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PREFACE 

Dear Colleagues, 

On behalf of the organising committees, we are delighted to welcome you to the 5th Asia 
Pacific Congress On Computational Mechanics (APCOM2013) & 4th International 
Symposium on Computational Mechanics (ISCM2013) at Singapore. 

The APCOM/ISCM2013 is an international conference providing an international forum for 
exchange ideas on recent advances in areas related to mechanics, including computational 
methods, numerical modelling & simulation, as well as their applications in engineering and 
science. It will accommodate presentations on a wide range of topics to facilitate inter-
disciplinary exchange of ideas in science, engineering and related disciplines, and foster 
various types of academic collaborations in the Asia Pacific region and internationally. All 
papers accepted for publication in the proceedings has been peer reviewed. Papers may 
also be selected and invited to be developed into a full journal paper for publication in 
special issues of the journals. 

The APCOM/ISCM2013 conference program covers over 600 presentations in about 100 
technical sessions. 

There will be 6 Plenary Lectures, 24 Thematic Plenary Lectures, 120 Keynote Lectures and 
120 Invited Lectures at the conference. The conference sessions will cover a broad range of 
topics in relation to computational mechanics, including formulation theory, computational 
methods and techniques, modelling techniques and procedures, materials, deformation 
processing, materials removal processes, processing of new and advanced materials, 
welding and joining, surface engineering and other related processes.   
 
We would like to express our gratitude to all the members of the Local Organising 
Committee, International Organization Committee, and the International Steering 
Committee who have provided advice and guidance in planning and executing this 
conference. Our sincere thanks and appreciation go to some 200 international reviewers for 
their prompt review reports on the submitted papers. Our appreciation goes also to all the 
Mini-Symposium Organizers for their effort and contribution in the organization. We must 
single out some members involved in the daily services to this conference, Dr. Fangsen Cui, 
Dr. Yuan Cheng, Miss Tracy Tang, and many others.  A vote of thanks also goes to members 
at the Scientech Publisher USA for their management of the conference. 
 
We hope that the proceedings of this conference will provide a great venue of presenting 
and exchanging information for your scientific work. We all of you have a great time in this 
beautiful garden city Singapore. 
 
 
G.R. Liu (University of Cincinnati, USA) 
Z.S. Liu (National University of Singapore, Singapore) 
Conference Chairmen  
  

APCOM & ISCM 
11-14th December, 2013, Singapore
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Abstract
The mechanical microenvironment at a fracture site could potentially influence the outcomes of 
bone fracture healing. It is known that, should the fixation construct be too stiff, or the gap between 
the fracture ends be too large, bones are less likely to heal. Flexible fixation or so-called “biological 
fixation” has been shown to encourage the formation of fracture callus, and therefore result in better 
healing outcomes. However, till date the nature of the relationship between the degree of 
mechanical stability provided by a flexible fixation and optimal healing fracture healing outcomes 
has not been fully understood. This paper presents a computational model that can predict healing 
outcomes from early stage healing data under various fixation configurations. The results of the 
simulations demonstrate that the change of mechanical microenvironment of fracture site resulting 
from the different fixation configurations is of importance for the healing outcomes.

Keywords: bone fracture healing; locking compression plate (LCP); interfragmentary movements
(IFM); mechanical microenvironment;computational modelling.

Introduction

The flexibility of internal fixation systems affects the formation of fracture callus as a result of 
interfragmentary strain (IFS) at fracture site (Zhang et al. 2012). It has been demonstrated that the 
initial phase of healing is especially sensitive to IFS and influences the ultimate healing outcomes
as the initial interfragmentary movements are higher at early stage of healing after surgery (Carter 
et al. 1988; Klein et al. 2003). For example, it has been established that there is a strong correlation 
between hydrostatic fluid pressure and tissue differentiation in the initial stages of fracture healing 
(Carter et al. 1988), and that bone healing is influenced by the stability of initial shear fixation 
(Chell et al. 1995). However, despite several research efforts around the world over the last 
decades, there still remains a significant gap in our understanding of the relationships between 
mechanical stability conditions and the biology of bone fracture healing processes (Perren 2002b).

Apparently, soft callus formation is especially important for the stabilization of the fracture site 
through the stages of healing, and if not properly formed could result in malfunctional bone 
segment union. To improve the healing outcomes and avoid the risks of delayed union and non-
union, various types of fixation have been developed in the last decades. Standard fixation plates
which mainly focus on mechanical stability (so called “absolutely stability”) through the 
compression of standard plates against underlying bone using normal screws, could lead to delayed 
healing, damage to blood supply of fracture site and underlying periosteum (Szypryt and Forward 
2009). With the development of locking plate, which acts as an internal splint and load sparing 
device, the compression between plate and bone becomes unnecessary. Particularly, the application 
of locking plate in osteoporotic patient reduces the risks of fixation failure resulting from the pull 
out of screws (Szypryt and Forward 2009). In addition, the core diameter of a locking head screw 
(LHS) is normally larger than that of a standard cortical screw, and so could provide much greater 
strength in bending (200%) and shear (100%). The purpose of locking plate is to promote formation 
of fracture callus via allowing a certain degree of IFM at the fracture gap without compromising the 
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overall mechanical stability of the fracture site (Perren 2002a). However, as the mechanical 
properties of widely used locking plate material (e.g. stainless steel and titanium) are normally 
much higher than that of bone, standard locking plate might still suppress interfragmentary 
movements required for indirect bone healing (Claes et al. 2011; Henderson et al. 2008; Lujan et al. 
2010b). Further, although the locking plate allows some IFM to help simulate callus formation, the 
generated IFM is not uniformly distributed across the fracture site (i.e., much smaller IFM at near 
cortex in comparison to that at far cortex), and this spatially dependent IFM could lead to 
asymmetric tissue distribution within the callus, and ultimately delayed healing (Bottlang et al. 
2010; Lujan et al. 2010b).

Several attempts have been made to further improve flexibility of locking plates with the aim of 
simulating the formation of callus. For example, recent studies have been increasingly focused on 
the development of innovative plate materials with material mechanical properties more similar to 
bone such as composite polymers (JH and SH 2007; Kim et al. 2010; Zdero and Bougherara 2010)
and metal foams (Rabiei 2010; Rabiei 2012). However this new concept is still in its infancy and 
needs more biomechanical and clinical investigations in order to be widely accepted by the 
orthopaedic community. Clinically, the flexibility of the locking plates could be enhanced by 
adjusting the working length (WL), bone-plate distance (BPD) and number of screws (Ahmad et al. 
2007; Claes 2011; Hak et al. 2010; Miller and Goswami 2007; Stoffel et al. 2003), however the 
limitations of these surgical techniques lie in their incapability of solving the problem of the 
significant difference between the IFM at the near and far cortex zones of the callus which leads to 
asymmetric callus formation and possibly delayed healing and non-union (Bottlang et al. 2010; 
Claes 2011; Lujan et al. 2010b). To tackle this issue, the dynamic locking screw (DLS) was recently 
developed with the aim of increasing the IFM in the near cortex zone, and ultimately uniform callus 
formation (Bottlang et al. 2009; Bottlang and Feist 2011; Bottlang et al. 2010; Döbele et al. 2010; 
Doornink et al. 2011; Gardner et al. 2009; Gardner et al. 2010; Plecko et al. 2012; Sellei et al. 
2011). Different from LHS, DLS consists of an outer sleeve attached to the bone and an inner pin 
with reduced diameter at the near cortex resulting in the increase of the IFM on the near cortex side, 
and consequently enhancing callus formation in this area (Bottlang et al. 2010; Plecko et al. 2012; 
Sellei et al. 2011). However, none of these techniques has proved adequate till date due to the lack 
of fundamental understanding of the relationship between mechanical stability conditions and the 
biology of bone fracture healing process. Therefore, the objective of this paper is to develop a 
computational model that facilitates the understanding of the relationships between the change in 
the mechanical environment of a fracture site and varying fixation configurations of a locking plate 
system.

Methods

After surgical installation of internal fixation, the fracture callus is developed within the fracture 
gap by filling with granulation tissue during the first several days of healing during which the 
biomechanical condition is of critical importance for the ultimate healing outcomes (Epari et al. 
2006; Klein 2003; Thompson et al. 2002). At this stage, callus could be treated as a proous fluid 
saturated material (González-Torres et al. 2010) that could be modeled by the theory of porous 
media which is commonly used to study the mechanical behavior of biological soft tissues (e.g. 
cartilage and brain) (Oloyede and Broom 1991; Oloyede and Broom 1994; Zhang et al. 2007; 
Zhang et al. 2008; Zhang et al. 2009). Considering a particular constituent of a fluid-filled soft 
biological tissue (e.g. callus) occupies a domain 

0 , i.e. solid phase ( s ) or fluid phase 
( f ). The time-dependent position of the particle in the current Eulerian configuration t is 
given by
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   tXuXtXx ,,   (1)
where u is the  -constituent displacement. The volume fraction of solid and fluid phase may be 
defined respectively as

1 fs  (2)
Assuming intrinsically incompressible constituents, the Cauchy stress tensors of the solid and fluid 
phases are defined as

s
E

ss I  p (3)
Iff p (4)

where s
E is the elastic stress resulting from solid deformation and I is the identity tensor. If the 

solid constituent can be treated as hyperelastic, then
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(5)

where  suU is the Helmholtz energy per unit reference volume stored in the solid, sF is the 

deformation gradient of the solid phase, sss FFC
T

 is the right Cauchy-Green deformation tensor 
of the solid phase, and sFdetsJ is the volume change of solid phase.
Ignoring the body and inertial forces, the momentum equation of the solid phase is given by

0   (6)
where  is the Cauchy stress tensor for the  -constituent, s and f are momentum exchange 
vectors describing the frictional interactions between the solid phase and fluid phase. That is,

   sf vv  12
 ffs p (7)

where  is the symmetric Darcy permeability tensor.

Figure 1 Fixation conditions of locking plate for computational modeling of bone fracture 
healing characteristics at early stage.
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Table 1 Parameters used in this study (Lacroix and Prendergast 2002; Mccartney et al. 2005)

Young’s modulus
(MPa)

Poisson’s 
Ratio Porosity Permeability

(m4 /Ns)

Fluid phase 
compression 
modulus (MPa)

Solid phase 
compression  
modulus (MPa)

Granulation 
Tissue 0.05 0.17 0.8 10-14 2300 2300

Marrow 2 0.17 0.8 10-14 2300 2300

Cortical Bone 20000 0.3 0.04 10-17 2300 13920

This study will theoretically investigate the tissue development simulated by the change of
mechanical microenvironment of the fracture site resulting from various locking plate conditions. 
Error! Reference source not found. is a schematic diagram of the fixation conditions of the 
locking plate used in our analysis, and the values of parameters used in this study are shown in 
Table 1. The fractured bone is subject to a time-dependent load (P) applied over 0.5s simulating 
physiological walking load (approx. 20% of the normal body weight that a patient could withstand 
after surgery) (Goodship 1985).

Mechanoregulation of bone healing

Assuming mesenchymal stem cell differentiation within fracture callus is simulated by the change 
of biomechanical microenvironment of cells, Prendergast et al suggested that the differentiation 
process of stem cells are governed by a so-called “Stimulus Index (S)”, which is defined as
(Prendergast et al. 2010)

ba
S


 (8)

where a = 0.0375, b = 3  m/s,  is octahedral shear strain in callus and  is interstitial fluid flow 
within the callus. The values of  and  can be obtained by solving the governing equations (3) –
(7) using the commercial Finite Element software package COMSOL MULTIPHYSICS (2012).
Therefore, the stem cells could exert spatially dependent differentiation behaviour within the callus 
depending on the magnitude of S in a particular region of callus. During the early stage of bone 
healing (i.e. first week after surgery), high magnitude of stimulus index (S>3) results in formation 
of fibrous tissue inside the callus, an intermediate S (1<S<3) leads to cartilage tissue and bone 
formation via intramembranous ossification when the stimulus index S is small enough (S<1). 
During the next stages of bone healing, fibrous tissue is replaced by cartilage when 1<S<3 and the 
cartilage undergoes endochondral ossification and is replaced by woven bone when S<1. The 
mechanoregulaiton theory proposed by Prendergast et al has been used in this study. 

Synthes 4.5mm stainless steel Locking Compression Plate (224mm long, 17.5mm wide and 5.2mm 
thick with 12 locking holes) was used to compare the effects of various configurations of fixation 
using LHS, DLS and different BPDs on the healing outcomes. To promote indirect healing, 
intramembranous ossification is unfavourable at early stage of healing, in the meantime consistent 
and asymmetric callus formation is also of importance for ultimate healing outcomes (Lujan et al. 
2010a).
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Results and Discussion

Figure 2 Comparison of simulation results for callus formation in healing fracture sits under 
(a) LHS, BPD = 0mm (control); (b) LHS, BPD = 2mm; and (c) DLS, BPD = 2mm

Table 2 Tissue differentiation in the osteotomy gap
Type Intramembranous ossification Cartilage formation Fibrous tissue formation

(a) 37.10% 41.20% 21.70%
(b) 25.20% 44.70% 30.10%
(c) 15.10% 38.60% 46.30%

Figure 2 provides the prediction of tissue formation under (a) LHS, BPD = 0mm (control); (b) LHS, 
BPD = 2mm; and (c) DLS, BPD = 2mm, respectively. The amount of different tissues formation in 
the osteotomy gap (i.e. Intramembranous ossification, cartilage formation and fibrous tissue 
formation) is presented in Table 2. The simulation results demonstrate that under LHS, the increase 
of BPD by 2mm (Figure 2b) relative to the control (Figure 2a) has some beneficial effects in 
reducing intramembranous ossification by around 12%, however this increase of BPD is still unable 
to change the condition of asymmetrical tissue development within the callus due to the significant 
difference of interfragmentary strain between near and far cortex zones of the callus. In comparison 
to LHS, the use of DLS in combination with the increase of BPD produces the most encouraging
results, i.e. reducing intramembranous ossification by more than 20%, and most importantly leading 
to more consistent and symmetric tissue development. The simulation results indicate that the 
application of DLS has substantial potential for improving bone healing outcomes.

Conclusions

In this study, we have presented a computational model to predict bone fracture healing outcomes,
demonstrating that the model could quantitatively describe tissue differentiation pattern in the early 
stages of fracture healing. Most importantly, the predicted results indicate that innovative fixation 
techniques such as DLS, could potentially lead to better healing outcomes via significantly reducing 
intramembranous ossification while promoting symmetric tissue development within the callus.
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Abstract 
A coupled model based on finite element method (FEM) and scaled boundary finite element method 
(SBFEM) for transient dynamic response of large-scale SSI systems is presented. The well-
established FEM is used for modeling the near-field bounded domains. A local high-order 
transmitting boundary, which is based on SBFEM and the improved continued fraction solution for 
the dynamic stiffness matrix, is used for modeling the dynamic response of the far-field unbounded 
domains. The bounded and unbounded formulations are coupled via the interaction force vector at 
the interface. The standard equations of the coupled model in the time domain are obtained by 
combining the dynamic equations of bounded and unbounded domains, which can be solved by a 
direct time-domain integration method. The stability of the coupled system depends on the general 
eigenproblem of the coefficient matrices. Possible spurious modes can be eliminated using the 
spectral shifting technique. The validity of the coupled model is shown by means of two numerical 
examples. 

Keywords: Dynamic soil-structure interaction, Coupled FEM-SBFEM model, High-order 
transmitting boundary, Spectral shifting technique.  

1 Introduction 

Dynamic soil-structure interaction plays an important role in the design and safety assessment of 
structures, especially for large-scale structures, such as concrete dams, nuclear power plants, 
bridges etc. A rational and commonly used approach for modeling the whole system is to divide it 
into two parts. The first part is the near-field bounded domain, which contains the structure and a 
part of the adjacent soil and can be efficiently modeled by the finite element method. The second 
part is the far-field unbounded domain, which includes the rest of the infinite foundation. The major 
challenge is the accurate description of radiation damping at infinity. Here, the well-established 
finite element method cannot be used straightforwardly, since outgoing waves are reflected at the 
artificial boundaries of the finite element mesh. 
 
Over the past few decades, many numerical methods have been developed to model the wave 
propagation in unbounded domains. Generally, they can be classified into two groups, global and 
local procedures. The global procedures include the boundary element method (Beskos, 1987; 
Beskos, 1997), the thin layer method (Kausel, 1986; Kausel, 1994), exact non-reflecting boundaries 
(Keller and Givoli, 1989) and the scaled boundary finite element method (Wolf and Song, 1996). 
The local procedures include the viscous boundary (Lysmer and Kuhlemeyer, 1969), the viscous-
spring boundary (Deeks and Randolph, 1994; Liu et al., 2006), the artificial transmitting boundary 
(Liao et al., 1984), infinite elements (Zhao, 2009) and high-order absorbing boundary conditions 
(Engquist and Majda, 1977; Higdon, 1986; Bayliss and Turkel, 1980). The advantages, 
disadvantages and some progresses of these methods have been summarized in the review 
literatures (Tsynkov, 1998; Givoli, 2004; Lou et al., 2011) and are not repeated here. 
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The scaled boundary finite element method, developed by Wolf and Song in 1990s, is a semi-
analytical technique which excels in modelling wave propagation in unbounded and bounded 
domains. This method has the following distinguished features. First of all, the radiation condition 
for unbounded domain is satisfied rigorously without requiring a fundamental solution. Secondly, 
only the boundary of the domain is discretized as in the boundary element method, and the spatial 
dimension is reduced by one. Moreover, this method can be coupled seamlessly with the standard 
finite element method. Utilizing the advantages of the scaled boundary finite element method, many 
scholars have adopted it to study dynamic soil-structure interaction problems. 
 
Zhang et al. (1999) applied a piecewise linear approximation of the acceleration unit-impulse 
response matrix of the unbounded domain within one time step and simplified the solution of the 
time-consuming convolution integrals. Yan et al. (2004) coupled the finite element method and the 
scaled boundary finite element method for 3D dynamic analysis of soil-structure interaction in the 
time domain. Linear system theory was employed to improve the efficiency for solving the 
acceleration unit-impulse response matrix of the unbounded domain. Radmanovic and Katz (2012) 
made two improvements to the original method. Genes (2012) reported a coupled model for 
dynamic analysis of 2D large-scale SSI systems based on finite element method, boundary element 
method and scaled boundary finite element method, and presented a parallel computation algorithm 
for the coupled model. Schauer et al. (2011, 2012) introduced a parallel algorithm for a coupled 
finite element - scaled boundary finite element approach to study soil-structure-interaction problems. 
Due to high computational cost resulting from the application of SBFEM to large-scale problems, 
parallel computing based on PC clusters was employed to improve the computational efficiency. 
 
The original solution procedure, which is based on the solution of the acceleration unit-impulse 
response matrix of the unbounded domain, was commonly used in the above references. It is global 
in time and space, and thus computationally expensive. Alternative procedures, which aim at 
avoiding the convolution integral altogether by developing the scaled boundary finite element 
method directly in the time domain, have been proposed recently. Song and Bazyar (2008) proposed 
a Padé approximation for the dynamic stiffness matrix of an unbounded medium in the frequency 
domain, which has a large range and high rate of convergence. Bazyar and Song (2008) then 
developed a high-order local transmitting boundary based on a continued-fraction solution of the 
dynamic stiffness matrix. But the method may fail for systems with a larger number of degrees of 
freedom and for approximations of higher order. Birk et al. (2012) presented an improved 
continued-fraction solution for the dynamic stiffness matrix of an unbounded domain, which is 
numerically more robust and suitable for large-scale systems and arbitrarily high orders of 
expansion.  
 
This paper aims to develop a new coupled method that combines the bounded and unbounded 
domains in the time domain. Here, the bounded domain is modeled by the well-established finite 
element method. The unbounded domain is represented by the high-order transmitting boundary, 
which is based on the improved continued fraction solution for the dynamic stiffness matrix. 
 
The rest of the paper is outlined as follows. Section 2 describes some basic equations about the 
scaled boundary finite element method. Section 3 presents a new coupled method of bounded and 
unbounded domains. Section 4 demonstrates the application of the proposed coupled method to two 
numerical examples. Section 5 summarizes some major conclusions from this contribution. 

