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Abstract 

In order to solve the problem of large limitation of simulation results caused by load factors 

and corrosion conditions respectively in the study of corrosion failure of metallic materials, 

the idea of combining cellular automata and edge-based smoothed point interpolation method 

(ES-PIM) is adopted. The corrosion process of aluminum under environmental action was 

simulated by cellular automata method and the corrosion topography was obtained which was 

used for the establishment of calculation model. To overcome overly-stiff property existing in 

the widely used finite element method (FEM) with linear triangular elements, the edge-based 

smoothed point interpolation method (ES-PIM) is used for calculation which has been found 

both spatially and temporally stable, and works well for both static and dynamic problems. 

Keywords: Widespread corrosion damage   Cellular Automaton   Meshfree method 

1.Introduction 

As a kind of nonferrous metal structural materials, aluminum and its alloys are widely used in 

aviation, aerospace, automobile, machinery manufacturing and so on. In the process of its use, 

it will suffer different forms of damage due to the influence of the service environment, 

among which corrosion is a common form of damage. However, the failure of aluminum 

structure is not caused by the single factor of corrosion, usually accompanied by the action of 

load on it. Most scholars have simulated the corrosion behavior of aluminum based on the 

corrosion mechanism of aluminum, but have not carried out mechanical analysis on the 

corrosion defect structure generated subsequently. Therefore, it is of great significance to 

simulate the corrosion and failure behavior of aluminum and its alloys in the service 

environment. 

 

In the field of aluminum corrosion behavior simulation, Engelhardt et al.[1-3] established a 

damage function analysis model  to predict local corrosion such as pitting corrosion, crevice 

corrosion and stress corrosion. Urquidi-macdonald  et al.[4] studied the relationship between 

the crack growth rate caused by pitting corrosion and various parameters (corrosion potential, 

pH, temperature and conductivity) using artificial neural network technology (ANN).In 

Cellular Automata (CA) model, space is divided into cells with finite states. These cells 



evolve according to certain local rules. By the CA model based on the rules of local reactions 

in the system, can reflect the influence of different scales complex physical and chemical 

systems, by defining the molecular scale or the interaction of the atomic scale, within the 

scope of the macro qualitatively describe the nature of the complex system, so using the CA 

technology to rot corrosion in the process modeling more intuitive and convenient, like Wang 

Hui et al. [5-6] adopted cellular automata (CA) method to obtain the growth and evolution 

curve of corrosion pits and the change curve of geometric morphology with time. 

 

After years of development, finite element method (FEM) has become an important tool for 

modeling and simulation of solid and complex geometric structures. However, the finite 

element method has some inherent defects. For example, the finite element model is 

"overly-stiff", which affects the accuracy of strain, especially for stress results; When the 

mesh is severely deformed, the precision of the solution will be affected. 

 

During mesh generation, using triangle (for 2D) or tetrahedron (for 3D) elements, mesh 

generation becomes much easier and is usually done automatically without manual 

manipulation. But at the same time, the accuracy of finite element calculation results is often 

very poor. 

 

Professor G.R. LIU[7-9]and his team used point-based polynomial interpolation (PIM)[10] or 

radial basis interpolation(RPIM)[11] to construct the shape function, and introduced smoothed 

Galerkin weakform and generalized gradient smooth operator [12,13]. Thus, the node-based 

smoothed point interpolation method [14,15](NS-PIM) can be obtained. 

 

In practical application, this method shows that it can withstand mesh deformation better and 

still has good calculation results under triangular mesh. Moreover, this method provides the 

upper bound of energy norm. However, the stiffness matrix K obtained by this method is 

smaller than the actual stiffness matrix K, that is, the smoothed system is "overly-soft", 

resulting in a displacement larger than the actual displacement. In order to solve this problem, 

Edge-based smoothed Point Interpolation Method[16-18] (ES-PIM) is introduced. 

 

In ES-PIM, every edge-related problem domain of the background grid is smoothed. 

Compared with the node-based smooth operator, the smoothness of edge-basis strain can 

weaken the degree of softening, so that the ES-PIM model is closer to the exact stiffness and 

has a good calculation effect in both static and dynamic problems. 

 

For the above methods, professor G.R.LIU and his team established Galerkin weakened weak 

(W2) formulation constructed by generalized gradient smoothing operator. 

