

A GPU based acceleration of Finite Element and Isogeometric analysis

*Utpal Kiran, Vishal Agrawal, Deepak Sharma and †Sachin Singh Gautam

Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam, India.

*Presenting author: ukiran@iitg.ac.in

†Corresponding author: ssg@iitg.ac.in

Abstract

In this paper, a Graphics Processing Unit (GPU) based novel parallelization scheme is

proposed to reduce the extensive computational cost associated with the finite element (FE)

and isogeometric analysis (IGA) simulations of linear and non-linear problems. An innovative

parallelization strategy is introduced that achieves fine-grain parallelism and is suitable for

GPU. The proposed strategy is implemented within the MatLab
®

 programming environment

for the GPU based FE and IGA simulations. It, thus, avoids the need for specialized

programming languages like CUDA/C++, which require in-depth knowledge for their

implementation. The capabilities and performance of the proposed strategy are examined by

solving both linear and non-linear problems. The results demonstrate that the proposed

strategy achieves a considerable improvement in the assembly and computation of global

tangent matrices over both the single core CPU and multicore CPU based computations. A

maximum speedup of 41.4 times over single core CPU and 10.8 times over multicore CPU is

achieved for linear problem. For non-linear problem of strip peeling from an adhesive

substrate, a maximum speedup of 12.3 times is obtained in comparison to multicore CPU

based computation. The proposed strategy can be easily incorporated within the existing

codes with little modification.

Keywords: Parallel Programming, GPU computing, IGA, Nonlinear FEA, MatLab.

Introduction

Finite Element Analysis (FEA) is one of the most popular numerical methods used for the

solution of a variety of problems governed by the partial differential equations [1]. It is known

that FEA involves a large amount of computation to find the nearly exact solution of the

problem. Moreover, the computational efforts increase substantially if the analysis includes a

large number of finite elements. It, as a resultant, leads to a significant amount of simulation

time even on fast modern computers. However, this may not be a desirable choice in the

analysis community.

In 2005, Hughes et. al [2] introduced the Isogeometric analysis (IGA) technique to circumvent

the above mentioned issue associated with FEA. Unlike FEA, IGA doesn’t need to perform

expensive mesh generation of the Computer Aided Design (CAD) model as it directly enables

the transition of CAD generated model into the analysis framework. Thus, reducing the

execution time of IGA based simulation significantly compared to FEA [3].

However, the computational time in case of IGA solver for large-scale problems can still be

high [3]. The large simulation time in scientific applications is often reduced by using parallel

computers. It involves decomposing a large-scale problem into a smaller number of parts and

solving them in parallel over multiple processors. Recently, GPU based parallel computing

has achieved great success in accelerating time-consuming scientific applications [4]. The

GPU is specialized hardware designed to handle parallel and independent data task in a very

efficient manner. It is a massively threaded processor having thousands of simpler cores

instead of few powerful cores like in CPU. A large number of cores in GPU bring the

performance of a mini computer cluster to the desktop computer at very low capital cost, low

cooling cost and low power consumption [5]. There are numerous applications accelerated

successfully by GPU in various fields including aerospace, defense, finance & economics, oil

& gas, and computer games [6]. However, writing code for a GPU requires knowledge of

parallel programming strategy and specific programming language like CUDA C/C++. Since

CUDA C/C++ is a lower level programming language, it demands a great amount of time and

effort from the user. On the other hand, scripting languages like MatLab
®

 have become more

popular in the scientific community. MatLab
®

provides an integrated computing environment,

which supports the effortless development of code, easier and faster debugging, visualization,

and a large number of built-in functions. The ease of code development in MatLab
®
 comes at

the cost of lesser flexibility and reduced control to the programmers, which may lead to sub-

optimal performance. In the current work, a novel parallelization strategy is introduced which

provides a possibility to achieve accurate result at a considerably lower computational cost

compared to standard sequential computation approaches. The execution time is further

reduced significantly by the use of GPU.

