
 

 

Numerical study of the solute dispersion in microchannel  

with interphase transport 

 
 Wenbo Li1*, Wenyao Zhang1, Huang Deng1, and Qian Fang1, Cunlu Zhao1† 

1 Key Laboratory of Thermo-Fluid Science and Engineering of MOE, Xi’an Jiaotong University, Xi’an 710049, 
Shaanxi, P.R. China 

*Presenting author: wenboli817@gmail.com  
†Corresponding author: mclzhao@xjtu.edu.cn 

Abstract 

The dispersion phenomenon in the pressure-driven microchannel flow of solute with interphase 
transport is numerically studied using a transient 2D model. The interphase mass transport 
between the mobile phase and the stationary phase of the microchannel plays a critical role in 
the process of solute dispersion. The traditional studies of the solution dispersion with the 
interphase transport are based on the moment analysis which actually uses the 1D model and 
cannot provide detailed understandings of the solute dispersion in the microchannel. In this 
work, the 2D numerical model enables a more detailed characterization of the transient 
evolution of the solute dispersion in a microchannel by predicting the 2D transient 
concentration contours of the solute. The model characterizes the effect of interphase mass 
transport on the solute dispersion with two parameters, i.e., the partition coefficient (K) and the 
kinetic mass transfer rate (kf). From the 2D concentration contours, we observe that the solute 
is more dispersed in the mobile phase along the microchannel axis and also moves slower with 
K increasing, which indicates significant dispersion and retention of solute in the microchannel 
respectively. For a smaller kf which means a high mass transfer resistance between the mobile 
and stationary phases, the solute concentration in mobile phase is more dispersed and also the 
corresponding concentration profile along the channel axis is more skewed. It is also noticed 
that a thicker layer of stationary phase (df) corresponding to a larger solute capacity of the 
stationary phase, causes more significant retention of solute in the microchannel. The results 
from this study provide a straightforward picture of the solute dispersion phenomenon in 
microchannel with interphase transport and are of high relevance to practical applications such 
as chromatography and microfluidics.  
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Introduction 

With the rapid development of microfluidic lab-on-a-chip (LOC) technology, study of fluids 
and solute transport in microchannels have received widespread attention since miniaturization 
of fluid channels in microfluidic LOC devices leads to new problems for the fluid and mass 
transport. The dispersion of solutes in fluids flows in microchannels is one of the most widely 
studied topic due to its key roles in the trace detection of samples, chromatography, multiphase 
microfluidics and soil remediation[1-3], etc. 

The study of solute dispersion has been a constant focus since Taylor who investigated 
analytically and experimentally the solute dispersion in the water flowing in a tube due to the 
hydrodynamic convection and molecular diffusion [4-6]. Basing on Taylor’s studies, Aris [7] 
presented a theoretical study of the solute dispersion by means of moments analysis. The works 
by Taylor and Aris form the theoretical basis for the solution dispersion, their approach is jointly 
termed as the Taylor-Aris theory. Later Aris studied the solute dispersion in two coaxial layers 
of immiscible fluids flowing in an annulus. In addition to the traditional solution dispersion 
mechanisms of hydrodynamic convection and molecular diffusion, the interphase exchange 
between two fluids was also taken into account as a new mechanism. The consideration of this 
new mechanisms is due to a number of applications such as distillation and partition 
chromatography in which interphase mass transport has a crucial contribution [8]. In such 
researches, moments are adopted as the theoretical tool because of their ability in providing 
good statistical descriptions of the solute concentration distribution in the term of time. Kučera 
[9] derived explicit moments expressions as part of his study on non-equilibrium 
chromatography considering the longitudinal diffusion in the mobile phase, the radial diffusion 
inside the porous grains of the packing material, the finite rate of mass transfer through the 
boundary. Grushka [10] related the moments of a chromatographic peak to the determinative 
experimental parameters, i.e., partition coefficients, column length, etc. J. A. Jonsson proposed 
that considering the solute dispersion, the median of the chromatographic peak should be taken 
as the best measurement of retention time[11] and gave the moments to specifically study the 
dispersion and to determine the isotherm[12]. The moment analysis not only provides insightful 
understanding of fundamental characteristics of solution dispersion in channel flows, but also 
is practically useful in determining the diffusivity of solutes in specific solutions and the 
partition coefficient of solute between two phases [13-16] by the inverse chromatography. 

