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Abstract 

Classical dynamic crack propagation problems are simulated with PDS-FEM, which uses a 

simple and effective particle-based approach for failure, without the need of a complex 

treatment of the crack. Two Hamiltonian based formulations are proposed for accurate time 

integration: the traditional displacement-momentum form and the strain-momentum form, for 

which consistent momentum conserving and symplectic time integration schemes are derived. 

Numerical results are verified and validated by comparing with high speed photoelastic 

observations of a dynamic mode-I crack captured with a 1Mfps camera. Our results show that 

both methods are successful in reproducing the crack patterns observed experimentally for 

standard 2D and 3D problems, as well as the variation of the stress distribution around the crack 

tip during the propagation. The two methods appear numerically indifferentiable although the 

displacement-based method offers a significantly better computational performance. 

We also show that our approach can be applied to the simulation of super-shear rupture in 

earthquakes. The fault is represented by a crack under mode II loading, and the frictional contact 

follows a classical slip-weakening law. We could successfully reproduce both the intersonic 

and sub Rayleigh regimes, in good agreement with the expected rupture velocity ranges for 

different seismic factors. 
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Introduction 

Predicting the potential impact of extreme events, such as near field supershear earthquakes, on 

critical infrastructures is a challenging task. It involves shock waves and large-scale dynamic 

crack propagation simulations, which are computationally demanding, especially in three 

dimensions. Such simulations require a high degree of accuracy to reproduce a crack path and 

a crack tip speed consistent with what is observed experimentally, since both are extremely 

sensitive to the variations of the stress distribution in the material.  

An accurate and relatively light numerical method is required to conduct large scale crack 

propagation simulations, like supershear rupture earthquakes. Adapted advanced discretized 

methods such as XFEM with level-set [1]-[3] or discontinuous Galerkin methods [4] have been 

widely used and refined in recent years, leading to a more accurate representation of crack 

nucleation and propagation. However, most of them involve high numerical overheads, 

especially in 3D problems, making those difficult to be adapted to large scale simulations. Most 

3D studies focus their efforts on the accurate reproduction of the crack path, where the crack is 

often defined by either cohesive elements/interactions or level-set functions. Recently, 

Seagraves et al. [5] simulated the dynamic crack propagation caused by the impact on brittle 

plates, where the crack evolution as a function of time is showed to be quite consistent with the 

experiment. Bede et al. [6] conducted a similar simulation for a notched beam fracture modes. 

We propose an alternative approach based on PDS-FEM [7]-[10], which uses a simple and 

effective particle-based approach for failure, without the need of a complex treatment of the 

crack. Two Hamiltonian based formulations were proposed [11] for accurate time integration: 



the traditional displacement-momentum form and the rather new strain-momentum form, for 

which numerical accuracy and computational efficiency were not yet estimated. In this study 

the two methods are implemented and compared, both in terms of the accuracy in dynamic 

crack propagation applications and computational performance. 

We also demonstrate that our method can be applied to the simulation of supershear earthquake 

scenarios. The existence of supershear rupture was first theoretically predicted by Burridge et 

al.[12], and although this result could be subsequently reproduced numerically, in particular by 

Andrews[13] and Das and Aki[14], actual observations are relatively recent. Rosakis et 

al.[15,16] experimentally reproduced a supershear rupture of Homalite-100 plates, and 

visualized the characteristic shock wave pattern (Mach cone) with photoelastic fringes. 

Although rare, several occurrences of supershear fault rupture in earthquakes have been 

identified, including the 1979 Imperial Valley[17], the 1999 Izmit and Duzce[18], 2001 

Kunlun[19], 2002 Denali[20], and more recently the 2018 Palu Earthquake[21]. Understanding 

the conditions leading to supershear rupture, and the influence on ground motion close and far 

from the fault, is of particular importance as it will allow the evaluation of the impact on 

infrastructures, which may be significantly different from that of conventional earthquakes. 

Section 1 presents the analytical expressions of the two Hamiltonian formulations; 

displacement-momentum and strain-momentum forms. Section 2 reintroduces the PDS-FEM 

formalism and derives the corresponding discretized Hamiltonian system for the two methods, 

and section 3 describes the time integration schemes. Section 4 presents the verification of the 

two methods with known solutions for a 1D and a 3D problem. Section 5 describes the 

validation of our method by comparison with photoelastic fringe patterns of a propagating crack, 

captured with a 1Mfps camera. Section 6 compares the two Hamiltonian formulations in term 

of numerical accuracy and computational efficiency. Section 7 presents some preliminary 

results of supershear rupture simulations using the above methods.  

 

1. Two Hamiltonian formulations of elastic wave propagation 

Lagrangian based formulations are often used in continuum mechanics to solve dynamic 

problems with FEM based numerical methods. Classically, the Lagrangian is written: 

𝐿(𝒗, 𝒖) = ∫ 𝑙(𝒗, 𝒖)𝑑𝑉

𝑉

= ∫
1

2
𝑉

𝜌𝒗2𝑑𝑉 − ∫
1

2
𝑉

𝛁𝒖:𝑪: 𝛁𝒖 𝑑𝑉 

According to the Hamilton's principle, the Euler-Lagrange equation can be derived as: 

𝜕𝑙̇

𝜕𝒗
=
𝜕𝑙

𝜕𝒖
 

By using a Legendre's transform: 

𝑙(𝒗, 𝒖) = 𝒑. 𝒗 − ℎ(𝒑, 𝒖) 

an alternative formulation using the Hamiltonian operator can be used based on the pair of 

variables momentum 𝒑 and displacement 𝒖, leading to the dynamic system: 

 

{
 

 �̇� = −
𝜕ℎ

𝜕𝒖

�̇� =
𝜕ℎ

𝜕𝒑

 

 

( 1 ) 

 

where ℎ is the Hamiltonian density. 