The previous efforts to accelerate FEA on MatLab
®

have focused on efficient vectorization

techniques or parallel computation on multicore CPU through parfor or spmd construct of

parallel computing toolbox [7]. A parallel implementation for coupled electro-mechanical

finite element analysis of micro-electro-mechanical (MEMS) device is found in [8]. The work

shows the use of parfor loop to calculate element stiffness matrices in parallel over 40

MatLab
®
 workers set up to reduce simulation time from 60 hours to 2 hours. A significant

amount of reduction in FEA assembly time is achieved by vectorization of code in [9]. In

another work [10], a comparative analysis of multicore parallelization and GPU

parallelization is done. The implementation uses parfor and spmd construct for CPU and

arrayfun function wrapper for GPU. The result shows GPU based algorithm performing

poorly than other two. However, the authors believe that with efficient vectorization GPU

based parallelization can achieve better performance.

Most of the previous work on acceleration of FEM using GPU is found to be based on CUDA

C/C++. The most detailed study of GPU implementation of finite element assembly process is

presented in [11]. The authors show the speedup of several folds in assembly for lower order

as well as higher order elements. An efficient implementation of numerical integration on

GPU is found in [12]. The authors show speedup of 7× over the efficient CPU implementation

for quadrilateral element. In [13], a novel interaction-wise strategy for assembly of stiffness

matrix in IGA is presented. The proposed strategy achieves speedup up to 54× over single

core CPU implementation. The GPU based integration strategy of B-spline basis function in

IGA is found in [14]. The above-mentioned works along with many others in literature [15]

signify the effectiveness of GPU in accelerating FEM simulation. However, to the best of

authors’ knowledge no literature exists that discusses the capabilities of MatLab
®
 to use GPU

to accelerate FEM.

FEM consists of a sequence of computationally expensive steps like evaluation of local

matrices (mass and stiffness), assembly of local matrices into global matrix and solution of

assembled system of equations [1]. GPU based computing has been found to be very effective

in accelerating almost every step of FEM [15]. The solution of linear system of equation often

dominates the simulation time and, therefore, it must be implemented with an optimized

linear solver [16][17]. However, the time consumed in element matrix creation and their

assembly to global matrix cannot be ignored, particularly, in nonlinear problems. In nonlinear

problems, a large number of time steps are required to reach final solution. Within each time

step, there are Newton-Raphson iterations that require revaluation of element stiffness

matrices and their reassembly [1]. Thus, an optimum implementation of this step can lead to

significant amount of reduction in simulation time.

The objective of the current work is to accelerate the evaluation and assembly of mass and

tangent matrices by making use of GPUs through parallel computing toolbox of MatLab
®
. A

MatLab
®
 code can be made to run on GPUs with the minimum amount of changes requiring

far less development effort than the language like CUDA C/C++. The function wrappers

provided by MatLab
®
 like bsxfun, pagefun, and arrayfun have been used for numerical

integration. Assembly to global matrix is done by sparse function of the MatLab
®
. First, an

efficient GPU parallel strategy for FEM analysis for 2D elasticity problems is proposed and

compared with sequential and CPU parallel (parfor) strategy. The proposed strategy is

further used to accelerate IGA based nonlinear analysis of a strip peeling problem. The

present work aims to utilize the computational power of GPU for FEA and IGA while

keeping the development effort minimum by implementing it within the MatLab
®

environment. The outcome of this study is expected to help people in academic and industry

accelerate their FEA based simulation code in MatLab
®
.

The paper is organised as follows. In next section, problem formulation is presented using

IGA. Thereafter, the parallel implementation of FEM is explained along with the data

structure. In second last section, results of the numerical experiments done to evaluate the

performance of proposed strategy are presented. The last section concludes the paper.

Problem Formulation

This section is divided into the two subsections. In the first, a continuum based formulation of

adhesion model and its weak formulation is briefly overviewed. In the second, finite element

and the NURBS based discretization of the continuum is presented.

Fig. 1 Contact kinematics of a deformable body and a rigid substrate pair in their current

configuration.

Model for Adhesive Contact Problem

Consider a body in its current configuration having domain , surface , and the part of its

boundary where contact takes places as . The schematic arrangement of the body interacting

with the rigid substrate is illustrated in Fig. 1. The governing equation for the quasi-static

frictionless adhesive contact problem is given by the equilibrium between the work done by

the internal, external, and contact forces. For the admissible variation of interaction potential

function , the weak form for the adhesive contact for a deformable body is given by the

following statement [18]:

∫ ()

 ∫

 ()

where is the space of kinematically admissible variation function , is the Cauchy stress

tensor, and is the contact traction over . For the evaluation of contact tractions, penalty

method based regularization of constitutive equation for the contact surface traction is used.