Another popular method to study solute dispersion in microchannel flow is based on the concept 
of height equivalent to a theoretical plate (H.E.T.P.) [17-19]. Different from the moment 
analysis which focuses only on the statistical description of solution dispersion on time scale, 
H.E.T.P describes the instant equilibrium of solution dispersion on length scale. The 
introduction of H.E.T.P to the solute dispersion study is due to its wide use as an indicator for 
separation performance in the chromatography. Various investigations performed fundamental 
study of the solution dispersion in chromatography using the H.E.T.P. and particularly 
discussed the effects of various factors, such as solute diffusivity and phase ratio, on the 



 

 

H.E.T.P. [20-22]. Fabrice presented a comprehensive summary for the solution dispersion 
studies based on the H.E.T.P. in the field of chromatography [23]. Recently, Beauchamp 
investigated the solute dispersion in both short and long capillary with the H.E.T.P under the 
slip boundaries and reached the conclusion that only in tube of very small diameters the use of 
slip flow boundary to reduce chromatography dispersion is suitable [24]. 

The aforementioned moment analysis and H.E.T.P methods focus on different aspects of the 
solute dispersion, but are all the simplified models of the more general convection-diffusion 
theory of mass transport. As has been reviewed previously, there has been significant 
development in the moment analysis and H.E.T.P. for investigating solute dispersion. Yet, these 
two methods are derived from the general convection-diffusion theory with a cross-section 
average treatment, and thus cannot provide detailed information of the solute concentration 
distribution in the whole channel domain. Especially, the details of the solute exchange between 
two phases (mobile phase and stationary phase) are missing from these simplified models. The 
present work is to study the solute dispersion in a pressure-driven microchannel flow with 
interphase transport with a full numerical model based on the convection-diffusion theory. The 
model is able to give an intuitive understanding of the solution transport with the numerically 
predicted transient concentration contours in the microchannel. More interestingly, the 
interphase transport of solute is to be studied in an unprecedented detail. Our numerical analyses 
also systematically address the effects of various model parameters on the solution dispersion 
characteristics. 

Methods 

Mathematical model 

Considering a circular straight microchannel whose inner wall holds an extremely thin layer of 
static polymer liquid, gases flow in the microchannel without causing the flow of liquid. The 
gases are termed as the mobile phase and the polymer liquid as the stationary phase.  

 

 
Figure 1. Schematic of physical model and computational domain 



 

 

The physical model and the corresponding computational domain of this study are showed in 
figure 1. The mobile phase is mixed of the carrier gas inert to the stationary phase and the 
injected gaseous solute. In this study, the mobile phase is incompressible and under isothermal 
condition. The diffusions along both axial and radial conditions are considered and the 
diffusivities of solute in both mobile and stationary phase are concentration independent. The 
stationary phase is homogenous and has constant thickness along axial direction of the 
microchannel. What’s more, no chemical reaction occurs during the flow through the 
microchannel. Due to the magnitudes of the diameter and the flow rate in microchannel, the 
velocity distribution of mobile phase obeys Poiseuille's law. Considering that the solute is 
dilute, the mass convection-diffusion equation is only performed on solute. Based on above 
assumptions and equations from results of Aris[8], and with dimensionless parameters 
introduced as following,  
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Initial condition is set that no solute is in microchannel before injection: 
 
 𝑐𝑐𝑚𝑚(𝑅𝑅,𝑍𝑍,𝑇𝑇) = 𝑐𝑐𝑠𝑠(𝑅𝑅,𝑍𝑍,𝑇𝑇)/𝐾𝐾 = 0   𝑎𝑎𝑡𝑡 𝑇𝑇 = 0, 0 < 𝑍𝑍 < 1  (3) 

At the inlet of the microchannel, the Dirac delta function is adopted to express the 
instantaneously uniform injection.  
 

 𝑐𝑐𝑚𝑚(𝑅𝑅,𝑍𝑍,𝑇𝑇) = 𝑈𝑈1
𝐿𝐿
𝛿𝛿(𝑇𝑇)  𝑎𝑎𝑡𝑡 𝑍𝑍 = 0  (4) 

At the interface of the mobile and the stationary phases, a kinetic equation is used to govern the 
interphase transport complying with the mass conservation law. The direction of interphase 
transport is decided by the value of cm-cs/K. The partition coefficient, K, physically brings solute 
to bear a linear limit concentration relationship between the mobile phase and the stationary 
phase. Kf represents the dimensionless mass transport rate at the interface of the mobile and the 
stationary phase. When Kf goes infinite the boundary condition (5) degenerates to the ideal 
one[14]. 
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Symmetric condition is set at the axis of microchannel. 
 

