the right hand side of Eq. (19) have no shape function, resulted 

from the shape function manipulation stated previously. Noticed that the kernels appeared in 
these integrals describe a divergence-free field [10], having the properties of 
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over a closed surface, suggesting that the integrals HFP
ijI  are surface independent, which can be 

and should be made use of. As shown in Fig. 2b, when the point x move along the boundary S 
of the crack, the straight line connecting x and y, or the generatrix, will form a new surface, 
over which the evaluation of integrals HFP

ijI  can be carried out instead of the original crack 

surface A. The shape of the new surface would be planar or conical, depending on whether the 
original crack is a flat or curved surface. In either of the cases, however, the component of the 
kernel C

ij  on the generatrix is constant at a fixed angle   because nc  0cn r t 
 

 and r,k are 

all constants on the generatrix, where nc is the outward normal of the new surface, r0 the unit 
vector in r direction. See Fig. 2b and Eqs. (11)-(12). Therefore 
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where   is the solid angle of the cone surface and in particular 2   for planar surface. For 
a physical problem, the integral above should exist, which means that the infinite term or the 
last term at the right hand side of Eq. (26) should be eliminated or should be cancelled out by 
free terms [11]. Finally, the integrals HFP

ijI  can be evaluated using the conventional Gauss 

quadrature in the following form 
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Numerical examples 

Computation of SIF 

In the numerical examples, the SIFs, K1, K2 and K3 are computed by the corresponding COD 
values, n , b  and t  in the open, shear and tear modes, respectively, at the point x in the 

local coordinate system  b t n 
    as shown in Fig. 3a using the following approximate 

equations 
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where Δ represents a small distance from the point x to the crack front and E is Young’s 
modulus of the material. In the situation that the crack surfaces are traction free in full space 
under far-field loads, the computation model needs to be decomposed into two parts in the 
numerical analysis of such cracks. In the first part of the model, the tractions equal and 
opposite to the applied loads are acting on the crack surfaces without the far-field loads. In the 
second part of the model, the full space is loaded by the far-field loads without cracks. The 
final response is the linear superposition of the two parts of the model. However, the second 
part has no direct contribution to the values of SIF. 
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Figure 3.  Local coordinate system (a) and errors of computed SIF as function of Δ (b) 

 

Suitable distance check 

Firstly, the suitable distance Δ is checked by a penny-shaped crack of radius a placed in the 
plane x1-x2 (x3=0) in full space under a far-field unit normal load in x3 direction, discretized 
using a single smooth element with a series of total node numbers from N=8 to N=40. The 
relative errors of computed SIF are depicted in Fig. 3b as a function of Δ, showing that the 
accuracy is satisfactory with such few nodes using a single smooth element. The results are 
fairly stable in a wide range of Δ so that Δ/a=10-4 is adopted in the following examples. 

SIF under various normal loads 

Secondly, the SIFs of the penny-shaped crack in full space under various far-field normal 
loads are computed using a single smooth element with the total node number N=32 and 
compared with the analytical solutions [8]. The normal loads are expressed by 
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The coefficients for the 4 kinds of loads are listed in Table 1. The SIFs along the crack front 
are computed and shown in Fig. 4a while the angle   is starting from the positive direction of 
x1. It is seen from Fig. 4a that the computed results are in good agreement with those of 
analytical solutions, showing the accuracy and effectiveness of the proposed high order 
smooth element for the crack. 

Table 1. Coefficients in Eq. (29) 

 

SIF under unit shear load 

Next example considers the penny-shaped crack in full space under far-field unit shear load in 
x1 direction using a single smooth element with the total node number N=32. It is seen from 
Fig. 4b that the computed SIF in shear and tear modes (K2 and K3) varies along the crack front 
while the SIF in open mode (K1) keeps zero throughout as expected. 
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Figure 4.  Comparison of computed SIF under various far-field normal loads (a) and 

computed SIF under far-field unit shear load (b) 
 

SIF of cracks on spherical surface 

In the last example, the curved penny-shaped cracks on a spherical surface of radius R are 
computed under far-field unit normal load as shown in Fig. 5a using a single smooth element 
with the total node number N=40. The computed SIFs are presented in Fig. 5b with R/a, 
where the shape of the crack becomes a half-sphere when R/a=1 but behave towards a flat 
crack when R/a is very large. It is shown from Fig. 5b that that the SIF in open and shear 
modes (K1 and K2) increase gradually with R/a while the SIF in tear mode (K3) keeps zero 
throughout as expected. 
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Figure 5.  Curved penny-shaped cracks on a spherical surface (a) with computed SIF (b) 

under far-field unit normal load 



Conclusions 

In the present work, a high order smooth element is constructed successfully for modeling 
penny-shaped crack placed on flat or curved surface using a single element. By making full 
use of geometrical features such as the symmetry and periodicity, the smoothness of the 
element is realized by repeated use of nodes in the radial and circumferential lines for 
interpolation. As a result, the accuracy of the crack modeling increases because of the raise of 
the order of interpolation polynomials as well as the removal of the end node/line effects 
existing in conventional low order elements. The technique of shape function manipulation is 
proposed to deal with the hyper-singular integrals in the BEM for crack problems. In the 
numerical examples, the accuracy and effectiveness of the proposed high order smooth 
element and the technique for hyper-singular integrals are verified by the computed SIFs, 
using a single element with such few nodes, compared with the analytical solutions. 
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