An alternative is to use the strain 𝝐 as a variable instead of the displacement. By doing so, the 

variable of interest for most mechanical problems, especially when fracture is involved, is 

directly computed through the formulation. This analytically equivalent system, when used for 

numerical computation, would reduce the number of floating point operations to obtain the 

strain/stress distribution, potentially leading to an improved accuracy. Considering the 

Lagrangian: 

𝐿(𝒗, 𝝐) = ∫ 𝑙(𝒗, 𝝐)𝑑𝑉

𝑉

= ∫
1

2
𝑉

𝜌𝒗2𝑑𝑉 − ∫
1

2
𝑉

𝛜: 𝑪: 𝛜 𝑑𝑉, 

we can obtain the equivalent strain based Euler-Lagrange equation: 

𝜕𝑙̇

𝜕𝒗
= −∇.

𝜕𝑙

𝜕𝝐
 , 

from which we can directly derive the Hamiltonian system (see [11] for more details of the 

derivation):  

 

{
 

 �̇� = ∇.
𝜕ℎ

𝜕𝝐

�̇� = 𝑠𝑦𝑚 {∇
𝜕ℎ

𝜕𝒑
}
 

 

( 2 ) 

 

The set of equations (1) and (2) are the strong forms of the (𝒑, 𝒖) and  (𝒑, 𝝐) based Hamiltonian 

formulations.  

To numerically solve the above two Hamiltonian systems, we derive a discretized system in 

space and time, which is detailed in the two next sections. 

 

2. Space discretization in PDS-FEM 

2.1 Model and consistency condition 

For the spatial discretization, we use a model of FEM based on Particle Discretization Scheme 

(PDS) as proposed in [7], due to its advantages in modeling cracks. PDS uses conjugate 

tessellations to approximate functions and their derivatives respectively. The Delaunay 

tessellation (indexed with 𝛽) is defined by a tetrahedron mesh, and the conjugate Voronoi 

tessellation (indexed with 𝛼), is constructed as indicated schematically in Fig. 1. In 2D, a 

Voronoi element or "particle" is essentially derived from joining the mass centers of the 

neighboring triangle elements. 

 

 

 

Figure 1: Conjugate tessellations in 2D 

(a) Delaunay tessellation (b) Voronoi tessellation 



In the model formulation, non-overlapping functions are used to approximate the functions and 

their derivatives respectively: 

 

𝒇(𝒙) ≈ 𝒇𝒅(𝒙) = ∑∑𝒇𝜶𝒏𝑃𝛼𝑛(𝒙)

|𝑷𝜶|

𝒏=𝟎

𝑵𝜶

𝜶=𝟏

φα(𝒙) 

 

𝛁,𝒊𝒇(𝒙) ≈ 𝒈
𝒅(𝒙) = ∑ ∑ 𝒈𝒊

𝜷𝒎
𝑄𝛽𝑚(𝒙)

|𝑸𝜷|

𝒎=𝟎

𝑵𝜷

𝜷=𝟏

ψβ(𝒙), 

where φα  and ψβ  are respectively the characteristic functions of Voronoi and Delaunay 

elements. The displacement field is discretized on the Voronoi tessellation while the strain and 

stress distribution are discretized on the Delaunay tessellation. 

PDS obtains bounded and consistent approximations for derivatives, 𝒈𝑑, over the Delaunay 

tessellations by minimizing the following measure of error: 

min
𝑔𝛽𝑚

∫(𝒈𝐝 − ∇𝒇𝒅)2𝑑𝑉

Ψ𝛽

 

which leads to: 

𝒈𝛽𝑚 = 𝑩𝛽𝛼𝑚𝑛⊗𝒇𝛼𝑛 
With 

𝐵𝑖
𝛽𝛼𝑚𝑛

=∑(𝐼𝛽
−1
)
𝑚,𝑚′

∫
𝜕(𝑃𝛼𝑛𝜙𝛼)

𝜕𝑥𝑖
𝑄𝛽𝑚𝜓𝛽𝑑𝑉

𝑉𝑚′

 

𝐼𝛽𝑚𝑚
′
= ∫ 𝑄𝛽𝑚𝑄𝛽𝑚

′
𝑑𝑉

Ψ𝛽

 

 

The complete derivation of the vector 𝑩𝛽𝛼𝑚𝑛 is provided in [10]. Then, applying it to the strain-

displacement relationship, the consistency condition is written: 

 𝝐𝛽𝑚 = 𝑠𝑦𝑚{𝑩𝛽𝛼𝑚𝑛⊗𝒖𝛼𝑛} ( 3 ) 

For the ease of computer implementation, we use the Voigt notation and express the above in 

matrix notation as follows: 

 𝜖𝛽𝑚 = �̃�𝛽𝛼𝑚𝑛. 𝑢𝛼𝑛 ( 4 ) 

 

2.2 Discretized Lagrangian and Hamiltonian forms 

In this model, a discretized Lagrangian can be written 𝐿(𝑣𝛼𝑛, 𝑢𝛼𝑛) or 𝐿(𝑣𝛼𝑛, 𝜖𝛽𝑚) depending 

on the formulation, and the corresponding Euler-Lagrange equations can be written as:  

 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑣𝛼𝑛
=

𝜕𝐿

𝜕𝑢𝛼𝑛
            and          

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑣𝛼𝑛
−∑ �̃�𝑡 𝛽𝛼𝑚𝑛.

𝜕𝐿

𝜕𝜖𝛽𝑚
= 0

𝛽,𝑚

 ( 5 ) 

By applying the Legendre transform: 

𝐿(𝑣𝛼𝑛, 𝑢𝛼𝑛) = 𝑝𝛼𝑛. 𝑣𝛼𝑛 − 𝐻(𝑝𝛼𝑛, 𝑢𝛼𝑛)        or       𝐿(𝑣𝛼𝑛, 𝜖𝛽𝑚) = 𝑝𝛼𝑛. 𝑣𝛼𝑛 − 𝐻(𝑝𝛼𝑛, 𝜖𝛽𝑚) 

 



with 

 𝑝𝛼𝑛 =
𝜕𝐿

𝜕𝑣𝛼𝑛
= 𝜌 ∑ 𝑣𝛼𝑛

′
𝐼𝛼𝑛𝑛

′

|𝑃𝛼|

𝑛′=0

,          𝐼𝛼𝑛𝑛
′
= ∫ 𝑃𝛼𝑛𝑃𝛼𝑛

′
𝑑𝑉

Φ𝛼

,  ( 6 ) 

we can obtain the following two equivalent Hamiltonian systems: 

 

{
 

  �̇�𝛼𝑛 = −
𝜕𝐻

𝜕𝑢𝛼𝑛

�̇�𝛼𝑛 =
𝜕𝐻

𝜕𝑝𝛼𝑛

 ( 7 ) 

 

{
  
 

  
 
�̇�𝛼𝑛 = −∑∑ �̃�𝛽𝛼𝑚𝑛𝑡 .

