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Abstract

A cut-cell method utilizing 2D cartesian meshes with embedded boundaries is employed to
simulate steady-state, turbulent and cavitating flows over isolated hydrofoils. The multi-phase
Reynolds-Averaged Navier-Stokes equations for a homogeneous mixture are extended with an
additional transport equation accounting for the liquid volume fraction and the Kunz cavita-
tion model. The mean-flow equations are appropriately preconditioned to render the system
hyperbolic in space and time and to alleviate numerical stiffness due to the low speed of sound
of the mixture. The standard k − ε turbulence model is implemented. A one-layer submesh
is generated to solve Spalding’s composite wall function on the embedded boundaries. Mesh
generation employs a hierarchical quadtree-based data structure resulting in a fast and memory-
efficient process. Cut-cells are constructed by intersecting the discretized geometry with the
Cartesian mesh, creating thus faces where boundary conditions are imposed. The capabilities
of the cut-cell solver are demonstrated over two hydrofoils featuring mid-chord and leading-
edge cavitation. Results show satisfactory agreement with numerical and experimental data.
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Introduction

Immersed Boundary Methods (IBMs) enjoy a high level of mesh generation automation and
flexibility when simulating complex flows with moving or stationary geometries. Initially de-
veloped by [1], IBMs focused on making flow solvers to accurately predict inviscid [2], viscous
[3] and, more recently, turbulent [4][5] flows. The mesh generation process, employing a hierar-
chical tree-based data structure, demonstrates high efficiency in terms of CPU cost and storage
requirements [6].

IBMs can be classified as continuous and discrete, [7]. In the continuous IBMs, source terms are
introduced into the flow equations to simulate the effect of solid boundaries. Since the source
terms are not imposed directly on the geometry shape, the effect of the source terms is smeared
across multiple neighbouring cells. Difficulties arise in the conservation of mass, momentum
and energy in cells intersecting the solid boundaries, [8]. In contrast, in discrete IBMs, solid
boundaries are represented by sharp interfaces and boundary conditions are imposed, without
altering the governing PDEs. This representation, however, introduces temporal discontinuity,
for the cells without time history, and additional actions are required to simulate moving ge-
ometries. Among the discrete IBMs, the cut-cell method reshapes finite volumes using their
intersections with the geometry. Very small finite volumes may appear near the interface dur-
ing reshaping that can cause numerical instabilities [9], if not properly treated. However, the



discrete representation of the geometry, employed by the cut-cell method, guarantees the satis-
faction of local and global conservation laws.

In fluid flows, the inception of cavitation occurs when the static pressure of the liquid drops
below the vapor pressure. Sheet, bubble, vortex or supercavitation may appear. In some ap-
plications, such as high-speed underwater bodies, cavitation is beneficial for drag reduction,
while in some others, such as propellers, undesirable since it can reduce their performance and
durability. The ability to predict and control its inception is, thus, of importance. As a result,
cavitation, and its forms, has been studied experimentally in cases, such as the Venturi channel
[10], the flow over hydrofoils [11] and cylindrical head-forms [12], and extensive research has
been dedicated to the development of numerical models [13][14][15][16] capable of simulating
cavitating flows. These models are classified into two categories, namely, interface tracking
and interface capturing methods. In interface tracking methods, the liquid/vapor interface is
explicitly tracked and acts as an internal boundary, whereas, the interface capturing methods
provide the liquid/vapor interface as part of the solution procedure. Differences of the interface
capturing methods lie in the set of governing equations satisfied. In one-fluid models, the con-
servation laws for the mixture are solved and the phase change is controlled by a state law, such
as the barotropic mixture law. In two-fluid models, the conservation laws are solved for each
fluid with appropriate mass transfer rates at their interface, whereas hybrid models, such as that
employed in the present work, are based on the conservation laws for the mixture and a phasic
transport equation coupled with a cavitation model to control the phase change rates. In cases,
such as ventilated cavitating flows, where more than two phases are considered, the models can
be extended either by modifying their state law [17], including additional conservation laws or
by including additional transport equations [13] to account for additional phases. Several for-
mulations for the cavitation model have been proposed, mostly relying on empirical formulas,
see [13] and [15], or bubble dynamics such as the Full Cavitation Model [16].

