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Abstract 

Structural damage detection (SDD) is an essential link to structural safety in the field of 
structural health monitoring (SHM). With the development of SHM technologies, higher 
requirements are necessary for the safety of structures. Therefore, many SDD methods have 
been emerging in the last decades. Due to the ill-posedness of SDD problems, regularization 
techniques are introduced to locate structural damages and quantify severities of damages 
with a higher accuracy. However, the influence of regularization penalties on SDD results is 
lack of consideration to date. In this study, based on the model updating technique, an 
intensive study is proposed to investigate the effect of different regularization penalties in 
structural damage patterns. First-order sensitivity analysis is chosen to establish the identified 
equation. Considering structural damage patterns, three regularization penalties, i.e. the l2 
norm, l1 norm and l1/2 norm penalties are adopted for this comparative study. The SDD 
problem is converted into a kind of optimization problems by defining an objective function 
with different regularization penalties, and they are finally solved by the particle swarm 
optimization (PSO) algorithm. The spring-mass model and cantilever beam are taken as 
examples in numerical simulations for comparative studies. The illustrated results show that 
there are significant effects on the SDD results using different regularization penalties. The l2 
norm penalty is more suitable for structural model updating. The l1 norm penalty has positive 
effect on identifying structural damages for contiguous zones, and the l1/2 norm penalty has 
higher accuracy for noncontiguous damage identification than the l1 norm penalty, which 
provides a potential tool for SDD onsite in the SHM field. 

Keywords: Structural health monitoring (SHM), structural damage detection (SDD), 
regularization, norm penalty, structural damage patterns, sensitivity analysis, particle swarm 
optimization (PSO). 
 

Introduction 

In recent years, more and more scholars have been devoting to ensure the safety of in-service 
structures [1]-[6]. As an effective way for monitoring long-term properties and states in the 
service life of structures, structural health monitoring (SHM) uses measured structural 
responses to estimate the change in structural states. Structural damage detection (SDD) is a 
vital step in the SHM field and is applied to locate and quantify damages of structures. 



 
Modal-based method [1] is one kind of SDD methods to detect damages by modal parameters. 
The common modal parameters for SDD are frequencies and mode shapes. Effectively 
utilizing both frequencies and mode shapes for SDD has been proposed in many methods, and 
sensitivity analysis is a common technique to establish the identified equations in these 
methods. Cawley and Adams [2] proposed a SDD method using sensitivity analysis and 
frequencies. However, frequencies are global structural properties, and they are not sensitive 
to local damages. To overcome this shortcoming, mode shapes, local structural properties and 
so on, were introduced to the SDD method by Chen et al [3]. Li et al [4] improved SDD 
methods with the advantages of frequencies and mode shapes to improve accuracy of SDD 
results. However, accurate results are not obtained due to the ill-posedness of SDD problems.  
 
Regularization techniques are common approaches to deal with the ill-posed problem. Many 
scholars have introduced regularization techniques into SDD. Tikhonov regularization method 
(referred to as l2 norm regularization method) is a classical regularization technique, and has 
been used in some SDD studies. For example, Li and Law [5] presented an adaptive Tikhonov 
regularization method for solving the nonlinear model updating problem. SDD results 
obtained by the l2 norm regularization method do not match the sparsity property of actual 
damages. Lasso regularization method (referred to as l1 norm regularization method) based on 
modal updating techniques with natural frequencies and mode shapes was proposed by Hou et 
al. [6]. Moreover, the lq (0 < q < 1) norm regularizations have been verified to obtain sparser 
solution than the l1 norm regularization. The experimental study [7] has been conducted to 
show that the l1/2 norm regularization can be taken as a representation among the lq norm 
regularizations, and the l1/2 norm regularization was introduced to SDD [8]. 
 
