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Abstract 

The forced responses of blisks are highly sensitive to inevitable random mistuning, which can cause 

severe damage. Considerable computational efforts are required for the sampling process to acquire 

the statistical vibration properties of mistuned blisks via finite element models. Therefore, efficient 

surrogate models are preferred. In this paper, four methods are utilized to construct the relation 

between random mistuning and forced response amplitudes. These four methods include 

polynomial chaos expansion (PCE), response surface method (RSM), Kriging interpolation and 

artificial neural networks (ANN). A lumped parameter model of a 24-sector blisk is used to 

investigate the vibration patterns. Each sector has 2 degrees-of-freedom (DOF). Mistuning is 

simulated by treating the stiffness of blades as independently identically distributed (i.i.d) random 

variables and Sobol sequence is applied for designing the sample sites. On assessing the result, 

mean squared error (MSE) and Kolmogorov-Smirnov test are applied to numerically determine the 

accuracy. Results show that PCE can yield the most accurate and stable predictions of the statistical 

characteristics of the forced responses; Kriging interpolation and ANN are also remarkable while 

RSM does not show any priority on this issue. 

Keywords: mistuned blisks, forced response, polynomial chaos expansions, response surface 

method, Kriging interpolation, artificial neural networks 

 

Introduction 

Mistuning refers to inevitable variations of blisks and arises during the manufacturing and 

assembly process due to wear, maintenance, machining error, material dispersion, etc. These small 

deviations can lead to much larger response level than the ideal, tuned design[1]. The severe 

amplification of vibration altitude may cause high cycle fatigue (HCF) and premature failure of the 

blades. As was estimated in 1998, about 30% of all engine maintenance costs were caused by 

HCF[2]. Therefore, it is of great interest to accurately predict the adverse effect of mistuning on the 

vibration of blisks. 

 

The mistuning across blades is randomly distributed[3,4], thus we usually have to use the statistical 

properties of the forced responses of blisks to assess the effects of mistuning. The most commonly 

used method is Monte Carlo Simulation (MCS), which requires an amount of repetitive analysis 

and tiny deviations of parameters are needed in each process[5]. Typically, finite element (FE) 

models are applied to carry out the calculation process[3,3,6]. 



 

There have been numerous studies on the mistuned blisks using FE models. Slater pointed out that 

a complete FE model instead of a single sector was necessary because mistuning could break the 

cyclic symmetry[7]. Petrov considered it as an optimization problem to search for the best and worst 

vibration pattern using an FE model[8]. Castanier gave a complete FE model of a mistuned blisk[1]. 

He discussed about some of the fundamental issues of mistuned disks, including coupling and mode 

localization, and proposed an algorithm to accelerate MCS. Laxalde built a multistage FE model 

for mistuned blisks and also confirmed the validity[9]. More recently, accurate modeling of small 

manufacturing errors or geometric mistuning of blades is realized using the coordinate 

measurement methods[10]. One of the most significant advantages that make FE models 

irreplaceable is the high accuracy. However, although computational capacity of modern 

computers has greatly improved, it is still challenging to carry out a large number of MCS based 

on full FE models. Therefore, much attention has been paid to reduced order models (ROM) for 

mistuned blisks, mainly including the component-mode-based methods and the system-mode-

based methods[11–14]. 

 

The lumped parameter models are one kind of ROM. They treat each sector as a spring-mass 

oscillator connected to the ground and coupled to neighboring sectors by linear springs. Although 

not capable of precisely representing the actual engineering structures, these models can capture 

some basic features of the mistuned blisks, such as the modal localization and vibration 

amplification[15,16]. Also, the required computational efforts are far less than FE models. Therefore, 

they provide a good insight of the vibrational mechanism of mistuned blisks together with MCS. 

 

Surrogate models are another popular approach for uncertainty analysis in engineering. Instead of 

direct operations on each individual sample, the surrogate models pursue to establish an analytical 

relationship between the random input and output based on the results obtained at designed 

sampling points, which is much easier to use, and once the model is obtained, the computational 

efforts for new points are negligible. Since the forced responses of mistuned blisks are highly 

sensitive to the random mistuning, the relationship between the response amplitude and mistuning 

is highly nonlinear and difficult to define, thus the application of surrogate models for mistuned 

analysis has not drawn much attention. In a previous study, we tried to use RSM and Kriging 

metamodel to obtain the response amplification factor over a frequency range, but only succeeded 

when 4 sectors out of 24 were mistuned. When the number of mistuned sectors increases, the 

accuracy and the required number of samples of the metamodels are not acceptable. Sinha applied 

the method of PCE to analytically compute the statistics of the forced response of a mistuned blisk 

assembly[17]. But the proposed method is an intrusive one, which means that we have to modify the 

solver correspondingly. In practice, we prefer non-intrusive methods, which only need the input 

and output to construct the surrogate models. 