 𝜕𝜕𝑐𝑐𝑚𝑚
𝜕𝜕𝑅𝑅

 = 0  𝑎𝑎𝑡𝑡 𝑅𝑅 = 0   (6) 

And no reaction or adsorption occurs between solute and microchannel wall. 
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where r1 is the inner radius and L the length of microchannel and df is the thickness of the 
stationary phase. 𝑐𝑐0 is the injection concentration of the solute and U1 the mean velocity of the 
mobile phase. The concentrations are 𝑐𝑐1 and 𝑐𝑐2 while the diffusivities of solute are 𝐷𝐷1 and 𝐷𝐷2, 
respectively in the mobile phase and the stationary phase.  

The definition of dimensionless parameters are Pe1=r1u1/D1, Pe2=r1u1/D2, Kf = kft0/r1, h0=L/r1, 
where t0=L/U1represents the time for carrier gas to flow through the microchannel. Here one 
should distinguish the Peclet number Pe1 from Pe2 which only takes the symbol of Peclet 
number, and the physically meaning of Pe2 is the ratio of the convection in the mobile phase 
over the solute diffusivity in the stationary phase. 

 
Figure 2. Mesh independence verification 

Model verification 

The finite element method is adopted for the computation operated by COMSOL Multiphysics 
5.4 in this study. The mesh is constructed quadrilateral in the computational domain in figure 
1. The distribution of mesh elements is symmetry in both axial and radial directions while near 
the interface of the mobile and the stationary phase the mesh is more compact. To conduct a 



 

 

transient computation, the relative tolerance in solver is set 0.001 with respect to time. Figure 
2 shows the verification of mesh independence with varying total mesh elements from 110,000 
to 2,200,000. From the contours and the concentration profile in terms of time at the outlet of 
the microchannel, namely, the elution curve, of different cases, the mesh independence is 
verified. We take 1,100,000 as the number of mesh elements to perform computation and set 
𝑡𝑡0 = 40, ℎ0 = 100 constant in all the computational cases. Values of other parameters are set 
based on practicability. Pawlisch[14] once gave a computational result in his paper and we 
recurred his result with the  1-D model as the reference. Then we computed the dimensionless 
2-D model before-mentioned under the same condition of Pawlisch’s result for contrast. The 
results and comparation are shown in figure 3. The picture shows good agreement of two 
models indicating that the dimensionless 2-D model is correct. 

 

 
Figure 3. Verification of proposed 2-D model by Recurrence of Pawlisch’s Case 

Results and discussion 

Solute dispersion in microchannel with interphase transport is affected by three simultaneous 
process, i.e., the hydrodynamic convection/molecule diffusion in the mobile phase[4], the 
molecule diffusion in stationary phases and the interphase transport between the two phases[8]. 
The discussion in this section consists of three subsections. In the first subsection, we show the 
general influence of interphase transport by comparing the concentration contours of solute 
dispersion with and without interphase transport. In the second subsection, we use 
concentration distribution contours to illustrate the impact of Pe1 and Pe2 on dispersion. In the 
third section, we discuss the influence of K, Kf and df/r1 on dispersion. In all figures of contours 
shown below, the time-varying contours of the same parameter are placed in the same row while 
the parameter-varying contours of the same time are placed in the same column. 

Dispersion with interphase transport 

In this subsection, impacts of interphase transport on solute dispersion is discussed without loss 
of generality. Figure 4 shows two series of contours of which (a) is related to the solute 
dispersion without interphase transport and (b) is related to the solute dispersion with interphase 
transport. The two cases share the same parameters that 𝑃𝑃𝑒𝑒1 = 100 while only the case (b) has 
a set of parameters, i.e., 𝑃𝑃𝑒𝑒2 = 10000,𝐾𝐾 = 100,𝐾𝐾𝑓𝑓 = 106. It should be noted here that the 
value of  𝐾𝐾𝑓𝑓 indicates extremely large rate of interphase transport which can be regarded that 



 

 

𝑐𝑐𝑚𝑚 = 𝑐𝑐𝑠𝑠  is tenable at the interface of two phases all along. The contours show clearly that 
interphase transport results in the enhancement of solute dispersion and solute retention in 
microchannel. 

