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Abstract 

This paper will develop a topology optimization method for computational design of architected 

microstructures based on isogeometric analysis (IGA). The NURBS (non-uniform rational B-

splines) is applied to represent the geometry in both the design and analysis processes, as well 

as interpolate a material density distribution function (DDF) with the desired smoothness and 

continuity to represent the material layout in the design domain. An isogeometric topology 

optimization formulation is then formulated based on the DDF, with the energy-based 

homogenization method (EBHM) to evaluate the effective properties of the microstructure. 

Several numerical examples are used to demonstrate the effectiveness of the proposed method 

for computational design of micro-structured periodic composite structures. 
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Introduction 

 

Architected materials with a series of periodically distributed microstructures, a kind of 

rationally artificial materials, are featured with the superior performance, such as the higher 

specific stiffness and strength, the better fatigue strength and improved corrosion-resistance and 

etc. [1, 2]. It is known that the performance of architected materials is mostly dependent on the 

microstructural information, namely the configuration, rather than the constituent properties. 

Hence, how to develop a rational design framework for architected materials has accepted 

enormous attentions in recent years. 

 

Topology optimization has made remarkable progress in creating architected materials with 

new properties [3], which can be viewed as a numerically iterative procedure to optimize 

material layout in a given design domain, under the specified objective function and 

constraint(s) [4], Several topology optimization methods have been developed, like the 

homogenization method [4], the Solid Isotropic Material with Penalization (SIMP) method 

[5,6], the Evolutionary Structural Optimization (ESO) method [7] and the level set method 

(LSM) [8-10]. Since an inverse homogenization method was proposed for the architected 

materials [11], topology optimization combined with the homogenization method has become 

more and more popular for the design of architected materials with the specific properties [12, 

13] and even more advanced topological designs [14,15]. 
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Although the research on how to obtain architected materials has been extensively studied in 

recent years, only a limited number of works are devoted to obtaining architected materials with 

the low density. In this paper, we aim to develop an effective and efficient isogeometric 

topology optimization (ITO) method for the rational design of the low-density architected 

materials. Firstly, most of the previous works are studied based on the conventional finite 

element method (FEM). However, the FEM is also one factor to influence the effectiveness of 

the topology optimization for the design of architected materials. This is because: (1) The finite 

element mesh is just an approximation of the original shape of the design domain; (2) The 

lower-order (C0) continuity of the responses between the neighboring finite elements; (3) The 

lower efficiency to achieve a finite element mesh with the high quality. Isogeometric analysis 

(IGA) [16] has attracted much interests, due to its favorable features in numerical analysis, such 

as the consistency between the computer-aided design (CAD) model and the computer-aided 

engineering (CAE) model, and the high-order continuity between different elements. Secondly, 

in the developed ITO method, a sufficiently smooth and continuous DDF is constructed to 

represent the topological changes during the optimization. Thirdly, the IGA is applied to 

numerical implement the energy-based homogenization method. Finally, the corresponding 

isogeometric topology optimization is developed for the design of architected materials with 

the low-density. Several numerical examples are tested to show the effectiveness and efficiency. 

 

NURBS-based IGA 

 

(1) NURBS 

An example of a square modelled by NURBS is shown in Figure 1. The NURBS basis 

functions are linearly combined with a series of control points plotted with the red color to 

construct the geometrical model shown in Figure 1 (b), and the mathematical form of the 

NURBS surface 𝐒(𝜉, 𝜂) is given as: 

 

𝐒(𝜉, 𝜂) = ∑ ∑ 𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝐏𝑖,𝑗

𝑚
𝑗=1

𝑛
𝑖=1                      (1)  

 

where 𝑛 and 𝑚 are the numbers of control points in two parametric directions, and 𝜉 and 𝜂 

denote the corresponding parametric directions. 𝑝 and 𝑞  are the polynomial orders. The 

detailed information for the square is listed below Figure 1. 𝐏𝑖,𝑗 correspond to the (𝑖, 𝑗)𝑡ℎ 

control point. It should be noted that control points are not necessarily on the structural design 

domain. 𝑅 are the bivariate NURBS basis functions, and which are constructed by the B-spline 

basis functions, as: 

