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Abstract

In this work, the unique properties of the scaled boundary finite element method (SBFEM),
a semi-analytical numerical method, which introduces a scaling center in each element’s
domain, are exploited to improve the accuracy of computed generalized stress intensity
factors (gSIFs) on hybrid balanced quadtree-polygon (QT) meshes. The gSIFs are ex-
tracted by harnessing the semi-analytical solution in radial direction. This is achieved by
placing the scaling center of the element containing the crack at the crack tip. Taking
an analytic limit of this element’s stress field as it approaches the crack tip, delivers an
expression for the singular stress field. By applying the problem specific boundary condi-
tions, the geometry correction factor is obtained and the gSIFs are then evaluated based
on their formal definition.
Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when com-
bined with QT meshes employing linear elements, this does not always hold. Neverthe-
less, it has been shown that crack propagation schemes are highly effective even given
very coarse discretizations, utilizing criteria than only rely on the ratio of mode I to mode
II gSIFs. The absolute values of the gSIFs may still be subject to undesirable errors.
Hence, we propose a post-processing scheme, which minimizes the error resulting from
the approximation space of the cracked element. Thus, the errors in the calculation of the
gSIFs is only limited to the discretization error of the quadtree mesh. This is achieved
by h- and/or p-refinement of the cracked element, which elevates the amount of modes
present in the solution. The resulting numerical description of the element is highly accu-
rate, with the main error source now stemming from its boundary displacement solution.
Numerical examples show, that this post-processing procedure can significantly improve
the accuracy of the computed gSIFs with negligible computational cost even on coarse
meshes resulting from QT decompositions.
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Introduction

The need for robust, economical and high-fidelity numerical methods to simulate failure
processes in linear elastic fracture mechanics (LEFM) arises as as consequence of sus-
tainable design, mandating lighter, stronger and more resilient structures in, e.g., the
aerospace, automotive, and construction industries [7,21,23]. To this end, several numer-
ical methods have been investigated. Some more notable representatives include: The
finite element method, boundary element method, extended finite element method, mate-
rial point method, meshless methods, peridynamics and recently also the scaled boundary



finite element method, which all consider a discrete crack representation. As of late, meth-
ods considering diffuse crack representations, e.g., variants of the phase field and thick
level set method have been gaining traction, due to their ability to incorporate complex
crack behaviour such as nucleation, propagation, branching, merging and arrest [12, 13].
For a comprehensive treatment, we kindly refer the reader to [4].
Although currently the extended finite element method (XFEM) [8] is arguably the
most popular method, pending widespread adoption in industry and academia alike,
SBFEM [17] offers similar capabilities and additional benefits in LEFM scenarios. SBFEM,
which introduces a scaling center within the element domain and, where applicable, at
the crack tip, permits an analytic solution in radial direction and thus the gSIFs can be
efficiently and effectively evaluated in post-processing as the limit of the singular stress
field as one approaches the crack tip [16, 18]. The benefits include the accurate deter-
mination of gSIFs at bi-material notches [2] and the fact the no a priori knowledge is
required of the order of singularity. Further, SBFEM’s polygon underpinning permits
direct integration with QT meshes, which eliminates issues with hanging nodes, results in
a limited amount of precomputable elements realizations and offers a level of adaptivity
around domain features [1, 9, 11,22].
However, the accurate calculation of gSIFs requires sufficient angular resolution of the
singular stress field. This issue is traditionally circumvented by refining an area around the
crack tip with subsequent homogenization into a cracked macro element. In conjunction
with the balancing operation performed on the QT meshes, this introduces a significant
amount of degrees of freedom (DOFs) thus increasing the computational toll of analysis.
Although the direction of crack propagation is accurately determined by the ratio of
gSIFs, the load-deflection curve can exhibit significant errors. Hence, we aim to increase
the accuracy of the calculated gSIFs, utilizing the same global mesh as previously for
analysis. This is achieved by enforcing the external boundaries of the cracked element to
be compatible with the linear shape functions, yet internally permit the use of arbitrary
higher order approximations to model the singular stress field.
This remainder of the paper is structured as follows: First the problem statement and the
pertinent theory are summarized. Next, the proposed method is detailed. Subsequently,
two numerical examples are investigated. They serve to validate the proposed method
and form the basis for the discussion. Finally, conclusions are drawn.