𝜕𝐻

𝜕𝜖𝛽𝑚

|𝑄𝛽|

𝑚

𝑁𝛽

𝛽

𝜖̇𝛽𝑚 =∑∑�̃�𝛽𝛼𝑚𝑛.
𝜕𝐻

𝜕𝑝𝛼𝑛

|𝑃𝛼|

𝑛

𝑁𝛼

𝛼

 ( 8 ) 

The derivation for the strain formulation is detailed in Appendix A. 

 

2.3 Discretized Hamiltonian for continuum mechanics 

Using the classical form of the Lagrangian in continuum mechanics (excluding for now the 

boundary conditions whose treatment is detailed in appendix B) and applying the Legendre's 

transform, we can write explicitly the Hamiltonian as: 

𝐻(𝑝𝛼𝑛, 𝑢𝛼𝑛) = 𝑇(𝑝𝛼𝑛) + 𝑈(𝑢𝛼𝑛) 

Where, using Einstein’s summation convention: 

{
 

 𝑇(𝑝𝛼𝑛) =
1

2𝜌
𝑊𝛼𝑛𝑛′ 𝑝𝑡 𝛼𝑛. 𝑝𝛼𝑛

′

𝑈(𝑢𝛼𝑛) =
1

2
𝐼𝛽𝑚𝑚

′
𝑢𝛼𝑛.𝑡 �̃�

𝛽𝛼𝑚𝑛𝑡 . 𝑐𝛽 . �̃�
𝛽𝛼′𝑚′𝑛′

. 𝑢𝛼
′𝑛′

 

with  

𝑊𝛼 = 𝐼𝛼−1 

Similarly, the Hamiltonian can be written in term of strain: 

𝐻(𝑝𝛼𝑛, 𝜖𝛽𝑚) = 𝑇(𝑝𝛼𝑛) + 𝑈(𝜖𝛽𝑚) 
where  

𝑈(𝜖𝛽𝑚) =
1

2
𝐼𝛽𝑚𝑚

′
𝜖𝑡
𝛽𝑚
. 𝑐
𝛽
. 𝜖
𝛽𝑚′

 

We can then replace the Hamiltonian derivatives in the Eq. 7 and 8 to obtain the Hamiltonian 

systems in displacement-momentum form as: 

 

{
  
 

  
 

 �̇�𝛼𝑛 = −∑∑𝐾𝛼𝑛𝛼
′𝑛′ . 𝑢𝛼

′𝑛′

|𝑃𝛼|

𝑛′

𝑁𝛼

𝛼′

�̇�𝛼𝑛 =
1

𝜌
∑𝑊𝛼𝑛𝑛′ . 𝑝𝛼𝑛

′

|𝑃𝛼|

𝑛′

, ( 9 ) 



where 

𝐾𝛼𝑛𝛼
′𝑛′ =∑ ∑ 𝐼𝛽𝑚𝑚

′

|𝑄𝛽|

𝑚,𝑚′

�̃�
𝛽𝛼𝑚𝑛𝑡 . 𝑐𝛽 . �̃�

𝛽𝛼′𝑚′𝑛′
𝑁𝛽

𝛽

, 

and in strain-momentum form as: 

 

{
  
 

  
 
�̇�𝛼𝑛 = −∑ ∑ 𝐼𝛽𝑚𝑚

′
�̃�𝛽𝛼𝑚𝑛𝑡 . 𝑐𝛽 . 𝜖𝛽𝑚

′

|𝑄𝛽|

𝑚,𝑚′

𝑁𝛽

𝛽

𝜖̇𝛽𝑚 =∑∑
1

𝜌
𝑊𝛼𝑛𝑛′�̃�𝛽𝛼𝑚𝑛. 𝑝𝛼𝑛

′

|𝑃𝛼|

𝑛,𝑛′

𝑁𝛼

𝛼

. ( 10 ) 

 

2.4 Crack treatment 

The above derived system of governing equations is valid for time invariant topologies, and 

some adaptations are necessary to simulate dynamic crack propagation. As shown in Fig. 1b, 

the displacement approximated with PDS is discontinuous at the Voronoi boundaries, 𝜕Φ𝛼. 

PDS uses these discontinuities to model a crack propagating along a Voronoi boundary by 

nullifying appropriate mechanical contributions. In the 3D case, each tetrahedral Delaunay 

element contains 6 Voronoi surfaces along which the cracks can appear (see Fig. 2). 

If the maximum principle stress is greater than a given value 𝜎𝑠, the surface whose normal n is 

closer to the principal stress direction 𝑑1 (corresponding to the surface with highest tensile 

stress) is broken, nullifying its contribution to the strain 𝜖𝛽 , by modifying the coefficient 

𝐵𝑖
𝛽𝛼𝑚𝑛

: 

∫
𝜕(𝑃𝛼𝑛𝜙𝛼)

𝜕𝑥𝑖
𝑄𝛽𝑚𝜓𝛽𝑑𝑉

𝑉

= ∫
𝜕𝑃𝛼𝑛

𝜕𝑥𝑖
𝑄𝛽𝑚𝑑𝑉

Ψ𝛽∩Φ𝛼

+ ∫ 𝑃𝛼𝑛𝑄𝛽𝑚𝑛𝑖 𝑑𝑉

Ψ𝛽∩𝜕Φ𝛼−𝑠

+∫ 𝑃𝛼𝑛𝑄𝛽𝑚𝑛𝑖  𝑑𝑉

𝑠⏟          
→0

 

The first right-hand term corresponds to the volume component of the gradient (null for rigid 

particles with constant displacement, unchanged by the crack). The second and third right-hand 

terms correspond to the surface component coming from the interaction between the particles, 

for the unbroken and broken surfaces respectively. The latter contribution is set to zero. 