2 Summary of the scaled boundary finite element method 

The scaled boundary finite element method is introduced in detail by Wolf and Song (1996). For 
completeness, only some main equations are summarized in this part. 
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The scaled boundary finite element method is described in a local coordinate system, η, ζ on the 
boundary and the radial coordinate ξ. SBFEM defines the whole domain by scaling a boundary S 
relative to a scaling center O. The normalized radial coordinate ξ is a scaling factor, defined as 1 at 
the boundary S and 0 at the scaling center O. For a bounded domain, 0 1; whereas, for an 
unbounded domain, 1 . 
 
The displacements at a point ( , , )  are interpolated as 

1 2{ ( , , )} [ ( , )]{ ( )} [ ( , )[ ],  ( , )[ ], ]{ ( )}u N u N I N I u]{ ( )}]{ ( )]{                      (1) 

where [ ( , )]N  are the shape functions in the circumferential directions. { ( )}u  are the 
displacements along the radial lines and are analytical with respect to ξ only. 
 
The strains are derived as 

1 2
,

1( , , ) [ ( , )]{ ( )} [ ( , )]{ ( )}B u B u                                  (2) 

where 1[ ( , )]B  and 2[ ( , )]B  represent the strain-nodal displacement relationship. 
 
The stresses and strains are related by the elastic matrix [D] 

( , , ) [ ] ( , , )D                                                     (3) 

After expressing the governing differential equations in the scaled boundary coordinates, Galerkin’s 
weighted residual method or the virtual work formulation (Deeks and Wolf, 2002) is applied in the 
circumferential directions. In the frequency domain, the scaled boundary finite element equation in 
displacement is expressed as 

0 2 0 1 1 1 2 2 0 2
, ,[ ] { ( )} ( 1)[ ] [ ] [ ] { ( )} ( 2)[ ] [ ] { ( )} [ ] { ( )} 0T TE u s E E E u s E E u M u  (4) 

where s (=2 or 3) denotes the spatial dimension of the domain, and ω is the excitation frequency. 
The coefficient matrices 0[ ]E , 1[ ]E , 2[ ]E , and 0[ ]M  are obtained by assembling the element 
coefficient matrices calculated on the boundary. The coefficient matrices are written for three-
dimensional elastodynamics as 

1 10 1 1

1 1
[ ] [ ( , )] [ ][ ( , )] ( , )TE B D B J d d                                   (5a) 

1 11 2 1

1 1
[ ] [ ( , )] [ ][ ( , )] ( , )TE B D B J d d                                   (5b) 

1 12 2 2

1 1
[ ] [ ( , )] [ ][ ( , )] ( , )TE B D B J d d                                   (5c) 

1 10

1 1
[ ] [ ( , )] [ ( , )] ( , )TM N N J d d                                   (5d) 

3 Coupled method of bounded and unbounded domains 

3.1 Bounded domain  

The equation of motion of the bounded domain in the time domain can be expressed as 

[ ] [ ] { } [ ] [ ] { } { } {0}
[ ] [ ] { } [ ] [ ] { } { } { }

ss sb s ss sb s s

bs bb b bs bb b b b

M M u K K u P

M M u K K u P R

} [} [} [} [} [} [} [
} [} [} [} [} [} [} [

                          (6) 
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where [ ]M and [ ]K  are the mass and stiffness matrices of the bounded domain, { }u} , { }u} , { }u  are 
the acceleration, velocity and displacement vectors, { }P  is an external force vector acting directly 
on the bounded domain, while { }R  is an interaction force vector acting at the soil-structure interface. 
Subscript s  describes the nodes belonging only to the bounded domain, b  denotes the notes at the 
boundary belonging to both, the bounded and unbounded domains. Here, the stiffness matrix [ ]K  
and mass matrix [ ]M  are assembled by the finite element method (Zienkiewicz et al., 2005). 

3.2 Unbounded domain 

For an unbounded domain, the scaled boundary finite element equation in dynamic stiffness is 
expressed as 

0 1 2 2 01 1
,[ ] ( 2)[ ( )] [ ( )] [ ] [ ] 0[ ( )] [ ] [ ( )] [ ]TE s S S E MS E S E     (6) 

The continued fraction solution for [ ( )]S  at the high-frequency limit ( ) is expressed as 
(1) (1) 1 (1)[ ( )] [ ] [ ] [ ][ ( )] [ ]TS K i C X Y X                                       (7a) 

( ) ( ) ( ) ( 1) ( 1) 1 ( 1)
0 1[ ( )] [ ] [ ] [ ][ ( )] [ ]i i i i i i TY Y i Y X Y X   ( 1,2 , )cfi M, )cf,   (7b) 

where [ ]K , [ ]C , ( )
0[ ]iY  and ( )

1[ ]iY  are coefficient matrices to be determined recursively in the 
solution procedure. cfM  is the order of the continued fraction expansion. The solution of these 
coefficient matrices is described in detail in the work by Birk et al. (2012) and not repeated here. 
The additional factor matrices (1)[ ]X  and ( 1)[ ]iX  are introduced to improve the numerical stability 
of the solution. In the original method (Bazyar and Song, 2008), the coefficient matrix (1)[ ]X  is 
taken as a unit matrix [ ]I . But it may cause numerical difficulty or even erroneous results, 
especially for the systems with many degrees of freedom and high orders of continued fraction 
expansion. So an improved continued fraction method (Birk et al., 2012) is developed to overcome 
the numerical problem. Compared to the original approach, it leads to numerically more robust 
formulations and is therefore suitable for large-scale systems and arbitrarily high orders of 
expansion. The LDLT decomposition (Golub and Van Loan, 1996) is employed to obtain ( )[ ]iX . 
 
Using the improved continued fraction solution of the dynamic stiffness and introducing auxiliary 
variables, the force-displacement relationship with 1 on the boundary is expressed in the time 
domain as 

[ ]{ ( )} [ ]{ ( )} { ( )}u uK z t C z t f t( )} { (( )} {( )}(                                                        (8) 

with 
(1)

(1) (1) (2)
0

(2) (2)
0

( 1)

( 1) ( 1) ( )
0

( ) ( )
0

[ ] [ ] 0 0 0
[ ] [ ] [ ] 0 0

0 [ ] [ ] 0 0
[ ]

[ ] 0

0 0 0 [ ] [ ] [ ]

0 0 0 0 [ ] [ ]

cf

cf cf cf

cf cf

T

T

Mu

M M MT

M MT

K X

X Y X

X Y
K

X

X Y X

X Y

([ ([[
             (9a) 
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(1)
1

(2)
1

( 1)
1

( )
1

[ ]
[ ]

[ ]
[ ]

[ ]

[ ]

cf

cf

u

M

M

C

Y

Y
C

Y

Y

                               (9b) 

(1)

(2)

( 1)

( )

{ } { }
{ } {0}
{ } {0}

( ) ,   ( )

{ } {0}
{0}{ }

cf

cf

b b

M

M

u R
u

u
z t f t

u

u

,   f                                            (9c) 

where the vector { }z consists of the displacement vector { }bu  and the auxiliary variables ( ){ }iu  on 
the boundary. The vector { }f  contains the coupling forces { }bR  on the boundary. 
 

3.3 Coupled method of bounded and unbounded domains 

The bounded and unbounded domain formulations are coupled via the interaction force vector { }bR . 
For a linear system, the coupled equations of the bounded and unbounded domain in the time 
domain are obtained by combining Equation (6) and (8). It yields 

[ ]{ }+[ ]{ }+[ ]{ }={ }c c c c c c cK d C d M d f }}+[ ]{ }={}+[ ]{ }={                                              (10) 

with  

(1)

(1) (1) (2)
0

(2) (2)
0

( 1)

( 1) ( 1) ( )
0

( ) ( )
0

[ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ][ ]

[ ]

[ ] [ ] [ ]

[ ] [ ]

cf

cf cf cf
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[ ] [ ]
[ ] [ ]

[0]
[ ] [0]

[0]
[0]

ss sb

bs bb

c

M M

M M

M                                   (11c) 

( 1) ( )(1) (2){ } { } { } { } { } { } { }cf cf
TM M

c s bd u u u u u u(({ (                         (11d) 

{ } { ( )} { ( )} {0} {0} {0} {0} T
c s bf P t P t {0}                                 (11e) 

Equation (10) is a standard equation of motion with sparse symmetric matrices in the time domain. 
It can be converted to be a system of first-order ordinary differential equations with high-order 
stiffness and damping matrices. 

[ ]{ } [ ]{ } { }global global global global globalK z C z P} {} {} {} {}}                                         (12) 
Equation (12) can be easily solved by a direct time-domain integration method (Adhikari and 
Wagner, 2004). It should be noted that the stability of Equation (12) depends on the general 
eigenproblem for the coefficient matrices [ ]globalK  and [ ]globalC . If some positive real parts of the 
general eigenvalues are observed, the system will be instable. Therefore, it is very important to 
eliminate these spurious modes using the spectral shifting technique (Trinks, 2004). 
 

4 Numerical examples 

4.1 Example 1: Dynamic response of an elastic block on a homogeneous half-space soil 

The dynamic response of an elastic block on a homogenous half-space soil as shown in Figure 1 is 
studied. The soil’s properties are: shear modulus G1=G, Poisson’s ratio ν1=0.25, mass density ρ1=ρ. 
The properties of the elastic block are: shear modulus G2=G, Poisson’s ratio ν2=0.25, mass density 
ρ2=ρ. Plain strain state is considered. A uniformly distributed pressure P(t) with an amplitude P and 
a duration 3b/cs as shown in Figure 2 is applied on the top surface of the elastic block. This series of 
two triangular force pulses of different duration represents a combination of high and low frequency 
loading. The fixed time step t=0.02b/cs is selected. 
 
In the coupled method, the block and soil are discretized with 288 four-node finite elements and 
325 nodes as shown in Figure 3. The unbounded domain is modelled using the high-order 
transmitting boundary. It is discretized with 24 two-node line elements and 25 nodes. The scaling 
center of the unbounded domain is chosen at point O as shown in Figure 1. The dynamic analysis is 
performed using authors’ Matlab code. 
 
To evaluate the accuracy of the proposed coupled method, an extended mesh with a rectangle area 
21b×20b to the right of plain of symmetry is analysed using the finite element method. Only half of 
the symmetric system is discretized with 6768 eight-node elements of size 0.25b×0.25b, yielding 
20657 nodes. A fixed boundary condition is adopted in the reference finite element model. The 
implicit analysis is carried out using the commercial finite element software ABAQUS/Standard 
(ABAQUS, 2010). 
 
The vertical displacement responses at points A, O (see Figure 1) are plotted in Figure 4. The 
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results are non-dimensionalised with P/G. In case of the order Mcf=9, the results agree very well 
with the reference solution for time up to 10t . After that, slight deviations can be observed. By 
increasing the order to Mcf=15, the agreement between the results of the coupled method and those 
of the extended mesh is excellent.  
 

  
Figure 1.  Elastic block and half-space under 

strip loading Figure 3.  FE mesh of the coupled system 
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Figure 2.  Series of two triangular force pulses 
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Figure 4.  Dimensionless vertical displacements 
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4.2 Example 2: Seismic response of a gravity dam-foundation system 

As an application example, the seismic response of a concrete gravity dam as shown in Figure 5 is 
investigated. The concrete gravity dam of 89 m high is constructed on a homogenous semi-infinite 
rock foundation, which is extended to infinity. The dam’s properties are: modulus of elasticity 
Ec=25.44 GPa, Poisson’s ratio c=0.20 and unit weight c=26.0 kN/m3. The properties of the semi-
infinite rock foundation are exactly the same as those of the concrete. Plain strain state is considered. 
The design peak ground accelerations are 0.399g in the horizontal direction and 0.266g in the 
vertical direction, where g is the gravitational acceleration. The horizontal and vertical (2/3 
horizontal) components of the 1967 KOYNA earthquake records (see Figure 6) are applied to the 
nodes of the dam body. The performance of the dam for only empty reservoir condition is studied.  
 
In the coupled method, the system is discretized with 288 four-node finite elements and 325 nodes 
as shown in Figure 7. The semi-infinite foundation is discretized with 24 two-node line elements 
and 25 nodes. The scaling center of the semi-infinite foundation is located at the center of the dam-
foundation interface. The fixed time step t=0.02s is selected. 
 
In order to obtain another reference solution that can be compared with the proposed solution, the 
range of the dam foundation is extended to 2×104 m toward the upstream, downstream directions 
and 2×104 m in the vertical direction. The dam and foundation are discretized with 186520 four-
node elements and 187467 nodes. 
 
Time histories of the horizontal and vertical displacements at dam crest are plotted in Figure 8. 
Clearly, the numerical results obtained from the coupled method (Mcf=12) agree well with those 
obtained from the extended mesh. For the solutions of the extended mesh and the coupled method, 
the maximum horizontal displacements at dam crest are 3.44 cm and 3.33 cm, respectively. The 
maximum vertical displacements at dam crest are 1.09 cm and 1.05 cm, respectively. The relative 
errors of the horizontal and vertical displacements are 3.39% and 3.73%, respectively, which are 
both less than 5% and acceptable from an engineering point of view. 
 
To evaluate the efficiency of the coupled method, the computer times spent on the above analyses 
are recorded on a computer with Intel(R) Pentium(R) CPU G840 @ 2.80GHz and 4GB RAM. The 
extended meh and present approach in Example 1 take 37min41s and 7min57s, respectively. The 
computer times for the extended mesh and present approach of Example 2 are 2h13min46s and 
7min2s, respectively. Obviously, the present approach is more efficient. 
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(a) FE mesh of the system (b) SBFE mesh of the unbounded domain 
Figure 7.  Mesh of the gravity dam-foundation system 
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Figure 8.  Time histories of displacements at dam crest 

5 Conclusions 

A novel coupled method of bounded and unbounded domains is presented. The near-field bounded 
domain is modeled by the well-established finite elements. The far-field unbounded domain is 
represented by the high-order transmitting boundary, which is based on the improved continued 
fraction solution for the dynamic stiffness matrix of the unbounded domain. The coupled standard 
equation of motion of a linear system in the time domain is obtained by combining the dynamic 
equations of bounded and unbounded domains, which can be solved by a direct time-domain 
integration method. The results of two numerical examples demonstrate that the coupled method is 
more accurate and efficient in the time domain. The approach presented in this paper can easily be 
extended to three-dimensional problems, further study is ongoing. 
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Abstract
The scaled boundary finite element method (SBFEM) is a semi-analytical method in which only the 
boundary is discretized. The results on the boundary are scaled into the domain with respect to a 
scaling center which must be “visible” from the whole boundary. For beam-like problems the 
scaling center can be selected at infinity and only the cross-section is discretized. 
A new element for thin-walled beams has been developed on the basis of the Reissner-Mindlin plate 
theory. The beam sections are considered to be multilayered laminate plates with arbitrary layup. 
The cross-section is discretized with beam elements of Timoshenko type. This leads to a system of 
differential equations of a gyroscopic type, for which the solution is known. 
The element has been tested and compared with a finite element model and it gives good results. 

Keywords: SBFEM, thin-walled beams, semi-analytical, Reissner-Mindlin theory 

Introduction 
Beams and beam-like structures are widely used in mechanical and 
civil engineering. Due to lightweight reasons these beams are often 
made of thin-walled sections. And recently new materials like fiber-
reinforced plastics and other composites are used which are usually 
made of layers of differently oriented plies. With the number and the 
orientation of the plies and the order and the thickness of each ply 
there are many parameters, which can be adjusted during an 
optimization. Thus an effective and reliable computational method is 
needed. 
The scaled boundary finite element method (SBFEM) is such a 
method. It is a semi-analytical method for which only a discretization 
of the boundary is needed and an analytical solution is used within 
the body. It doesn't need a singular fundamental solution like the 
boundary element method (BEM) or a discretization of the whole 
body like the FEM. So it has the benefits of both the FEM and the 
BEM without adopting the detriments. 

Let us start with a beam of arbitrary cross-section. This means that the cross-section does not need 
to be thin-walled. Then the SBFEM uses a separation approach to solve the differential equations 
for the displacements u in the framework of linear elasticity. The function u1 scales the 
displacements of the boundary into the body. Or like in this work it scales the displacements of the 
cross-section along the beam. The boundary or the cross-section, respectively, is described by the 
function u2 for which a finite element approach is used. 

     zy,uxu=zy,x,u 21   (1) 

The coordinates y and z are on the cross-section (or the boundary) and x is directed along the beam 
axis (or into the body) which is depicted for a beam in figure 1.  
Inserting this ansatz and the virtual work principle gives a differential equation of Euler-type 
(scaling center within the body) or of gyroscopic type (beam-like problem). For both differential 
equations the solution is known. 
This method is a discrete Kantorovic method, which has been previously used also by other 
working groups, which is summarized below. 

Figure 1: SBFEM for a 
beam
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For an arbitrary 3-dimensional case Dasgupta (1982) published the first work about SBFEM and 
Wolf and Song (1996) developed this method further. First it was used to calculate the dynamic 
stiffness of an unbounded domain but body loads, incompressible material and bounded domains 
can be included in this method. Originally this method was called “consistent infinitesimal finite-
element cell method” but using a different way to derive the equations the name “scaled boundary 
finite element method” (SBFEM) has been introduced (Wolf 2002). 
Due to the analytical part of the solution the SBFEM can be used to calculate stress singularities at 
cracks which is done in (Wolf 2002) and in (Mayland and Becker 2010). 
In Dieringer et al. (2011) thin plates are described by using 1D elements for the boundary. Here 
Kirchhoff's kinematics is used to reduce the dimension by one. 
For the case of slender cylindrical bodies like beams several groups developed similar or identical 
methods. The method developed at the University of Milan is equal to the SBFEM. In (Giavotto et 
al. 1983) the method is derived by introducing warping functions of the cross-section. These 
functions are only dependent on x. In (Morandini et al. 2010) the separation ansatz and a virtual 
work formulation are used. In contrast to this work, also 2D elements for the discretization of the 
cross-section are used. The aim is to calculate stiffnesses for the beam which are used in multi-body 
simulations. 
Under the name “semi analytical finite elements” (Dong et al. 2001, Kosmatka et al. 2001, Lin et al.  
2001) a method equal to the SBFEM is used to find de-Saint-Venant solutions. In (Alpdogan et al. 
2010) this method is employed to examine end effects and transitional effects in prismatic beams. 
For the discretization 2D elements are used. In (Taweel et al. 2000) this method is extended for the 
calculation of wave reflections on free ends of cylinders. And in (Gavric 1994) the same is done for 
thin-walled beams using Kirchhoff-theory. One simplification is, that within an element the 
membrane and bending components do not interact. 
Argyris and Ka ianauskas (1996) use the same approach under the name SFE (Semi-analytical 
Finite Elements). Instead of the Dirichlet-Functional (virtual work principle) they employ the 
Hellinger-Reissner-Functional. 1D elements are used for the discretization of the cross-section of 
thin-walled beams. But only shear stresses and normal stresses in the direction of the beam axis are 
considered. Based on this theory they develop “semi-analytical based finite elements”. 
Schardt (1989) developed a “generalized beam theory” for thin-walled beams. 1D elements are used 
for the discretization of the cross-section. But the Kirchhoff-theory is taken as framework and for 
sake of simplicity some stresses are neglected. Silvestre and Camotim (2002) extend this method 
for orthotropic materials where again some stresses are neglected. 
In (Altenbach et al. 1994a) and (Altenbach et al. 1994b) a generalized Vlasov theory is developed. 
1D elements and Kirchhoff's plate theory are used. Neglecting stresses gives the theory of Schardt 
or Vlasov. 
Artel and Becker (2006) use the SBFEM to calculate free-edge effects in laminates. 2D elements 
are employed to describe the boundary. 

Theory
The theory is first presented for one element. The assembly of 
several elements is described later. 
New coordinates ( ,  and ) are introduced for each element. 
is along the beam axis (x-axis) and  and  are in the cross-
section (y,z plane).  and  are scaled so that they reach from 0 
to 1. 

Kinematics 

The kinematics of a Reissner-Mindlin plate is presumed (Yang 
et al. 1966). One reason is that the Reissner-Mindlin theory is 
of higher order than the Kirchhoff-theory and includes 
transversal shear. Another reason is that a finite-element with 
Reissner-Mindlin theory has less unknown functions than an 
element based on Kirchhoff's kinematic. The element with 
Kirchhoff's kinematic has 8 degrees of freedom (dof) but gives 
an equation of 4th order. After linearization it has 8*4=32 unknown functions. The Reissner-
Mindlin element (as used here) has 11 dof, but the equation is only of 2nd order. Thus it has 
11*2=22 unknown functions. 