Previous work combining IBMs and cavitating flows is limited to the use of one-fluid models.
[18] employed a cut-cell method coupled with a modified Tait law, to simulate weakly com-
pressible cavitating flows through a closing fuel injector control valve. Recently, [17] and [19]
presented computational studies on cavitating flows for an external gear pump and a projectile
impacting a water jet, both using a continuous IBM.

The present work employs a hybrid model in conjunction with the cut-cell method to simulate
cavitating flows. The effects of the rapidly varying finite volumes near the solid boundary, as
well as their impact on the mass transfer model are investigated. A hybrid model has been
selected as it may provide high flexibility and capture baroclinic vorticity generation [20]. The
proposed implementation allows the prediction of cavitating flows while also maintaining the
benefits of employing a cut-cell method. Studies of turbulent flows over isolated hydrofoils are
presented.

Mathematical Model

The multi-phase Reynolds-Averaged Navier-Stokes (RANS) equations are adopted to simulate
steady-state cavitating flows. A homogemeous mixture comprises liquid and vapor, both con-
sidered to be incompressible. The mixture is described by the momentum and phasic continuity
equations. The continuity equation for the vapor phase is replaced by the one for the mixture,
rather than using separate continuity equations for each phase. The retained mixture and liquid
continuity equations are enriched with source terms to simulate mass transfer associated with
the cavitation. From the numerical point of view, pseudo-time derivatives are introduced to



render the system hyperbolic in space and time and alleviate numerical stiffness created by the
low speed of sound of the mixture.

The Jones and Launder k − ε turbulence model [21], coupled with the Spalding’s composite
wall function [22] technique, is employed. The turbulence model takes into account the mixture
densities and viscosities, with the turbulent variables referring to the mixture.

Governing equations

In vector form, the system of the preconditioned multi-phase mean-flow and turbulence equa-
tions for the mixture, is written as:
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where p, u
(
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)
, a, %, µ, k, ε refer to pressure, velocity vector, volume fraction, den-

sity, viscosity coefficient, turbulent kinetic energy and turbulence dissipation rate, respectively.
Subscripts m, l, v refer to the mixture, liquid and vapor phase, respectively. δ is the Kronecker
delta. Quantities ṁ± are associated with the mass transfer model rates characterizing both phase
changes; for them, the Kunz cavitation model [13] is implemented. The evaporation term m−

is a function of the pressure and the liquid volume fraction whereas the condensation term m+

is a function of the liquid volume fraction, al,
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The empirical time rate constants Cdest and Cprod are case-dependent and their values are non-
dimensionalized with respect to the mean-flow time scale, t∞= L

U∞
. L is the characteristic length

scale, in the case of hydrofoils their chord length, and pv is the vapor pressure.



The preconditioning matrix Γ takes the form [13]
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with β the pseudo-compressibility parameter and ∆% = %l − %v. The mixture density and
molecular viscosity are based on a local volume-averaging:
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ε
. The turbulence model constants are: Cµ=0.09, C1=1.44, C2=

1.92. Spalding’s wall function formula, resolves both the viscous and the log layer through a
single formula,
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ν
and uτ , ∆, ν, κ represent the friction velocity, distance from the wall,

kinematic viscosity and von Karman constant, respectively.

Discretization and Numerical Solution

To solve the homogeneous multi-phase flow equations, a cell-centered, finite-volume scheme
on unstructured meshes is employed. Eqs. (1) are integrated and discretized with second-order
accuracy in space. The resulting linearized system is solved using a block Gauss-Seidel method.
The implementation is able to run in parallel on distributed memory systems by partitioning the
mesh into subdomains, communicating using the MPI protocol.

