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Abstract 

This paper presents an efficient numerical technique capable of handling the stress analysis of 

three-dimensional cracked bodies strengthened by adhesively bonded patches. The proposed 

technique is implemented within the framework of the coupling of the weakly singular 

boundary integral equation method and the standard finite element procedure. The former is 

applied to efficiently treat the elastic body containing cracks whereas the latter is adopted to 

handle both the adhesive layers and patches. The approximation of the near-front relative 

crack-face displacement is enhanced by using local interpolation functions that can capture 

the right asymptotic behaviour. This also offers the direct calculation of the stress intensity 

factors along the crack front. A selected set of results is reported to demonstrate the capability 

of the proposed technique and the influence of various parameters on the performance of the 

strengthening.  

Keywords: Boundary integral equation method, Bonded patches, Cracked body, Finite 
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Introduction 

Sustainability and integrity of engineering structures are ones among various crucial issues 

that must be properly integrated in the design procedure and the subsequent maintenance 

stage. It has been known that the presence of cracks/flaws/damages is one of the major causes 

of subsequent failures of components, parts of or the entire structures leading finally to the 

loss of their functions. For such reason, the strengthening of damaged/cracked structures at 

the earliest time as soon as they are detected during inspections is considered essential. 

Furthermore, the control of cracked structures after being strengthened is also one of vital 

tasks to evaluate the selected strengthening method so that those strengthened structures can 

maintain their bearing capacity. 

Replacement of cracked or damaged parts can be time-consuming and expensive, and, 

in addition, requires a high level of expertise. It is usually more cost effective to strengthen 

those damaged components by using patching techniques. One of those methods, with 

adhesively bonded repairs, has been widely employed in practices. Many theoretical and 

empirical investigations have demonstrated the advantages of this particular method relative 

to other existing techniques for strengthening cracked structures due mainly to its cost 

effectiveness (e.g., [1-6]). In addition to their high stiffness and strength, the patches are 

structurally efficient and induce much less damages to the strengthened structures. 

In the modeling point of view via a theory of linear elasticity and linear elastic fracture 

mechanics, the stress intensity factors along the crack front can be significantly reduced after 



the cracked body is strengthened by attaching a patch over the cracked region (e.g., [6-19]). 

This is due to the fact that some of externally applied loads exerted to the cracked bodies are 

either shared by or transferred directly to the patches via the adhesive shear layers rendering 

the enhancement of stiffness near the patching region and the reduction of relative crack-face 

displacements. As a direct consequence, the growth of the cracks can be delayed or even 

ceased if the strengthening is properly designed. Evidences from past studies have indicated 

that various parameters including the dimensions and material properties of the strengthened 

structure, the patches, and the adhesive layers significantly affects the efficiency and 

effectiveness of the strengthening (e.g., [6-19]). The full investigation to understand the role 

of those parameters is considered essential and can assist designers/engineers in the 

optimization of their designs. While experimental studies offer an excellent means to establish 

a set of results reflecting real responses, the methods themselves consume a significant 

amount of resources and are quite limited to test settings. In particular, to assess efficiency 

and influence of the patches in the experiments, a large set of testing specimens including un-

patched and patched cracked structures for various specimen configurations must be 

considered. An alternative approach is to adopt computer-based simulations via reliable 

mathematical models to perform such extensive parametric study. It is remarked, however, 

that to accomplish such an important task within a broad and general framework (e.g., three-

dimensional settings, large-scale and complex cases), powerful and computationally efficient 

tools are prerequisite. 

On the basis of an extensive literature survey, most of existing studies toward the 

development of computational techniques to assist the analysis and simulations of cracked 

components repaired by adhesively bonded patches were focused extensively on the two-

dimensional framework and quite specific to certain settings such as the repair configurations 

and types of repaired structures. The enhancement of existing modeling tools to be capable of 

handling more complex and general scenarios such as fully three-dimensional and large scale 

problems is challenging and requires further extensive investigations. 