To compare performances of regularization techniques, Zhang and Xu [9] gave comparative 
studies between the l2 norm and the l1 norm regularization on damage detection. This study 
showed that the l1 norm regularization exhibited superiority over the l2 norm regularization 
for SDD. Sparsity of solutions and appropriate scenarios of regularization methods is diverse 
when different properties of norm penalties are used. Single damage pattern is unable to 
reflect effects of norm penalties, so more damage patterns will be considered in this paper. 
 
On the other hand, swarm intelligence algorithms (SI) are evolutionary algorithms to promote 
the progress and development of scientific research. Due to their advantages of solving 
optimization problems, SI-based algorithms have been widely used in SDD, such as firefly 
algorithm [10], genetic algorithm [11], artificial bee colony algorithm [12] and so on. As one 
of SI-based algorithms, particle swarm optimization (PSO) was proposed by Kennedy and 
Eberhart [13] and widely applied in many fields due to its simplicity and easy implementation. 
PSO has been introduced into SDD for obtaining the optimal solutions [14]-[15]. 
 
In this study, comparative studies on SDD with different regularization methods are 
conducted. Sensitivity analysis is adopted to establish the relationship between structural 
damages and modal parameters. The l2 norm penalty, the l1 norm penalty and the l1/2 norm 
penalty are selected to define objection functions respectively. The PSO algorithm is utilized 



to solve these objection functions. To compare the appropriate scenarios of regularization 
methods, a spring-mass model and a cantilever beam are simulated. 

Theoretical background 

Sensitivity Analysis 

Structural frequencies and mode shapes are affected by the change in structural physical 
parameters. The sensitivity-based dynamic analysis method defines the first-order sensitivity 
analysis equation based on the correlation between structural modal parameters and physical 
parameters. It can detect damage locations and quantify damage severities based on finite 
element model and the sensitivity equation. 
 
In this study, it is assumed that structural damages only cause the change in stiffness, and it is 
described by the change in elastic modulus. Thus, the global stiffness matrix of a n-element 
structure can be expressed as: 
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where Kj, αj represent the jth element stiffness matrix and damage reduction factor, 
respectively. 
 
The first-order sensitivity analysis equation based on derivatives of frequencies and mode 
shapes can be expressed as follows: 
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where Δfυ = {Δυ1, Δυ2, …, Δυm}T
 and Δfφ = {Δφ1, Δφ2, …, Δφl}T are the difference of 

frequencies and mode shapes, respectively. Δυp = υup –υdp (p = 1, 2, …, m), υup and υdp are the 
pth frequencies in undamaged and damaged structures, respectively. m is the order of 
frequencies. Δφq = φuq – φdq (q = 1, 2, …, l), φuq and φdq are the pth mode shapes in 
undamaged and damaged structures, respectively. l is the order of mode shapes. Δα = {Δα1, 
Δα2, …, Δαn}T is the change in damage reduction factors. S is the first-order sensitivity 
matrix. 
 
The least square method can be used to solve Eq. (2): 
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However, it cannot obtain a stable result for inverse problem due to the ill-conditioned matrix 
S and noise [16]. That is to say, due to the influence of noise, the solution of Eq. (2) is 
ill-posed. In this study, the influence of noise can be reduced and a stable solution can be 
obtained by combining sensitivity analysis with regularization methods. 

Tikhonov Regularization 

The principle of regularization methods is to replace the original ill-posed problem with an 
approximate well-posed problem whose solution equals original solution approximately. So 
Li and Law [5] introduced the l2 norm regularization method into SDD for improving the 
identification precision. The l2 norm regularization method [17] is a popular regularization 
method. It adds a quadratic penalty to Eq. (3): 
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where real solution and noise can be balanced by the regularization parameter (λ > 0). 
Regularization term controls the norm of solution. P is the dimension of Δα. 

Sparse Regularization 

The l0 norm regularization method is an original definition of sparse regularization: 
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where, 
0

X  represents l0 norm of vector X . 