 

𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂) =

𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝜔𝑖𝑗

∑ ∑ 𝑁𝑖̂,𝑝(𝜉)𝑀𝑗̂,𝑞(𝜂)𝜔𝑖̂𝑗̂
𝑚
𝑗̂=1

𝑛
𝑖̂=1

                    (2)  

 

where 𝜔𝑖𝑗  is the positive weight for the (𝑖, 𝑗)𝑡ℎ  control point 𝐏𝑖,𝑗 . 𝑁𝑖,𝑝 and 𝑀𝑗,𝑞  are the 

univariate B-spline basis functions in two parametric directions, respectively. The B-spline 



basis function is defined by the Cox-de-Boor formula [16], and the recursive formula in 𝜉 

direction with a non-decreasing knot vector Ξ = {𝜉1, 𝜉2, ⋯ , 𝜉𝑛+𝑝+1} is defined as: 

 

{
𝑁𝑖,0(𝜉) = {

1 𝑖𝑓 𝜉𝑖 ≤ 𝜉𝑖+1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,                                         𝑝 = 0

𝑁𝑖,𝑝(𝜉) =
𝜉−𝜉𝑖

𝜉𝑖+𝑝−𝜉𝑖
𝑁𝑖,𝑝−1(𝜉) +

𝜉𝑖+𝑝+1−𝜉

𝜉𝑖+𝑝+1−𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉), 𝑝 ≥ 1

         (3)  

 

It is noted that the fractions with the form 0/0 in Eq. (3) are defined as zero. Similarly, the basis 

functions 𝑀𝑗,𝑞 in the 𝜂 direction are also defined by Eq. (3) with the knot vector. The NURBS 

basis functions of the square in two parametric directions are respectively displayed in Figure 

1 (d) and (e). The bivariate basis functions are also plotted in Figure 1 (f).  

 

We can easily see that the NURBS basis functions are featured with several important 

properties: (1) Nonnegativity: 𝑁𝑖,𝑝(𝜉) ≥ 0; (2) Local support: the support of each basis 

function 𝑁𝑖,𝑝 is contained in the interval [𝜉𝑖, 𝜉𝑖+𝑝+1]; (3) Partition of unity: for an arbitrary 

knot span [𝜉𝑖, 𝜉𝑖+1] , ∀𝜉 ∈ [𝜉𝑖, 𝜉𝑖+1], ∑ 𝑁𝑗,𝑝(𝜉)
𝑖
𝑗=𝑖−𝑝 = 1 ; (4) Continuity: The continuity 

between knot spans is equal to 𝐶𝑝−𝑘 where 𝑘 is the multiplicity of the knots. 

 

(2) Numerical discretization in the IGA 

The NURBS basis functions are firstly applied to parametrize the structural domain, and then 

construct the space for structural responses. As far as the latter, the key principle is that the 

continuous solution space is approximately defined by a linear combination of all NURBS basis 

functions with the nodal responses on control points. The mathematical formula of the space 

keeps the same as the geometrical model in Eq. (1), while control coefficients correspond to the 

structural responses on control points, expressed as: 

 

𝐱(𝜉, 𝜂) = ∑ ∑ 𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝐱𝑖,𝑗

𝑚
𝑗=1

𝑛
𝑖=1                        (4)  

 

where 𝐱  is the field of structural responses in design domain, and 𝐱𝑖,𝑗  is the structural 

response on the control point (𝑖, 𝑗)𝑡ℎ . Considering the linearly elastic in IGA, the system  

stiffness matrix is obtained by assembling the element stiffness matrix which is calculated by 

the Gauss quadrature method, as: 

 

  𝐊𝑒 = ∑ ∑ {𝐁𝑇(𝜉𝑖, 𝜂𝑗)𝐃𝐁(𝜉𝑖, 𝜂𝑗)|𝑱1(𝜉𝑖, 𝜂𝑗)||𝑱2(𝜉𝑖, 𝜂𝑗)|𝜔𝑖𝜔𝑗}
3
𝑗=1

3
𝑖=1        (5)  

 

where 𝐁 is the strain-displacement matrix calculated by the partial derivatives of NURBS 

basis functions with respect to parametric coordinates. 

