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Abstract 
In this paper, a novel substructural damage detection method combining autoregressive 
moving average with exogenous inputs (ARMAX) model residual and Kullback-Leibler 
divergence (KLD) is proposed to identify the damages of shear building structures. Firstly, 
based on the partition strategy of multi-input multi-output (MIMO) model, the overall 
structure is divided into series of substructures such that structural damage diagnosis process 
is able to be implemented on each substructure independently. For the sake of better resisting 
noise interference and enhancing damage detection robustness, every substructure is modeled 
by autoregressive-moving average with exogenous inputs (ARMAX) model, and its model 
residuals contain sensitive structural damage feature characterized by the changes in 
chi-square distribution function (CSDF) of the model residuals. Furthermore, KLD is utilized 
to measure the similarity between two probability distributions and used as structural damage 
indicator to quantify the damage in detail. Numerical simulation is conducted to evaluate the 
performance of proposed damage identification approach, and it shows the satisfactory results 
of structural damage localization and quantification. 
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1. Introduction 

In recent years, due to the aging of aerospace, civil, and mechanical infrastructures especially 
for the structures serving human society activities for a long time, structural health monitoring 
(SHM) has become an essential research field in maintaining the integrity of structures. 
Structural damage detection generally provides the fundamental information for SHM 



practices and is one of the most challenging components in the construction of SHM system 
[1].  

 

As the nondestructive evaluation (NDE) techniques, vibration based damage detection 
methods have become more effective and flexible than the traditional detection approaches in 
engineering applications in the latest decades. Modal properties are easily obtained from 
structural responses, and modal frequencies, mode shapes or mode shape curvatures are 
chosen as damage sensitive features for wide applications of damage detection. In addition, 
substructuring technique has been also developed for subtly designing and analyzing the 
complex large-scale structures in an efficient way that the whole structure is decomposed into 
a series of smaller substructures. By adopting a strategy of ‘divide-and-conquer’, the 
performance of dynamic system model fitting and the accuracy of structural parameters 
identification are not reduced especially for actual large-scale engineering structures, such as 
high-rise building structures and long span bridges. For damage detection, most damage 
indicators of previous substructuring method are based on modal parameters. A substructuring 
method combined with the difference between squared original frequency and squared 
damaged frequency was proposed in [2]-[3] for damage identification of shear structures. 
However, modal parameters usually represent the property of the whole structure such that the 
modal parameters based damage indicators indicate the global structural damage, which is not 
sensitive enough for local damage identification under complicated environmental conditions 
[4]. In contrast to modal parameters identification based detection methods, the time domain 
or frequency domain methods extract local damage sensitive features via signal processing 
and only concentrating on measured data of structural responses, meanwhile, these methods 
are in a data-driven way without a model of the structure and different from the model based 
method requiring an accurate finite element model. For linear time-invariant (LTI) systems, 
autoregressive process can well model the structural systems and distinguish various system 
dynamics through the ‘black box’ model structure containing system inputs and outputs; 
besides, the autoregressive model based methods are more intuitionistic than the frequency 
domain method by generating underlying observations process directly from the model 
parameters without spectral representation. The autoregressive model parameters, such as the 
model residuals and model coefficients, have been well utilized as the damage sensitive 
indexes for local damage detection. In the previous researches, most model residuals-based 
damage detection methods are based on pattern recognition approaches [5], and their damage 
indicators usually rely on pattern recognition tools, which often require a large amount of 
training data to extract damage sensitive features and inevitably produces huge computational 
complexity.  

 

In order to improve the computational flexibility of existing methods and potentially locate 
and quantify damages for shear structures, this paper proposes a new substructural damage 
detection method based on autoregressive moving average with exogenous inputs (ARMAX) 
model and Kullback-Leibler divergence (KLD). At first, the substructural division strategy in 
[2]-[3] is employed so that the damage detection process can be carried out on each 



