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Abstract 

A mathematical model integrating both Gurtin-Murdoch surface elasticity and consistent 

couple stress theories is proposed to simulate the simultaneous effects of the surface energy 

and the material microscopic structure on the mechanical response of an elastic half-plane 

under arbitrarily surface normal loadings. The displacement-based governing equations for 

the bulk material and the top material layer are established and then solved, via the method of 

Fourier integral transform together with the prescribed boundary conditions, to obtain the 

closed form solution of the elastic field in the transform space. To obtain solutions in the 

physical space, an efficient quadrature is adopted to evaluate all involved integrals associated 

with the Fourier transform inversion. A selected set of results is reported and they have 

indicated that both the surface and couple stresses significantly influence the elastic field 

within the bulk when the size of the loading region is comparable to the internal length scales 

of the surface material and the bulk.  

Keywords: Elastic half-plane, Surface stresses, Couple stresses, Surface elasticity, Couple 

stress elasticity. 

 

Introduction 

In past several decades, micro- and nano-technologies have received increasingly growing 

attention due to their vast applications in various disciplines. In the field of material sciences 

and engineering, understanding the fundamental characteristics and mechanical behavior of 

materials at those tiny scales is considered essential in the design procedure and fabrication of 

micro- and nano-scale devices and systems such as MEMS and NEMS. Unfortunately, many 

difficulties and challenges arise in the study of small-size objects since the response at those 

scales is significantly complex, generally size-dependent, and mostly influenced by various 

actions such as the surface free energy [1]-[3], existing defects and flaws, and material 

microscopic structures [4]. Experimental-based approaches are ones of the most popular 

candidates extensively and successfully employed to investigate the physical phenomena in a 

tiny scale (e.g., [5]-[8]). While results gained from those approaches have been found reliable 

and closely resembling the actual response, tests can only be performed in fully equipped 

laboratories and significant amount of resources associated with sophisticated testing setups 

and procedures and preparations of specimens must also be paid. This therefore renders 

purely experimental-based approaches less cost efficient in comparison with those combined 

with theoretical-based simulations. The latter, once properly equipped with physically 

admissible and sufficiently validated mathematical models, can be used not only to obtain the 

first-order prediction of the actual phenomena but also to assist the reduction of the number of 

cases to be considered in the experiments. 



 

It has been well recognized that classical size-independent theories in continuum mechanics 

adopted specifically for simulating mechanical response of macro-scale problems have failed 

to simulate situations when the external length scale (e.g., size of loading region, crack length, 

contact length, etc.) is comparable to the internal length scale of materials (e.g., granular 

distance, lattice parameters). Attempts have been devoted to modify/enhance existing 

continuum-based mathematical models by integrating the influences observed in a small-scale 

before used in the simulations. Several continuum-based models have been proposed and 

successfully employed to capture the size-dependent behavior due to the presence of both 

surface-free energy and microstructures of constituting materials. For instance, the model 

established by Gurtin and his colleagues (e.g., [9][10]), called the theory of surface elasticity, 

has been successfully utilized to capture the surface stress effects. Due to its mathematical 

simplicity and capability in handling small-scale influence, the Gurtin-Murdoch model has 

become popular and extensively applied to investigate various problems in mechanics, e.g., 

thin films [11][12], thin plates [13], dislocations [14], nano-scaled elastic layer [15]-[17], 

half-space [18][19], and layered elastic half-space [20]. To handle the influence of material 

microstructures, various theories have been considered including the Cosserat theory [21], the 

couple stress theory [22]-[24], the strain gradient elasticity theory [25]-[27], the modified 

couple stress theory [28], and the consistent couple stress theory [29]. During the past 

decades, these theories have been extensively employed in the simulations and modeling of 

nano/micro-structured systems, especially for small-scaled beams and plates [30]-[32] and the 

size-dependent contact problems of elastic solids [33]-[35]. 

 

Towards the modeling of micro-/nano-scale layered media, results from an extensive 

literature survey have indicated that most of existing studies considered separately either the 

effect of the surface-free energy or the influence of the microscopic structures of constituting 

materials (e.g., [13]-[20], [33]-[38]). Applications of both Gurtin-Murdoch surface elasticity 

and the couple stress theory to simultaneously handling those small-scale influences, 

especially within the framework of surface and contact mechanics, have not been well 

recognized and this, as a consequence, leaves a significant gap of knowledge for further 

investigations. The idea of integrating both the surface-free energy and the micro/nano-

structure of the bulk material in the modeling has been found in the study of size-dependent 

responses of nano-scale structures such as nano-beams (e.g., [39]) and nano-plates (e.g., [40]-

[42]). This set of investigations not only confirms the applicability of the two theories but also 

provides the useful basis and ingredients essential for the extension to treat nano-scale 

problems of interest. 

