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Abstract

In this contribution, we aim at accelerating topology optimization by recasting the forward
problem into a form that directly interacts with the structural solver: The polytope nature
of SBFEM elements is exploited on quad-/octree meshes to alleviate issues associated
with hanging nodes. Furthermore, a balancing operation applied to the mesh results
in a manageable number of precomputable element configurations, which significantly
accelerates the forward analysis. The analysis mesh for each optimization iteration is
obtained via automated image-based decomposition of the design variables.
A number of benefits arise from this combination of methods. The ease with which
higher-order elements may be incorporated, coupled with the use of unstructured meshes,
combats the formation of checker-boarding. Second, computational effort only arises
where required by the problem definition, since adaptivity is automatically provided.
Third, numerical examples in both 2D and 3D indicate that the amount of degrees of
freedom present during analysis is reduced by more than an order or magnitude.
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Introduction

The adoption of Topology Optimization (TO) into engineering practice stems from the
ever-increasing need for the sustainable, economical and accountable use of resources
across diverse sectors, e.g., construction, aerospace and automotive. The solution of a
computationally expensive forward problem is typically fundamental to TO of continuum
structures [4], which aims at defining an optimal structural layout subject to constraints.
The conventional approach employing a fine grid of design variables, with values of 0
and 1 corresponding to void and solid, respectively, and whose layout remains constant
across all iterations, does not reflect the nature of the evolving topology and leads to an
excessive computational toll. Several adaptive schemes have been proposed to alleviate
this computational burden [8, 19, 27]. In [17] tree-based meshing strategies are explored.
Unfortunately, therein the treatment of hanging nodes severely affects the computational
efficiency, which the herein proposed scheme remedies.
This work is motivated by the adoption of numerical methods capable of treating polytope-
elements to alleviate issues commonly associated with hanging nodes. The proposed
scheme is suited for fusion with, but not limited to, the boundary element method [14],
polygonal finite element method [26], conforming shape functions [7] or virtual element
method [3]. Here, we employ the scaled boundary finite element method (SBFEM) [24],
a semi-analytical numerical method that permits the treatment of star-convex polytopes
by introducing a scaling center in every element, thereby retrieving an analytical solution
in radial direction, while only necessitating discretization of element boundaries. This



attribute permits the construction of hp-elements. The combination of higher order ele-
ments and unstructured meshes combats the formation of checker-boarding [4]. Although
a mixed SBFEM has been employed for solving TO problems of incompressible materi-
als [12], it follows the conventional fine-grid approach to TO and limits its treatment to
linear elements and 2D applications.
The SBFEM has proven itself as a remarkably versatile tool in automatic image-based
stress analysis [15, 21]. Such hierarchical meshes arising from tree-like image decom-
positions drastically reduce the amount of degrees of freedom (DOFs) present, which
accelerates the solution of the forward problem by alleviating computational effort and
memory requirements. Image decomposition techniques, within the context of TO, pro-
duce fewer DOFs when material transition zones are eliminated. Hence, bi-directional
evolutionary structural optimization (BESO) [10], sequential element rejection and ad-
mission (SERA) [2], solid isotropic microstructure with penalization (SIMP) combined
with grayscale filters [1,13] and level-set methods [16], for example, represent suitable al-
gorithms. Since image decomposition operates on the design variables to produce analysis-
ready meshes at each iteration, this family of techniques only requires interchanging the
solver of the forward problem. Hence, incorporation into existing code bases requires min-
imal modification. Furthermore, as tree-like image decomposition techniques [5] utilize
the uniformity of an element as a criterion for subdivision, multi-material TO [20] may
be incorporated through extension to color-aware tree-like decompositions [11].
This work is structured as follows: The pertinent theory is provided first. This entails the
salient features of TO and automated image segmenting into analysis-ready hierarchical
meshes. These meshes, consisting of significantly fewer DOFs than traditional fine-grid
approaches, are employed during the solution of the forward problem and contribute sig-
nificantly to the reduction in computational cost. Subsequently, the proposed scheme is
introduced in detail. Its novelty is i) the fusion of TO with automated image segmenting
schemes, ii) the use of polytope-elements constructed by SBFEM to alleviate issues asso-
ciated with hanging nodes, iii) color-encoding of domain and analysis parameters into the
input images and iv) the extension to SBFEM-powered 3D TO. Based on three numeri-
cal examples, the proposed scheme is then verified, showcased and discussed. Novelties i)
and ii) are demonstrated to significantly reduce computational effort and memory require-
ments, when compared to traditional fine-grid approaches. Finally, we offer conclusions
and directions for future work.

