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Abstract 

We present a morphological rank-space segmentation method for automatically detecting and 

segmenting connected filamentous structures with application to unsupervised analysis of 

microscopic vaginal flora samples. This approach begins with a binarization process with 

adaptivity to local noise and object orientation. A novel morphological rank-space is proposed 

to decompose the connected filaments through morphological thinning, axial linking, 

labeling, and selection, resulting in a discrete rank-space representation. A ribbon delineation 

method is devised to reconstruct the boundaries of filaments through the rank-space. Our 

approach has been successfully applied to detect and segment the pseudohyphae for diagnosis 

of fungus Candida vaginitis.  

Keywords: Segmentation, morphology, rank-space, fluorescent microscope, filament, 

pseudohyphae  

 

1.  Introduction 

Candida albicans is a pleiomorphic fungus and is the most common cause of vaginal fungal 

infections. Approximately 75% of women have at least one Candida vaginitis (CV) during 

their lifetimes while nearly half have at least two [4]. Candida overgrowth appears as mats of 

yeasts measuring 3 to 5 μm in diameter intermingled with pseudohyphae [6], that consist of 

invasive filaments comprising chains of conjoined, elongated yeast cells. Pseudohyphal 

growth is regarded as a defined developmental state and important fungal pathogen for CV 

[12]. The multiband fluorescent microscope is used to provide multi-band digital scans of 

sample microorganisms that have been pre-processed with immunofluorescent labeling or 

staining techniques. The fluorescence of the specific dyed microorganisms under the 

excitation of lights of various wavelengths better reveals the structures of cells of interest. 

Sample yeast cells and pseudohyphae are shown in Figure 1.  

 

Manual finding and quantification of the pseudohyphae for CV screening and diagnosis is 

prohibitively time consuming. It is practically desired to develop automated techniques for 

segmenting the pseudohyphae from microscopic vaginal flora images towards providing 

visual evidence of fungal pathogens.  
 
Unsupervised segmentation and quantification of the pseudohyphal structures is essential to 

perform automated high-throughput analysis, in order to compute, for instance, the 

distributions of lengths, widths, curvatures, budding scars, etc. The challenge for such 

unsupervised methods attributes to the fact that the pseudohyphae vary in shapes and sizes, 

form clumps, and the images often contain fiber contamination. 

 



 

 

         
                                    (a)                                                                      (b) 

Figure 1. A representative fluorescent image of yeast and pseudohyphae. (a) 470 nm green 

and 395 nm blue fluorophores; the former specifies the yeast and pseudohyphal cells and the 

latter indicates the nuclei (DNA). (b) The green channel. 

 

The global thresholding methods are not appropriate for finding individual pseudohypha from 

multicellular clumps of pseudohyphae (colonies). The image decomposition approach through 

curvelet and wavelet transform is applied for segmenting actin filaments [2]. This method is 

inappropriate for extracting highly curved filaments due to poor computational efficiency as 

the so-called curvelet transform is actually the size-varying block-wise ridgelet transform 

through the scale space. Applying Hessain-based scale-space enhancement filters [5, 8] results 

in disconnections due to the low filter response along the bifurcation regions. These filters 

have been combined with tracking [3], bifurcation enhancement and suppression of non-

tubular structures [15]. All enhancement filter methods require further decomposition and 

delineation. Other developments include fuzzy shape representation [1] and fuzzy 

connectedness [7]. An extensive review can be found in [10]. To date, not a single method is 

capable of successfully segmenting filamentous structures from every imaging modality and 

every organ. 

 

In this paper, we explore innovative techniques using mathematical morphology and domain 

knowledge for automatically detecting and segmenting the pseudohyphae, or filamentous 

structures in general, from microscopic images. We present a paradigm composed of adaptive 

binarization, clue extraction, morphological rank-space transform, and rank-controlled ribbon 

contouring of filaments. The binarization is less sensitive to noise and object orientation. The 

new rank-space allows user specifications to be incorporated into the decomposition; a higher 

ranked filament is segmented with more integrity at places such as junctions. We demonstrate 

using clinical data that our system achieves visually agreeable results that enable the 

feasibility for providing assessment evidence for quick and accurate CV screening.  

