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Abstract 

In this paper, a Graphics Processing Unit (GPU) based novel parallelization scheme is 

proposed to reduce the extensive computational cost associated with the finite element (FE) 

and isogeometric analysis (IGA) simulations of linear and non-linear problems. An innovative 

parallelization strategy is introduced that achieves fine-grain parallelism and is suitable for 

GPU. The proposed strategy is implemented within the MatLab
®

 programming environment 

for the GPU based FE and IGA simulations. It, thus, avoids the need for specialized 

programming languages like CUDA/C++, which require in-depth knowledge for their 

implementation. The capabilities and performance of the proposed strategy are examined by 

solving both linear and non-linear problems. The results demonstrate that the proposed 

strategy achieves a considerable improvement in the assembly and computation of global 

tangent matrices over both the single core CPU and multicore CPU based computations. A 

maximum speedup of 41.4 times over single core CPU and 10.8 times over multicore CPU is 

achieved for linear problem. For non-linear problem of strip peeling from an adhesive 

substrate, a maximum speedup of 12.3 times is obtained in comparison to multicore CPU 

based computation. The proposed strategy can be easily incorporated within the existing 

codes with little modification. 
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Introduction 

Finite Element Analysis (FEA) is one of the most popular numerical methods used for the 

solution of a variety of problems governed by the partial differential equations [1]. It is known 

that FEA involves a large amount of computation to find the nearly exact solution of the 

problem. Moreover, the computational efforts increase substantially if the analysis includes a 

large number of finite elements. It, as a resultant, leads to a significant amount of simulation 

time even on fast modern computers. However, this may not be a desirable choice in the 

analysis community. 

In 2005, Hughes et. al [2] introduced the Isogeometric analysis (IGA) technique to circumvent 

the above mentioned issue associated with FEA. Unlike FEA, IGA doesn’t need to perform 

expensive mesh generation of the Computer Aided Design (CAD) model as it directly enables 

the transition of CAD generated model into the analysis framework. Thus, reducing the 

execution time of IGA based simulation significantly compared to FEA [3]. 

However, the computational time in case of IGA solver for large-scale problems can still be 

high [3]. The large simulation time in scientific applications is often reduced by using parallel 

computers. It involves decomposing a large-scale problem into a smaller number of parts and 

solving them in parallel over multiple processors. Recently, GPU based parallel computing 

has achieved great success in accelerating time-consuming scientific applications [4]. The 



GPU is specialized hardware designed to handle parallel and independent data task in a very 

efficient manner. It is a massively threaded processor having thousands of simpler cores 

instead of few powerful cores like in CPU. A large number of cores in GPU bring the 

performance of a mini computer cluster to the desktop computer at very low capital cost, low 

cooling cost and low power consumption [5]. There are numerous applications accelerated 

successfully by GPU in various fields including aerospace, defense, finance & economics, oil 

& gas, and computer games [6]. However, writing code for a GPU requires knowledge of 

parallel programming strategy and specific programming language like CUDA C/C++. Since 

CUDA C/C++ is a lower level programming language, it demands a great amount of time and 

effort from the user. On the other hand, scripting languages like MatLab
®

 have become more 

popular in the scientific community. MatLab
® 

provides an integrated computing environment, 

which supports the effortless development of code, easier and faster debugging, visualization, 

and a large number of built-in functions. The ease of code development in MatLab
®
 comes at 

the cost of lesser flexibility and reduced control to the programmers, which may lead to sub-

optimal performance. In the current work, a novel parallelization strategy is introduced which 

provides a possibility to achieve accurate result at a considerably lower computational cost 

compared to standard sequential computation approaches. The execution time is further 

reduced significantly by the use of GPU. 

The previous efforts to accelerate FEA on MatLab
® 

have focused on efficient vectorization 

techniques or parallel computation on multicore CPU through parfor or spmd construct of 

parallel computing toolbox [7]. A parallel implementation for coupled electro-mechanical 

finite element analysis of micro-electro-mechanical (MEMS) device is found in [8]. The work 

shows the use of parfor loop to calculate element stiffness matrices in parallel over 40 

MatLab
®
 workers set up to reduce simulation time from 60 hours to 2 hours. A significant 

amount of reduction in FEA assembly time is achieved by vectorization of code in [9]. In 

another work [10], a comparative analysis of multicore parallelization and GPU 

parallelization is done. The implementation uses parfor and spmd construct for CPU and 

arrayfun function wrapper for GPU. The result shows GPU based algorithm performing 

poorly than other two. However, the authors believe that with efficient vectorization GPU 

based parallelization can achieve better performance. 

