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Abstract 

Stress/displacement field analyzing of mechanical assembly is the basis of predicting the me-

chanical property of the assembly and optimizing the structure and the assembly process. How-

ever, the discontinuity structures in the mechanical make it difficult to calculate. In this paper, 

a new kind of stress/displacement layered mapping and calculation method based on layered 

elastic theory is proposed. With considering the mechanical continuous/discontinuous charac-

teristics, a layered model of assembly structure is established and the layered constraint condi-

tions is determined by its position in assembly. Stress/displacement field could be obtained by 

using traditional solution of layered elastic system which is modified to adjust to the model of 

mechanical assembly. Finally, a discontinuous mechanical structure is solved by using the lay-

ered model and the comparison between the analytically calculation, FEA and experiment data 

proves the effectiveness of the model. 

Keywords: Stress/displacement field; Layered elastic theory; Structural discontinuity; Elastic 

mechanics 

 

1 Introduction 

In general, machines like lathe are not a continuous whole. They’re assembly by various parts 

according to requirements. The parts that are connected to each other are called mechanical 

joints, such as bolted joint, sliding guide joint, et al. The contact region between different parts 

of the ministry is often referred to as a joint interface. 

According to the research, the characteristics of mechanical joint interface have an important 

influence on the performance of mechanical parts, such as contact fatigue strength, friction 

power consumption, wear life [1,2,3]. In addition, the dynamic performance, vibration and 

noise of mechanical equipment depend on interface’s stiffness and the damping. Burdekin et al 

[4] pointed out that the deformation of machine tool’s joints accounted for most of the total 

deformation and the contact stiffness of joints was about 60%~80% of the total rigidity of the 

machine tool. The research of Yagi[5] found that the mechanical joint is important to the dy-

namic stiffness of reconfigurable machine tool. There is a view [6] joint’s damping is larger 

than the damping of the structure itself and Beards [7,8,9] studied structure damping with the 

interface’s sliding. He puts the integration that 90% of the total damping is coming from joint. 

Now that the joint is significant on the static and dynamic performance of mechanical system, 

a lot of researches have been carried out. For instance, Zhang and Mr. Huang [10, 11] had 

studied joint’s normal and tangential stiffness, damping through a lot of experiments and sum-

marized the influence of normal stress, the media, materials, processing methods and rough-

ness. Mi [12] studied the influence of the pretension on the dynamic stiffness of the machine 
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tool. In addition, a lot of achievements have been made in the identification of the parameters 

and the mechanics modeling of the joint [1,13-15]. 

In fact, joint’s behavior is important for mechanical design/operation/maintenance of mechan-

ical equipment. People has accumulated experiences to analyze it in long-term engineering 

practice. With the development of science and technology, the joint interface’s characticts of 

mechanical equipment will become an important part of scientific and technical. 

Joint is a space with a certain thickness. In order to understand joint comprehensively and ac-

curately, it is necessary to figure out how the load transforming in joint interface. Traditional 

mechanical analysis methods, either material mechanics or elastic mechanics, are based on the 

theory of continuum mechanics and the assumption that the object is composed of a continuous 

medium filled in the space [16]. The joint in mechanical equipment destroys the continuity of 

the whole machine structure, so that the continuum mechanics is not completely suitable for the 

analysis of the assembly mechanical. Moreover, the discontinuity of the structure makes the 

transfer of load between the components more complex, including non-linearity, which making 

it difficult to analyze the stress/displacement field in machine. 

Layered elastic theory (LET) is the theoretical foundation in pavement design and calculation. 

LET belong to the elasticity. It developed on the basis of elastic semi-space theory. In 1885, 

Bossiness proposed a theoretical solution to the stress/displacement of elastic semi-space under 

vertical concentrated force. In 1943 and 1945, the Burmister used the Love functions to obtain 

the theoretical solution of the stress/displacement of the double-layer and multi-layer elastic 

system under the symmetrical vertical load [17-19]. In 1951, Sneddon firstly introduced the 

Hankel integral transforms into axisymmetric problems [20]. Since then, the LET has been de-

veloped rapidly and extended to non-axisymmetric and multi-layer elastic systems [21-24]. 

With the improvement of computer and computing method, the system of layered elastic me-

chanics is applied to the engineering. There are lots of algorithms for computing, such as 

BISAR, JULEA, DIPLOMAT, Kenlayer, LEAF, et al [24]. At present, the layered elastic sys-

tem mechanics and its algorithm have been widely used in the engineering practice of multi-

level road and multi-layer foundation all over the world. 