 

The rest of the paper is organized as follows. In section 2, we outline the framework for 

automatically detecting, segmenting, and quantifying pseudohyhae in the microscopic scans 

of vaginal flora samples. In section 3, we demonstrate the efficacy of our method using 

clinical data. Conclusions are drawn in section 4. 



 

 

2.  Methodology  

Figure 2 depicts the overall structure of the process for segmenting connected filaments. The 

details of each block are described below. 

 
Figure 2. Flowchart of processing algorithms. 

2.1  Binarization  

The vaginal flora sample is labeled with the Caza Health® antibody package and illuminated 

with lights. A black and white digital camera captures and grabs the data. The image contains 

mainly the yeast, budding yeast, pseudohyphae and fibers (possibly from the swab used to 

collect the sample). The fluorescent microscopic scan must first undergo a series of pre-

processing to correct image artifacts caused by channel cross-talk, LED non-uniform 

illumination, background auto-fluorescence, and so forth. The green channel (see Figure 1) 

captures most effectively the fluorescence emitted by the yeast and pseudohyphae.  

 

The binarization process masks the interest areas of pseudohyphal colonies, resulting in a 

binary ridge image. This procedure adopts local adaptive thresholding algorithms to achieve 

the robustness to the local noise variation. The detection technique needs to be sensitive to the 

object orientation, as well as lowering the impact of interfering objects present in the test 

window upon the noise statistics. It is accomplished through the following steps. We slide M 

tilted line-segment windows over the image domain; at each point, we collect N reference 

samples per window to compute local statistics as a function of the window tilt angle. We 

then select the window that is most orthogonal to the pseudohyphal axis direction, and 

implement the adaptive threshold test, as described by 

 𝐼 − 𝑍⊥ > 𝐶 ∙ (1 + (
𝑍⊥

𝑍𝑚𝑎𝑥
)
𝑟

),     (1) 

where I is the green channel image with intensity normalized to [0, 1]. 𝑍⊥ corresponds to the 

test statistics obtained in the window that is most orthogonal to the pseudohyphal segment,  

𝑍⊥: = min
1≤𝑘≤𝑀

𝑍𝑘,  

𝑍𝑚𝑎𝑥 = max
1≤𝑘≤𝑀

𝑍𝑘; 

𝑍𝑘 is the mean intensity in the N-pixel line segment window 𝑊𝑘 centered at position (𝑖, 𝑗) in 

the image domain with a tilt angle of  
𝑘−1

𝑀
𝜋 from the x-axis, i.e.,  

𝑍𝑘 = mean{𝐼𝑖𝑗 ∈ 𝑊𝑘}. 
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The r in Eq. (1) is a positive real factor; C is a threshold that is proportional to the noise 

standard deviation. It is set to maintain an acceptable filament detection probability for low 

SNR with a consistent false detection rate. The orientation adaptivity manifests through the 

multiplier of C. For elongated structures, 𝑍𝑚𝑎𝑥 > 𝑍⊥, and the right-hand side of Eq. (1) is 

approximately equal to C. For round objects, 𝑍𝑚𝑎𝑥 = 𝑍⊥, and the right-hand side is doubled C 

so that the round or close to round ones are not being detected as pseudohyphae. In this study, 

we choose the parameters experimentally: M = 8~16, N = 15, C = 0.01~0.05, and r = 2. The 

resulting binary ridge mask is shown in Figure 3(a). 
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Figure 3. (a) Binary ridge mask, (b) Spotness map, (c) Ridgeness map, (d) Gradient 

magnitude of Figure 1(b). 