Problem Statement and Pertinent Theory

Problem Statement

To formulate the LEFM problem, we consider a two dimensional cracked domain Ω
(Fig. 1). The boundary Γ = Γ0 ∪Γu ∪Γt ∪Γc comprises regions of free surface conditions
(Γ0), prescribed displacements ū (Γu) and prescribed traction t̄ (Γt), where applicable.
The strong form with associated boundary conditions follows as:

∇ · {σ}+ {b} = {0} in Ω (1a)

{u} = {ū} on Γu (1b)

{σ} · {n} = {t̄} on Γt (1c)

{σ} · {n} = {0} on Γ0
c (1d)

where {σ} denotes the Cauchy stress tensor, {n} the unit outward normal to the boundary,
{b} the applied body force per unit volume, {u} the displacement field and ∇ the gradient
operator.



Figure 1: Cracked Body and boundary conditions.

The stress {σ} and strain field {ε}, given small deformations and linear elastic material
behaviour, follow from the modulus of elasticity E and Poisson ratio ν:

{ε} = ∇s{u} and {σ} = [D]{ε} (2)

for which ∇s is the 2D symmetric gradient operator and [D] the elasticity tensor:

[D] =
E

1− ν2


1 ν 0
ν 1 0

0 0
1− ν

2

 , for plane stress. (3)

Summary of SBFEM Theory

SBFEM [17] sets itself apart from other numerical methods by the introduction of a scaling
center. Only one scaling center may be present per polygonal element, termed a subdo-
main. One notable restriction is imposed: The complete boundary must be visible from
the scaling center, i.e., star-convexity. A new polar-like reference system is introduced
with radial coordinate ξ and local tangential coordinate η (Fig. 2).
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Figure 2: Subdomain with scaled boundary coordinates ξ and η.

The radial coordinate, with origin at the scaling center 0 and a value of 1 on the boundary
such that 0 ≤ ξ ≤ 1 is kept analytic throughout the analysis. This reduces the dimension-
ality of the problem by one. In 2D only the boundary remains, which is discretized in the
conventional finite element sense, into independent line elements. Each line element pos-
sesses its own natural coordinate −1 < η < 1 in tangential direction. Mapping between



Cartesian (x, y) and scaled boundary coordinates (x(ξ, η), y(ξ, η)) requires an analytic,
associated with ξ, and interpolatory, associated with η, component: Any point within the
domain can be expressed by scaling of a point {xb}, {yb} on the boundary by a fraction
of ξ in radial direction and an interpolation using the conventional finite element shape
function [N(η)] along the natural coordinate.

x(ξ, η) = ξxb(η) = ξ[N(η)]{xb} (4)

y(ξ, η) = ξyb(η) = ξ[N(η)]{yb} (5)

An iso-parametric representation is adopted and the displacements are analogously mapped:

{u(ξ, η)} = [N1(η)[I], ..., Nn(η)[I]]{u(ξ)} (6)

The amount of degrees of freedom (DOFs) per line element is denoted by n, while [I] is a
2x2 identity matrix and {u(ξ)} represent nodal displacement functions in radial direction,
which need to be determined by SBFEM analysis.
Applying the transformation to scaled boundary coordinates, the stresses may be written
as [19]:

{σ(ξ, η)} = [D]([B1(η)]{u(ξ)},ξ +[B2(η)]{u(ξ)}/ξ) (7)

where the strain-displacement relation is described by partitioning the linear operator
into [B1(η)] and [B2(η)] [17]. Deriving the weak form involves recasting the strong form
in scaled boundary coordinates and applying the standard techniques in tangential direc-
tion [3, 5, 20]. This gives rise to two equations:

[E0]ξ2{u(ξ)},ξξ +([E0]− [E1] + [E1]T )ξ{u(ξ)},ξ −[E2]{u(ξ)} = 0 (8)

{P} = [E0]ξ{u},ξ +[E1]T{u} (9)

The scaled boundary finite element equation in displacements (Eqn. 8) governs the system
response within the domain, while Eqn. 9 defines the behavior on the boundary. Three
coefficient matrices [E0], [E1], [E2] arise, which bear strong similarity to stiffness matrices
in conventional FEM: They are calculated element-wise with subsequent assembly on
subdomain level. The vector or nodal forces and displacements on the boundary are
given as {P} and {u} = {u(ξ = 1)} respectively. Typically, the solution to the set of
homogeneous Euler-Cauchy differential equations is constructed as a power series:

{u(ξ)} = [Ψ(u)]ξ−[S]{c} =
n∑
i=1

[Ψ
(u)
i ]ξ−[Si]{ci} (10)

The transformation matrix [Ψ] and block diagonal real Schur form [S] arise from rewritting
the quadratic eigen-problem described by combining Eqns. 8 and 9 as a system of first
order differential equations:

ξ

{
{u(ξ)}
{q(ξ)}

}
,ξ = −[Z]

{
{u(ξ)}
{q(ξ)}

}
(11)

with the Hamiltonian coefficient matrix Z defined by

Z =

[
[E0]−1[E1]T −[E0]−1

−[E2] + [E1][E0]−1[E1]T −[E1][E0]−1

]
(12)



It can be shown that Eqn. 11 decouples the block-diagonal Schur decomposition [15].

[Z][Ψ] = [Ψ][S] (13)

The modes comprise the columns of the transformation matrix, while the corresponding
eigenvalues are contained within the diagonal blocks of the real Schur form. Having
doubled the problem size by considering a system of first order differential equations,
the bounded response is striped from the unbounded one by sorting [S] and [Ψ] and
partitioning according to sign:

[S] = diag([Sneg], [Spos]) (14)

[Ψ] =

[
[Ψ(u)

neg Ψ(u)
pos]

[Ψ(q)
neg Ψ(q)

pos]

]
(15)

Substituting the bounded component of the displacement solution (Eqn. 10) into the equa-
tion governing the boundary response (Eqn. 9), the formulation of the subdomain stiffness
matrix arises, which permits the calculation of the displacement field using conventional
FEM methods.

Kbounded = [Ψ(q)
pos][Ψ

(u)
neg]

−1 (16)

The final expression of the stresses is obtained by substituting Eqn. 10 into Eqn. 7:

{σ(ξ, η)} =
n∑
i=1

[Ψσi(η)]ξ−[Si]−[I]{ci}] (17)

where stress mode [Ψσi(η)] arise from its corresponding displacement mode [Ψ
(u)
i ]:

[Ψσi(η)] = [D](−[B1(η)][Ψ
(u)
i ][Si] + [B2(η)][Ψ

(u)
i ]) (18)

Generalized Stress Intensity Factors

Since the general solution to the SBFEM equation is constructed from a power series,
the singular modes are readily identified: By inspection of Si, any −1 < real(λ) < 0 will
result in a singularity at ξ = 0. By placing the scaling center at a crack tip, this feature
is exploited in calculating the gSIFs (Fig. 2). By including a double node at the crack
mouth, two additional modes, i.e., the singular modes, arise, whose eigen-vectors resemble
the mode I and mode II fracture cases. The singular stress field is extracted from the
general solution (Eqn. 17), where the superscript (s) denotes the singular quantities:

{σ(s)(ξ, η)} = [Ψ(s)
σ (η)]ξ−([S(s)]−[I]){c(s)} (19)

Only the components {σ(s)(r, θ)} = (σ
(s)
θ (r, θ), τ

(s)
rθ (r, θ))T are retained, which correspond

to mode I and II cracks.{
σ
(s)
θ (r, θ)

τ
(s)
rθ (r, θ)

}
=

1√
2πL

ξ−[S̃(s)(θ)]

{
KI(θ)
KII(θ)

}
(20)

