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Abstract 

In the present work, elasto-plastic fatigue crack growth (FCG) in three-dimensional (3D) domains 

is numerically performed using the extended finite element method (XFEM). The XFEM does not 

require conformal mesh and remeshing for crack growth modeling as required in the standard finite 

element method. The crack front in 3D is modeled by joining the small size line segments. The 

fatigue crack growth rate (FCGR) is computed by the stress intensity factor (SIF) dependent Paris 

Law. The main challenge in the elasto-plastic FCG modeling is the evaluation of three modes of 

SIFs, which is properly handled by the J-decomposition approach. The field variables are 

decomposed into their symmetric and anti-symmetric portions across the crack surface in the J-

decomposition approach. These decomposed portions of fields are used to compute the symmetric 

and anti-symmetric J-integrals. The numerical issues such as the derivative of stress and strain 

energy density; evaluation of stress in the virtual domain during the J-integral calculation are 

properly addressed. The numerically predicted FCG behavior of Ni-based superalloy is validated 

experimentally at elevated temperature. 
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Introduction 

Advancement in the industries and technologies demands the highly efficient and reliable design 

of the structures/components. To fulfill this objective, all the complex loading effect, 

environmental factors, flaws in materials like heterogeneity, micro-defects, cracks are necessary 

to involve in the designing phase. In general, finite element method (FEM) is employed to assist 

the designing process of the structures/components but FEM is not suitable for designing when 

material flaws like cracks are considered in the structures/components. In FEM, there is the need 

of conformal mesh about the crack surface to produce the jump effect in displacement and a very 

fine mesh is required to capture the stress singularity at the crack front. The modeling to crack 

propagation requires the remeshing with every crack growth and transfer of data from old mesh to 

the new mesh. The remeshing procedure is a time-consuming process and data transfer introduces 

the inaccuracies in the solution. All these complications inspired the researchers to develop new 

methods to overcome these issues. 

In the past two decades, many numerical methodologies are developed by the researchers to 

overcome the problem of conformal mesh and remeshing for crack modeling such as boundary 

element method [1], meshfree methods [2]-[3], extended finite element method [4]-[5], extended 

isogeometric analysis [6]-[7], coupled meshfree and finite element method [8], gradient damage 



models [9], phase field method [10]  and many more. Among these methods, XFEM is one of the 

most robust and successfully implemented method to model the stationary cracks, elasto-plastic 

fatigue crack growth [11], creep crack growth [12], crack growth in heterogeneous materials [13], 

dynamic crack growth [14], etc. In XFEM, two types of enrichment functions are added to the 

standard FEM displacement approximation via the partition of unity. The jump enrichment 

function is utilized to model the jump in displacement field about the crack surface whereas the 

crack front singularity is captured by the front enrichment functions. 

In this paper, the methodology to model the elasto-plastic FCG in the 3D domain is presented. The 

SIF depended Paris Law is used to calculate the FCGR at the ends of the line segments of the crack 

front. The individual modes of SIFs are evaluated using the J-decomposition approach [15]. All 

the fields i.e. strain, stress and displacement derivatives are decomposed into symmetric and anti-

symmetric portions across the crack surface in this approach. A virtual cylindrical domain is 

created at the ends of the line segments of crack front to calculate the J-integral. The interpolation 

functions are used to calculate all the required fields at the virtual domain from the nodal data. 

However, the stress field cannot be obtained by directly interpolation due to plasticity thus; a data 

transfer scheme is employed to calculate the stress field at the virtual domain. Due to the presence 

of plasticity, direct derivatives of stress and strain energy density are not possible hence function 

approximation is utilized to compute the derivative of stress and strain energy density. The 

numerically computed FCG for Ni-based superalloy is compared with the experimental results and 

found in a good match. 

Mathematical Formulation 

In this section, XFEM based methodology to simulate the elasto-plastic FCG is explained. The 

FCGR is computed by SIF range based Paris Law. The individual modes of SIF are calculated by 

the J-decomposition approach, which depends on the decomposed fields. During the evaluation of 

J-integral, several numerical issues are faced that are discussed in detail in this section. The 

maximum principal stress criterion is used to obtain the crack growth direction.  

Governing Equations 

A residual stress-free domain of isotropic homogeneous material is considered for the formulation. 

The domain is assumed of volume   and bounded by the surface   as shown in Fig. 1. Prescribed 

traction and displacement is applied to the surface t  and u  of the domain respectively. A sharp 

traction free crack in the domain is also considered and denoted by the c  in Fig. 1. The 

equilibrium equation and the associated boundary conditions for the domain are defined as 
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where 
ij  is the Cauchy stress, iu  is the displacement, 

jn  is the unit normal vector, iu  and it  

are the applied displacement and traction on the surface u  and t  respectively. The strong form 

of Eq. (1) is converted into weak form by employing the principle of virtual work as 
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This weak form of equilibrium equation is written into discrete equations using discretization of 

the domain as follows 
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where B  is the gradient matrix of shape functions, C  is the elasto-plastic constitutive matrix, en  

is the number of elements and N is the shape function vector. The simultaneous solution of Eq. 