 

Weakened weak (W2) formulation seeks solutions in G space[19]which is a function space 

containing both continuous and discontinuous functions. G space includes all the continuous 

and discontinuous displacement cases under the framework of FEM and Meshfree. Therefore, 

in the framework of finite element and meshless method, it is suitable for both compatible and 

incompatible displacements. By using the generalized strain smoothing technique, we can 



obtain the generalized smooth Galerkin weak form for all the above methods. 

 

In this paper, the widespread corrosion behavior of aluminum is simulated by using cellular 

automata method, and a computational model is established based on the simulated corrosion 

topography. The model is analyzed by introducing edge-based smoothed point interpolation 

method and the results are obtained. The combination of the two methods provides a new way 

to analyze the mechanical properties of structures with corrosion defects. 

 

2. Establishment of widespread corrosion model 

 

2.1 Definition of cellular automata 

Cellular Automata (CA) is defined as a dynamic system that evolves in discrete time 

dimensions in accordance with certain local rules in a cellular space composed of cells with 

discrete and finite states. 

 

In the process of its evolution, each cell can change according to local rules state, namely 

based on cellular automata and its neighbor cell state with this to determine the next state of 

cellular automata, all belong to sync status updates, in accordance with local rules the entire 

cellular space show the change of state in discrete time. 

 

2.2 Boundary conditions 

When simulating a given cellular automata rule, one cannot deal with an infinite lattice. The 

system must be finite and have boundaries. Clearly, a site belonging to the lattice boundary 

does not have the same neighborhood as other internal sites. In order to define the behavior of 

these sites, a different evolution rule can be considered, which sees the appropriate 

neighborhood. This means that the information of being, or not, at a boundary is coded at the 

site and, depending on his information, a different rule is selected. 

 

Each variable of cellular automata has a finite number of states and is local in time and space. 

In order to keep each variable in the cellular space free from the influence of the external 

environment, the boundary conditions of the model are usually defined as follows: Periodic 

boundary conditions are used for the left and right boundary to keep the properties of the 

system and the element unchanged, and the theoretical infinity of cellular space is realized. 

The upper and lower boundaries adopt fixed boundary conditions to ensure the 

non-correlation of upper and lower boundary cells, as shown in Figure 1. 

 

A cellular automata rule is local, by definition. The updating of a given cell requires one to 

know only the state of the cells in its vicinity. The spatial region in which a cell needs to 

search is called the neighborhood. In principle, there is no restriction on the size of the 

neighborhood, except that it is the same for all cells. However, in practice, it is often made up 

of adjacent cells only. If the neighborhood is too large, the complexity of the rule may be 

unacceptable (complexity usually grows exponentially fast with the number of cells in the 

neighborhood). 
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Figure 1. Schematic Diagram of boundary conditions 

 

For two-dimensional cellular automata, two neighborhoods are often considered: the von 

Neumann neighborhood, which consists of a central cell (the one which is to be updated) and 

its four geographical neighbors north, west, south and east. The Moore neighborhood contains, 

in addition, second nearest neighbors northeast, northwest, southeast and southwest, that is a 

total of nine cells.[7] 

 

Figure 2. illustrates these two standard neighborhoods. 

          

(a)                                 (b) 

Figure 2. (a) Von Neumann and (b) Moore neighborhoods. The shaded region 

indicates the central cell which is updated according to the state of the cells located 

within the domain marked with the bold line. 

 

2.3 transformation rule 

In the study on the formation process of metal corrosion products, the cellular transformation 

process is realized, which is expressed by the following conversion equation: 

                                   M C P+ →                                   (1) 

In the top formula, M is the metal cell; C is corrosive cell; P is the cell of corrosion product. 

In particular, the concentration of oxygen in the atmosphere changes very little, and the key 

factor affecting the corrosion rate of metal oxygen absorption is the relative humidity of water 

molecules. Therefore, in order to simplify the CA model, only water molecules involved in 

the reaction are represented by C in the equation, and the effect of oxygen on corrosion is no 



longer considered. 

 

Cellular conversion rules: only corrosion cell C in cellular space has random mobility (top, 

bottom, left, right). If C moves in the direction of neighbor metal cell M, both M and C are 

converted to P. Conversely, if the neighbor is C, all cells remain unchanged. If the neighbor in 

the direction of C is a space bit, then C will jump to the space bit, and the original position 

will randomly become a space bit; If all neighbors of M are C, all cells remain unchanged. If 

at least one neighbor of M is C, and C does not move toward M, M also remains unchanged. 

