
 

Heat transfer in periodic laminated layer – Robin boundary conditions 

 
*Ewelina Pazera and Piotr Ostrowski 

Department of Structural Mechanics, Lodz University of Technology, Poland 

*Presenting and corresponding author: ewelina.pazera@p.lodz.pl  

Abstract 

In this note, the problem of heat conduction in periodic laminated layer is considered. This 
layer is characterized by a microstructured composition and the microstructure is realized as 
a uniform distribution of the cells. The Robin boundary conditions, which are analyzed in this 
work, are combined with the convective heat exchange and there is an analytical solution for 
a homogeneous layer and this type of boundary conditions. To consider the heat conduction 
issue in presented laminated layer the tolerance averaging technique is used. The equations, 
obtained by using this technique, are solved by using finite difference method. As  the results, 
the distributions of the temperature are obtained. The algorithm, which is created to obtain the 
distribution of the temperature can be verified by using the results from the analytical solution 
for a homogeneous structure and the Robin boundary conditions. 
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Introduction 

The two-dimensional issue in periodic laminated layer is considered in this work. Every cell 
of this layer is made of two different materials and the proportion between the first and the 
second material in the cell is constant. The thickness of the cells is also constant and denoted 
by Δ, what is shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

Figure 1.  The cross-section of considered layer 

The various issues related to this type of structures are considered in relation to 
micromechanical models with idealized geometry.  
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The Robin boundary conditions are analyzed in this note, there is an analytical solution for 
a homogeneous layer and this type of boundary conditions [13] and it is possible to obtain the 
distribution of the temperature according to the Eq. (1): 
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where L1, L2 are dimensions along directions x1, x2, h is the quotient of heat transfer 
coefficient and the thermal conductivity, and αn are the solutions of the Eq. (2): 

     1α tg αL h.       (2) 

The solution is limited to the finite number n equals 20 and shown in Fig. 2. As a material and 
geometry, it was assumed L1=L2=1 [m] and steel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The temperature for homogeneous layer 

To analyze the laminated layer, where the distribution function of material properties is 
periodic, the tolerance averaging technique is used [13]. This technique gives us a possibility 
to take into account the effect of the microstructure size. The tolerance modelling is expanded 
and applied in many publications to analyze various issues concerning both periodic and 
functionally graded structures. Among them are thermal issues [13]-Błąd! Nie można 
odnaleźć źródła odwołania. and dynamic problems [13]-Błąd! Nie można odnaleźć źródła 
odwołania..  

The main aim of this work is to obtain the equations of the tolerance model with the 
macrotemperature and the fluctuations amplitudes of the temperature as unknowns.  

Modelling procedures 

The stationary heat conduction issue for laminated layer can be described by Eq. (3): 

     θ 0,  K      (3) 
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where K is a tensor of conductivity, wherein components are denoted by ijk . 

The main aim of the application of the tolerance modelling is to replace the system of 
differential equations (3) with non-continuous coefficients, by equations, where the 
coefficients are slowly-varying. The basic assumption of the tolerance modelling is the micro-
macro decomposition, where the temperature θ (the main unknown) can be expressed as 
a sum of the averaged part ϑ (the macrotemperature) and the oscillating part, according to the 
Eq. (4): 

           1 2 1 2 1 1 2, , + ,x x x x g x x x .         (4) 

On the other hand the oscillating part can be defined as a product of the know fluctuation 
shape function g and the fluctuation amplitudes of the temperature ψ (the new basic 
unknown). In this work the fluctuation shape function is assumed as a saw-type function. The 
second assumption of the tolerance modelling is the periodic approximation of some 
derivatives of function of the temperature, where some terms can be treated as negligibly 
small. Additionally, the tolerance averaging technique introduces some new concepts, among 
them the tolerance-periodic and slowly-varying function.  

By using the micro-macro decomposition to the Eq. (3), using the orthogonalisation method, 
formulating the residuum function of temperature and the condition, which have to be 
fulfilled by this function, by doing appropriate averaging and transformations, the equations 
of the tolerance model for considered laminated layer are obtained in the form of Eqs (5): 
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Example 

Let L1=L2=1 [m]. The problem under consideration was a stationary heat conduction issue for 
laminated layer characterized by periodic structure of size Δ=L1/20. For both sublayers the 
material properties (steel and aluminum) were defined and the constant distribution function 
of material properties was assumed (v1=0.5). Based on Eqs (5) and by using the assumption of 
the asymmetrical character of the fluctuation shape function, the equations of the tolerance 
model for considered issue are in the form of Eqs (6): 
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The boundary conditions were assumed as follows: known temperature on the upper edge of 

the laminate (
2 0x u   ), thermally isolated left edge (
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), the Robin 

boundary conditions on the right edge (x1=L1) according to the Eq. (7) and on the bottom edge 
(x2=L2) according to the Eq. (8): 
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where ϑe is the external temperature and H is the heat transfer coefficient. In this note the 
external temperature is assumed to be equal zero. Then the boundary conditions for the 
fluctuation amplitudes of the temperature were assumed as: the known fluctuation amplitudes 

on the upper edge (
2 0 0x   ), on the left edge (

1 0 0x   ), on the right edge (
1 1

0x L  ) 

and the term on the bottom edge (x2=L2) following Eq. (8): 

    
2 22

=0.
Hgg

x k gg


 


     (8) 

To solve the equations of the tolerance model (Eqs (6)), the finite difference method was used. 
Along both directions (parallel and perpendicular to the laminas) the grid nodes distribution 
was uniform. By using this method the set of non-homogeneous discretized equations was 
obtained with the macro-temperature and the fluctuation amplitudes of the temperature as 
unknowns in the form of Eq. (9): 

    ,K X Q       (9) 

where K is a matrix of coefficients, X is a vector of unknowns ranked alternately at individual 
points, and Q is a vector of free terms.  

The results were shown in Fig. 3 in the form of plots of the total temperature.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  The total temperature  

Conclusions 

By using the tolerance averaging technique it is possible to replace the system of differential 
equations with non-continuous coefficients, by the equations where the coefficients are 
constant or slowly-varying. By using the equations of the tolerance model it is possible to take 
into account the effect of the microstructure size in thermal problems.  
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