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Abstract 

An extended isogeometric analysis (XIGA) approach based on Bézier extraction and simple 

first-order shear deformation theory (S-FSDT) is proposed for the free vibration analysis of 

cracked functionally graded material (FGM) plate. The XIGA relies on the concept of partition 

of unity to model a crack. By decomposing the NURBS basis functions into Bernstein basis 

functions and Bézier extraction operator, the implementation of XIGA becomes simple. The S-

FSDT uses four parameters for displacement field approximation which overcomes the shear-

locking and captures the shear deformation effect. The S-FSDT requires 1C  continuity which 

is easily achieved through non-uniform rational B-spline (NURBS) basis functions. The 

material properties of the FGM vary by power law along the thickness of plate. Several 

numerical examples are solved to validate the accuracy of the proposed approach. The effects 

of various parameters such as length to thickness ratio, crack length and boundary conditions 

are investigated on the natural frequencies and mode shapes.              

Keywords: XIGA; Bézier extraction; NURBS; FGM; Vibration 

1. Introduction 

Functionally graded material (FGM) is a class of composite material made by mixing the two 

different material phases such as ceramic and metal. Unlike composite material, the material 

properties of the FGM vary smoothly and continuously in a certain direction and able to avoid 

the inter-laminar stresses and debonding phenomenon. These advantageous features of FGM 

are extensively used in variety of engineering applications [1]. In order to ensure the reliability 

of components made from functionally graded materials (FGMs), it is essential to analyze their 

behavior in the presence of crack, which can be done by evaluating the static and dynamic 

behavior, of few standard crack problems. Over the years, several researchers have performed 

the vibration analysis of cracked plates using different numerical techniques and plate theories. 

Guan-Liang et al. [2] employed the finite element method (FEM) to perform the free vibration 

analysis of cracked square plate based on the classical plate theory (CPT). Bachene et al. [3] 



uses extended finite element method (XFEM) in context of first-order shear deformation theory 

(FSDT) to investigate the free vibration behavior of cracked homogenous rectangular and 

square plates. Further, Natarajan et al. [4] explored the XFEM based on FSDT to study the free 

vibration analysis of cracked FGM plate. Huang et al. [5] used the Ritz method and 3D elasticity 

theory to perform the free vibration analysis of cracked rectangular FGM plates. 

In the present study, a simple first-order shear deformation theory (S-FSDT) is utilized for the 

free vibration analysis of cracked FGM plates. The S-FSDT model requires four parameters for 

displacement field approximation and completely overcomes the shear locking effect associated 

with the original FSDT model [6]. Moreover, S-FSDT model requires 1C  continuity of 

generalized displacement field which cannot be easily attainable using lower order Lagrangian 

shape functions. However, this necessity is easily attainable by the NURBS basis functions 

utilized by isogeometric analysis (IGA) [7]. Moreover, in order to capture the discontinuities in 

the domain, partition of unity (PU) enrichment functions are incorporated with IGA 

approximation and called as extended isogeometric analysis (XIGA) [8]. Over the years, XIGA 

is widely used for solving the stationary and propagating cracks in 2D [9], 3D [10], cracked 

plates [11, 12] and shell structures [13]. Furthermore, the implementation of XIGA can be 

further simplified by incorporating the Bézier extraction approach [10]. Recently, Tan et al. 

[14] employed XIGA based on Bézier extraction using refined plate theory for the free vibration 

analysis of cracked FGM plates. Hence, the present work aims to extend the XIGA based on 

Bézier extraction and S-FSDT for the free vibration analysis of cracked FGM plates. Numerous 

examples are solved to validate the accuracy of the proposed approach and the obtained results 

are compared to other published results.  

2.1 Functionally Graded Plates 

Let us consider a ceramic-metal functionally graded plate of uniform thickness h. The upper 

surface of the plate is assumed to be ceramic rich whereas the bottom surface is fully composed 

of the metal. As shown in the Fig. 1, the x-y plane is assumed as the mid-plane of the plate, and 

the positive z-axis is directed above from the mid-plane. Moreover, along the thickness direction 

(z) of the plate, Young’s modulus and density are varied using power law as [6], 
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where, n refers as gradient index and subscripts m and c denote the metal and ceramic 

constituents, respectively. 



 

Table 1: Material properties of FGM plate [5] 

 E (GPa) v   3/kg m  

Aluminum (Al)   70 0.30 2702 

Alumina (Al2O3) 300 0.30 3800 

 

 
Figure 1: A schematic of cracked FGM plate 

 

2.2 Simple First-Order Shear Deformation Plate Theory 

The displacement field at any point (x, y, z) in the plate based on S-FSDT is given as [6], 
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where, ou  and ov  represent the mid-plane displacements in x and y directions respectively; bw

and sw  represent the bending and shear components of transverse displacement (w), 

respectively. 

