Deformation and fracture of Ti-Nb alloys with a grain size distribution

†*Vladimir A. Skripnyak¹, Natalia V. Skripnyak¹, and Evgenia G. Skripnyak¹

¹Department of Mechanics of Solids, National Research Tomsk State University, Russia.

*Presenting author: skrp2006@yandex.ru †Corresponding author: skrp2006@yandex.ru

Abstract

This article presents the results of modelling of the mechanical behaviour of coarse grained (CG) and ultrafine-grained (UFG) Ti–Nb alloys in the range of strain rates from 10^{-3} to 10^{3} s⁻¹ at temperatures from 297 K to 1273 K. Modification of the micro-dynamical model was proposed for the description of Ti–Nb ultrafine grained and coarse grained $\alpha+\beta$ and β alloys. It was shown that the HCP \rightarrow BCC phase transformation in Ti–Nb alloys leads to a sharp changing in resistance to plastic flow and kinetics of growth of damage. The results can be used for engineering analysis of designed constructive elements of technical and biomedical applications.

Keywords: computer simulation, mechanical behavior, ductility, titanium-niobium alloys, high strain rate, grain size distribution