Theory

Topology Optimization for Compliance Problems

In this paper we consider TO with focus on compliance minimization when subjected to
a volume constraint, i.e., maximizing the structural stiffness when only a fraction of the
original volume is available:

min
x

: c(x) = UTKU =
N∑
e=1

g(xe)u
T
e k0ue

subject to : V (x)/V0 = f

: KU = F

: 0 ≤ x ≤ 1

(1)

where the set of N design variables x spans the design domain and specifies the material
distribution. Three conditions are imposed, constraining the optimal solution. First, each



element of x, denoted by xe, must fall within limit values of 0 and 1, which correspond to
void and solid regions respectively. Second, a user prescribed volume fraction f follows as
the ratio of current volume V (x) to initial volume V0. Third, the displacement field U,
required to compute the compliance c, follows from the solution of the forward problem
in 3D elastostatics. K denotes the corresponding stiffness matrix and F the load vector
respectively. The compliance can either be calculated globally or locally, as a summation
of element contributions. The elemental nodal displacements are denoted by ue and the
corresponding stiffness matrix, calculated with Young’s modulus equal to one, i.e., a solid
element, is given as k0. g(xe) is a function, which typically scales k0 according to the
specific realization of its design variable xe to account for intermediate material properties,
i.e., Young’s modulus.

Segmenting Images into Analysis-ready Hierarchical Meshes

Tree-based image decomposition techniques typically operate on gray-scale input then
output regions, which fulfill a user specified homogeneity criterion. In this paper, we
limit our focus to quadtrees (2D) and octrees (3D), which follow the same underlying
principles: The region is bisected parallel to the Cartesian axes, if the spread in gray-
scale values of any contained pixels exceeds a user-specified threshold. In 2D this results
in splitting and replacing the region by four equally sized blocks, explaining the prefix
“quad”. If this process is repeated often enough, visually, a tree-like structure emerges
(Fig. 1), which clarifies the suffix. For pixel-based applications, bisection requires the

Figure 1: Example of image decomposition by quadtree algorithm with
sample SBFEM polytope element in gray.

resolution of the input image to comprise a power of two. Since this is generally not the
case, images are padded to the next power of 2, where applicable. Each homogeneous block
is represented by a single element. Assuming nodes in each element corner, the image
decomposition is transformed into a mesh representation (Fig. 2). Due to the irregularity
of the mesh, challenges arise during analysis: Constructing appropriate elements and
satisfying sufficient discretization. Traditionally, balancing such meshes, i.e., enforcing at
maximum at 2:1 ratio of adjacent blocks, tempers most issues. However, hanging nodes
(Fig. 2, red) still persist. One option to alleviate this issue is the adoption of a polytope-
based finite element variant, such as the SBFEM. Since, for example, only 16 possible
element realizations exist in 2D, precomputation may even be exploited in the process.

The Forward Problem for 3D Elastostatics

We consider a three dimensional domain Ω, whose boundary Γ = Γ0 ∪ Γu ∪ Γt comprises
regions of free surface conditions (Γ0), prescribed displacements ū (Γu) and prescribed
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Figure 2: Segmentation of image with resulting mesh for unbalanced and
balanced quadtree decompositions. Hanging nodes in red and additional

elements introduced due to balancing in green.

traction t̄ (Γt). The strong form with boundary conditions may be stated as:

∇ · σ + b = 0 in Ω (2a)

u = ū on Γu (2b)

σ · n = t̄ on Γt (2c)

The Cauchy stress tensor, unit outward normal to the boundary and applied body force
per unit volume are denoted by σ, n and b respectively. u is the displacement field and
∇ the linear gradient operator. Imposing small deformations and linear elastic material
behaviour, the stress σ and strain ε fields are dependent on the modulus of elasticity E
and Poisson’s ratio ν:

ε = ∇su and σ = Dε (3)

where ∇s is the symmetric gradient operator and D the 6x6 elasticity tensor.