LET is widespread in road construction, but it is seldom used in mechanical. The theory com-

prehensively considers both overall stress transfer and the discontinuous effect of interface to 

analyze the stress/ displacement field, which provides the possibility for the analysis of me-

chanical characteristics of discontinuous mechanical structures. 

Therefore, this paper introduces a new method which is based on layered elastic mechanics to 

analysis stress/ displacement field in discontinuous mechanics. An example of double-layer 

discontinuous mechanical under vertical load is given and in order to verify the effectiveness, 

we also have experimental and finite element analysis. Comparing the results of three methods, 

the new method is effective in structural discontinuity. 

2 The Basic Concept of Layered Elastic Theory 

The LET is the theoretical basis of multi-layer pavement and foundation design. The pavement 

system is layered structure on the soil foundation and composed of different materials. In gen-

eral, the external load on the road surfaces is vertical or horizontal. LET assumes object as an 

elastic system, including a series of elastic layers and a semi-infinite layer. It is used to analyze 

stress and displacement of the elastic system when load is acting on the surface of pavement. 

LET is based on the following assumptions: 



 

 

• Each layer is ideal linear elasticity, completely uniform, continuous, and isotropic. 

• Initial stress is 0 and body forces are ignored in system without external load. 

• Strains and displacement are assumed to be small. 

• Stress, deformation and displacement vanish in infinity point. 

Fig. 1 shows a n-layer elastic system. We denote the number of layers as n. 
iE 、

i 、
ih  are 

Young's modulus, Poisson's ratio and thickness of layers respectively. Each layer is infinite 

along radial direction r . Except the nth-layer is a semi-infinite space (
nh =  ), the other layers’ 

thickness is limited. The cylindrical coordinate system is established in Fig. 1 and there is only 

vertical load acting on the surface. 
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Fig. 1. A n-layer elastic system       Fig. 2. axisymmetric problem. 

There are two main methods based on LET to obtain stress/displacement filed in layered elastic 

system[23]. The traditional method gives the relation between mechanical component and cor-

relation function firstly. Then the undetermined function is obtained through the Hankel trans-

formation. For example, Burmister presents a unique stress function, which solves the stress 

and displacement of the two-layer and three-layer elastic system under the axisymmetric verti-

cal load[17]-[19]. Maina and Matsui used the Michell equation and Boussinesq equation to 

calculate the elastic response of the elastic layered structure under horizontal and vertical 

loads[22]. It should be pointed out the method is simple and practical, but we must know the 

relation of displacement/stress component and the displacement/stress function. It is suitable 

for simple problems such as spatial axisymmetric. 

The other method[23] calculates basic equation with the Laplace and Hankel integral transfor-

mation to obtain stress/displacement field. Although it does not need to obtain the relation be-

tween the displacement/stress component and the displacement/stress function, the process of 

solution is quite complicated. 

The first method (displacement method) is used to solve spatial axisymmetric problem in the 

next. It is typical method to establish mechanical model in layered elastic system. 

The whole solution begins with acquiring stress/displacement’s general result in axisymmetric 

spatial. In cylindrical coordinates system, assuming Love displacement function ( , )r z  and ac-

cording to Lame equation of elasticity, the relation between displacement components and dis-

placement function is expressed as follows: 
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The stress component is shown by the displacement function 
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Where 2 denote the Laplace operator and is given by 
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In fact, the Love displacement function should satisfy the following re-harmonic equation 

 4 0 =  (4) 

Using the Hankel integral transformation on both ends of the re-harmonic Eq. (3) it can be 

shown that 
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Where ( , )z  is the zero-order Hankel integral transformation function 
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Eq. (4) is the ordinary differential equation, and the expression of its solution is 

 ( , ) ( ) ( )z zz C A z e D B z e 

     −= + + +  (7) 

The solution of displacement function ( , )r z is obtained by the means of Hankel inverse trans-

form 
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Where is integral variable and A 、 B 、C 、 D are integral constant associated with  . 

Assuming 3A A= ， 2B B= , 3C C= , 2D D= and substituting Eq. (6) into Eq. (1) and (2), 

component of stress and displacement are obtained 
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Where  
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Where 
0J ,

1J are order 0 and order 1 of the first kind Bessel functions; denoting   as integral 

constant. A 、 B 、C 、 D  are integral constants associated with   and solved through defi-

nite condition of question. 