Generation of a Geometry Adapted Computational Mesh

The generation of an adapted computational mesh with embedded boundaries is fully automated
[23]. Initially, a uniform mesh is generated and cells intersected with the body surface are
identified. Then, a recursive algorithm is employed to refine all intersected cells until the user-
defined minimum cell volume has been reached, without allowing the refinement levels of two
adjacent cells to differ by more than one. Once the maximum refinement level is reached at the
intersected cells, the fluid part of the cells is retained, whereas the solid part is discarded, thus
creating the cut-cells. Occasionally, cut-cells with volumes noticeably smaller than originally
can be created that could stiffen the numerical solution of the flow equations [9]. To avoid
convergence difficulties due to these cells, algorithms that merge cut-cells with volumes less
than a user-defined threshold value with one of their immediate neighbours are employed [9].
Merged cells are differently shaped finite volumes, treated identically to all other cut-cells.

This procedure produces Cartesian meshes that are generally unsuitable for CFD simulations
with large flow gradients present, e.g the viscous boundary layers and the cavity interface, since
the cells in the immediate vicinity of solid walls abruptly change refinement levels, Fig. 1a.



Therefore, the refinement levels across the computational domain are smoothed to increase
mesh resolution close to solid walls, by employing a progressive refinement algorithm. The
algorithm, based on the distance of each cell from the geometry and a sigmoid function, com-
putes the maximum allowable volume of each cell. Cells exceeding this value are refined. In the
absence of smoothing, the refinement levels of neighbouring cells, result in increased numerical
errors near the geometry. The mesh generation and adaptation process is based on a hierarchical
quadtree data structure [9] and follows stages illustrated in Fig. 1.

(a) (b)

Figure (1): Stages of mesh generation. Computational mesh of the NACA0012 hydrofoil
(a) before and (b) after implementing the progressive refinement algorithm.

Discretization of the Governing Equations

Equations (1) are integrated, over a finite volume Ω, yielding:
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where n the unit normal vector to the faces of each volume. The discretization of the turbulence
model equations is similar, thus, omitted.

The discretization of the convective fluxes in Eq. (9) is based on the Roe scheme [24], using a
second-order linear reconstruction. The state variable gradients at each cell centre are estimated
by a linear least-squares method using all face neighbours. In the presence of strong flow gra-
dients, the extrapolation procedure is limited to provide a monotone-preserving TVD scheme.
The pseudo-time step ∆τ is determined by stability criteria.

The inviscid flux, Φ, at each cell face reads
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In the equations above, ψ is the Barth-Jespersen limiter [25] value, M, M−1 are the right
and left eigenvectors of the preconditioned Jacobian matrix, Γ−1A, and Λ is the diagonal
eigenvalue matrix, diag (Λ) = [u, u + c, u− c, u]T . The pseudo-sound, c, is computed as
c=
√

(un + β2) and un is the normal to the face velocity, [13]. Superscripts +,− refer to the
reconstructed variables, while L/R to the adjacent to the face cells. Subscript (Roe) denotes
Roe-averaged variables, defined as
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, ϕ ∈ (u, al, k, ε) (12)

The velocity gradients at each cell face, necessary for the viscous fluxes, are computed using
central differences. At the faces of cut-cells or those separating cells with different refinement
levels, the barycenters of the corresponding cells are not aligned with the face midpoint and,
thus, undergo a non-orthogonality correction.

For the solution procedure, the Jacobians A= ∂F
∂Q

are computed analytically. Source terms are
linearized in order to promote diagonal dominance.

