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Abstract 

The R-function theory is applied to describe a shallow spherical shells on Winkler foundation 

with concave boundary, and then a quasi-Green’s function is established by using the 

fundamental solution and the normalized boundary equation. The quasi-Green’s function 

satisfies the homogeneous boundary condition of the problem. The differential equation of the 

problem is reduced to two simultaneous Fredholm integral equations of the second kind by the 

Green’s formula. The singularity of the kernel of the integral equation is overcome by choosing 

a suitable form of the normalized boundary equation. A comparison with the ANSYS finite 

element solution shows a good agreement, and it demonstrates the feasibility and efficiency of 

the present method.  

Keywords: Green’s function, R-function, integral equation, bending of shallow spherical shell, 

concave boundary 

Introduction 

As a kind of structural forms, the shells and plates are widely used in various fields, such as, in 

the large-span roof, the underground foundation engineering, the hydraulic engineering, the 

large container manufacturing, the aviation, the shipbuilding, the missiles, the space technology, 

the chemical industry, and so on. Only few problems of the shells and plates with a regular 

geometric boundary and a simple differential equation can be solved with an analytical or a half 

analytical method. For most these problems with a geometry of arbitrary shape and a complex 

boundary condition, only numerical methods can be used to solve the problems, such as  the 

boundary element method[1], the finite element method[2] and the finite difference method[3]. 

 

In the present paper, the R-function theory and the quasi-Green’s function method (QGFM) 

proposed by Rvachev [4] are utilized. The bending problem of simply supported dodecagon 

shallow spherical shells on Winkler foundation with concave boundary is studied. The 

governing differential equation of the problem is decomposed into two simultaneous 

differential equations of lower order by utilizing an intermediate variable. A quasi-Green’s 

function is established by using the fundamental solution and the boundary equation of the 

problem. This function satisfies the homogeneous boundary condition of the problem, but it 

does not satisfy the fundamental differential equation. The key point of establishing the 

quasi-Green’s function consists in describing the boundary of the problem by a normalized 

equation 0=  and the domain of the problem by an inequality 0 . There are multiple 

choices for the normalized boundary equation. Based on a suitably chosen normalized boundary 

equation, a new normalized boundary equation can be established such that the singularity of 
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the kernel of the integral equation is overcome. For any complicated domain, a normalized 

boundary equation can always be found according to the R-function theory. Thus, the problem 

can always be reduced to two simultaneous Fredholm integral equations of the second kind 

without the singularity. Using the R-function theory, Li and Yuan described successfully the 

rectangular, trapezoidal, triangular and parallelogrammic domains of plates[5][6] and shallow 

spherical shells[7][8]. For the first time, the R-function theory is applied to describe the 

dodecagon domain of the shallow spherical shells with concave boundary. The numerical 

example demonstrates the feasibility and efficiency of the present method. The R-function 

theory can be used to describe any more complex domains of the plates and shells. 

Fundamental equations 

The governing differential equations of the bending problem of simply supported shallow 

spherical shells on Winkler foundation[9] can be expressed as follows. 
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24 )( xx +=  is the biharmonic operator,   is the stress function, w  is the 

radial deflection of the shell, R  is the radius of curvature of the shell, k  is the elastic 

coefficient of the foundation, ),( 21 xx=x ,   is the domain of the trapezoid of shallow 

spherical shells in Cartesian coordinates, 
ZP  is the radial load; and ))1(12( 23 −= EhD  is the 

flexural rigidity of the shell, in which h  is the thickness of the shell, and E  and   are Young’s 

modulus and Poisson’s ratio, respectively. 

The simply supported boundary conditions can be written as. 
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 .Making use of Eqs.(1) and (3), we can easily obtain. 
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Substituting Eq.(4) into Eq.(2) yields.  
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To decompose Eq.(5), let us introduce the following intermediate variable. 
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Then, substituting Eq.(6) into Eq.(5), we obtain the following two simultaneous differential 

equations of second rank.  
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The displacement and the bending moment should be equal to zero along the simply supported 

boundary of shallow spherical shells on Winkler foundation, which can be written as. 