Figure 2: SBFEM Element 
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The key idea is that the displacements are traced back to the displacements and rotations of the 
middle plane (index 0) 

     
     

   ,w=,,w

,+,v=,,v

,+,u=,,u

0

0

0





 (2) 

where  and  denote the in-plane coordinates and  the coordinate in the thickness direction of the 
plate. The in-plane strains are given by 

     0, 0, 0, , = + z , ,        (3) 

and the out-of-plane strains are 
0 0 0 0 0, ,= = w + = = w + =  (4) 

where

,,,,,,,,
+===v+u=v=u= 0000000   (5) 

In total this can be written as a matrix equation 

 L u  (6) 
where  comprises all strain components, u comprises the midplane displacements and rotations and 
L denotes a respective differential operator. 

Constitutive relations 

The constitutive relations are the ones proposed by Yang et al. (1966) where the classical laminate 
theory (CLT) is extended and the shear strains  und  and the shear stresses  and  are 
included.
The stresses are integrated over the thickness h of the plate 

       
   

N ,N ,N = , , d , M ,M ,M = , , d ,
Q ,Q = , d

 


 (7) 

which gives the normal and shear forces N , N  and N , the bending and drilling moments M , M
and M  and the transversal forces Q  and Q .
These cross-sectional forces are related to the strains and curvatures by a corresponding laminate 
stiffness Matrix C
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(8)

where the stiffness coefficients for a laminate plate with n layers are defined by  

   21,m
ij ij ij ijA ,B ,D = Q , d  (9) 

Herein the quantities m
ijQ denote the reduced stiffnesses of a single orthotropic layer. See (Yang et 

al. 1966) for further information. 
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Scaled boundary finite element approach 

In the present SBFEM approach the degrees of 
freedom are the displacements u, v and w and the 
angles of rotations  and . A linear shape 
function for u, v,  and  is chosen. For w a 
quadratic function is used to avoid shear locking of 
the plate. This corresponds to the “consistent 
interpolation Timoshenko beam element” described 
in (Reddy 1997). It gives an element which has 11 
degrees of freedom, as indicated in figure 3. 

The SBFEM approach can briefly be written as 

     e, = u N u  (10) 

where u are the displacements and rotations, N the matrix containing the shape functions and ue the 
vector with the degrees of freedom of the element. 

Virtual work principle 

The virtual work principle is given by 

i a= dV = dV + dA=     u p u t  (11) 

where  indicates virtual displacements and strains. p denotes the volume forces and t the forces at 
the boundary. Using the kinematics and the scaled boundary finite element approach for the 
displacements gives 

      2 1e e e, = = = = +
 

  
Lu LN u Bu B B u  (12) 

The matrix B can be divided into two parts. The first one contains the derivatives with respect to 
and the second one the derivatives with respect to .
Inserting these representations into the virtual work principle and using the constitutive equation 
gives

 
       

0 1 1 2 0 1
0

0

1 1 ...

... ,0

x=l
T T T T

i e e, e, e e e, e
x=

x=lT s s T
e e ax=

= + +l u dx+ + =
l l

= l + x,b x dx+ =

       
   

 




u E u E E u E u E u E u

u p f f u f
 (13) 

where the matrices Ei are

0 1 1 1 2 1 2 2 2
T T T= bd , = bd , = bd  E B CB E B CB E B CB  (14) 

and the forces at the boundary and the volume forces are given by 

   

 
 
 
 
 

   

 
 
 
 
 

   s T T T

N , N ,
N , N ,
Q ,, = , = Q , bd , = , bd

M ,M ,
M ,M ,

   
   
   
   
   

     

 f N f N p N p  (15) 

Here f s are the forces at the side-faces of the element ( =0 and =1). f are the forces at the ends of 
the element ( =0 and =1) and p̄  contains the volume forces. The load vector p (Yang et al. 1966) is 
defined by 

   TT
= p p p P P = f d f d f d f d f d    p  (16) 

Figure 3: Degrees of freedom of an element
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The virtual displacement ue is arbitrary and thus the equation 

      0 1 1 2
1 ,0T s s

e, e, e+ +l u = l + x,b x
l

  E u E E u E p f f  (17) 

and the boundary condition 

 0 1
1 T

e, e+ =
l

E u E u f  (18) 

have to be fulfilled. 
In the further work only the homogeneous differential equation (17) is 
considered. The volume forces p̄  and the forces at the side-faces (f s)
are supposed to vanish.

Assembling several elements 

Above the equations for one element are given. For each element j the 
matrices Eij are calculated in the local coordinate system. After that 
these elements have to be assembled. 
Using elements which are oriented differently gives a problem. There 
are 5 degrees of freedom in the element, but 6 degrees of freedom are 
needed when joining elements with different normal directions. In 
figure 4 this problem is depicted. From the point of view of plate 2 the 
rotation  about the plate normal is missing. 
For nodes in edges this additional degree of freedom i is introduced. 
The vector ue for elements containing this node becomes 

 1 1 1 1 1 1 2 2 2 2 2 2
T

e m= u v w u v w wu  (19) 

The matrices Eij for these elements get additional columns and rows with zero entries. Nodes in the 
middle of an element and nodes where the elements are in one plane don't need this additional 
degree of freedom. So for further calculations they are left in local coordinates.  
The degrees of freedom for these edge-nodes are transformed into a global coordinate system which 
is done by a rotation about the -axis (using the rotation matrix T). 
These transformed matrices Eij

g can be given by
g l T
ij ij=E TE T  (20) 

and they are assembled by adding up the matrices for each element. This gives an SBFEM equation 
which has the same form like the one for a single element. But the unknowns are u, which contains 
the degrees of freedom of all nodes and the matrices Ei

g, which are the assembly of the Eij
g.

The resulting SBFEM equation is of a gyroscopic type (see Tisseur and Meerbergen 2001). E0 is 
symmetric and positive definite and E2 is positive semidefinite with 4 zero-eigenvalues and E1-E1

T

is antisymmetric. Thus the eigenvalues are symmetric to the real and the imaginary axis. 
As explained in (Morandini et al. 2010) this problem has 12 zero-eigenvalues and only 4 
corresponding eigenvectors. These eigenvectors describe the rigid-body displacements and the 
rotation around the -axis. There are two Jordan-Blocks of size 2 which also describe the torsion 
and the strain of a de-Saint-Venant problem. The two other blocks are of size 4 and describe the 
rotation about the - and -axis and the bending of a de-Saint-Venant beam due to forces and 
moments. 
The solutions with non-zero eigenvalues describe end-effects which decrease exponentially. 

Solution process 

The SBFEM equation (17) is solved via a matrix exponential as it has been proposed by Song 
(2004). So first of all it has to be transformed into a linear matrix differential equation. For this 
purpose new variables ũ  are introduced which are defined by

,= l u u  (21) 

Figure 4: Rotational dof 
at 2 different elements 
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Now the SBFEM equation can be written as a matrix differential equation of first order: 

 
,

1 1 T
, 0 2 0 1 1

= l  

    
          

u u
u E E E E E u

0 1
 (22) 

or simply 

, = H  (23) 

The matrix exponential function 

 
2 2

...
1 2

= e = + + +
! !

 
  

 
H H Hc c1  (24) 

solves the differential equation and the vector c contains the integration constants, which are 
determined by the boundary conditions.  
For positive eigenvalues and  some entries in eH  become very large which is obvious for an 
eigenvalue-solution i=e vi (where i is the solution made of the i-th eigenvalue i and the i-th 
eigenvector vi). These solutions are of a significantly larger order of magnitude than the solutions 
with negative eigenvalues. Due to numerical problems like rounding errors the Jacobian matrix and 
thus e  then become almost singular. 
To avoid this problem a shift is introduced. First positive eigenvalues are separated from zero and 
negative eigenvalues. Like in (Song 2004) a block-diagonal Schur decomposition 

1
s s= S T HT  (25) 

is used to obtain the block-diagonal Matrix S.

0

0 0
0 0
0 0

p

n

 
 
 
 

S
S S

S
 (26) 

Each block is an upper triangular matrix and the elements on the diagonal are the eigenvalues of H.
They are sorted in a way that Sp contains the positive eigenvalues, S0 the zero eigenvalues and Sn
the negative eigenvalues. 
Then the matrix exponential with the shift  1 is applied, which leads to the solution 

 

 
0

1
0 0

0 0
0 0

p

s

n

e

= e =

e

 
 
 
 
 
 
 

S

S

S
T c Wc  (27) 

The integration constants c are determined by the boundary conditions. For given displacements the 
corresponding lines of W (for  =0 and/or =1) are written into a matrix K. For given loads the lines 
of (E0 E1

T)W are written into K. And the corresponding displacements and loads are written into a 
vector f.
Solving the equation 

=Kc f  (28) 

gives the integration constants c and the SBFEM equation is 
solved. 

Results
First one single element has been tested. As depicted in figure 5 
one end of the element is clamped and at the free end unit-forces 
and unit-moments are applied. Three different sections are tested. 
An isotropic section made of steel, a section made of a symmetric Figure 5: Cantilever beam 
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laminate [0,90,±45]s and an asymmetric laminate [0,90,±45]. The comparison of the displacements 
at the free edges with FE simulations gives good results. The element is only a bit too stiff, which is 
a characteristic of the displacement method used in this work and thus expected. 
Then models of thin-walled beams are built up using these new elements. The calculated 
displacements are compared with those of a FEM-calculation. Three different cross-sections are 
considered: a plate, an L-profile and a rectangular box. The same three sections as above are tested. 
The test-case is again the cantilever beam, which is loaded with forces and moments on its free end 
(see figure 5). The displacements of nodes at the free end are compared with the FEM solution. 
In the FE model the thin-walled beam is modeled with rectangular shell elements in ABAQUS. For 
both FEM and SBFEM the displacements and rotations at the clamped end are suppressed and the 
load is distributed over the cross-section.

In figure 6 and figure 7 the errors of the SBFEM compared to the FEM solution are displayed for 
the plate with the asymmetric layup. In figure 6 the SBFEM results are seen to converge towards 
the FEM solution. For the strain of the plate the solution for u is already very good for one element, 
because the solution doesn't depend on y. For the bending about the z-axis the solution depends on 
y. Thus the result for v is not very good for one element, but converges rapidly. This rapid 
convergence is the case for all other loads but the torsion. In figure 7 the convergence for the 
displacement w of one edge and the rotation angle  about the x-axis is shown. The case depicted 
here is the worst case, but also for the other materials (symmetric laminate or steel) the convergence 
for torsion is not very good. This may result from missing shear correction factors and is still under 
investigation.
The results for other cross-sections are quite similar. The results converge quickly as long the 
elements aren't twisted. When a torsion is applied to a closed cross-section like the rectangular box 
the elements aren't twisted but only sheared. Thus the convergence is good. But for open cross-
sections like a L- or a I-profile the elements are twisted and the convergence gets poor. 
Another remarkable result is that the agreement between the FEM and the SBFEM is good for the 
displacements of leading order. Displacements of a smaller order of magnitude don't match very 
well. It has to be checked whether this is due to numerical results in the SBFEM or due to a FEM 
solution which isn't fully converged. 

Conclusions and Outlook 
In this work a new element for the scaled boundary finite element method has been developed. Its 
area of application are thin-walled composite beams. Thin-walled sections of a cross-section are 
modeled with 1 dimensional Timoshenko-like elements which include shear normal to the element. 
First tests show a quite good convergence.
In further work distributed loads and loads at the side-faces will be included to the method. 
An analysis of the strength of the beam is also possible. For that the stresses within each layer have 
to be calculated, which can be done using the kinematics and the material laws. 
Additionally a Hellinger-Reissner functional can be used instead of the Dirichlet functional. Thus 
shear locking can be avoided and the additional degree of freedom wm in the middle of the element 
is no longer required. 

Figure 6: Concergence of SBFEM 
solution (plate made of asymmetric 

laminate), u is the displacement into x-
direction due to a unit-force in x-

direction, v is the displacement into y-
direction due to a unit force in y-direction

Figure 7: Concergence of SBFEM 
solution (plate made of asymmetric 

laminate), w is the displacement into z-
direction due to a unit-moment about the 
x-axix,  is the rotation around  the x-axis 

due to a unit moment around the x-axis 
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Abstract
A computer simulation using discrete element method (DEM) was applied to a 

comminution/detachment process of waste printed circuit boards (PCBs). Recycling of PCBs is an 
important subject not only from the treatment of waste but also from the recovery of valuable 
metals. However, direct simulation method to investigate a comminution/detachment process of 
PCBs has not yet been established. We have already published an indirect simulation using the 
general spherical particle model to discuss the mechanism of parts detachment and board breakage. 

This study prepared simulant PCBs on which some capacitors were solder-mounted and 
used for the comminution test to compare with simulation results. In order to calculate the behavior 
and comminution/detachment process of PCBs, a PCB was constructed many fine particles and 
particle based rigid body model was also included to the simulation. This simulation could directly 
represent the behavior of PCBs in the drum typed agitation mill. Simulation results successfully 
corresponded to comminution experimental results using drum type mill with agitator.

Keywords: DEM, Particle based rigid body, Comminution, Recycling

Introduction

The amount of electronic waste, commonly known as e-waste, waste electrical and 
electronic equipment (WEEE) is increasing at a rate of 3-5 % per annum [Herat 2007]. In order to 
reduce final waste volume and decline environmental burden, it has been expected that the 
recycling system of e-waste is established. A printed circuit board (PCB) is one of the most 
important components of e-waste, and contains many electronic components such as resistors, 
capacitors, relays, semi-conductors and IC chips. These components have not only many valuable 
metals but also many hazardous chemicals. Although their composition varies slightly depending on 
the grade, usage and manufacturing year, PCBs represent a useful source of recoverable material 
values. Efficient recycling and appropriate material treatment will ensure that non-renewable 
resources are recovered and environmental pollution is prevented.

The computer simulation is an important means of scientific research. The Discrete Element 
Method (DEM) predicts the behavior of the whole particles from the motion of individual particles 
(Cundall and Strack 1979). Therefore, in order to analyze the behavior of particle flow and 
investigate phenomena of powder particles, the DEM is widely used and has been applied to 
powder simulation such as fluid bet, ball mill, slope failure, and so on. On the other hand, in order 
to apply DEM to breakage phenomenon, there are some methods which construct an object by 
bonding many fine particles, analyze contact force of constituent particles, and break the bonds
between fine particles if contact forces became over a threshold level. However, it has not been 
investigated which models are adequate for the grinding process.

The objective of this study was to apply DEM simulation to comminution process in drum 
type agitation mills and to investigate the mechanism of mechanical detachment to remove 
electronic components from printed circuit boards (PCBs). In addition to the conventional model, in 
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this study, two DEM simulation models were constructed. One is the particle breakage model. The 
other is the particle-based rigid body model. Simulation results were compared with experimental 
results using test PCBs. And then we investigated whether simulation results successfully 
corresponded to comminution experimental results or not.

Comminution experiment

Preparation of test PCBs

A test PCB was prepared to stabilize comminution experimental results. A double side glass 
epoxy PCB (FR-4, Picotec International, Taiwan) and, 10 F and 35 V of several ceramic 
condensers (GP075F106Z, Taiyo Yuden, Japan) were used for a test PCB. Nine ceramic condensers 
were solder-mounted at regular intervals on a PCB. A PCB was 210×155 mm and weighed 92.8 g. 
A ceramic condenser weighed 0.14 g.

Drum-typed impact agitation mill

Two types of drum-typed impact agitation mill (Parts separator, Hirata corporation, Japan) 
were used for comminution tests. The mill is a cylinder, 0.86 m diameter and length. The cylinder 
axix is inclined at 30° from the vertical, and a mechanical stirrer is installed in the bottom of the 
drum. There are two projections on the surface of the stirrer and the wall. There is a slight 
difference between two types of agitation mill. Type A has bigger mechanical stirrer than Type B. 
These simulation models of the agitation mill constructed in DEM simulation are shown in Figure 1.

Figure 1 Schematic of drum-typed impact agitation mill represented in the DEM simulation
(Left : Type A, Right : Type B)

Comminution test

In the parts detachment test, the grinding time was fixed at 30 s. The rotation speed was 
changed from 300, 500, 1000, or 1500 rev/min. The mill was charged with 5 – 100 pieces of PCBs. 
All of comminution products were collected and weight of each PCB and number of remaining 
parts on PCBs were counted.
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DEM simulation method

Spherical particle model

A spherical particle model is based on the original DEM concept proposed by Cundall and 
Strack. Contact between particles and between a particle and a wall is modeled using a Voigt model 
consisting of a spring and a dashpot in normal and tangential directions. A slip model defined by the 
friction slider is included in the tangential force. Table 1 gives parameter values used in the 
spherical particle model.

Table 1 DEM simulation conditions in the spherical particle model
Spring constant

Coefficient of restitution
Coefficient of friction
Diameter of a particle
Number of particles
Weight of a particle

5.0×106 N/m
0.10
0.27

0.1 m
5 - 100
92.8 g

Particle breakage model

In the particle breakage model, PCBs and parts geometry were constructed consisting of 
many fine bonded particles. A phenomena of parts detachment was modeled by breaking the bonds
between fine particles if contact forces became over a threshold level. An anchoring concept was 
developed as a new bonding model to avoid displacement of the bonding point between particles. In 
this case, torque and bonding force between bonded two particles, i and j, were calculated as 
follows.
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Where Ti and Tj were the torque vectors between two bonded particles, i and j, and x, y and
z were the difference in rotation angles between two bonded particles around the x, y and z-axis. 

In this case, the contact point between two bonded particles was set at the origin, the normal 
direction was set as the z-axis and the tangential direction were set to the x and y axes. TDi and TDj

were the torques calculated in an original DEM model without particle breakage. K was the spring 
constant vector in the original DEM model without particle breakage. a was the anchoring area 
between two bonded particles.

The connection between two particles was considered to be broken if the bonding force 
calculated from DEM rose above a set threshold level. The threshold level was determined from 
tensile tests. The DEM parameter used for the particle breakage model are shown in Table 2.

Table 2 DEM simulation conditions in the particle breakage model
Diameter of configuration particles per a PCB

Diameter of anchoring area
0.15 m
1.5 mm
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Particle-based rigid body

Since the shape of waste PCBs is complicated, waste PCBs cannot be directly simulated in 
the original DEM. In order to investigate the behavior of these waste PCBs in the agitation mill, a 
particle-based rigid model was included into the original DEM.

The motion of a rigid body is computed by dividing motion into two parts: translation and 
rotation. Translation describes the motion of the center of mass, whereas rotation describes how the 
rigid body rotates around the center of mass. A detailed explanation is reported by Baraff (1997).

In this method, the shape of waste PCBs and the collision detection are based not on the 
polygons that represent the rigid bodies, but on particles, as done by the authors (Bell, 2005; Tanaka 
et al., 2006). A waste PCB is represented by a set of fine particles that are spheres of identical size.

The calculation conditions of a waste PCB represented in this model were shown in Table 3. 
The diameter of constituent particle was set at 5 mm. These particles were aligned in the shape of a 
lattice. Snapshot of a waste digital camera in this model was shown in Figure 2.

Table 3 Calculation condition of a waste PCB in Particle-based rigid body model
Particle diameter

Number of particles constructed board
Number of particles constructed part

Number of parts
Mass of a PCB

5 mm
41 × 32

2
9

92.8 g

Figure 2 Snapshot of PCBs constructed of particle-based rigid body model

Collision energy

Breakage of PCBs is caused by collision between PCBs, a PCB and drum wall or agitator. 
Calculation of the damping energy generated during the collision would be crucial to investigate the 
mechanism of comminution process. In this study, we counted damping energy during collision of 
PCBs in order to grasp collision energy of them. Dumping energy was calculated from consuming 
energy in dashpot and friction slider of the Voigt model during collision. This is given by:

  dtPdtPE fricitondashpotloss (4)
where Eloss was damping energy, Pdashpot and Pfriction were respectively the rates of energy 
dissipation in dashpot and friction slider.