Figure 2: Surfaces of interaction 



For the sake of simplicity, the maximum principal stress criterion is used for the simulations 

presented in this paper. However, at the crack tip, larger elements have a lower average stress 

value and so are less prone to crack, making this criterion mesh dependent, although it doesn’t 

affect the crack path as long as the crack prone region is homogeneously refined. 

 

3. Time integration schemes 

Out of the large collection of algorithms for the time integration of Hamiltonian systems, we 

chose to use the Störmer-Verlet integration scheme, which is a second order variational 

integrator (see for instance [22] section VI for reference): 

{
 
 

 
 𝑝𝑛+1/2 = 𝑝𝑛 −

𝑑𝑡

2

𝜕𝐻

𝜕𝑢
(𝑝𝑛+1/2, 𝑢𝑛)

𝑢𝑛+1 = 𝑢𝑛 +
𝑑𝑡

2
(
𝜕𝐻

𝜕𝑝
(𝑝𝑛+1/2, 𝑢𝑛) +

𝜕𝐻

𝜕𝑝
(𝑝𝑛+1/2, 𝑢𝑛+1))

𝑝𝑛+1 = 𝑝𝑛+1/2 −
𝑑𝑡

2

𝜕𝐻

𝜕𝑢
(𝑝𝑛+1/2, 𝑢𝑛+1)

 

In particular, the symplectic property of the flow (𝑝, 𝑢) in time is ensured, which can be written: 

(
𝜕 (𝑝𝑛+1, 𝑢𝑛+1)

𝜕 (𝑝0, 𝑢0)
)
𝑇

𝐽 (
𝜕 (𝑝𝑛+1, 𝑢𝑛+1)

𝜕 (𝑝0, 𝑢0)
) = 𝐽 = (

0 𝐼
−𝐼 0

), 

where I is the identity matrix. 

For the strain formulation, such symplectic property cannot be defined directly as the strain 

(dimension 6) and the momentum (dimension 3) don't belong to the same vector spaces. 

However, it is possible to express the above symplectic property in term of the strain and 

momentum variables. Using Eq. 4, we can write: 

𝜕𝜖

𝜕𝑢′
= �̃�             and             

𝜕𝑢′

𝜕𝜖
= �̃�−1 , 

with 𝑢′  the displacement field excluding the Dirichlet boundary conditions and �̃� the 

corresponding reduced matrix built with the blocks �̃�𝛽𝛼. �̃�−1 is the left inverse of �̃� . If 𝜙 is 

the flow of the Hamiltonian system in (𝑝, 𝑢) and 𝜓 the flow of the Hamiltonian system in (𝑝, 𝜖), 
we can write 

𝜕𝜙

𝜕(𝑝0, 𝑢0)
= (

𝐼3𝑁𝛼 0

0 �̃�−1 
)

⏟        
𝐴−1

𝜕𝜓

𝜕(𝑝0, 𝜖0)
(
𝐼3𝑁𝛼 0

0 �̃�  
)

⏟      
𝐴

. 

Therefore, we can express the symplectic property from the flow 𝜓: 

(𝐴−1
𝜕𝜓

𝜕(𝑝0, 𝜖0)
𝐴) 𝐽 (𝐴−1

𝜕𝜓

𝜕(𝑝0, 𝜖0)
𝐴) = 𝐽 

Following this property, we can derive an algorithm equivalent to the classical Störmer-Vertlet 

scheme for (𝑝, 𝜖) (Einstein convention is used for the summation): 

{
 
 

 
 𝑝𝑛+1/2 = 𝑝𝑛 −

𝑑𝑡

2
�̃�.
𝑡 𝜕𝐻

𝜕𝜖
(𝑝𝑛+1/2, 𝜖𝑛)

𝜖𝑛+1 = 𝜖𝑛 +
𝑑𝑡

2
�̃�. (

𝜕𝐻

𝜕𝑝
(𝑝𝑛+1/2, 𝜖𝑛) +

𝜕𝐻

𝜕𝑝𝛼
(𝑝𝑛+1/2, 𝜖𝑛+1))

𝑝𝑛+1 = 𝑝𝑛+1/2 −
𝑑𝑡

2
�̃�
𝑡 𝜕𝐻

𝜕𝜖
(𝑝𝑛+1/2, 𝜖𝑛+1)

 



By ensuring the conservation of the momentum, the average conservation of the total energy, 

and the symplecticity of the two systems, these time integration schemes can maintain accuracy 

and stability in long-time integration. 

Since our Hamiltonians are separable, the integration scheme computation becomes explicit 

(see Eq. 9 and 10). In particular, the time integration scheme can be written in the matrix form 

as: 

{
 
 

 
 𝒑𝒏+𝟏/𝟐 = 𝒑𝒏 −

𝒅𝒕

𝟐
𝑲𝟏𝒒𝒏

𝒒𝒏+𝟏 = 𝒒𝒏 + 𝒅𝒕 𝑲𝟐𝒑𝒏+𝟏/𝟐

𝒑𝒏+𝟏 = 𝒑𝒏+𝟏/𝟐 −
𝒅𝒕

𝟐
𝑲𝟏𝒒𝒏+𝟏

 

where 𝒒𝒏 represents either 𝒖𝒏 or 𝝐𝒏, and 𝑲𝟏, 𝑲𝟐 are two matrices derived from the expanded 

Hamiltonian form. 
  

4. Verification of  dynamic crack propagation simulations 

In order to verify the application of above schemes to simulate dynamic crack propagation 

simulations, we compare the results of the simulation with the known solutions of a 1D 

spallation problem and a 3D torsion problem. 