Comparing Eqn. 20 to the gSIFs formal definition [18] permits their evaluation as:{
KI(θ)
KII(θ)

}
=
√

2πL{σ(s)} (21)



Hierarchical Meshes

Hierarchical meshes arising from quadtree decompositions traditionally suffer from hang-
ing nodes, whose treatment typically incurs computational, algorithmic or implementa-
tional overhead. Leveraging the polygon-underpinnings of SBFEM alleviates all issues
commonly associated with hanging nodes, resulting in analysis ready meshes. To avoid
irregularity of the mesh, a balancing operation is performed, which limits the amount of
unique subdomain realization to 16 and enables precomputation. Hence, this approach
garners considerable attention [1, 10,11].
Strong and weak discontinuities are introduced by clipping the QT mesh [9]. Contrary
to the XFEM, double nodes are introduced. Crack tips require special treatment: A
double node is introduced where the crack enters an element and the scaling center is
placed at the crack tip (Fig. 2). Crack tips do not require discretization, however, they
are assumed straight. For crack propagation calculations, sufficiently accurate SIFs are
required. Unfortunately, the elements typically encountered on QT meshes do not permit
sufficient resolution of the singular stress field. Hence, a region around the crack tip is first
locally refined and then homogenized (Fig. 3, bottom left). Imposing a suitable criteria
to determine the critical crack propagation angle in conjunction with a user specified
crack propagation increment ∆a, determines the crack tip location in the subsequent step
(Fig. 3, bottom right). Due to the balancing operation, the homogenization step affects
large portions of the mesh, introduces many spurious DOFs in the process and forces a
substantial system update across iterations. The increased accuracy with which the SIFs
are calculated is attributed to two affects: Mesh refinement about the singularity and
improving the approximation space of the crack tip element.

Refinement
Balancing

Homogenization

Figure 3: Stages in crack propagation by SBFEM on QT meshes.



Proposed Method

By inspecting the expression of the singular stresses (Eqn. 19), the accuracy of the gSIFs
(Eqn. 21) can be improved in two ways:

1. Finding a better approximation for the integration constants [c] stemming from the
displacement solution of the domain.

2. Enhancing the displacement and thus stress field approximation [Ψ] and [S] within
the cracked element by escalating the amount of DOFs present.

The contribution of the first source can be adjusted by h- or p-refinement on the mesh,
either locally or globally. However, this is a costly procedure due to, e.g., remeshing,
reassembly followed by solution, in the understanding that a significant amount of DOFs
are newly introduced. Considering the convergence rate of the linear elements employed,
this is deemed a sub-optimal approach from a computational resources standpoint. The
second source allows for enhancement directly in post-processing and permits certain in-
sight into how close we might be to the exact solution, by contrasting the gSIFs calculated
using the traditional approach to those using the improved scheme.
The steps comprising the improved scheme are:

1. Perform analysis
A displacement solution for the given mesh is sought.

2. Create a high order cracked element
The existing cracked element is replaced by one elevated by h- and/or p-refinement.
New nodes, lying in-between existing QT mesh nodes, are introduced in the process.

3. Impose linearized displacements on all DOFs
To guarantee compatibility with the surrounding QT mesh, linear displacements are
enforced between its nodes, on the boundary of the elevated cracked element.

4. Back calculate [c] for cracked element
Since the cracked element comprises one subdomain, with all DOFs situated on the
boundary, where the prescribed displacements are imposed, the calculation of the
stiffness matrix is not necessary. Only the block-diagonal Schur decomposition is re-
quired. The integration constants are obtained as [c] = [Ψ(u)

neg]
−1{u} [17]. Typically,

refined crack elements comprising 100 DOFs have sufficiently converged. Since the
original already contains 10-30 DOFs, this does not noticeably impact computation
time.

5. Extract singular stress modes
The identification and extraction of the singular stress modes remains unchanged.

6. Calculate gSIFs
The gSIFs are calculated given Eqn. 21, however, now based on the quantities
originating from the elevated cracked element.