Implementation of Wall Functions

A one-layer submesh, Fig. 2, with constant normal distance from the solid boundary is gen-
erated, as in [26]. Cells dimension (∆x) can be computed based on their refinement level,
by exploiting the quadtree data structure [9]. Then, the normal distance is computed ∆ =
1.6min(∆x), and is the same for all cut-cells, since all cut-cells reach the same level. The nor-
mal distance ensures that the submesh nodes reside outside the (possibly merged) cut-cell. Eq.
(8) is solved to extract the required wall shear stress and turbulent variables boundary condi-
tions, by employing the submesh. Finally, the velocity gradients of the cut-cells are replaced by
the ones provided by the Spalding formula [26]. The submesh node corresponding to the solid-

Geometry
Submesh Node

Mesh

Figure 2: One-layer submesh used to implement the wall function technique. Each
submesh node is connected with a solid face of the cut-cell.

node line closest to each cut-cell barycenter is located and used to compute the friction velocity
uτ . Each cut-cell is associated with a submesh node on which Eq. (8) is solved. The tangent to



the wall velocity ut at that node is linearly reconstructed from the nearest cell to compute uτ ,
iteratively. The shear stress is computed separately at each solid face to account for cases where
the solid face direction changes inside a cut-cell, providing a more accurate computation of the
corresponding solid face viscous flux.

Numerical Treatment of Cut-Cells - Application of Boundary Conditions

A blow-up view of the area close to the interface with a solid body is presented in Fig. 3a.
Two cut-cells, a merged (blue) and non-merged (brown), are included for illustative purposes.
A merged cell is created when a slave cell (the smaller one) attaches to a master cell to create
a new bigger cell. A master cell accomodates one slave cell at most to prevent the formation
of non-convex finite volumes. The sizes of the faces of a slave cell are compared to determine
which neighbour should become its master cell; the one with the largest common face is selected
as master cell.

Fig. 3b shows a cut-cell finite volume along with two fluxes (4, 5) due to the presence of the
solid boundaries. For brevity, the following refer to inviscid flows where the no-penetration
(u · n=0) condition is applied. For all internal faces, (1, 2, 3, 6), fluxes are cast in Cartesian
coordinates, e.g. flux through face 2 becomes F · n̂=[u, %mu

2 + p, %muv, 0]
T . On solid faces,

boundary conditions are weakly imposed. Flow variables are extrapolated at the midpoint of
each solid face and the appropriate flux, Fw=[0, pface n, 0]T is imposed.

(a)

1

2

3

4

5

6

(b)

Figure (3): (a) Areas near the solid boundary of a mesh with embedded boundaries
where a merged (blue) and a non-merged (brown) cut-cell can be seen. (b) Enlarged view

of a cut-cell; normal vectors represent fluxes. Solid wall conditions are imposed along
faces 4 and 5.

Results and Discussion

The capabilities of the cut-cell solver in the simulation of sheet cavitation are demonstrated in
numerical studies of two isolated hydrofoils, for different cavitation numbers, and results are



compared with published data, [11][14][27]. Sheet cavitation has been experimentally observed
to exhibit a quasi-steady behaviour and the experimental data [11] obtained regarding sheet
cavitation are time-averaged. Therefore, it is a common practice, e.g [14][27][28], to perform
simulations using a steady-state solver. The cavitation number is defined as σ= p∞−pv

1
2
%lU2

∞
and the

pseudo-compressibility parameter as β2≈10U2
∞.

Cavitating Flow around the NACA0012 hydrofoil

The first case considers mid-chord sheet cavitation on a NACA0012 hydrofoil, based on the
numerical study presented in [14]. [14] employed the same cavitation model in a pressure-
based (SIMPLE) algorithm, with a density ratio equal to %l

%v
=1000, which is also valid here.

The Reynolds number is Rec=2 · 106 based on the chord and the infinite flow angle is 1◦. With
a cavitation number equal to σ=0.42, a thin layer of vapor is created at the mid-chord of the
hydrofoil that exhibits no re-entrance jet/recirculation. A mesh with 42K cells is generated
with sufficient progressive refinement near the solid body and an average y+ ≈ 90 of the first
cell barycenters off the wall (Fig. 5a) to capture the thin vapor layer.

