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Abstract 
In order to conduct simulations with high accuracy using particle methods, numerous particles 
with small size are required to increase the resolution of the calculation domain, and 
furthermore an improved MPS method with variable-size VSP-MPS has been proposed to 
achieve the object in acceptable time. In this paper, the scheme is improved with adaptive 
variable-size particle as AVSP-MPS to increase computational efficiency. First, we made 
linear programming for the selection and changed the decision method of particle entering the 
different resolution to improve the robustness at coarse/fine interface, as a result, the accuracy 
of calculation was improved. As the high resolution of the previous multi-resolution MPS 
method is static, we get a moving high resolution region and proved that the region movement 
has no adverse effect on the flow field. At last, the scheme with adaptive variable-size particle 
as AVSP-MPS is introduced, the shape and area of the domains with high resolution can be 
dynamically adjusted during the calculation. The proposed method was verified by simulating 
dam-break case with a moving obstacle. The computing time for the cases with and without 
AVSP-MPS was analyzed to prove its capability on reducing the computational cost. 

Keywords: adaptive variable-size particles, coalescence, split, moving multi-resolution 
region, computational efficiency 

 

1 Introduction 

In classical grid-based computational methods, variable resolution can be easily achieved 
though refined structured/unstructured grids to improve accuracy in specific computational 
domains. Particle-based methods such as moving particle semi-implicit (MPS)[1] method is 
widely used for analyzing unsteady flow with large deformation, however, with the increase 
of calculation accuracy and scale, it takes large amount of particles to adopt a single 
resolution, and the calculation is time-consuming. To reduce the computational cost, several 
methods have been developed in smoothed particle hydrodynamics (SPH)[2] and MPS 
simulations.  
 
Different with incompressible flow simulation in MPS, SPH is generally used to solve 
compressible flow, the incompressible flow is usually solved by introducing a weakly 
compressible scheme (WCSPH). In order to reduce computer time, Omidvar[3] produced a 
variable particle mass distribution with fine resolution near the body and coarse resolution 
further away. Though two well-defined test cases of waves generated by a heaving semi-
immersed cylinder and progressive waves interacting with a fixed cylinder, the variable mass 
distribution leads to a computer run speedup of nearly 200%. Feldman[4] proposed a dynamic 
particle refinement method where candidate particles are split into several ‘daughter’ particles 
according to a given refinement pattern. In such a method, the daughter particle properties 



such as mass, volume, density, velocity and pressure are chosen so that both energy and mass 
are conserved. Vacondio[5] modified dynamically the particle sizes by means of splitting and 
coalescing (merging) individual particles, their simulations have shown that the particle 
refinement procedure is able to increase the efficiency while maintaining the same level of 
accuracy as a uniform distribution with the most refined resolution. Chiron[6] presented the 
basics of an Adaptive Particle Refinement (APR) technique, inspired by Adaptive Mesh 
Refinement (AMR)in mesh-based methods. This approach ensures robustness at coarse/fine 
interfaces with alleviated constraints. Sun[7-8] implemented a particle shifting technique (PST) 
in the framework of δ+-SPH combining with APR which is a numerical technique adopted to 
refine the particle resolution in the local region and de-refine particles outside that region. The 
problems of high computational costs and tensile numerical instability are avoided in δ+-SPH 
scheme since APR and Tensile Instability Control (TIC) have been implemented. 
 
Most of the above attempts based on SPH were implemented with the explicit algorithm to 
produce the pressure field. However, a semi-implicit algorithm is often adopted to obtain the 
pressure field in MPS method, which need to solve the pressure Poisson equation and makes 
it much more difficult developing the local refine technique in the MPS than that in the SPH. 
Shibata[9-10] developed a multi-resolution technique, the overlapping particle technique (OPT), 
the OPT expresses a whole simulation domain with partially overlapping sub-domains with 
their own spatial resolutions and particle shape. Despite the improvements, because the mass 
or volume conservation of the particle size conversion procedure is not thoroughly discussed 
in OPT, the total mass conservation of the algorithm needs to be studied and guaranteed. 
Tanaka[11] developed further a multi-resolution technique for the MPS method in two 
dimensions, however, the formulation was derived for the classical MPS method and thus it 
suffers from inaccuracy and stability issues. Tang[12] extended this method for three 
dimensions, however, no splitting or merging algorithms were adopted and therefore the 
spatial resolution cannot be changed dynamically. Chen[13] developed a multi-resolution MPS 
method with variable-size particles based on an algorithm for dynamic particle coalescing and 
splitting. For the existing surface detection technique could not avoid misdetection, the 
dynamic particle refinement is also incorporated based on an improved MPS method with no 
surface detection (NSD-MPS)[14]. Besides, a new gradient model associated with different 
particles sizes is used and all effective radii of particles remain the same ensures the 
conservation of mass and momentum in VSP-MPS method. Tanaka[15] developed novel 
boundary conditions for the treatment of wall and pressure boundaries for the multi-resolution 
least square MPS method, the new boundary condition makes the method easier to be used in 
flow simulations of channel flows.  
 