Results and Discussion

Experimental results of comminution test

Experimental snapshots of test PCB before/after comminution are presented in Figure 3. 
After comminution test, most parts were detached from the boards, as shown in snapshots (b) and 
(c). A part of PCBs was broken like snapshots (c) while most PCBs were unbroken like snapshots 
(b). Detached parts were unbroken like snapshots (d).
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Figure 3 Result of comminution experiment for test PCB using drum-typed impact agitation mill:
(a) test PCB before comminution test, (b) unbroken PCB, (c) broken PCB, (d) detached parts

Figure 4 Result of comminution experiment for test PCB using drum-typed impact agitation mill:
(left : relationship between input number of PCBs and part detachment,

right : relationship between rotation speed and part detachment)

Figure 4 shows the result of comminution experiment for test PCBs. The left graph shows 
that the relationship between percentage of part detachment and number of PCBs in the mill charge. 
In this comminution tests, the rotation speed was fixed at 500 or 1000 rpm. As shown in the left 
graph of Figure 4, the percentage of part detachment was increased with the number of PCBs. These 
results suggested that interaction between PCBs became more frequent and parts detachment from 
the board was accelerated. The more input of PCBs is better to achieve parts liberation from the 
board. On the other hand, the right graph of Figure 4 shows the relationship percentage of part 
detachment and rotation speed. In these comminution tests, 100 pieces of PCBs were charged in the 
mill par a batch. As shown in the right graph of Figure 4, the percentage of part detachment 
increased with rotation speed. The percentage of part detachment in drum type A was larger than 
that of part detachment in drum type B at each rotation speed. These results indicated that the stress 
became high when the edge of agitator was narrow, and that the shape of agitation at the bottom of 
the mill affected the part detachment.

Simulation results of the particle breakage model

Figure 5 shows a snapshot of DEM simulation using the particle breakage model. In this 
simulation results, rotational speed was 500 rev/min and the mill was charged with 20 PCBs. The 
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PCBs were agitated by the stirrer, and part detachment process in the mill could be directly 
represented in this simulation result. In this simulation, the connection between two particles was 
considered to be broken if the contact force between bonded particles calculated from DEM rose 
above a set threshold level. The threshold level for the connection between the part particle and the 
board particle was set as 750 times less than that for the connection between particles inside the 
board, by reference to experimental results of the breakage energy for parts detachment and board 
breakage.

Figure 5 Snapshots of DEM simulation results using the particle breakage model

Figure 6 shows the percentage of parts detachment of the board calculated from DEM 
simulation results. When compared with experimental results for parts detachment, upward trend 
for the percentage of parts detachment to the rotational speed of agitation accorded well with 
experimental results. These results indicated that this particle breakage model was one of the 
adequate models to simulate the behavior of PCBs and represent parts detachment of the boards.

Figure 6 Comparison of parts detachment between DEM simulation and experiment
(Left : Type A, Right : Type B)
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Simulation results of the particle-based rigid model

Figure 7 shows the relationship between each rotational speed of the agitator and collision 
energy calculated from the particle-based rigid model simulation. As the rotational speed of the 
agitation was increased, collision energy was also increased. The collision energy between the 
particle and the agitation or the drum wall were much larger than the collision energy between
particles. While the collision energy between the particle and the agitation or the drum wall were 
dramatically changed with rotational speed, the collision energy between particles was gradually 
increased with rotational speed. These results indicated that the comminution process of PCBs 
mainly was promoted by the collision of the agitation and the drum wall. 

In order to conduct a detailed investigation of the collision energy, Figure 8 shows the 
collision energy distribution. In this simulation results, rotational speed was 500 rev/min and the 
mill was charged with 50 PCBs. As shown in Figure 8, the number of collisions between particles 
was much larger than that of collision between particles and the drum wall, the agitator or the 
projection. Although the number of collisions between particles was large, the collision energy 
between particles was smaller.

Figure 7 Relationship between rotational speed and collision energy in type A simulation

Figure 8 Collision energy distribution (Type A, Rotational speed : 500 rpm)
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Conclusion

Mechanism of part detachment of PCBs by comminution in two drum type agitation mills 
was investigated from both of the experimental approach and simulation. Comminution experiments 
using glass-epoxy double side printed circuit boards soldered with nine ceramic condensers were 
carried out. The comminution process of PCBs was also investigated by two types of DEM 
simulation.

Experimental results showed that the percentage of parts detachment of the board increased 
with input number of PCBs and rotation speed. The interaction between PCBs affected parts 
detachment. Although only an indirect study was possible for part detachment and the behavior of 
PCBs using an original DEM simulation model, DEM simulation with particle breakage model and 
particle-based rigid model could directly represent the behavior of PCBs. The relationship between 
part detachment and rotation speed of the agitation simulated by a DEM model with particle 
breakage qualitatively corresponded to experimental observations of comminution using test PCBs. 
The result of DEM simulation with particle-based rigid model showed although the number of the 
collisions between PCBs was larger than others, the collision energy between PCBs was smaller 
than others.
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Abstract 
In this work, a new family of time marching procedures based on Green’s function matrices is 
presented. The formulation is based on the development of new recurrence relationships, which 
employ time integral terms to treat initial condition values. These integral terms are numerically 
evaluated taking into account Newton-Cotes formulas. The Green’s matrices of the model are also 
numerically computed, taking into account the generalized-  method and subcycling techniques. As 
it is discussed and illustrated along the text, the proposed procedure is efficient and accurate, 
providing a very attractive time marching technique. 

Keywords: Dynamics, Time-Marching, Green’s Function, Generalized-  Method, Subcycling.  

Introduction 
Time dependent hyperbolic equations have numerous applications in various branches of science 
and in practical engineering design. Since it is usually very difficult to obtain analytical transient 
responses for these equations, numerical techniques must be applied to find approximate solutions, 
and step-by-step time integration algorithms are routinely employed when dynamic problems are 
focused, because of their various inherent advantages to solve a great deal of initial value problems. 
 In this work, time marching algorithms based on numerically computed Green’s function 
matrices are focused. Recently, Tamma et al. (2003) and Zhou and Tamma (2004) derived a new 
family of unconditionally explicit/implicit algorithms based on analytical solution of first-order 
ordinary differential equations in which the concept of Green’s functions is implicitly present. Other 
similar approaches have been the subject of some papers discussion, and are usually referred to as 
‘‘precise time-step integration methods’’ (Zhong et al., 1994, 1996; Fung, 1997). In Soares (2002, 
2004) and Soares and Mansur (2005b), a formulation that implicitly computes Green’s function 
matrices taking into account standard time domain numerical procedures was presented, in order to 
obtain a new family of time marching schemes. Later on, step response and Green’s function 
matrices were computed explicitly by Mansur et al. (2007), taking into account explicit time 
marching routines. The methodology was extended to analyse dynamic models discretized by 
different numerical techniques (Soares, 2002; Soares et al., 2009) and to efficiently analyse coupled 
problems (Soares, 2008; Soares and Mansur, 2005c; Soares et al., 2007, 2010). The analysis of a 
variety of coupled problems by the proposed procedure could be carried out very effectively since it 
allows coupled sub-domains to be treated independently, at each time step (similarly, it also allows 
a quite efficient analysis of some non-linear models - Soares and Mansur, 2005b; Soares et al., 
2009). The direct computation of Green’s function matrices in order to develop time marching 
routines to analyse hyperbolic models has been carried out in transformed domains as well, being 
the frequency (Soares and Mansur, 2003, 2005a; Correa et al., 2010) and the Laplace (Loureiro and 
Mansur, 2009b) domain mostly focused. Recently, the methodology has been generalized (Soares, 
2011) and also applied to analyse heat conduction models (Loureiro and Mansur, 2009a; Loureiro et 
al., 2009; Mansur et al. 2009), extrapolating the initially focused context of wave propagation 
problems and structural dynamic analyses. 

Time marching procedure based on numerically computed Green’s functions  

The governing system of equations describing a linear dynamic model is given by (Clough and 
Penzien, 1993): 

)()()()( tttt FKUUCUM =++     (1) 
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where M, C and K are mass, damping and stiffness matrices, respectively, F(t) stands for the force 
vector and ),(tU  )(tU  and )(tU  are displacement, velocity and acceleration vectors, respectively.  
 Supposing that the analysis begins at a time instant t and that a t period of analysis is focused, 
the following analytical recurrence relationships can be obtained to compute displacements and 
velocities (Soares, 2011): 

    τττττ dtttttdtttt
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where the Green’s function matrices that appear in equations (2) can be computed through the 
solution of the following initial condition problem, within the time period t: 

    0KGGCGM =++ )()()( ttt ; 0G =)0(  and 1)0( −=MG     (3) 

 The solution of the dynamic problem described by equation (3) can be carried out numerically, 
providing the numerical computation of the Green’s functions of the model. The accuracy, stability 
and efficiency of the recurrence relations (2) are intimately related to the computation of these 
Green’s matrices. Once the Green’s function matrices and the time convolution integrals expressed 
in equations (2) are properly computed, this time marching procedure may become extremely 
accurate, providing a very attractive methodology (one should observe that recurrence relations (2) 
are the analytical solutions of the dynamic model, hence, a very accurate procedure is expected, 
once the terms in relations (2) are properly computed). 
 In this work, the generalized-  method is employed to compute the Green’s matrices of the 
model (one should observe that several other numerical procedures could be employed, which 
would result in different time marching techniques). In the generalized-  method, the time discrete 
equation of motion employed to compute the Green’s matrices of the model is written as: 

    0GGKGGCGGM =−++−++−+ +++ ])1([])1([])1([ 111 ηηηηηη αααααα kkkkmm      (4) 

and the finite difference formulas of the Newmark method are retained, as described below: 
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where 1μ  and 2μ  stand for the Newmark’s parameters and mα  and kα  describe the generalized-
method. By substituting approximations (5) into equation (4), the following time-marching 
procedure arises, which enables the computation of the Green’s function matrix of accelerations: 
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 In the generalized-  method, second-order accuracy and maximal high-frequency dissipation are 
achieved if 4/)1( 2

1 mk ααμ −+=  and mk ααμ −+= 2/12  are adopted. For 0== mk αα , the 
method reduces to the Newmark method; for 0=mα , the method reduces to the HHT method; and 
for 0=kα , the method reduces to the Bossak method.  
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 In order to achieve a more accurate numerical procedure, the Green’s matrices of the model can 
be computed within a time step t, taking into account a subcycling technique, i.e.: the system of 
equations (6) is solved n times (as well as the actualisations described by equations (5)), considering 
a time sub-step of t/n. As a consequence, the following matrices are computed considering the 
subcycling technique: 1G , 2G ,…, nG  etc; which are the numerical approximations to the following 
Green’s matrices: )/( ntΔG , )/2( ntΔG ,…, )( tΔG  etc. To numerically evaluate the time integrals 
described in equations (2), the trapezoidal rule is considered here, taking into account the n sub-
steps employed to evaluate the Green’s function matrices, allowing to obtain the following 
recurrence relationships: 

   ttntntntnttt Δ+Δ+ +++−= FLFLUMGKUJUU 21     (7a) 

   ttntntntntt Δ+Δ+ +++−= FLFLUMGKUJU 21     (7b) 
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and nJ  can be analogously computed. In equations (7), the L terms are evaluated considering a 
linear behaviour of the acting forces within the time interval [t,t+ t], i.e.: 

tttttt Δ−−+= Δ+ /))(()( ττ FFFF , for ttt Δ+<< τ .
 The time marching procedure (7) becomes extremely accurate once high values of n are selected, 
allowing considerably large values of t to be considered, without damaging the accuracy and the 
stability of the time marching technique. Once considerably larger time steps t are allowed, the 
time marching procedure (7) may become highly efficient to analyse long period responses. In 
Figure 1, the spectral radius of the amplification matrix of the new procedure are depicted taking 
into account several 1μ , 2μ , mα  and kα  values, as well as n = 1, 4 and 10. Results of the standard 
generalized-  method are also depicted in the figure, for reference. 

Numerical applications 

In this section, two numerical applications are presented to further illustrate some aspects of the 
proposed methodology. In the first application, a shear-building model is analysed and results are 
computed taking into account the Newmark’s trapezoidal rule and linear acceleration 
methodologies. In the second application, a more complex physical model is focused. In this case, a 
clamped beam discretized by finite elements is considered and the Central Difference Method is 
employed to compute the related results. 

Application 1 

A simple four-store shear building is analysed here. A sketch of the model is depicted in Figure 2. 
The mass and the stiffness values are adopted the same for all floors, they are: kgm 4105 ⋅=  and 

mNk /105.2 7⋅= . A force, whose time dependence is shown in Figure 2(c), is applied at the fourth 
floor of the model. Several numerical techniques are considered to analyse the shear building. In the 
first analyses, the standard Newmark’s trapezoidal rule and linear acceleration method are applied 
to analyse the model considering a small time step ( st 0025.0=Δ ), in order to provide reference 
results for comparisons. Next, the same standard procedures are applied to analyse the model 
considering a larger time step ( st 25.0=Δ ). Taking into account this large time step, the model is 
finally analysed considering the proposed formulation, adopting n = 10. The obtained results are 
depicted in Figure 3. 
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Figure 1. Spectral radius: (a) Central Difference Method ( 01 =μ , 2/12 =μ , 0== mk αα ); (b) 
Trapezoidal Rule ( 4/11 =μ , 2/12 =μ , 0== mk αα ); (c) Linear Acceleration Method ( 6/11 =μ ,

2/12 =μ , 0== mk αα ); (d) Damped Newmark ( 4/)2/1( 2
21 += μμ , 6.02 =μ , 0== mk αα ); (e) 

HHT Method ( 4/)1( 2
1 mk ααμ −+= , mk ααμ −+= 2/12 , 3.0=kα , 0=mα ); (f) Bossak Method 

( 4/)1( 2
1 mk ααμ −+= , mk ααμ −+= 2/12 , 0=kα , 3.0−=mα ).

 As can be observed in Figure 3, for the larger time step, standard procedures provide very 
inaccurate results: an expressive period elongation takes place considering the trapezoidal rule, as 
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depicted in Figure 3(a); and unstable results arise considering the linear acceleration method, as 
described in Figure 3(b). On the other hand, even for a large time step, stability and accuracy are 
observed in Figure 3 taking into account the proposed methodology. As a matter of fact, by 
adopting an appropriate number of sub-steps n, the proposed methodology can become as accurate 
as one wishes and critical time steps (above which instabilities arise) can be made as high as it may 
be desired (as illustrated, for instance, in Figures 1(a) and (c)).  

  

(a) (b) (c) 

Figure 2. Shear building: (a) four-store shear building model; (b) equivalent spring-dashpot-mass 
model; (c) load applied at the fourth floor. 
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Figure 3. Displacement time history results considering the new (n = 10) and the standard time 
marching procedures: (a) Trapezoidal Rule; (b) Linear Acceleration Method. 

Application 2 

In this application a clamped beam is analysed. The geometry, boundary conditions and finite 
element mesh adopted for the model is depicted in Figure 4(a) e (b) (400 linear triangular finite 
elements are employed). The geometry of the beam is defined by a = 1.0m and b = 0.5m. The model 
is submitted to a suddenly applied load, which is kept constant along time. The material properties 
of the beam are:  = 0.0 (Poisson’s ratio); E = 100.0 N/m2 (Young modulus);  = 1.5 kg/m3 (mass 
density).  
 As before, several numerical approaches are employed to analyse the model. First, in order to 
provide reference results, the standard Central Difference Method is considered, adopting 

st 001.0=Δ  and st 005.0=Δ . Next, the proposed formulation (associated with the Central 
Difference Method) is employed to analyse the beam, adopting st 020.0=Δ  and n = 5. The 
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obtained results are depicted in Figure 4(c). Figure 4(c) shows the vertical displacements obtained 
at point A (see Figure 4(a)). As can be observed, unstable results arise considering the Central 
Difference Method with st 005.0=Δ , whereas stable and accurate results are obtained by the 
proposed methodology with the much larger time step st 020.0=Δ . These results illustrate once 
again the previously highlighted fact that the proposed methodology can become as accurate as one 
wishes and critical time steps can be made as high as it may be desired. 
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Figure 4. Clamped beam: (a) sketch of the model; (b) finite element mesh; (c) displacement time 
history results considering the proposed procedure (n = 5) and the Central Difference Method 

(results are plotted just for sts 5.00 ≤≤  when st 005.0=Δ ). 

Conclusions 

In this work, a time marching procedure based on Green’s functions matrices is discussed. It 
considers the numerical evaluation of the Green’s matrices, as well as their time integrations. In the 
present methodology, time integral terms are employed not only to treat external forces, but also to 
take into account initial displacement contributions. The generalized-  method is considered to 
compute the Green’s matrices of the model and the 2 points Newton-Cotes quadrature rule 
(trapezoidal rule) is employed to numerically evaluate the required time integrals. Both procedures 
take into account a sub-step technique, which is applied in order to improve the accuracy and 
stability of the methodology. 
 As it is discussed and illustrated along the text, the proposed formulation is efficient and 
accurate. It only requires the solution of one initial condition problem to compute the fundamental 
matrices of the recurrence relationships, rendering more efficient procedures than formulations 
based on step response matrices (Fung, 1997; Mansur et al., 2007). At the same time, the procedure 
maintains the good accuracy and stability aspects that are obtained by adopting step response 
matrices (briefly, it can be said that the procedure inherits the merits of the step response matrices, 
without inheriting its drawbacks). Moreover, by adopting a sub-step technique, the accuracy and 
stability of the methodology can be chosen as good as one wishes.       

48



7

 It is important to highlight that several numerical methods and combinations are possible to 
compute the discussed terms of the recurrence relationships, rendering different time marching 
techniques. This vast field of possibilities can be explored in future works, allowing more effective 
time marching procedures to be developed. 
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The Principle of the HCW 

Figure 1. Diagram of the high pressure zone capture wing (HCW) 
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   (2) 

   (3) 

Figure 2. Pressure difference between the lower and the upper surface of the HCW with 
different compression angles (left) and Mach numbers (right) 
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Figure 3. The symmetry plane of cone and cylinder combination 

Figure 4. Pressure contours of symmetry plane in different tail height of cone and cylinder 
combination 

Conceptual Design Examples 

Case 1: Cone 
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Figure 5(Left). Combination of cone and HCW configuration (half)  
Figure 6(Middle). Pressure contours in symmetry plane under combination of cone and HCW 
Figure 7(Right). Pressure contours comparison between the upper and lower surface of HCW  
Case 2: Half cone 

Figure 8(Left). Combination of semi-cone and HCW configuration 
Figure 9(Right). Pressure contour in symmetry plane of Case 2 

HCW-Waverider Wing(WW) Combination Configurations 
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Figure 10(Left). Rear view of HCW-WW configuration 
Figure 11(Right). View instances of HCW-WW configuration 
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Figure 12(Left). Pressure contours in symmetry plane of different HCW-WW configurations  
Figure 13(Right). Pressure contours of the HCW-WW configuration with R=0.6m 

Figure14(Left). Lift and drag under different configuration volume 
Figure 15(Right).  L/D under different configuration volume 
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Figure 16(Left). Body shape comparison before and after modification 
Figure 17(Right). Pressure contours comparison between before and after modification 

Figure 18. Lift and drag of each part before and after modification 
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Table 2 Aerodynamic parameters of the vehicle before and after modification 

Figure 19. HCW shapes comparison before and after modification (left) and the whole shape 
after modification (right) 
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Figure 20. Pressure contours of the HCW lower surface before and after modification 

Figure 21. Drag and lift comparison of HCW, body and the whole vehicle before and after 
HCW modification 

Table 3 Pressure drag and friction drag of two cases 
 

Table 4 Lift, drag and lift-to-drag of two cases 
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Further Analysis 

Table 5 Comparison of aerodynamic performance between inviscid and turbulent model 

Figure 22. Pressure contours of HCW lower surface in inviscid and turbulent model 

Conclusion and Discussion 

Turbule

Inviscid
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Abstract
Multi-input-multi-output stationary random loading identification has been long a difficult problem 
for its poor identification precision caused by ill-condition problem of transfer function matrix 
inversion. In this paper, the inverse pseudo-excitation method is used for identification problems. A
new condition number weighted average method is developed to improve the accuracy of loading 
identification. A threshold value is introduced to reduce the computation cost. Simulations and 
experiments are designed to certify the feasibility of the algorithm and achieve good results. The 
condition number of FRF is introduced to choose the response measuring point in the experiment to
reduce the workload and improves the identification precision.

Keywords: condition number, loading identification, inverse pseudo-excitation method, 
identification experiment, random vibration, method of weighted mean.