 

In this paper, we will try to build the relation between the forced response amplitude and the 

mistuning via four surrogate models, namely the polynomial chaos expansions (PCE), the response 

surface method (RSM), the Kriging interpolation and the artificial neural network (ANN), and 

compare their validities. A lumped parameter model is used to generate the training data. In later 

parts, we will introduce: 1) The basic theories and implementations in mistuned blisks of the 

aforementioned four methods; 2) A numerical example of lumped parameter blisk model; 3) The 

validation of the four methods, followed by the results and discussions; 4) Some conclusions. 



Briefs of Response Surface Method, Artificial Neural Networks, Kriging Interpolation and 

Polynomial Chaos Expansion 

Surrogate Models for Forced Vibration Analysis of Mistuned Blisks 

For a blisk, the amplitude of sector 𝑖  can be denoted as 𝐴𝑖 . If only the stiffness mistuning is 

considered, 𝐴𝑖 is determined by system stiffness matrix 𝑲, which consists of stiffness of the sectors: 

𝐴𝑖 = 𝐴𝑖(𝑲) (1) 

If we have 𝑛 random variables 𝒗 = [𝑣1, 𝑣2, ⋯ , 𝑣𝑛]T representing the input random mistuning for 𝑛 

sectors, and the scalar output 𝑢(𝑓𝑗), which is the amplitude of forced response with excitation 

frequency 𝑓𝑗, the target surrogate model can be written as 

𝑢(𝑓𝑗) ≈ 𝑓(𝒗) (2) 

In this paper, 𝑓 refers to PCE, RSM, Kriging interpolation and ANN and can be obtained using the 

designed training points, which will be described in the following subsections.  

We use the cross validation method to verify the surrogate models. Typically, the sample set is 

partitioned into two parts. One part is called the training set, noted as 𝐷, used to build a model, and 

the other is called the test set, noted as 𝑇 , used to verify the model. Generally, 𝐷  and 𝑇  are 

guaranteed to be i.i.d. The sample sizes are respectively written as |𝐷| and |𝑇|. Error on 𝑇 will be 

a significant indicator of the model validity. If the accuracy of the constructed surrogate model is 

acceptable, we can use it for the response analysis with other random mistuning to obtain the 

statistical characteristics. If not, we need to update or add some new training points to create a new 

model and validate it again. The implementation procedure is illustrated in figure 1. 

 

Figure 1. The flowchart for establishing the surrogate models for forced response analysis of 

mistuned blisks 

Polynomial Chaos Expansion 

The method of PCE expands the stochastic process 𝑢 = 𝑢(𝒗) into an infinite series[18]: 

𝑢 = 𝑢(𝒗) = ∑ 𝛼𝑘

∞

𝑘=0

𝜙𝑘(𝒗) (3) 



where 𝜙𝑘(⋅) is a polynomial basis and 𝛼𝑘 is the corresponding coefficient. Often this expression is 

truncated to 𝑚 terms as an approximation of the infinite orthogonal series: 

∑ 𝛼𝑘

∞

𝑘=0

𝜙𝑘(𝒗) ≈ ∑ 𝛼𝑘

𝑚

𝑘=1

𝜙𝑘(𝒗) (4) 

Apparently, the key to validate Eq. (4) is determine the coefficients 𝛼𝑘’s. 

Generally, the number of terms, 𝑚, is governed by 𝑛𝑟, where 𝑟 refers to the order of polynomial 

basis that are included. In other words, there is an exponential growth in 𝑚 as 𝑟 gets large, making 

high order PCE inappropriate. Second-order PCE is used later in this paper. 

 

In addition, orthogonality of the polynomials has to be guaranteed, namely the inner product of 𝜙𝑘 

and 𝜙𝑙 is always equal to 0 when 𝑘 ≠ 𝑙: 

⟨𝜙𝑘, 𝜙𝑙⟩ = ∫ 𝜙𝑘

∞

−∞

(𝒗)𝜙𝑙(𝒗)𝑝(𝒗)d𝒗 = 0 (5) 

where 𝑝(𝒗) is the weight function, generally substituted by the probability density function (PDF) 

of 𝒗. Make an inner product of 𝑢 and 𝜙𝑙 and one can obtain 
⟨𝑢, 𝜙𝑘⟩ = 𝛼𝑘⟨𝜙𝑘, 𝜙𝑘⟩ (6) 

due to the orthogonality. 