2.2  Spotness and ridgeness features  

We adopt a newly devised spotness feature [14] and ridgeness feature for providing 

segmentation criteria for the next section. They are illustrated in Figure 3 (b) and (c). The 

spotness appears bright on compact structures such as yeast while showing dark boundaries 

on elongated structures such as pseudohyphae. Thus, the spotness feature is tailored to 

discriminating between yeast and pseudohyphae. The spotness image is a rotational 

morphological top-hat transform of an input image 𝐼, defined as 

 𝑝 = 𝐼 −max⁡{𝛾𝑖,𝐵(𝐼)}𝑖=0
𝐾−1,     (2) 



 

 

where 𝛾𝑖,𝐵(𝐼):= 𝑅−𝜃𝑖(𝑅𝜃𝑖(𝐼) ○ 𝐵); 𝑅𝜃𝑖  is the rotation w.r.t. the image center by an angle 

𝜃𝑖 ≔ 𝑖
𝜋

𝐾
; K is the number of angles. The operator ○ denotes opening by a horizontal line 

structure element B of l-pixel long and 1-pixel wide. The second term in Eq. (2) suppresses 

spot structures of size less than l while preserving the interiors and augmenting the borders of 

filamentous structures of dimension longer than l, regardless of orientations. In our study, we 

set K = 36 and l = 20. 

 

The ridgeness feature is based on the multi-resolution enhancement filter response [5]. For an 

input image 𝐼, the Hessian matrix H is defined as 

 𝐻𝑖𝑗(𝑥, 𝜎) = 𝜎2𝐼(𝑥) ∗
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐺𝜎(𝑥), 𝑖, 𝑗 = 1, 2,     (3) 

where 𝐺𝜎(𝑥) is the 2D Gaussian of standard deviation 𝜎  and * denotes convolution. The 

eigenvalues of H are sorted, |𝜆1| ≤ |𝜆2|. The larger intensity variation takes place along the 

second eigenvector, corresponding to the direction across the intensity boundary. To enhance 

the elongated more than the spherical structures, a ridgeness indicator function is computed as 

 𝑅 = max
𝜎∈𝐷

𝑒
−
(𝜆2/𝜆1)

2

2𝛼2 (1 − 𝑒
−
√𝜆1

2+𝜆2
2

2𝛽2 ),     (4) 

where α and β are sensitivity parameters. The set 𝐷 is preset according to the expected range 

of filament width. R lies between 0 and 1. We set α = 2, β = 8, and 𝐷 = {1,2,3,4}. 

2.3  Segmentation of connected filaments  

The pseudohyphae tend to clump together in the developed state of Candida infection. In 

order to assess the infection by taking the geometrical and other measurements of individual 

pseudohypha, it is necessary to split and segment the clumped cells. Our segmentation 

algorithm comprises two steps: analysis and synthesis. In the first step, the binary mask of 

ridges is decomposed into distinct, thin ridge markers of descending rank-scale orders; each 

marker represents a disjoint cell axis (or central line). The synthesis of the rank-scale space 

restores the filamentous shapes while preventing the merging of the boundary contours of 

split ridge markers.  

 

The analysis procedure is described as follows. We first extract appropriate pseudohypha-like 

ridge markers by morphological thinning and pruning of the binarized yeast mask map, and 

then link the 1-pixel wide ridge elements to form chains of connected ridges. Finally, a 

morphological rank-space representation of pseudohypha-like filaments is generated by 

conditioned, scale-rank prioritized reconstruction and filtering based on significance metrics 

and thresholds derived from clinical relevance. 

 

The thinning algorithm removes pixels on the boundaries of connected components without 

breaking them apart. This operation is repeated until the image is stable, followed by 

morphological pruning that removes the end points of lines without removing small objects 

completely.  

 

The linking algorithm takes the thinned binary mask of ridges and ridge direction angle image 

(obtained from multi-resolution enhancement filter), and outputs a list of labeled ridge chains, 

as shown in Figure 4. The ridge-linking algorithm is outlined below: 

 



 

 

1) Start a row-wise raster scanning of the binary ridge map from the upper left corner, 

i.e., the image origin. 

2) Follow the ridge with 8-connectivity to the end. Search through its neighbors within a 

preset distance for the points that are most compatible with respect to the ridge 

direction.  