In the literature [14][28], it is reported that the empirical time rate constants (Cprod, Cdest)
of the mass transfer model are case dependent and different values are proposed and used by
different codes for the same test cases. In the current implementation, the proposed time rate
constants also produced unrealistic results. A parametric study was conducted to calibrate the
dimensionless mass transfer time rates constants, C+=

Cprod
t∞

, C−=Cdest
t∞

.

Fig. 4a shows pressure distributions obtained during this study with several pairs of constants
and their impact on the converged solution. In the results presented hereby, the pressure inside
the cavity is equal to pv, but this is not the case if C− becomes lower. The pressure gradients aft
the cavity are influenced by the correct balance between the two source terms. Too small values
of C− shorten the cavity length, while too big values of C+ steepen the pressure gradients at
the cavity closure region.

Fig. 4b compares the results of the surface pressure profile, with the selected time rate con-
stants, of the current implementation with two numerical results obtained on body-fitted mesh
solvers under the same conditions and mass transfer model, though with different time rates.
Differences are limited to the cavity closure region.

In Fig. 5b, the vapor volume fraction field and, therefore, the cavity is presented. A thin layer of
vapor is generated along the suction side of the hydrofoil. The maximum vapor volume fraction
inside the cavity avmax approaches 0.9. The liquid-vapor interface is spread across multiple cells.
This might be due to the smooth pressure gradients observed at the cavity closure, which implies
that the condensation source term is weak enough to avoid an instantaneous phase change and
make it appear gradually. Fig. 5a shows a close-up view of the area near the cavity. By plotting
the liquid volume fraction iso-line al=0.99 over the mesh, it can be seen that the cavity resides
inside the finest refinement levels of the mesh.
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Figure 4: Surface pressure suction side profile over a NACA0012 hydrofoil, α=1◦,
Rec=2 · 106 and σ=0.42. (a) Parametric study to find the best value set of C+ and C−. (b)

Comparison with the numerical studies of [14][28] and the best value-set of time
constants found.

(a)

(b)

Figure 5: NACA0012 hydrofoil: (a) Liquid volume fraction iso-line (orange) al=0.99
which determines the size of the cavity along with the smoothed mesh refinement near

the geometry. (b) Iso-areas of the vapor volume fraction av.

Cavitating Flow around the NACA66(MOD) hydrofoil

In this section, the cavitating flow over a NACA 6-series hydrofoil is presented. The hydro-
foil has been experimentally investigated in [11] for leading edge and mid-chord cavitation



and time-averaged pressure distributions are available in the literature [11]. The cambered
NACA66(MOD) hydrofoil has a camber ratio of 0.02, a mean line of 0.8, a thickness ratio
of 0.09 and a chord length of 0.1524m. The presented study focuses on steady-state simula-
tions of flows with an infinite flow angle of α=4◦, a Reynolds number Rec=2 · 106, based
on the chord length, a density ratio %l

%v
=1000 and three cavitation numbers, σ=∞, σ=0.91

and σ=0.84. A cartesian mesh with 80K cells is generated with sufficient mesh resolution
near the geometry and y+ ≈ 50. The best value-set of the two time rate constants was found
to be C−=106, C+=9000 after a parametric study. Furthermore, for the cavitation numbers
σ=0.91, 0.84 the surface pressure distributions are also compared with the numerical results of
[27]. The latter employed a commercial CFD solver and calibrated the mass transfer rates for
the same conditions over a NACA66(MOD) hydrofoil.

