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Abstract 

An object of our consideration is a two-phase laminate of micro-periodic structure in one of 
directions. That periodicity is represented by distinguished unit cell of diameter l much 
smaller when compared with other composite dimensions. In the remaining directions 
laminate has uniform structure. Each component has isotropic material properties, however 
theirs values are uncertain from assumption, e.g. ratios of conductivities 2 1/k k   and 

specific heats 2 2 1 1/c c    are random variables of known probabilistic distribution.  

By any heat flow, transversally to the laminae, there can be two phenomena observed: jump 
of the gradient of temperature field on interfaces, and apparent temperature oscillations 
around averaged temperature, with (local) maximum value on interfaces. That function of 
temperature oscillations depend strongly on parameters   and  , what makes it new random 
variable, cf. [1]. In this presentation we are going to answer if the maximum of these 
oscillations is also Gaussian random variable. Steady state as well as transient state will be 
considered, and all obtained results will be presented. 
The govern equation of heat transfer is described by well-known Fourier’s law. Easy to see 
that for considered structure coefficients in the PDE are discontinuous and highly oscillating. 
Therefore, a tolerance averaging technique (cf. Woźniak et al. [2]) is used in order to get 
averaged model equations of constant coefficients. These new equations will be used in 
further numerical (Monte-Carlo) simulations.  

Keywords: Heat transfer, laminate, uncertain material properties, tolerance averaging 
technique 

 

Introduction 

The object of our consideration is a multi-layered heat conductor, build of two different 
materials distributed alternately along 1:x x  axis, Fig. 1. Composite layout is l-periodic in 

such a way that each interval     of length 0l   consists of two components, and the first 
one is of volume ratio  0,1  . These components, numbered by 1i   or 2, are called sub-

laminae and have isotropic material properties: ik  - conductivity, ic  - specific heat, and i  - 

density.  



 
Figure 1. An analysed composite conductor with micro-structure along its thickness 

The govern equation of the heat transfer in a conductor under consideration is a partial 
differential equation (PDE) having, due to micro-structure, highly oscillating and 
discontinuous coefficients. The exact solution to the steady or transient state of heat transfer is 
reachable for uniform conductor, but this is not the case. Naturally, one can build a system of 
PDEs, written for every single sub-layer, satisfying appropriate continuity and boundary 
conditions, but still, one may find a number of problems in resolvability. Even if we narrow 
our restrictions to one-directional heat flow, perpendicular to the layers, it would not relax our 
problem entirely. Therefore, we shall use in this paper the tolerance averaging technique, cf. 
Woźniak et al. [2]-[3], which leads to the system of differential equations with continuous 
coefficients and, what is crucial, for special cases (steady state) to the same solution as the 
exact one. 

Number of publications have been devoted to the problem of heat transfer in micro-
heterogeneous structures and its modelling, for which differential equations are of 
discontinuous coefficients. The most popular averaging approaches are based on the 
asymptotic homogenisation cf. Jikov et al. [4]. For instance, homogenisation theory was 
realised by Matysiak and Yevtushenko [5] or Matysiak and Perkowski [6] by using a concept 
of micro-local parameters. To another approaches, but still popular, belong RVE methods. We 
can mention here for example works of Han et al. [7] or Bayat and Gaitanaros [8]. 

A new class of problems is recently investigated. Namely the uncertainty effect of physical or 
geometrical properties on the overall composite behaviour. For instance, probabilistic 
homogenization with Monte-Carlo simulation in fiber composites is investigated by Kamiński 
in [9]. Dynamics of micro-periodic composite rod with uncertain parameters under a moving 
random load is presented by Mazur-Śniady et al. [10]. A refined averaged theory of a rigid 
heat conductor with a micro-periodic structure is used by Ignaczak and Baczyński [11] to 
solve a one-dimensional heat conduction problem in a periodically layered plate. 

Averaged model equations used in presented paper describe heat transfer in considered 
composite, and theirs origin we find in tolerance averaging technique. This particular method 
is commonly used to other then heat conduction problems: e.g. to dynamics of shells [12] and 
plates [13]-[15], to thermoelasticity [16]-[17]. 

There are two general goals we would like to present. The first one deals with application of 
tolerance averaging technique in order to have equations of constant coefficients describing 
well the heat conduction problem in considered laminate. The second one is to investigate the 
measure of magnitude of temperature oscillations and how these oscillations depend on 
uncertainty of material properties. 



