
An Efficient Adaptive Strategy for Acoustic Problems with the Edge-based 

Smoothed Point Interpolation Method (ES-PIM) 
*†Q. Tang1,2, K.X.Wei1,2, X.G.Sun1,2 

1Department of Mechanical Engineering, Hunan Institute of Engineering, Xiangtan, 411101，China 

2Hunan Provincial Key Laboratory of Vehicle Power and Transmission System, Xiangtan, 411101, China 

*Presenting author: tq1618@163.com  
†Corresponding author: tq1618@163.com 

Abstract 
In this paper we carry out an H-adaptive strategy for acoustic problems with the Edge-based 
smoothed point interpolation method. The key features of the adaptive procedure are an error 
indicator, H-type refinement strategy, local critical values, Delaunay mesh generation and 
ES-PIM analysis. The computations are performed on meshes with three-node triangles are 
adapted to the solution by locally changing element sizes, taking advantage of the background 
mesh which is convenient to discrete and conducts numerical simulation for any complicated 
model. The error indicator has been performed considering the maximum values of velocity 
difference among the vertexes in each cell. The adaptive meshes are then obtained through 
global mesh regeneration using a Delaunay mesh generator. The adaptive analysis is applied 
to 2D acoustic frequency response analysis, especially for expansion chamber. Numerical 
examples are shown to illustrate the properties of the error indicator technique and the 
procedure of the proposed adaptive strategy. The results highlight the efficiency of adaptive 
analysis, which reduces computation consumption significantly, and the results also have 
shown the validity and efficiency of the proposed error indicator.  
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Introduction 

Numerical computation has been widely applied for scientific research and solving practical 
engineering problems in many fields. A large number of research results show that the 
adaptive analysis is an effective way to improve the efficiency and precision of the numerical 
calculation[1]-[7]. Through a lot of theoretical and numerical analysis, the ES-PIM can reduce 
the softening effects and give a quite close-to-exact stiffness by using the edge-based strain 
smoothing operation [8]-[12],it is found that ES-PIM is more suitable for solving acoustic 
problems, and a series of innovative research results have been obtained [13]-[14]. He and Liu 
applied the generalized gradient smoothing technique to the field of acoustic numerical 
computation [15]-[16]. 
Adaptive analysis is a reliable way to improve the accuracy and efficiency of acoustic 
problems, and error estimation with high reliability is also a very important factor in the study 
of acoustic adaptive analysis.In summary, ES-PIM have many aforementioned features which 
make it become an ideal candidate for adaptive analyses.  
In the following section, we describe the implementation of the adaptive analysis based on 
ES-PIM in acoustic problems. Our adaptive strategy contains two main issues:error indicator 
and refinement strategy.The proposed adaptive procedure construct an error indicator 
combining refinement strategy and remeshing technique with the available open source 
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packages.  

Adaptive scheme 

1. Error indicator 
Error indicator plays a crucial role in adaptive procedure.It is able to accurately detect the 
regions for mesh refinement. According to the characteristics of acoustic problems, a new 
error indicator has been designed considering the maximum values of velocity difference 
among the vertexes in each cell.Generally, the high error region is consistent with the area of 
steep gradient velocity.  
For each three-node triangular element, we can obtain the difference value of velocity 
components between two different nodes, namely node 1 and node 2 by the following 
equation.  
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Eq(2) means the absolute value of the difference of velocity components between any two 
nodes in the same element is modulo. 
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 Substituting (1) into (2), we can obtain the following Eq(3). 
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In the same way, we can calculate 13E  and 23E  for every two nodes in a cell. Finally for 

every background cell, we use the maximum modulo values of all nodes as the error indicator 

of the three-node triangular cell. Thus the error indicator iE  for the ith cell can be obtained 

as following equation. 
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2. Refinement strategy 
In this section, we will describe a very simple and rapid method to implement refinement. As 
shown in Fig 1, white node denotes initial node, black node denotes new node which is 
inserted into the high error area, three additional black nodes will be inserted at the midpoints 
of the three edges and the original cell will be further divided into four triangles. 

 
                          Initial nodes   Added new nodes  

Figure 1. Illustration of the h-refinement strategy for three-node triangle 
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Local critical values , refinement rate and Delaunay mesh generator used in this part are 
similar to the counter part of adaptive ES-PIM on solid mechanics,details can be found in the 
previous work[2]-[5]. 