7. Contrast original with improved gSIFs
By contrasting the values for the gSIFs calculated by both methods, we can gauge
the quality of the original analysis. If the discrepancy in gSIFs is deemed too large,
refinement of the original mesh may be warranted.



Numerical Examples

Edge cracked square plate in mode II

An edge cracked square plate subjected to a plane stress state is examined (Fig. 4).
Along the boundary, the analytic solution [6] of the near-tip crack field is prescribed
given KII = 1 (Tab. 1), imposing pure mode II loading. The material properties are
E = 200 [N/mm2], v = 0.3 and the side length is L = 1 [mm].

KII = 1
E = 200 [N/mm2]
ν = 0.3

L

L

a = L/2

Figure 4: Experimental setup for numerical example A.

Table 1: Analytic solution of the near-tip crack field.

Exact displacement solution for mode II fracture

ux
KII

2µ

√
r/(2π)sin θ

2

(
κ+ 1 + 2cos2 θ

2

)
uy −KII

2µ

√
r/(2π)cos θ

2

(
κ− 1− 2sin2 θ

2

)
Three cracked element discretizations are considered, as they arise typically on QT meshes,
prior to the refinement and homogenization steps (Fig. 3). The exact solution is applied
to the QT mesh nodes identified in Fig. 5. The remaining nodes resulting from internal
element refinement are restricted to move as a linear combination of their neighbouring
QT mesh nodes, enforcing compatibility.

QT mesh node
linear BC

CBA

Figure 5: Typical element types A-C arising from QT meshes.

The convergence behaviour is investigated in Fig. 6. Due to the over-constraining of
the boundary, deviation in convergence behaviour is expected, i.e., by enforcing linearly
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Figure 6: Convergence behaviour of KII on QT meshes employing n-noded
elements as boundary discretization.

dependant displacement boundary conditions between QT mesh nodes, an effective stress
state is imposed that differs mildly from the exact solution. In this example, the gSIFs
are therefore slightly overestimated, which is evident in the asymptotic behaviour on all
three meshes. Nevertheless, the error in KII is significantly reduced for all QT meshes,
as can be seen in Tab. 2. The diverging results for the case of 2-noded elements is
explained by the examination of the absolute values. While the higher order elements
approach the asymptotic solution from the high end, the two-noded elements approach
from the lower end, thus crossing the imposed KII = 1 in the process. The obtainable
accuracy is naturally limited to the asymptotic case by the artificially imposed boundary
conditions. Therefore, the expected convergence behaviour is disrupted accordingly. In
this specific example, the convergence behaviour of even-noded elements was observed to
behave predictably, while the odd-noded elements exhibited slight oscillatory behaviour.
It can be observed that the computed values for KII remain practically stable when more
than 100 DOFs are employed within the cracked element. Preference should be given to
higher order elements due to their enhanced convergence properties. On a contemporary
laptop employing unoptimized Matlab code, this entails calculations completing in less
than 0.1s. Tab. 2 provides the results for KII calculated on the original QT meshes and
contrasts them to the asymptotic solutions for the refined crack elements, given a high
fidelity SBFEM solution. Assuming a user-specified accuracy tolerance, the improved
method of calculating the gSIFs facilitates a decision criterion on whether global mesh



refinement is required. The difference in achieved accuracy for each QT mesh is primarily
attributed to the manner in which the enforced displacements on the boundary conform
to the exact field solution. Deviations therein are reflected in the integration constants
[c] (Eqn. 19) and comprise the remaining error in the asymptotic solution. In a practical
application of this method, the displacement solution on the QT mesh nodes results from
the FEM solution of the global QT mesh. Since the method proposed to improve the
calculation of gSIFs does not increase the amount of global DOFs, the overall analysis does
not differ. Solely on the cracked element that is refined, “virtual” nodes are introduced
that, however, never manifest in calculation of system displacements as their values are
predetermined due to the linearized BCs. In principle, a more accurate representation
of the displacement modes and eigenvalues is achieved inside the cracked element, while
the boundary constraints remain unchanged. This explains the counter intuitive results
of the asymptotic error for QT mesh type A for which smaller errors are observed than
for the QT mesh type B: For this specific loading, i.e., mode II excitation, on average,
the enforced displacement field on the boundary results in a closer approximation of the
exact stress field. If mode I excitation where, however, considered, for which the right
boundary of the cracked element exhibits concave behaviour, QT mesh Type A results in
a 15% error, since it is not able to reproduce such displacement behaviour. Between QT
meshes type B and C we observe convergence as expected, as QT mesh C can represent
all displacement modes of QT mesh B, while also introducing additional ones.