 
The l0 norm regularization method recovers sparse vector precisely, but it is a NP-hard 
problem. The l1 norm regularization method, which was first proposed by Tibshirani [18] in 
1996, can be used to approximately replace the l0 norm regularization. The l1 norm 
regularization method obtains sparse coefficient vector because coefficients with small 
absolute value will set to be zero: 
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where, 
1

X  represents l1 norm of vector X . 

 
Eq. (6) can be solved by the soft-thresholding [19]: 
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To obtain sparser solution, the lq norm regularizations were proposed after the l1 norm 
regularization. Some studies focused on selecting the best value of q. They showed that the lq 
norm regularizations gain sparser solutions as the q-value decreases. There are no significant 
different performances when 0 < q ≤ 1/2, so the l1/2 norm regularization is a representative of 
the lq norm regularizations [7]. The l1/2 norm regularization method is more sparsity and 
viability than the l1 norm regularization method, the l1/2 norm regularization is defined as: 
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where, 
1/2

X  represents l1/2 norm of vector X . 

 
Compared with Eq. (6), a generalized shrinkage-thresholding operator [20] is given for the l1/2 
norm regularization: 
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where the thresholding τGST is given by: 
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and the sGST(|B|;λ) can be calculated by the following formula:  
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For the SDD problem, structural damages occur in few locations, so the coefficient vector Δα 
is a sparse vector. By respectively adding the l1 norm and the l1/2 norm regularization into Eq. 
(3), the following equations are obtained:  
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Compared Eq. (12) with Eq. (6), it can be found that the objective functions in these two 
equations are different, so Eq. (12) cannot be directly solved by Eq. (6). Similarly, Eq. (13) 
cannot be directly solved by Eq. (7). To solve Eqs. (12) and (13), in this study, the PSO 
algorithm is introduced, by combining PSO algorithm with Eq. (6) and Eq. (7) respectively, 
the SDD results can be obtained by using Eqs. (12) and (13). 
 



Particle Swarm Optimization 

PSO is a heuristic algorithm, and it is inspired by group behavior of birds. With information 
sharing system of the bird flock, PSO simulates their foraging process in space. The solution 
process becomes orderly from unorderly, so an optimal solution can be obtained. PSO is 
simple and low computational cost compared to other novel heuristic algorithms. A solution 
of the optimization problem is a particle of search space. Velocity of each particle decides its 
direction and moving step. The best positions of individual particles pbest and the previous 
best solution of the entire warm gbest are used to update particle positions. That is to say, 
particles update their positions and velocities according to the following equations:  

 ( ) ( ) ( )1 1j j jt t t+ = + +x x v   (14) 
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where xj and vj are the position and velocity of the jth particle, respectively. t is the iterative 
number. r1 and r2 are uniformly distributed random numbers in the range of [0,1], and the 
cognitive coefficient c1 and the social coefficient c2 are equal to 2. 
 
In this study, Eqs. (4), (12) and (13) are optimization problems, so they can be solved by PSO. 
To obtain accurate solutions and reduce computation time, Eqs. (7) and (9) are added into 
each particle to solve Eqs. (12) and (13), respectively. 

Numerical Simulations 

To compare the appropriate scenarios of different regularization methods, a 2-DOF 
spring-mass model and a cantilever beam with the dimension of 0.7 m×0.05 m×0.01 m are 
adopted to simulate damages. 

Spring-mass model 

A 2-DOF spring-mass model is shown in Fig. 1. The stiffness and the mass of each DOF are 
150 kN/m and 100 kg, respectively. The first two frequencies of the structure are 3.8096Hz 
and 9.9736Hz, respectively.  

 

Figure 1. Spring-mass model 

 
Gaussian white noise is the ideal model for analyzing additive noise in channels, so it is used 
to discuss the effect of noise on SDD results. In this study, measurement noise is considered 



to be related to the change in frequencies and mode shapes. Frequencies and mode shapes 
with noise are defined as follows: 
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where, υi
a and υi (i = 1, 2, …, m) are the ith frequency and the one with noise, respectively. 