substructure independently, which is suitable for a parallel and distributed SHM system. The 
ARMAX model combined with substructure of MIMO system is built to remove strong 
correlation of the responses and needed not to use pre-whitening filter, which is more 
convenient in signal processing than the autoregressive (AR) method of single output [6]-[7]. 
Besides, an ARMAX model is able to enhance the noise immunity of damage detection 
results by its moving average term of model residual. Furthermore, this study proposes an 
innovative damage indicator by incorporating ARMAX model residual and Kullback-Leibler 
divergence (KLD) for sensitive damage quantification in a data-driven way. KLD is an index 
widely used for measuring the similarity between two probability distributions in statistics; 
the value of KLD is close to zero when the two probability distributions are similar, otherwise, 
the value of KLD is close to one [8]. In this study, the distribution of model residual can be 
well described by the chi-square distribution function (CSDF), the KLD value between 
CSDFs in damage state and undamaged state can clearly indicate the damage, including the 
location and extent of substructural damage. Simulation of six degrees of freedom (DOFs) 
shear building structure subjected to mutually correlative white noises is conducted to verify 
the performance of proposed damage substructural damage detection approach, and specific 
conclusions are finally discussed. 

 

2. Theoretical fundamentals 

2.1. Dynamic system modeling with ARMAX model 

For the linear discrete-time system with multiple-input and multiple-output, the dynamic 
process can be described by an ARMAX model as following: 

 

 𝑦𝑦(𝑡𝑡) + ∑ 𝑎𝑎𝑘𝑘𝑦𝑦(𝑡𝑡 − 𝑘𝑘)𝑛𝑛𝑎𝑎
𝑘𝑘=1 = ∑ 𝑏𝑏𝑘𝑘𝑢𝑢(𝑡𝑡 − 𝑛𝑛𝑘𝑘 − 𝑘𝑘 + 1)𝑛𝑛𝑏𝑏

𝑘𝑘=1 + ∑ 𝑐𝑐𝑘𝑘𝑒𝑒(𝑡𝑡 − 𝑘𝑘)𝑛𝑛𝑐𝑐
𝑘𝑘=1  (1) 

 

where y(t) represents the system output at time t, u(t) denotes the system input; 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘, and 
𝑐𝑐𝑘𝑘 indicate the coefficients of autoregressive term, system input term, and moving-average 
term, respectively, na, nb and nc depict their corresponding model orders, respectively, nk 
means the time delay steps; e(t) are the residuals of the estimation process at time t; the 
ARMAX model is efficient for its flexibility to availably handle the disturbance modeling 
through its moving-average coefficient 𝑐𝑐𝑘𝑘. 

 

2.2. Substructure division 
Generally, the shear building structure can be simulated as a one-dimensional shear model 
with lumped masses through the below motion equation: 
 

 𝑴𝑴�̈�𝒙 + 𝑪𝑪�̈�𝒙 + 𝑲𝑲�̈�𝒙 = −𝑴𝑴𝑴𝑴�̈�𝒙𝒈𝒈 (2) 

 



where 𝑴𝑴𝑛𝑛×𝑛𝑛 , 𝑲𝑲𝑛𝑛×𝑛𝑛 , and 𝑪𝑪𝑛𝑛×𝑛𝑛 respectively depicted the mass, stiffness, and damping 
matrixes, n depicts the number of DOFs, r denotes the 𝑛𝑛 × 1 unit vector (𝑴𝑴 = [1⋯1]𝑇𝑇), x 
indicates the displacement vector of lateral vibration relative to the ground, �̈�𝑥𝑔𝑔 means the 
ground acceleration. 

The motion of each DOF is affected by the motion of adjacent DOFs; every mass and its 
adjacent masses are separated from the overall structure to construct series of substructures, as 
shown in Fig. 1. According to the principle of force balance at the lateral direction, the motion 
equation of substructure i (1 ≤ i ≤ n-1) can be expressed as 

 
 𝑚𝑚𝑖𝑖�̈�𝑦𝑖𝑖 + (𝑐𝑐𝑖𝑖 + 𝑐𝑐𝑖𝑖+1)�̇�𝑦𝑖𝑖 + (𝑘𝑘𝑖𝑖 + 𝑘𝑘𝑖𝑖+1)𝑦𝑦𝑖𝑖 = −𝑚𝑚𝑖𝑖�̈�𝑧𝑖𝑖−1 + 𝑐𝑐𝑖𝑖+1�̇�𝑦𝑖𝑖+1 + 𝑘𝑘𝑖𝑖+1𝑦𝑦𝑖𝑖+1 (3) 

 
where 𝑚𝑚𝑖𝑖 is the ith story mass, 𝑘𝑘𝑖𝑖  is the stiffness coefficient of the ith story, 𝑐𝑐𝑖𝑖 is the 
damping coefficient of the ith story; yi represents the displacement of the ith story relative to 
the (i-1)th story; �̈�𝑧𝑖𝑖 means the absolute acceleration of the ith story, and especially �̈�𝑧0 denotes 
the ground acceleration �̈�𝑥𝑔𝑔. Considering that the top mass 𝑚𝑚𝑛𝑛 is the free end and only one 
mass is adjacent to it, the motion equation of the top substructure is represented by following: 
 