Table 2: Convergence of gSIFs to imposed solution.

Method KII error [-] error [%]

imposed 1 - -

(v) hi-fi 1.00000000524414 ≈ 0 ≈ 0

(iii) QT mesh A 1.01547261490198 0.0155 1.55
B 0.80116357970950 0.1988 19.88
C 0.92998436271287 0.0700 7.00

(iv) asympt. A 1.01124862611779 0.0113 1.12
B 1.02286467268900 0.0287 2.29
C 1.00598223218854 0.0060 0.60

Edge cracked square plate in mode I

An edge cracked square plate subject to a plane stress state is examined (Fig. 7). The
bottom edge of the plate is fully clamped, while on the top edge forced displacements
uy = 1 and ux = 0 are applied. The Young’s modulus, Poisson’s ratio, fracture energy,
crack propagation increment and side length are given as E = 200 [N/mm2], v = 0.3,
Gc = 2.7 [N/mm2], ∆a = 0.025 [mm] and L = 1 [mm] respectively.
First, the load-deflection curves obtained from several methods are compared: (i) XFEM,
(ii) traditional QT SBFEM, (iii) SBFEM on QT mesh types A-C, (iv) the newly proposed
SBFEM method and (v) a high fidelity SBFEM solution comprising one subdomain with
h- and p-refinement. The load-deflection curves (Fig. 8) are constructed using the follow-
ing procedure:

1. Calculate the critical stress intensity factor Kc from the E-modulus and the critical



energy release rate Gc:

Kc =
√
EGc for plane stress (22)

2. Formulate the equivalent stress intensity factor Keq:

Keq =
√
K2
I +K2

II (23)

This implies that the crack propagates as soon as Keq ≤ Kc. Hence, the gSIFs and
the sum of the reaction forces are stored at each iteration.

3. Determine the load factor such that crack propagation initiates, i.e., as the ratio
Kc/Keq. The effective displacements and loads at each crack increment step are
calculated by scaling the initially imposed values by the load factor.

4. Employ the minimum strain energy density criterion (or equivalent) to calculate the
crack propagation angle [14]:

θc = 2 tan−1

 −2KI/KII

1 +
√

1 + 8(KI/KII)2

 (24)

uy = 1

E = 200 [N/mm2]
ν = 0.3

L

L

a = L/2

uy
ux

ux = 0

Figure 7: Experimental setup for numerical example A.

For this simple example, the crack paths for all methods coincide, i.e., they propagate in
direct extension of the imposed crack. Investigating the load-deflection behaviour (Fig. 8),
two reference solutions are constructed: a high fidelity SBFEM solution (v) employing 568
DOFs and an XFEM solution (i) employing a domain discretization of 161x161 element
(52’488 DOFs). As expected, the traditional approach (ii) utilizing 1024 DOFs mirrors
the reference XFEM solution. Similarly, the correct load-deflection response is obtained
by the novel approach (iv), however, employing only 880 DOFs, i.e., on the same mesh as
the deficient method (iii). The difference in DOFs is attributed to the balancing operation
following refinement around the crack tip, which propagates across the domain.
Given this specific geometry, an exact solution for the crack tip singularity is available,
i.e., a square root singularity, which we exploit for benchmarking purposes. By inspection
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Figure 8: Load deflection curves for methods (i) - (v).