However, for all of the above MPS methods, the domains with different sized particles are set 
before calculation and their location/area are fixed, which makes it cumbersome when 
simulating the fluid flow cases with a moving object. In this paper, we improved the moving 
particle semi-implicit method with adaptive variable-size particles as AVSP-MPS. The spatial 
resolution varies dynamically with the location of the interface between liquid and the moving 
objects, the different resolution areas don’t need to be known beforehand. In order to optimize 
the splitting and coalescing algorithm, we made linear programming for the selection of 
resolution and got the optimal resolution interval. In addition, we changed the decision 
method of particle entering the different resolution to improve the robustness at coarse/fine 
interfaces. Based on the above improvements, the dam-break case with a moving object was 
simulated with different methods. Compared with the VSP-MPS method which can only 
delimit the resolution region in advance, with an adaptive algorithm, AVSP-MPS method can 



further reduce the number of particles needed in the simulation and improve the calculation 
efficiency. 

2 VSP-MPS Methods 

This section recalls the MPS method with variable-size particles, the governing equations for 
an incompressible flow are: 

 0D
Dt
ρ ρ+ ∇ ⋅ =u  (1) 

 2D p
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ρ µ= −∇ + ∇ +
u u f  (2) 

where u represents velocity vector, t is time, ρ is the constant density, p is pressure, μ is 
dynamic viscosity and f is the volumetric force, such as gravity. 

2.1 Kernel Function 

The cubic spline kernel function, which is usually used in SPH, was used in this paper: 
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where r is the distance between neighboring particles, h = 2.1l0 is used for all particles in this 
paper, l0 is the initial particle size, and α is the normalization coefficient. With the kernel 
function, the particle number density can be calculated as: 

 ij jn w V=∑  (6) 

where wij is the kernel function between particle i and j, and Vj is the volume of particle j. The 
constant particle number density is n0 = 1.0 for standard particle distribution. 
 
Figure 1 shows three possible cases between two adjacent particles. For example, particle i 
may overlap with particle j as shown in Figure 2(a), in this case, the density attribution of j to 
i is ij jw V  using Eq. (3), while the density of i is ( ) / max( , )i j i jV V V Vρ + . In order to avoid particle 
clustering, an additional weight function[13] is introduced: 
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where the subscript a represents the additional function, Vmax = max(Vi, Vj) is the maximum 
volume between the two particles (where 2

i iV l=  and 2
j jV l= ), li and lj are the diameters of 

particle i and j respectively. 



 
When 0.5( )ij i jr l l≥ +  (Figure 2(c)), the additional weight function ,a ijw  is zero. When 

0.5ij j ir l l< −  (Figure 2(a)), the density attribution of j to i is max/jV V  , , max1 /a ijw V=  . When 
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(a) overlapping particles       (b) clustering particles         (c) adjacent particles 

Figure 1.  Position relationships between two particles 

2.2 Particle Interaction Models 

A new gradient model is used in this paper to ensure the conservation of momentum[16]. 
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The parameters 1λ  is defined as 
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The gradient (9) is totally irrelevant from particles’ distance, and the influence from the 
particles with different sizes could be ignored. 
 
The original Laplace model introduced by Koshizuka[1] is used in this paper 
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The parameters 2λ  is defined as 
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The pressure Poisson equation introduced by Tanaka[16] is used in this paper: 
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where n
in  is the particle number density in the thn  steps and 0.008γ =  is a coefficient. 