Preliminaries 

Let 3    be a bounded region in Euclidean space occupied by the conductor under 
consideration, wherein Cartesian coordinate system 1 2 3Ox x x  is introduced. Denote by 

 : 0, H  , 0H  , a bounded and regular region in   assigned to the micro-structure. 

Hence, the region of the composite can be expressed as    , where    : 0, 0,L B   , 

for , 0B L  , is a bounded subspace of 2 . In other words, the conductor has for every 

 1 0,x H  invariant homogeneous structure and material properties, see Fig. 2.  

Through this paper points from   are denoted by Latin letters 1x x  or 1y y , while from 

  by  1 2 3, ,x x xx . Points from   are denoted by  2 3,x xz , and the time coordinate by 

t. Gradient operators used in this contribution are  1,0,0   ,  2 30, ,     and     , 

where /i ix    , 1,2,3i  , stand for partial derivatives. Dots over the function name stand 

for the time derivatives. 

 
Figure 2. Laminar layout of micro-structure 

The heat conduction equation is based in this contribution on the well-known Fourier's law  

   c   K  , (1) 

where ijk   K , :ijk   , stands for the second order conductivity tensor, :c    is a 

specific heat and :    is the density. Since material properties are isotropic we have 

ij ijk k    for some 0k  , where ij  is Kronecker's delta.  

Equation (1) has to be satisfied for every x  and  0 1,t t t  by continuous function of 

temperature  0 1: ,t t   . Easy to see that direct description leads to the system of 

PDEs with highly oscillating coefficients, and it might be far to complicated to solve it in 
engineering applications. Even for a unidirectional problem 

 

 
     
   

1 2 0 1

0 0

,

0, , , for , ,

, for 0, ,

c

t H t t t t

x t x H

    

      

   

K 

  (2) 



where the number of independent variables decreases to two, x and t. 

Denote the ratios 
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k
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   (3) 

as inhomogeneity parameters. They take only positive values, and equal one for homogeneous 
material. 

 

In order to give appropriate motivation to our studies, consider a following problem of heat 
transfer in the laminate build of n two-component layers: find continuous function 

 : 0, H    satisfying boundary conditions, 1     at 0x   and 2    at x H . Easy 

to prove that general solution to Eq. (2) for the case of steady state (time derivative vanishes 
and the problem is independent of time t) can be decomposed into the sum of averaged 
temperature 

    1 2 1avg

x
x

H
       ,  0,x H , (4) 

and oscillating temperature osc . The last one is a “saw-type” function, oscillating around 

zero value, having local extrema on interfaces and depending explicitly on parameter  , e.g. 
for a special distribution of sub-laminae we have 
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where 2 1    . Part of this function,    
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, is depicted in Fig. 

3 where we can see how strong values of osc  depend on  . 

 
Figure 3. Plot of function  h   



One can also observe that limits 
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exist and are finite. 

We can imagine now that the magnitude of osc  is sensitive, in transient state as well as in 

steady state, to differences of material properties. The bigger differences we have, the bigger 
magnitude of oscillations we get. In other words, function osc  on interfaces depends on 

parameters   and  .  

In this paper we assume that parameters   and   are uncertain, i.e. they are random 
variables of known probability distribution, lognormal to be precise. Hence, there exist 

 , 0   and  , 0   such that  2,     and  2,    . This denotation 

means that median values of  ,   are respectively exp( ) , exp( ) , while expected 

values are 2exp( / 2)   , 2exp( / 2)   . For the sake of simplicity, initial-boundary 

conditions to Eq. (1) are imposed in such a way to assure unidirectional (along 1x  axis) heat 

transfer problem. 

Modelling concepts 

Throughout this paper, by  rH  , 0r  , we shall understand a Sobolev space of functions 

which are, together with theirs weak derivatives to the rth order, 2L -measurable on  . 
Function space  rH   denotes the space of all  -periodic functions which are  rH V  on 

any arbitrary compact subset V   . Easy to see that 0H  means the same what 2L , however 
there is no equilibrium between  rH   and  rH V  for V   . All essentially bounded 

functions on mX   , 1, 2,3m  , are denoted by  L X . 