Problem Formulation 

Consider a three-dimensional, finite body containing both embedded and surface-breaking 

cracks and strengthened or reinforced by adhesively bonded patches as shown schematically 

in Figure 1. The cracked body is made of a homogeneous, generally anisotropic, linearly 

elastic material. The ordinary boundary of the cracked body, denoted by 0S , consists of a 

surface uS  on which the displacement bu
u  is prescribed, a surface tS  on which the traction 

bt
t  is known a priori, and a flat or planar surface aS  on which the patch is attached. The 

surface of displacement discontinuity used to describe the crack in the undeformed state (i.e., 

stress-free state) is represented by a pair of geometrically identical surfaces, denoted by cS   

and cS  , and, in the present study, the attention is restricted only to the case that the crack 

surface is subjected to the point-wise self-equilibrated tractions; i.e., the prescribed tractions 

,b b 
t t  acting respectively to the surfaces ,c cS S   satisfy the condition b b   0t t . Each 

patch is made of a homogeneous, linear elastic material and fully adhered to the cracked body 

on the surface aS  by means of an adhesive bonding material. The prescribed traction exerted 

to the surface of the patch, opposite to the attached surface, is denoted by 0p
t . In the present 

study, the thickness of the patches and adhesive layers is assumed relatively small in 

comparison with the characteristic dimension of the repaired body; as a result, the bending 

stiffness of the patches can be considered negligible whereas only the shear resistance is 

treated for the adhesive layers. 



                     

 

Figure 1. Schematic of a body containing embedded and surface-breaking cracks and 

strengthened by adhesively bonded patches 

      

Since the thickness of each patch is sufficiently small and the bending effect can be 

ignored, its responses can then be properly modeled by a two-dimensional, plane-stress, linear 

elasticity theory. The final governing equation formulated in a local, two-dimensional, 

Cartesian coordinate system containing the patch by taking the in-plane displacement vector 
* p

u  as the primary unknown is given by  

  
* * * * 0T p p pa p

ph   L C Lu s s 0  (1) 

 

where L  is a conventional, two-dimensional differential operator transforming * p
u  into a 

vector containing independent in-plane strain components; the superscript “T ” denotes the 

matrix transpose; ph  is the thickness of the patch; * 0p
s is a vector containing local 

components of the prescribed shear traction 0p
s  (i.e., the tangential component vector of the 

prescribed traction 0p
t  on the plane of the patch),  * pa

s  is a vector containing local 

components of the unknown shear traction exerted by the adhesive layer, and * p
C  is the 

elastic in-plane modulus matrix for the plane-stress case. An alternative weak-form of (1) can 

be readily established via a standard weighted residual technique and used as the basis in the 

discretization procedure. 

 From the assumption that the adhesive layer can transfer only shear across its 

thickness, the state of strain for the entire layer can be completely described by the out-of-

plane shear strain. Since the thickness of the adhesive layer is infinitesimal in comparison 

with its planar dimensions, it is legitimate to assume that the out-of-plane shear strain 

components are uniform across the thickness or, equivalently, the in-plane displacement 

varies linearly across the thickness. The out-of-plane shear stress induced within the layer 
*a  is then governed by 
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where ah  is the thickness of the adhesive layer, aG  denotes the elastic shear modulus of the 

adhesive material, and *ap
u  and *ab

u  are values of the in-plane displacement at its interfaces 

connecting to the patch and the cracked body, respectively. Similarly, the weak-form 

statement of (2) can also be formulated by the weighted residual technique. 

For the cracked body, the theory of linear elasticity with the absence of the body force 

is adopted and the key governing equations are formulated within the framework of boundary 

integral equations. In particular, the following pair of weakly singular, weak-form boundary 

integral equations for the displacements and tractions, proposed by Rungamornrat and Mear 

(2008a), is utilized to form a system of integral equations governing the unknown data on the 

boundary and crack surface:    
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where 0 cS S S    denotes the total boundary of the cracked body; p  is any sufficiently 

smooth test function defined on the ordinary boundary 0S ; ku  is any sufficiently smooth test 

function defined on the total boundary S ; b

pu  and b

jt  are components of the displacement and 

traction on the ordinary boundary 0S  of the cracked body; in  are components of the outward 

unit normal vector to the total boundary S ; /m i ism sD n     or /m i ism sD n y    denotes the 

surface differential operator; 
p

jU , 
tk

mjC , 
p

mjG , and 
p

ijH  are known fundamental solutions (see 

details of development and explicit expressions in Rungamornrat and Mear (2008a)); and b