 

The present study aims to investigate the mechanical response of an elastic half-plane loaded 

on its surface by taking the influence of both surface and couple stresses into account. Gurtin-

Murdoch surface elasticity theory is employed together with the consistent couple stress 

theory to form the underlying mathematical model and the analytical solution of elastic fields 

is obtained via the method of Fourier integral transform and a selected efficient numerical 

quadrature. The complete elastic fields under the simultaneous effects of surface stresses and 

couple stresses within the half-plane are thoroughly studied. 

 

Problem Formulation 

Consider a linearly elastic half-plane loaded by an arbitrarily distributed normal traction p  

over the length 2a  on the top surface as shown schematically in Fig. 1. For convenience, a 



reference Cartesian coordinate system { , , ; }x y z O  is chosen such that the origin is at the 

center of the loading region and the x , y , and z -axes direct rightward, downward, and 

normal to the half-plane, respectively. The bulk material is assumed homogeneous and its 

response is described by the consistent couple stress theory (e.g., [29]) whereas the material 

layer at the top surface of the half-plane is governed by the theory of surface elasticity (e.g., 

[9][10]). In the present study, it is assumed that the body force and the body couple are 

negligible and the plane-strain deformation prevails.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic of an elastic half-plane loaded on its surface by normal traction 

 

For the bulk medium, basic field equations (i.e., equilibrium equations, constitutive laws, and 

kinematics) from the consistent couple stress theory (e.g., [29]) when specialized to the two-

dimensional body under the plane strain condition are given by   
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where { }xx yy xy yx, , ,     are the force-stress components; { }xz yz,   are the couple-stress 

components; { }xx yy xy, ,    and   are the infinitesimal strain components and the rotation 

about the z -axis, respectively; { }xz yz,   represent the curvature components; { }x yu ,u  are the 

in-plane displacement components;   and v  are the elastic shear modulus and Poisson’s ratio 

of the bulk material, respectively;  is a length-scale parameter in the couple stress elasticity; 

and   denotes two-dimensional Laplacian operator. It is worth noting that the presence of the 

couple stresses renders the force-stress tensor non-symmetric and this is in contrast to the 

classical linear elasticity. Note also that by setting the parameter 0 , one can readily 

recover the classical case.  
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For the material layer at the top surface of the half-plane, basic equations governing its 

response can be established from Gurtin-Murdoch surface elasticity theory [9][10] and, when 

specialized to this particular case, they are given by   
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where the superscript ‘s’ is utilized to designate the surface quantities; { , }s s   and 
s  denote 

surface Lamé constants and the residual surface tension, respectively; 2s s s     denote 

the surface elastic modulus; and { , }s s

x yt t  are tractions acting to the bottom side of the material 

layer induced by the underlying bulk material. 

 

Solution Procedure 

A set of displacement-based governing equations for the bulk material can be readily obtained 

by properly combining all basic field equations, Eq. (1)-(3), and its general solution can be 

established in a closed-form via the method of Fourier integral transform (e.g., [43]). The 

final expression for the in-plane displacements { }x yu ,u  is given by 
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where 1i    denotes an imaginary number;   is a transform parameter; 2 21   ; 

3 4v   ; and , ,A B C  are arbitrary unknown functions of   to be determined from 

boundary conditions. The general solution for the rotation , the force stresses 

{ },xx yy xy yx, , ,     and the couple stresses { }xz yz,  can be obtained from Eq. (7)-(8) together 

with Eq. (2)-(3). 

 

To form sufficient conditions for determining the unknown functions ,  ,  ,A B C  the continuity 

of the displacements and tractions at the interface of the bulk and the material layer is 

enforced along with the surface equations, Eq. (4)-(6). For the case of a constant residual 

surface tension, the following set of three boundary conditions is obtained: 
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It is worth noting that the couple traction boundary condition Eq. (11) results directly from 

that the material layer cannot resist the bending moment. By substituting Eq. (7)-(8) and the 

general solution for the force and couple stresses into Eq. (9)-(11), it gives rise to a system of 

three linear algebraic equations: 
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where /s    is defined as the material length-scale parameter corresponding to the 

presence of the surface stresses and ˆ ( )p   is the Fourier transform of the prescribed normal 

traction ( )p x  given by 
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By solving the system of linear equations, Eq. (12), the unknown functions ,  ,  A B C  are 

obtained in a closed-form as functions of  , two length-scale parameters   and , and 

transformed traction ˆ ( )p  . Substituting these functions into the general solutions gives the 

integral expressions for the displacements, rotation, force-stress and couple-stress fields at any 

location within the half-plane. Interestingly, it can be observed that all elastic field quantities 

contain both   and  representing the length-scale parameters corresponding to the presence 

of the surface stresses and couple stresses, respectively. Therefore, it is anticipated that the 

influence of simultaneous effects of the surface and couple stresses can be captured in 

predicted solutions as well as the size-dependent behavior. 