1. Introduction

Random vibrations exist in process of ground transportation, high-speed flight phase of the aircraft, 
boost phase of rocket, and so on. It receives increasing attention. For multiple stationary random 
excitations, the direct problem is the computation of the power spectral densities (PSDs) of the 
various responses from the given excitation PSD. It has been solved(Robson,1964; Piersol,1993)
efficiently by many classic method, and pseudo excitation method (PEM) proposed by Lin et al(Lin, 
J. H.1992; Lin, J. H.1994) is a efficient one. There are two types of inverse problems (also called 
back analysis problems) corresponding to this direct problem. The first is the so called structure 
identification problem, for which the loadings and response PSD functions are all known and are 
used to identify the properties of the structure. System identification and modal testing have 
received much attention and many publications deal with such problems and their successful 
applications in engineering (Juang,1994;Ewins,1986). The second is the so-called loading 
identification problem, for which the response information and structural properties are known and 
are used to identify information about the loading. 

However, loading identification has received considerably less attention in the technical literature;
even some similar works have been done at a high expense, but have rarely yielded satisfactory 
identification results because of their poor precision, especially for random excitations. In fact, this 
is a very important field, and many loads in engineering applications need to be identified. For 
instance, the traffic loads of bridges, the seismic excitations of buildings, the interaction forces 
between moving machines and their bases, and so on. It is very difficult, or sometimes impossible, 
to measure such excitations directly, whereas the measurement of some of the responses are 
relatively easy. 

In this paper, the locations of the exciting points are known, and if there is only one excitation 
acting on the structure, the problem is quite straightforward and is not discussed. For multi-input-
multi-output (MIMO) problems, however, its solution is not easy and it is difficult to find papers in 
this area which demonstrate its difficulty. To the authors’ knowledge, some such work has been 
done at high expense, but has yielded identification results that are unacceptable because of their 
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very poor precision. The inverse pseudo-excitation method (IPEM)( Lin, J. H.,2001) ,which is a 
counterpart or an inversion form of PEM, is an efficient approach for the loading identification of a 
structure subjected to stationary random excitations. IPEM is used in this paper and condition 
number weighted average method is presented to improve the rank defect of the frequency response 
function for random loading identification. Simulation process is given to compare the presented 
method with the common frequency domain approach, the direct inversion method. Experiments are 
designed to certify the feasibility of the method, and achieved good results. In paper (Papadopoulos, 
1998) a method is introduced to select sensors based on the modal kinetic energy (MKE) 
distribution, which gives a measure of the dynamic contribution of each finite element modal 
(FEM) physical degree of freedom to each of the target mode shapes. This method is also applied in 
the paper(Li, D. S.,(2003), and the method is used in the simulation before the experiment, and 
helps to set sensor in the experiment. However, errors exist in the finite element model and 
original systems. In this paper the condition number of FRF is used to choose the response 
measuring point, it reduces the computation workload, and gets a relative accurate result.

2. Method of loading identification

In this paper, loading identification is based on some assumptions as follows. The system is linear, 
the load positions are known and not moving, the measured responses of the structure are caused 
entirely by the random load to be identified, and does not exist other unknown type of excitation 
form acting on the system. 

2.1 Direct inversion method (DIM)

The motion equations of structure can be expressed as
My + Cy + Ky = F (1)

In which, M , C and K are, respectively, the mass, damping and stiffness matrices, dots denote 
differentiation with respect to time and y and F are, respectively, the displacements and applied 
force vectors. The order of the system is n. m stand for the number of measured responses in y. l
stand for the number of non-zero excitations in F. m and l are both less than or equal to n. l m is the 
necessary condition for the solvability of the inverse problem. According to the linear system 
random response power spectrum formula(Paez, T. L.,2008):

T
FFyy

*S =H S H (2)
In which, Syy is the PSD matrix of measured response, SFF is the PSD matrix of the excitation, and 
H is the frequency response function matrix. H is in general not a square matrix, and the number of 
rows is greater than or equal to the number of columns. The superscripts "*" and "T" represent 
complex conjugate and transpose, respectively. SFF is the matrix to be identified, and it can be 
obtained by a matrix transformation:

+T+*S =H S HFF yy (3)
In which, the superscript + represents generalized inversion. The generalized inverse matrix H+ can be 
obtained by direct inversion method (Horn,1990):

T T+ * -1H =(H H ) H (4)

2.2 Condition number weighted average method (CNWAM)

The response PSD matrix Syy can be decomposed as follows(Lin, J. H.,2001;Li, D. S.,2001; Li, D. 
S.,2003)

* T

1

r

yy s s
s

 S b b , (s=1, 2...r)                      (1)
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*
sss  b , (s=1, 2...r)                 (2)

In which s , s and r represent eigenvalue, eigenvector and rank number of matrix yyS , respectively. The 
pseudo-response was defined as it

s sy e b , where i is the imaginary unit. Then the pseudo-excitation
sx

can be got by the equation as bellow. 
it

s s sy e  x H H b (s=1, 2...r)   (3)
Hence Eq. (5) and (6) enable the excitation PSD matrix xxS to be given in terms of the sx as

* T * * T +T

1 1

( )

 

      
r r

xx s s s s
s s

S x x H b b H (4)

For large DOFs systems, direct using of Eq. (8) is still computationally very expensive. Therefore, 
mode-superposition method can be used to reduce the workload. The main error is caused by 
calculation of generalized inversion H . The condition number weighted average method (CNWAM) is 
developed here trying to reduce the impact of ill-conditioning problems of H .Eq. (7) can be written as:

1

2

3

...
s s

m s

y
y
y

y





   
   
   
      
   
   
      

1

2

3

m

R
R

x H y R
...
R

(5)

Where iR i=1,2,…m is the row vector of m l . A square matrix l l
j
 (j=1, 2, 3...k) can be made 

up by choosing number l of row vectors iR form H, and this combination number is m
nk C .

Accordingly, number l of iy in the same rows of sy are selected to assemble j
sy (j=1, 2...k, s=1, 2...r).

Since jH is a l l square matrix, and generally its inverse matrix 1
j
H exists and easy to obtain, then, j

sx

can be obtained by: 
1 j

j s

j
s

 x H y , (j=1, 2… k,  s=1, 2...r)                             (6)
jq was defined as:

1
cond( )j

j

q 
H , (j=1, 2… k)   (7)

Where, "cond" is the operation of calculating condition number of matrix:
1cond( ) || || || ||p p
A A A (8)

In which, || ||p is the operation of matrix norm, especially, in this paper, 2–norm is used to obtain 
cond(A)
The weights can be defined as follows

,
0,

j j
j

j

q q q
w

q q
  

(j=1, 2… k)                  (9)

Where, q is threshold value:

1

1 k

j
j

q q
k 

  , (j=1, 2… k)                    (10)

The pseudo-excitation sx can be obtained as follows:

1

1

k
j

j s
j

s k

j
j

w

w











x
x ( s=1, 2...r) (11)
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Then, Sxx can be obtained by Eq. (8).  The weighted average method tries to reduce the impact of the 
sub matrices with big condition numbers. The threshold q is used for judging which sub matrices 
should be selected to compute the pseudo excitation, and which should be discarded.  

3. Computer simulation example

A 9 DOFs system is given as follows in Fig. 1. ki (i=1,2,…9) are stiffness coefficients of each  floor,
and their values are shown in Fig. 1. The first 9 order natural frequencies of the structure are shown in 
Table 1, and the damping ratio is set as 0.02.

Fig. 1. 9 DOFs shear type model

The stationary random excitations are applied to m2 and m4, where  is the correlation coefficient of 
the 2 forces F1 and F2 as shown in Fig.1, their auto-power spectral density are 1( )S  and 2 ( )S  as 
shown in Fig.2 and Fig.4 with solid line, respectively. S12 and S21 are the cross-spectral density of the 2 
forces, which are defined by Eq. (17) .The excitation PSD matrix then can be given as follows:

1 12

21 2

( ) ( )
( )

( ) ( )
S S
S S

 


 
 

  
 

S (1)

12 1 2( ) ( ) i tS S S e    , 21 1 2( ) ( ) i tS S S e     (2)
In which 0.7  t=0.08 .

Table 1. First 9 order natural frequencies of the structure (rad/s)

Order 1 2 3 4 5 6 7 8 9

Natural Frequency  (rad/s) 19.96 39.85 42.56 45.365 58.70 59.96 93.96 116.71 119.89

Response nodes combination (3, 5, 7) is used to identify the excitation PSD at (2, 4). The response 
PSD matrix Syy can be obtained easily, and it is used to identify the excitation PSD matrix in equation 
(16) using the direct inversion method (DIM) and the represented method(CNWAM) in this paper. The 
simulation results are represented in Fig. 2 ~ 9, and the relative errors of the two algorithms are shown 
in Table 2.

Table 2. Relative errors of two algorithms

method Errors by CNWAM Errors by DIM
Identification error of S1 0.408% 12.02%
Identification error of S2 0.384% 11.94%

Identification error of real part of S12 0.284% 6.65%
Identification error of imaginary part of 

S12 0.338% 9.93%
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Fig. 2. Identification result of S1 by DIM Fig. 3. Identification result of S1 by CNWAM

Fig. 4 Identification result of S2 by DIM Fig. 5. Identification result of S2 by CNWAM

Fig. 6. Identification result of real part of    Fig. 7. Identification result of real part of 
S12 by DIM                                                     S12 by CNWAM
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Fig. 8. Identification result of imaginary Fig. 9. Identification result of imaginary 
part of S12 by DIM             part of S12 by CNWAM

In Fig. 2~9,"I" represents result of identification value, and "R" represents theoretical value.

The method of DIM is subject to greater simulation errors than the proposed method as shown in Fig. 
2-9 and table 2. Especially, in frequency ranges close-by low nature, the greater calculation errors arise 
by employing DIM because of inversion of ill-conditioned matrix. The simulation demonstrates the 
proposed approach is effective to reduce the errors and improve the identification precision. However, 
Algorithm cannot eliminate the environmental noise and measurement errors, especially, if the 
measuring point selection is not appropriate. Besides, more matrix inversion need to be done while 
using CNWAM, it increases the computation load.

4. Identification experiment 

Experiment is conducted on the aluminum sheet shown in Fig. 10. The scale of acceleration transducer 
is shown in Table 3. Two random excitations and two force sensors are applied at T1 and T2. 6 
acceleration sensors are applied at A3~A8. Some of the 6 acceleration response measure points are 
chosen to identify the random excitation and the rule of selecting response points is based on condition 
number of m lH , and m lH is obtained by the follow equation :

1 * * 1( )YF FFG G YF FF  H                                                  (1)
In which, Y is the frequency domain vector obtained by applying Fast Fourier Transform 
Algorithm(FFT) to their time-domain signals of displacement response, F is the frequency domain 
vector of the excitation force, and their time-domain signals are obtained by the experiment
measurement.

The real force excitations are obtained by force sensors and used to assess the proposed approach. The 
response combinations, (A5, A7, A8) and (A6, A7, A8), are respectively used to identify the excitation 
force PSD matrix. The condition number is defined as Eq.(12), and the curves of condition number of 
frequency response function (FRF) ( )m l fH for the 2 combinations are shown in Fig. 11.

Table 3. Scale of acceleration transducer

Type Sensitivity Frequency Range ±10% Measuring range Temperature range Weight
333B30 100mv/g 0.5Hz~3KHz ±50g pk -18~+66 4g
353B32 50mv/g 0.7~8000Hz ±100g pk -54~121 20g
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Fig. 10. Aluminum sheet and the sensor 
placement

Fig. 11. Comparison of condition number

In Fig. 11, "----" represents the condition number of m lH for combination (A6, A7, A8); "___"
represents the condition number of  m lH for combination (A5, A7, A8).

As shown in Fig.11, response combination (A5, A7, A8) has lower condition number than the other 
one at the concerned frequency range, and the combination (A5, A7, A8) should have a better 
identification result than the other one. The identification results of the experiment are shown in the Fig. 
12 to Fig. 15.

Fig. 12. Identification of T1 using (A5, A7, A8) Fig. 13. Identification of T2 using (A5, A7, A8)

Fig. 14. Identification of T1 using (A6, A7, A8) Fig. 15. Identification of T2 using (A6, A7, A8)
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In Fig. 12~15, "R" represents the real value of the random load; "ID1" represents the identification 
result by CNWAM; "ID2" represents the identification result by DIM. 

As shown in Fig.12-15, the proposed approach can obtain a better identification result when using the 
same response combination. It proves condition number weighted average method to be effective. A
better identification result is obtained by the response combination (A5, A7, A8) than (A6, A7, A8) ,
especially, nearby the natural frequencies. There is only one different measure point between the two 
combinations, and even a skilled engineer cannot easily to get a clear judgment of which one would be
better. These errors are caused by the system the algorithm cannot remove it completely. While, the
selection of appropriate response measure points can change the system frequency response function 

m lH and improve the identification precise to some extent. The condition number of FRF can  provide 
reference for experimenter to choose a better response combination. A figure as Fig. 11 can help the 
engineers to select combination at the frequency range they care about before identification process.
This is the effective way to improve the identification precision and to save workload.

On the whole, CNWAM can effectively improve the identification accuracy (Curve ID1 in Fig.12 to 
Fig. 15) relative to the direct inverse method (Curve ID2 in Fig.12 to Fig. 15). The errors are
unacceptable using DIM, especially if the measure point is selected improperly (Curve ID2 in Fig.14 
and Fig. 15).

In addition, according to the author's experiences, The measuring point selection should also follow 
some principles as follows:1. Response measure points should avoid being set on modal shape node, 
should as far as possible be set close by the peak or valley of modal shape. 2. The measure points 
should avoid being set close by each other in the same direction. 3. The measure points should be set 
on the places where the vibration amplitudes are large enough, so that the signal-to-noise ratio would 
be improved. 4. If it is possible, greater system damping can improve the identification accuracy.

5. Conclusions

For complex engineering structures random loading identifications, direct inverse of FPF gets bad 
accuracy identification result. The condition number weighted average method is presented in this 
paper to improve the identification precision. Simulation and experiment are both prove its
effectiveness. The selection of the response measure points is one of the key points to improve the 
loading identification accuracy. Condition number of the FRF is used in the paper to select the
appropriate combination of the response measure points. The experimental results demonstrated its
effectiveness.

However, more work remains to be done, e.g. the problem of noise disturbance should be extensively 
investigated in a stricter way and the benefits could be investigated of using Kalman or H1 filtering 
techniques to further improve the identification precision.
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Application Optimization of Two-Dimensional Nozzle with Alloy Steel Structure 

in the Supersonic Wind Tunnel 

*Wang Ying1, Bu Junhui2, Wang Wei3, and Chen Ding4

Abstract 
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1. Determine the scheme 
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Figure 1. The frame foundation of epoxy         Figure 2. The Forming picture of epoxy resin 
resin surface  

Figure 3. The separation between epoxy            Figure 4. The scratches on epoxy resin surface  
resin and the frame of nozzle 
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2. The engineering algorithm 

MPa

Figure 5. The structure of M3.5 nozzle     Figure 6. The force of M3.5 two-dimensional nozzle

2.1 Stiffness calculation 

qbf C
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a a mm
b b mm
C C
q q MPa
E E MPa
h h mm

f mm

2.2 Strength calculation 
bC P
h

a a mm
b b mm
C C
q q MPa
E E MPa
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h h mm
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3. The finite element calculation of two-dimensional nozzle 

3.1 Processing 

Figure 7. The model of M3.5 two-dimensional nozzle  Figure 8. The mesh of M3.5 nozzle

Figure 9. Constraint of M3.5 nozzle             Figure 10. The load of M3.5 nozzle

3.2 Calculation results  

MPa
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Figure 11. The maximum stress value  
of M3.5 nozzle    

Figure 12. The stress distribution 
of M3.5 nozzle

Figure 13. The maximum deformation value     Figure 14. The deformation distribution of 
of M3.5 nozzle before throat                               M3.5 nozzle

3.3 Analysis of the results

Table 1. Comparing the results 

4. Flow field calibration 
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Figure 15. Using alloy steel welded for M3.5 nozzle     Figure 16. The picture of M3.5 nozzle

Figure 17. The standard model test of M3.5 nozzle        Figure 18. The press testing  

5. Conclusions 

Table 2. Comparing the data 

6. References  
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Numerical study of vortex-induced vibration by symmetric Lorentz forces  
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Abstract
In this paper, the electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder 
is investigated numerically based on the stream function-vorticity equations in the exponential-polar 
coordinates attached on the moving cylinder for Re=150. The effects of the instantaneous wake 
geometries and the corresponding cylinder motion on the hydrodynamic forces of vortex shedding 
are discussed in the drag-lift phase diagram. The drag-lift diagram is composed of the upper and 
lower closed curves, due to the contributions of the vortex shedding, but is magnified, translated 
and turned under the action of the cylinder motion. The symmetric Lorentz force will symmetrize 
the flow pass over the cylinder, and decrease the lift oscillation, and in turn, suppresses the VIV.

Keywords: flow control, vortex-induced vibration, electro-magnetic control, hydrodynamic force.  

Introduction

Fluid-structure interactions occur in many engineering fields. These interactions give rise to 
complicated vibrations of the structures and could cause structural damage under certain 
unfavorable conditions. For a cylinder mounted on flexible supports, the fluctuating forces induced 
by altering vortex shedding cause the cylinder vibrate. Then, the vibrating cylinder alters the flow 
field, and in turn changes the flow-induced force. The vibration of the cylinder could increase still 
further until a limiting behavior has been reached. This vortex-induced vibration (VIV) 
phenomenon is one of the most basic and revealing problems. 

Representative studies carried out experimentally on VIV are the experiments of Feng(1968), 
Griffin (1980), Griffin & Ramberg (1982) Brika & Laneville (1993), and Hover (1997) et al, in 
which classic lock-in was observed, while the shedding frequency coincided with the natural 
structure frequency. The cylinder experiences significant vibration only with lock-in, and the 
vibration amplitude has a strong relationship with the phase difference between the lift force and the 
cylinder motion. However, recently experimental results of Gharib et al(1997), Gharib (1999) and 
Khalak & Williams (1997) exhibited examples of significant flow-induced vibration without lock-in 
and suggested whether the VIV with or without lock-in is dependent on the values of the 
cylinder/fluid mass ratio. Recently, Franzini et al(2009), Lam&Zou(2009) and 
Korkischko&Meneghini(2010) focus on the interaction of multiple cylinders. It was found that the 
gap or arrangement has significant effect on the response of the VIV system. Moreover, 
experimental results of flow around a circular cylinder with moving surface boundary layer control 
(MSBC) are presented which has the advantages of drag reduction and vibration suppression 
(Korkischko& Meneghini(2012)). 

The progress made during the past two decades on VIV have been reviewed (see. e.g. 
Willamson&Govardhan (2004) and Sarpkaya (2004)). It is clear that the investigation of fluid-
structure interactions as a fully coupled problem are far from complete, there still remain some 
uncertainties, such as added mass, force decomposition and their effects on the characteristics of the 
fluid-structure system. Therefore more investigations on an in depth analysis are necessary.  
In addition, the control of VIV has many practical applications in the engineering point of view, but 
a little work has been done on it (Gattulli&Ghanem 1999, Owen et al 2001, Korkischko& 
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Meneghini(2012)). Therefore, the investigations on the control of VIV are also necessary due to the 
practical and theoretical importance. 

The electro-magnetic control is considered as one of the most practical methods to manipulate 
the flow (Tang&Aubry 1997, Berger et al 2000, Breuer et al 2004, Mutschke et al 2006, Braun et al 
2009). Regarding the flow past a fixed circular cylinder, Crawford and Karniadakis (1995)
investigated the effects of Lorentz force on the elimination of flow separation numerically. Weier et 
al (1998) confirmed the suppressing effect of Lorentz force by both experiments and calculations. 
Kim&Lee(2001) and Posdziech&Grundmann(2001) found that both continuous and pulsed Lorentz 
forces can suppress the lift oscillation and stabilize the flow. The closed-loop and optimal control 
methods were developed to improve its control efficiency in our research group(Zhang et al 2010, 
Zhang et al 2011), and the suppression of VIV by symmetric Lorentz force was also investigated 
preliminary(Chen et al 2007). 

In this paper, the electro-magnetic control of VIV is investigated numerically. The problems 
discussed are described by the stream function-vorticity equations in coordinates attached on the 
moving cylinder, coupled with the cylinder motion equation. A VIV of a cylinder started from rest 
is controlled by symmetric Lorentz forces after reaching a limiting behavior, and then suppressed 
till the cylinder vibrates steadily with smaller amplitude. The evolutions of VIV undergoing 
development and suppression are presented. 