(6) gives the displacement field that is further used to compute the strain and trial stress field using 

displacement derivatives and constitutive relation respectively. The trial stress is checked for 

yielding at each integration point via J2 plasticity yielding criterion. For the yielded integration 

point, generalized Ramberg-Osgood material model along with associated flow rule is used to 

calculate the plastic strain and stress field [16] whereas for non-yielded integration point trial stress 

is taken as final stress field. The equilibrium of the system is ensured by the global convergence 

parameter that is defined as follows 
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Figure 1. An illustration on 3D cracked domain along with boundary conditions 
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If the convergence parameter is less than the tolerance that means the equilibrium has been attained 

and the next load step is initiated, otherwise solution of the discrete equations is performed again 

with the updated residual force and updated elasto-plastic constitutive matrix  D  as 
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This process is continued until the convergence is achieved. If the solution diverges then load step 

is taken as half and the solution of discrete equations is computed from the previously converged 

load step. 

Extended Finite Element Method 

XFEM has been successfully used to model the propagating cracks without the need of conformal 

mesh and remeshing of the domain during crack propagation. In this method, two types of 

enrichment are added to the standard FEM displacement approximation via the partition of unity. 

The jump enrichment function is used to model the crack surface whereas the crack front 

singularity is mimicked by the front enrichment functions. Due to the introduction of these 

enrichment functions, the total number of degree of freedom (DOF) of the system increased 

slightly. The enriched displacement approximation for a domain [17] can be written as 
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where ( )Η x  and ( )l x  are the jump and front enrichment functions respectively; n , cn  and tn  

presents all the nodes in the domain, nodes associated with completely cut elements and nodes 

associated with partially cut elements respectively;   and   are the DOFs related with jump 

enrichment function and front enrichment function respectively. The jump enrichment function 

and front enrichment function [18] are given below 
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where   x  is the normal distance from the crack surface; n  is the hardening constant of 

material; r  and   are the polar coordinates with respect to crack front. To trace the crack surface 

in the domain level set is used. 

Fatigue Crack Growth 

The Paris law is used to estimate the FCGR in the domain as 
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where da  is the crack growth, dN  is the number of cycles required for the crack growth da , 

I eqK  is the equivalent SIF range, C  and m  are the Paris law constants. The equivalent stress 

intensity factor range for the constant amplitude fatigue loading is defined as 
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where max

I eqK  and min

I eqK  are the equivalent stress intensity factor corresponding to 
max  and 

min  of 

applied fatigue load. The individual modes of SIFs (mode-I and mode-II) are used to compute the 

equivalent stress intensity factor as 
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where IK  and IIK  are the SIFs of mode-I and mode-II respectively that are evaluated by J-

decomposition approach, c  is the critical angle for crack growth. The maximum principal stress 

criterion [19] is used to compute the critical angle for crack growth as given below 
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J-decomposition Approach 

The individual modes of SIFs are evaluated from J-integral, which is calculated at the ends of the 

crack front line segments using the J-decomposition approach [20]. A virtual cylindrical domain 

as shown in Fig. 2 is created at these ends of crack front to perform the J-integral computation. 

The decomposed form of J-integral at these ends is defined as 
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where I ,II ,III represent the mode-I, mode-II and mode-III respectively, W  is the strain energy 

density, eL  is the length of the virtual domain along the crack front, q  is function having value 

one at the crack front and zeros at the boundary of the virtual domain. The symmetric portion of 

fields provides the mode-I SIF whereas anti-symmetric portion is further divided to obtain the 

mode-II and mode-III SIFs. 

 



In order to compute the J-integral by this approach, the required fields are interpolated from the 

original mesh to the virtual cylindrical domain via shape function interpolation and decomposed 

into symmetric and anti-symmetric portions across the crack surface. For the decomposition of 

fields, all the fields are required at the mirror point of the integration point that can be calculated 

from the nodal data by interpolation functions. Due to the presence of plasticity, stress field cannot 

be directly obtained at the virtual domain and mirrored point from the displacement field. 

Therefore, to calculate the stress field at the required point, a data transfer scheme is utilized. In 

this scheme, the stress field is transferred from the integration points to the nodes [21] by 
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where 
T

N  is the matrix contains the value of shape functions at the integration points, n  and 
ip  

are the fields at node and integration point respectively. After that, the nodal stress is interpolated 

at the required point using shape functions of the element. Due to the use of sub-tetrahedralization 

for enriched elements, the stress field is extrapolated at the nodes of sub-tetrahedron using Eq. (17) 

and stored for each tetrahedron separately. The interpolation of the stress field in the enriched 

element is performed in two steps. In the first step, sub-tetrahedron is identified that contains the 

mirrored point while in the second step; the stress field is interpolated using the extrapolated nodal 

Figure 2. A virtual domain at the end of crack front line segment for the calculation 

of J-integral 
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stress and shape functions of the identified sub-tetrahedron. The decomposed stress field for all 

the modes at the spatial point P across the crack surface 1-3 (as given in Fig. 3) is expressed as 
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Figure 3. Symmetric and anti-symmetric portion of stress field across the crack surface 

(1-3) at point P 



In a similar way, other fields can also be decomposed [22]. The analytical derivatives of strain 

energy density and stress are not possible due to the plasticity hence; it is evaluated by the function 

approximation. The required field of all the integration points of an element is fitted into a 

quadratic function by nonlinear least squares method as  
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where , ,    are the local coordinates of the integration points and 1 2 3 4 5 6 7 8 9 10f , f , f , f , f , f , f , f , f , f  

are the fitting constants. The derivative of Eq. (20) is used to compute the derivative of stress and 

strain energy density. 