The Scaled Boundary Finite Element Method in 3D Elastostatics

In this section, a brief summary of the scaled boundary finite element method in 3D is
given. For a more elaborate derivation and detailed explanations, the readers may consult
references [24,25].
The salient features of an SBFEM analysis are illustrated on the problem domain described
by the volume V depicted in Fig. 3. V comprises the volume spanned by the scaling center
O and the 2D surface element, describing the boundary. One minor constraint is required:
The domain must remain star-convex, i.e., the entire surface must be visible from the
scaling center. The introduction of this scaling center is accompanied by a transition from
a Cartesian reference system into one resembling polar coordinates. In radial direction
the analytic variable ξ is introduced, while for each tangential direction, η respectively ζ
represent the local coordinates on the boundary. Therefore, each surface element may be



described by 2D interpolation shape functions N (η, ζ) formulated in natural coordinates
−1 ≤ η ≤ 1 and −1 ≤ ζ ≤ 1. The interior of the domain is constructed by scaling the
boundary (x, y, z) along the dimensionless radial coordinate 0 ≤ ξ ≤ 1, which originates
at the scaling center and ends on the boundary. The mapping of points employing the
newly introduced scaled boundary coordinate system is therefore given as:

x̂ (ξ, η, ζ) = ξx (η, ζ) = ξN (η, ζ) x, (4a)

ŷ (ξ, η, ζ) = ξy (η, ζ) = ξN (η, ζ) y, (4b)

ẑ (ξ, η, ζ) = ξz (η, ζ) = ξN (η, ζ) z. (4c)

We denote the vectors of nodal coordinates of a surface element by x,y, z respectively. The
set (ξ, η, ζ) is termed the scaled boundary coordinates in the three-dimensional domain.

O
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V

Figure 3: Three-dimensional coordinates for a scaled boundary finite
element.

Similarly, the iso-parametric mapping of the displacements u (ξ, η, ζ) at a point (ξ, η, ζ)
comprises an analytic (ξ) and interpolatory (η, ζ) component:

u (ξ, η, ζ) = [ux (ξ, η, ζ) , uy (ξ, η, ζ) , uz (ξ, η, ζ)]T = Nu (η, ζ) u (ξ) , (5)

where u (ξ) represents an analytic displacement function along ξ, unique to each node
on the boundary. These displacements functions are determined during the SBFEM
solution. The interpolation shape function Nu (η, ζ) in Eq. (5) are defined analogously to
the conventional FEM:

Nu (η, ζ) = [N1 (η, ζ) I, N2 (η, ζ) I, . . . , Nn (η, ζ) I] , (6)

where n denotes the amount of nodes of the surface element and I is the 3 × 3 identity
matrix. Expressing the strains in scaled boundary coordinates requires splitting the lin-
ear differential operator into components B1 and B1, whose combined effect mimics the
original transformation:

ε (ξ, η, ζ) = B1 (η, ζ) u (ξ) ,ξ +
1

ξ
B2 (η, ζ) u (ξ) , (7)



The stresses are obtained conventionally by pre-multiplying the strains by the constitute
matrix:

σ (ξ, η, ζ) = D

(
B1 (η, ζ) u (ξ) ,ξ +

1

ξ
B2 (η, ζ) u (ξ)

)
. (8)

The weak form for each subdomain may be derived by applying several methods [6,9,29].
Neglecting body loads and surface tractions, two equations arise (Eqs. 9 and 10):

E0ξ
2u (ξ) ,ξξ +

(
2E0 − E1 + ET

1

)
ξu (ξ) ,ξ +

(
ET

1 − E2

)
u (ξ) = 0, (9)

The coefficient matrices E0,E1,E2 bare a striking similarity to conventional FEM stiff-
ness matrices, both in their structure and in that they are calculated for each element
individually, with subsequent assembly for each subdomain. The internal nodal forces
modes at the boundary q (ξ) are derived as:

q (ξ) = ξ
(
E0ξu (ξ) ,ξ +ET

1 u (ξ)
)
. (10)

The scaled boundary finite element equation is solved by the matrix function solution
proposed by Song [23]. Therein, the quadratic eigen-problem is recast into a system of
first-order differential equations in ξ, at the expense of doubling the amount of unknowns:

ξ

{
ξ0.5u (ξ)
ξ−0.5q (ξ)

}
,ξ

= −Z

{
ξ0.5u (ξ)
ξ−0.5q (ξ)

}
, (11)

with the Hamiltonian coefficient matrix Z defined as:

Z =

[
E−1

0 ET
1 − 0.5I −E−1

0

−E2 + E1E
−1
0 ET

1 −
(
E1E

−1
0 − 0.5I

) ] . (12)

The Schur decomposition with subsequent block-diagonalization is employed to avoid
numerical deficiencies in the solution and decompose Z to satisfy:

ZV = VS, (13)

where S and V are the real Schur form and the transformation matrix, respectively. In
order to strip the bounded from the unbounded response, the diagonal blocks containing
the eigen-values of S are sorted in ascending order and the columns of V, which contain the
associated eigen-modes, are reordered accordingly. The following partitioning is devised:

S =

[
S11 0
0 S22

]
, (14a)

V =

[
V11 V12

V21 V22

]
. (14b)

S11 contains all eigenvalues with negative sign, i.e., Re (λ(S11)) < 0, which can be shown to
correspond to the bounded domain solution. The general solutions for the displacements
and internal nodal forces for the bounded domain is sought in the form of a power series
and can be expressed as:

u (ξ) =V11ξ
−S11−0.5Ic, (15a)

q (ξ) =V21ξ
−S11+0.5Ic. (15b)



The integration constants c, whose values are determined in post-processing, follow from
the effective boundary conditions of the problem. Formulating Eq. (15) at the boundary
(ξ = 1), the nodal displacements u = u (ξ = 1) and the nodal forces q = q (ξ = 1) can be
expressed as:

u =V11c, (16a)

q =V21c, . (16b)

Since the static stiffness matrix K is defined as q = Ku, K of a subdomain is determined
by substituting Eq. (16):

K = V21V
−1
11 . (17)

Upon assembly of all individual subdomain stiffness matrices into a global stiffness matrix,
the displacement solution is sought according to conventional FEM procedures.

Proposed Scheme

The proposed scheme primarily entails a drop-in replacement for calculating the dis-
placement field. By exploiting hierarchical image decomposition techniques, regions with
homogeneous material properties are identified and represented by a single element, such
that coarser, adaptive meshes result with significantly fewer DOFs than with conventional
grid approaches. Although remeshing is required for each iteration, the implemented de-
composition techniques are economical and the resulting computational toll is easily re-
cuperated by solving a forward problem with significantly fewer DOFs, even on modestly
sized example domains. The steps differ slightly between 2D and 3D, since in 3D the pre-
computation procedure employed for 2D would result in 4096 unique element realizations,
whose construction requires building a substantial library and accompanying algorithmic
logic. Instead, the unique element realizations for each 3D mesh are determined, which
are computed once and subsequently cloned for the remaining mesh. Empirically, only a
fraction of possible element realizations exist simultaneously on a mesh.
The proposed scheme comprises the following steps:

1. Precompute
For the 2D case, the 16 possible element realizations are precomputed with Young’s
modulus equal to one.

2. Initialize and begin TO loop
Only the filter must be prepared. Conversely to conventional approaches, remeshing
at each iteration is required, rendering the preparation of sparse stiffness matrix
assembly vectors [1] obsolete.

3. Calculate displacement field
The grid of design variables is fed as a gray-scale image to the decomposition al-
gorithm, which outputs an analysis-ready hierarchical mesh. Color-encoded regions
are automatically recognized and resolved. Their inscribed operations are then ap-
plied. Once the stiffness properties of each element are identified, the displacement
field is calculated analogous to the conventional FEM.

4. Determine compliance
The compliance at each iteration is calculated as the product of the system displace-
ment field and the force vector.



5. Determine sensitivities
The sensitivities of the design variables are evaluated element-wise, by iterating
over each subdomain. Since the subdomains are of variable size, the calculated
sensitivities must be normalized per unit volume.

6. Filter sensitivities
Standard mesh-independency filtering techniques may be applied as necessary.

7. Design variable pro-/demotion
Solving the optimization problem, for example by optimality criterion (OC) ap-
proach identifies, which design variables to promote or demote, i.e., assign or sub-
tract material. While B/ESO, SERA and level-set approaches result in black-and-
white outputs, SIMP-based approaches introduce intermediate material distribu-
tions. This is rectified by either employing a Heavyside projection [1] or a gray-
scale filter [13,22]. The updated design variables form the input for the subsequent
iteration.

8. Export of results
Upon completing the analysis, the hierarchical mesh is thresholded to yield the
optimized system geometry. Simple methods permit exporting the hierarchical mesh
to STL format for subsequent additive manufacturing.

In order to further accelerate the analysis procedure, which is constrained by the solution
of the forward problem, so-called hard-kill variants have been proposed. These differ from
standard soft-kill approaches in how they treat void elements: Soft-kill approaches assign
a very small stiffness, typically 10−9, which impacts the conditioning of the numerical
problem, while hard-kill approaches disregard such elements entirely. Not all problems,
however, are amenable to this approach, since multiple independent substructures poten-
tially arise during analysis, leading to numerical instabilities.