 

Numerical Results and Discussion 

To obtain numerical results for elastic field within the bulk material, standard Gaussian 

quadrature is adopted to efficiently evaluate all involved integrals resulting from Fourier 

integral inversion. In the numerical study, following material properties associated with 

Silicon [44] (i.e., v  0.33, 40.23  GPa, 78.08  GPa, 2.78s  N/m, 4.49s  N/m, 

0.61s   N/m) and the length-scale parameter associated with the presence of couple stresses 

50 nm [45] are chosen. A representative surface load, corresponding to a uniformly 

distributed normal pressure 0( )p x p  over the length 2a , is chosen and its Fourier transform 

is given explicitly by   
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Numerical results for the force stresses and couple stresses of an elastic half-plane under the 

uniformly distributed normal pressure 0( )p x p  and the simultaneous influence of both 

surface and couple stresses are reported in Fig. 2 and Fig. 3, respectively. The stress 

distributions along the positive x-direction of the surface-loaded half-plane are considered at 

different normalized depths, / {0.2;0.4;0.8}y a  with 0.5a    and 0.25 nm  . Results 

represented by the dash lines denote the classical solutions corresponding to 0  . It is 

worth noting that while the classical solutions are independent of the length scale  , the use 

of   in the normalization is only for the purpose of comparison. 
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Figure 2. Normalized force stresses of elastic half-plane under uniformly distributed 

normal traction at various depths 



  

Although the normalized vertical stress 
0/yy p  and the shear stress 

0/xy p  from the proposed 

model and the classical solution display similar trends for all values of the normalized 

coordinate /x a  as displayed in Fig. 2(a) and Fig. 2(c), the magnitude of the normalized 

stresses 
0/yy p  and 

0/xy p  with the influence of the surface and couple stresses are lower and 

higher, respectively, than those of the classical case. In contrast, the normalized horizontal 

stress 0/xx p  and the shear stress 
0/yx p  possess different characteristic in comparison with 

the classical solutions. In addition, the non-symmetric character of the force-stress tensor is 

confirmed by results shown in Fig. 2(c) and Fig. 2(d). Variations of the couple stresses 

 xz yz,   within the elastic half-plane at various depths are also displayed in Fig. 3. For the 

classical case, the couple stresses within the bulk vanish identically. It is also evident from 

this set of results that solutions predicted by the proposed model exhibit the significant 

departure from the classical solutions. 
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Figure 3. Normalized couple stresses of elastic half-plane under uniformly distributed 

normal traction at various depths 

 

Conclusion and Remarks 

An elastic half-plane under the plane-strain deformation and loaded on its surface by the 

normal traction has been studied by integrating the influence of both surface stresses and 

couple stresses. Gurtin-Murdoch surface elasticity theory and the consistent couple stress 

theory have been used in the problem formulation and the closed-form integral expressions of 

the elastic field have been derived via the method of Fourier integral transform. An efficient 

quadrature has been adopted to evaluate all involved integrals resulting from the Fourier 

transform inversion. A set of preliminary results has indicated the significant influence of the 

surface and couple stresses on the behavior of predicted solutions; in particular, the obvious 

deviation from the classical solutions has been observed. The size-dependence behavior of 

predicted responses and the effects of the two material length scales are also of key interest 

and still under investigation. It should be remarked that the analytical solutions established in 



the present study can be used either as benchmark results in the verification process or as the 

fundamental solutions in the formulation of related problems such as contact and indentation 

problems.     

 

Acknowledgements 

The authors gratefully acknowledge the support provided by CU Scholarship for ASEAN 

Countries 2017 and Thailand Research Fund (Grants No. RSA5980032). 

 

References 

[1] Dingreville, R., Qu, J. and Cherkaoui, M. (2005) Surface free energy and its effect on the elastic behavior 

of nano-sized particles, wires and films, Journal of the Mechanics and Physics of Solids 53(8), 1827-1854. 