Most of the previous work on acceleration of FEM using GPU is found to be based on CUDA 

C/C++. The most detailed study of GPU implementation of finite element assembly process is 

presented in [11]. The authors show the speedup of several folds in assembly for lower order 

as well as higher order elements. An efficient implementation of numerical integration on 

GPU is found in [12]. The authors show speedup of 7× over the efficient CPU implementation 

for quadrilateral element. In [13], a novel interaction-wise strategy for assembly of stiffness 

matrix in IGA is presented. The proposed strategy achieves speedup up to 54× over single 

core CPU implementation. The GPU based integration strategy of B-spline basis function in 

IGA is found in [14]. The above-mentioned works along with many others in literature [15] 

signify the effectiveness of GPU in accelerating FEM simulation. However, to the best of 

authors’ knowledge no literature exists that discusses the capabilities of MatLab
®
 to use GPU 

to accelerate FEM. 

FEM consists of a sequence of computationally expensive steps like evaluation of local 

matrices (mass and stiffness), assembly of local matrices into global matrix and solution of 

assembled system of equations [1]. GPU based computing has been found to be very effective 

in accelerating almost every step of FEM [15]. The solution of linear system of equation often 

dominates the simulation time and, therefore, it must be implemented with an optimized 

linear solver [16][17]. However, the time consumed in element matrix creation and their 



assembly to global matrix cannot be ignored, particularly, in nonlinear problems. In nonlinear 

problems, a large number of time steps are required to reach final solution. Within each time 

step, there are Newton-Raphson iterations that require revaluation of element stiffness 

matrices and their reassembly [1]. Thus, an optimum implementation of this step can lead to 

significant amount of reduction in simulation time. 

The objective of the current work is to accelerate the evaluation and assembly of mass and 

tangent matrices by making use of GPUs through parallel computing toolbox of MatLab
®
. A 

MatLab
®
 code can be made to run on GPUs with the minimum amount of changes requiring 

far less development effort than the language like CUDA C/C++. The function wrappers 

provided by MatLab
®
 like bsxfun, pagefun, and arrayfun have been used for numerical 

integration. Assembly to global matrix is done by sparse function of the MatLab
®
. First, an 

efficient GPU parallel strategy for FEM analysis for 2D elasticity problems is proposed and 

compared with sequential and CPU parallel (parfor) strategy. The proposed strategy is 

further used to accelerate IGA based nonlinear analysis of a strip peeling problem. The 

present work aims to utilize the computational power of GPU for FEA and IGA while 

keeping the development effort minimum by implementing it within the MatLab
®

 

environment. The outcome of this study is expected to help people in academic and industry 

accelerate their FEA based simulation code in MatLab
®
. 

The paper is organised as follows. In next section, problem formulation is presented using 

IGA. Thereafter, the parallel implementation of FEM is explained along with the data 

structure. In second last section, results of the numerical experiments done to evaluate the 

performance of proposed strategy are presented. The last section concludes the paper.  

Problem Formulation 

This section is divided into the two subsections. In the first, a continuum based formulation of 

adhesion model and its weak formulation is briefly overviewed. In the second, finite element 

and the NURBS based discretization of the continuum is presented. 

 

 
 

Fig. 1 Contact kinematics of a deformable body and a rigid substrate pair in their current 

configuration. 

 

Model for Adhesive Contact Problem 

Consider a body   in its current configuration having domain  , surface  , and the part of its 

boundary where contact takes places as   . The schematic arrangement of the body interacting 

with the rigid substrate is illustrated in Fig. 1. The governing equation for the quasi-static 

frictionless adhesive contact problem is given by the equilibrium between the work done by 

the internal, external, and contact forces. For the admissible variation of interaction potential 



function   , the weak form for the adhesive contact for a deformable body is given by the 

following statement [18]: 
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where   is the space of kinematically admissible variation function   ,   is the Cauchy stress 

tensor, and    is the contact traction over   . For the evaluation of contact tractions, penalty 

method based regularization of constitutive equation for the contact surface traction is used. 