First, based on the unique projection of slave points on the master surfaces, the unit normal

 and minimum gap between the contact surfaces are determined, see Fig. 1. Using the

definition of the normal gap, the contact traction can be written as:

 () {

 ()

where represents the penalty parameter. For the van der Waals adhesion model and the

contact traction is obtained by integrating the Lennard-Jones interaction potential four time

[18] and is given as

 () ()

 ()

[

(

)

(

)

] ()

Here, , and denote the Hamaker’s constant, and the equilibrium spacing of interacting

particles of contacting bodies, respectively.

FE discretized weak formulation

Within the FEA, the domain of the body is discretized into number of elements such

that ∑

 and the displacement field its variation for a standard finite element

 is given by the summation of product of Lagrange basis function and field variables as

 ∑

 ∑

 ()

where represents the displacement vector of node and denotes the total number of

nodes in an element . N is the basis function matrix: [] where

represents the Lagrangian basis function associated to node , and is the identity tensor

in . Following the Galerkin approach, the initial configuration , and current configuration

 of body are described in a likewise manner as in Eq. (4). In the context of IGA, NURBS

basis functions used for the discretization of the geometry are employed for the determination

of solution field. The displacement field , its variation , and the current configuration of

the geometry is represented in terms of the NURBS basis functions (), i.e. is

replaced by () in Eq. (4). The reader is referred to [19] for the detailed description of

the implantation of IGA into the finite element code structure. The discretized weak form Eq.

(1) for the adhesive contact can be cast into the following matrix form [18]:

 []
 ()

where , , and are the vectors for internal, contact, and externally applied forces,

respectively. Internal force vector is described by the constitutive relation of the material

model. In the present work, a Neo-Hookean hyperelastic material model is used and the

Cauchy stress is determined by the following expression [20]

 () ()

where and are Lam ́’s constants, and denotes the determinant of deformation gradient

tensor . The contact contribution
 over the contact surface of an element can be

computed by the following expression

 ∑

 ∫

 ()

Parallel implementation of FEA

The proposed strategy has been implemented entirely in MatLab
®
 environment using the

parallel computing toolbox. The parallel computing toolbox provides various ways to run

code on the GPU. The simplest way is to use built-in function enhanced to work on GPU with

gpuArray type of input data. Since the built-in functions are not always sufficient, we have

written our own MatLab
®

functions and used them with function wrappers to implement our

strategy on the GPU. The user-defined MatLab
®

 functions can be used without any function

wrappers but it may launch multiple CUDA kernels even for simpler function. The function

wrapper like arrayfun compiles multiple operations of a function into single GPU kernel and

therefore provides better performance. However, the GPU function wrappers have some

restrictions. Only those user-defined functions that contain element wise operations can be

used. The arrayfun wrapper allows the function to take arrays/matrix as input but indexing

into the array is not allowed.

Fig. 2. Calculation of Jacobian.

 Vectorization of code is critical to achieve better performance by the GPU parallelization.

Our proposed strategy is based on a vectorization scheme in which computation at the

elemental level with scalar variable is converted into computation at mesh level with arrays. It

enables us to easily implement our strategy by functions with element wise operations and use

them with arrayfun function wrapper. In our implementation, the numerical integration is

done by looping over the Gauss points. For each Gauss point, Jacobian is calculated for

transformation to the reference coordinates. Since we are doing calculation at the mesh level,

Jacobian is calculated for each element of the mesh simultaneously. The data structure and

procedure for Jacobian calculation is shown in Fig 2. Here, nodal coordinates are reordered

and stored in the matrix with each column containing an individual coordinate for all elements.