If the load is axisymmetric, the mechanical problem in the layered elastic system also belongs 

to spatial axisymmetric problems. Since Eq. (9) is a general solution of stress/displacement in 

spatial axisymmetric problems, the stress displacement at any point in the layered elastic system 

can be solved. The stress and displacement expressions in Eq. (9) contain four integral constants 

A、 B 、C 、 D . As long as the integral constant is determined, the stress/displacement of the 

entire layered elastic system can be obtained. Because the boundary conditions of each layer 

are different, the integral constants in the stress/displacement expression of each layer are also 

different. In this paper, the subscript i is used to number the layers. In a N-layer elastic system, 

there are 4N unknown integral constants, 
iA ，

iB ，
iC ，

iD ( )1,2, ,i N= . 

It is known when the surface of layers contacts or bond, the normal stress (displacement) on 

both sides of interface is continuous and the tangential stress (displacement) may have some 

correlation. Furthermore, it is easy to obtain the stress boundary conditions in the surface of the 

layered elastic system. By using these stress conditions of surface, bonding conditions between 

layers and other definite conditions, equation set can be established to solve integral constants. 

The above is a common method for solving layered elastic mechanics system. 

3 Calculation of Discontinuous Mechanical Structure. 

3.1 Model Assumption 

Different from roadbed structure, the structure of mechanical equipment is more complicated 

in general. It is necessary to ignore some unimportant factors and simplify the practical prob-

lems. In this paper, the discontinuous mechanical structure with vertical load is simplified as 

the following model, a double-layer elastic system. The system bases on the assumption of 

LET. 



 

 

In Fig. 3, we denote the thickness of layer 1 as h  and the layer 2 is a semi-infinite substrate. 

iE 、
i  are layers’ Young's modulus and Poisson's ratio respectively. The uniform load ( )q r is 

distributed vertically on a circular area (radius  ) on the 1st layer’s surface. Because the distri-

bution of load is axisymmetric, the stress, strain and displacement components are also axis-

symmetry. Stress and displacement of any point in the system could be solved through the tra-

ditional method, Love displacement function method. The stress of the axisymmetric problem 

is shown in. 
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Fig. 3. A double-layer elastic system 

3.2 Boundary Conditions and Governing Equations 

Since the system is subjected to vertical downward normal force, its surface stress boundary 

condition is as follows 
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For the continuous mechanical structure, the normal stress and normal displacement of inter-

face are continuous 
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The shear stress of interface can be calculated by its displacement, as following 

 ( )1 2 2 1( )zr zr K u u z h = = − =  (13) 

Where K is the coefficient of layers combination. 

In fact, when there is only vertical load, friction in layers has little effect on mechanical com-

ponents distribution. we assume interface is smooth and frictionless to simplify the model. So 

0K = and the shear stress of interface is as follows 

 ( )1 2 0zr zr z h = = =  (14) 



 

 

If r and z approach infinity( r → and z → ), respectively, stress and displacement compo-

nents in Eq. (9) will be zero 
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3.3 Solving the Stress and Displacement Components 

By substituting stress/displacement of components in Eq. (9) into Eq. (11), (12), (14) and us-

ing Hankel integral transformation ,the following linear algebraic equations are obtained 
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Substituting 
2 2 0A C= = into Eq. (16),

iA ，
iB ，

iC ，
iD ( )1, 2i = could be represented as fol-

lows: 
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Where  
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Integral constant 
iA ，

iB ，
iC ，

iD is related to ( )q  . If the distribution equation of load ( )q r is 

known, components of stress and displacement is obtained by substituting ( )q   into Eq. (18). 

If the load is axial symmetrical and circular distribution of vertical loads, the distribution 

function of load circular range with assuming radius   is expressed as: 
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3.4 Calculation Example 

Assuming first layer’s parameters 9h mm= , 15mm = , Specimen’s material 235Q ,Young's mod-

ulus 5

1 2 2 10E E MPa= =  ,Poisson's ratio
1 2 0.3 = = . The vertical load on the surface is

9000Q N= , 2/q Q = . The stress and displacement field are calculated by Eq. (24), as shown in 

Fig. 5. 
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Fig. 4. Stress and displacement distribution curves along radial direction 

In Fig. 4(a), the curve 0z = mutates at r= and when r> , 0z = ; when r< ,
z q = − , satisfying 

surface stress boundary condition. The curve , 1z h layer=  and curve 
1, 2lz h ayer=  are over-

lapped, corresponding with interlayer stress boundary condition
1 2z z = . In Fig. 4(f), curve 

, 1z h layer=  and curve , 2z h layer=  are overlapped, satisfying interlayer displacement boundary 

condition
1 2w w= . In Fig. 4 (d), the value of curve 0, 1laz yer=  and curve , 1h laz yer=  are close 

to 0, satisfying shear stress equals to 0 in surface and interlayer. When r  gradually increasing, 

all the components in Fig. 4 will tend to zero, corresponding to the condition when r approaches 

infinite, all of components will be zero. These results prove the reasonability of LET. 