 𝑚𝑚𝑛𝑛�̈�𝑦𝑛𝑛 + 𝑐𝑐𝑛𝑛�̇�𝑦𝑛𝑛 + 𝑘𝑘𝑛𝑛𝑦𝑦𝑛𝑛 = −𝑚𝑚𝑛𝑛�̈�𝑧𝑛𝑛−1 (4) 

 
Introducing the difference expression 
 

 �̇�𝑦𝑖𝑖(𝑡𝑡) = 𝑦𝑦𝑖𝑖(𝑡𝑡+𝑇𝑇)−𝑦𝑦𝑖𝑖(𝑡𝑡−𝑇𝑇)
2𝑇𝑇

 (5) 

 

 �̈�𝑦𝑖𝑖(𝑡𝑡) = 𝑦𝑦𝑖𝑖(𝑡𝑡+𝑇𝑇)−2𝑦𝑦𝑖𝑖(𝑡𝑡)+𝑦𝑦𝑖𝑖(𝑡𝑡−𝑇𝑇)
𝑇𝑇2

 (6) 

 
where �̇�𝑦𝑖𝑖 and �̈�𝑦𝑖𝑖 means the velocity and acceleration of the ith story relative to the (i-1)th 
story, respectively, 𝑡𝑡  represents the time index, T depicts the sampling interval. By 
substituting Eq. (5) and Eq. (6) into Eq. (3), the motion equation of substructure i (1 ≤ i ≤ n-1) 
can be rewritten as 
 

�̈�𝑦𝑖𝑖(𝑡𝑡) + 𝑎𝑎1�̈�𝑦𝑖𝑖(𝑡𝑡 − 1) + 𝑎𝑎2�̈�𝑦𝑖𝑖(𝑡𝑡 − 2) = 𝑏𝑏11�̈�𝑧𝑖𝑖−1(𝑡𝑡 − 1) + 𝑏𝑏12�̈�𝑧𝑖𝑖−1(𝑡𝑡 − 2) 

 +𝑏𝑏21�̈�𝑦𝑖𝑖+1(𝑡𝑡 − 1) + 𝑏𝑏22�̈�𝑦𝑖𝑖+1(𝑡𝑡 − 2)              

 +𝑐𝑐1𝑒𝑒(𝑡𝑡 − 1) + 𝑐𝑐2𝑒𝑒(𝑡𝑡 − 2)                (7) 
 
In this, Eq. (7) can be regarded as an ARMAX model with two-input (�̈�𝑧𝑖𝑖−1 and �̈�𝑦𝑖𝑖+1) and 
single-output (�̈�𝑦𝑖𝑖) [2]-[3], where e(t) represents the ARMAX model residuals. Likewise, the 
motion equation of top substructure n can be rewritten by substituting Eq. (5) and Eq. (6) into 
Eq. (4), and it can be identified as a single-input (�̈�𝑧𝑛𝑛−1) and single-output (�̈�𝑦𝑛𝑛) ARMAX 
model, that is 
 



�̈�𝑦𝑛𝑛(𝑡𝑡) + 𝑎𝑎1�̈�𝑦𝑛𝑛(𝑡𝑡 − 1) + 𝑎𝑎2�̈�𝑦𝑛𝑛(𝑡𝑡 − 2) = 𝑏𝑏1�̈�𝑧𝑛𝑛−1(𝑡𝑡 − 1) + 𝑏𝑏2�̈�𝑧𝑛𝑛−1(𝑡𝑡 − 2) 

+𝑐𝑐1𝑒𝑒(𝑡𝑡 − 1) + 𝑐𝑐2𝑒𝑒(𝑡𝑡 − 2)               (8) 

 

Figure 1. Substructure division method 
 

Herein, in order to characterize each substructure with MIMO model and promptly acquired 
essential structural features, only three accelerometers are needed to establish the related 
ARMAX model while two is enough for the top substructure. 