The derivative of the basis function in reference coordinate is pre-computed for all the Gauss

points and reordered to facilitate the computation of Jacobian. As shown in Fig. 2, the

calculation of an entry of Jacobian is done by multiplying coordinate values with basis

function derivatives for a particular Gauss point. This evaluates to an array that contains an

entry of Jacobian matrix for all the elements of the mesh. The other entries of the Jacobian

matrix are calculated in the similar way. The computation of determinant for all the element

of the mesh can be done simply by element wise operations over array of entries of Jacobian

matrix. The computation of inverse of Jacobian is done by co-factor calculation. This can

again be done in parallel for all the Jacobian matrices by element wise operations.

The inverse of Jacobian is multiplied with derivative of shape function in reference

coordinates to calculate shape function derivative in physical coordinates. Since we are

working with arrays, the above product produces shape function derivative for all the

elements of the mesh. To facilitate the computation of element stiffness matrix, the derivative

of shape function is stored as shown in Fig. 3. Each column of the matrix contains derivative

of particular shape function for all the elements of the mesh. The evaluation of element

stiffness matrix is done by computing each individual entry of the matrix simultaneously for

Fig. 3. Calculation of element stiffness matrix.

all the elements. The calculation and storage pattern is shown in Fig. 3. Since the elemental

matrix is symmetric, we calculate only the unique entries.

All the matrices involved in the computation are stored in GPU memory. The assembly to

global matrix is done by sparse function of the MatLab
®
. The off-diagonal entries are

assembled first, so that it can be transposed to generate the symmetric part of the matrix. The

on-diagonal entries are added later to complete the global matrix. The sparse function

requires the row and column indices of the values to be assembled. This can be calculated

beforehand using mesh connectivity. We pre-compute the row and column indices and reorder

them according to the storage arrangement of element stiffness matrix. The global matrix is

assembled on GPU.

Results and Discussion

To evaluate the performance of the proposed strategy two different problems are solved. The

first one is linear elastic two dimensional (2D) cantilever beam problem with concentrated

load at the tip and the second one is a strip peeling problem. The performance is compared

among a CPU sequential, CPU parallel, CPU vectorized and GPU implementation. The CPU

sequential approach uses a loop over each element of the mesh for element matrix

computation and assembly. The CPU parallel implementation uses parfor construct of the

parallel computing toolbox to utilize multiple processors on the CPU for parallel computation

of element matrix computation and assembly. The CPU vectorized implementation is based

on the proposed vectorization scheme but uses the CPU for computation.

The machine used for the numerical experiment consists of Intel Xeon
®

 E5-2650 processor

having 2.2GHz of clock speed and a NVIDIA Tesla K40c GPU with 2880 cores clocked at

745MHz. The proposed strategy has been implemented on MatLab
®
 R2016a using the

parallel computing toolbox.

2D Cantilever beam

A 2D cantilever beam with concentrated load at tip is taken

as shown in Fig. 4. The geometric and material parameters are given as: length (L) – 10 m,

breadth (B) – 1 m, Young’s modulus (E) - 210 GPa, Poisson’s ratio (ν) - 0.3 and end load (P)

- 10
5
 N. Linear quadrilateral element with two degrees of freedom (DOF) per node is used to

discretize the domain.

L=10 m

B=1 m

P=105 N

Fig. 4. A 2D cantilever beam with end load.

Table 1. Finite element mesh.

Mesh Elements Nodes Degrees of

freedom

Mesh 1 900 000 903 301 1 806 602

Mesh 2 1 600 000 1 604 401 3 208 802

Mesh 3 2 500 000 2 505 501 5 011 002

Mesh 4 3 600 000 3 606 601 7 213 202

The problem is solved for different level of mesh refinement keeping the aspect ratio of the

elements same. The finite element mesh with varying level of refinement is shown in Table 1.

Structured mesh has been used for the purpose of numerical experiment but the calculation is

performed for each of the elements treating them as unstructured. Fig. 5 shows the

comparison of numerical integration and assembly time as a function of mesh sizes. It can be

observed that the proposed GPU implementation obtains least timings for all of the mesh sizes.

The CPU vectorized implementation achieves significantly less time than CPU parallel

strategy (using 12 workers), highlighting the effectiveness of the proposed vectorization

scheme. The speedups of the GPU implementation over all other implementations are shown

in Fig. 6. A maximum of 41.4× (Mesh 1) speedup is obtained over CPU sequential and 10.8×

(Mesh 1) over CPU parallel implementations. The GPU code could achieve speedup of only

3.6× - 3.8× over CPU vectorized implementation, which shows that the proposed

vectorization of FEM is able to scale very effectively also on the CPU.