Numerical Implementation 

The flowchart for the implementation of the FCG methodology is presented in Fig. 4. The 

discretized domain along with boundary conditions is given as input to the computational model. 

The crack front is divided into small line segments to perform the simulation. The elasto-plastic 

solution is performed on the computational model using a typical load step as discussed in the 

previous section. After obtaining the converged solution on complete loading, a virtual cylindrical 

domain is created at the ends of the line segments of crack front to evaluate the J-integral using 

the J-decomposition approach. The data is transferred from the original mesh to the virtual 

cylindrical domain to compute the J-integral. The stress evaluation at the virtual domain and mirror 

point is performed via the data transfer scheme. The derivatives of stress and strain energy density 

are computed by function approximation as given in Eq. (20). The decomposed fields are used to 

calculate the J-integral for all the modes, which are further converted into SIFs of individual modes 

as 
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where E  and G  is the Young’s modulus (for plane stress condition) and shear modulus 

respectively. The equivalent SIF and critical angle are calculated from the SIFs of individual 

modes. The crack growth rate at the ends of line segments of the crack front is evaluated using 

equivalent SIF range and the Paris Law. The crack increment is computed for a particular number 

of cycles and the current crack front is updated with this crack increment. For the next step of the 

analysis, the updated crack front is considered as the crack front and the whole process of loading 

and calculation of SIF is repeated. This process is continued until the equivalent SIF is less than 

the fracture toughness. 

Numerical Results and Discussion 

A compact tensile specimen consists of Ni-based superalloy having 32 mm width and 6 mm 

thickness is considered for the validation of the presented FCG methodology. A through crack of 

7.2 mm is considered in the specimen as shown in Fig. 5.  



 

 

 

Figure 4: The flowchart for the implementation of proposed FCG methodology  
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The fatigue load of  3500 N 0 1maxF R .   is applied at the elevated temperature of 650 °C. The 

mechanical and fatigue properties of Ni-based superalloy at the elevated temperature are provided 

in Table 1. The specimen is discretized into 15 × 15 × 3 elements while the crack front is divided 

into 8 line segments. A virtual cylindrical domain is created at the endpoints of the line segments 

of crack front except for the corner points of the crack front. The radius and length of the virtual 

cylindrical domain are taken as 1 mm and 0.5 mm respectively. The decomposed fields are used 

to calculate the individual modes of SIFs as described in the previous sections. 

 

 
 

Table 1. Material properties of Ni-based superalloy at 650 °C 

 

 

 

 

 

 

 

 

 

Mechanical Properties 650 ºC Value 

Young’s modulus, E  (GPa) 180 

Poisson ratio, v  0.33 

Yield strength, 
yts  (MPa) 653 

Ultimate tensile strength, uts  (MPa) 987 

Paris Law constant, C  1.78×10-8 

Paris Law constant, m  2.89 

Figure 5. A schematic of compact tensile specimen considered for simulation 

38.4 



The crack growth is evaluated from the crack growth rate at each endpoint of line segments of 

crack front for a particular number of cycles. Initially, the number of cycles is kept high but when 

the crack growth is in the range of element size then the number of cycles is reduced to capture 

the very high rate of crack growth. The numerically computed FCG is shown in Fig. 6 and 

compared with the experimental results [23]. The numerical results are found in a good agreement 

with the experimental results. The numerically obtained crack front at different stages of the 

simulation is also presented in Fig. 7. The predicted growth of the crack front in the middle of the 

specimen is high as compared to the surface of the specimen, which is consistent with the 

theoretical expectations. 

 

 

 

Summary 

In this paper, elasto-plastic FCG in the 3D domain is simulated using the XFEM. In the current 

study, FCGR is computed by the SIF based Paris law. The SIFs of individual modes at the ends of 

the line segments of the crack front are calculated via J-integral through J-decomposition 

approach. The variable fields are decomposed into symmetric and anti-symmetric portions across 

the crack surface in this approach. A virtual cylindrical domain has created at the ends of the line 

segments of the crack front to compute the J-integral. The nodal data is used to calculate all the 

required fields at the virtual domain by interpolation functions. In the presence of plastic 

deformation, the stress field at the virtual domain is obtained by a data transfer scheme. The direct 
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Figure 6. A comparison of numerically predicted fatigue crack growth and 

experimental results for Ni-based superalloy at elevated temperature 



derivatives of stress and strain energy density are not possible hence function approximation is 

employed to compute the derivative of stress and strain energy density. The obtained fatigue crack 

growth for the compact tensile specimen is compared with the experimental results and found in a 

good match. 
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