 

Therefore, to compute the coefficients 𝛼𝑘, we only need to divide ⟨𝑢, 𝜙𝑘⟩ by ⟨𝜙𝑘, 𝜙𝑘⟩: 

𝛼𝑘 =
⟨𝑢, 𝜙𝑘⟩

⟨𝜙𝑘, 𝜙𝑘⟩
=

∫ 𝑢
∞

−∞
(𝒗)𝜙𝑘(𝒗)𝑝(𝒗)d𝒗

∫ 𝜙𝑘
2∞

−∞
(𝒗)𝑝(𝒗)d𝒗

(7) 

Now that we have the coefficients, numerical integral schemes are often applied to obtain the upper 

part of Eq. (7). On designing the integral sites of 𝑢(𝒗), we use Sobol sequence to accomplish the 

above integral. 

Response Surface Method 

RSM is a traditional but quite widely-used method. The main idea is to use a sequence of designed 

experiments to obtain an optimal response. Box and Wilson acknowledge that this model is only 

an approximation, but such a model is easy to estimate and apply, even when little is known about 

the process[19,20]. RSM is actually an extension of least square regression. It treats 𝑢(𝒗) as a linear 

combination of first and second order terms of 𝒗: 

𝑢(𝒗) ≈ 𝑓(𝒗) = 𝜷T 𝒗̃ = 𝛽0 + ∑𝛽𝑖

𝑛

𝑖=1

𝑣𝑖 + ∑∑𝛽𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

𝑣𝑖𝑣𝑗 (8) 

where 𝒗̃ = [1, 𝑣1, ⋯ , 𝑣𝑛, 𝑣1
2, 𝑣1𝑣2, ⋯ , 𝑣𝑛

2]T is the augmentation of 𝒗, and 𝜷 = [𝛽0, 𝛽1,⋯ , 𝛽𝑛𝑛]T is 

the coefficient vector. If we note matrices 𝑽 and 𝑭 as the samples from 𝐷: 

𝑽 = [𝒗1̃, 𝒗2̃, ⋯ , 𝒗𝑑̃] = [

1 1 ⋯ 1
𝑣11 𝑣12 ⋯ 𝑣1𝑑

⋮ ⋮ ⋱ ⋮
𝑣𝑛1

2 𝑣𝑛2
2 ⋯ 𝑣𝑛𝑑

2

] , 𝑭 = [𝑓(𝒗1), 𝑓(𝒗2),⋯ , 𝑓(𝒗𝑑)]

Then we have 

𝑭 = 𝜷T𝑽 (9) 

and the least square estimation of 𝜷 is 

𝜷̂ = (𝑽𝑽T)−1𝑽𝑭T (10) 



Kriging Model 

Kriging interpolation can be expressed as a two-step process: first, the covariance structure of the 

samples in 𝐷 is determined by fitting a variogram; second, weights derived from this covariance 

structure are used to interpolate values for samples in 𝑇. The Kriging model can be considered as 

a parametric model combined with a random process which simulates the prediction error, denoted 

as Eq. (11): 

𝑢(𝒗) = 𝑓(𝜷, 𝒗) + 𝜖(𝒗) (11) 

where 𝑓(𝜷, 𝒗) is a combination of several basis functions; 𝜷 is a vector containing the parameters 

in need; 𝜖(𝒗) is used to model the error. 𝜖(𝒗) satisfies the following properties: 
E[𝜖(𝒗)] = 0

Var[𝜖(𝒗)] = 𝜎2

Cov[𝜖(𝒗(𝑖)), 𝜖(𝒗(𝑗))] = 𝜎2𝑅(𝒗(𝑖), 𝒗(𝑗))

(12) 

The matrix 𝑅(𝒗(𝑖), 𝒗(𝑗)) is a correlation function which evaluates how close 𝒗(𝑖) and 𝒗(𝑗) are to 

each other. And this function is: 

1) always positive but no larger than 1; 

2) negative correlated to the distance between 𝒗(𝑖) and 𝒗(𝑗); 

3) equal to 1 if and only if 𝒗(𝑖) = 𝒗(𝑗). 

 

In a nutshell, Kriging interpolation predicts a desired point by summing all the acquired samples 

based on different weights. One can infer to [21] for more detailed derivation. 