jv  

and b

k  are data defined by  
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in which 
b

j j ju u u     denotes the relative crack-face displacement and 0 0( )b

k k kt t t   ξ  

denotes the jump in the crack-face traction. In particular, for the self-equilibrated crack-face 

tractions, it yields 0( ) 2b

k kt t  ξ . To form a system of integral equations governing all 



unknown data on the boundary and the crack surface, the displacement boundary integral 

equation (3) is applied to the surface uS  with 0p   on t aS S  whereas the traction 

boundary integral equation (4) is adopted for the remaining surface 
t a cS S S    with 0ku   

on uS . 

A system of governing equations for the whole repaired cracked body shown in Figure 

1 can now be obtained by combining the weak-form equations governing all patches, the 

weak-form equations governing all adhesive layers, and those governing the cracked body 

together with the continuity of the displacement and the traction along all material interfaces. 

The final system contains the following unknown functions: the shear stress within the 

adhesive layers *a , the in-plane displacement of the patch * p
u , the displacement ba

u  on the 

surface aS , the displacement bt
u  on the surface tS , the traction bu

t  on the surface uS , and the 

relative crack-face displacement bu . 

Numerical Implementations 

To discretize the governing weak-form equations for the patches and the adhesive layers, a 

standard finite element procedure for two-dimensional problems (e.g., [21-23]) is adopted. 

The unknown shear stress within the adhesive layer *a , the unknown in-plane displacement 

of the patch * p
u , the unknown displacement on the surface of the cracked body ba

u  and all 

involved test functions are approximated using standard basis functions constructed locally on 

a finite element mesh consisting of standard, isoparametric, 0C -elements.  

To discretize the weakly-singular, weak-form integral equations governing the cracked 

body, Galerkin-based procedure similar to that proposed by Rungamornrat and Mear (2008b) 

is implemented. Due to the weakly singular feature of all involved integrals, both the trial and 

test functions can be approximated by a set of continuous basis functions constructed locally 

on a finite element mesh. In particular, standard isoparametric 0C elements are employed 

everywhere in the solution discretization except in a local region of the crack surface adjacent 

to the crack front where special crack-tip elements, originally proposed by Li et al. (1998) and 

used later by Rungamornrat and Mear (2008b) to treat cracks in anisotropic media, are 

adopted. Element shape functions of such special crack-tip elements were properly enriched 

to contain the square-root-type behavior and accurately capture the near-front relative crack-

face displacement (also see details in Yates et al. (2010) and Rungamornrat et al. (2019) for 

the structure of the near-front elastic field). Special quadrature rules proposed by Xiao (1998) 

are implemented to handle both weakly singular and nearly singular integrals and the efficient 

interpolation-based algorithm similar to that employed by Rungamornrat and Mear (2008b) is 

adopted to calculate all involved fundamental solutions for generally anisotropic materials. 

The final system of linear algebraic equations resulting from the discretization of the 

governing equations of the patches, the adhesive layers, and the cracked body is solved by a 

selected efficient linear solver. The stress intensity factors along the crack front are then 

extracted directly from the solved relative crack-face displacement data together with the 

properties of the special crack-tip elements via the post-process formula proposed by 

Rungamornrat and Mear (2008b).   

Numerical Results 

To verify the implemented technique and also provide a set of results from a preliminary 

parametric study on the strengthening of cracked bodies, the following representative problem 

is chosen in numerical simulations. Consider a cube of an isotropic linearly elastic material 

that occupies the region [ , ] [ , ] [ , ]w w w w w w      in space and contains a penny-shaped 



crack of radius a  as shown schematically in Figure 2. The crack lies on a plane 3 0x   with 

its center located at point (0.4 ,0,0)w . The crack front can be parametrized in terms of the 

angular position [0,2 ]   by 

 

1 2 30.4 cos ,    sin ,    0x w a x a x      (7) 

 

The cube is loaded by a uniform normal traction 3 0t   on the face 3x w  and the uniform 

normal traction 3 0t    on the face 3x w  . To strengthen the cracked body, a patch of 

uniform thickness ph  is bonded to its entire face 1x w  by the adhesive layer of uniform 

thickness ah . In the numerical study, the aspect ratio / 0.5a w   and Young’s modulus and 

Poisson’s ratio given in Table 1 are considered and three meshes shown in Figure 3 are 

adopted.  