φij
a and φij (i = 1, 2, …, l; j = 1, 2, …, N) are the jth element of the ith mode shape and the one 

with noise, respectively. N is the length of each mode shape vector. υs and υe are vectors of 
frequencies in undamaged and damaged structures, respectively. φs and φe are rearranged 
vectors of mode shapes in undamaged and damaged structures, respectively. ευ and εφ are 
noise levels of frequencies and mode shapes, respectively. Ri and Rij are random numbers 
subjected to the standard normal distribution. 
 
As shown in Table 1, four damage scenarios are considered to compare properties of the l2 
norm regularization, the l1 norm regularization and the l1/2 norm regularization. Sketch maps 
of cost functions and norm penalties are offered to illustrate the appropriate scenarios of 
different regularization methods. 
 
The SDD results are shown in Figs. 2-7. Where, (a) represents a sketch map of cost functions 
and norm penalties under different scenarios. The blue lines are constant value lines of cost 
functions and their radii are same in Figs. 2-3. The green lines are constant value lines of 
norm penalties and their junctions of coordinating axis are same in Figs. 4-6. The black points 
are possible values of actual Δα with noise and the black dotted lines are possible constant 
value lines of cost functions.  
 

Table 1. Damage scenarios for spring-mass model 

Scenario 
no. 

Damage degrees @ 
damaged elements 

Noise 
levels 

Values of 
m and l 

Norm 
penalties λ 

Predicted 
damage 
numbers 

1 10%@E1, 8%@E2 0% m=l=2 
l2 0.0040 

2 l1 0.0273 
l1/2 0.1000 

2 10%@E1, 2%@E2 0% m=l=2 l1/2 0.4300 1 

3 10%@E2 1% m=2, l=0 
l2 0.0017 2 
l1 30 1 

l1/2 859.1 1 
4 10%@E2 10% m=2, l=0 l1 11.1970 2 

 
Same SDD results can be identified when each DOF is damaged, as shown in Fig. 2. To 
analyze properties of norm penalties, the radii of cost functions are kept same and their 



regularization parameters are different. It shows that the l2 norm regularization, the l1 norm 
regularization and the l1/2 norm regularization can detect multiple damages in scenario 1. 

       
(a) Sketch map by adding l2 norm penalty    (b) Sketch map by adding l1 norm penalty 

 
(c) Sketch map by adding l1/2 norm penalty         (d) Identified damage results 

Figure 2. SDD results for spring-mass model in scenario 1 

 
(a) Sketch map                    (b) Identified damage results 

Figure 3. SDD results for spring-mass model in scenario 2 by adding l1/2 norm penalty 

By adding the l1/2 norm penalty, the SDD result in scenario 1 are compared with that in 
scenario 2. Different damage degrees lead to different identified results of damage locations 
even if same damage locations are assumed. In scenario 2, great difference of damage degrees 



between element 1 and element 2 is given, and the l1/2 norm penalty makes the SDD results 
sparse. Distinct from the sketch maps in Figs. 2(c) and 3(a), the cost function and the l1/2 norm 
penalty intersect at coordinate axis. This is the reason why single damage is identified in 
scenario 2. 
 
In scenario 3, multiple damages are identified when the l2 norm penalty is added in the 
objective function, but one damage is identified when other two norm regularizations are used. 
Due to the influence of noise, the identified result Δα will go away from the coordinate axis 
without adding penalty. Therefore, when the penalty is added, the junction between the 
contour lines of cost functions and the l2 norm penalty is not on the axis. Under these 
circumstances, sparse solution cannot be obtained by adding the l2 norm regularization. 

 
(a) Sketch map                    (b) Identified damage results 

Figure 4. SDD results for spring-mass model in scenario 3 by adding l2 norm penalty 

SDD results are similar in scenario 3 when the l1 norm and the l1/2 norm penalty are 
respectively used. Different norm penalties give different spaces for the objective functions. 
Sparse solutions can be obtained due to the angles of the l1 norm and l1/2 norm penalties, 
which is different from the l2 norm penalty. As a result, horned spaces of norm penalties are 
more beneficial to obtain sparse results. On the other hand, Figs. 2(a) and 4(a) shows that 
dense results are easy to be obtained by using the l2 norm regularization. 