Governing equations  

For the control of vortex-induced vibration, the cylinder surface consists of two half cylinders 
mounted with alternating streamwise electrodes and magnets. Obviously, produced Lorentz force is 
directed parallel to the cylinder surface and decays exponentially in the radial direction, which can 
be described in dimensionless form (Weier et al 1998, Posdziech et al 2001) 

* NF F
with 0rF 

( 1) ( )rF e g
   with 

1

( ) 1

0

covered with actuator on upper surface

g covered with actuator on lower surface

elsewhere





 



             (1) 

where r and are polar coordinates, subscripts r and  represent the components in r  and 
 directions, respectively.   is a constant, representing the effective depth of Lorentz force in the 

fluid. The interaction parameter is defined as 0 0
2

j B a
N

u 

 , giving the ratio of the electromagnetic 

forces to the inertia forces, 0j and 0B are the applied electric current density and external magnetic 
field induction, a  is the cylinder radius. 

The stream-vorticity equations in the exponential-polar coordinates system ),(  2er  ,
 2 , attached on the moving cylinder, for an incompressible electrically conducting fluid 

become 
12 2
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2 2

( )( ) 2 ( ) ( 2 )
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where the stream function  is defined as 
1
2

r rU H u




 



1
2U H u 





  


, while the 

vorticity is defined as 1 ( )rU U
H



 
 

  
 

, with ru and u  the velocity components in r  and 

directions, respectively. Furthermore, 2 44H e  , 2Re u a

 u is the free-stream velocity, 

is the kinematic viscosity, a  is the cylinder radius, the non-dimensional time is *t u
t

a
 .

The flow is considered to be potential initially and the boundary conditions derived are 
dependent on the vibrating cylinder. If the cylinder is constrained to move only in cross flow 
direction, then 
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dl t
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   ,  dl t
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is the velocity of cylinder the non-dimensional cylinder 

displacement in the cross-flow direction is * /l l a .
The shear stress                                   F V

  
   C C C (4)
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Therefore, the shear stress can be decomposed into F

C and V


C , where F


C  is proportional to 

vorticity at the wall, whereas V

C  induced by the cylinder motion in viscous flow, is independent of 

vorticity field.
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Here, pressure p
C consists of pF

C  induced by the field Lorentz force, pW
C  induced by the wall 

Lorentz force and pV
C induced by the inertial force. 

Then the drag dC can be written as
2

0
d d dF dWC d C C


    C                                                 (6) 
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And the lift lC is written as
2

0
l l lF lW lVC d C C C


     C                                                   (7)  

where              
1
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2 2 cos(2 )
RelFC d  


 

   
 ,
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2 cos(2 )lWC N F d 
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44
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d l dl
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    It is obvious that lWC  is independent of flow field. 0lWC  , as Lorentz force field symmetric, 

hence                                          
2

2

44
Rel lF

d l dl
C C

dt dt
                                                            (8) 

where lFC , so called vortex-induced force, is only dependent on the vorticity and boundary vorticity 
flux on the cylinder surface. The second term on the right-hand side of the above equation, called 
inertial force, is only dependent on cylinder acceleration and the third term, called viscous damping 
force, is dependent on Reynolds number and cylinder velocity. Therefore both second and third 
terms are independent of the instantaneous flow field. 

Non-dimensional mass
*
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  , cyl  and  are the cylinder density and the fluid 

density respectively; non-dimensional frequency * /f f u a  and non-dimensional structure 

damping D
au
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where 
2

2

4 4
Re

l lFC C dl d l
F

dt dt 
    , 2 f  , f  is vortex shedding frequency. At vortex lock-in, 

the vortex shedding frequency and the natural frequency of the cylinder are synchronized, /nf f
keeps unchanged. 

In order to deal with the evolution of the VIV, it is assumed further that the lock-in is kept 
throughout the developing process of VIV, and then the oscillations of the lift force and the 
displacement in every motion cycle are represented by a half of peak-to-peak vibration amplitude 
B , where B  is defined by ( ) / 2upper lowerB B , upperB and lowerB are the upper and lower peak values 
respectively in a motion cycle. Clearly, this assumption does not alter the final steady state of the 
cylinder vibration. Hence, 

0

0

222
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1 44 1
Re

lFn
vir

lF

C B
m m

CB
  
 

                       
                            (10) 

Clearly, virm changes with time.
The calculations have been performed numerically. The equation of vorticity transport is 

solved by using the Alternative-Direction Implicit (ADI) algorithm, and the equation of stream 
function is integrated by means of a Fast Fourier Transform (FFT) algorithm. More details about 
numerical method and validation of the code can be found in Refs (Tang&Aubry 1997, Zhang et al 
2010, Zhang et al 2011). The cylinder motion is calculated by solving equation (10) using the 
Runge-Kutta method.
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Results and discussions

Time evolutions of displacement of VIV cylinder before and after control are shown in Fig.1. 
Considering a VIV cylinder started from rest, the confinement is released in the cross-flow 
direction at time 1t , the cylinder begins to vibrate under the action of lift force F , and then tends to 
reach a limiting behavior. When the symmetric Lorentz force is turned on at time 2t for a well-
developed VIV, the cylinder displacement will decrease with time  which is  also shown in Fig.1, 
where the thick solid line and thin dash line represent N=1.3 and N=0.8 respectively. As Lorentz 
force is strong enough, the separation points disappear completely and the flow becomes 
symmetric and stable, in turn lFC  vanishes and the cylinder will be fixed finally.

Fig.1 Time evolutions of displacement of VIV cylinder before and after control  
Time evolutions of lift lFC and drag dFC  for VIV development and suppression are shown in 

Fig.2. As the cylinder begins to vibrate, the closed curve 1 1 1 1 1A B C D A in Fig.2, representing the 
stationary cylinder, is turned right with 0180  due to the effect of the moving cylinder on the shear 
layer. Subsequently, the mean energy of the cylinder increases as the increase of the cylinder 
oscillation and the point A separates from the point C, broking the mirrored symmetry of the curve. 
In addition, the average drag and the amplitude of oscillating lift increase, which causes the diagram 
magnify and extend continuously from the left to the right as a twisted curve, till VIV is well-
developed, and ~dF lFC C  phase diagram is represented by a thick solid line. When the symmetric 
Lorentz force is applied, the drag dFC  induced by the field Lorentz force increases, despite the fact 
that the total drag dC does decrease due to the wall Lorentz force effect (Zhang& Fan 2011). 
Therefore the phase diagram moves to the right dramatically. The flow around the cylinder tends to 
be symmetric due to the separation suppression, and the lift force lFC decreases, which leads to the 
decay of the cylinder vibration and the decrease of drag. The phase diagram shrinks and moves to 
the left as a twisted curve, till the cylinder vibrates steadily with an amplitude smaller than that for 
well-developed VIV and the point A coincides with the point C again. 

Fig.2 Time evolutions of lift lFC and drag dFC  for VIV development and suppression (N=0.8) 
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The vortex patterns in the wake before and after control by Lorentz force with 0.8N  are 
shown in Fig.3. All frames correspond to the uppermost cylinder position. The time iD is expressed 
in the same instants as used in Fig 1. The cylinder begins to vibrate under the action of lift as the 
confinement is released at time 1 446t  . Since the energy transfers from the fluid to the cylinder, 
the cylinder oscillation increases, the corresponding vortex patterns are indicated by 1 4~D D . When 
total energy of cylinder is in the equilibrium state, the cylinder vibrates steadily, the corresponding 
vortex pattern is indicated by 5D . The control is applied at time 2 650t  , when VIV is well-
developed. After control ( 6 8~D D ), the flow in the boundary layer is accelerated under the action of 
Lorentz force to strengthen the shear layer near the cylinder surface, so that the ability to overcome 
the adverse pressure gradient is enhanced, which leads to the separation suppression and the wake 
elongation. Therefore, the separation distance between the upper and lower separation point 
becomes smaller, and the vortex spaces appear to become wider in stream direction and smaller in 
the transverse direction. 

D1 D2

D3 D4

D5 D6

D7 D8
Fig.3 Instantaneous vortex patterns in wake before and after Lorentz force control (N=0.8)

Conclusions

The electro-magnetic control of vortex-induced vibration of a cylinder has been investigated 
numerically based on the stream function-vorticity equations in exponential-polar coordinates 
attached on the moving cylinder, and the coupled cylinder motion equation. The initial and 
boundary conditions together with hydrodynamic forces on the cylinder surface are deduced. 

The drag-lift diagram is composed of the upper and lower closed curves, due to the 
contributions of the vortex shedding. As the cylinder begins to vibrate, the diagram magnify and 
extend continuously from the left to the right as a twisted curve, till VIV is well-developed. When 
the symmetric Lorentz force is applied, the phase diagram shrinks and moves to the right as a 
twisted curve, till the cylinder vibrates steadily with an amplitude smaller than that for well-
developed VIV. 
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The symmetric Lorentz forces can be applied to suppress the VIV. The Lorentz force, being 
independence of the flow field, is classified into the field Lorentz force and the wall Lorentz force. 
The wall Lorentz force decreases the drag only and has no effect on the lift, whereas the symmetric 
field Lorentz force will symmetrize the flow pass over the cylinder, and decrease the lift oscillation,
and in turn, suppresses the VIV. 
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Abstract
Coriolis mass flowmeters (CMFs) are increasingly used in the oil and gas industry with feature of 
directly measuring mass flow rate. The performance of CMFs influenced by on-line viscosity still 
needs further study. A computational fluid dynamics model of U-shape CMF was developed. The 
simulation results were evaluated in terms of the natural frequency of the vibrating system and the 
corresponding phase difference between the motions of the sensing points symmetrically located on 
the measuring tube. The simulations were conducted on comparison between water and viscous 
liquid with flow rates spanning the laminar and turbulent regions. The effects of viscosity on mass 
flow measurement by CMFs are discussed in details. The findings in the simulations can be used for 
further compensation of deviation due to viscosity effects. 

Keywords: Coriolis mass flowmeter, Fluid-structure interaction, High viscosity, Deviation, Mass 
flow rate 

1. Introduction 

Coriolis mass-flow measurement is used in a huge range of industry sectors, including 
pharmaceuticals, chemicals and petrochemicals, oil and gas, and food. Although a Coriolis mass 
flow meter (CMF) is independent of flow profile or installation effects, it may be dependent on the 
Reynolds number (Re) of the mean flow. The measurement deviation at low Re has significant 
importance in the metering of highly viscous fluids. Several laboratory and field measurements with 
certain devices clearly indicate that there can be a shift in the meter calibration factor at viscous 
liquid (Henry, Tombs et al. 2006, Kumar and Anklin 2011). 

The flow measurement industry is one such example where application of these numerical tools is 
helping to improve product quality and to find innovative solutions. In many flow measurement 
devices, especially a CMF, fluid-structure interaction (FSI), i.e. where computational structural 
mechanics (CSM) and computational fluid dynamics (CFD) need to be coupled, related problems 
are often encountered and a complete understanding of physical phenomena occurring in devices 
becomes vital (Bobovnik, Mole et al. 2005, Mole, Bobovnik et al. 2008). As far as CMFs are 
concerned, there are a few attempts to simulate a CMF using coupled FSI approach (Mole, 
Bobovnik et al. 2008, Kumar and Anklin 2011). 

In this paper, a three-dimensional coupled fluid-structure numerical model of a U-shape Coriolis 
flowmeter is presented. The excitation force has been complemented to address properly the forced 
vibration conditions of CMF, and then the CFD model is employed for the CMF operating under 
inflow fluid conditions with different viscosity. Results from coupled fluid-structure numerical 
simulations mainly for varied viscosity are presented. With the help of these simulations the fluid 
dynamic effect responsible for the meter deviation at different viscosity can be understood, and 
better resemblance can be achieved between the numerical model simulation and the true operation 
of the CMFs. 
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2. MATHEMATICAL MODELS 

The fluid-conveying measuring sensor tube in the Coriolis mass flowmeter is maintained to vibrate 
periodically at its natural frequency under impulsively forced vibration conditions (resonance). 
Mass flow is usually measured as the time or phase difference between the motion of two sensing 
points (S1 and S2) on the tube, which are positioned symmetrically along the tube length. However, 
the distortion of symmetry of the no-flow drive mode is resulted from the interaction between the 
motion of the tube and the fluid flow due to the CMF’s inertial force field, where the straight 
measuring tube is clamped at both ends and vibrating at its first natural frequency. This section 
presents the governing equations and corresponding general boundary/initial conditions which we 
have used in the present simulations. 

2.1 Fluid domain 
The conservation equations of mass and momentum are written in the integral form for the three-
dimensional spatial distribution and time range ( 0t  ) of fluid flow as 

( ) 0
F F

F F Sd d
t
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where movement of fluid flow with the density ( , )F x t and the velocity ( , )FV x t in the domain 

F ( Fx ) are influenced by the motion of a surrounding boundary velocity sv ,  denotes the 
surface-area vector. The vector ( , )F x tf in the momentum equation (2) is the volume forces acting 
inside the domain F , and ( , )F x t is the resulting tensor. 

The respective boundary conditions can be written as 
inflow( , )F x t V V , inflowx ,

outlow( , )Fp x t p , outflowx ,
( , ) ( , )F sx t v x tV , tube ( )mx t ,

( , ) 0F x t V , tube ( )inx t , tube ( )outx t ,      (3) 
where inflowV is the inflow fluid velocity,   is the fluid boundary, outflowp is the absolute fluid 
pressure at fluid outflow, and ( , )sv x t is the velocity of the measuring tube surface. 

2.2 Structure domain 
The conservation of momentum principles is utilized for the three-dimensional spatial distribution 
( sx ) and time evolution ( 0t  ) of the structural response, where the respective equation of 
motion can be derived by Hamilton’s variation principle, 

2

1

( ) 0
t

P kt
W W dt               (4) 

where pW and KW are the total potential energy and the total kinetic energy of the moving solid 
structure, respectively. The detailed expressions for them are defined as (Mole, Bobovnik et al. 
2008),

1 :
2 s s

P s s s s PW d d 
 

       P u F r      (5) 

1 ( )
2 S

k s s sW d


   v v         (6) 

89



3

where the surface tractions ( , )s x tP  acting upon the moving shell boundary through the respective 
displacement field ( , )s x tu , and the concentrated force ( )tF  at point P, where the forced vibration is 
generated. ( , )s x t  and ( , )s x t are the strain and the stress tensor in the shell structure, and Pr is the 
position vector of point P where the force F is applied. ( , )s x t is the structure material density and 

( , )s x tv is the structure velocity field. 

At 0t  , the initial velocity and acceleration fields, ( ,0)s xv and ( ,0)s xa must be given, and 
( ,0) ( ,0) 0s xx x   . At 0t  ,

                                                  ( , ) 0s x t u , tube
ux ,

( , ) ( , ) ( , )s sx t x t x t n P , tube ( )ux t ,
( ) ( ( ),0,0)t tF F , Px x                                (7) 

For the structural-side boundary conditions, the sensing tube was fixed at both ends. In order to 
simulate the tube exciter, a periodic or harmonic force was applied at the center of tube point P. The 
first frequency of the sensing tube (the drive frequency of the meter) is equal to the frequency of the 
oscillating force. A periodic force was applied at the centre Point P to oscillate the pipe in the x-
direction,

0( ) ( sin(2 ),0,0)dt F nf t F          (8) 
where t is the integration time step, df denotes the drive frequency, and 0F represents the 
amplitude of the periodic force.  

2.3 Method of analysis 
The present simulation uses the ANSYS Workbench framework employing DesignModeler, 
SIMULATION, ANSYS, CFX Mesh and CFX solver. The pipe is created in DesignModeler, with 
the structural and fluid domain representing the tube wall and the fluid inside the tube. 
SIMULATION and CFX Mesh are used to mesh the solid and fluid domain, respectively.  

To determine the investigated tube’s natural frequency, a modal analysis of the solid domain is 
conducted in ANSYS. The determined natural frequency is used to calculate the excitation force at 
point P. And then a dynamic response analysis for the solid domain is performed based on the linear 
elastic theory, where the deformations of the sense tube are assumed to be small. And it can 
determine the time step for FSI analysis. 

To obtain the initial conditions for the transient fluid analysis, a steady state analysis is carried out 
in CFX over the fluid domain. 

The two steady state analyses are employed for the transient analysis of the fluid domain. The FSI 
simulations are carried out within CFX (ANSYS v13.0). 

During the information transferring, both the kinematic and dynamic constraints are set for the FSI 
interface, 

( , ) | ( , ) |F n F F n sx t x tV V
( , ) | ( , ) |s n s s n Fx t x tu u

FSI FSI( )j ij ij iF p d                                  (9) 
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where FSI
jF denotes the total force vector from the CFX solver to the structural solver, and ij

includes the viscous and turbulent part of the momentum tensors. On the other hand, structural 
displacements ( , )s nx tu are transferred from the structure to the fluid in order to fulfill kinematic 
constraints.

3. RESULTS AND DISCUSSION 

The analyzed U-shape CMF, with geometry as presented in Fig. 1(a), is characterized by the length 
of span L=0.4 m and height of CMF H=0.38 m, and a cross-section geometry which is determined 
by the internal diameter D=0.0254 m and wall thickness =1/40D. The distance between the 
symmetrically positioned sensing points S1 and S2 is equal to Ls=0.36 m. The specifications used 
for the simulations in this work are shown in Table 1.  

As the structure has multiple degrees of freedom, the structure will vibrate in a different manner at 
different natural frequencies without any application of external forces. Looking at all the 
deformations of the respective frequencies, in order for resonance to occur, the driver has to impose 
a driving force at the natural frequency 73.853df  Hz, as shown in Fig. 1(b).

a)
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b)

Figure 1. a) Sensor points, and geometry of the U-shape CMF, and b) modal analysis for 
natural frequency at 73.853Hz.

Table 1. Input parameters for modeling and simulations 

Specifications Dimensions and Values 
Internal diameter of tube (D) 0.0254 m 
Thickness of tube 1/40D
Material Stainless steel 316 
Poisson ratio 0.3
Young’s modulus 1.93E+11 Pa 
Density of stainless steel 316 tube 8000kg/m3

Viscosity of liquid fluid 1 - 500 cSt 
Density of water 998.2kg/ m3

Tested fluid’s velocities 2m/s - 20m/s 
Number of time steps 100

Through the simulation, the time shift can be gained between the two sensor points S1 and S2, as 
shown in Fig 2. The blue curve plots the displacement at monitor point 1, where the excitation force 
is applied. The red curve plots the displacement at the sensor point S1 which is near the inlet. The 
green curve plots the mesh displacement at the sensor point 2 which is near the outlet. 
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Figure 2. Example result of time difference between sensors S1 and S2.

The developed FSI model are employed to investigate the effect on fluid viscosity on the 
performance of the U-shape CMF, including viscosities 50 cSt, 100 cSt, 180 cSt and 500 cSt. The 
results of time shift t between sensors S1 and S2 for the various viscosities are shown in Fig 3. The 
time shift increases with the nominal flow velocity, and the drift from the result of water (μ=1 cSt) 
of time shift becomes obvious at high velocity. 
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Figure 3. Time shift between sensors S1 and S2 against fluid viscosity. 

Figure 4. Deviation to water metering of phase difference for different fluid’s viscosities.
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Since the mass flow rate m&  of a CMF can be calculated by fm K t& , where fK  is the meter 
factor, and t  is the time shift between the two sensors S1 and S2, the deviation of metering viscous 
liquid can be calculated based on water a benchmark,  

100% 100%f viscous liquid f water viscous liquid water

f water water

K t K t t t
Deviation

K t t

   
 

 
            (10) 

The simulation results have been plotted in Fig 4 for the relation between the metering deviation 
and Reynolds number Re /Dv  . It is found that when the flow is laminar or transient flow 
( Re 4000 ), the deviation is fluctuating, while the deviation will be comparably flat when the flow 
is turbulent.   

It is known that fluid with different viscosity may have different damping factor (Kumar and Anklin 
2011). When the oscillation of the structure domain experience damping during fluid flow, the 
driver have to excite additional force to compensate for the amplitude loss caused by the fluid’s 
damping. Since the damping affects the natural frequency of the flow tube, the meter factor 

fK changes, the change directly affects the mass flow rate. The effect of the reduction in natural 
frequency is caused by the interaction between the fluid and structure dynamics in the CMF. In the 
future compensation modeling, the damping effect shall be considered. 