 

 

 

          

                                      

                                                                                                 

                                                                   

 

 

 

 

 

 

 

 

Figure 2. Schematic of cube material containing near-surface penny-shaped crack and 

strengthening by adhesively bonded patch 

 

  

Table 1. Young’s modulus and Poisson’s ratio for cracked body, patch, and adhesive 

layer used in parametric study 
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Figure 3. Three meshes adopted in analysis (only mesh of each face of cube is shown and 

it is identical to those for patch and adhesive layer) 

 

Due to the symmetry and the loading condition considered, only the mode-I stress 

intensity factor ( IK ) is non-zero. The normalized IK  obtained from the three meshes are 

reported in Figure 4 along with those generated by ABAQUS for the cases with and without 

the strengthening. It can be concluded from this set of results that numerical solutions 

converge as the mesh is refined and the good agreement between the converged and reference 

solution (with the difference within a fraction of one percent) is observed. Note in particular 

that relatively coarse meshes such as the Mesh-1 and Mesh-2 can also yield quite accurate 

results; this is due mainly to the use of special crack-tip elements in the approximation of the 

near-front relative crack-face displacement. After the cracked body is strengthened by the 

adhesively bonded patch, the stress intensity factor is significantly reduced especially in the 

region near the bonded patch.  

After fully tested, the proposed technique can be further applied to study the influence 

of various strengthening parameters (e.g., thickness of the adhesive layer and thickness of the 

patch) on the strengthening performance. For instance, to explore the influence of the patch 

thickness on the reduction of the stress intensity factor of the crack in the representative 

problem, simulations can be carried out for different values of ph  while all other parameters 

remain fixed. A plot of the normalized mode-I stress intensity factor resulting from such 

simulations are reported in Figure 5, as examples, for / 0.00,0.01,0.02,0.03,0.04ph w  . 

Besides the expected reduction of the stress intensity factor as the patch thickness increases 

(due to the increase in the stiffness after the strengthening), this piece of information is 

potentially useful in the selection of the patch thickness to confine the stress intensity factor 

below the tolerance or to prevent the subsequent crack growth. Similarly, the influence of the 

thickness of the adhesive layer on the response after the strengthening can also be investigated 

by carrying out simulations for various values of ah  while maintaining all other parameters. 

Results shown in Figure 6 are for the representative cracked body with three different values 

of the thickness of the adhesive layer (i.e., / 0.001,0.005,0.01ah w  ). It is evident that as the 

thickness of the adhesive layer increases, the apparent stiffness of the cracked body after 

strengthening tends to decrease.  
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Figure 4. Normalized mode-I stress intensity factors of near-surface penny-shaped crack 

in cube of material under uniform normal traction 0  on its upper and lower faces. 

Results for the case of strengthening are reported for 0 0/ . 01ah w   and 0 1/ .0ph w  . 
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Figure 5. Influence of thickness of patch on normalized mode-I stress intensity factors 

for near-surface penny-shaped crack in cube of material  
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Figure 6. Influence of thickness of adhesive layer on normalized mode-I stress intensity 

factors for near-surface penny-shaped crack in cube of material  

Conclusion and Remarks 

The efficient and accurate BIE-FE coupling technique has been successfully implemented for 

the analysis of three-dimensional cracked bodies strengthened by adhesively bonded patch. 

The boundary integral equation method has been adopted to efficiently treat the cracked body 

whereas the standard finite element method has been utilized to handle both the adhesive 

layer and the patch. The near-front approximation of the relative crack-face displacement has 

been enhanced by means of using special crack-tip elements and this allows relatively coarse 

meshes to be employed in the discretization while still yielding sufficiently accurate fracture 

data along the crack front. Results from a numerical study have indicated that numerical 

solutions obtained from the proposed technique possess the good convergence behaviour and 

are of excellent agreement with reliable benchmark solutions. In addition, the preliminary 

parametric study has shown that the stress intensity factor along the crack front is 

significantly reduced as the thickness of the patch increases while the reverse trend has been 

observed for the adhesive layer.  
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