Let n  be the number of two-component layers of common width /l H n . Each layer 
(cf. Fig. 2) consists of two sub-layers made of different material. The first one, called 
,,conductor 1'', is of width 1d l  , where  0,1   is fixed. Second sub-layer, called 

,,conductor 2'', has therefore width  2 1d l   . Easy to see that uniform conductor 

provides  0,1  . 

Fix for a moment x . Since the composite is periodic, cf. Fig. 2, representative volume 
element  / 2, / 2l l     , called further a unit cell, can be simply distinguished. To every 

cell   we can assign a local coordinate system Oy , and the cell with a centre at x is denoted 

by  x x    . Note, that above representation of cell   is not the only one, it is only an 

example. It can be any l-length surrounding of 0, i.e.  ,a a l    for  / 2,0a l  . 

In order to derive averaged model equations we apply the tolerance averaging technique, 
which is based mainly on the concept of tolerance and in-discernibility relation. Its definition 
is given below. 



Definition 1. Let   stands for an arbitrary positive number. We say that numbers ,a b  are 

in tolerance relation a b  if and only if a b   . Parameter   is called the tolerance 

parameter. 

The general modelling procedures, basic definitions and theorems of this technique can be 
found in the book by Woźniak and Wierzbicki [2] or by Ostrowski [18]. We will mention here 
some basic concepts of this technique, but first we introduce a notion of maximum oscillation 
of continuous function f on  x  as follows 

  
   

sup ( ) inf ( )
x y xy x

f x f y f y 
      , (7) 

which is very helpful in constructing definition of slowly-varying function. 

Definition 2. Function  rF C   is called the slowly varying function of rth order, with 

respect to cell   and tolerance parameter  , if for every 0,1,...,p r  following conditions 
hold 

    1, , 0p

x
x F      z z . (8) 

Set of all rth order slowly varying functions with respect to the cell   and tolerance 
parameter   is denoted by  ,rSV   . 

Another important definition in tolerance modelling is the definition of the mean value 
operator 

    
 

1
, : ,

x

f x f y dy
l 

    . (9) 

which can be applied to any locally integrable function  1
locf L  . In applications we 

restrict ourselves to essentially bounded functions, i.e.  f L  . 

The last definition related to tolerance averaging technique is a periodic-like function [2], 
whose name was after years changed into tolerance periodic function. 

Definition 3. Function    rf L H     will be called the tolerance periodic function of 

rth order, with respect to the cell   and tolerance parameter  , if for every 0,1,...,p r  and 

every x   there exists periodic approximation    r
x perf L H     of function f such 

that 

  1 1 , 0p p
x

x
f f        z z . (10) 

Set of all rth order tolerance periodic functions with respect to the cell   and tolerance 
parameter   will be denoted by  ,rTP   . 

The space  perL   mentioned above is a set of all essentially bounded functions defined on 

  which are periodic, in particular  -periodic. By the notion of 0
1 f  we shall understand f, 

and by  O   Landau's symbol is denoted. The tolerance parameter   related to any tolerance 

periodic function can be determined only a posteriori. 



Another class of functions possessing special properties is a class of fluctuation shape 
functions. 

Definition 4. Function  0g C   is called the fluctuation shape function of weight 

 L   , if following conditions hold 

(a) 0g   on  , 

(b) 1g  is piecewise continuous, 

(c)  g O l . 

Set of all fluctuation shape functions of weight   is denoted by  ,FS 
   . 

For further simplifications we consider only these functions  1 ,g FS    which satisfy 

0g  . An example of such function is shown in Fig. 4. 

 
Figure 4. Fluctuation shape function 

The last part of this section deals with theorem as a conclusion implied from all presented 
definitions and theirs properties. 

Theorem 1 (Tolerance Averaging Approximations). For every  1 ,g FS   , 

 1 ,F SV   ,  0 ,f TP   ,  1L   and  perk L   the following proposition hold 

(a)     , 

(b)  k gF k g F kg F     , 

(c) kF k F , 

(d)  g kf gkf kf g     . 

Proof of this theorem is given inter alia by Ostrowski in monograph [18]. 