 

4.1 1D spallation problem 

One mode of material failure during high velocity impact is spallation. As an example, an 

impact on one end of a bar creates a compressive wave which is then inverted and reflected at 

the opposite end, resulting in a high tensile stress wave likely to generate a crack. In this 

verification test, we consider the problem settings shown in Fig. 3, and compare the position of 

the crack and the time of occurrence with the corresponding analytical solution. We chose a 

simple stress criterion with the strength 𝜎𝑐 = 29.5MPa, slightly lower than the amplitude of the 

input wave as we observe a small loss of amplitude with the propagation. Obviously the crack 

opens when the tensile stress, propagating backwards after reflection on the right tip, exceeds 

this limit value. It can be shown that the maximum tensile stress occurs at 𝑡 = 𝐿/𝑐 + 3𝑇/4 =
1.65 10−4𝑠  and 𝑥 = 𝐿 − 𝑐𝑇/4 = 0.171 𝑚  where 𝐿 = 0.2𝑚  is the length of the bar, 𝑐 =
1.75 10−3𝑚. 𝑠−1 the wave velocity and 𝑇 = 6.7 10−5𝑠 the impulse duration. The numerical 

simulations produced the crack at the above theoretically expected time and location (see Fig. 

4), with reasonably small errors of ± 5.0 × 10−7𝑠 and − 1.0 × 10−3m, respectively.   

Figure 3: Problem settings for the spallation test 

(a) Impulse shape (b) Geometrical setting 



 

4.2 Torsional cracks in a cylindrical specimen 

To verify that the above schemes can reproduce the 3D geometry of dynamically growing 

cracks, we consider the classical experiment of torsion of a cylinder bar with the standard 

dimensions (in mm, see Fig. 5) and the following material properties:  

 Young Modulus: 3.0 GPa 

 Tensile strength: 30 MPa 

 Density: 1.25 kg.m-3 

The right end of the bar (𝑥 ≥ 115𝑚𝑚) is fixed at all time (i.e. 𝑝 = 0), while the left end of the 

bar (𝑥 ≤ 25𝑚) is rotated at the angular speed �̇� = 3° 𝑠−1. In order to save computation time, 

we first solve the static problem for a rotation of angle 𝜃 = 6.3°, which brings the principal 

stress on the surface very close to the tensile strength, and then proceed to the dynamic loading. 

In this problem, anywhere on the surface of the cylinder is primed to crack, as the shear stress 

is uniformly distributed. So as to control where the crack will initiate, in particular to avoid 

having a crack propagating near the two extremities, we generate a small initial crack on the 

surface near the middle of the bar. The trace of the crack on the surface after completed fracture 

is shown in Fig. 6. 

Figure 5: Geometrical setting for the torsion simulation 

Figure 6: Trace of the crack on the surface from 4 different angles 

Figure 4: Simulated crack position and stress distribution for spallation 



Though we lack experimental observations of the crack propagation speed, we observe that the 

crack begin to open at the expected load, and that the total crack path corresponds to the 

classical spiral shape oriented at 45°  observed during torsion test, albeit a few branches. 

Additional experimental measures of secondary crack patterns inside ruptured material would 

be needed to verify this observation. 

 

5. Validation 

5.1 Experimental setting 

The PDS-FEM implementations for dynamic crack propagation simulations are validated by 

comparing with high speed photoelastic observations of a dynamic mode-I crack captured with 

a 1Mfps camera. These photoelastic fringes characterize the stress distribution in the material, 

specifically the difference between the two principal stresses. The experimental setting is shown 

in Fig. 7, and the Epoxy resin (CY232 & HY951) sample has the following properties: 

 Young modulus: 3.84 GPa  

 Poisson ratio: 0.3 

 Static photoelastic constant: 0.53 mm/N (measured by calibration with a Brazilian test) 

Two bars are inserted in the holes of the plate, and then respectively pulled up and down. The 

pulling phase is displacement controlled, and the corresponding applied force loading is also 

measured. In the experiment conducted, the initial crack was 1 mm wide, and 20.5 mm long. 

The displacement is increased at a speed of 0.5 mm/min until the onset of crack propagation. 

Compared to the few hundred μs period required for the crack to move across the sample, our 

external loading can be considered quasi-static and the positions of the bars fixed during the 

duration of the propagation. As the initial displacement required to bring the bars and the holes 

just in contact cannot be accurately estimated from the available experimental observations, we 

use the equivalent force load in our simulations. In the experiment, the crack initiated at 0.54 

kN. The same load is used to calculate the static solution before the crack initiation, which will 

be used as the initial condition of the dynamic problem. The stress criterion for rupture is chosen 

to be the maximum value for which the crack propagates in the simulation (corresponding to 

40 MPa for tetrahedral elements of average size 0.2 mm). We used 0th order PDS-FEM 

discretization, which corresponds to constant values of the variables in each element.  

 

 

Figure 7: Experimental setting 

(a) Geometry of the sample (b) Experimental setting without analyzer 



5.2 Numerical model 

In order to accurately reproduce the crack tip stress field, we refined the mesh as follows (also, 

see Fig. 8):  

 Most outer elements (|y − 0.07| > 0.01 or z > 0.045): average size 1 mm.  

 Intermediate layer (0.005 < |y−0.07| < 0.01): average size 0.5 mm, refinement required 

for the observation of the fringe patterns, but not very fast variation of stress  

 Inner band (|y − 0.07| < 0.005): average size of 0.2 mm, refinement required to capture 

well the stress distribution around the crack tip, all along its propagation. 

In total, the mesh consists of around 3×106 elements and 5×105 nodes. 288 MPI processes are 

used for the computation. 

 

5.3 Observations 

Crack path 

The horizontal crack path observed in the experiment is correctly reproduced in the simulation.  

 

Stress distribution 

The propagation of the crack and the fringe patterns are captured with a high speed camera, 

with a capturing speed of 1Mfps. Figure 9 compares the observed fringe patterns with those 

corresponding to the crack propagation simulation; (𝑝, 𝜖) form is used. 

