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Abstract 

In practical engineering applications, random variables may follow multimodal distributions 

with multiple modes in the probability density functions, such as the structural fatigue stress 

of a steel bridge carrying both highway and railway traffic and the vibratory load of a blade 

subject to stochastic dynamic excitations, etc. Traditional probabilistic uncertainty 

propagation methods are mainly used to treat random variables with only unimodal 

distributions, which, therefore, tend to result in large computational errors when multimodal 

distributions are involved. In this paper, a high-precision probabilistic uncertainty propagation 

method is proposed for problems involving multimodal distributions. Firstly, the multimodal 

probability density functions of input random variables are constructed based on the Gaussian 

mixture model. Secondly, the high-order moments of the response function are calculated 

using the univariate dimension reduction method, based on which the input uncertainty is 

effectively propagated. Thirdly, the probability density function of the response is estimated 

using the maximum entropy method. Finally, a convergence mechanism is formulated to help 

ensure the uncertainty propagation accuracy. Two mathematical problems and two truss 

structures are investigated to demonstrate the effectiveness of the proposed method. 
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Example: A 52-bar space truss 
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(a) Top view                                   (b) Side view
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(c) FEM model 

Fig. 1. The 52-bar space truss and its FEM model 

As shown in Fig. 1, a hemispherical space truss (like a dome) is considered, which contains 

52 bars. The cross-sectional areas of bars 1-8 and 29-36 are 2
1 2inA = . The cross-sectional 

areas of bars 9-16 are 2
2 1.2inA =  and that of the other bars are 2

3 0.6inA = . The radius of 

the hemispherical space truss is 240inR = . Six external loads are applied on the space truss, 

which are 1p  in the inner normal direction of point 1, 2p  in the inner normal direction of 

points 2 and 4, 3p  in the inner normal direction of points 3 and 5, 4p  in the inner normal 



direction of points 6 and 10, 5p  in the inner normal direction of points 8 and 12, 6p  in the 

inner normal direction of points 7, 9, 11,13. The response function is defined as follows: 

 1 1 2 3 4 5 6( , , , , , , )g E P P P P P Pδ =        (1) 

The detailed information of the random variables 1 2 3 4 5 6, , , , ,P P P P P P  and E are presented in 

Table 1. 

Table 1 The distribution parameters of random variables 1 2 3 4 5 6, , , , ,P P P P P P  and E 

Random 
variables 

Distribution 
types 

Distribution parameters 

Coefficients Mean values Standard deviations 

1(kip)P  Multimodal α =(0.2,0.2,0.3,0.3) μ =(45,55,75,85) σ =(4,4.5,4,4.5) 

2 (kip)P  Multimodal α = (0.2,0.2,0.3,0.3) μ = (40,50,70,80) σ =(4,4.5,4,4.5) 

3 (kip)P  Multimodal α = (0.2,0.2,0.3,0.3) μ = (35,45,65,75) σ =(4,4.5,4,4.5) 

4 (kip)P  Multimodal 
α = 

(0.18,0.18,0.32,0.32) 
μ =(30,35,55,60) σ =(3,6,3,6) 

5 (kip)P  Multimodal 
α = 

(0.18,0.18,0.32,0.32) 
μ = (25,30,50,55) σ =(3,6,3,6) 

6 (kip)P  Multimodal 
α = 

(0.25,0.25,0.25,0.25) 
μ = (20,25,45,50) σ =(3,6,3,6) 

E(ksi) Normal -- µ =2.5e+04 σ =1.0e+03 

The PDF results of 1δ  obtained by the proposed method and MCS method are plotted in Fig. 

2. It can be observed that the PDF results obtained by the proposed method coincides well 

with that obtained by MCS, which indicates the high uncertainty propagation accuracy of the 

proposed method. Especially, the bimodal characteristic of the PDF obtained by MCS is well 

captured by that obtained by the proposed method. Besides, the CDF results for a series of 

response functions 10 1 2 3 4 10= ( , , , )g P P P Pδ δ−  and their relative errors are presented in Table 2. 

It can be observed that small relative errors are achieved by the proposed method at all cases. 

For example, the largest relative error of the proposed method is only 3.5088 percents when 

10 1.5δ = − in. 
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Fig. 2. Comparison of the PDF results between the proposed method and MCS method 

Table 2 Comparison of the CDF results between the proposed method and MCS method  

1  (in)δ  
MCS The proposed method 

CDF 0 (%)ε  CDF 1(%)ε  

-1.5 1.7100e-03 -- 1.6500e-03 3.5088 
-1 0.1714 -- 0.1694 1.1350 

-0.5 0.5947 -- 0.5933 0.2337 
0 0.8857 -- 0.8856 2.9700e-03 

0.5 0.9997 -- 0.9998 3.5500e-03 

The order of moments that are required for uncertainty propagation is determined as l=12 by 

the convergence mechanism. The evolution process of the estimated PDF and its Shannon 

entropy under different order of moments are shown in Fig. 3. It can be found that when l 

increases from 2 to 12, the response PDF calculated using the proposed method gradually 

approaches to the reference PDF obtained by MCS. When l=12, the estimated response PDF 

is of the highest precision. Furthermore, the Shannon entropy of the response PDF gradually 

converges to a steady value when l increases from 2 to 12. Table 3 presents the first 12 raw 

moments of the response function calculated by UDRM and their relative errors compared 

with the results of MCS. It can be observed that the raw moments of the response function are 

calculated with satisfied accuracy using the UDRM. The largest relative error of the raw 

moments is just 9.2600 percents, which occurs at the calculation of 12m . 

Table 4 presents the number of function evaluations of the proposed method and MCS method. 



The MCS method is conducted with 1×106 function evaluations, while the proposed method 

operates with only 12×7+1=85 function evaluations. Therefore, the proposed method is of 

satisfied computational efficiency. 
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Fig. 3. Evolution of the estimated PDF and its Shannon entropy with the variation of l  

 

 

 

 

 



 

Table 3 The calculated raw moments of the response function 

Raw moments The proposed method MCS Relative error（%） 

1m  
-0.5758 -0.5764 9.7620e-02 

2m  
0.5120 0.5133 0.2672 

3m  
0.4327 0.4327 0.5930 

4m  
0.4930 0.4981 1.0214 

5m  
-0.5243 -0.5327 1.5811 

6m  
0.5800 0.5934 2.2272 

7m  
-0.6631 -0.6842 3.0931 

8m  
0.7807 0.8138 4.0523 

9m  
-0.943 -0.9952 5.1494 

10m  
1.1687 1.2484 6.3843 

11m  
-1.4789 -1.6033 7.7761 

12m  
1.9094 2.1043 9.2600 

Table 4 Comparison of computational efficiency between different methods 

 MCS The proposed method 
Number of function 

evaluations 
1×106 85 
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