of Eqn. 19, this is the case when all eigenvalues contained in [S(s)] are equal to 0.5. Since
the singular eigenvalues depend only on the boundary discretization, a SBFEM element’s
ability to reproduce the exact solution is purely a reflection of its approximation space.
Hence, by leveraging hp-elements, the error in calculated gSIFs, due to the choice of
approximation space, can be minimized so that the remaining error stems only from the
surrounding mesh discretization. Tab. 3 summarizes the results for the SBFEM based
methods given different levels of refinement. As expected, the hi-fi (v) solution is able
to approximate the exact solution to nearly machine precision even with very few DOFs.
Both the proposed method (iv) and traditional (ii) approaches deliver approximations
accurate to several significant figures. For method (iv) 3- and 5-noded elements, denoted
by 3n and 5n respectively are considered. For method (ii), studies were conducted using
either {2,3,6,12} linear elements per long side of the cracked domain. It can be observed
that the proposed method (iv) significantly outperforms the traditional (ii) approach at
similar internal discretization levels. The elements, as they are employed in method (iii),
perform poorly and report significantly fewer accurate digits.
We compare KI obtained by our proposed method (iv) and method (iii) to the hi-fi ref-
erence solution (v) (Tab. 4). Since both methods employ the same mesh, we isolate the
gains of proposed method (iv). Indeed, for mesh types A and B we observe an improve-
ment in accuracy of the calculated gSIFs by approximately and order of magnitude. For
mesh C, however, we approach a limit given by the discretization error of the underlying
mesh and therefore the error cannot be reduced to such a degrees as with the previous
meshes. Nevertheless, accuracy < 1% is readily achieved, indicating a sufficiently accurate
solution for most SIF-based applications.



Table 3: Convergence of eigenvalues to square root singularity.

Method DOFs λ1 λ2

exact - 0.5 0.5

(ii) trad. 2 34 0.502106496308655 0.502106496308665
3 66 0.500547555626861 0.500547555626900
6 162 0.500088619101087 0.500088619101087

12 322 0.500022191325667 0.500022191325716

(iii) QT mesh A 12 0.543331260622274 0.487073508787698
B 18 0.506300843546734 0.506300843547260
C 34 0.501432879576478 0.501432879577241

(iv) asympt. 3n 66 0.499993111156218 0.499991972174270
3n 98 0.499998547338467 0.499998547338467
3n 130 0.499999524753473 0.499999524753473
5n 42 0.500958236174165 0.500555777249317
5n 68 0.500001822342609 0.500001760606780
5n 106 0.500000389900685 0.500000214938575

(v) hi-fi 578 0.499999999998063 0.500000000000369

Table 4: Convergence of gSIFs to high-fidelity solution.

Method KI error [-] error [%]

(iii) QT mesh A 18.824826991544300 3.4427 22.38
B 17.144699325716516 1.7626 11.46
C 15.767196554450349 0.3851 2.50

(iv) asympt. A 15.714940415023673 0.3328 2.16
B 15.629945166079814 0.2478 1.61
C 15.457607616329554 0.0755 0.49

(v) hi-fi 15.382113483624098 - -

Conclusion

This paper demonstrates that the accuracy of gSIFs calculated on hierarchical meshes can
be significantly enhanced by implementing local refinement of the cracked element, while
constraining the boundary displacements to conform with the surrounding mesh. The
error stemming from the element’s ability to accurately represent the singular stress field is
alleviated and the remaining deviation is attributed to the discretization error introduced
by the mesh. The proposed method permits the use of significantly coarse discretizations
of the domain without the need for artificial refinement about the crack tip to obtain
comparable accuracy of the gSIFs. This benefit is compounded, since the balancing
operation employed on the hierarchical mesh, to arrive at a finite number of precomputable
element realizations, is eliminated. Numerical examples have demonstrated that the use
of higher order elements and approximately 100 DOFs in the refined element produce
accurate results, while retaining high computational efficiency. The limitations of this
approach stem from the linear boundary discretization, imposing artificial constraints on



the solution. The use of higher order elements, such as cubic line elements on hierarchical
meshes could minimize this issue and require the development of targeted implementations
for more involved domain geometries.
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