 
(a) Sketch map                    (b) Identified damage results 

Figure 5. SDD results for spring-mass model in scenario 3 by adding l1 norm penalty 



 
(a) Sketch map                    (b) Identified damage results 

Figure 6. SDD results for spring-mass model in scenario 3 by adding l1/2 norm penalty 

 

 
(a) Sketch map                    (b) Identified damage results 

Figure 7. SDD results for spring-mass model in scenario 4 by adding l1 norm penalty 

Compared Figs. 5 and 7, it shows that the l1 norm regularization does not obtain a sparse 
solution when the noise level increases, and great biases is produced due to the influence of 
noise. The junction between the contour lines of cost functions and the l1 norm penalties is not 
on the axis. It indicates that both dense and sparse results may be identified by using the l1 
norm regularization. 

By comparing Figs. 3, 5, 6 and 7, it shows that the curvatures of norm penalties will affect the 
SDD results. The sharp change in curvature increases the availability of getting sparse results. 
Thus, the l1/2 norm regularization is more suitable for application in detecting sparse damages. 

Some brief conclusions are summarized as follows: firstly, the l2 norm regularization easily 
obtains a dense result, so it may have a good performance in the application of model 
updating. Secondly, dense or sparse solutions may be identified by the l1 norm regularization, 
so it is more suitable to detect contiguous damages than the l1/2 norm regularization. Thirdly, 
the l1/2 norm regularization gets sparser results with a high probability than the l1 norm 
regularization, so it is suitable for detecting noncontiguous damages. 



Cantilever beam 

To select appropriate regularization methods for different problems, a cantilever beam is 
simulated. As shown in Fig. 8, the cantilever beam is divided into ten elements. Numbers in 
circles represent element numbers. The elastic modulus is 2.01×1011 N/m2 and the density is 
7800 kg/m3 for each element. 
 
As shown in Table 2, seven damage scenarios are considered to select appropriate 
regularization methods for different scenarios. Four structural damage patterns, i.e. model 
updating, contiguous damages, noncontiguous damages and composite damages are offered to 
distinguish properties of different regularization methods. SDD results are shown in Figs. 
9-15. 

Table 2. Damage scenarios for cantilever beam 

Scenario 
no. 

Damage degrees @ 
damaged elements 

Noise 
levels 

Values 
of m 
and l 

Norm 
penalties λ Damage 

patterns 

1 3%@E1-E10 15% 

m=l=9 

l2 
0.3 

model updating 

l1 
l1/2 

2 

0.8%@E1, E9 
0.9%@E3, E5 
1.1%@E4, E8 

1%@E2, E6, E7, E10 

10% 

l2 

0.2 l1 

l1/2 

3 5%@E4, 13%@E5  
7%@E6 15% 

l2 
0.15 

contiguous 
damages 

l1 
l1/2 

4 6%@E7, 4%@E8  
8%@E9 10% 

l2 
0.2 l1 

l1/2 

5 12%@E2, 6%@E4  
10%@E6 15% 

l2 
0.09 

noncontiguous 
damages 

l1 
l1/2 

6 5%@E3, 10%@E5  
7%@E9 10% 

l2 
0.09 l1 

l1/2 

7 10%@E4, 5%@E7  
14%@E8, 6%@E9 15% 

l2 
0.16 composite 

damages l1 
l1/2 

 
 



 

Figure 8. 10-element cantilever beam 

 

 
(a)                                   (b) 

 
(c) 

Figure 9. SDD results for cantilever beam in scenario 1 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 

 

In scenarios 1 and 2, dense results are obtained when the l2 norm penalty is added into the 
objection functions, and sparse results are obtained by other regularization methods. 
Moreover, the solution by adding the l1/2 norm regularization is sparser than that by adding the 
l1 norm regularization. It can be concluded that the l2 norm regularization is more suitable for 
application in model updating. 