 



 

Figure 1. NURBS-based IGA for a square: Ξ = {0,0,0,0.1429,⋯ ,0.8517,1,1,1}, ℋ =

{0,0,0,0.1429,⋯ ,0.8517,1,1,1}; 𝑛 = 𝑚 = 9; 𝑝 = 𝑞 = 2. 

 

IGA-based EBHM 

The principle of the homogenization is that the macroscopic effective properties of the bulk 

material are determined by using the information from the microstructure, where the 

microstructure is described in the coordinate system 𝐲. Considering the linear elasticity, only 

the first-order variation term with respect to the parameter expansion 𝜖 is considered. The 

effective elastic tensor of the bulk material 𝐷𝑖𝑗𝑘𝑙
𝐻  can be computed as: 

 

𝐷𝑖𝑗𝑘𝑙
𝐻 =

1

|Ω|
∫ (𝜀𝑝𝑞

0(𝑖𝑗)
− 𝜀𝑝𝑞(𝑢

𝑖𝑗))𝐷𝑝𝑞𝑟𝑠 (𝜀𝑟𝑠
0(𝑘𝑙) − 𝜀𝑟𝑠(𝑢

𝑘𝑙))
Ω

ⅆΩ        (6)  

 

where |Ω| is the area (2D) or volume (3D) of the microstructure, and 𝐷𝑝𝑞𝑟𝑠 is the locally 

varying elastic property. 𝜀𝑝𝑞
0(𝑖𝑗)

 is the linearly independent unit test strain field, containing three 

components in 2D and six in 3D. 𝜀𝑝𝑞(𝑢
𝑖𝑗)  denotes the unknown strain field in the 

microstructure, which is solved by the following linear elasticity equilibrium equation with y-

periodic boundary conditions (PBCs): 

 

∫ 𝜀𝑝𝑞(𝑢
𝑖𝑗)𝐷𝑝𝑞𝑟𝑠𝜀𝑟𝑠(𝛿𝑢

𝑖𝑗)
Ω

ⅆΩ = ∫ 𝜀𝑝𝑞
0(𝑖𝑗)

𝐷𝑝𝑞𝑟𝑠𝜀𝑟𝑠(𝛿𝑢
𝑖𝑗)

Ω
ⅆΩ,   ∀𝛿𝑢 ∈ 𝐻𝑝𝑒𝑟(Ω,ℝ

𝑑)   (7)  

 

where 𝛿𝑢  is the virtual displacement in the microstructure belonging to the admissible 

displacement space 𝐻𝑝𝑒𝑟  with y-periodicity, and ⅆ  denotes the dimension of material 



microstructure. 

 

The homogenization is numerically performed by discretizing and solving Eq. (8) using the 

finite element method (FEM), and the utmost importance is the imposing of the PBCs on 

material microstructure. As an alternative method, the EBHM with a simplified periodic 

boundary formulation [13] is developed. Here, the numerical analysis of material 

microstructure is performed by IGA. In IGA, the displacement field in material microstructure 

is approximately expressed by a combination of the NURBS basis functions with the 

displacements at control points: 

 

𝐮 = ∑ ∑ 𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝐮𝑖,𝑗

𝑚
𝑗=1

𝑛
𝑖=1                         (8) 

 

 

 

where 𝐮𝑖,𝑗  denote the displacements of the (𝑖, 𝑗)𝑡ℎ  control point. As we can see, NURBS 

basis functions are linearly combined with nodal displacements to approximate the 

displacement field in the microstructure. In the application of the EBHM to evaluate material 

effective properties, the displacement field in material microstructure needs to satisfy the PBCs, 

and a general form is expressed as: 

 

𝐮𝑘
+ − 𝐮𝑘

− = 𝜀(𝐮0)∆𝑘                               (9)  

 

where 𝑘  denote the normal direction of the structural boundary. 𝐮𝑘
+  indicate the 

displacements of points at the structural boundary with the normal direction 𝑘, and the normal 

direction is in the positive direction of the coordinate axis. 𝐮𝑘
− correspond to the displacements 

of points at the opposite structural boundary. ∆𝑘 is the scale of the material microstructure 

along the direction of 𝑘. 