First, based on the unique projection of slave points on the master surfaces, the unit normal 

   and minimum gap    between the contact surfaces are determined, see Fig. 1. Using the 

definition of the normal gap, the contact traction can be written as: 
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where    represents the penalty parameter. For the van der Waals adhesion model and the 

contact traction    is obtained by integrating the Lennard-Jones interaction potential four time 

[18] and is given as  
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Here,   , and    denote the Hamaker’s constant, and the equilibrium spacing of interacting 

particles of contacting bodies, respectively. 

FE discretized weak formulation 

Within the FEA, the domain of the body   is discretized into    number of elements such 

that   ∑   
  
    and the displacement field     its variation     for a standard finite element 

   is given by the summation of product of Lagrange basis function and field variables as 
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where    represents the displacement vector of node    and    denotes the total number of 

nodes in an element   . N is the basis function matrix:   [                ]  where    

represents the Lagrangian basis function associated to node   , and   is the identity tensor 

in   . Following the Galerkin approach, the initial configuration  , and current configuration 

  of body   are described in a likewise manner as in Eq. (4). In the context of IGA, NURBS 

basis functions used for the discretization of the geometry are employed for the determination 

of solution field. The displacement field  , its variation   , and the current configuration of 

the geometry   is represented in terms of the NURBS basis functions     (   ), i.e.    is 

replaced by     (   ) in Eq. (4). The reader is referred to [19] for the detailed description of 

the implantation of IGA into the finite element code structure. The discretized weak form Eq. 

(1) for the adhesive contact can be cast into the following matrix form [18]: 
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where     ,   , and        are the vectors for internal, contact, and externally applied forces, 

respectively. Internal force vector is described by the constitutive relation of the material 



model. In the present work, a Neo-Hookean hyperelastic material model is used and the 

Cauchy stress is determined by the following expression [20]  
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where   and   are Lam ́’s constants, and   denotes the determinant of deformation gradient 

tensor  . The contact contribution   
  over the contact surface    of an element    can be 

computed by the following expression 
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Parallel implementation of FEA 

The proposed strategy has been implemented entirely in MatLab
®
 environment using the 

parallel computing toolbox. The parallel computing toolbox provides various ways to run 

code on the GPU. The simplest way is to use built-in function enhanced to work on GPU with 

gpuArray type of input data. Since the built-in functions are not always sufficient, we have 

written our own MatLab
® 

functions and used them with function wrappers to implement our 

strategy on the GPU. The user-defined MatLab
®

 functions can be used without any function 

wrappers but it may launch multiple CUDA kernels even for simpler function. The function 

wrapper like arrayfun compiles multiple operations of a function into single GPU kernel and 

therefore provides better performance. However, the GPU function wrappers have some 

restrictions. Only those user-defined functions that contain element wise operations can be 

used. The arrayfun wrapper allows the function to take arrays/matrix as input but indexing 

into the array is not allowed. 

 

 
Fig. 2. Calculation of Jacobian. 

 Vectorization of code is critical to achieve better performance by the GPU parallelization. 

Our proposed strategy is based on a vectorization scheme in which computation at the 

elemental level with scalar variable is converted into computation at mesh level with arrays. It 



enables us to easily implement our strategy by functions with element wise operations and use 

them with arrayfun function wrapper. In our implementation, the numerical integration is 

done by looping over the Gauss points. For each Gauss point, Jacobian is calculated for 

transformation to the reference coordinates. Since we are doing calculation at the mesh level, 

Jacobian is calculated for each element of the mesh simultaneously. The data structure and 

procedure for Jacobian calculation is shown in Fig 2. Here, nodal coordinates are reordered 

and stored in the matrix with each column containing an individual coordinate for all elements. 

The derivative of the basis function in reference coordinate is pre-computed for all the Gauss 

points and reordered to facilitate the computation of Jacobian. As shown in Fig. 2, the 

calculation of an entry of Jacobian is done by multiplying coordinate values with basis 

function derivatives for a particular Gauss point. This evaluates to an array that contains an 

entry of Jacobian matrix for all the elements of the mesh. The other entries of the Jacobian 

matrix are calculated in the similar way. The computation of determinant for all the element 

of the mesh can be done simply by element wise operations over array of entries of Jacobian 

matrix. The computation of inverse of Jacobian is done by co-factor calculation. This can 

again be done in parallel for all the Jacobian matrices by element wise operations.  

