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Abstract 

GPU parallel computing was applied to a trajectory prediction of an aircraft. An aerobatic 

maneuver was simulated by a coupled method of 6-DOF motion and MCD method. Because 

the simulation contained a complex interaction of grid movement and flow dynamics and thus 

it was quite expensive, the acceleration by GPU was attempted to demonstrate its ability 

compared to CPU parallelization. The GPGPU code was constructed by OpenACC because of 

the directive-based programming. The GPU computing accomplished a remarkable speedup, 

which confirmed that GPGPU is useful for the acceleration of this system. 
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Introduction 

The numerical flight simulation of an aircraft is an important problem in Computational Fluid 

Dynamics (CFD) for aerospace. With this system called the Digital Flight [1], aerodynamic 

coefficient of an airplane can be safely calculated even in a risky flight without real aircrafts. 

Moreover, a risk of stall can be predicted when the flight is simulated within a real time. 

To achieve the flight simulation based on physics, the authors have proposed the Moving 

Computational Domain (MCD) method [2], which is one of the moving grid methods based on 

the Moving-grid Finite-Volume method [3]-[5]. In this method, the computational domain itself 

with an aircraft inside moves by following a movement of the airplane, therefore any 

restrictions of the computational domain for three-dimensional space can be removed [6][7]. 

Recently, we have integrated the six-degrees-of-freedom (6-DOF) motion to this CFD method 

[8][9], and simulated unconstrained motions of objects influenced by fluid and the motion. As 

applications of this coupled method to a flight simulation, various aerobatics of an airplane 

were computed. The rotation of the propeller and the moving control surface were installed in 

this system as well to simulate flight as if pilot operated the aircraft. 

In this paper, parallel computing on graphics processing unit (GPU) is introduced towards the 

calculation within an actual time. Although OpenMP or MPI is generally adopted to shorten the 

calculation time [10], general-purpose computing on GPU (GPGPU) has been recently in the 

spotlight. GPU has a number of cores, thus GPUs could calculate much faster than CPU. 

Although major examples for GPGPU are NVIDIA’s CUDA or OpenCL, much time and labor 

is required for code rewriting. Therefore, we employed OpenACC which can accelerate using 

compiler directives for our first coding on GPU to see whether GPGPU can help for faster 

computing compared to OpenMP. 



Numerical Scheme 

Flow Solver 

The governing equations are the three-dimensional Euler equations for compressible flow 

written in the conservation form (1),(2) as follows: 
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The equations are discretized by the Moving-grid Finite-Volume method with four-dimensional 

control volume combined with time and space. The inviscid flux vectors are estimated by Roe’s 

flux difference splitting [11] at the interfaces. MUSCL approach and Venkatakrishnan limiter 

[12] are employed to provide second order accuracy in space. The 2-stage rational Runge-Kutta 

method is applied as a time stepping scheme. 

 

6-DOF Motion 

Because the aircraft is treated as a rigid body in this paper, 6-DOF equations of motion govern 

the flight of the aircraft. The Newton’s equation of motion (3) is applied to the translation of 

the mass center, and the Euler’s rotation equation (4) is applied to the rotation in body axes. 

The rotational motion is calculated in the body-fixed axis subscripted with B. Here quaternion 

[13] is used to avoid gimbal-lock. 6-DOF equations are integrated into the inner iteration of 

flow solver as a strong coupling method [14]. 
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Grid Movement and Deformation 

MCD Method 

When it comes to the movement of the whole grid in a large area, Moving Computational 

Domain (MCD) method is applied. The computational domain itself with an object inside 

moves by following the moving aircraft. 



Grid Deformation 

The rotation of the propeller and the motion of the control surface are installed by sliding-mesh 

approach and tension-torsion spring analogy [15] (Fig. 1(a)). To apply the sliding mesh 

technique, computational domain is divided into two domains, one is the fuselage domain and 

the other is the propeller domain. The conservative quantities are interpolated at the interface 

where tetrahedral grids overlap each other. When the control surface is moved, grids are 

deformed by tension-torsion spring analogy (Fig. 1(b)). 

   
 

(a) Sliding-mesh method   (b) Tension-torsion spring analogy 

Figure 1. Grid movement and deformation 

Application 

Calculating Condition 

P-51 propeller aircraft model with 1,612,350 unstructured grid points are generated by 

MEGG3D [16][17] are shown in Fig. 2. The center of gravity is assumed to be located in 

25%MAC (Mean Aerodynamic Chord), and the moment of inertia is generated by the engine, 

the fuel tank and the skin of the airplane. 

   

Figure 2. Computational grid 

The straight flight, two clockwise and two counterclockwise aileron roll are simulated with this 

system. At first, the aircraft performs straight flight to avoid the initial turbulence at V = 0.45, 

where the speed of sound is 1.0. After that, to complete the clockwise rolling, the right aileron 

is manipulated up to 10 degrees, and left aileron is manipulated down to 10 degrees. The rudder 

is also controlled to avoid adverse yaw. In counter-clockwise rolling, the ailerons and rudder 

are operated oppositely. 
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Results 

The surface pressure distributions at the forward straight flight, clockwise rolling and counter-

clockwise rolling are shown in Fig. 3. It can be seen in Fig. 3(a) that the rotating propeller 

generated the vortex and pressure distribution on main wing became asymmetry. After ailerons 

are operated, the pressure distribution at the main wing changed significantly, as seen in Fig. 

3(b) and (c). The pressure at the bottom side of the main wing is lower than the upper side, 

which yields the rolling moment to complete the aileron roll. 

 

(a) Forward flight 

 

(b) Clockwise flight 

 

(c) Counterclockwise flight 

 

Figure 3. Pressure contours in the aileron roll 



GPU Parallel Computation 

For high-speed calculations, we constructed the GPU calculation code of this system by 

OpenACC. The computer for GPU computing (PC1) has CPU of Intel® Core™ i7-3930K 

Processor and GPU of GIGABYTE6.0 V-NTITANBLKGHZ-6GD-B GEFORCE GTX TITAN 

BLACK. The operating system is Windows7 64bit and the compiler is PGI Accelerator Fortran 

Workstation. For comparison of the calculating speed, this system is calculated only with CPU 

(PC2). The computer, which has the highest performance for CPU we could use, has Intel® 

Core™ i7-3930K Processor. The operating system is Cent OS 6.3, and the compiler is Intel 

Composer XE 2013. 

We constructed the FORTRAN code accelerated by OpenACC and measured the calculating 

speed of this system on 100 steps 10 times with PC1 and PC2. The speedup is defined as follows: 

 

Speedup =
TPC1

TPC2
 (6) 

 

where T represents the calculation process time. With the GPU parallelization, we achieved 

13.6x speedup over the serial CPU solver. In contrast to the fact that approximately 2x speedup 

can be achieved with OpenMP, GPU computing accomplished the significant speedup. The 

flight simulation so far was carried out for some maneuvers only because of its long calculation 

time. However, with GPU computing, it is expected that flight simulation from take-off to 

landing can be calculated in future. 

Conclusions 

In this study, the coupled computational method of the unstructured MCD method and six-

degrees-of-freedom flight dynamics was constructed, and GPU parallelization accelerated this 

system. In the simulation of aerobatic maneuver, the ailerons and rudder are operated, and then 

pressure distribution at main wing changed, which completes the aileron roll. Then, GPGPU 

by OpenACC was carried out to achieve the high-speed computation. GPU acceleration 

attained 13.6x speedup over the serial CPU computing. It is confirmed that GPU computing is 

effective for the acceleration of this system. 
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