 

2.3. Damage indicator 
In this paper, a novel structural damage indicator based on ARMAX model residual and 
Kullback-Leibler divergence is proposed to identify the damages of shear structures. Initially, 
the predicted system output 𝑦𝑦�𝑢𝑢(𝑡𝑡) modeling with ARMAX model in undamaged state can be 
calculated as  
 

 𝑦𝑦�𝑢𝑢(𝑡𝑡) = −∑ 𝑎𝑎𝑘𝑘𝑦𝑦(𝑡𝑡 − 𝑘𝑘) + ∑ 𝑏𝑏𝑘𝑘𝑢𝑢(𝑡𝑡 − 𝑛𝑛𝑘𝑘 − 𝑘𝑘 + 1) +𝑛𝑛𝑏𝑏
𝑘𝑘=1

𝑛𝑛𝑎𝑎
𝑘𝑘=1 ∑ 𝑐𝑐𝑘𝑘

𝑛𝑛𝑐𝑐
𝑘𝑘=1 𝑒𝑒(𝑡𝑡 − 𝑘𝑘) (9) 

 

The model residuals of the undamaged state and damaged state can be generated between the 
measurement system output y and the predicted system output 𝑦𝑦� by comparing with the 
reference ARMAX model of undamaged state, that is  

𝑚𝑚𝑖𝑖−1 

𝑚𝑚𝑖𝑖 

𝑚𝑚𝑖𝑖+1 

𝑚𝑚𝑛𝑛−2 

 

𝑚𝑚𝑛𝑛−1 

𝑚𝑚𝑛𝑛 

 

𝑘𝑘𝑖𝑖 , 𝑐𝑐𝑖𝑖  

𝑘𝑘𝑖𝑖+1, 𝑐𝑐𝑖𝑖+1 

𝑥𝑥𝑖𝑖−1 

𝑥𝑥𝑖𝑖 

𝑥𝑥𝑖𝑖+1 

𝑥𝑥𝑛𝑛−2 

𝑥𝑥𝑛𝑛−1 

𝑥𝑥𝑛𝑛 

𝑧𝑧𝑖𝑖−1 = 𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑔𝑔 

 

𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 

𝑦𝑦𝑖𝑖+1 = 𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖−1 

𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛−1 

𝑧𝑧𝑛𝑛−1 = 𝑥𝑥𝑛𝑛−1 − 𝑥𝑥𝑔𝑔 

 

𝑘𝑘𝑛𝑛−1, 𝑐𝑐𝑛𝑛−1 

𝑘𝑘𝑛𝑛, 𝑐𝑐𝑛𝑛 

𝑘𝑘𝑛𝑛−2, 𝑐𝑐𝑛𝑛−2 

 Sub. i 

 Sub. n 

�̈�𝑥𝑔𝑔 �̈�𝑧0 



 
 𝑒𝑒𝑢𝑢(𝑡𝑡) = 𝑦𝑦𝑢𝑢(𝑡𝑡) − 𝑦𝑦�𝑢𝑢(𝑡𝑡) (10) 

 
 𝑒𝑒𝑑𝑑(𝑡𝑡) = 𝑦𝑦𝑑𝑑(𝑡𝑡) − 𝑦𝑦�𝑢𝑢(𝑡𝑡) (11) 

 

where 𝑦𝑦𝑢𝑢(𝑡𝑡) and 𝑦𝑦𝑑𝑑(𝑡𝑡) are the measurement output of undamaged and damaged state from 
the substructure being analyzed, respectively. For damage case caused by the degradation of 
story stiffness, structural responses generated from damaged system generally vary from 
responses of undamaged system, and it is hard to fit the structural responses in damaged state 
well by using the reference ARMAX model in undamaged state. In other words, model 
residuals from damaged system responses (Eq. (11)) are different from residuals of responses 
in undamaged state (Eq. (10)), which contains important structural information for damage 
examination. In addition, the model residual vector are normalized to a dimensionless vector 
so as to remove the effects of various response amplitudes, as shown as follows 