4. CONCLUSION 

In this paper, a computational fluid dynamics model of U-shape CMF was developed to investigate 
the performance of CMFs influenced by on-line viscosity. The simulation results were evaluated in 
terms of the natural frequency of the vibrating system and the corresponding time difference 
between the motions of the sensing points symmetrically located on the measuring tube. The 
simulations of water and viscous liquid were compared over flow rates spanning the laminar and 
turbulent regions. The effects of viscosity on CMFs’ performance have been discussed in details. 
The findings in the simulations can be used for further compensation of deviation due to viscosity 
effects for oil and gas industry. 
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Abstract 
This paper aims at building up a computational procedure to study the bio-mechanism 
of pressure ulcer using the finite element method. Pressure ulcer is a disease that 
occurs in the human body after 2 hours of continuous external force. This study 
assumes that tension and/or shear strain will cause damage to loose fibril tissue 
between the bone and muscle and that propagation of damaged area will lead to fatal 
stage. Analysis was performed using the finite element method by modeling the 
damaged fibril tissue as a cutout. Various uncertainties such as the material properties, 
loading condition, location of cutout, the length of cutout and configuration of the 
human buttock were considered in this analysis. By watching both tensile and shear 
strains, the risk of fibril tissue damage and propagation of the damaged area is 
discussed and the results may give new insights for careful nursing of patients. 

Keywords: FEM, Pressure ulcer, Interface strain, Tail probability, Monte Carlo 
simulation 

Introduction 

The pressure ulcer occurs by sustained pressure and cutoff of blood supply. It has 
been found that internal damage in deep muscle layers covering bony prominences 
result in fatal pressure ulcer (Bouten et al., 2003; Maeda, 2006). However, the initial 
location of that damage is unknown. The final goal of the developed biomechanics 
simulation is to obtain the set of dangerous material parameters for muscle and fat 
that can lead to high strain at the bone-muscle interface depending on the load 
condition under different body positions 
 
The Markov Chain Monte Carlo methods are well known methods to consider any 
kind of uncertainty (Shenk and Shueller, 2005; Gamerman and Lopez, 2006; 
Rubinstein and Kroese, 2009). Its demerit is the computational cost required to obtain 
reliable probability density of the quantity of interest (QoI). Also, the accuracy of 
Monte Carlo simulation depends on the generation of random numbers algorithm and 
the number of computational cases.  
 
In this study a practical sampling algorithm named Stepwise Limited Sampling (SLS) 
is proposed to obtain both accurate enough expected value and the tail probability 
accurately in the Monte Carlo simulation. It is then applied to a biomechanics 
problem on the risk prediction of the pressure ulcer. 
 
 

96



2 
 

n

t

n

t

n

t

n
t

n

t
y

x

Interface between  
bone and muscle

Cutout elements

Bone

Muscle Evaluation point of 
interface strain 
by extrapolation

Left tip cutout

Gauss points

 
 

Figure 1. Quantity of interest (QoI) 
 
The authors have so far proposed a simplified numerical modeling by assuming that 
the initial damage occurs at the interface between bone and muscle by the loose fibril 
tissue damage, in which the risk of reoccurrence of pressure ulcer after surgery was 
successfully evaluated (Slamet et al. 2012). Also we pointed out that severe shear 
loading to the patient's buttock might become a trigger of pressure ulcer. The same 
bio-mechanism assumption is employed in this paper and the interface damage is 
modeled by a cutout in finite element model. 
 
In the biomechanics analysis of pressure ulcer where the fibril tissue damage at the 
interface between bone and muscle is modeled by cutout, the strains at the left and 
right cutout tips are the quantity of interest. The strains are transformed into normal 
(n) and tangential (t) coordinate system along the interface as shown in Fig. 1. The 
cutout tip strain is extrapolated from the values at Gauss points in the neighboring 
element, so that the extrapolation can be automated. We denote normal strain and 
shear strain εn and γtn. Concerning normal strain εn, it is assumed that only tensile 
strain contributes to the breakage of fibril tissue and propagation of damage area.  

Mathematical Parameters and Numerical Models of Pressure Ulcer 

In this paper, 2D linear finite element analysis is carried out in the same way with the 
authors' previous paper (Slamet et al. 2012). Figure 2 shows a typical image of 
healthy human buttock. Bone, muscle, fat and skin are the main tissues, and the center 
part is the target region where muscle covering bony prominences is seen. The skin 
was neglected because Makhsous et al. reported that the deformation of skin was 
much smaller than that of muscle and fat. So only the Young’s modulus, Poisson’s 
ratio and Shear modulus of bone, fat and muscle are considered in this analysis 
represented by Efat, Emuscle, and Ebone for the Young’s modulus of fat, muscle and 
bone, νfat, νmuscle and νbone for Poisson’s ratio of fat, muscle and bone and Gfat, Gmuscle 
and Gbone for the shear modulus of fat, muscle and bone. 
 
The curve of the model is defined as Iout, Ifm, and Imb where each represents outline 
form, curve between fat and muscle, and curve between muscle and bone.  
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Figure 2.  Mathematical model parameters 
 

The fibril tissue damage was modeled by a cutout. The location of possible cutout is 
located in c, which is an element of Imb. The location of cutout is then defined as a as 
an element of c with the center location as amid, length of cutout as La and left and 
right edges as aL and aR. 
 
Contact area or loading area for the model is defined as b, which is an element of Iout. 
The left edge and right edge of the loading area is defined as bL and bR. The loading 
value itself is defined as p(s) with s as the curve along b. There is also a loading angle 
of θ.  
 

Table 1. Phenomena identification and ranking table 

Description Parameter 
Involved Importance 

Inter-
individual 
difference 

Age - High 
Gender - High 

Geometry 

Contour Iout High 
Configuration 

of fat and 
muscle 

Ifm High 

Configuration 
of bone Imb High 

Material 
properties 

Skin - Low 
Fat Efat, Gfat High 

Muscle Emuscle High 
Bone - Low 

Loading 
area 

Area b High 
Direction θ(s) High 

Load value p(s) High 

Cutout Location amid High 
Length La High 
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Table 2. Material properties 

Young’s modulus, E (MPa) Shear modulus, G (MPa)
Coefficient of 

correlation 
between E and G

Poisson’s 
ratio, νMean 

value

Standard deviation 
(normal 

distribution) 

Mean 
value

Standard deviation 
(normal 

distribution) 

Fat 8.0×10-2 8.0×10-3 2.857×10-2 2.857×10-3 0.995 0.4

Muscle 7.5×10-2 7.5×10-3 2.517×10-2 0.49

Bone 2.0×104 0.3  
 
Uncertainties were considered in 7 areas as seen in Table 1. Location of cutout (amid) 
with 3 different sampling locations, length of cutout (La) with 2 different sampling 
lengths, loading condition (b) with 3 different loading sampling and configuration of 
muscle and fat (Ifm) with 2 different sampling configurations, and 3 random input 
parameters in Young’s modulus of fat (Efat), shear modulus of fat (Gfat) and Young’s 
modulus of muscle (Emuscle). 
 
Table 2 shows the material properties based on linear isotropic model. A normal 
distribution is assumed for simplicity. The coefficient of correlation between Young's 
modulus and shear modulus for fat was determined so that the Poisson's ratio does not 
exceed 0.5. For muscle, only the variation of Young's modulus was considered 
because its Poisson's ratio is close to 0.5. For cutout element, 10-5 times smaller value 
than the mean Young's modulus of muscle was used.  
 
The numerical values for geometry, loading area and cutout can be seen in table 3.  

Stepwise Limited Sampling (SLS) Method 

By giving the random distribution with relatively large scattering, the Monte Carlo 
method provides us the probability density of the quantity of interest, its expected 
value and standard deviation. It is known that analyses of 10,000 cases are usually 
required to reach the convergence of both expected value and standard deviation. The 
accuracy is dependent on the generation scheme of random numbers. The Mersenne 
Twister is known to give high quality random numbers and it is used in this study too. 
 
The convergence of the expected value is, in general, more easily obtained than 
standard deviation. One of the reasons is that the quality of random numbers 
generated in the tail probability is not good enough among 10,000 random numbers 
even if Mersenne Twister method is adopted. In other words, if one wants to put 
highlight on the reliability of the tail probability, 10,000 cases are not enough. It is 
important, for instance, when the prediction of fracture/failure is required even if its 
probability is very low. Considering that the demerit of Monte Carlo simulation is the 
high computational cost, a new and cost-effective sampling scheme highlighting on 
the tail probability would be valuable in vast industries. 
 
Therefore, a Stepwise Limited Sampling (SLS) is proposed in this paper, which stops 
the iteration when the expected value is converged and spends the computational time 
for the analyses of the cases in tail probability. 
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Table 3. Numerical values for geometry, loading area and cutout. 

Description Sampling 
points Values 

Geometry Ifm Ifm1 Muscle-rich 
Ifm2 Fat-rich 

Loading 
area b 

b1 Supine 

bL (39, 109) mm 
bR (447, 108) mm 

p(s) 0.8 x 10-2 MPa 
θ(s) 90° 

b2 Lateral-A 

bL (38, 290) mm 
bR (28, 120) mm 

p(s) 1.8 x 10-2 MPA 
θ(s) 0° 

b3 Lateral-B 

bL (470, 133) mm 
bR (438, 290) mm 

p(s) 1.8 x 10-2 MPa 
θ(s) 180° 

Cutout 

amid 
amid-1 Left (186, 100) mm 
amid-2 Center (229, 91.9) mm 
amid-3 Right (283, 90.5) mm 

La 

La-1 

Left 
La 4 mm 
aL (184.30, 98.86) mm 
aR (187.65, 101.10) mm 

Center 
La 4 mm 
aL (227.70, 92.86) mm 
aR (230.57, 90.95) mm 

Right 
La 4 mm 
aL (281.70, 91.50) mm 
aR (285.26, 89.52) mm 

La-2 

Left 
La 8 mm 
aL (182.62, 97.74) mm 
aR (189.33, 102.22) mm 

Center 
La 8 mm 
aL (226.30, 93.80) mm 
aR (231.97, 90.02) mm 

Right 
La 8 mm 
aL (279.96, 92.46) mm 
aR (287, 88.55) mm 

 
SLS only assures the moderate accuracy of expected value of quantity of interest. The 
expected value itself is distributed and therefore the convergence is estimated based 
on the central limited theorem. Let E(i) be the expected value and σ(i) be the standard 
deviation after i sets of analyses in standard Monte Carlo simulation. The 
convergence is judged by Eq. (1) 
 

E(i) −E(i−1) ≤
σ (1)

E(1) nmax
                (1) 
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where right hand side is normalized by the expected value after the first set of 
analyses. We recommend to use nmax = 10,000. Let 100 cases be one set of analyses, 
then Eq. (1) yields as follows. 
 

E(100 j ) −E(100( j−1) ≤
σ (100)

E(100) nmax
         (2) 

 
If Eq. (2) holds three times continuously, then the expected value is converged. This 
is because the expected value may oscillate in the Monte Carlo simulation. When the 
convergence is obtained, the Monte Carlo simulation is suspended. 
 
Next, as the post-processing, the correlation between the input parameters sets and the 
quantity of interest must be investigated. Supposing that the number of parameters is 
large, sets of two parameters among all parameters are chosen. Then the quantity of 
interest can be plotted in the two-dimensional space of the parameters. To this end, it 
is easy to determine the limited zone with specific value of quantity of interest by the 
following equation. 
 

pi xi + pj xj + q ≥ 0 (i ≠ j)     (3) 
 
Here, xi and xj are the chosen two parameters, and pi, pj and q are scalar factors. By 
the combination of multiple linear equations, Eq. (3), in the multi-dimensional space 
of all parameters, the limited zone to be analyzed carefully can be defined. This 
procedure is automated in the program, because simple linear equations are used.  

Analysis and Discussion 

There are a total of 36 models considering by consideration of 4 uncertainties of 
configuration of fat and muscle, loading area, location of cutout and length of cutout, 
with each model having 3 random input parameters of Efat, Gfat and Emuscle. All 
uncertainty parameters are modeled using the finite element mesh as shown in Fig. 3. 
A total of 77,334 four-noded elements were used in the analysis. 
 

x 

y 

 
Figure 3. A typical mesh used for 36 data analyses.  
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Each model then had a convergence check to decide when the analysis should be 
stop. The convergence of the models varies between 1,300 analyses to 4,900 analyses. 
The limited area is then decided for each model from the three-dimensional space of 
random parameters Efat, Gfat and Emuscle. μ + 3σ was used as the threshold of limited 
dangerous zone. 
 
The limited zone was originally defined by combinations of Efat – Gfat and Efat – 
Emuscle, but the results of Efat – Gfat shows the same formula as Efat – Emuscle, so only 
Efat – Emuscle are then plotted into the limited sampling zone. 
 
After the process of convergence check and deciding the limited area for all 36 
models, the results from those six-dimensional space are then put into a two-
dimensional space as seen in Fig. 4. The six-dimension space starts from La and in 
Fig. 4 case is La = 4 mm. From there, 2 main axes were considered, one axis is for Ifm 
and another one is for amid. In the Ifm axis, the amid (shown in dotted line for amid-1, 
solid line for amid-2 and dashed line for amid-3) and b (shown in blue for b1, red for b2 
and green for b3) are compacted into 2 figures with one figure for Ifm-1 and another for 
Ifm-2. In the amid axis, the Ifm (shown in solid line for Ifm-1 and dotted line for Ifm-2) and 
b (shown in blue for b1, red for b2 and green for b3) are compacted into 3 figures with 
one figure for amid-1, another for amid-2 and amid-3. The figures on the axes of Ifm and 
amid itself contain a two-dimensional projection of the limited zone for Efat – Emuscle. 
Linear interpolation was applied for simplicity to predict the limited zone between 
amid-2 and amid-3.  
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Figure 4. Six-dimensional space of the limited sampling zone on La = 4 mm 
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After determining the limited zone in this way, medical doctors can then predict set of 
limitation that can lead to pressure ulcers by looking into the corresponding 
parameters. This will prove useful for nursing patients to prevent the occurrence of 
pressure ulcer. 

Conclusions 

In order to reduce the computational cost of Monte Carlo analysis, a sampling 
algorithm method was proposed. Seven uncertainty parameters were put into 
consideration in this analysis with the goal to find a new finding from the clinical 
viewpoint by predicting the dangerous zone of pressure ulcer. The correlation 
between geometry, loading area, cutout location, cutout length, and random material 
parameters at the interface between the bone and muscle was calculated. Medical 
doctors can find set of parameters that leads to high interface strain in order to 
prevent the occurrence of pressure ulcer from happening. 
 
The computational time was completely reduced in this analysis compared to the 
conventional Monte Carlo simulation. The method shown here is cost-effective and 
practical.  
 
In future works, the biomechanics simulation should contain more random parameters 
such as age and gender as mentioned in the phenomena identification and ranking 
table due to its high importance. The SLS algorithm is applicable to a problem with 
larger input parameters as shown in this paper, and it should be proven to be able to 
handle more parameter in future simulation. The applied interpolation should also be 
validated which can lead to finding the response surface along all possible cutout 
locations and different fat and muscle configurations.  
 
Although 2D linear analyses were carried out as a demonstration in this paper, 3D 
non-linear analyses should be employed in the future, considering large deformation, 
contact between body and bed and viscoelasticity. 
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Abstract

The characteristics of shock wave propagation in aluminum single crystal are 
investigated by using molecular dynamics (MD) method based on the embedded atom 
method (EAM) potential function, including elastic and plastic deformation, 
Hugoniot relation, width of shock front. The simulated results show that there is a 
threshold particle velocity value above which an elastic-plastic wave propagates in 
aluminum single crystal and the velocity of elastic wave increases slightly with the 
shock loading. Otherwise, only a plastic wave propagates in aluminum single crystal 
and the width of shock front decreases by exponent with the normal stress.

Keywords: molecular dynamics, shock wave propagation, Hugonoit relation, width 
of shock front, aluminum single crystal

Introduction

The classical molecular dynamics (MD) simulations have been used increasingly to 
examine the shock compression response of crystalline materials. The metal materials 
usually experience elastic-plastic response under one-dimensional shock compression,
and finally reach a stable state of stress, temperature and density. The generation and 
evolution of split shock waves resulting from a dissociative polymorphic phase 
transition were modeled using MD simulations (Robertson et al., 1991). The particle 
velocity histories at the interface between an aluminum sample shocked by a 120 fs 
laser-driven pressure pulse and a fused silica window were first measured by Evans et 
al.(1996). Dlott et al. (1998) tried to illustrate how moderate-pressure nanoshocks 
could be a powerful tool for ultrafast dynamical studies of complex systems of 
interest to chemists and biochemists, such as crystalline or amorphous molecular 
solids, glasses, and biomaterials. The massively parallel three-dimensional MD
simulations were employed to examine the plasticity induced by shock waves (Zhou 
et al., 1998; Holian et al., 1998; Kadau et al., 2002). An et al. (2012) present MD
simulations of shock-induced plasticity and spall damage in single crystal Ta. Zhao et 
al. (2013) investigated shock response of a model Cu nanofoam with cylindrical 
voids and a high initial porosity by using large-scale MD simulations. It is very 
important to understand the shock front structure and the detailed broadening 
mechanisms in response to materials for theoretical treatments and other applications
(Shao et al., 2007; He et al., 2009; Ma et al., 2013). However, many macroscopic 
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properties of materials are not well understood due to the poor knowledge of each 
physical process in the shock front, particularly at the different length and time scales
(Asay et al., 2003). Hence, studying the response of metal materials to the shock 
compression has a very important significance for the further research of the
constitutive relations.

In the current letter, the characteristics of shock wave propagation in aluminum single 
crystal are investigated by using MD method based on the embedded atom method
(EAM) potential function. The shock front structure and the Hugonoit relation are 
obtained. The results provide useful atomistic knowledge of the characteristics of 
shock wave propagation in aluminum single crystal.

Methodology of the simulation

The potential function plays an important role in the MD simulation, and the EAM 
potential (Mei et al., 1991) is employed in the current study. The functional form of 
the EAM potentials is given by

   tot
1
2 ij i

ii j

E V r F 


  .                       (1)

 i ij
j

r  .                          (2)

where Etot is the total energy, V(rij) the pair potential, and F( i) the embedding 
function. (rij) is the electron density contribution from atom j to atom i. The total 
electron density i at an atom position i is calculated via the linear superposition of 
electron density contributions from neighboring atoms.

The system is prepared in FCC configuration with about 360000 atoms. The sample 
size is 40.5 ×12.15 × 12.15 nm with free surfaces along the shock direction [100]. 
The periodic boundary conditions (PBC) are imposed to minimize surface and edge 
effects, simulating a pseudo-infinite lateral dimension in the directions transverse to 
the shock wave. The system is first minimized using the conjugate gradient method, 
and equilibrated at 300 K with a time integration step of dt = 0.1 fs, and then applied 
various shock waves along the direction [100].

Results and discussion

The MD simulation results can present the micro-structure of the shock front under 
shock loading. Figure 1 shows the typical two-wave structure in aluminum single 
crystal in the case of particle velocity Up = 1.25 km/s. Obviously, the system 
experiences an elastic-plastic deformation, and two waves of an elastic precursor 
followed by a slower plastic wave front propagate along the direction of the shock 
loading.
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Figure 1. Typical two-wave structure in aluminum single crystal
in the case of Up = 1.25 km/s.

In order to clearly understand the nature of plastic deformation the particle velocity 
Up, normal stress xx and shear stress VM profiles along the shock wave propagation 
direction are required to study. The system was divided into 36 bins (each bin 
contained about 10000 atoms), and then the velocities of atoms in each bin is 
statistically averaged as the particle velocity at the corresponding position. In the 
current MD simulation the output stress is the product of the atomic stress and its
volume, so the stress in each bin can be defined as

m

i i
i

V

V

V


 




,                              (3)

where i presents the atomic stress for atom i, Vi the corresponding atomic volume, m
the number of atoms contained within each bin, V the volume of each bin.