Numerical Examples

Three numerical examples are examined in this paper:

1. A thick cantilever subject to a point load at mid-height.
2. An L-shaped bracket with prescribed material distributions and multiple load cases.
3. The 3D wheel.

The first example verifies the proposed method, while the second showcases the extended
capabilities, by color-encoding system and analysis information directly into the input
image. Having thoroughly discussed the 2D behaviour, we extend the analysis to the 3D
wheel problem. For each of the numerical examples, we couple the proposed method with
a different TO variant, e.g., B/ESO, SERA and SIMP. One could have equally chosen to
employ a level-set based method as an alternative to the ones listed prior.

Thick Cantilever

A thick cantilever subject to a point load at mid-height (Fig. 4) is considered. The width
and height are discretized by 512 and 256 pixels respectively. The prescribed volume
fraction f is chosen as 0.4. The penalty exponent of both SIMP and BESO approaches is
equal to 3. Following [1], a filter utilizing Matlab’s built-in conv2 function is implemented
with a radius of 16 pixels. For the BESO, the evolutionary volume ratio parameter is set



to 0.1. Elements arising during quadtree decompositon are limited in size to ≤ 32 pixels.
For the first iteration the discretization of the conventional grid is adopted. This is
necessary, since the initial homogeneous material distribution would lead to a too coarse
discretization, biasing the calculated sensitivities.

Figure 4: From left to right: Thick cantilever setup, SIMP reference solution
and BESO baseline.

Figure 5: BESO+QT optimized topology with evolution of DOFs and
compliance across iterations.

In order to verify the proposed scheme, we investigate an elementary case: TO schemes,
which result in black-and-white output, i.e., do not posses noticeable transitions in mate-
rial distributions, permit the adaptive meshing algorithm to develop its full potential and
minimize the DOFs required for analysis. Therefore, we contrast our scheme, which we
term BESO+QT, to a BESO baseline [10]. Since, BESO follows a heuristic approach to
TO, and it can therefore be mislead to local minima under certain circumstances [18], we
first supply a SIMP reference solution [1]. Both the reference solution and the baseline
depict the same resulting topology (Fig. 4). The BESO+QT (Fig. 5) is indistinguish-
able from the BESO baseline. The difference in compliance (Tab. 1) resulting from the
SIMP and BESO approaches stems from the presence of transition material in the SIMP,
leading to a slightly more flexible structure and therefore higher compliance. Given a
higher value for the penalization parameter, this difference diminishes. The discrepancy
in compliance between BESO and BESO+QT is attributed to the discretization: A coarse
discretization results in a stiffer structure and therefore lower compliance. This is evident,
since the amount of DOFs present during analysis is reduced by more than one order of
magnitude. This in turn significantly alleviates the computational burden and associated
memory requirements (Fig. 5, DOFs evolution). The two additional iterations required
to reach the stopping criterion, i.e., a 5% increase, represents a negligible difference to
the base line case. In this contrived example, in which all three methods share a common
implementation, differing only in the method of solving the forward problem, a glimpse



of the computational potential of the proposed scheme is possible: For this specific nu-
merical example, an analysis concludes almost 5x faster, when employing the proposed
scheme.

Table 1: A comparison of results for SIMP reference solution, BESO baseline
and proposed BESO+QT.

Method nIt. Compliance DOFs time [s]

SIMP 49 87.6 263’682 110
BESO 40 75.6 263’682 98
BESO+QT 42 74.8 23’846 20

Modified L-bracket

A modified L-bracket setup is considered (Fig. 6). In this example the SERA is employed,
which remedies the drawbacks of the BESO scheme [2], while maintaining black-and-white
solutions. For this analysis, only a color-encoded input image is provided. The proposed
scheme automatically recognizes significant regions and their associated operations during
the automated decomposition phase. The colors blue, red, green, white and gray corre-
spond to boundary conditions, loadings, solid, void and domain pixels respectively. Input
images are easily constructed by small scripts or obtained from, e.g., medical imaging
applications. Especially from the user perspective, manipulating analysis parameters by
color-encoding simplifies the overall process and permits direct visual verification of the
input prior to analysis. Further, it facilitates testing of variants. In this example, the
domain is discretized by 512 pixels in each direction. A volume fraction of 0.3 is specified.
The conv2-type filter is employed with radius equal 12 pixels. The SERA parameters
PR, SR and B are chosen as 0.03, 1.3 and 0.003 respectively. All quadtree elements are
of size ≤ 128.