 

3. Numerical model 

3.1 Brief on Basic Equations 

The stress-strain problem of corrosion-damaged structure belongs to the linear elastic problem 

of solid mechanics, so we first brief the basic equations for solid mechanics problem of linear 

elasticity. 

 

Consider a two-dimensional solid mechanics problem with a physical domain of 2R         

bounded by  .The static equilibrium equation for 2D solids in the domain 2R  can be 

written as: 
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where   are given external body force and    is the stress tensor which relates to the strains 

tensor   via the constitutive equation or the Generalized Hook’s law: 

                                     ij ijkl klC =                                    (3) 

where     is elasticity tensor of material property constants. 

 

The strains tensor   relates to the displacement by the following compatibility equation. 
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where   ,       is the displacement components in the xi-directions at a point in   . 

 

In matrix form, the equilibrium Eq.(2) becomes: 
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where    is a matrix of the differential operator defined as: 
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The constitutive equation becomes: 

                                       =σ Cε                                     (7) 

Where C  is matrix of material properties which entries of     ,                and 

              .     

 

The compatibility equation (4) can also be written in the matrix form of : 

                                      
d=ε L u                                      (8) 

where           is the displacement vector. Substituting Eq.(8) into (7) and then into (5): 

                                   
T

d d + =L CL u b 0                                  (9) 

There are two types of boundary conditions: Dirichlet (or essential / displacement ) boundary 

conditions and Neumann (or natural / stress) boundary conditions. Let    denote a part 

of   , on which homogenous Dirichlet boundary condition is specified, then we can obtain: 

                                 
D   on 0,iu =                                  (10) 

Let    denotes a part of   , on which Neumann boundary condition is satisfied, 

                                 ,ij j in t =   on 
N                                (11) 

where   is unit outward normal vector, and   is the specified boundary stress on   , 

respectively. The matrix form of Eq.(11) is as follows: 
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3.2 Displacement field approximation using the PIM 

The point interpolation method (PIM) obtains the approximation by letting the interpolation 

function pass through the function values at each scattered node within the local supporting 

domain. 

 

Different types of point interpolation can be constructed by using different types of base 

functions. There are two common types: Polynomial point interpolation method (PIM) based 

on polynomial basis function and radial point interpolation method (RPIM) based on radial 

basis function. 

 

For the polynomial PIM, the formulations start with the following assumption: 
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Where     is a field variable function defined in the Cartesian coordinate 

space           ,     is the basis function of monomials which is usually built utilizing 

Pascal’s triangles,   is the corresponding coefficient, and   is the number of nodes in the 

local support domain. The complete polynomial basis of orders 1 and p can be written as: 

                           ( )2( ) 1 , 1T px x x D=P x                           (15) 

                      ( )2( ) 1 ,T p px y x xy x y pD=P x                      (16) 

For the radial PIM, using radial basis functions augmented with polynomials, the field 

function can be approximated as follows: 
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Where     and     are radial basis functions and polynomial basis functions respectively, 

and  are corresponding coefficients,   is the number of nodes in the local support domain 

and   is the number of polynomial terms. 

 

The coefficients in Eqs.(14) and (17) can be determined by enforcing the field function to be 

satisfied at the   nodes within the local support domain. Finally, the PIM shape functions can 

be obtained and the field function can be expressed as: 
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where   is a nodal function value and     is the PIM shape function which possesses the  

Kronecker delta function property. In the above formulation, it is noticed that we need to 

properly select   nodes for interpolation ensuring a nonsingular moment matrix. 

 

3.3  T schemes for node selection 

In this paper, three-point triangular background element is adopted to discretize the problem 

domain. The element can be generated automatically without manual operation, and the mesh 

density of triangular background element can be adjusted according to the need of 

computational accuracy. 

 

The T scheme used in ES-PIM method mainly includes T3 scheme, T6/T3 scheme and T6 

scheme. The following mainly introduce the T3 and T3/T6 scheme which used for 

programming. 

 

The T3 scheme mainly uses the three vertices of the triangular mesh where the calculation 

point is located to represent the displacement function of the calculation point, and its 

displacement field is a linear displacement field. This method has many similarities with the 

first-order finite element interpolation method. The T3 scheme is used only for creating linear 

PIM shape functions by using polynomial basis functions. As illustrated in Figure 3. 
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Figure 3. Illustration of the T3 scheme       Figure 4. Illustration of the T6/T3 scheme 

of node selection                           of node selection 

 

Whether the point of interest    is located in an interior cell (element  ) or a boundary cell 

(element  ), only the three nodes of the home cell (     or     ) are selected. 