The inverse of Jacobian is multiplied with derivative of shape function in reference 

coordinates to calculate shape function derivative in physical coordinates. Since we are 

working with arrays, the above product produces shape function derivative for all the 

elements of the mesh. To facilitate the computation of element stiffness matrix, the derivative 

of shape function is stored as shown in Fig. 3. Each column of the matrix contains derivative 

of particular shape function for all the elements of the mesh. The evaluation of element 

stiffness matrix is done by computing each individual entry of the matrix simultaneously for 

Fig. 3. Calculation of element stiffness matrix. 



all the elements. The calculation and storage pattern is shown in Fig. 3. Since the elemental 

matrix is symmetric, we calculate only the unique entries.  

All the matrices involved in the computation are stored in GPU memory. The assembly to 

global matrix is done by sparse function of the MatLab
®
. The off-diagonal entries are 

assembled first, so that it can be transposed to generate the symmetric part of the matrix. The 

on-diagonal entries are added later to complete the global matrix. The sparse function 

requires the row and column indices of the values to be assembled. This can be calculated 

beforehand using mesh connectivity. We pre-compute the row and column indices and reorder 

them according to the storage arrangement of element stiffness matrix. The global matrix is 

assembled on GPU.  

Results and Discussion 

To evaluate the performance of the proposed strategy two different problems are solved. The 

first one is linear elastic two dimensional (2D) cantilever beam problem with concentrated 

load at the tip and the second one is a strip peeling problem. The performance is compared 

among a CPU sequential, CPU parallel, CPU vectorized and GPU implementation. The CPU 

sequential approach uses a loop over each element of the mesh for element matrix 

computation and assembly. The CPU parallel implementation uses parfor construct of the 

parallel computing toolbox to utilize multiple processors on the CPU for parallel computation 

of element matrix computation and assembly. The CPU vectorized implementation is based 

on the proposed vectorization scheme but uses the CPU for computation. 

The machine used for the numerical experiment consists of Intel Xeon
®

 E5-2650 processor 

having 2.2GHz of clock speed and a NVIDIA Tesla K40c GPU with 2880 cores clocked at 

745MHz. The proposed strategy has been implemented on MatLab
®
 R2016a using the 

parallel computing toolbox. 

2D Cantilever beam 

A 2D cantilever beam with concentrated load at tip is taken  

as shown in Fig. 4. The geometric and material parameters are given as: length (L) – 10 m, 

breadth (B) – 1 m, Young’s modulus (E) - 210 GPa, Poisson’s ratio (ν) - 0.3 and end load (P) 

- 10
5
 N. Linear quadrilateral element with two degrees of freedom (DOF) per node is used to 

discretize the domain.  

 

 

 

 

 

 

L=10 m

B=1 m

P=105 N

Fig. 4. A 2D cantilever beam with end load. 



Table 1. Finite element mesh. 

Mesh Elements Nodes Degrees of 

freedom 

Mesh 1 900 000 903 301 1 806 602 

Mesh 2 1 600 000 1 604 401 3 208 802 

Mesh 3 2 500 000 2 505 501 5 011 002 

Mesh 4 3 600 000 3 606 601 7 213 202 

 

The problem is solved for different level of mesh refinement keeping the aspect ratio of the 

elements same. The finite element mesh with varying level of refinement is shown in Table 1. 

Structured mesh has been used for the purpose of numerical experiment but the calculation is 

performed for each of the elements treating them as unstructured. Fig. 5 shows the 

comparison of numerical integration and assembly time as a function of mesh sizes. It can be 

observed that the proposed GPU implementation obtains least timings for all of the mesh sizes. 

The CPU vectorized implementation achieves significantly less time than CPU parallel 

strategy (using 12 workers), highlighting the effectiveness of the proposed vectorization 

scheme. The speedups of the GPU implementation over all other implementations are shown 

in Fig. 6. A maximum of 41.4× (Mesh 1) speedup is obtained over CPU sequential and 10.8× 

(Mesh 1) over CPU parallel implementations. The GPU code could achieve speedup of only 

3.6× - 3.8× over CPU vectorized implementation, which shows that the proposed 

vectorization of FEM is able to scale very effectively also on the CPU. 