 

 𝒆𝒆�𝒖𝒖 = 𝒆𝒆𝒖𝒖
‖𝒚𝒚𝒖𝒖‖

 (12) 

 

 𝒆𝒆�𝒅𝒅 = 𝒆𝒆𝒅𝒅
‖𝒚𝒚𝒅𝒅‖

 (13) 

 

where 𝒆𝒆𝒖𝒖 and 𝒆𝒆𝒅𝒅  represent the ARMAX model residual vector in the undamaged and 
damaged state, respectively; ‖𝒚𝒚𝒖𝒖‖ and ‖𝒚𝒚𝒅𝒅‖ mean the norm of output response vector in 
the undamaged and damaged state, respectively, 𝒆𝒆�𝒖𝒖  and 𝒆𝒆�𝒅𝒅  denote the corresponding 
normalized dimensionless residual vector, respectively. On the other hand, the discrepancy 
between the distributions of residual vectors in undamaged and damaged state is able to 
qualitatively reflect the existence of structural damage, and in this work we utilize the 
chi-square distribution function (CSDF) to characterize ARMAX residual vectors for 
structural damage identification: 

 

 𝑓𝑓(𝑥𝑥) = �
𝑥𝑥
𝑘𝑘
2−1𝑒𝑒−

𝑥𝑥
2

2
𝑘𝑘
2𝛤𝛤(𝑘𝑘2)

     𝑥𝑥 > 0

         0          𝑥𝑥 ≤ 0

 (14) 

 

where 𝑥𝑥 represent the random variable, f(.) denotes the chi-square distribution function, Γ(.) 
indicates the gamma distribution function, k depicts a positive integer that specifies the 
number of degrees of freedom and affects the shape of the chi-square distribution function 
curves of residual vectors. Moreover, KLD is utilized to quantify the difference of 
distributions of ARMAX model residuals and used as the structural damage indicator in this 

study. At first, for the discrete random variable 𝑋𝑋 =  {𝑥𝑥1,  𝑥𝑥2,  … , 𝑥𝑥𝑛𝑛} (𝑛𝑛 ≥ 2)  and 



𝑌𝑌 =  {𝑦𝑦1,  𝑦𝑦2,  … ,𝑦𝑦𝑛𝑛} from an uncertainty system, their corresponding probability distribution 

of each element are given as 

 

 𝑃𝑃(𝑋𝑋) =  {𝑝𝑝1(𝑥𝑥),  𝑝𝑝2(𝑥𝑥),  . . .  ,  𝑝𝑝𝑛𝑛(𝑥𝑥)} (15) 

 

 𝑄𝑄(𝑌𝑌) =  {𝑞𝑞1(𝑦𝑦),  𝑞𝑞2(𝑦𝑦),  . . .  ,  𝑞𝑞𝑛𝑛(𝑦𝑦)} (16) 

 

where 𝑝𝑝i(𝑥𝑥) and 𝑞𝑞𝑖𝑖(𝑦𝑦)  represent the probability distribution function of the element 𝑥𝑥𝑖𝑖 

and 𝑦𝑦𝑖𝑖, respectively; and 0 ≤ 𝑝𝑝𝑖𝑖(𝑥𝑥),  𝑞𝑞𝑖𝑖(𝑦𝑦) ≤1, ∑ 𝑝𝑝𝑖𝑖(𝑥𝑥) (or 𝑞𝑞𝑖𝑖(𝑦𝑦))𝑛𝑛
𝑖𝑖=1 = 1, 𝑖𝑖 = 1, … ,𝑛𝑛. The 

KLD [8] between the probability distributions of discrete random variables X and Y is defined 
as  

 

 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃(𝑋𝑋)‖𝑄𝑄(𝑌𝑌)) = ∑ 𝑝𝑝𝑖𝑖(𝑥𝑥)ln 𝑝𝑝𝑖𝑖(𝑥𝑥)
𝑞𝑞𝑖𝑖(𝑦𝑦)

𝑛𝑛
𝑖𝑖=1  (17) 

 

For the discrete random variables of ARMAX model residuals applied in linear time-invariant 
system,  