2.3 Free Surface boundary Conditions 

The original MPS method may misjudge surface particles when the solving the pressure 
Poisson equation with multi-resolution, which has an adverse effect on the accuracy of 
calculation. Thus, a new algorithm of MPS method with no surface detection (NSD-MPS)[14] 
can improve computational stability by avoiding surface particle detection. The NSD-MPS 
method ensures that all real particles have the particle number density more than n0 in the 
whole region by introducing conceptual particles to compensate for the loss of particle 
number density. The Dirichlet boundary condition of the pressure Poisson equation is 
enforced by the conceptual particles, which have the free surface pressure Pfree, that is to say, 
the conventional surface particles are replaced by conceptual particles to take the zero-
pressure condition. You can get more details in reference [14]. 

2.4 Particle Splitting and Coalescing Methodology 

In order to increase the resolution in certain areas of the computational domain, particle 
splitting and coalescing were involved in the algorithms. In previous methods, the momentum 
tends to be non-conservation, especially in the process of fine resolution to coarse resolution, 
particles need to wait or be deleted in the simulation. In VSP-MPS method, we cancel the 
restriction, different particle sizes are allowed in the region, which can achieve momentum 
conservation. At the same time, different resolutions are determined by a maximum volume 
Vmax and a minimum volume Vmin. A particle that is larger than Vmax would be split into seven 
daughter particles, while a particle that is smaller than Vmin would be coalesced with a 
neighboring particle. With several processes of splitting and coalescing, the size of particles in 
the region is limited to a certain range, which is conducive to controlling the number of 
particles and improving the computational efficiency. 

2.4.1 Particle splitting 

In particle splitting processes[13], a mother MPS particle splits into 7 daughter particles, and 
the volumes of the daughter particles are equal to 1/7 of mother particle. In order to meet the 
Newton’s third law, all particles including the new daughter particles share the same 
smoothing length h = 2.1l0. 

(a) splitting process

(b) random splitting angles to avoid particle clustering

L H L H L H
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particle
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particles1
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47

 
Figure 2.  Large particles splitting into daughter particles 

where the solid straight line represents the demarcation line of different resolutions. Here, the 
left side of the demarcation line is the low resolution area, as expressed with L at the left side, 
and the right side is the high resolution area, as expressed with H at the right side. 
 
Figure 2(a) is the sketch of a process of a particle splitting into seven daughter particles. The 
daughter particle 1 locates at the same position as the mother particle, and the other six 



daughter particles are distributed to form a regular hexagon around particle 1. Daughter 
particles are distributed with a small overlap in the first splitting process to decrease particle 
clustering, then the daughter particles move away from other particles with a small distance in 
the rest steps so that the CFL condition of MPS is met, the splitting process will be finished in 
five steps. Furthermore, an algorithm will be used to lead the daughter particles to form a 
random angle as shown in Figure 2(b), and to guide the particles moving to proper positions. 
The algorithm would further reduce the possibility of particle clustering. The velocity vectors 
of the daughter particles are set equal to that of their mother particle for linear momentum 
conservation in the five steps during the splitting process. The daughter particles would have 
no angular velocity at the first step of splitting because the mother particle has no angular 
momentum. 

2.4.2 Particle coalescing 

Particle coalescing process[13] will conduct between two neighboring particles as shown in 
Figure 3, fine particles will coalesce with other particles if their volume is smaller than given 
minimum volume Vmin. Similar to the splitting process described previously, a five-step 
coalescing process will be used to avoid particle clustering, and the additional weight function 
(Eq. (6)) won’t be used between the two particles during coalescing process. 

Two particle coalescing processes with ten steps

LH LH LH LH LH

 
Figure 3.  Sketch of particle coalescing processes 

Considering the incompressibility and mass conservation, the volume of the new particle 
(new particle is represented by M) VM is calculated as: 

 M i jV V V= +  (14) 

For momentum conservation, during coalescing, the position and velocity vector of mass 
center are: 
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And for angular momentum, the coalescing two particles would have velocities 
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where Mθ


 is the angular velocity. After the coalescing, the two particles merged into one large 
particle without angular velocity. 
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Figure 4.  Flowcharts of the VSP-MPS method and the splitting/coalescing model 

Figure 4(a) shows the flowchart of the VSP-MPS method, and Figure 4(b) shows the 
flowchart of the splitting/coalescing model. The number count represents the status of the 
splitting/coalescing model, count = 0 means no the splitting/coalescing model, and count=1-5 
represents the step of the splitting/coalescing process from 1 to 5. To save computational cost, 
splitting and coalescing processes share a same five-step process, in other words, the splitting 
and coalescing processes are initiated every five steps by checking their criteria respectively, 
there is no new splitting and coalescing process during the five steps. 