Artificial Neural Networks 

The method of artificial neural networks (ANN) was first invented in the 1940s, as an attempt to 

simulate the network of neurons that made up a human brain, and has been one of the main tools 

used in machine learning in recent years. A typical feed-forward ANN uses multiple layers of 

mathematical processing to make sense of the information it is fed, as is shown in Fig. 2. Here we 

omit the derivation and just come up with the essence that we only have to care about the input and 

the output and leave the calculation. 

 

Figure 2. An example of a 4-layer feed-forward ANN 

The first layer on the left in figure 2 is the input layer, which accepts the input that is fed. The first 

layer on the right gives the output. And the layers between, which are called hidden layers, 

accomplish the calculating process. In this manner, a model 𝑢 ≈ 𝑓(𝒗) is established, where 𝑢, 

obviously, implies the output layer and 𝒗 the input layer. 



Typically, it plays an important role to design the structure of an ANN and to adjust parameters. In 

this paper, we make use of ‘Sci-Kit Learn 1’, a scientific computation package for Python to 

accomplish the construction, and we only focus on the performance of ANN when applied to the 

analysis of mistuned blisks. 

Numerical Example of a Mistuned Blisk 

Lumped Parameter Model 

The lumped parameter model of the blisk is illustrated in figure 3 with a cyclic chain of spring-

mass oscillators with several degrees of freedom for each sector[22]. For each sector of the blisk, 

the springs are massless, 𝑥1 and 𝑥2 describe the vibration of blade and disk, 𝑚1, 𝑚2, 𝑘1 and 𝑘2 are 

the equivalent mass and stiffness of blade and disk, respectively. 𝑘𝑐 denotes the coupling stiffness 

between every two sectors. 𝑐 is the damping of the blade. Here, we set 𝑛 = 24, 𝑐 = 0.005, 𝑓 =
1,𝑚1 = 1,𝑚2 = 426, 𝑘1 = 1, 𝑘2 = 1.1, 𝑘𝑐 = 493. 

 
Figure 3. A lumped parameter model of a blisk 

The sector stiffness matrix can be written as 

𝑲𝑖 = [
𝑘1 −𝑘1

−𝑘1 𝑘1 + 𝑘2 + 2𝑘𝑐
] , 𝑲𝑐 = [

0 0
0 −𝑘𝑐

] (13) 

Therefore, for an 𝑛-sector blisk, its system stiffness matrix 𝑲, mass matrix 𝑴 and damping matrix 

𝑪 can be denoted as: 

𝑲 =

[
 
 
 
 
𝑲1 𝑲𝑐 0 ⋯ 𝑲𝑐

𝑲𝑐 𝑲2 𝑲𝑐 ⋯ 0
0 𝑲𝑐 𝑲3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝑲𝑐 0 0 ⋯ 𝑲𝑛]
 
 
 
 

,𝑴 = [

𝑴1 0 ⋯ 0
0 𝑴2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑴𝑛

] , 𝑪 = [

𝑪1 0 ⋯ 0
0 𝑪2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑪𝑛

]

where 

𝑴𝑖 = [
𝑚1 0
0 𝑚2

] , 𝑪𝑖 = [
𝑐 0
0 0

] , 𝑖 = 1,2,⋯ , 𝑛  

The equations of motion of the blisk can be written as 

𝑴𝒙
..
+ 𝑪𝒙

.
+ 𝑲𝒙 = 𝑭 (14) 

                                                        

1 https://scikit-learn.org/stable/ 



in which, 𝐅 = [𝐹1, 𝐹2, ⋯ , 𝐹𝑛]T refers to the excitation vector whose 𝑖-th component 𝐹𝑖 excites the 

𝑖-th sector. Usually, the excitation on each sector has the same amplitude with a fixed phase lag 

with the following form 

𝐹𝑖 = 𝑓𝑒𝑗𝜓𝑖𝑒𝑗𝜔𝑡 (15) 

where 𝑗 = √−1 is the imaginary unit, 𝑓 is the excitation force acting on the 𝑖-th sector, 𝜔 is the 

excitation frequency and 

𝜓𝑖 =
2𝑖𝜋𝐸

𝑛
 

describes the blade’s relative angle where 𝐸 = 4 is the engine order. 