 

0=w  and 0=M ,  x                                                            (8) 

Integral equations 

Let 0=  be the normalized boundary equation of the first-order on the boundary  , i.e.[4] 
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The quasi-Green’s function can be established as follows. 
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),( 21 =ξ . Obviously, the quasi-Green’s function ),( ξxG  satisfies the following condition. 
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To reduce the boundary value problems Eqs.(7) and (8) into the integral equations, the 

following Green’s formula of sets of function )(2 C , i.e., U and )(2  CV , is applied. 
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From Eqs.(7), (8), (11)and (12), and noticing that rln)21(   is the fundamental solution[10] of 

the Laplace operator, then the following integral equations are obtained. 
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here )(ξ = , 
ξ= ; and jir )()( 2211 xx −+−=  , in which i  and j  denote unit vectors in 

1x  and 
2x  directions, respectively. 

),( ξxK  in Eq.(15) appears discontinuous only if 0=R , i.e., both ξx =  and 0=  come into 

existence. Actually, when ξx = , Eq.(15) can be reduced to. 
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To make the kernel of the integral equations )(),(  CK ξx , A normalized boundary 

equation will be constructed to ensure the continuity of ),( ξxK  in the following. It can be easily 

testified that. 
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where 00 =  is the normalized equation on the boundary  , i.e., 0  satisfies Eq.(9). 

Obviously, equation   is also a normalized boundary equation of the first-order. 

Based on a suitably chosen normalized boundary equation 00 = , a new normalized boundary 

equation 0=  can be constructed by using Eq.(17), which ensure the continuity of the integral 

kernel ),( ξxK  in the integral domain. 

To obtain the numerical results of the boundary problem, the integral domain   is divided into 

several subdomains ),......,2,1( Nii = , and in each subdomain, a rectangular quadrature formula 

is applied. Thus, the integral equations (13) and (14) can be discretized into the linear algebraic 

equations. Then, the radial deflection )(xw  can be obtained by solving the algebraic equations. 

Numerical example 

We investigate a simply supported dodecagon shallow spherical shell on Winkler foundation 

with the planform shown in Fig.1. Take a =60, =b 80, =c 40 and d =30. The following 

reference parameters are used: the radius of curvature of the shell R =200, the thickness of the 

shell h =2, Poisson’s ratio 3.0= , Young’s modulus E = 6101.2  , the elastic coefficient of the 

foundation k =200, and the radial load 
ZP =70. According to the R-function theory[4], a 

normalized boundary equation of the first rank 00 =  can be constructed from the following 

equation:   
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where 02/)( 2
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1 −= axa  is the vertical band limited by straight lines ax =1
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2 −= bxb  is the horizontal band limited by straight lines bx =2
;  
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3 −= cxc  is the vertical band limited by straight lines cx =1
;  

and 02/)( 22

24 −= ddx  is the outer part of the band limited by straight lines dx =2 .  

The Boolean operations  ,   (disjunction and conjunction), which correspond to the union   

and intersection  . These R-operations are defined as follows[1]: 

 )2(
1

1 22 XYYXYXYX 


 −+++
+

= , )2(
1

1 22 XYYXYXYX 


 −+−+
+

= , 

where the parameter  varies within 11 −  . For example, if the value  is equal to 

zero,then the whole domain can be presented as Eq.(18). 1 , 2 , 3 and 4  are a normalized 

equation of the first rank. 01 = , 02 = , 03 =  and 04 =  denote various parts of the 

boundary of the dodecagon shallow spherical shell on Winkler foundation, respectively. The 

radial deflection curves of line 02=x  and line 01 =x  for different k  and different R  by the 

QGFM and by the ANSYS finite element method (FEM) are shown in Figs.2-5 for a 

comparison, respectively; a good agreement is observed between the two methods. 
 

 



 

 

 

 

 

Fig.1  Dodecagon planform 
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Conclusions 

In the present paper, the R-function theory is applied to describe a shallow spherical shells on 

Winkler foundation with concave boundary, and it is used to construct a quasi-Green’s function.  

Compared with the FEM solution, the numerical results of the QGFM demonstrate its 

feasibility, efficiency and rationality. The R-function theory can also be used to effectively 

solve various boundary value problems of the plates and shells by constructing a trial function 
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Fig.2  The deflection curve of line 02=x  in 

Fig.1 for different k  

Fig.3  The deflection curve of line 01=x  in 

Fig.1 for different k  

 

Fig.4 The deflection curve of line 02=x  

in Fig.1 for different R  

 

Fig.5  The deflection curve of line 01=x  

in Fig.1 for different R  

app:ds:rationality
app:ds:rationality


 

that satisfies the complex boundary shape and by combining with the other method of weighted 

residuals such as the variational method[11] and the spline-approximation[12]. 
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