3 Numerical Verification 

A Dam-break case is simulated to verify the VSP-MPS method along with the particle 
splitting and coalescing schemes in this section. The case is simulated with single resolution 
and variable resolution respectively to verify the accuracy of the VSP-MPS method and its 
effectiveness on improving the computational efficiency. 
 
The initial setup of the dam-break case is shown in Figure 5. Vmax and Vmin are the maximum 
and minimum volumes to control the particle splitting and coalescing processes in our 
algorithm. The physical parameters of fluid particle used in this case are ρ = 988kg/m3 and ν = 
1.0 × 106m2/s. In the single resolution case, the initial diameter of water particles is l0 = 
0.0019m, the particle is 5672, in which 3200 are fluid particles. In the variable resolution 
case, the initial diameter of water particles is l0 = 0.005m, the fluid particle will split or 
coalesce during the simulation, and the diameter of the particles will be 0.0019m after once 
splitting process. 
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Figure 5.  Geometry of the dam-break case 

3.1 Repartition of the Resolution 

The resolution is realized by setting the maximum and minimum volume of particles in 
different regions. In order to improve efficiency, we made linear programming for the 
selection of resolution and got the optimal resolution interval. 
 
The upper and lower bounds of the intervals in different resolution regions are shown in 
Figure 5. Although the errors caused by the inconsistency of particle sizes can be mitigated by 
using the kernel function and the interaction model given in section 2. If the difference 
between Vmin and Vmax is too large in the same resolution region, all the particles meet this 
region would stay and coalesced would not happen, the number of the particles was large and 
the calculation efficient was low. On the other hand,, if the difference between Vmin and Vmax 
is too small,  the split and coalesce process may happen  and repeat until the size of the 
particle meet the narrow interval. The calculation efficient was also low by carrying out more 
split/coalesce process. 
In order to reduce the number of splitting and coalescing process, after the splitting of the 
smallest particle and the largest particle, the split particles will not split and coalesce again in 
the low resolution region. 
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In high resolution regions, the largest and smallest particles that need to be split do not split 
and coalesce after once splitting. 
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At the same time, in order to maintain the continuity of particle diameter, the Vmin of low 
resolution region should be smaller than the Vmax of high resolution region. 
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It is certain that Vmin1 and Vmin2 should be greater than zero to ensure the non-negativity of 
particle volume. 
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Simultaneous equation (20) - (26) gives the feasibility interval as shown in Figure 6. In order 
to reduce the difference of particle diameter in the same resolution region, in low resolution 
region, the particle diameter should be close to 2

0 0V l= , and the particle diameter should be 
close to 2

0 0/ 7 / 7V l=  in high resolution region, On the basis of satisfying the preceding 
conditions(equation (20) - (26)),  the values of a and b should be as small as possible. When 
the weights of a and b are the same, the optimal solution is a=3/4 and b=6/50(the point 
marked P as shown in Figure (6)), when the weights of a and b are different, the optimal 
solution will not change. So after the repartition of the resolution, we get Vmax1 = 1.75l02, Vmin1 
= 0.25l0

2, Vmax2 = 0.263l0
2, Vmin2 = 0.0229l0

2. 

 
Figure 6.  Optimal solution of resolution repartition 

3.2 Dam-break test 

Figure 7 shows the experimental and simulation results of the position of water front in the 
dam-break case. The horizontal axis is the non-dimensional time, t(2g/L)0.5, and the vertical 
axis is the non-dimensional position of the water column’s leading edge (Z/L). The VSP-MPS 
result with variable resolution is compared with the single resolution MPS result and the 
experimental results by Martin[17]. The simulation results agree with the experimental results, 
and compared with the single resolution MPS result, the VSP-MPS result has even higher 
precision in high resolution area(as shown in Fig. 7). 