 

In the T6/T3 scheme, the point of interest located in the boundary cell only needs three nodes 

to interpolate and the linear displacement approximation function also constructed by these 

three nodes. For the point of interest located in an interior cell needs six nodes to interpolate 

and been used for construct a quadratic displacement approximation function. As illustrated in 

Figure 4. 

 

It not only successfully overcomes the singular problem which exists in the process of PIM 

approximation by using the polynomial basis but also improves the efficiency of the method. 

 

3.4 Edge-based smoothed strains 

In consideration of the displacement field is not continuous, the generalized smoothed 

Galerkin weak form or the weakened weak form which has exactly the same form as the 

standard Galerkin weak form need to be used. 

                 ( )( ) ( )( ) 0
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Thus, the formulation procedure is exactly the same as that in the standard FEM and all we 

need to do is to use the edge-based smoothed strain   in place of the compatible strain 

fields  . 

 

In the framework of W2 formulation, the gradient of the field function (strains) will be 

obtained using the following generalized smoothing operation which considers both 

continuous and discontinuous displacement functions.[20] 
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where   is the compatible strain,   is the smoothed strain over the smoothing domain(  ),   

( )x i

j
1 3i i− 1 3j j−





 k k



is the area and   is the boundary of the smoothing domain   . 

 

To perform the generalized strain smoothing, the problem domain is first discretized using 

three-node triangular background cells, and then the stationary and nonoverlapping smoothing 

domains are constructed based on these triangles such that           and             in 

which   is the number of smoothing domains. 

 

Under the framework of ES-PIM theory the, smoothing domains are constructed for the edges 

of triangular cells by connecting two ends of the edge to the centroids of two adjacent cells. 

As illustrated in Figure 5. Thus, the number of smoothing domains (   ) equals the number of 

edges of triangles (     ). 

 

 

Figure 5. Construction of edge-based strain smoothing domains, which are stationary, 

nonoverlapping and constructed based on the three-node triangular cells. 

 

Substituting Eq. (8) into Eq. (20), the edge-based smoothed strain   can be written in the 

following matrix form of nodal displacements: 
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where    is the matrix of PIM shape functions and    is the number of field nodes involved 

in constructing the smoothed strain fields within   .      is termed the smoothed strain 

matrix, which can be expressed as: 
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In the above equation, elements of the smoothed strain matrix are obtained as: 

                          ( )
1

( ) ( ) ( ) ,
k

il k i k l k

k

n d l x y
A




=  =b x x x                    (23) 

Using the Gauss integration scheme, the above integration can be further expressed as 

follows: 
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where    is the number of segments of the boundary   ,     is the number of Gauss points 

which located in each segment on   , and    is the corresponding weight number of the 

Gauss integration scheme.  

 

By using the PIM with different T schemes we can construct the displacement field. Then, 

substituting the assumed displacements and the smoothed strains which given by Eq.(20) into 

Eq.(19), a set of discretized algebraic system equations can be obtained in the matrix form: 

                                       =Kd f                                     (25) 

   is the force vector, which can be obtain as: 
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and the stiffness matrix   is assembled from the substiffness matrix for all the integration 

cells which are exactly the edge-based smoothing domains for the present method: 
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where   is the substiffness matrix associated with the integration cell   (i.e. smoothing 

domain   ), which is computed using the smoothed strain matrix, as follows: 
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4. The Solution of widespread corrosion-damaged structure 

In the service environment, corrosion damage of engineering structures are usually not just 

single point  corrosion damage, instead, widespread corrosion is the main form of structural 

corrosion. The occurrence of widespread corrosion is often random, which makes the cellular 

automata method more suitable for simulation 

 

4.1 Establishment of widespread corrosion-damaged structure model 

In order to simulate the formation process of widespread corrosion, we use cellular automata 

method combined with MATLAB software for programming. The morphological model of 

widespread corrosion-damaged structure of aluminum can be obtained by simulation program. 

As illustrated in Figure 6. 

 
Figure 6. Topography of widespread corrosion damage structures 
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Where the black part in Fig.6 is the appearance of the corroded aluminum metal, with  

Young’s modulus            and Poisson’s ratio      , the white part is the liquid with a 

certain concentration of corrosion and causes widespread corrosion defects on the surface of 

aluminum. There are two main factors influencing corrosion morphology, one is relative 

humidity, the other is ambient temperature.Figure.6 shows the widespread corrosion-damaged 

structure morphology which forms in relative humidity 70% and the temperature of 50℃. 