 

As mentioned above, the l1 norm regularization is able to detect sparse and dense damages. It 
has good performances in scenarios 3 and 4. Damage locations can be effectively identified 
and quantify the damage degrees. The l1/2 norm regularization can only detect two damage 
locations with a lower precision in these scenarios. It shows that the l1 norm regularization has 
the ability to identify contiguous damages. 

 



 
(a)                                   (b) 

 
(c) 

Figure 10. SDD results for cantilever beam in scenario 2 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 

 
(a)                                   (b) 

 
(c) 

Figure 11. SDD results for cantilever beam in scenario 3 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 



 

 
(a)                                   (b) 

 
(c) 

Figure 12. SDD results for cantilever beam in scenario 4 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 

 

 

Different from first two scenarios, exact damage results can be identified by adding the l1/2 
norm penalty to objection functions in scenarios 5 and 6. As indicated in the second 
conclusion, the l1 norm regularization can identify contiguous damages. It may lead to 
misjudging near the actual damages. In this pattern of scenarios, the l1/2 norm regularization 
can make good use of its advantage which makes the solution sparser. It is suitable for 
detecting noncontiguous damages. 

 

For contiguous and noncontiguous damages, the l2 norm regularization performs badly to 
detect them. Damage locations are misjudged in scenarios 3-7. The l2 norm penalty is 
different from the l1 norm and l1/2 norm penalties. In the solving process, each element of the 
solution is not equal to zero by using the l2 norm regularization. So the l2 norm regularization 
is unreasonable for detecting sparse damages. 



 
(a)                                   (b) 

 
(c) 

Figure 13. SDD results for cantilever beam in scenario 5 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 

 
(a)                                   (b) 

 
(c) 

Figure 14. SDD results for cantilever beam in scenario 6 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 



 

Combining contiguous and noncontiguous damages, composite damages are set in scenario 7. 
SDD results by adding the l1 norm penalty are more accurate than ones by adding the l1/2 
norm penalty, but it does not mean that the l1 norm regularization is always able to obtain 
good results for composite damages, because only one damage location is not detected by the 
l1/2 norm regularization. More future work should be done to verify their abilities in the 
further studies. 

 

 
(a)                                   (b) 

 
(c) 

Figure 15. SDD results for cantilever beam in scenario 7 by adding different norm 
penalties: (a) l2 norm penalty (b) l1 norm penalty (c) l1/2 norm penalty 

Conclusions 

In this study, based on sensitivity analysis method, different norm regularization methods, i.e. 
l2 norm, l1 norm and l1/2 norm penalties, are compared to distinguish their abilities of detecting 
structural damages. Objective functions are defined by adding different norm penalties, and 
these functions are solved by the particle swarm optimization (PSO). A 2-DOF spring-mass 
model and a cantilever beam are simulated to analyze properties of the l2 norm regularization, 
the l1 norm regularization and the l1/2 norm regularization, respectively. Sketch maps of cost 
functions and norm penalties under different scenarios are drawn to describe their relationship 
with predicted solution intuitively. Due to different application scopes, diverse damage 
scenarios are given in two numerical simulation models. Some main conclusions can be made 
as follows: 
1) Dense solutions can be obtained when l2 norm penalty is used, so the l2 norm 



regularization has a good performance in the application of model updating. 
2) Dense solutions or sparse solutions can be identified by the l1 norm regularization which 

depends on the deviation of actual solution from the coordinate axis. Sparse results can be 
obtained when the deviation is small. Otherwise, dense results will be obtained. So the l1 
norm regularization has ability to detect contiguous damages. 

3) A dense result will be obtained due to the influence of noise. The l1/2 norm regularization 
can address this issue effectively. Comparing with the l1 norm regularization, the l1/2 norm 
regularization can obtain sparser solution, and it is suitable for detecting noncontiguous 
damages. 
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