[2] Cammarata, R. C. (1994) Surface and interface stress effects in thin films, Progress in Surface Science 

46(1), 1-38. 

[3] Cammarata, R. C. (1997) Surface and interface stress effects on interfacial and nanostructured materials, 

Materials Science and Engineering: A 237(2), 180-184.  

[4] Maranganti, R. and Sharma, P. (2007) A novel atomistic approach to determine strain-gradient elasticity 

constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) 

relevance for nanotechnologies, Journal of the Mechanics and Physics of Solids 55(9), 1823-1852.  

[5] Wong, E. W., Sheehan, P. E. and Lieber, C. M. (1997) Nanobeam mechanics: elasticity, strength, and 

toughness of nanorods and nanotubes, Science 277(5334), 1971-1975. 

[6] Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S. L., Schatz, G. C. and Espinosa, H. D. (2008) 

Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced 

crosslinking improvements, Nature Nanotechnology 3, 626-631. 

[7] Mao, S. X., Zhao, M. and Wang, Z. L. (2003) Nanoscale mechanical behavior of individual semiconducting 

nanobelts, Applied Physics Letters 83(5), 993-995. 

[8] Li, X., Gao, H., Murphy, C. J. and Caswell, K. K. (2003) Nanoindentation of silver nanowires, Nano 

Letters 3(11), 1495-1498. 

[9] Gurtin, M. E. and Murdoch, A. I. (1975) A continuum theory of elastic material surfaces, Archive for 

Rational Mechanics and Analysis 57(4), 291-323. 

[10] Gurtin, M. E. and Murdoch, A. I. (1978) Surface stress in solids, International Journal of Solids and 

Structures 14(6), 431-440. 

[11] He, L. H., Lim, C. W. and Wu, B. S. (2004) A continuum model for size-dependent deformation of elastic 

films of nano-scale thickness, International Journal of Solids and Structures 41(3-4), 847-857.  

[12] Huang, D. W. (2008) Size-dependent response of ultra-thin films with surface effects, International 

Journal of Solids and Structures 45(2), 568-579. 

[13] Lu, P., He, L. H., Lee, H. P. and Lu, C. (2006) Thin plate theory including surface effects, International 

Journal of Solids and Structures 43(16), 4631-4647. 

[14] Intarit, P., Senjuntichai, T. and Rajapakse, R. K. N. D. (2010) Dislocations and internal loading in a semi-

infinite elastic medium with surface stresses, Engineering Fracture Mechanics 77(18), 3592-3603. 

[15] Intarit, P., Senjuntichai, T., Rungamornrat, J. and Rajapakse, R. K. N. D. (2011), Surface elasticity and 

residual stress effect on the elastic field of a nanoscale elastic layer, Interaction and Multiscale Mechanics 

4(2), 85-105. 

[16] Zhao, X. J., Surface loading and rigid indentation of an elastic layer with surface energy effects, Master 

Thesis, The University of British Columbia, Canada, 2009.  

[17] Rungamornrat, J., Tuttipongsawat, P. and Senjuntichai, T. (2016) Elastic layer under axisymmetric surface 

loads and influence of surface stresses, Applied Mathematical Modelling 40(2), 1532-1553. 

[18] Pinyochotiwong, Y., Rungamornrat, J. and Senjuntichai, T. (2013) Rigid frictionless indentation on elastic 

half space with influence of surface stresses, International Journal of Engineering Science 71, 15-35. 

[19] Zhou, S. and Gao, X.-L. (2013) Solutions of half-space and half-plane contact problems based on surface 

elasticity, Zeitschrift für angewandte Mathematik und Physik ZAMP 64(1), 145-166. 

[20] Tirapat, S., Senjuntichai, T. and Rungamornrat, J. (2017) Influence of surface energy effects on elastic 

fields of a layered elastic medium under surface loading, Advances in Materials Science and Engineering 

2017, 7530936. 

[21] Cosserat, E. and Cosserat, F. (1909) Théorie des corps déformables, A. Herman et Fils, Paris. 

http://www.worldcat.org/title/theorie-des-corps-deformables/oclc/422394228


[22] Mindlin, R. D. and Tiersten, H. F. (1962) Effects of couple-stresses in linear elasticity, Archive for Rational 

Mechanics and Analysis 11(1), 415-448. 

[23] Mindlin, R. D. (1963) Influence of couple-stresses on stress concentrations, Experimental Mechanics 3(1), 

1-7. 

[24] Toupin, R. A. (1962) Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis 

11(1), 385-414. 