Figure 6: Topology optimization of an L-bracket via automated image-based
analysis. Input image (left) and resulting topology (right).



For more involved geometries, gratuitous discretization may arise due to slight misalign-
ment with respect to the optimal quadtree meshing strategy. This is apparent surrounding
the blue and red regions (Fig. 6), where a pertubation by 1 pixel triggers excessive re-
finement to accurately capture the domain’s geometry. To demonstrate this general case,
the L-bracket is treated as is by the quadtree decomposition, which results in 32’694
DOFs, while a shifted, scaled and therefore better aligned domain geometry results in
26’554 DOFs respectively. The conventional method employing the fine grid discretiza-
tion treats 526’338 DOFs. In this example, the required DOFs are reduced by over an
order of magnitude. For such small examples, a typical forward analysis completes in
≤ 0.6 seconds on a modest desktop computer running in serial.

3D-Wheel

In this example we extend SBFEM-powered TO to 3D problems. The established 3D
wheel problem is studied (Fig. 7): The width, depth and height are discretized by 80, 80
and 40 pixels respectively. All four corners at the bottom edge are fully restrained. A
point load is applied in downward direction in the middle of the bottom surface. A volume
fraction of 0.075 is sought. The penalty parameters for SIMP and gray-scale filter are
chosen as 3 and 2 respectively. The filter radius is given as 3 pixels. All octree elements
are ≤ 16 pixels in size. A sensitivity filter is employed. A Young’s modulus of E = 10−9

denotes material voids. The analysis concludes after 200 iterations.

x
y

z

nelx = 80
nelz = 80
nely = 40

p = 3
q = 2
rmin = 3

f = 0.075
Figure 7: Problem domain of the 3D wheel benchmark.

The SIMP with gray-scale filter is utilized. The addition of the gray-scale filter is crucial
to obtaining computational efficiency, since regions of transitional material distributions,
which impact the proposed hierarchical meshing techniques, are minimized. The pre-
conditioned conjugate gradients method (pcg) is employed to obtain the solution of the
forward problem. Scaling is performed to combat the conditioning issues due to the
treatment of void elements [28] with secondary preconditioning by incomplete Cholesky
decomposition. This significantly reduced the amount of iterations required for conver-
gence. A strict convergence tolerance of 10−9 was specified to contain any divergence from
the reference solution to the adaptive discretization choice. In Fig. 8 the final topology is
depicted along with a sample of the octree mesh.
It is demonstrated, that the amount of DOFs and number of non-zero entries in the
stiffness matrix (nnz) is significantly reduced (Fig. 9) by employing the proposed scheme,
especially after the initial phase in the TO process. Although up to 4096 unique element
realization are possible on the octree, only a handful exist at each iteration (Fig. 9).
Computational effort is alleviated by only computing the element stiffness matrices for the
unique elements and cloning the remainder. However, the overwhelming computational
burden still resides in the solution of the forward problem.



Figure 8: Resulting topology for 3D wheel benchmark in blue with sample
octree mesh in red.
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Figure 9: Evolution of hierarchical mesh quantities across iterations.

The final topology is readily exported to STL format by operating on the octree, greatly
facilitating subsequent additive manufacturing procedures.

Conclusions

This paper advances the current state-of-the-art in TO by employing hierarchical meshes
coupled with polytope-based numerical methods, which alleviate issues commonly associ-
ated with hanging nodes. Enforcing a balancing operation on the mesh further limits the
amount of feasible element realizations, which is exploited through precomputation of el-
ement stiffness matrices and cloning of element properties. Moreover, we propose a novel
and intuitive scheme for interacting with the analysis parameters by color-encoding input
images, which the decomposition techniques automatically translate into analysis-ready
meshes. Further, we extend SBFEM-powered TO to 3D problems and demonstrate an ef-



fective means for exporting results to STL format for subsequent additive manufacturing
(3D printing).
TO relying on hierarchical meshes is shown to require only a fraction of the DOFs de-
manded by traditional grid approaches, significantly reducing the computational toll. The
three investigated numerical examples consistently demonstrate a remarkable reduction
in required DOFs and memory requirements, without incurring a perceivable loss of ac-
curacy.
Considering the generality of this approach in handling color-coded input, an extension
to multi-material TO presents an intriguing direction for future work.
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