The forced response of the blisk can be written as 

𝑨 = 𝑯−1𝒇 (16) 

where 

𝑯 = −𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲

𝑨 = [𝐴1, 𝐴2, ⋯ , 𝐴2𝑛]T

𝒇 = 𝑓[𝑒𝑗𝜓1 , 𝑒𝑗𝜓2 , ⋯ , 𝑒𝑗𝜓2𝑛]
T

(17) 

We carried out a simple analysis of the vibration amplitudes. A tuned blisk with 24 sectors was 

investigated to capture the basic rules of excitation-response relations. Then we substituted the 

frequencies back in Eq. (21) to calculate the resonance amplitudes, shown in figure 4. 

 

Figure 4. Natural frequencies and resonance amplitudes of the blisk 
As is shown in figure 4, the largest amplitude is 201.3505, and appears when excitation 
frequency is 0.993. Therefore, we will set a frequency sweep near 0.993 in later sections in 
order to concentrate on the resonance performance of the blisk. 

Stiffness Mistuning 

One can simulate mistuning via a couple of methods, of which the simplest and most common 
one is to choose a different equivalent stiffness for every blade[16]. This method is widely 
applied in relative works because deviations among blades don’t change the vibration modes. 
 
Let 𝛿𝑖 be the relative variation on equivalent stiffness 𝑘1 of the 𝑖-th blade and we can use 

𝑘1
𝑖 = 𝑘1(1 + 𝛿𝑖) (18) 

to represent the stiffness. For convenience, we write Eq. (18) as 



𝑘𝑖 = 𝑘(1 + 𝛿𝑖) (19) 

Generally, we assume that 𝛿𝑖’s are normally i.i.d, namely 

𝛿𝑖 ∼ 𝑁(𝜇, 𝜎2), 𝑖 = 1,2,⋯ ,24  

In this paper, 𝜇 = 0 and 𝜎 = 0.03. 
 
We’ve known that the response amplitudes vector 𝑨 is influenced by the stiffness matrix 𝑲, 
controlled by the equivalent stiffnesses 𝑘𝑖 ’s. So 𝑨 can be seen as a stochastic process governed 
by 𝑘1 ∼ 𝑘24: 

𝑨 = 𝐴(𝑘1, 𝑘2, ⋯ , 𝑘24) (20) 

In the following section, we will illustrate the results of the four surrogate models, and make 
a comparison. 

Results and Discussions 

In this section, we will build the four surrogate models based on sample set 𝐷 and testify the 
results on 𝑇 which contains 1000 samples. 
 
Two issues will be considered:  
1) to investigate the relation between |𝐷| and the prediction accuracy;  
2) to investigate the forced responses under 5 excitation frequencies near 0.993. 
 
In terms of evaluating the error, we care about the mean squared error (MSE) and K-S test 
result, which is used to assess the similarity of two probability distributions. 

Relation Between Sample Size and Accuracy 

It is commonly acknowledged that sample size |𝐷| has a profound impact on the prediction 
performance of models. So firstly we want to explore the relationship between prediction 
accuracy and |𝐷|. 
 
Setting the excitation frequency to be 𝜔 = 0.993, we examine the performance of the four 
methods when |𝐷| = 50,100,200 and 500 respectively. 
 
Figure 5 shows the relative errors comparing the four methods with MCS results under 
different sample sizes. Basically, PCE generates the best result, followed by Kriging 
interpolation and ANN. RSM is barely of use when |𝐷| < 500. The relative error of PCE and 
RSM prediction, as one can see, shrinks dramatically when |𝐷|  increases, meaning that 
simply adding training samples can lead to remarkable performance promotion. The result 
of RSM is hardly credible when 𝐷  contains less samples. On the other hand, Kriging 
interpolation and ANN have similar results. And these two methods perform an 
independence on the sample size, namely, increase of |𝐷| hardly improves the performance. 
Further more, the prediction histograms of the four methods based on different sample sizes 
are plotted in figures 6 to 9. 



 

Figure 5. Boxplots of relative errors of the four methods under different sample sizes 

 

Figure 6. Histograms of PCE prediction based on four sample sizes 



 

Figure 7. Histograms of RSM prediction based on four sample sizes 

 

Figure 8. Histograms of Kriging prediction based on four sample sizes 



 

Figure 9. Histograms of ANN prediction based on four sample sizes 
One can clearly see that the distribution of PCE prediction matches best with that of MCS 
result. When |𝐷| ≥ 200, the data sets look almost identical. So we will use a training set with 
|𝐷| = 200 in later parts. Although there seems to be apparent differences in the middle parts, 
PCE predictions always perform well in the tail parts, namely extreme values. And extreme 
values should draw more attention because they are more likely to cause failure. On the other 
hand, Kriging interpolation and ANN also perform quite good utility. RSM hardly captures the 
essence of the distribution when |𝐷| ≤ 500. 
 