Assuming the small strain condition, the non-zero strains are related with the displacement field 

given in Eq. (3) as, 

 
0

s

z  
   

   

ε κε

γγ
  (4) 

where, 

xx

yy

xy







 
 

  
 
 

ε , 
xz

yz





 
  
 

γ , 

0

0
0

0 0

u

x

v

y

v u

y x

 
 

 
 

  
 

  
 

  

ε , 

2

2

2

2

2

2

b

b

b

w

x

w

y

w

x y

 
 

 
  

  
 

 
 

   

κ  and 

s

s

s

w

x

w

y

 
  

  


 
  

γ  

x 

z 

y 

o 

h 

z 

h/2 

h/2 
o 

Ceramic 

Metal 



The relationship between the stress and strain are related by the following equation as, 
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where, k is the shear correction factor (SCF). In the present work, SCF is taken as k = 5/6.  

Next, using the Hamilton principle, the weak form for free vibration analysis of a FGM plate 

can be expressed as, 
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3. Bézier Extraction of NURBS 

Bézier extraction represents the NURBS basis function over each element in the form of 

Bernstein polynomial defined over 0C  continuous isogeometric Bézier element. Bézier element 

representation is given by Borden et al. [15] for the NURBS and further explored by Scott et 

al. [16] for T-spline. In order to decompose the NURBS basis functions in to Bernstein 

polynomial basis, Bézier decomposition is used. For more detail interested readers are 

encouraged to follow these papers [15-17].  

4. Extended Isogeometric Analysis (XIGA) 

The XIGA uses the merits of IGA and partition of enrichment (PU) concept for the fracture 

analysis of stationary and quasi-static crack growth [8, 9, 14]. In XIGA, the crack is modeled 

through enrichment functions added in the standard IGA approximation. At a particular point 

( , )x yx , the displacement approximation for the crack based on Bézier extraction of NURBS 

is written as, 
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where,  iR x  is the NURBS basis functions which is written in the terms of Bernstein 

polynomial basis functions and Bézier extraction, enn  indicates the total number of control 

points per element and  , , ,
T

i o o b su v w wu  indicates the degrees of freedom (DOFs) per control 

point i  in any NURBS element. Moreover, cfn  and ctn  represent the set of control points 

associated with all those elements which possess crack face and crack-tip respectively. 

Additionally, cfn  enriched with Heaviside function, ( )H x  whereas ctn  enriched with asymptotic 

crack tip enrichment functions,   x . The   x  are taken from the Ref. [14] 

Substituting Eq. (7) into Eq. (4), the strains are given as, 
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Substituting Eq. (8) into Eq. (6), the following form is obtained, 

  2 0 K M d   (9) 

where, the K and M are global stiffness and mass matrix, respectively. The expression of K and 

M are obtained as provided in Ref. [6].   

5. Results and Discussions 

In this section, the free vibration analysis of cracked FGM plates using S-FSDT in the context 

of XIGA based on Bézier extraction approach is performed. Several rectangular and square 

FGM plates having center crack configuration are considered. Unless stated otherwise, ceramic-

metal FGM plates whose material properties given in Table 1 are considered. Cubic NURBS 

basis functions are used in either direction throughout this study, as it provides faster 

convergence [11]. In all examples, a full integration using    1 1p q    Gauss points are used 

for standard (non-enriched elements) and sub-triangulation scheme for the enriched elements 

[12]. Moreover, three different boundary conditions are considered on the edges of plate such 

as; SSSS, FCFF and CFCF, where, S, F and C represent simply supported, free and clamped 

respectively. The simply supported boundary condition (S) used in this paper is represented as, 
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whereas the clamped boundary condition is given as [6], 

The percentage difference of normalized natural frequencies is obtained as, 
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As shown in Fig. 2, the rectangular FGM plate with planar dimension  a b  and uniform 

thickness h containing a through-thickness center crack of length d is considered. Before 

proceeding to the free vibration analysis of cracked FGM plates, initially a convergence study 

of the normalized natural frequency of cracked homogeneous plate is performed. A fully simply 

supported (SSSS) homogeneous rectangular plate with a/b = 1, b/h = 10, d/a = 0.3 and material 

properties of aluminum alloy as given in Table 1 is considered. The normalized natural 

frequency 
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 obtained using S-FSDT and XIGA based on Bézier approach 

is presented in Table 2. It is observed that normalized frequencies obtained using S-FSDT based 

XIGA match well with the 3-D elasticity results [5]. Moreover, as the number of control points 

increases from 32 32  to 42 40 the results converge to two significant figures. Hence, for the 

subsequent examples 32 32  or more number of control points will be used. 