 

ITO formulation for architected materials 

 

Before developing the DDF, the definition of nodal densities assigned to control points needs 

to satisfy two basic conditions: (1) non-negativity; and (2) the strict bounds ranging from 0 to 

1. Meanwhile, the Shepard function is used to improve the overall smoothness of nodal 

densities, so as to make sure the smoothness of the DDF. The corresponding mathematical 

model is given as: 

 

𝒢(𝜌𝑖,𝑗) = ∑ ∑ 𝜓(𝜌𝑖,𝑗)𝜌𝑖,𝑗
ℳ
𝑗=1

𝒩
𝑖=1                       (10)  

 

where 𝒢(𝜌𝑖,𝑗) is the smoothed nodal density assigned to the (𝑖, 𝑗)𝑡ℎ control point, and 𝜌𝑖,𝑗 

is the initial nodal density. 𝒩 and ℳ are the numbers of nodal densities located at the local 

support area of the current nodal density in two parametric directions. 𝜓(𝜌𝑖,𝑗) is the Shepard 

function of the (𝑖, 𝑗)𝑡ℎ nodal density. 



 

Assuming that the DDF in the structural domain is denoted by 𝒳, the DDF is constructed by 

the NURBS basis functions with a linear combination of the smoothed nodal densities, 

expressed as: 

𝒳(𝜉, 𝜂) = ∑ ∑ 𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝒢(𝜌𝑖,𝑗)

𝑚
𝑗=1

𝑛
𝑖=1                   (11)  

 

It can be seen that the DDF has the same mathematical formula for NURBS in Eq. (1). The key 

difference is the physical meaning of control coefficients. 

 

Here, the objective function for the topology optimization of architected materials with the low-

density, which is defined by a function of the homogenized elastic tensor, given as: 

 

{
 
 
 

 
 
 𝐹𝑖𝑛ⅆ: 𝝆 {[𝜌𝑖,𝑗]2D   [𝜌𝑖,𝑗,𝑘]3D}                                                                             

𝑀𝑖𝑛: 𝐽(𝐮,𝒳) = 𝑓 (𝐷𝑖̂𝑗̂𝑘̂𝑙
𝐻 (𝐮,𝒳))                                                                       

𝑆. 𝑡: {

𝐺(𝒳) =
1

|Ω|
∫ 𝒳(𝝆)𝑣0Ω

ⅆΩ − 𝑉0 ≤ 0                                                  

𝑎(𝐮, 𝛿𝐮) = 𝑙(𝛿𝐮), ∀𝛿𝐮 ∈ 𝐻𝑝𝑒𝑟(Ω,ℝ
𝑑)                                      

0 < 𝜌𝑚𝑖𝑛 ≤ 𝝆 ≤ 1, (𝑖 = 1,2,⋯ , 𝑛; 𝑗 = 1,2,⋯ ,𝑚; 𝑘 = 1,2,⋯ , 𝑙)

 

   (12)  

 

where 𝝆  denotes the nodal densities assigned to control points, working as the design 

variables. 𝐽  is the objective function. ⅆ  is the spatial dimension of materials. 𝐺  is the 

volume constraint, in which 𝑉0 is the maximum value and 𝑣0 is the volume fraction of the 

solid. 𝒳 is the DDF. 𝐮 is the unknown displacement field in material microstructure, which 

have to satisfy the PBCs given in the above. 𝛿𝐮 is the virtual displacement field belonging to 

the admissible displacement space 𝐻𝑝𝑒𝑟 with y-periodicity, which is calculated by the linearly 

elastic equilibrium equation. 𝑎 and 𝑙 are the bilinear energy and linear load functions, as: 

