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Abstract

In this paper, two-dimensional, two-layer steady stratified flow about a equal-strength counter-
or co-rotating vortex pair in the lower layer is concerned. Potential flow theory and boundary
integral equation method are applied to establish boundary integral equations about the interfa-
cial wave. These equations are solved numerically based on quasi-Newton method. The effects
on interfacial wave profiles of distance of the vortex pair are analyzed. It is found that the
wave height oscillates with d and the extreme values are almost the sum of that for two vortices
consists of the pair, especially for d large enough. When d is set that the wave height gets its
maximum points the wave profiles is about the superposition of that for the two vortices, where-
as when d get its minimum points the difference between the wave profiles caused by the pair
and the sum of profiles for these two vortices is large.

Keywords: Stratified flow, Point vortex pair, Boundary integral equation, Nonlinear inter-
facial waves

Introduction

When there exists a disturbance source in the steady density-stratified fluids, an internal wave
will be generated. Two-layer model of the vertical structure with different densities are often
employed as a simplified model of internal waves of steady density-stratified fluids. Many
researchers have studied the internal waves generated by various disturbance sources in two-
layer fluids such as the moving point source in the upper[1] and lower layers[2], the moving
dipole [3], the point vortex in the lower layer[4] and upper layer[5] and the hydrofoil in the
lower layer[6].

Forbes applied this boundary integral equation method with arclength parameters to describe
the surface while studying non-linear surface wave caused by a submerged point vortex [7]
and a submerged hydrofoil[8] in two-dimensional ideal irrotational fluid of infinite depth. The
obtained equations were solved numerically based on Newton method. Then this theory is
used to study the interfacial waves in two-layer fluids by different disturbance by following
researcher[9], [4].

The vortex pair is the basic element of fluid mechanics. Study of it to a large extent comes from
the problem of trailing wakes. Many studies are concerned with dynamics and instability of
vortex pairs. The literature [10] reviewed the characteristics and the behaviors of vortex pairs.
Besides, some researchers focused on the interactions and the flow structures between vortex
pairs and other objects like wall[11] and free surface[12],[13].

In this paper, the two-dimensional two-layer steady flow for a submerged vortex pair is con-



sidered. Both layers are inviscid and incompressible ideal fluids with consistent flow direction.
The upper layer is of finite depth and bounded by a rigid lid, while the lower fluid is infinitely
deep in which there exists a vortex pair set on a horizontal fixed position. The structure of this
paper is as follows: at first integral-differential equations are established using the potential
flow theory and boundary integral equation method. Secondly the problem is solved numerical-
ly based on the quasi-Newton method, which has been verified and gives a well performance in
DoF. Then we compare the effects of different parameters on the wave profile, including Froude
number, vortex strength and distance between two vortices.

Model of the problem

Consider steady two-layer fluids of different densities. Both layers are ideal fluids and irro-
tational. Their upstream uniform speeds have consistent flow direction. Creating a Cartesian
coordinate system such that the x axis is placed at the undisturbed horizontal interface and point
in the same direction of upstream uniform speed, as well as the y axis points up vertically. The
depth of upper fluid is T and the upper surface satisfies the rigid-lid assumption. The lower fluid
is infinitely deep with a point vortex pair placed where its center is at (0,−H) . The distance
between the two point vortices is 2D with circulation K1 < 0 at (−d,−1 and K2 > 0 at (d,−1)
respectively. In following context we use subscripts 1 and 2 to represent the physical variables
associated with the upper fluid and the lower, respectively. Densities and upstream uniform
speeds of two layers of fluid are ρ1, ρ2, and γ1, γ2.

For the convenience of discussion, use γ2 as the speed scale, H the length scale to get the
dimensionless model, then introduce following dimensionless parameters:
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where F is the Froude number, ε1, ε2 are the dimensionless vortex strengths of the two point
vortices, ρ is the ratio of density, γ is the ratio of far upstream uniform speed, λ is the nondi-
mensional depth of the upper layer, and 2d is the nondimensional distance between two vortices.
The elevation of fluid interface is described by a function y = η(x).

Figure 1. The nondimensional problem of a two-layer flow about a submerged vortex
pair located horizontally.