 

 

 

 

 

 

 

 

Figure 2: A rectangular FGM plate with center crack 

 

 

To further illustrate the accuracy of proposed method, the normalized natural frequencies is 

obtained for different b/h and d/a ratios for the SSSS square homogeneous plate. The material 

properties are taken same as the previous example. Table 3 presents the normalized natural 

frequencies evaluated using S-FSDT based XIGA are compared with 3D elasticity approach 

[5]. It is found that the for both thick and thin plates the normalized natural frequencies obtained 

using present approach are in good agreement with 3D elasticity results. The maximum 

percentage difference between their results are within 4.21% for Mode 2 with b/h = 20 and d/a 

= 0.5.   
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Table 2: Normalized natural frequency of SSSS square homogeneous plate (b/h = 10) with center 

crack (d/a = 0.3) 

Method Number of control points Mode 

  1 2 3 

S-FSDT based XIGA 20 20  5.4532 13.4416 13.7265 

 24 24  5.4710 13.4095 13.7282 

 28 28  5.5244 13.4065 13.7373 

 32 32  5.5234 13.3988 13.7369 

 36 36  5.5225 13.3962 13.7368 

 40 40  5.5226 13.3962 13.7369 

3D elasticity [5]  5.421 13.22 13.76 

 

Table 3: Normalized natural frequency of SSSS square homogeneous plate with center crack     

d/a b/h Method Mode     

   1 2 3 4 5 

0.3 5 S-FSDT based XIGA 5.0799 11.0129 11.5279 16.6322 18.6180 

  3D elasticity [5] 4.960 10.84 11.61 16.64 18.06 

  % Difference 2.39 1.58 0.71 0.05 3.04 

 10 S-FSDT based XIGA 5.5224 13.3887 13.7369 21.0819 23.7780 

  3D elasticity [5] 5.421 13.22 13.76 20.97 23.13 

  % Difference 1.85 1.27 0.17 0.53 2.76 

 20 S-FSDT based XIGA 5.6573 14.3151 14.5760 23.0514 26.1400 

  3D elasticity [5] 5.590 14.21 14.57 22.94 25.62 

  % Difference 1.2 0.74 0.04 0.48 2.01 

 100 S-FSDT based XIGA 5.7031 14.6623 14.8871 23.8391 27.1033 

  3D elasticity [5] 5.701 14.65 14.89 23.82 27.11 

  % Difference 0.04 0.08 0.02 0.08 0.02 

0.5 5 S-FSDT based XIGA 4.8180 8.7417 11.4390 15.4412 16.7323 

  3D elasticity [5] 4.633 8.764 11.43 15.97 16.89 

  % Difference 3.91 0.25 0.08 3.37 0.94 

 10 S-FSDT based XIGA 5.2063 11.0595 13.6018 20.7129 22.0429 

  3D elasticity [5] 5.069 11.10 13.55 20.35 21.44 

  % Difference 2.67 0.37 0.38 1.77 2.77 

 20 S-FSDT based XIGA 5.3232 12.8075 14.4199 22.7085 24.0426 

  3D elasticity [5] 5.238 12.28 14.37 22.44 23.60 

  % Difference 1.61 4.21 0.35 1.19 1.86 

 100 S-FSDT based XIGA 5.3628 13.1284 14.7227 23.5087 24.8437 

  3D elasticity [5] 5.353 12.98 14.72 23.46 24.79 

  % Difference 0.18 1.14 0.02 0.21 0.22 



Next, an Al/Al2O3 center cracked square FGM plate is considered and the effect of various 

parameters such as; different boundary conditions, length to thickness ratio (b/h) and gradient 

index (n) on normalized natural frequencies is analyzed as presented in Table 4. In this case, 

the normalized natural frequency is obtained as 
2
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material properties corresponding to ceramic (Al2O3) in Al/Al2O3 FGM plate. Table 4 reveals 

that the normalized natural frequencies obtained using proposed method are well matched with 

the 3D elasticity results. However, for FCFF boundary condition the maximum percentages in 

normalized Mode 2 frequency is seen. Besides, the normalized frequencies increase with 

increasing the b/h ratios and decreases as gradient index (n) increases. It is also observed that 

the normalized frequencies for FCFF boundary condition is less as compared to SSSS and CFCF 

boundary conditions. Finally, the contour of first mode shape of square Al/Al2O3 FGM plate 

(b/h = 50) having center crack (d/a = 0.3) with CFCF and SSSS boundary conditions is shown 

in Fig. 3.            