Moreover, MSE and K-S test result of the four methods are listed in table 1, where KST 
represents the result of K-S test. 

Table 1. Similarity of predictions and samples with different sample sizes 

Sample 
size 

PCE RSM Kriging ANN 

MSE KST MSE KST MSE KST MSE KST 

50 6.30e-4 0.95 0.21 0.00 8.12e-4 0.68 9.62e-4 0.00 

100 3.55e-4 0.91 4.36e-2 0.00 5.96e-4 0.91 1.19e-3 0.46 

200 1.04e-4 0.99 1.38e-2 0.00 5.09e-4 0.98 1.54e-3 0.08 

500 2.87e-5 0.99 1.43e-3 0.34 4.53e-4 0.88 7.89e-4 0.31 

Prediction under Different Frequencies 

Next, we set a frequency sweep: 𝜔 = 0.991, 0.992, 0.993, 0.994 and 0.995, trying to figure out 
to which frequency the blades resonate the most and whether the four methods work when 
|𝐷| = 200. The error boxplots and the histograms are shown in figures 10 to 13, and specific 
statistical results are listed in table 2. 
 
The result of PCE is shown in figure 10, containing the relative error and the histograms 
paired with that of MCS. Apparently, the accuracy of PCE is sufficiently guaranteed. 
 



Figure 11 shows the prediction of RS. One can clearly see that the result is much worse than 
that of PCE predictions. And RSM gives some predictions that differ from test samples by over 
30%, which are hard to be treated as valid results. Moreover, we can see from the histograms 
that RSM captures the mean values well, but it fails to predict the flank parts. 
 
One can see from figure 12 that Kriging prediction histograms resemble those of test samples 
well, a little worse than PCE but far better than RSM and ANN. 
 
In this paper, a one-hidden-layer ANN is used. The number of neurons in hidden layer is 20; 
activation function is radial basis function (RBF); solver algorithm is gradient descent; step 
size is 0.0001 and max iteration number is 1000. Above work is done in Python, “scikit-learn” 
package specifically. The result is shown in figure 13. 
As is shown in the histograms of figure 13, ANN can yield sufficiently accurate result. In a 
word, this method has a promising convergence comparing to RSM when its model 
parameters are appropriately chosen, which often needs manual intervention, making it not 
as good as PCE and Kriging interpolation. 

 

Figure 10. PCE predictions under different excitation frequencies based on 200 samples 



 

Figure 11. RSM predictions under different excitation frequencies 

 

Figure 12. Kriging predictions under different excitation frequencies 



 

Figure 13. ANN predictions under different excitation frequencies 
Table 2. Similarity of predictions and samples under different excitation frequencies 

Freq. 
PCE RSM Kriging ANN 

MSE KST MSE KST MSE KST MSE KST 

0.998 6.25e-5 0.99 1.31e-2 0.00 1.13e-4 0.98 9.62e-4 0.08 

0.999 1.07e-4 0.99 1.33e-2 0.00 3.39e-4 0.88 2.77e-3 0.60 

1.000 1.04e-4 0.99 1.38e-2 0.00 5.09e-4 0.98 1.54e-3 0.61 

1.001 9.62e-5 0.98 1.38e-2 0.00 3.36e-4 0.72 4.21e-3 0.00 

1.002 5.59e-5 0.98 1.36e-2 0.88 1.31e-4 0.99 5.73e-3 0.00 

Obviously, PCE provides the most valid and stable results, because MSE and KST of PCE are 
both the best among the four methods. And the distribution best resembles that of test set. 
Kriging interpolation and ANN are also remarkable on this issue. RSM fails to model the 
vibration properly, making it hard to be of actual use. 

Conclusion 

The statistics of forced response of a mistuned blisk have been calculated via second-order 
PCE and three other methods. mean square error in addition with the K-S test result of 
predictions of the four methods have been computed and discussed. With 200 training 
samples, PCE can yield the most accurate and convergent result, followed by Kriging 
interpolation and ANN. RSM seems to be inappropriate on this issue. The accuracy of PCE and 
RSM increases when the sample size gets large. In addition, PCE provides a functional 
relationship between mistuning variables and the response amplitudes, which can be used 



for further analysis on the sensitivity of amplitudes to the variables for numerical 
optimization. 
 
The analysis and results presented in this paper can be easily applied to lumped-parameter 
models even with more degrees of freedom in future works. Only the 𝑘1

𝑖 ’s will have to be 
redefined. 
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