 

{
𝑎(𝐮, 𝛿𝐮) = ∫ 𝜀(𝐮)(𝒳(𝝆))

γ
𝐃𝟎𝜺(𝛿𝐮)Ω

ⅆΩ

𝑙(𝛿𝐮) = ∫ 𝜺𝟎(𝒳(𝝆))
γ
𝐃𝟎𝜺(𝛿𝐮)Ω

ⅆΩ          
              (13)  

 

It should be noted that the elastic tensor is assumed to be an exponential function with respect 

to the DDF, and γ is the penalization parameter. 𝐃𝟎 is the constitutive elastic tensor of the 

basic material. 

 

Numerical Examples 

In this section, several numerical examples are provided to demonstrate the effectiveness and 

efficiency of the ITO method. In all examples, the Young’s moduli 𝐸0 and the Poisson’s ratio 

𝜐0 for the basis material are defined as 1 and 0.3, respectively. In the numerical analysis, 3×3 



(2D) or 3×3×3 (3D) Gauss quadrature points are chosen in an IGA element. For numerical 

simplicity, the dimensions of material microstructures in all directions are set to be 1. The 

penalty parameter is set as 3. Considering 2D materials, the structural design domain is a square 

with 1×1, shown in Figure 1. Here, NURBS surface is applied to parametrize the design 

domain, where the quadratic NURBS basis functions are chosen and the knot vectors are set as: 

Ξ = ℋ = {0,0,0,0.01,⋯ ,0.99,1,1,1}. The corresponding IGA mesh for the design domain has 

100×100 elements, and 101×101 (10202) control points are contained in the NURBS surface. 

In all examples, the maximum material consumption 𝑉0 for different cases is defined as 10%. 

       
Figure 2. Initial design 1 and Initial design 2 

 

       

Figure 3. The optimized design 1 

In this example, we study the effectiveness of the defined formulation on topology optimization 

of architected materials with the maximum bulk modulus in an extremely low volume fraction. 

As shown in Fig. 2, two different initial designs are defined and then discussed into two 

different cases, respectively. As shown in Figs. 3 and 4, the optimized results of the low-density 

architected materials with the maximum bulk modulus are provided. It can be easily seen that 

the optimized results are very similar to the known lattice structures, but the current design is 

obtained from a rational design using the isogeometric topology optimization framework. 

 



       

Figure 4. The optimized design 2 

 

Moreover, we also perform the discussions of the ITO method on the optimization of 

architected materials with the maximum shear modulus. In this example, the parameters are 

consistent with the above example, and the objective function is defined based on the shear 

modulus. Two different cases are both discussed with two distinct initial designs, and the 

optimized topologies of the low-density architected materials with the maximum shear modulus 

are displayed in Figs. 5 and 6. As we can see, the optimized design with the bars in 45o can 

provide the sufficient stiffness for affording the load, which shows the effectiveness of the 

current work. Additionally, the optimized low-density architected materials are also analogous 

to the known lattice materials, which has gained the extensive applications in the aerospace 

engineering. Hence, we can easily see that the current ITO method has the capability to seek 

the low-density architected materials with the sufficiently stiffness. 

       

Figure 5. The optimized design 1 

 

Conclusions 

 

In this paper, an effective and efficient ITO method is developed for the rational design of the 

low-density architected materials with the optimal stiffness, where a DDF with the desired 

smooth and continuous is constructed to represent the structural topology and IGA is applied 

to solve the displacement responses in microstructures. The EBHM to predict the macroscopic 



effective properties is numerical implemented by the IGA, with the consideration of the periodic 

boundary conditions. Several numerical examples are given to show the basic features and 

effectiveness of the proposed ITO method. We can obtain the optimized low-density architected 

materials, very similar to the lattice materials. 

 

       

Figure 6. The optimized design 2 
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