Fig. 6. Speedup in numerical integration and assembly

Fig. 5. Numerical integration and assembly time.

The linear system of equations given by FEM can be solved by either direct sparse solver or

by iterative solvers. The mldivide(\) operator in MatLab
®
 implicitly chooses the best

algorithm (direct solver) depending upon the type of input matrix. On CPU, mldivide

performs much better than the iterative sparse solvers. Since mldivide operator is not

supported on GPU for sparse matrices, we compared mldivide on CPU with iterative solver

on the GPU. For Mesh 3 in Table 1, the pcg (preconditioned conjugate gradient) function

takes 295 seconds on GPU, whereas mldivide takes 25.5 seconds to solve the system of

equations on CPU. This prompts us to adopt a strategy in which assembly, numerical

integration is done on GPU, and solution of linear system of equations takes place on CPU by

the mldivide operator. We call this as GPU + CPU strategy. Fig. 7 shows the comparison of

overall execution time. The GPU + CPU strategy achieves 2.2× speedup over CPU parallel

strategy, 5.6× speedup over sequential strategy and 1.4× over CPU vectorized strategy for the

finest mesh.

Fig. 7. Overall execution time for cantilever beam problem.

Fig. 8. The geometrical set-up of peeling problem.

Strip peeling problem

We consider the peeling of a deformable strip (having length , height

with nm) adhering to a flat, rigid substrate. The schematic arrangement of this

problem is shown in Fig. 8. An isotropic, nonlinear Neo-Hookean material model with

GPa, and , under plane strain conditions is used. It is considered that the adhesive

contact forces are present at the of the bottom length of strip (from to)

and are calculated using Eq. (3) with nm and
 J. At one end, a rotation

angle is applied in such a manner that it yields a constant moment during the peeling

process and a rotation step size is chosen for the simulation. The strip is discretized

with 240 x 12, 320 x 16, 400 x 20, 480 x 24, 640 x 32, and 720 x 36 number of elements

along each direction and corresponding discretization is referred as mesh 1, Mesh 2, Mesh 3,

Mesh 4, Mesh 5, and Mesh 6, respectively.

In Fig. 9, the comparison of numerical integration and assembly time is done. A considerable

amount of reduction in assembly timings can be observed for the proposed strategies. For

Mesh 6, the integration and assembly time reduces from 21876 seconds to 1780 seconds. The

CPU vectorized code achieves speedup in the range 5.1× - 4.1× over CPU parallel strategy.

The GPU based strategy achieves speedup in the range 2.4× - 12.3× over CPU parallel and

0.47× - 2.9× over CPU vectorized. The device set up time and data communication time

dominates in GPU +CPU strategy for smaller mesh size which results into inferior

performance compared to CPU vectorized for Mesh 1 and Mesh 2. When the mesh size

increases, effectiveness of GPU becomes more apparent. The comparison of total execution

time is shown in Fig. 10. The GPU + CPU strategy takes the least amount of time and reduces

the total simulation time from 49343.3 seconds to 28452 seconds for Mesh 6, which is

remarkable.

Fig. 9. Numerical integration and assembly time for strip peeling problem.

Conclusions

In this work, a novel vectorization strategy is presented to implement FEA and IGA on GPU

using MatLab
®
 environment. The proposed vectorization strategy accelerates elemental

tangent matrix evaluation and their assembly by performing the required computation at mesh

level rather than at element level. For linear elastic cantilever beam problem, the GPU based

strategy is found to be 10.1× faster than CPU parallel (parfor) and 38.2× faster than sequential

strategy in numerical integration and assembly for 7.2 million DOF. For strip peeling

problem, a maximum speedup of 12.3× is achieved over CPU parallel strategy in numerical

integration and assembly. This leads to total reduction in overall simulation time from 13.7

hours to 7.9 hours. Based on numerical simulation done in this paper, we find that a GPU is

very effective in accelerating the evaluation of element tangent matrix and their assembly to

global matrix in MatLab
®
. In future, we would like to extend this work to accelerate

evaluation of contact forces on GPU.