 



Figure 7.  Experimental and simulation results of the position of water front in the dam-
break problem 

          
t = 0.3s with MPS        t = 0.6s with MPS 

          
 t = 0.3s with VSP-MPS                        t = 0.6s with VSP-MPS  

Figure 8.  Snapshots from the dam-break simulation 
Figure 8 shows the pressure distribution of fluid at two typical times with different methods, 
which shows that the VSP-MPS method can accurately simulate the pressure distribution of 
fluid in the flow process. In addition, it can be observed that coarse particles can split into fine 
particles after entering the high resolution region, and fine particles will coalesce with 
neighboring particles after entering the low resolution region.  The splitting and coalescing 
processes are implemented until the particle volume remains within the given range. It is 
notable that the splitting and coalescing processes occur in the whole computational domain, 
instead of just at coarse/fine interface. 
 
Figure 9 shows the comparison of particle number and CPU time with the two different 
methods. Compared with the single resolution MPS method, the VSP-MPS method requires 
fewer particles and greatly reduces the calculation time. For example, there are 5672 particles 
in the dam-break case with single resolution MPS, and the particle number is constant during 
the simulation. In VSP-MPS method, the particle number is various during the simulation, it 
can be divide into 5 phases during the simulation (see Figure 9(a)). There are 1422 initial 
setting particles at the begin of the simulation (region A), when the particle pass through the 
high resolution, the particle split into finer particles, so the particle number increases in this 
phase (region B). The particle number decrease in region C due to the fluid flow back into 
low resolution region and fine particle coalesces with neighboring particle. Then the fluid 
sloshes between the two solid walls (region D) flowing through the resolution boundary for 
several times before totally dissipated, At last, the fluid tends to be stable gradually(region E), 
and the particle number converge to be a constant. 



     
(a) Particle number                                           (b) CPU time 

Figure 9.  Comparison of particle number and CPU time with different methods 
As shown in Fig 9(b), the calculation time of VSP-MPS is much short than that of MPS with 
single resolution. Compared with single resolution MPS method, when the simulation runs to 
five seconds, the CPU time is reduced by 79.8% using VSP-MPS method. The above 
simulation results prove that the VSP-MPS method could improve the simulation accuracy 
and significantly raise the calculation efficiency. 

4 Numerical Simulation 

In VSP-MPS method, the resolution regions are mandatory to be set before the simulation, 
and the shapes and locations of which are fixed during the whole calculation. It is difficult for 
a fixed high resolution region to cover a complex flow with moving object.  
 
In this paper, a new scheme AVSP-MPS was proposed based on VSP-MPS, the high 
resolution region could be adjusted during the calculation and even could tracking the location 
and shape of the target flow. It is much more flexible for complex flows, and the accuracy and 
efficiency would both be improved. 

4.1 Improvement of the Algorithm Accuracy 

Though the VSP-MPS method allows finer particles in specific areas and coarser particles 
elsewhere, the robustness on coarse/fine interface needs to be improved. In the previous 
algorithm, the particle will split into finer particles when the center of mass of the particle 
enters the high-resolution region. As a result, there will be a large number of particles of 
different diameters at coarse/fine interface, the numerous different diameters at coarse/fine 
interface will reduce the accuracy of the simulation. In order to improve the robustness at 
coarse/fine interface, we improved the algorithm by changing the decision method of particle 
entering the different resolution. The improved approach is that only when the whole particle 
(the boundary of the particle) enters the high resolution region the particle splitting into finer 
particles. 
 
In order to validate the improved algorithm, we simulated the dynamic behavior of a single 
particle passing through the high resolution boundary with the unimproved algorithm and the 
improved algorithm. The center of the particle is initially located at coarse/fine boundary, and 
the particle is given a uniform rightward initial velocity u=0.1m/s. Gravity is not considered 
in the whole process. The comparison of particles dynamic behavior before and after 
improvement is shown in Figure 10. 



 
Figure 10.  Comparison of particles dynamic behavior before and after improvement 

where the black solid line represents the coarse/fine boundary, the left region of the boundary 
is low resolution, and the right region of the boundary is high resolution. 
 