3) A chain of ridges either terminates at a joint or branch to grow if its continuity is 

stronger than that of other chains connected to the same joint.    

4) Flip the tracked pixels, and track the rest of the ridge segment, if any, to the end of the 

ridge chain. 

5) Finally make sure that the starting point of each ridge chain is closer to the image 

origin than its end.  

 

         
                                        (a)                                                              (b) 

Figure 4. (a) Zoomed-in map of thinned ridges representing the axial lines of the filamentous 

pseudohyphae. (b) Segmented ridge central lines with random color-labeling. 

 
The morphological rank-space filament clump decomposition depends on the priority criteria 

that are devised specifically according to application. We elaborate in this paper the 

morphological multi-rank space with focus on segmenting pseudohyphae. This paradigm is 

applicable to general curved filament segmentation tasks.   

 

Three metrics are measured for each ridge marker: the length, average fluorescence intensity, 

and average ridgeness. The prioritizing algorithm performs as follows: 

 

1) Each ridge chain receives three separate scores {𝑡𝑖}𝑖=1,2,3, respectively, according to 

its index in the descending order of length, average fluorescent intensity, and average 

ridgeness.   

2) A total score 𝑡 = ∑ 𝑡𝑖
3
𝑖=1  is assigned to each ridge chain. The ridge chains are then 

sorted again in the ascending order based on their total scores.  

3) The first P ridge chains are selected from the final sorted list. The number P depends 

on a predefined maximum number of pseudohyphae. 

 

With these metrics, the long, bright ridges (or filaments) receive a higher priority than short, 

dark, non-filamentous ones (such as edges). We define the rank of a ridge to be its index of 

the descending total scores. In the rank-space, the originally crowded ridge markers are split 



 

 

and redistributed into multiple rank subspaces. The markers with higher priority reside 

sparsely in the high-rank subspace.          

 

In the synthesis process, the exterior boundaries of the disjoint filamentous structures are 

reconstructed in a bottom-up manner through the rank-space. Starting from ridge marker(s) 

with the highest rank, we delineate the boundary contours of filaments that have the same 

rank s, then append them to the output sequence indexed with ranks (1, 2, … , 𝑠 − 1). During 

this process, contours do not merge. The algorithm is provided below. 

 

1) Compute the gradient magnitude 𝑔(𝑥) of the green channel image. An example is 

shown in Figure 3(d).  

2) Remove 1 pixel at the joint end of each line marker of rank s resulting in a trimmed 

ridge marker. Then compute a rank-based binary influence zone 𝐵𝑠(𝑥), which is given 

by the watershed transform of the distance map of the union of trimmed ridge markers 

at rank s and the already-segmented filament ribbons from rank 1 to 𝑠 − 1.  

3) At rank s, loop through each point along the curve marker, and search in the direction 

perpendicular to the curve, within the influence zone 𝐵𝑠(𝑥), to locate the maximum 

gradient magnitude (boundary) points on both sides of the curve marker. The 

boundary contour of the marker is described by a marker curve {𝑥𝑠,𝑖; 𝑖 = 1, … , 𝑙𝑠}, 
where 𝑥𝑠,𝑖 represents the row and column index of the ith ridge point along the central 

line of rank s; 𝑙𝑠 is the length of that marker. The variable radius is given by 

 𝑟̂𝑠,𝑖 = min {max
𝑟𝑖

{𝑔(𝑥𝑖
+)} , max

𝑟𝑖
{𝑔(𝑥𝑖

−)}},     (5) 

where  𝑥𝑖
± = 𝑥𝑖 ± 𝑟𝑖

(𝑥𝑖−𝑥𝑖−1)
⊥

|𝑥𝑖−𝑥𝑖−1|
; the symbol ⊥  denotes transverse of a vector. For 

simplicity the subscript s is omitted. The geometry is illustrated in Figure 5.  