[25] Mindlin, R. D. (1965) Second gradient of strain and surface-tension in linear elasticity, International 

Journal of Solids and Structures 1(4), 417-438. 

[26] Mindlin, R. D. and Eshel, N. N. (1968) On first strain-gradient theories in linear elasticity, International 

Journal of Solids and Structures 4(1), 109-124. 

[27] Chen, S. and Wang, T. (2001) Strain gradient theory with couple stress for crystalline solids, European 

Journal of Mechanics - A/Solids 20(5), 739-756. 

[28] Yang, F., Chong, A. C. M., Lam, D. C. C. and Tong, P. (2002) Couple stress based strain gradient theory 

for elasticity, International Journal of Solids and Structures 39(10), 2731-2743. 

[29] Hadjesfandiari, A. R. and Dargush, G. F. (2011) Couple stress theory for solids, International Journal of 

Solids and Structures 48(18), 2496-2510. 

[30] Ma, H. M., Gao, X. -L. and Reddy, J. N. (2011) A non-classical Mindlin plate model based on a modified 

couple stress theory, Acta Mechanica  220(1-4), 217-235. 

[31] Ma, H. M., Gao, X. -L. and Reddy, J. N. (2008) A microstructure-dependent Timoshenko beam model 

based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids 56(12), 3379-

3391. 

[32] Beni, Y. T., Mehralian, F. and Razavi, H. (2015) Free vibration analysis of size-dependent shear 

deformable functionally graded cylindrical shell on the basis of modified couple stress theory, Composite 

Structures 120, 65-78. 

[33] Gourgiotis, P. and Zisis, T. (2016) Two-dimensional indentation of microstructured solids characterized by 

couple-stress elasticity, The Journal of Strain Analysis for Engineering Design 51(4), 318-331. 

[34] Song, H. X., Ke, L. L. and Wang, Y. S. (2017) Sliding frictional contact analysis of an elastic solid with 

couple stresses, International Journal of Mechanical Sciences 133, 804-816. 

[35] Song, H., Ke, L., Wang, Y., Yang, J. and Jiang, H. (2018) Two-dimensional frictionless contact of a coated 

half-plane based on couple stress theory, International Journal of Applied Mechanics 10(5), 1850049.  

[36] Muki, R. and Sternberg. E. (1965) The influence of couple-stresses on singular stress concentrations in 

elastic solids, Zeitschrift für angewandte Mathematik und Physik ZAMP 16(5), 611-648. 

[37] Zisis, T., Gourgiotis, P. A., Baxevanakis, K. P. and Georgiadis, H. G. (2014) Some basic contact problems 

in couple stress elasticity, International Journal of Solids and Structures 51(11-12), 2084-2095. 

[38] Wang, Y., Shen, H., Zhang, X., Zhang, B., Liu, J. and Li, X. (2018) Semi-analytical study of microscopic 

two-dimensional partial slip contact problem within the framework of couple stress elasticity: Cylindrical 

indenter, International Journal of Solids and Structures 138, 76-86. 

[39] Gao, X. -L. and Mahmoud, F. F. (2014) A new Bernoulli–Euler beam model incorporating microstructure 

and surface energy effects, Zeitschrift für angewandte Mathematik und Physik ZAMP 65(2), 393-404. 

[40] Shaat, M., Mahmoud, F. F., Gao, X. -L. and Faheem, A. F. (2014) Size-dependent bending analysis of 

Kirchhoff nano-plates based on a modified couple-stress theory including surface effects, International 

Journal of Mechanical Sciences 79, 31-37. 

[41] Gao, X. -L. and Zhang, G. Y. (2016) A non-classical Kirchhoff plate model incorporating microstructure, 

surface energy and foundation effects, Continuum Mechanics and Thermodynamics 28, 195-213. 

[42] Liu, S., Yu, T., Lich, L. V., Yin, S. and Bui, T. Q. (2019) Size and surface effects on mechanical behavior 

of thin nanoplates incorporating microstructures using isogeometric analysis, Computers and Structures 

212, 173-187. 

[43] Sneddon, I. N. (1951) Fourier Transforms, McGraw-Hill, New York.  

[44] Miller, R. E. and Shenoy, V. B. (2000) Size-dependent elastic properties of nanosized structural elements, 

Nanotechnology 11(3), 139-147. 

[45] Rahimi, Z., Rezazadeh, G. and Sadeghian, H. (2018) Study on the size dependent effective Young modulus 

by EPI method based on modified couple stress theory, Microsystem Technologies 24(7), 2983–2989. 

 

 

https://link.springer.com/journal/33