Before the improvement, the particle is divided into seven fine particles when the center of 
mass of the particle passes through the coarse/fine boundary. However, at this time, three fine 
particles stay in the low-resolution region. After two coalescing processes, one coarse particle 
and four fine particles are formed. Then the coarse particles will continue to split and form 
seven finer particles when it passes through the coarse/fine boundary. The finer particles, 
reside in the low resolution region, are coalesced twice, and finally nine particles with three 
different diameters are obtained. 
 
After the improvement, the particle splits into 7 finer particles when the left boundary of the 
particle enters the high resolution region, all finer particles have a velocity of u = 0.1m/s due 
to momentum conservation. The particles keep moving rightward at a constant speed. On the 
contrary, before the improvement, the particle interaction with different velocities makes the 
particle motion more complex, and the velocity of particles changes after they passing 
through the coarse/fine boundary, it has an adverse effect on the algorithm accuracy. 
 
After the improvement, there is no finer particle staying in low resolution region, the dynamic 
behavior of the particle is simpler, the number of splitting and coalescing processes decreases, 
and the robustness of the coarse/fine interface is improved. We further simulate the dam-
break case as shown in Figure 5 with the unimproved algorithm and the improved algorithm 
respectively. The physical parameters of fluid particle used in this paper are ρ = 988kg/m3 and 
ν = 1.0 × 106m2/s, the initial diameter of the fluid particles is l0 = 0.005m. Figure 11 shows the 
comparison of particle diameter numbers before and after the improvement near coarse/fine 
interface and in the whole calculation area. 



      
(a) Diameter number near coarse/fine interface   (b) Diameter number in the whole area 
Figure 11.  Comparison of particle diameter number before and after improvement 

Before the improvement, the diameter number of the particles start to rise when particles pass 
through the coarse/fine interface (time = A), so when the fluid hits the right wall and falls 
back (time = B), the diameter number of particles increases sharply. As the fluid continues to 
flow across the coarse/fine interface, the difference in diameter number is accumulated. When 
the simulation runs to C (time = C), the fluid flow tends to stabilize gradually, and the 
diameter number of particles has basically reached saturation. Up to the five seconds of the 
simulation, after the improvement, the number of particle diameter is reduced by 15% near 
coarse/fine interface, and in the whole calculation area, the number of particle diameter 
decreased by 32%. Although the particle interaction model we used in 2.2 can reduce the 
influence of the particle diameter difference on the calculation accuracy, after improvement, 
the robustness at coarse/fine interface is improved. 
 
In order to verify the accuracy of the algorithm has been improved, we compared the 
experimental with simulation results of the position of water front in the dam-break problem 
as shown in Figure 12, after improvement, the simulation results are more consistent with the 
experiment compared with the previous algorithm. The algorithm accuracy of the scheme is 
improved by changing the decision method of particle entering the different resolution. 

 
Figure 12.  Experimental and simulation results of the position of water front in the 

dam-break problem 

4.2 Moving High Resolution Region 

In previous multi-resolution MPS methods, the high resolution region is fixed. In order to 
make the high resolution region move around the solid adaptively, we studied the influence of 
high resolution region movement on the flow field. We simulated the dam-break case as 
shown in Figure 5 with static high resolution region and moving high resolution region 
respectively. Figure 13 shows experimental and simulation results of the position of water 



front in the dam-break problem, the simulation results obtained by the two methods almost 
coincide with each other, which proves that with moving high resolution region, the dynamic 
behavior of the fluid is not affected. 

 
Figure 13.  Experimental and simulation results of the position of water front in the 

dam-break problem 

                   
t = 0.27s with static high resolution region            t = 0.52s with static high resolution region 

                   
t = 0.27s with moving high resolution region       t = 0.52s with moving high resolution region 

Figure 14.  Snapshots from the dam-break simulation 
Figure 14 shows the pressure distribution of fluid at two typical times with different methods, 
with moving high resolution region, the method can also accurately simulate the pressure 
distribution of fluid in the flow process. 
 