 
Figure 4. Contrast contours of solute dispersion without and with interphase transport 

At the inlet of the microchannel, injected solute is not dispersed yet (a1, b1). With the 
proceeding of flow, the Poiseuille’s law acts on the solute that a parabolic but uneven 
concentration distribution can be observed in (a2) and (b2) whose contours in main stream are 
almost the same. However, solute dispersion caused by interphase transport show up that the 
solute concentration is smaller and the concentration distribution band is wider in (b2) near the 
interface than that in (a2) near the wall. The concentration gradient near the wall decreases 
slowly compared to that in the main stream thus a concentration gradient pointing from the wall 
to the main stream formed as shown in (a3). The diffusion of solute into the stationary phase 
causes the decrease of solute concentration in the mobile phase near the interface since with a 
Pe1 equals 100, diffusion in mobile phase is not strong enough to compensate the depletion of 
solute into the stationary phase. Consequently, the solute is more dispersed and the transport of 
solute into the stationary phase delays the formation of concentration band in the mobile phase 
with the contrast of (a3) and (b3). The concentration band is more even and narrower in (a4) 
than that in (b4). Once the parabolic solute concentration band is formed, longitudinal 
concentration gradient becomes significant thus the dispersion evolves broader in axial 
direction till the outlet of the microchannel as shown in (a5) and (b5). However, the 
concentration band in (b5) moves much slower and is also wider than the band in (a5). In sum, 
the existence of interphase transport causes the solute moves with a smaller velocity and 
disperses much stronger in the microchannel.  



 

 

Impacts of Pe1 and Pe2 

The radial motion of solute consists of three parts, i.e., diffusion in the mobile and the stationary 
phases and the interphase transport. The direction of solute radial motion is controlled by the 
difference of solute concentrations at the interface between the mobile phase and the stationary 
phase, namely, the value of cm-cs/K. Each of the three parts has a resistance to solute 
diffusion[25]. Based on the mass conservation law, the solute diffusion from one phase to the 
other is analogous to the electric current through three tandem different resistances. We set 
𝐾𝐾 = 100,𝐾𝐾𝑓𝑓 = 106 (infinitely large interphase transport rate) to investigate the impacts of Pe1 
and Pe2 on the solute dispersion. 

 

 
Figure 5. Concentration distribution contours of solute with different Pe1 

Firstly, figure 5 shows the concentration contours of different Pe1 with Pe2=105. In row (a1) 
and (b1), the concentration band is of plug shape. In (c1) Pe1 equals 100, the concentration band 
is of parabolic shape. This is the evidence of solute dispersion by a stronger convection. Since 
the impact of diffusivity in the mobile phase will appear later with increase of Pe1, the 
concentration band is narrower and more bent in column (1). Later with the proceeding of flow 
the concentration band reforms dramatically wide in the case of Pe1=100. The concentration 
bands in (a2) and (b2) keep their shape and moves with weaker dispersion. Consequently, a 
much small or much big Pe1 will both cause a stronger solute dispersion while a much big one 
is worse for the trace detection. It takes longer with larger Pe1 for diffusion in the mobile phase 
to compensate the depletion of solute due to interphase transport into the stationary phase and 
thus the reformation of concentration band is slower and the reformed band is dramatically 



 

 

wide. This indicates an optimal concentration Pe1 to be chosen which is consistent with the 
result of H.E.T.P.[17] to choose an optimal flow rate.  

Secondly, Figure 6 gives a comparation of the solute dispersion of different Pe2 and constant 
Pe1=100. It can be seen from (1) and (2) that with increasing of Pe2 from 105 to 106, the 
concentration band has little difference. However, with increasing of Pe2 from 106 to 107, the 
concentration band is wider and one can observe a relatively high concentration in mainstream 
(3) rather than near the interface (2). The big Pe2 indicates a relatively slow diffusion in the 
stationary phase so it takes longer for solute to change the diffusion direction from into the 
stationary phase to out of the stationary phase. Additionally, in (3) the concentration distribution 
is wider at the upstream of the most concentrated part than that at the downstream. This is 
because that the point satisfying cm=cs/K moves upstream as a result of the big Pe2. In sum, the 
change of Pe2 below 106 has neglectable influence on solute dispersion while increasing of Pe2 

from 106 to 107 causes a stronger solute dispersion and an asymmetric concentration 
distribution. This can be verified by the elution curve shown in figure 7. 