Model equations 

In this section we derive averaged model equations describing heat conduction in micro-
structured laminate. We must assume first that temperature field   and its time derivative   
are tolerance periodic functions, i.e.  1 ,TP    and  0 ,TP   . Secondly, by 

tolerance averaging technique we impose on temperature field micro-macro decomposition as 
follows 



        , , ,t t g t    x x x x  (11) 

for every x  and  0 1,t t t , where      1, , , ,t t SV      . This assumption states that 

  and   are unknown slowly varying functions for every  0 1,t t t . Function  1 ,g FS    

is a priori given, dependent on the micro-structure size parameter l, fluctuation shape function 
as depicted in Fig. 4. Function   is called the averaged temperature in a medium, while   
stands for the temperature oscillation amplitude. 

 

About functions of material properties we assume that each component has isotropic 
properties, i.e. ij ijk k    for some 0k  , where ij  stands for Kronecker's delta. Moreover, 

let  , , perk c L   . 

It is obvious that (1) may not be satisfied by decomposition (11) everywhere on   and for 
every  0 1,t t t . Nevertheless, we expect from residuum function  

   c     K   (12) 

to satisfy on its domain some orthogonal conditions, namely 

 0   and 0g  . (13) 

Bearing in mind all properties from Theorem 1 and by omission all terms  O  ,  O l , we 

conclude to the final averaged model equations 
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The above system has continuous, for periodic structure even constant, coefficients in contrast 
to equations from the direct description (1) which has discontinuous and highly oscillating 
ones. System (14) represents equations for the averaged temperature   and the temperature 
fluctuation amplitude  , and together with micro-macro decomposition (11) constitutes the 
tolerance model (TM) of the heat conduction in considered laminated conductor. 

Along with micro-macro decomposition (11) came two unknown functions,   and  , instead 
of one  . Thus, we need to formulate somehow, based on the known, conditions for these 
new functions. Let    0 0, t      on   be the initial temperature, while    1 0,      and 

   2 ,H      be on  0 1,t t  the temperature on the top and bottom surface, respectively. 

On the remaining boundary surfaces we assume that they are subjected to thermal isolation. 
Conditions for averaged temperature and temperature oscillation amplitude we can evaluate as 

 i i    and i
i

g

gg



 , (15) 

for every 0,1, 2i  . Easy to see that  ,i t   and  ,i t   are for every  0 1,t t t  constant 

functions if  ,i t   is l-periodic. In particular,  , 0i t    iff i  is constant in x. 



Suppose now 0 1,   and 2  are constant functions in theirs domain and material properties 

are isotropic for each of component, i.e. 1 1 1, ,k c   for the first phase and 2 2 2, ,k c   for the 

second phase. The rest of boundary surfaces are thermally isolated. So formulated Cauchy's 
problem assures unidirectional heat flow in a media (along x-axis) and the tolerance model 
equations (14) reduce to a simpler form 
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and the initial-boundary conditions 

 i i    and 0i  , (17) 

for every 0,1, 2i  . Averaged coefficients  
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 (18) 

are in this case constant and depend explicitly on parameters   or  , cf. (18), that play the 
role of random variables. If 1    then we deal with uniform conductor. For further 

applications we introduce the dimensionless spatial /x H   and time  / 3600t s   

coordinates.  

If we neglect time derivatives in (16) and make all functions as time independent, then we 
obtain description to the steady state of heat conduction. Temperature oscillation amplitude   
depends then explicitly on averaged temperature 

 1
1

1 1

k g

k g g
 


  

 
, (19) 

while   must satisfy 

 2
1 0   (20) 

under already known boundary conditions. What is most interesting, the obtained solution 
satisfies all continuity conditions, including heat flux across interfaces. Ergo, by tolerance 
averaging technique we get the exact solution, without solving large system of equations, and 
without solving any eigenvalue problem. 

Monte-Carlo simulation 

The exact solution for the direct description of the heat transfer problem (1) in micro-periodic 
laminate exists, however it usually needs complex algebraic calculations. For example, by n 
cells in our two-phase laminate we have 2 1n   interfaces where continuity of temperature and 
heat flux field should be assured. That makes 4 2n   equations plus two boundary conditions. 
By the use of tolerance averaging technique we obtain system of PDEs (or ODEs) but of 
constant coefficients, wherein the number of equations depends on the number of terms in 
micro-macro decomposition (11). But that is much smaller then 4n , usually it is only two. 