In fact, as described earlier, the algorithm has realized that the splitting and coalescing 
processes can be conducted in the whole area, and the system can always keep the 
conservation of mass and momentum. The only difference between static resolution and 
moving resolution is the location of finer particles, so movable scheme can be very helpful if 
the location of the flow details we want to describe may change in the simulation. All the 



above proves that the region movement has no adverse effect on the flow field, the scheme 
has been extended and the multi-resolution regions is fixed any more. 

4.3 Adaptive Variable Size Particle MPS Model 

In previous algorithm, the high resolution regions are static in space and known beforehand; 
all the particles that enter the high resolution regions are split into smaller particles. Since the 
high resolution region is static, it is not adaptive, in this paper, the scheme is improved with 
adaptive variable-size particle as AVSP-MPS, which means the shape and area of the domains 
with high resolution can be dynamically adjusted during the calculation according to the 
distance from a fluid particle to a movable object. 
 
In this section, we use three methods, single resolution MPS, VSP-MPS and AVSP-MPS, to 
simulate the dam-break case with a moving obstacle, respectively. The schematic diagram is 
shown in Fig. 15. The density of fluid particles is ρ = 988kg/m3, the viscosity is ν = 1.0 × 
106m2/s, the gravity is G = 9.8m/s2, and the initial diameter of water particles is l0 = 0.005m. 
The object moves in horizontal direction and the equation of motion can be expressed as u = -
0.5×sin(2πt). The high resolution area in VSP-MPS simulation is static, so it is necessary to 
divide a large area into high resolution region (as shown in R2 (red box) in Figure 15(a)). As a 
contrast, the high resolution region does not need to be given beforehand with AVSP-MPS 
method, the high resolution region can dynamically change in the simulation to ensure fine 
particles are always used around the moving obstacle (as shown in R2 (red box) in Figure 
15(b)). 
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(a) VSP-MPS                                                 (b) AVSP-MPS 

Figure 15.  Geometry of the dam-break with obstacle 
Fig. 16 shows the diameter distribution of fluid particles at several typical times using AVSP-
MPS method, in the simulation, fine particles are only used around the moving obstacle, 
coarse particles are used in other area. It proves that the adaptive model has been successfully 
added to AVSP-MPS method, the high resolution area can dynamically change according to 
the distance between fluid particles to the moving obstacle. 

     
t = 0.4s                                                             t = 06s 



     
t = 1.0s                                                             t = 2.0s 

Figure 16.  Diameter distribution of the dam-break with obstacle 
Fig. 17 shows the time-varying curves of particle number and CPU obtained by three methods. 
Compared with the single resolution MPS method, AVSP-MPS can greatly reduce the particle 
number and CPU time in the simulation process by 59.5% and 43.0%. Compared with the 
VSP-MPS method which can only delimit the resolution region in advance, AVSP-MPS 
method can reduce particle number by 49.5%, CPU time by 27.1%. With an adaptive 
algorithm, AVSP-MPS method can reduce the number of particles needed in the simulation 
and improve the calculation efficiency. 

     
(a) Particle number                                           (b) CPU time 

Figure 17.  Comparison of particle number and CPU time in different cases 

5 Conclusions 

In this paper, the scheme of MPS method is improved with adaptive variable-size particle as 
AVSP-MPS to increase computational efficiency. First, we made linear programming for the 
selection of resolution and got the optimal resolution interval, compared with MPS with 
single resolution, VSP-MPS method can reduce the number of particles needed for simulation 
and greatly shorten the calculation time. Then the algorithm is improved by changing the 
decision method of particle entering the different resolution to improve the robustness at 
coarse/fine interface. The improved approach is that only when the whole particle (the 
boundary of the particle) enters the high resolution region the particle splitting into finer 
particles. The algorithm accuracy of the scheme is improved by changing the decision method 
of particle entering the different resolution. As the high resolution of the previous multi-
resolution MPS method is static, we get a moving high resolution region and studied the 
influence of high resolution region movement on the flow field, the region movement will not 
affect the flow field. At last, the scheme with adaptive variable-size particle as AVSP-MPS is 
introduced, the shape and area of the domains with high resolution can be dynamically 
adjusted during the calculation according to the distance from a fluid particle to a movable 
object. Compared with the VSP-MPS method which can only delimit the resolution region in 



advance, with an adaptive algorithm, AVSP-MPS method can further reduce the number of 
particles needed in the simulation and improve the calculation efficiency. 
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