  𝒆𝒆𝒖𝒖 =  {𝑒𝑒𝑢𝑢(𝑡𝑡),  𝑒𝑒𝑢𝑢(𝑡𝑡 −  1),  . . .  ,  𝑒𝑒𝑢𝑢(𝑡𝑡 −  𝑛𝑛 +  1)} (18) 

  𝒆𝒆𝒅𝒅 =  {𝑒𝑒𝑑𝑑(𝑡𝑡),  𝑒𝑒𝑑𝑑(𝑡𝑡 −  1),  . . .  ,  𝑒𝑒𝑑𝑑(𝑡𝑡 −  𝑛𝑛 +  1)} (19) 

 

where t indicates time index, n ≥ 2 denotes the length of the residual vector, the 
corresponding probability distributions of each element of undamaged and damaged state are 
described as  

 

 𝑃𝑃( 𝒆𝒆𝒖𝒖) =  {𝑝𝑝1(𝑒𝑒𝑢𝑢),  𝑝𝑝2(𝑒𝑒𝑢𝑢),  . . .  ,  𝑝𝑝𝑛𝑛(𝑒𝑒𝑢𝑢)} (20) 

 

 𝑃𝑃(𝒆𝒆𝒅𝒅) =  {𝑝𝑝1(𝑒𝑒𝑑𝑑),  𝑝𝑝2(𝑒𝑒𝑑𝑑),  . . .  ,  𝑝𝑝𝑛𝑛(𝑒𝑒𝑑𝑑)} (21) 

 

Eventually, the structural damage indicator using KLD between distributions of ARMAX 
model residuals is defined as following: 



 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃(𝒆𝒆�𝒖𝒖)‖𝑃𝑃(𝒆𝒆�𝒅𝒅)) = ∑ 𝑝𝑝𝑖𝑖(𝒆𝒆�𝒖𝒖)ln 𝑝𝑝𝑖𝑖(𝒆𝒆�𝒖𝒖)
𝑞𝑞𝑖𝑖(𝒆𝒆�𝒅𝒅)

𝑛𝑛
𝑖𝑖=1  (22) 

 
 𝒆𝒆�𝒖𝒖 = sort(abs(𝒆𝒆�𝒖𝒖)) (23) 

 
 𝒆𝒆�𝒅𝒅 = sort(abs(𝒆𝒆�𝒅𝒅)) (24) 

 

where 𝒆𝒆�𝒖𝒖 and 𝒆𝒆�𝒅𝒅 represent the rearrangement vectors of absolute value of 𝒆𝒆�𝒖𝒖 and 𝒆𝒆�𝒅𝒅 in 
ascending order, respectively; P(.) means the corresponding chi-square distribution function. 

 
3. Numerical simulation 
3.1. Simulation setup 
In order to substantiate the performance of proposed method for damage detection, numerical 
simulation of damage detection on a six-story shear building structure has been conducted. As 
is depicted in Fig. 2, it is a six-story shear building model which can be simplified as a 6-DOF 
structure system, and the structure system is subjected to white noise excitation. The 
structural parameters are given as follows: the mass of every story is 1×102 kg, and the lateral 
stiffness is 1×106 N/m; damping ratio is assumed to be 3% for all modes; the first six natural 
frequencies of the shear model in undamaged state are given as 3.84 Hz, 11.29 Hz, 18.08 Hz, 
23.83 Hz, 28.18 Hz and 30.91 Hz for the 1st mode to the 6th mode, respectively; the data 
sampling frequency is 200 Hz; taking into account the influence of environmental disturbance, 
measurement noises of 5% noise level are added into the acceleration data of all stories; there 
are totally 5×6=30 damage cases which consist of 10%, 20%, 30%, 40% and 50% reduction 
of lateral stiffness on every story. Fig. 3 shows the time series excitation of white noise. 