 
(a) CFCF  

 
(b) SSSS 

Figure 3: First mode shape of square Al/Al2O3 FGM plate (b/h = 50) having center crack (d/a = 0.3) 

 



Table 4: Normalized natural frequency of Al/Al2O3 square FGM plate with center crack (d/a = 0.3)      

BCs n b/h Method Mode     

    1 2 3 4 5 

SSSS 0 5 S-FSDT based XIGA 5.0799 9.7269 9.7417 11.0129 11.5279 

   3D elasticity [5] 4.959 9.728 9.742 10.84 11.60  

   % Difference 2.41 0.01 0.00 1.58 0.62 

  50 S-FSDT based XIGA 5.6973 14.6173 14.8468 23.7352 26.9756 

   3D elasticity [5] 5.665 14.58 14.84 23.68 26.71 

   % Difference 0.57 0.26 0.05 0.23 0.99 

 0.2 5 S-FSDT based XIGA 4.7338 9.2672 9.2813 10.3189 10.7870 

   3D elasticity [5] 4.627 9.266 9.280 10.18 10.88 

   % Difference 2.28 0.01 0.01 1.36 0.86 

  50 S-FSDT based XIGA 5.2876 13.5678 13.7804 22.0323 25.0406 

   3D elasticity [5] 5.259 13.53 13.78 21.99 24.80 

   % Difference 0.54 0.28 0.00 0.19 0.97 

 5 5 S-FSDT based XIGA 3.3182 6.3156 6.3259 7.1625 7.4900 

   3D elasticity [5] 3.185 6.274 6.296 6.823 7.322 

   % Difference 4.10 0.66 0.47 4.86 2.27 

  50 S-FSDT based XIGA 3.7498 9.6192 9.7695 15.6156 17.7484 

   3D elasticity [5] 3.725 9.581 9.760 15.56 17.53 

   % Difference 0.66 0.40 0.10 0.36 1.24 

FCFF 0 5 S-FSDT based XIGA 1.0164 2.4343 3.2024 5.3565 6.7674 

   3D elasticity [5] 1.016 2.195 3.221 5.359 6.285 

   % Difference 0.04 10.3 0.58 0.05 7.39 

  50 S-FSDT based XIGA 1.0494 2.5723 6.4260 7.8198 9.3068 

 0.2 5 S-FSDT based XIGA 0.9445 2.2627 3.0515 5.0015 6.3027 

   3D elasticity [5] 0.9441 2.049 3.069 5.010 5.869 

   % Difference 0.04 9.91 0.57 0.17 7.13 

  50 S-FSDT based XIGA 0.9739 2.3872 5.9641 7.2575 8.6378 

 5 5 S-FSDT based XIGA 0.6674 1.5880 2.0887 3.4704 4.3767 

   3D elasticity [5] 0.6633 1.406 2.098 3.394 3.992 

   % Difference 0.62 12.2 0.44 2.23 9.19 

  50 S-FSDT based XIGA 0.6907 1.6929 4.2288 5.1463 6.1245 

CFCF 0 5 S-FSDT based XIGA 5.2039 6.6281 8.8744 10.3010 12.1163 

  50 S-FSDT based XIGA 6.4333 7.9599 12.7911 18.2150 20.1967 

 0.2 5 S-FSDT based XIGA 4.8705 6.1928 8.4553 9.6195 11.3993 

  50 S-FSDT based XIGA 5.9712 7.3879 11.8719 16.9093 18.7481 

 5 5 S-FSDT based XIGA 3.4024 4.3168 5.7698 6.6574 7.8857 

  50 S-FSDT based XIGA 4.2342 5.2385 8.4171 11.9857 13.2888 

 



6. Conclusions 

In this work, the free vibration analysis of cracked FGM plates using S-FSDT in the context of 

XIGA based on Bézier extraction approach is successfully performed. The gradation of material 

properties is taken along the thickness of the plate. The bottom end of the plate possesses 100% 

alloy while top end possesses 100% ceramic. The material properties (i.e. Young’s modulus & 

density) vary using power law from bottom to top end of the plate. NURBS basis functions 

obtained from Bézier extraction technique are used for defining the geometric description and 

solution approximation. The values of normalized frequencies are obtained using present 

method are found in good agreement with 3D elasticity solutions. Moreover, the normalized 

natural frequencies are significantly affected by the b/h ratios, crack aspect ratios (d/a), gradient 

index (n) and boundary condtions.  
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