The first case, σ=∞, is the non-cavitating case and is included to validate the cut-cell solver
with the experimental data of [11]. In the other cases, with σ=0.91, σ=0.84, vapor is gener-
ated since the pressure decreases below the pressure vapor and cavities are observed. Fig. 6a
shows the surface pressure distributions of the non-cavitating case (σ=∞) and the experimental
data from [11]. The surface pressure distribution compares favourably with the time-averaged
experimental data. In Fig. 6b, the surface pressure distribution in the case with σ= 0.91 is
presented and compared with measurements [11] and other numerical results [27]. The results
obtained with the cut-cell method show that the pressure inside the cavity remains constant and
agrees with both numerical and experimental data. Furthermore, comparing with the numerical
results, an underprediction of the cavity length is also observed. Fig. 7a, shows the vapor vol-
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Figure 6: Surface pressure distribution over the NACA66(MOD), (a) The non-cavitating
(σ=∞) case (b) Cavitating cases of σ=0.91 and σ=0.84.

ume fraction with the computational mesh employed. In Fig. 7c the pressure field is presented.
The constant pressure inside the cavity can be seen and its value is approximately equal to the
negative of the cavitation number σ=0.91, as expected.

By further reducing the cavitation number, a larger cavity is created. In Fig. 6b, the surface
pressure distribution for σ=0.84 is compared with experimental time-averaged data [11] and
numerical results [27]. Both numerical results produce the appropriate pressure inside the cavity
and capture the same pressure recovery trend. Fig. 7b shows the vapor volume fraction on the
suction side of the hydrofoil. The pressure flow field is shown in Fig. 7d. Finally, comparing
Fig. 7(a)-(b), it can be seen that decreasing the cavitation number increases the size of the vapor
cavity created.



(a) (b)

(c) (d)

Figure 7: Cavitating NACA66(MOD) hydrofoil. σ=0.91 (left) and σ=0.84 (right). (a) - (b)
Vapor volume fraction along with the computational mesh used and (c) - (d) Pressure

coefficient iso-areas.

Compared to the experimental data, both numerical solvers underpredict the cavity length at
σ= 0.84. The differences noted, could be attributed to the additional multi-phase turbulent
effects which dominate in these areas. Addressing the additional turbulent effect in cavitating
flows is still an ongoing research area and new findings could improve numerical predictions.
However, this is beyond the scope of the present paper.

The use of flow-based adaptation is common in transonic and supersonic flows [23], where
shock waves are present and require increased mesh resolution locally. IBMs, employing hi-
erarchical data structures, make flow-based adaptation techniques easy to implement and is
considered one of their main advantages over their body-fitted counterparts. Hence, a natural
next step is the addition of flow-based refinement in the multi-phase solver as steep flow gradi-
ents also characterize cavitating flows. The choice and definition of the adaptation sensor, that
identifies the areas of interest and implements the refinement algorithm, require special atten-
tion. An obvious choice may be the normalized ‖∇al‖, where large gradients are present only
near the cavity interface, see in Fig. 8. The pressure gradients could also be considered as an
adaptation sensor since the mass transfer models are closely related to the field pressure.

Figure 8: Iso-areas of the normalized ‖∇al‖ over the cavitating NACA66 hydrofoil.



Conclusions

A cut-cell solver for a homogeneous mixture model has been implemented to simulate steady,
turbulent, cavitating flows, based on the Kunz model. The cut-cells and the one-layer submesh
that help to employ the Spalding’s composite wall function model for the k − ε turbulence
model, together with the merging of the small cut-cells, are shown to handle the large density
gradients present in cavitating flows.

To assess the programmed method, two hydrofoil cases featuring mid-chord and leading edge
sheet cavitation have been selected and comparisons with experimental and numerical data
are presented. The cavitation model implemented proved to be sensitive to the two time rate
constants which should, therefore, be carefully selected to avoid nonphysical solutions or the
divergence of the numerical scheme. The automatic mesh generation and refinement, even in
complex geometries, offered by the cut-cell method, renders it an appealing alternative to CFD
solvers employing body-fitted meshes. This is particularly important in case of moving bodies,
which is not the case in this paper; to summarize, the programmed software simulates both 2D
and 3D flows, with stationary or moving bodies (see [29], presented in the same conference).
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