Fringe patterns, which characterize the difference of principal stresses in the material, are very 

sensitive to the change of stress distribution. In this experiment, each fringe corresponds to an 

increment of 3.95 MPa of the principal stresses difference. As seen in Fig. 9, the numerical 

results are in good agreement with those observed in the experiment. In particular, the amplitude 

of the main fringes decreases the same amount (the fringes get closer to the crack tip) when the 

propagation begins.  

In the simulation results, we can clearly observe a wave emanating from the moving crack, 

which is completely absent in the experimental observations. This is most likely due to our 

failure criterion. As the stress is considered constant inside an element, a surface rupture 

releases a relatively high amount of energy (corresponding to the strain energy of the entire 

element), creating a source point for a stress wave, whose amplitude might decrease with a 

more refined mesh (for which the rupture is more "continuous"). This wave could also be 

smoothened if higher order functions are considered and the stress release limited to the zone 

Figure 8: Mesh refinement 
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surrounding the surface. Also, the camera recording might have a smoothing effect as the 

assumed wave propagates between two frames and only its average value can be recorded. 

 

Crack propagation speed 

For 𝑡 ≤ 20 𝜇𝑠 , the propagation speed in the simulation is almost twice faster than in the 

experiment. For 𝑡 > 20 𝜇𝑠, the crack tip position in the simulation is about 5 𝜇𝑠 ahead of the 

crack tip position measured in the experiment until 𝑡 = 60 𝜇𝑠, after which  the position of the 

crack in both the simulation and the experiment are in fairly good agreement, showing that the 

average speed of the simulated crack is consistent with the experiment. The record of crack tip 

position is detailed in table 1. 

 

6. Comparison of the two formulations 

Although the strain-based formulation and the displacement-based formulation presented in 

sections 2 and 3 are analytically equivalent, they lead to different numerical schemes. Therefore, 

they may produce stress and displacement distributions with different degrees of accuracy. In 

particular, in the strain formulation, the strain is computed directly by the dynamic system, 

though additional calculations are required to extract the displacement distribution. Therefore, 

(a) Experiment at t = 0µs (b) Experiment at t = 35µs (c) Experiment at t = 65µs 

(d) Simulation at t = 0µs (e) Simulation at t = 35µs (f) Simulation at t = 65µs 

Figure 9: Comparison of the fringe patterns at three stages; (a)-(c) are experimental while 

(d)-(f) are numerical. Each fringe corresponds to an increase of 3.95 MPa 

 

Table 1: Comparison of the crack tip position 
  



it is expected that the strain formulation would be more accurate for the stress distribution while 

the displacement formulation would be more accurate for the displacement distribution. 

In this section, we compare quantitatively computational efficiency and numerical accuracy of 

these two formulations. For this comparison, we use the dynamic crack propagation problem 

presented in the section 5. Since this problem is very sensitive to changes in the 

stress/displacement distribution which could particularly alter the direction and the speed of the 

crack, it is an ideal problem to identify potential numerical differences. Figure 10 shows the 

maximal magnitude of the difference between stress distributions in the whole sample along 

time. 

We observe that the maximum difference, although increasing with time, remains very 

insignificant compared to the relevant level of stress in the sample (order of a few MPa). Similar 

results can be observed for the displacement formulation although we don’t show it in this 

article. Therefore, on a numerical accuracy perspective, both formulations can be considered 

equivalent. 

On a computational perspective, however, there is a significant difference. The main 

computational task in the respective dynamic systems are the matrix-vector multiplications. 

However, as the mesh contains significantly more tetrahedron elements than nodes, and that 

strain vectors have at least 6 components while displacement only have 3 components, it is clear 

that strain formulation involves much more floating point operation  in the main computation. 

Also, additional overhead is required to compute the strain change due to the rupture of an 

element in the strain formulation. The memory usage and average computation time for a single 

iteration are compared in Table 2. In order to avoid additional overheads related to parallel 

computing, like communication time, the compared values are obtained from one of the MPI 

process (with 2 × 104 elments and 4 × 103 nodes),  out of the 288 MPI processes used for the 

computation.  

 

Table 2: Comparison of computational performance 

Figure 10: Comparison of the stress distribution between the two formulations 



We observe that the strain formulation is significantly more computationally demanding, both 

in memory usage and computation time. Further, as shown above, both formulations essentially 

lead to a near identical numerical accuracy. Therefore, we conclude that it is more relevant to 

use the displacement formulation in general. 

 

7. Application to supershear rupture simulation 

7.1 Theoretical considerations 

In this section, we apply the developed numerical method to the simulation of an idealized 

supershear rupture in earthquakes. This part should be understood as an illustration of the 

potential capabilities of this method rather than a full study of supershear rupture. 

Supershear rupture is defined as a crack propagation faster than the S-wave velocity, producing 

a characteristic shear wave Mach cone following the crack tip. The possible occurrence of this 

kind of rupture was first theoretically predicted by Burridge et al.[12], who identified three 

steady crack propagation regimes: 

 𝑣𝑟 < 𝑐𝑅: sub Rayleigh regime 

 𝑐𝑠 < 𝑣𝑟 < √2𝑐𝑠: unstable intersonic (supershear) rupture 

 √2𝑐𝑠 < 𝑣𝑟 < 𝑐𝑃: stable intersonic (supershear) rupture 

The zone 𝑐𝑅 < 𝑣𝑟 < 𝑐𝑠 is forbidden as it leads to a negative fracture energy. 

In the case of earthquakes, fault “rupture” corresponds to the part of the fault where slipping 

occurs, where there is a discontinuity of displacement across the fault. For the slipping, the 

linear slip-weakening friction law used by Andrews [13], shown in Fig. 11, is a good first 

approximation of the earthquake slipping law, and has been widely used for the simulation of 

supershear rupture. The initial stress in the material is noted 𝜏0. When a perturbation makes the 

stress exceed the maximum cohesive strength 𝜏𝑢 (static frictional stress), slipping starts and the 

maximum frictional stress decreases linearly until a minimum 𝜏𝑓 corresponding to the dynamic 

frictional stress.  