 

The solution domain was determined based on the simulated widespread corrosion 

morphology, and the computational model was established by combining Fortran 

programming, as illustrated in Figure 7. 

 

Figure 7. Calculation model of widespread corrosion morphology 

 

Hinge constraints are applied to the left edge of the member containing widespread 

corrosion-damaged, and 15kN distributed load is applied to the right edge for stretching.  

 

The problem domain and its boundary are modelled and represented by using 35920 nodes 

scattered in the problem domain and on its boundary. The density of the nodes depends on the 

accuracy required and resources available. 

 

Near the upper edge of the corrosion morphological structure model, we use adaptive 

algorithms to improve the computational accuracy. As illustrated in Figure 8. 

 

Figure 8. Domain discretization of the widespread corrosion-damaged structure by 

using 35920 nodes and 70065 triangular meshes. 
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4.2 The solution of the widespread corrosion structure 

The results of stresses obtained using ES-PIM are listed in Tables 1. 

 

Table 1. The output sample for stress obtained 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The distribution of stresses in the domain obtained by ES-PIM are drawn by Tecplot shown in 

Figure 9. respectively. 

 

 

 

              

(a)                                    (b) 

No. of 

field 

nodes 

𝝈𝒙𝒙 𝝈𝒚𝒚 𝝉𝒙𝒚 

1 4.78E+03 1.90E+02 -3.75E+02 

2 4.80E+03 -1.12E+03 2.02E+03 

3 8.34E+03 1.15E+03 -2.40E+03 

4 

5 

5.24E+03 

4.55E+03 

-1.56E+02 

-1.13E+03 

-2.18E+03 

-2.73E+03 

6 4.37E+03 -1.62E+03 -2.90E+03 

7 4.85E+03 -1.54E+03 -3.13E+03 

8 5.93E+03 -1.70E+03 -3.72E+03 

9 6.57E+03 -1.87E+03 -4.03E+03 

10 7.78E+03 -1.56E+03 -4.45E+03 

︙    

35918 1.08E+04 -1.20E+03 3.15E+03 

35919 2.81E+04 4.76E+03 -2.05E+03 

35920 9.42E+03 -7.85E+02 1.29E+03 



 

                                     (c) 

Figure 9. (a), (b), (c) are stress nephogram of   ,   and   respectively. 

 

The results of displacements obtained using ES-PIM are listed in Tables 2. 

 

Table 2. The output sample for strain obtained 

No. of field 

nodes 
u  v  

1 4.75E+03 2.21E+02 

2 4.00E+03 -3.21E+02 

3 7.42E+03 2.07E+03 

4 4.13E+03 9.55E+02 

5 2.51E+03 9.14E+02 

6 2.11E+03 6.34E+02 

7 2.29E+03 1.02E+03 

8 2.94E+03 1.28E+03 

9 3.61E+03 1.08E+03 

10 4.53E+03 1.69E+03 

︙   

35919 2.79E+04 4.94E+03 

35920 9.25E+03 -6.19E+02 

 

The distribution of stresses in the domain obtained by ES-PIM are drawn by Tecplot shown in 

Figure 10. respectively. 

               

                    (a)                               (b) 

Figure 10. (a), (b) are strain n ephogram of  and  respectively. 

xx yy
xy

u v



5. Conclusions and discussions 

In this work, an edge-based point interpolation method for widespread corrosion-damaged 

structure problems is formulated. And it provides a new way to solve the problem of 

widespread corrosion-damaged structure and lays a foundation for the research of integrated 

disruption of corrosion structure. The following conclusions can be drawn from the analysis: 

 

The PIM shape functions used in the ES-PIM have the Kronecker delta function 

property. Thus, we can perform the straightforward imposition of point essential boundary 

conditions and no additional treatments are needed to apply continuity conditions along the 

interface to meet the interface condition. For the present ES-PIM models, the requirement for 

the nodes distribution and mesh generation along the interface is exactly the same as that for 

the FEM. 

 

The influence range of stress concentration of corrosion pits with relatively close distance is 

wider than that of a single corrosion pit, therefore, the widespread corrosion damage structure 

is more likely to generate cracks in the stress concentration area and eventually lead to the 

failure of the structure. 
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