4 Experiment and finite element analysis 

In order to verify the LET’s effectiveness in the calculation of stress /displacement field of 

structural discontinuity, we extract the normal stress on interface and compare it with the results 

of experimental and finite element analysis. 
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Fig. 5. Experimental schematic diagram and field photos. 

Taking two cuboid metals as experimental specimen and both the material of them  are

235Q ,Young's modulus 5

1 2 2 10E E MPa= =  , Poisson's ratio
1 2 0.3 = = . We denote the size of 

metal block as 100 100 9mm mm mm   in the first layer and the size of another metal block as 

100 100 60mm mm mm  . The contact region between two metals were grounded to 0.8aR m= . The 

contact stress was measured by the pressure-sensitive film, which is placed on the interface. 

The cupping machine was used to provide load and the load was transformed into circular load 

by a metal cylinder of radius 15mm = , high10mm , placed on the top of the first layer. At first, 

the cupping machine loaded downwards slowly until the pressure reaches 9000N . Then the 

pressure was kept for some time so that the color of pressure-sensitive film was fully displayed. 

Photos of experimental schematics and site are shown in Fig. 5. 

    

Fig. 6. Pressure-sensitive film              Fig.7. Pressure distribution of interface. 

Because of the pressure, the white pressure-sensitive film turns red, and the red concentration 

increases with the increase of pressure intensity. The contact stress can be measured by evalu-

ating the color concentration of the film. Fig. 6 shows the scanning image of the pressure-sen-

sitive film after experiment. Obviously, the color distributed as an axisymmetric pattern. The 

high color concentration in the center indicates that the contact pressures are large. The color 

concentration rapidly decreases in the region far from center, indicating that the pressure drops 

quickly. After denoising and fliting, the color density of film was converted into pressure value 

http://dict.youdao.com/w/cuboid/#keyfrom=E2Ctranslation


 

 

and a three-dimensional image which displaying pressure distribution of interface in Fig. 6 and 

Fig. 7. The “steep peak” distribution of the contact pressure is shown clearly in the figure. 

Due to machining error and measurement error, the result in Fig. 6 is not absolutely axisym-

metric. In order to eliminate the impact of these errors, we used the average value of axial 

pressure to represent the pressure in the radial. 

Fig. 8 shows the contact stress distribution of LET, experimental and finite element method 

(FEM). Because the existing of pressure-sensitive film, the state of contact pressure on interface 

has been changed in a way. There were two comparative analysis of FEM with different contact 

conditions. FEM (with film) adds a new layer which has same mechanical parameter with film 

between the original layers and FEM (without film) contacts directly. The value of pressure in 

the figure is negative, indicating the compressive stress. 

In Fig. 8, four pressure distribution curves basically coincide. The curve of LET and FEM 

(without film) almost overlapped since both of them regardless the influence of film layer. The 

curve of experimental and FEM (with film) is lower in center and higher in edges than LET and 

FEM (without film). It indicates that the presence of films has a certain effect on the state of 

mechanical interface. In general, the pressure distribution of experimental and finite element 

analysis is consistent with the result of layered elastic system. 

 

Fig. 8. Data comparison of contact stress 

5 Conclusions 

A stress/displacement field calculation model based on layered elastic mechanics is established 

to solve the mechanical calculation problem in the discontinuous structure in joints. 

The calculation model based on layered elastic mechanics is a new way to calculate the stress / 

displacement field in joints. This method can be extended to more mechanical structure, con-

sidering different types of load, friction and other complex conditions and it is effective to an-

alyze problems such as pressure distribution and small sliding of interface. 

The model still has some shortcomings: For instance, because of ignoring the and roughness, 

flatness and waviness of the contact surfaces, there will be a deviation between the calculation 
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results and the actual situation to some extent. The analytical model of the mechanics charac-

teristics of the complex geometry parts subjected to non-axisymmetric loads or horizontal load 

(unidirectional load, rotational load) needs further study. 
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