 

Figure 2. 6-story shear building structure subjected to white noises excitaion 
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3.2. Procedure and results 
Primarily, the overall structure is divided into 6 substructures using the partition method 
mentioned in Section 2.2 (Eqs. (2) ~ (8)), as shown in Fig. 4. For each substructure from 
number 1 to 5, it can be modeled in good condition as a 2-input and 1-output ARMAX model, 
while the substructure 6 is modeled as 1-input and 1-output ARMAX model. For example, the 
ground acceleration (�̈�𝑧𝑔𝑔) and the acceleration of the 2rd DOF relative to the ground (�̈�𝑦2) are 
modeled as the input of substructure 1 while the 1st DOF relative to the ground (�̈�𝑦1) is 
modeled as the output. Besides, the absolute acceleration (�̈�𝑧𝑖𝑖−1) (2 ≤ 𝑖𝑖 ≤ 5) of the (i-1)th DOF 
and the acceleration of the (i+1)th DOF relative to (i-1)th DOF (�̈�𝑦𝑖𝑖+1) are modeled as the input 
of substructure i while the acceleration of the ith DOF relative to the (i-1)th DOF (�̈�𝑦𝑖𝑖) is 
modeled as the output. Especially for the top substructure, the absolute acceleration (�̈�𝑧5) of the 
5th DOF is modeled as the input and the acceleration of the 6th DOF relative to 5th DOF (�̈�𝑦6) is 
modeled as the output of substructure 6.  

 

Figure 3. Input excitation of white noises 
 

 

Figure 4. Substructure division for 6-DOF simulated shear building structure 
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The undamaged limit of each substructure is independently calculated through the mean value 
of KLD values between 10 data subsets in undamaged state, and the time duration of each 
subset is 20 secs. The changes in ARMAX model residuals from the undamaged system to the 
damaged systems can be reflected by its chi-square distribution function. All CSDF curves of 
10% damage at the 1st ~ 6th floors are shown in Fig. 5 to indicate the damages existing in the 
structure. It can be observed from Fig. 5 that the CSDF curves shapes of damaged floors are 
conspicuous compared with others of undamaged floors. This is in good agreement with the 
theoretical expectation that ARMAX model residual of substructure in damaged state varies 
from the one of substructure in undamaged state since the substructural responses in damaged 
state cannot fit well the ARMAX model in undamaged state, as shown in Eqs. (9) ~ (14). 
Nevertheless, it is hard to exactly calculate the gap between the CSDF curves of different 
damage cases by only using the distinction of curves shapes. In view of this, KLD derived 
from Eqs. (15) ~ (24) is adopted to quantify the difference of CSDF curves between 
undamaged state and damaged state, and the complete identification of 10%, 20%, 30%, 40% 
and 50% damage cases is shown in the bar plots of Fig. 6. As a result, it reveals that there 
exists evident regularity in the damage location while the damage indicator can clearly 
quantify the damage with the damage degree increasing though it was interfered by the 5% 
noise. Therefore, it is explicitly reasonable that the proposed residual-based KLD is 
acceptably to reveal the linear relationship between the values of damage indicator and the 
structural stiffness reductions even in the case of a high severity of damage. 

 
Figure 5. Chi-square distribution function (CSDF) of ARMAX model residual (white 

noise excitation, 5% noise, ARMAX model, data length = 4000, na = 2, nb = 3, nc = 3, and nk 
= 0; k = 2 (number of DOFs of CSDF)) 

 



 

Figure 6. Damage indicator of Kullback-Leibler divergence (KLD) (white noise excitation, 
5% noise, ARMAX model, data length = 4000, na = 2, nb = 3, nc = 3, and nk = 0; k = 2 

(number of DOFs of CSDF)) 

 

4. Conclusions 

This paper proposed an innovative substructural damage detection method based on damage 
indicator of ARMAX model residual-based KLD. Simulation of damage identification on a 
six-story shear building structure subjected to white noise is conducted to evaluate the 
performance of proposed damage detection strategy and damage indicator, and the results 
show that it can locate and quantify the damages of shear structures effectively by the 
proposed method. Due to the damage detection procedure can be implemented on each 
substructure independently, which suits for monitoring of key areas of actual engineering 
structure. On the other hand, the proposed CSDF curves of ARMAX model residual can 
clearly locate the structural damages in a visualized way with its distinguished tendencies; the 
proposed damage indicator of residual-based KLD can locate and quantify the damages in a 
data-driven way, which is suitable for local damage detection and does not rely on previous 
training data of various damage patterns. These mean that the proposed substructural damage 
detection approach is easy and efficient for local substructure damage detection of shear 
structures. In the following research, it is needed to further investigate about the identification 
of nonlinear damage in complex engineering structures with the proposed substructure 
damage identification method. 
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