Although diverse factors, like fault roughness, local material heterogeneities, asperities etc., 

can influence the occurrence of supershear rupture, for the ideal scenario of a perfectly straight 

plane fault in an otherwise homogenous material, the seismic factor, introduced by Das and Aki 

[14]: 

𝑠 =
𝜏𝑢 − 𝜏0
𝜏0 − 𝜏𝑓

 

characterizes the crack propagation regimes. In particular, for a 2D problem, supershear 

propagation is theoretically possible only for 𝑠 < 1.77  [13]. In our simulation, we don’t 

Figure 11: Linear Slip-weakening law 



observe supershear rupture for 𝑠 ≥ 1.1, which might be partly due to wave defocusing in 3D 

plates compared to an actual 2D setting. 

 

7.2 Numerical problem setting 

We simulate the rupture in a crust layer of dimensions 10 𝑘𝑚 × 4 𝑘𝑚 ×  0.1 𝑘𝑚, centered 

around a fault plane extending all along the layer (see Fig. 12). The parameters for the slip 

weakening law are chosen arbitrarily, which is sufficient for this qualitative study, as they 

influence only the slip-weakening zone length and the seismic factor. We use the following 

material properties corresponding to the Earth crust: 

 

 Young modulus: 75 GPa 

 Poisson ratio: 0.3 

 Density: 2.5 103 kg.m-3 

 𝜏𝑢 = 100𝑀𝑃𝑎, 𝜏𝑓 = 0𝑀𝑃𝑎 

 𝑑0 = 0.2 𝑚 

 𝜏0 = 44 𝑀𝑃𝑎 (𝑠 = 1.27) for sub-Rayleigh, 𝜏0 = 58 𝑀𝑃𝑎 (𝑠 = 0.7) for supershear 

 

The corresponding P-wave and S-wave velocities are, respectively, 𝑐𝑝 = 5477𝑚. 𝑠
−1 and 𝑐𝑆 =

3162𝑚. 𝑠−1. 

At 𝑡 = 0, the fault is perfectly cohesive and the stress/displacement is continuous across the 

fault (no broken element on the fault). We solve a static problem with Dirichlet boundary 

conditions to obtain the initial stress distribution. The fault parallel component 𝑢𝐷 is fixed and 

the two other components are set to 0 on the Dirichlet boundaries.  

At 𝑡 > 0, if the stress exceeds the maximum shear stress in an element, the inner fault surface 

is broken and frictional forces are mobilized and distributed on the nodes on the fault surfaces, 

according to the slip-weakening friction law. 

7.3 Results and observations 

Stress and velocity distributions at 𝑡 = 0.4𝑠 on the surface for sub-Rayleigh and supershear 

regimes are shown in Fig. 13. 

In the sub-Rayleigh scenario, we observe the classical wave pattern, with a clear S-wave front 

progressing ahead of the crack which propagates at 𝑐𝑅. The P-wave front is however not clearly 

observable. In the supershear scenario, we can clearly observe the P-wave front which is just 

ahead of the crack which propagates at a speed close to 𝑐𝑃. The Mach cone, characteristic of a 

shock wave propagation, is also clearly visible. Fault parallel velocity is significantly higher in 

Figure 12: Supershear problem setting 



the supershear case, especially far from the fault. On the contrary, fault-normal velocity is 

higher for the sub-Rayleigh case near the crack tip, and dissipates rapidly far from the fault. 

 

7.4 Transition phenomenon 

In the supershear rupture scenario, the rupture doesn’t propagate immediately at intersonic 

speed. This transition from the initial sub-Rayleigh propagation to supershear rupture, in a 

homogenous material, is classically explained by the Burridge-Andrews mechanism [13]. At 

first, the crack propagate behind the shear wave, at a speed close to 𝑐𝑅. The P-wave and S-wave 

propagating ahead generate a zone of high shear stress ahead of the crack tip, eventually 

creating a secondary crack, also called daughter crack, if the prestress is sufficiently high. When 

the main crack merges with the daughter crack, there is a jump of the rupture velocity, thereby 

x (km) 

Figure 13: Stress and velocity distributions for sub-Rayleigh and supershear rupture at 

t=0.4s 

(a) Stress distribution (sub-Rayleigh) (b)  Stress distribution (supershear) 

(c)  Fault-parallel velocity (sub-Rayleigh) (d)  Fault-parallel velocity (supershear) 

(e)  Fault-normal velocity (sub-Rayleigh) (f)  Fault-normal velocity (supershear) 

x (km) 



starting the intersonic propagation. This phenomenon can be observed in our simulation, and is 

detailed in Fig. 14. 

 

Concluding remarks 

We developed two Hamiltonian-based formulations in the frame of PDS-FEM, and derived 

consistent time integration schemes which are momentum conserving and symplectic. The 

separable nature of the Hamiltonian in continuum mechanics ensures that the computation can 

be done explicitly and thus is relatively cheap computationally. The results of the two 

verification tests and the validation test show a good accordance with the analytical solution 

when available, and with the experimental measures in term of crack path, propagation speed 

and stress distribution around the propagating crack tip. The results also showed that both 

formulations are numerically indifferentiable, although the displacement formulation proves to 

have a significantly lower computational cost. This paper also demonstrates that this numerical 

method can be applied to the simulation of supershear earthquakes, and that characteristic wave 

profiles and transition mechanism were qualitatively reproduced for both sub-Rayleigh and 

supershear fault rupture. We are improving computational capabilities of a parallel program 

with the aim of conducting large scale simulation of supershear earthquake scenarios with the 

models of actual faults.  

 

Appendix A: Euler-Lagrange equation of the strain formulation 

For the sake of simplicity, the indexes m and n defining the functions used for interpolation are 

omitted in the following derivation of the Hamilton's principle, as their inclusion is 

straightforward. Einstein summation is assumed in the following. 