Figure 8 shows a series of solute concentration contours ordered chronologically with Pe1=100 
and Pe2=107. The contours in the enlargement part of figures are depicted with the replacement 
of cs by cs/K for sake of observation. As aforementioned, Pe2 is the ratio of the convection in 
the mobile phase over the solute diffusivity in the stationary phase. Due to a big Pe1, when 
T=0.1 the solute flows in the mobile phase with a parabolic but uneven distribution as shown 
in the contour (1) and the concentration of the solute left in the stationary phase is satisfied with 
the relationship cm<cs/K. In other words, this part of solute is lagged by the stationary phase. 
When the concentration band forms as shown in (2), the solute diffuse into the stationary phase 
at the downstream where cm>cs/K and out of the stationary phase at the upstream where 
cm<cs/K. This indicates that there would be a point satisfying the condition cm=cs/K. With the 
proceeding of flow, the concentration band broadens and the difference of cm and cs/K vanishes 
gradually as shown in (3) and (4). By far, the process of solute dispersion with interphase 
transport has been clearly illustrated. 

Impacts of K, Kf and df/r1 

This subsection will discuss the impacts of K, Kf and df/r1 with Pe2=105. The partition 
coefficient, K, indicates the limit of interphase transport and the dimensionless kinetic mass 
transfer rate, Kf, represents the ratio of interphase transport rate over the diffusion rate in terms 
of r1/t0. Both of the two parameters characterize the interphase transport. The ratio of df over r1 
represents the relative thickness of the stationary phase. With a constant diffusion rate in the 
stationary phase, it takes longer time to reach an even radial distribution in the stationary phase 
under the condition of a larger df/r1.  

Firstly, figure 9 shows the contours of different K with Pe1=1 and Kf=106. With 𝐾𝐾 increasing 
from 100 in row (a) to 400 in row (d), the concentration band moves slower gradually. The 



 

 

solute velocity is proportional to the fraction of solute in the mobile phase[26]. As a result, the 
solute with a larger 𝐾𝐾 will be retained in the microchannel longer. Solute diffuses into the 
stationary phase more with the K increasing. 

 
Figure 6. Concentration distribution contours of solute with different Pe2 

 
Figure 7. Elution curve of solute with different Pe2 

 

 
Figure 8. Evolution concentration contours of solute dispersion with Pe2=107 

Consequently, the solute velocity in the mobile phase decreases thus the solute band in the 
stationary phases get wider. The wider band in stationary phase causes a wider solute 
concentration band in the mobile phase. In sum, solute of stronger affinity to the station phase, 
namely, larger partition coefficient 𝐾𝐾 , will be dispersed wider and stay longer in the 



 

 

microchannel. This can be verified by the elution curve in Figure 10(1). Partition coefficient is 
the key factor that makes solutes separation in microchannel feasible.  

 
Figure 9. Concentration distribution contours of solute with different K 

Secondly, figure 11 shows the concentration contours of solute of different Kf with Pe1=1 and 
K=100. In this study Kf = kft0/r1, we assume 𝑡𝑡0 and 𝑟𝑟1 constant to specifically investigate the 
impact of kf on the solute dispersion. From the enlargement part of contours in column (1), it 
can be observed that with increase of Kf, the difference between cm and cs/K goes smaller. In 
column (2) with Kf increasing from 1.6 to 160, the solute concentration band becomes narrower 
but the band widths of (a2) and (b2) differs to a larger extent than those of (b2) and (c2). 
However, the solute concentration band in (c2) and (d2) have few differences in width and 
value. In addition, (a2) tells that a small Kf causes the asymmetry of solute concentration band 
with respect to the most concentrated point. However, the change of Kf does not cause the 
change of the retention time of solute in microchannel. This can be verified by the elution curve 
in figure 10 (2). The combinative function of K and Kf results in the retention and asymmetric 
solute dispersion in the microchannel. As aforementioned, there would be an ideal point 
satisfying cm=cs/K at the interface. Solute diffuses into the stationary phase at the downstream 
(cm>cs/K) of the ideal point while the solute diffuses out of the stationary phase at the upstream 
of the ideal point. The position of the ideal point is the most concentrated point of solute band 



 

 

under the ideal condition, namely, Kf is infinitely large. Under the real condition that Kf is finite, 
the ideal point moves to the upstream of the most concentrated point. 