Because two layer fluids are both ideal fluids and flows are irrotational, from potential flow
theory two potential functions φ1, φ2, the stream functions ψ1, ψ2 satisfy the Cauchy-Riemann



equation: (∂/∂x)φ j = (∂/∂y)ψ j, (∂/∂y)φ j = −(∂/∂x)ψ j j = 1, 2. Thus two analytic functions
f j(z) = φ j(x, y) + iψ j(x, y), z = x + iy, complex velocity potential functions for upper and lower
fluid separately are introduced. z1 = −d − i, z2 = d − i, the position of the two point vortices,
are two singularities of f2 where i is the imaginary unit, i2 = −1. f2 satisfies

f2 → z +
iε1

2π
ln(z − z1) +

iε2

2π
ln(z − z2), z→ z1, z2 (1)

at z1 and z2. The upstream conditions are

f1 → γz, f2 → z, Re[z]→ −∞ (2)

here Re[z] means the real part of z.

The kinematic boundary condition for upper surface

∇φ1 · n = 0. (3)

At the interface y = η(x) it is

∇φ j · n = 0, j = 1, 2, (4)

where ∇ = ( ∂
∂x ,

∂
∂y ).

Introduce the arclength parameter s to parameterize the fluid interface y = η(x), so the fluid
interface is represented as (x, y) = (x(s), y(s)). The arclength condition is

(
dx
ds

)2

+

(
dy
ds

)2

= 1. (5)

The fluid interface satisfies the Bernoulli equation

ρ

(
dφ1

ds

)2

−

(
dφ2

ds

)2

+
2(ρ − 1)y

F2 = ργ2 − 1, (6)

according to setting the pressure and velocity equally on the interface. For more details can be
found in [4] and referring in it.

Choose a fixed point z = z(s) = x(s) + iy(s) randomly on the fluid interface, where s corre-
sponding arclength parameters. The Laplace equation for the upper and lower layer fluid could
be replaced by

∮
Γ

f (z)dz = 0 and
∑

Res f , zk. Both two integral equations come form Cauchy
integral and residue theorem with respect to integral contour-path on z1 and z2. Writing two
functions φ′js as forms of integral equations, two integral-differential equations are established
for the upper and lower layers by the boundary integral equation method The detailed derivation
process is similar to [4].

Introduce the analytic function G1(z) =
d f1
dz −γ, then apply the Cauchy integral formula and take

its imaginary part to establish the governing equation. Applying the equality



AB = A · B̄ + iĀ × B = (ac − bd) + i

∣∣∣∣∣∣ a −b
c d

∣∣∣∣∣∣
where A = a + ib, B = c + id ∈ C, the governing equation can be written as follow

π(γ − x′(s)φ′1(s)) = Im
{? +∞

−∞

G1(z(t)) × d(ln(z(t) − z(s)))
}

+ Im
{∫ +∞

−∞

G1(z̃(t)) × d(ln(z̃(t) − z(s)))
} (7)

where z̃(t) = x(t) + i(2λ − y(t)) is the mirror point of z(s) about y = λ. The first integral on the
right side of the equation is the singular integral in the sense of the Cauchy principal value.

For the lower layer, introduce the analytic function G2(z) =
d f2
dz − 1 similarly, apply the residue

theorem, and the equation
∮

Γ2

G2(ξ)dξ
ξ−z(s) = 2πi

∑2
k=1 Res

{
G2(ξ)
ξ−z(s) , zk

}
is obtained, where z1 = −d −

i, z2 = d − i.

Calculating the residue and integrals in the above formula and taking the imaginary part. The
residue contribution obeys the superposition law. The lower layer fluids following governing
equation

π(x′(s)φ′2(s) − 1) =Im
{? +∞

−∞

G2(z(t)) × d(ln(z(t) − z(s)))
}

+
ε1 (y(s) − Im z1)
|z(s) − z1|

2 +
ε2 (y(s) − Im z2)
|z(s) − z1|

2

(8)

Whereas the vortex pair contains two isolated singular points z1 and z2, which requires two
calculation of residual number and add one more term in the governing equation.

The governing equations (5), (6), (7) and (8) are derived. Based on them and the corresponding
boundary condition (2), the unknowns x(s), y(s), φ1(s) and φ2(s) can be calculated.