By using the Hamilton's principle, and using Eq. 3: 

0 = 𝛿 (∫ 𝐿(𝒗𝜶, 𝝐𝜷)𝑑𝑡
𝑇

) = ∫ (
𝜕𝐿

𝜕𝒗𝜶
∙ 𝜹�̇�𝜶 +

𝜕𝐿

𝜕𝝐𝜷
: 𝜹𝝐𝜷)

𝑇

𝑑𝑡

= ∫ (−
𝜕�̇�

𝜕𝒗𝜶
∙ 𝜹𝒖𝜶 +

𝜕𝐿

𝜕𝝐𝜷
: 𝑠𝑦𝑚{𝑩𝜷𝜶⊗𝜹𝒖𝜶})

𝑇

𝑑𝑡

= ∫ (−
𝜕�̇�

𝜕𝒗𝜶
∙ 𝜹𝒖𝜶 +

𝜕𝐿

𝜕𝜖𝑖𝑗
𝛽
𝐵𝑖
𝛽𝛼
𝛿𝑢𝑗

𝛼)
𝑇

𝑑𝑡

= ∫ (−
𝜕�̇�

𝜕𝒗𝜶
∙ 𝜹𝒖𝜶 +

𝜕𝐿

𝜕𝝐𝜷
𝑩𝜷𝜶 ∙ 𝜹𝒖𝜶)

𝑇

𝑑𝑡 

Figure 14: Burridge-Andrews mechanism observed in the simulation 

(a) Sub-Rayleigh propagation 
(𝑡 = 0.05𝑠) 

(b) Apparition of daughter 

crack (𝑡 = 0.1𝑠) 
(c) Transition to supershear 

rupture (𝑡 = 0.25𝑠) 



Note that only one integration by part is needed, instead of the two needed for the general 

analytical expression. 

By writing 
𝜕𝐿

𝜕𝝐𝜷
 in vector form following Voigt notations: (

𝜕𝐿

𝜕𝜖11
𝛽 ,

𝜕𝐿

𝜕𝜖22
𝛽 ,

𝜕𝐿

𝜕𝜖33
𝛽 ,

𝜕𝐿

𝜕𝜖23
𝛽 ,

𝜕𝐿

𝜕𝜖13
𝛽 ,

𝜕𝐿

𝜕𝜖12
𝛽 ), and 

rewriting 𝑩𝜷𝜶 in the adapted matrix form: 

�̃�𝑡 𝛽𝛼 =

(

 

𝐵1
𝛽𝛼

0 0

0 𝐵2
𝛽𝛼

0

0 0 𝐵3
𝛽𝛼

0 𝐵3
𝛽𝛼

𝐵2
𝛽𝛼

𝐵3
𝛽𝛼

0 𝐵1
𝛽𝛼

𝐵2
𝛽𝛼

𝐵1
𝛽𝛼

0 )

  

and finally replacing them in the above integral, the vector form Euler-Lagrange equation (Eq. 

5) can be derived. 

 

Appendix B: Boundary conditions 

Dirichlet BC 

Let 𝑢𝐷 be the value of displacement imposed on the boundary. 

We will set the coefficients 𝑢𝛼𝑛 such as: 

𝜕

𝜕𝑢𝛼𝑛
∫|𝑃𝛼

′𝑛′𝑢𝛼
′𝑛′ − 𝑢𝐷|

2
𝑑𝑠

Γ𝐷

= 0⇒∑𝐼𝑆
𝛼𝑛𝑛′𝑢𝛼𝑛

′

𝑛′

= ∫ 𝑢𝐷𝑝
𝛼𝑛

Γ𝐷

𝑑𝑠 

where 𝐼𝑆
𝛼𝑛𝑛′ = ∫ 𝑃𝛼𝑛𝑃𝛼𝑛

′
𝑑𝑠

Γ𝐷
. 

We note 𝑊𝑆
𝛼 = (𝐼𝑆

𝛼)−1, 𝑢𝛼𝑛 = ∑ 𝑊𝑆
𝛼𝑛𝑛′

𝑛′ ∫ 𝑢𝐷𝑝
𝛼𝑛′

Γ𝐷
𝑑𝑠 

This inverse is ensured to exist only for the 0th order (when 𝑛 = 𝑛′ = 0), as otherwise several 

combinations of coefficients may be solution to the boundary problem. In particular, the 

integration of first degree polynomials on a surface can lead to null columns in the matrix. 

Therefore, for the boundary only, only the 0th order terms are computed while the other 

components are set to 0. 

The momentum corresponding condition is derived using Eq. 6}:   

𝑝𝛼𝑛 = 𝜌∑𝐼𝛼𝑛𝑛
′

𝑛′

∑𝑊𝑆
𝛼𝑛𝑛"

𝑛"

∫ 𝑢�̇�𝑝
𝛼𝑛"

Γ𝐷

𝑑𝑠 

 

Neumann BC 

We consider a Lagrangian (with u as an additional variable for the strain-based formulation, 

not necessary for the displacement-based one): 

𝐿(𝒗, 𝝐, 𝒖) = ∫
1

2
𝑉

𝜌𝒗2𝑑𝑉 −
1

2
𝛜: 𝑪: 𝛜 𝑑𝑉 + ∫ 𝑇𝑁 . 𝑢

Γ𝑁

𝑑𝑠 

In PDS-FEM formalism, applying the Hamilton’s principle leads to the updated Euler-Lagrange 

equation: 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑣𝛼𝑛
−∑ �̃�𝑡 𝛽𝛼𝑚𝑛.

𝜕𝐿

𝜕𝜖𝛽𝑚
𝛽,𝑚

− ∫ 𝑇𝑁. 𝑃
𝛼𝑛

Γ𝑁

𝑑𝑠 = 0 

adding the term ∫ 𝑇𝑁 . 𝑃
𝛼𝑛

Γ𝑁∩Φ𝛼
𝑑𝑠 to the calculation of �̇�𝛼𝑛 in the Hamiltonian systems. 
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