 
Figure 10. Elution curves of different K in (1) and of different Kf in (2) 

 
Figure 11. Concentration distribution contours of solute with different 𝐾𝐾𝑓𝑓 

In the other word, the condition, cm=cs/K, at the interface is delayed thus the diffusion of solute 
out of the stationary phase is delayed. Consequently, the solute concentration band is tailed at 
the upstream and the elution curve is left-leaning as shown in figure 10 (2). In sum, for a smaller 
Kf which means a high mass transfer resistance between the mobile and stationary phases, the 
solute is more dispersed in the mobile phase and also the corresponding concentration band 



 

 

becomes asymmetric. As Kf is beyond 160, the further increase of Kf affects the solute 
dispersion marginally. 

 
Figure 12. Concentration distribution contours of solute with different df/r1 

Thirdly, figure 12 shows the concentration contours of solute of different df/r1 with Pe1=100 
and Kf =1600. We assume r1 constant to specifically investigate the influence of df. In column 
(1) when the solute dispersion is mainly caused by convection, the solute concentration in 
mobile phase near the interface increases as df/r1 decreases. And when the solute band forms, 
the solute concentration band goes wider as df/r1 increases from 0.0002 of (a2) to 0.002 of (b2). 
However, the band in (c2) is far from formation due to the extremely strong retention of solute 
caused by relatively thick stationary phase. Additionally, in (a2) according to the contour the 
solute has begun to diffuse out of the stationary phase while in (b2) not yet. Contours show that 
at the same dimensionless time T=0.7, when the concentration are distributed evenly, the most 
concentrated point of solute band in (b3) is further from the outlet of the microchannel than that 
of solute band in (a3). Consequently, the increase of the df/r1 also causes the delay of solute 
from flow out of the microchannel. This is consistent with the mathematical expression of the 
first moment[14]. However, in (c3) the solute in main stream has flow out of the microchannel, 
which indicates that with a relatively thick stationary phase, the retention of solute is so strong 
that the solute band is not formed in the microchannel. In sum, as df/r1 increases the solute  
capacity of the stationary phase increases and consequently, on one hand the solute is more 
significantly retained in the microchannel, but on the other hand the solute band may be not 
able to form in the microchannel. 

Conclusions 



 

 

A transient 2-D numerical model based on the convection-diffusion theory is formulated to 
study the solute dispersion in pressure-driven microchannel flow with the interphase transport. 
The solute dispersion in the mobile phase is shown to be affected by three processes, i.e., the 
hydrodynamic convection/molecule diffusion in the mobile phase, the molecule diffusion in 
stationary phases and the interphase transport between the two phases. In the present analysis, 
various nondimensional parameters are defined to facilitate the discussion of effects of the three 
processes on the solution dispersion. Specifically, 𝑃𝑃𝑒𝑒1  represents the combined effect of 
hydrodynamic convection and molecule diffusion in the mobile phase, 𝑃𝑃𝑒𝑒2  represents the 
effect of molecule diffusion in stationary phase, K and 𝐾𝐾𝑓𝑓 represent the effect of interphase 
transport.  

From the 2D transient concentration contours, we observe that with increase of Pe1 from 1 to 
10, the solute concentration band becomes narrower and bent slightly. With the Pe1 further 
increasing to 100, and the concentration band becomes extremely irregular. As Pe2 is below 
106, Pe2 has negligible effect on the solute dispersion. However, with the increase of Pe2 from 
106 to 107, the solute shows a significant increase of dispersion in mobile phase. With K 
increasing from 100 to 400, the solute becomes more dispersed in the mobile phase along the 
microchannel axis and also shows prolonged retention in the microchannel. For a smaller Kf 
which means a high mass transfer resistance between the mobile and stationary phases, the 
solute is more dispersed in the mobile phase and also the corresponding concentration band 
becomes asymmetric. As Kf is beyond 160, the further increase of Kf affects the solute 
dispersion marginally.  

It is also noticed that a thicker layer of stationary phase (df) corresponding to a larger solute 
capacity of the stationary phase, on one hand causes a more significant retention of solute in 
the microchannel, but on the other hand leads to no formation of the solute band. 
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