 

 

 
Fig. 6. Speedup in numerical integration and assembly 

 

 

Fig. 5. Numerical integration and assembly time. 



The linear system of equations given by FEM can be solved by either direct sparse solver or 

by iterative solvers. The mldivide(\) operator in MatLab
®
 implicitly chooses the best 

algorithm (direct solver) depending upon the type of input matrix. On CPU, mldivide 

performs much better than the iterative sparse solvers. Since mldivide operator is not 

supported on GPU for sparse matrices, we compared mldivide on CPU with iterative solver 

on the GPU. For Mesh 3 in Table 1, the pcg (preconditioned conjugate gradient) function 

takes 295 seconds on GPU, whereas mldivide takes 25.5 seconds to solve the system of 

equations on CPU. This prompts us to adopt a strategy in which assembly, numerical 

integration is done on GPU, and solution of linear system of equations takes place on CPU by 

the mldivide operator. We call this as GPU + CPU strategy. Fig. 7 shows the comparison of 

overall execution time. The GPU + CPU strategy achieves 2.2× speedup over CPU parallel 

strategy, 5.6× speedup over sequential strategy and 1.4× over CPU vectorized strategy for the 

finest mesh. 

 
Fig. 7. Overall execution time for cantilever beam problem. 

 
Fig. 8. The geometrical set-up of peeling problem. 

Strip peeling problem 

We consider the peeling of a deformable strip (having length        , height        

with      nm) adhering to a flat, rigid substrate. The schematic arrangement of this 

problem is shown in Fig. 8. An isotropic, nonlinear Neo-Hookean material model with     

GPa, and      , under plane strain conditions is used. It is considered that the adhesive 

contact forces are present at the     of the bottom length of strip (from     to         ) 

and are calculated using Eq. (3) with        nm and      
    J. At one end, a rotation 

angle   is applied in such a manner that it yields a constant moment during the peeling 

process and a rotation step size         is chosen for the simulation. The strip is discretized 

with 240 x 12, 320 x 16, 400 x 20, 480 x 24, 640 x 32, and 720 x 36 number of elements 

along each direction and corresponding discretization is referred as mesh 1, Mesh 2, Mesh 3, 

Mesh 4, Mesh 5, and Mesh 6, respectively.  

 



In Fig. 9, the comparison of numerical integration and assembly time is done. A considerable 

amount of reduction in assembly timings can be observed for the proposed strategies. For 

Mesh 6, the integration  and assembly time reduces from 21876 seconds to 1780 seconds. The 

CPU vectorized code achieves speedup in the range 5.1× - 4.1× over CPU parallel strategy. 

The GPU based strategy achieves speedup in the range 2.4× - 12.3× over CPU parallel and 

0.47× - 2.9× over CPU vectorized. The device set up time and data communication time 

dominates in GPU +CPU strategy for smaller mesh size which results into inferior 

performance compared to CPU vectorized for Mesh 1 and Mesh 2. When the mesh size 

increases, effectiveness of GPU becomes more apparent. The comparison of total execution 

time is shown in Fig. 10. The GPU + CPU strategy takes the least amount of time and reduces 

the total simulation time from 49343.3 seconds to 28452 seconds for Mesh 6, which is 

remarkable.  

 
Fig. 9. Numerical integration and assembly time for strip peeling problem. 

  

Conclusions 

In this work, a novel vectorization strategy is presented to implement FEA and IGA on GPU 

using MatLab
®
 environment. The proposed vectorization strategy accelerates elemental 

tangent matrix evaluation and their assembly by performing the required computation at mesh 

level rather than at element level. For linear elastic cantilever beam problem, the GPU based 

strategy is found to be 10.1× faster than CPU parallel (parfor) and 38.2× faster than sequential 

strategy in numerical integration and assembly for 7.2 million DOF. For strip peeling 

problem, a maximum speedup of 12.3× is achieved over CPU parallel strategy in numerical 

integration and assembly. This leads to total reduction in overall simulation time from 13.7 

hours to 7.9 hours. Based on numerical simulation done in this paper, we find that a GPU is 

very effective in accelerating the evaluation of element tangent matrix and their assembly to 

global matrix in MatLab
®
. In future, we would like to extend this work to accelerate 

evaluation of contact forces on GPU.  

Fig. 10. Total execution time for strip peeling problem. 
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