Numerical examples 

（1）Case1: Two dimensional cavity 

 

Figure 2. Geometry,boundary conditions of the two dimensional cavity 

The first example is a room of length L=5 meters and width W=3 meters, which is considered 
as a two dimensional cavity.As shown in Fig 2, the acoustic excitation is at the top end of the 

room by a vibrating panel with velocity 0 1 /m sυ = .On the other boundaries, the normal 

velocity is set to be zero. Fluid density in cavity is 3
0 1.225 /kg mρ = , the sound travels speed 

in this medium is 0 340 /c m s= . 

 
Figure 3. Nodes distribution and corresponding meshes of each adaptive step 

for two dimensional cavity at 40Hz 
We studied this problem using 40Hz frequency, the ES-PIM adaptive analysis started from 
quite coarse mesh of 269 nodes and is performed for 4 steps with the refinement rate 

v=v0 



0.1η = .Four uniform refinement models with 269, 820, 2001 and 2910 nodes are studied 

respectively. The nodal distributions and corresponding meshes for 4 adaptive steps are shown 
in Fig. 3. The figure illustrates that our error indicator can accurately catch the steep gradient 
of velocity, the dense nodes are inserted near the top end of the room where the velocity 
gradient is high.  

  
Adaptive first mesh:  269 nodes 

  
Adaptive final mesh :  615 nodes 

  
Uniform final mesh:  2910 nodes 

  
Reference solution mesh: 13123 nodes 

Figure 4. Comparison of velocity distributions at the first and final stage for 
the problem of two dimensional cavity at 40Hz 

Fig. 4 compares the contours of velocity components at the first and final adaptive mesh with 
the final uniform mesh and FEM reference solution mesh results of 13123 uniformly 
distributed nodes. It clearly indicates that the velocity contours at the final stage with adaptive 
mesh(only 615 nodes) and uniform mesh(2910 nodes) are in good agreement with the 
reference solution results obtained using a very fine mesh.  
（2）Case2: Expansion chamber 



 
Figure 5. Geometry,boundary conditions of expansion chamber 

The second problem is a 2D expansion chamber,whose geometry and boundary conditions are 
shown in Fig.5. Acoustic excitation is presented at the left side by a vibrating panel with 
velocity 0 0.1 /m sυ = . In order to better simulate the real situation,the boundary condition of 
the equation /q n jkq∂ ∂ =  is presented at the right side, meanwhile, at the other side the 
normal boundary velocity is set to be zero. Fluid density in this model is 

3
0 1.225 /kg mρ = ,the sound travels speed in this medium is 0 340 /c m s= . 

 
Figure 6. Nodes distributions at each adaptive step for the problem of 
expansion chamber  

In this example, we studied expansion chamber using frequency of excitation is 200Hz. The 
adaptive procedure starts from an initial mesh of 300 nodes, and is performed for 4 steps with 

0.1η = . The adaptive meshes for each step are shown in Fig. 6. One can notice that the 
proposed error indicator effectively detects all the regions for high velocity gradient and 
implements the refinement of nodes. For comparison, four models of uniformly refined 
models with 300, 1177, 2658 and 4076 nodes are also adopted to study this problem. 

  
Adaptive first mesh:  300 nodes 
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Adaptive final mesh:  716 nodes 

  
Reference solution mesh:  39305 nodes 

Figure 7. Comparison of velocity distributions at the first and final stage for 
the problem of expansion chamber at 200Hz 

In Fig. 7 we compare the contours of velocity components at the first and final adaptive mesh 
with the FEM reference solution mesh results obtained using a very fine mesh. It can be seen 
that the velocity contours at the final stage with adaptive mesh (only contains 716 nodes) is in 
good agreement with the reference solution mesh of 39305 uniformly distributed nodes. 

Conclusions 
In this paper, an adaptive procedure using ES-PIM is proposed for acoustic problem. Our 
adaptive strategy uses initial meshes and remeshing which are implemented by the open 
source package TRIANGLE, FEM reference solution results using the software SYSNOISE. 
Numerical problems demonstrated that the proposed error indicator is able to detect the 
location steep gradient of velocity, h-refinement is performed by adding in new nodes. 
According to the practise in the research about 2D problems, which provides experience for 
extending to 3D problems in future.  
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