Fig. 10. Total execution time for strip peeling problem.

References

[1] Bathe, K. J. (1996) Finite element procedures, Prentice Hall of India, New Delhi, India.
[2] Hughes, T.J.R., Cottrell, J. A. and Bazilevs, Y. (2005) Isogeometric analysis: CAD, finite elements, NURBS,

exact geometry and mesh refinement, Computer methods in applied mechanics and engineering 194, 4135-
4195.

[3] Cottrell, J. A., Hughes, T. J. R. and Bazilevs, Y. (2009) Isogeometric Analysis: Toward Integration of CAD and FEA,

Wiley.

[4] Mittal, S. and Vetter, J. S. (2015) A survey of CPU-GPU heterogeneous computing techniques, ACM Computing Surveys

(CSUR) 47, 69.

[5] Huang, S., Xiao, S. and Feng, W., On the energy efficiency of graphics processing units for scientific computing, In Parallel

& Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, IEEE 2009, 1-8.

[6] NVIDIA, Popular GPU-accelerated Applications Catalog 2017.

[7] Martin, J. and Sharma, G. (2009) MATLAB: A Language for parallel computing, International Journal of Parallel

Programming 37, 3-36.

[8] Hosagrahara, V., Tamminana, K. and Sharma, G., Accelerating Finite Element Analysis in MATLAB with Parallel

Computing, The MathWorks News and Notes, 2010.

https://www.mathworks.com/tagteam/66859_91826v00_FEM_final.pdf.

[9] Cuvelier, F. Japhet, C. and Scarella, G. (2016) An efficient way to assemble finite element matrices in vector languages,

BIT Numerical Mathematics 56, 833-864.
[10] Simkus, A. and Turskiene, S. (2013) Parallel computing for the finite element method in MATLAB, Computational

Science and Techniques 1, 214-221.

[11] Cecka, C., Lew, A. J. and Darve, E. (2011) Assembly of finite element methods on graphics processor, International

Journal of Numerical Methods in Engineering 85, 640-669.

[12] Zhang, J. and Shen, D., GPU based implementation of finite element method for elasticity using CUDA, in High

Performance Computing and Communications 2013 IEEE International Conference on Embedded and Ubiquitous

Computing (HPCC EUC), 10th International Conference on IEEE, 2013, 1003-1008.
[13] Karatarakis, A., Karakitsios, P. and Papadrakakis, M. (2014) GPU accelerated computation of the isogeometric analysis

stiffness matrix, Computer Methods in Applied Mechanics and Engineering 269, 334-355.

[14] Woźniak, M. (2015) Fast GPU integration algorithm for isogeometric finite element method solvers using task dependency

graphs, Journal of Computational Science 11, 145-152.

[15] Georgescu, S., Chow, P. and Okuda, H. (2013) GPU acceleration for FEM-based structural analysis, Archives of

Computational Methods in Engineering 20, 111-121.

[16] Elman, H., Sylvester, D. and Wathen, A. (2014) Finite elements and fast iterative solvers, Second Ed. Oxford

University Press, Oxford, UK.
[17] Jung, J. H. and Bae, D. S. (2017) An implementation of direct linear equation solver using a many-core CPU for

mechanical dynamic analysis, Journal of Mechanical Science and Technology 31, 4637-4645.
[18] Sauer, R. A., and Li, S. (2007) An atomic interaction-based continuum model for adhesive contact mechanics, Finite

Elements in Analysis and Design 43, 384-396.
[19] Agrawal, V., and Gautam, S. S., IGA: A Simplified Introduction and Implementation Details for Finite Element Users.

Journal of The Institution of Engineers (India): Series C (https://doi.org/10.1007/s40032-018-0462-6).
[20] Bonet, J. and Wood, R. (2008) Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University

Press, Cambridge. (doi:10.1017/CBO9780511755446)

https://www.mathworks.com/tagteam/66859_91826v00_FEM_final.pdf
https://www.mathworks.com/tagteam/66859_91826v00_FEM_final.pdf
https://doi.org/10.1007/s40032-018-0462-6