Numerical procedure

The numerical calculation method is similar to [4], while the difference is that this paper applies
the quasi-Newton iteration method [14, 15] to solve (5), (6), (7) and (8). If y′ is determined ,
then from (5) x′ is obtained, as well as x(s) =

∫ s

−∞
x′(t)dt and y(s) =

∫ s

−∞
y′(t)dt are also acquired.

(7) can be written as integral equations with respect of φ
′

1, then from (6) φ
′

2 can be solved easily.
As y′ is unknown, take the approximation of y′ as ỹ′ and (8) as the cost function to update the
approximation with quasi-Newton method. The following is the detailed process.

The integral area (−∞,+∞) is truncated to the finite interval [s1, sN], then N−1 equally dividing
it to get N grid points sk = s1 + (k − 1)∆s, k = 1, . . .N. Here ∆s = (sN − s1)/(N − 1) means
the step size. xk, yk, x′k, y′k, φ

′

1,k, φ
′

2,k are the approximation value of the responding unknown
quantities. According to the infinity boundary condition (2), the equation (5) and (6) determine
y1 = y′1 = 0,, x′1 = 1, x1 = s1, φ′1,1 = γ, φ′2,1 = 1. To eliminate the effects of singularity in
the integral, half grid points at atsk−1/2 = (sk−1 + sk)/2: xk− 1

2
, yk− 1

2
, x′

k− 1
2
, y′

k− 1
2
, φ′

1,k− 1
2
, φ′

2,k− 1
2
,



k = 2, . . . ,N are also calculated. Here xk− 1
2

= (xk−1 + xk)/2. So as other variables. The initial
approximation of y′2, · · · , y

′
N = 0.

As y′2, · · · , y
′
N is determined, calculate numerical integration on the finite interval [s1, sN] with

trapezoidal rule to get discrete equations A[φ
′

1,1, . . . , φ
′

1,N]T = c while taking the approximation
value of quantities at s as its value in (7). Dealing with (8) in a similar way yields the equations
of matrix form E(y′2, · · · , y

′
N) = B[φ

′

2,1, . . . , φ
′

2,N]T − d, where φ
′

2,k calculated from Bernoulli’s
equation (6). In these equations coefficient matrices A, B, constant terms b, d are all concerned
with y′k, x′k, xk, yk , which can be calculated by (5) and trapezoidal rules: Finally, we get a system
of equations for y′2, . . . , y

′
N . Solve it applying quasi-Newton method, and the iteration formula

is[14]:

ui+1 = ui − A−1
i E(ui),

Ai+1 = Ai + (bi − Aisi)sT
i /(sT

i si)
i = 0, 1, 2, . . . (9)

where u = (y′2, . . . , y
′
N), ui represents ith iteration approximation of u, E(u) = (E2[y′2, . . ., y′N],

. . ., EN[y′2, . . ., y′N]), si = ui+1 − ui, and bi = E(ui+1) − E(ui). For i=0, A0 could be chosen as(
(ET (y′ + hei) − ET (y′))/h

)
, the (N−1×N−1) difference matrix of cost function E, i = 2, · · · ,N,

where y′ = [y′2, . . . , y
′
N] and ei is N − 1 dimensional unit vector. This Calculating progress

terminates when Calculate ‖E‖2 ‖E‖2 is less than the given number ε.

Results analysis

In the numerical calculation, the upper depth is set λ = 20, and far upstream uniform speed
ratio γ = 1, namely two-layer fluids with equal spped. If we set d = 0, ε1 < 0, ε2 = 0, in fact it
is the case for a single vortex ε < 0. The calculation error precision is setting to be σ = 10−9.
The calculation domain is [-25, 30] and the grid number N = 2201, as well as ∆s = 0.025.
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Figure 2. Comparison of interfacial wave profiles when d changes, where parameters
F = 0.13, ρ = 0.9, ε1 = −0.24, ε2 = 0.24