4) Append {(𝑥𝑠,𝑖, 𝑟̂𝑠,𝑖); 𝑖 = 1,… , 𝑙𝑠} to the previously reconstructed contours. 

5) Compute the average width and minimum spotness for each segmented filament. The 

combination of length, average fluorescence intensity, average ridgeness, average 

width, and minimum spotness fully characterizes each segmented pseudohyphal 

suspect.  

6) Finally, identify the pseudohyphal filaments by means of length thresholding or width 

thresholding.     

 

Figure 5. Geometry of filament segmentation. 

3.  Results  

We evaluate the morphological rank-space segmentation method using two sets of images. In 

the first test, images of size 1024 by 1024 pixels were acquired using a Nikon inverted 

 

𝑥𝑖 𝑥𝑖+1 𝑥𝑖−1 

𝑥𝑖
− 

𝑟𝑖 



 

 

microscope, charge-coupled device camera and 4X objective lens. The proposed method is 

applied to a selection of the images. The magnified results are shown in Figure 6.  

 

We compare our method to the marker-controlled watershed transform [9] and morphological 

multiscale decomposition (MSD) [11, 13]. Our approach outperforms the other methods in 

terms of preserving the integrality of long filaments and providing visually agreeable splitting 

of clumped cells. An average ribbon width is computed and adopted per pseudohypha display 

for easy visualization in comparison. The actual ribbon size distribution can be used for 

pseudohyphae quantification. The 15-scale MSD as applied to the binary ridge detection 

breaks the long continuous filament into multiple segments. The watershed transform fails 

with the same markers as used in our method. 

 

         
                                        (a)                                                              (b) 

         
                                        (c)                                                              (d) 

Figure 6. Method comparison. (a) Input image, (b) Marker based watershed, (c) 15-scale 

MSD, (d) Our method. 

 

In the second test, we apply the method to clinical vaginal samples from Discovery Life 

Sciences (DLS), Inc. The samples are prepared using Axon Pac and scanned using nCyte 

microscope. The image size is 2048 by 2048 pixels. One of the test images is shown in Figure 

7(a). In this fluorescent image, the pseudohyphae are highlighted in red, the nuclei (DNA) in 

green, the epithelial tissue cells in blue, and trich markers in white. Our analysis is performed 



 

 

for the entire image. For detail viewing, magnified displays of the region in the red box are 

illustrated in Figures 7(b)-(d).  

 

A color-enhanced view is shown in Figure 7(c). In this view, different color encoding allows 

the pseudohyphae to be highlighted in green so that the viewer can see the ground truth more 

clearly. The blue dots are nuclei (DNA); the red are epithelial tissue cells; the white blobs are 

trich markers. In Figure 7(d), the pseudohyphae detected and segmented by our method are 

highlighted as white contours and overlaid on the original image, along with their count 

numbers. This provides key information for CV diagnosis. A comparison of Figure 7(d) with 

7(c) indicates that our algorithm achieves consistent performance.  

 

         
                                    (a)                                                                      (b) 

         
                                    (c)                                                                      (d) 

Figure 7. Test on DLS clinical vaginal sample scan. (a) 2048 by 2048 input image. (b) 

Magnified view of the red box in (a). The pseudohyphae are highlighted in red, nuclei (DNA) 

in green, epithelial cells in blue, and trich markers in white. (c) Color-enhanced view. The 

pseudohyphae are highlighted in green, nuclei (DNA) in blue, epithelial cells in red, and trich 

markers in white. (d) The pseudohyphae detected and segmented by our method are overlaid 

as white contours, along with their count numbers in red. 



 

 

4.  Conclusions 

We have demonstrated a generic morphological rank-space decomposition technique for 

segmenting connected filamentous structures. This approach enables a user-specific interest 

priority and natural scales to be integrated in a novel segmentation paradigm. Our method is 

evaluated using clinical fluorescent microscopic images of vaginal samples. It is 

computationally efficient. The results are visually expected, consistent and promising. They 

provide clues for diagnosis and aid in quantitative Candida vaginitis screening. 
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