Table 1. Reference material properties 



 Component 1 (steel) Component 2 (aluminium) 

1 1k W m K      58 200 

1 1c J kg K     500 920 

3kg m      7800 2700 

Example 1. Let us consider periodic laminate of thickness  1H m , consisting of 20n   

two-component layers. Hence, the thickness of a single layer is  5l cm . Volume fraction of 

the first component is fixed at 0.25  . Let  0 0 C    for  0 0t s  and  1 1 C   , 

 2 0 C    for  0x m  and x H , respectively. These imply  0 0 C    for 0 0   and 

 1 1 C   ,  2 0 C    for 0   and 1  , respectively. Material properties are given in 

Tab. 1, and thus parameters 3.448   and 0.637   are fixed. The considered time range 

for this example is one hour,  1 3600t s , and it provides range of  0,1  for  . 

 
Figure 5. The averaged and the temperature oscillation amplitude varying in time 

during one hour for fixed material properties and 0.25   

System (16) were solved under assumption that time derivative of   can be omitted 
(asymptotic model, cf. [1]), i.e. instead of (16)2 we have (19). Fig. 5 depicts changes in time 
of averaged temperature   and temperature oscillation amplitude  . There is apparent 
convergence to the steady state, and the maximum oscillation amplitude appears close to top 
surface ( 0  ). 

These results were prepared only for certain values of material properties. Suppose now that 

1 1 1, ,k c   are fixed while   and 2.811    are uncertain parameters. To be precise, we 

will investigate the impact of randomness of parameter   on the magnitude of temperature 
oscillations 

  
 

   , sup ,
y x

x t g y y t


   , x  ,  0 1,t t t . (21) 



All following simulations are restricted to the case of fixed spatial coordinate 1/ n  , but the 
whole analysis could be simply transferred for any value of  . 

In the next example we expect to find and investigate an effect of variables   and 
2.811    on the function  , ,     , under given above geometry and initial-

boundary conditions, but for various values of  .  

Example 2. We postulate that  , ,   , given by Eq. (21), is for 1/ n   and every 

 0,1   a new random variable with unknown probability distribution. To variable  , we 

say that it is of lognormal distribution with parameters: mean value    and standard 

deviation   . Moreover, we assume that      for 3.448   and   0    . All 

statistical characteristics, like expected value  E  , standard deviation    , skewness 

   , kurtosis     and coefficient of variation    , will be determined in order to 

qualify   to Gaussian distributed variable. Subsequent numerical experiment is based on the 
Monte Carlo simulation for 1000N   probe values.  

 
Figure 6. The expected values of   against   varying in time for 0.25   and 0.75   

In Fig. 6 we see how the magnitude of temperature oscillation vary in time, and theirs values 
are not necessary negligibly small when compared with total temperature. It seems that they 
are not affected with parameter  . 

 



Figure 7. The standard variations of   against   varying in time for 0.25   and 
0.75   

Standard deviations depend on parameter   for sure, but that dependence is almost linear. 
The highest standard deviations we get for first moment of time, then they drop down. 

 
Figure 8. The skewness’s of   against   varying in time for 0.25   and 0.75   

Skewness is first statistical parameter that says a lot about character of randomness. If its 
value is close to zero then we may suspect that this is Gaussian distribution. In Fig. 8 we can 
see that there is no typical pattern for skewness’s but theirs values are sufficiently small. 

 
Figure 9. The kurtoses of   against   varying in time for 0.25   and 0.75   

The second statistical parameter is kurtosis, Fig. 9, determining whether   is Gaussian 
variable. The closer value to zero the better alignment we get. As well as skewness’s, results 
are kind of chaotic but also sufficiently small. 



 
Figure 10. The coefficients of variation of   against   varying in time for 0.25   and 

0.75   

The most interesting parameter is the ratio of standard deviation and expected value, called 
coefficient of variation, Fig. 10, because it says a lot about relative dispersion of expected 
values. 

Summary 

We assumed that ratio of conductivities   (ratio of specific heats   depends explicitly on 
 ) is a random variable of lognormal distribution. That distribution was considered in many 
variations, i.e. for different values of  . Its change affects naturally the function of magnitude 
of temperature oscillation  , which is also a random variable. Statistical characteristics were 
calculated and Shapiro-Wilk’s test for normality was made for each case. Only those results, 
for which the test gave positive answer, were presented in Figs 6-10. Plots of coefficient of 
variation reveal interesting conclusion: estimation of   might be of higher probability then 
made for ratio  . But this is only from specific moment of time:      for 2   

regardless from  . 
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