For counter-rotating vortex pair with ε1 < 0 and ε2 > 0, figure 2 represents how wave profiles
change with d. As d increasing the amplitude of upstream wave profiles increases and gradually
stabilizes, as well as that of downstream steady wave profile oscillates. When d is large enough
there’s steady wave profile between two vortices, which is close to that for the single vortex
ε < 0. For d = 10.13, the wave height and length of this steady wave profile are h = 0.01587,
L = 2.018, close to that of the steady wave profile h− = 0.01580, L− = 2.019 for a single vortex
ε = −0.24 at (0,−1). Figure 3 describes the periodical change of wave height h of downstream
wave profiles with d clearly. When d changes, the phase difference of two wave profiles caused



by two vortices changes periodically. If the phase difference is one/half a period, the amplitude
of sum of these two profiles is the maximum of h. The period is close to L−/2. That is to say
that this period is almost the distance of two vortices(2d). As d is large enough, the extreme
values of downstream wave height h are approximately h+ ± h−, which are downstream steady
wave height for a single vortex ε = −0.24 and ε = 0.24, respectively. Whereas for d = 0.51,
h/(h+ + h−) = 0.9775 and d = 1.01,h/|h+ − h−| = 0.8459. These values of d are the maximum
and minimum of figure 3.
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Figure 3. Relationship of h/h− and d. Two horizontal lines of dashes represent h+± h−.
h is the downstream wave height and h− = 0.01580, h+ = 0.03038 are wave height for

a single vortex ε = −0.24 and ε = 0.24, respectively. Other parameters F = 0.13,
ρ = 0.9, ε1 = −0.24, ε2 = 0.24.
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Figure 4. Relationship of h/h−(solid line) and h12/h−(dash line) with d, where h is the
downstream wave height and h− = 0.01580 is the wave height for a single vortex

ε = −0.23. Other parameters F = 0.13, ρ = 0.9, ε1 = ε2 = −0.23.

For co-rotating pair, figure 4 shows that the wave height h also change with d periodically and
the extreme values are almost the sum and difference of wave height for the single vortex except
d = 0.413 and 0.93. On the other hand, let (x(s), y(s)), (x1(s), y1(s)) and (x2(s), y2(s)) represent
the interfaces for the vortex pair ε1 and ε2, the single vortex at z1 and z2, respectively. Figure
4 shows the variance of wave height of y1(s)) + y1(s)) (written as h12) oscillates like h with
d and moves backward except for about d < 0.5. To examine this behavior, try to construct
an approximate analytic expression considering that for a single vortex ε < 0 the wave profile
consists of a large crest like a solitary wave and the downstream steady waves. Assume that this



crest can be written as y = Asechα(x − x0) and the downstream wave y = Asin((2π)x/L + φ),
calculate curvature of highest point, the amplitude and wavelength and the positions of the
maximum points to obtain the expression y = Asechα(x−x0)+0.0794sin(2π/2.025+0.562)H(x−
x1), where x0 = 0.275, A = 0.0205, α = 2.957 and x1 = (π − φ)L/2π. Figure 5 describes the
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Figure 5. Comparison of interfacial wave profiles calculating by boundary integral
method(solid line) and the expression patched (dash line), where parameters F = 0.13,

ρ = 0.9, ε = −0.23.

fitting effects. From figure 6, the wave profile is close to the superposition of two wave profiles
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Figure 6. Comparison of interfacial wave profiles calculating by boundary integral
method(solid line) and the expression patched (dash line) for (a) d = 0.413, (b) d = 0.93

.

for the single vortex as d makes h around its maximum (for instance d = 0.93) and significantly
different as h gets is minimum points(for example d = 0.413).

Conclusion

In the steady two-dimensional two-layer flow with ideal irrotating fluids, a vortex pair sub-
merged in lower layer generates interfacial waves . In this paper, two integral equations coupled
with Bernoulli equations of nonlinear boundary waves are established by applying potential
flow theory and boundary integral equation method, then a numerical method based on quasi-
Newton method is carried out. The influences of d, which is the half of distance between two
vortices on symmetric and asymmetric pair is discussed.

For symmetric/antisymmetric vortex pair, as d increases the wave height of downstream wave
h oscillates and the extreme values are close to the sum/difference of wave heights for two
vortices of the pair. When d is taken near its maximum points, the wave profiles is close to the
superposition of that for these two vortices, whereas if d is taken other values the difference is
large.
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