The normal stress xx is the statistical average of stress along the shock direction. The 
flow stress VM is identified as follows

2 2 2
VM

1 [( ) ( ) ( ) ]
2 xx yy yy zz zz xx            ,              (4)

Figure 2(a) shows the particle velocity profiles along the direction of shock wave 
propagation in the case of Up = 1.25 km/s. It can be seen that the shock waves consist 
of an elastic precursor followed by a slower plastic deformation front. The width of 
the shock front is defined as the profile between the particle velocity Up = 0 and Up =
1.25 km/s. The results indicate that the width of the shock front increases gradually 
with time, so the shock front is instable. The similar phenomenon was also observed 
in the shocked aluminum experiment (Gupta et al., 2009). The reason is that the 
elastic wave propagates faster than the plastic wave for the weaker shock loading,
while the propagation of the plastic wave exceeds that of elastic wave and forms 
stable shock wave if the shock loading is strong enough. Figure 2(b) shows the stress 
profiles along the direction of shock wave propagation at t = 3 ps in the case of Up =
1.25 km/s. It can be seen that the variation trend of the stresses is exactly the same as 
that of the particle velocity. The normal stress gradually increases up to 26 GPa 
behind the shock front. In the process of dynamic deformation, the decrease of the 
flow stress indicates the plastic behavior of material. In figure 2(b) the first maximum 
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value of the flow stress presents the appearance of the plastic behavior in aluminum 
single crystal and the second one presents the dislocation nucleation and motion.
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Figure 2. Wave profiles along the direction of shock wave propagation.
(a) Particle velocity; (b) Normal stress and flow stress.

Figure 3 shows the Hugonoit relation of aluminum single crystal. The MD simulation 
results show that an elastic-plastic wave propagates in aluminum single crystal for the 
particle velocity slower than 2 km/s and the velocity of the elastic wave increases 
slightly with the shock loading which is consistent with the experimental data (Yu et 
al., 2006). However, only a plastic wave propagates in aluminum single crystal for
the particle velocity faster than 2 km/s. The reason lies in that the propagation of the 
plastic wave exceeds that of the elastic wave and forming a stable shock wave with
the corresponding shock pressure of 45 GPa. The value of the particle velocity 
corresponding to the transition threshold for observing two-wave structure is Up = 2.0
km/s which is basically consistent with the critical value of Up = 1.5 km/s for [100] 
aluminum single crystal by Tomar et al. (2006). The simulated Us-Up relationship
differs with the experimental data (Marsh, 1980) to a certain degree, as may be 
related to the orientation dependence of the shocked aluminum single crystal. In 
addition, the number of the particles contained within the computation system is not 
enough, as may also enlarge the statistical average error. Overall, the tendency is
basically consistent with the experimental data and other MD simulation results.
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Figure 3. Relationship between particle velocity Up and shock wave velocity Us.

Figure 4 shows the relationship between the width of shock front and the normal 
stress along the direction of shock wave propagation. It can be seen that the width of 
shock front decreases with the normal stress corresponding to the increased particle 
velocity. By fitting the simulation results, it is found that the width of shock front
decreases with the normal stress exponentially, as is consistent with the previous 
work (Bringa et al., 2005). That is to say, with the increase of shock loading, the time
required for aluminum single crystal finishing the plastic deformation is shorter, and 
the equilibrium state behind the shock front is easier to reach.
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Figure 4. Relationship between width of shock front and normal stress xx.

Conclusion

In summary, the shock wave propagation in aluminum single crystal investigated by 
MD reveals a distinct threshold particle velocity of 2 km/s beyond which exists a
two-wave structure of an elastic precursor followed by a slower plastic wave, and the 
velocity of elastic wave increases slightly with the shock loading. While only a plastic 
wave exists for the particle velocity faster than 2 km/s and the width of shock front
decreases by exponent with the normal stress.
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Abstract 
Based on interface adhesive theory and delamination damage mechanism, a new 
adhesive layer model is proposed to analyze the intra-layer delamination damage 
process of composite laminated plate subjected to low velocity impact. The influences 
of through-thickness tensile stresses, inter-laminar shear stresses and matrix cracking 
on delamination damage are taken into consideration in this model. Compared with 
traditional strength failure criterion model or fracture mechanics energy release rate 
model, analytical results of this model are in good agreement with experimental data. 
The damage extension characteristics and the various influence factors on 
delamination damage are discussed. The results of this research can be applied in 
composite structure design and life prediction. 

Keywords: composite laminated plate; delamination damage; adhesive layer model;  
damage extension characteristics 

1. Introduction 

Composite laminates are being increasingly used in aerospace, automotive, 
shipbuilding and other industries fields due to their inherently high specific 
mechanical properties. In those service conditions, transverse impact at low velocity 
is the normal form of loading which can cause internal damage such as delamination, 
matrix cracking, local permanent deformationand fiber breakage, leading to a 
reduction of load carrying capacity of the composite structures. Furthermore, 
catastrophic failure may occur when the composite laminates are serviced in such 
damaged state. Hence, understanding the damage involved in the impact of composite 
targets is important in the effective design of a composite structure. 
However, the dynamic behavior of composite laminates is very complex, because 
there are many concurrent phenomena during composite laminate failure under 
impact load. The inherent complexity of the structure of composite has brought great 
difficulties to the experimental or theoretical methods. With the development of 
numerical techniques, numerical analysis based on finite element method has been 
widely used in recent years, and many efficient numerical models have been made to 
analyze the impact problem. Based on continuum damage mechanics, Matzenmiller 
(1995) first brought up CDM concept which links up the composite material damage 
and degradation of the elastic properties of materials. This method shows a good 
prediction of the impulse response of laminates and the damage layer, but can’t be 
predicted the fiber breakage and damage of the matrix damage accurately. Hou(2000), 
based on strength theory, studied the low speed dynamic response and damage modes 
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by using explicit finite element algorithm. At the same time the material parameters 
degradation is replaced by the stress degradation and stiffness degradation. 
Zerbst(2009) introduced the fracture mechanics methods to predict composite 
laminates residual compressive strength and delamination damage, but this method 
can’t accurately predict the delamination area. 
Considering the disadvantages of present method, this paper proposes a new adhesive 
layer model is proposed to analyze the intra-layer delamination damage process of 
composite laminated plate subjected to low velocity impact based on interface 
adhesive theory and delamination damage mechanism. The influences of 
through-thickness tensile stresses, inter-laminar shear stress and matrix cracking on 
delamination damage are taken into consideration in this model. Compared with 
traditional strength failure criterion model or fracture mechanics energy release rate 
model, analytical results of this model are in good agreement with experimental data. 
The damage extension characteristics on delamination damage are discussed. The 
results of this research can be applied in composite structure design and life 
prediction.. 

2. Impact damage constitutive model 

2.1 Three-dimensional rate-dependent constitutive model 

Assuming the fiber as the uniform transversely isotropic linear elastic body and the 
matrix as isotropic viscoelastic, Kairm (2005) derived the expression of the relaxation 
modulus of this materials under high strain rate: 

             (1) 

Based on the Hooke’s law, the constitutive model can be expressed as: 

EUS                              (2) 

Where E is stiffness matrix, S is compliance matrix. The expression of U is  
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Considering the 2 and 3 direction of the unidirectional fiber-reinforced composite 
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material having the same mechanical properties, so the three-dimensional constitutive 
relation can be expressed as: 
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2.2 The material failure criterion and the stiffness reduction scheme 

The research of the inner-layer damage of composite material mainly includes three 
parts: the calculation of stress or strain, the criteria of the damage failure and the 
degradation of material properties. On the failure criteria of composite material, the 
improved Chang / Chang failure criteria (Hou, 2000) is used as the criteria of the 
inner-layer damage in this paper: 

Fiber tensile failure mode:    1
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The mechanical properties must be decreased in damaged areas. In order to make sure 
the accuracy of the simulation, the stiffness of the laminate is reduced step by step. 
Different forms of the reduction scheme of material stiffness are applied depending 
on the form of damage. When the failure happens, the repeated degradation method 
will be taken (Sebastian, 2008), the degradation scheme is as follows: 

Table 1. Stiffness reduction scheme 
Failure mode Parameter reduction 

Fiber tensile 01221122211 GEE  
Matrix cracking 0,0 122122 GE  
Matrix compressive     CC YXGE 2,0,0 12122111  
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2.3 Interface cohesive element damage model 

The interface cohesive element is introduced into the low speed impact process of 
composite laminates in this paper. A three-dimensional interface cohesive element 
(Fig1) is adopted to study the delamination damage. Biphasic constitutive relation of 
interface element is used to describe the initiation and progression of crack. When the 

relative displacement of interface element is less than 0 , no damage occurs. It is 

shown in the interface strength -relative displacement curve that the slope is the 

interface element stiffness. When the relative displacement is more than 0 , interface 

element damage occurs and the interface element stiffness begins to gradually 
decrease. The new interface stiffness curve is shown in figure 2 with dotted line. With 
the continual progression damage of the interface element, the relative displacement 
increases and the interface unit will be completely destroyed. Then the interface 
element stiffness becomes zero. The area formed by O, A, B three points is energy 
release rate in the process of damage of the interface element. The initial damage 
criteria of the model is shown as follows: 
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The formula of final failure displacement of the mixed-mode is: 
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With the continuous development of damage, a macroscopic crack appears in the 
interface. It is similar to the crack development in the fracture mechanics. Therefore, 
the criterion of the rate of strain energy release in fracture mechanics can be used for 
the analysis of interface crack progression. And the criteria of the damage progression 
is shown as follows: 
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whereG G G  respectively mean the rate of strain energy release of the normal 
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and two tangential of the interface element CG CG G  respectively mean the 

critical energy release rate of , ,  crack interface models. 
 

 

 

 

 

Fig.1 Mechanics model of the laminates   Fig.2 Interface force-relative displacemen 

3. The finite element model 

3.1 Material model and boundary conditions 

Composite material is continuous unidirectional tensile high-strength Carbon fibers 
(Tenax HTS40 12 K 300). The thickness of composite laminate plate is 2 mm with a 
ply thickness of 0.25 mm in a staking sequence [0/90]2S. The laminate plate is fixed 
by a rigid fixture and a diameter of 
75 mm circular preformed hole is 
reserved. The material performance 
of the interface layer has a great 
impact on delamination damage 
(Masaaki, 2007). Therefore, its 
performance parameters are 
generally measured by the method 
of experiment. The parameters used 
in the paper are got from Shi’s (2012) 
experimental data. The materials of impactor and fixtures are steel. Material 
parameters taken as follows: E=210 Gpa; ρ=7850 kg/m3; ν=0.3. The diameter of 
impactor is 15 mm. The impact velocity is 3.83 m/s. The impact energy is 7.35 J. 
Considering that the stiffness of steel is relatively larger than the stiffness of laminate 
plate, so the impactor and clamp are defined as the rigid body.  

3.2 Types of element used in coupled numerical model 

Considering the importance of delamination damage under the low velocity impact, 
two kinds of elements are chosen: Each ply of Laminate plate uses 3D solid elements, 
which not only can consider the stress in thickness direction of laminate plate, but 
also can consider the effect of nonlinear shear. At the same time, we introduce a layer 
of 3D solid shell elements sub-layers between upper layer and lower layer of laminate 
plate which shown in Fig 1, it makes sure the displacement continuity of the structure. 
The advantage of 3D solid shell elements is that it can simulate a larger length to 
thickness ratio of element and has a fast calculation. It also needn’t to use the mass 

Fig. 3 Finite element model 
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scaling.  

3.3 Contact algorithm 

The material properties of impactor, fixtures and laminate plate have great different. 
Between the impactor and the sub-layer, as well as the fixtures and the sub-layer
based on the contact segment, the automatic algorithm is established. This contact 
algorithm does not depend on the material parameters, but the quality of the node 
divied by the square of the time step size, which can guarantee the stability and 
reliability of computation. A kind of tied contact is used between the upper and lower 
surfaces of interface element contact with adjacent sub-layer respectively. The benefit 
of tied connect is bounding the slippage of the adhesive layer on upper and lower of 
sub-layer, which is more in accord with the real structure mechanism of laminated 
plate. In order to prevent penetration between sub-layer, the automatic contact is 
established in each ply.  
Coefficient of friction between the object depends on the material properties and 
surface smoothness, coefficient of friction measured experimentally is more 
accurately. The existing research results of predecessors show that the friction 
coefficient has a great influence on the impact test, especially on the absorption of 
impact energy (Schon, 2000). Considering the adhesive effect between the adhesive 
layer and the sub-layers, the friction coefficient takes a relatively large value of 0.5, at 
the rest of contact take a value of 0.3. 

4. Results and discussion 

In order to verify the calculated feasibility and accuracy, the simulation results are 
compared with experimental results which shown in Fig. 4. One can see that the two 
results from two different solving methods are nearly in agreement. It is also seen 
from Fig. 4(a) that impact force in the times interval of 0ms to approximate 0.7ms 
increases approximately linearly, it meanwhile laminated plate material is in the 
elastic deformation stage, in other word, the damaged does not appear. The damage 
occurs within laminates when the times form 0.6ms to the peak value1.6ms. After the 
peak impact force, the impactor begins to rebound until the impact force to zero. 
Compared to the peak time which shown in Fig. 4a (approximate 1.6ms), the impact 
energy peak time which shown in Fig. 4b (approximate 2.0ms) appears later. The 
 
 
 
 
 
 
 
 
 
 

Fig.4 Dispersion curves of low-velocity impact with two different methods 

121



 
 Fig.5  The stress clouds in different cohesive layers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig.6 Delamination damage growth images in adhere layers 
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reason causing this kind of phenomenon is the impact energy continue increase when 
the impact force reachs its maximum value. 
Once impactor contacts laminated plate, part of the energy will be absorbed by elastic 
deformation, the other energy will be dissipated through interlaminar damage and the 
friction between the sub-layers and adhesive layers. Based on small contact stiffness 
about laminate plate, impact damage will be smaller than the experimental value, so 
that the absorbed energy will be smaller about 6.36% than the experimental value.  
Figure 5 is stress clouds in different cohesive layers. The red areas indicate complete 
failure; the green portion represents part of the damaged area which is delamination 
progression areas; lighter color indicates the smaller degree of damage. It is seen from 
the figure 5 that the impact damage occur from the upper adhere layer. The 
delamination damage area of bottom layer is larger than the upper layer. The reason 
for this is the bottom adhere layer served under the bending stress which caused by 
the impact. Figure 6 shows the delamination damage growth images in adhere layers. 
The delamination damage area increased with the increase of time. In different adhere 
layer, for example the 5th layer, the stratified area like peanut shells and damage 
layered area is approximately 60mm2. All those phenomena agree with the 
experimental data. The method of this research can be applied in composite structure 
design and life prediction. 
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Abstract
The detonation propagation in propulsion system is affected by some factors, such as 
flow before detonation wave front. In this investigation, detonation propagation both 
upstream and downstream based on T tube were studied numerically for 
hydrogen/oxygen/nitrogen mixtures using Euler equation with detailed finite-rate 
chemistry. The fifth-order WENO scheme was adopted to capture the shock wave. 
Detonation enters the T tube with combustible high speed flows, and diffracts both 
upstream and downstream. In the downstream direction shock wave decouples from 
reaction zone due to rarefaction waves, and then couples again by wall reflection. In 
the upstream direction the detonation wave has some characteristics of oblique 
detonation due to compression of gas flow. So in the flow system the detonation 
reinitiation mechanism is categorized into two types: spontaneous reinitiation and 
reinitiation by reflection. 

Keywords: Detonation diffraction, high speed flows, reinitiation, WENO scheme  

Introduction 

In contrast to the deflagration, the detonation is more efficient thermodynamically. 
Thus the applications of detonations in propulsion systems have been received more 
and more interests for many years. 

For the transient characteristic of detonation waves, the key point of the detonation 
engine is how to make the detonation waves stay in the combustor long enough. 
Currently, there are three approaches to achieving this aim, and so the detonation-
based engines are classified as pulse detonation engine (PDE), oblique detonation 
wave engine (ODWE) and rotating detonation wave engine (RDE) (Lu, 2009). 

When these detonation-based engines are stable, the circumstance of detonation 
propagation in combustor is extremely complex, which is different with that 
described by the classic CJ theory. But it has been less understood so far. Compared 
in the quiescent mixture, detonation propagation in the flow mixture is divided into 
two situations: upwind propagation and downwind propagation. The investigations 
have been conducted experimentally (Machkenna, 1967; Ishii, 2009). The results 
reveal that detonation velocity is higher than CJ velocity in upwind direction and 
lower than CJ velocity in downwind direction. Numerical studies confirm the results 
again (Yi, et al, 2004; Pan et al, 2010). However, the variation mechanism is not clear. 
In this article, detonation propagation in flow system is investigated numerically and 
discussed based on model of T tube. 

Physical and numerical model 

Governing equations and numerical method 
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The two-dimensional reactive Euler equations in the non-dimensional form are given 
as

Q F G
S

t x y

  
  

  
                                                              (1)

where Q denotes the variable vector, F, G, the convective flux vectors, respectively, S 
is the chemical source vector. 

To avoid the physical oscillations and excessive numerical dissipations due to the 
requirements of high resolutions of the fine structures in the flow field, spatial 
derivatives of inviscid fluxes F and G in Eq. (1) are integrated by the fifth-order 
weighted essentially non-oscillatory (WENO) scheme (Jiang and Shu, 1996). The 
second-order additive semi-implicit Runge-Kutta method (Zhong, 1996) is employed 
to discretize the time and treat the stiffness of the chemical source terms. 

Physical and computational configurations 

The schematic of the computational model is shown in Fig. 1. In Fig. 1a, the 
horizontal combustor with length of 310mm and width of 32mm is connected to the 
vertical detonation tube with length of 18mm and width of 30mm at central location, 
while in Fig. 1b, at the horizontal location of 96mm. The velocity of combustible 
mixture is 1200m/s. The grid size is 0.1mm×0.1mm. Slip-boundary condition is given 
on the wall, and zero gradient condition is on the horizontal combustor exit. The 
stoichiometric H2/O2/Ar mixture is used, where the initial pressure and temperature 
are taken as 10.6KPa and 300K, respectively. 

A detailed chemical reaction mechanism with 8 species and 48 elementary reactions 
(Oran et al, 1982) is employed for the detonation chemistry in a stoichiometric 
hydrogen/oxygen mixture. The reacting species include H, O, H2, OH, H2O, O2, HO2
and H2O2, whose thermodynamic data can be found from the JANAF table. 

(a)

(b)
Figure 1. Schematic diagram of computational domain (a) quiescent system; (b) 

flow system. 

Results and discussion 

The numerical schlieren about detonation diffraction in the quiescent system are 
shown in Fig. 2, where the solid line is shock front and the dash line is reaction front. 
The detonation front doesn’t reach the upper wall. The rarefaction wave created 

J K

J K
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around the corner penetrates into the reaction zone and makes the reaction front 
decouple from the shock. There are the shocked combustible gas between the leading 
shock and reaction zone. The undisturbed detonation propagates with CJ velocity. 

Figure 2. t=16.2 s, the numerical schlieren of detonation diffraction 
in the quiescent system. 

The numerical schlieren about detonation diffraction in the flow system are shown in 
Fig. 3. During to the flow in horizontal tube (from left to right) left detonation 
diffraction is upstream and right detonation diffraction is downstream, which lead to 
obviously different characteristics. At right detonation diffraction the reaction front 
decouples from shock with the effect of the disturbance, which is the same as in the 
quiescent system. At left detonation diffraction the detonation product is compressed 
by the incoming flow, which is analogous to wedge compression. So the upstream 
diffraction front has some characteristics of oblique detonation. Steady oblique 
detonation consists of shock wavelets as show in Fig. 4 (Gui, 2012). The incoming 
flow compressed by the shock S1 is ignited by the transverse wave, thus leading to 
the onset of the transverse detonation TS1. As the oblique detonation wavelet D1 
gradually curves downstream, its strength decreases. Finally, the decaying wave 
becomes a non-reactive shock wave S1. 

Figure 3. t=16.2 s, the numerical schlieren of detonation diffraction 

in the flow system. 

Figure 4. Schematic diagram of oblique detonation wave structure. (Gui, 2012) 

So in the flow system detonation diffraction make the reaction zone decoupled from 
shock downstream, which tend to detonation failure, while make the wave structure 
similar to oblique detonation wave structure upstream, which tend to detonation self-
sustaining.

The detonation wave approaches the upper wall and reflects immediately as shown in 
Fig. 5 which successively shows numerical schlieren, pressure, temperature and H 
mass fraction contours from top and bottom. The reflection of diffracted detonation 
wave from the upper wall is composed of two parts: normal reflection of undisturbed 
detonation and Mach reflection of curving shock. After reflection there are Mach 
stem propagating towards two sides and transverse reflection wave propagating 
towards the bottom wall. The strength of Mach stem is so strong as to the onset of 

126



4

detonation. Part of transverse reflection wave sweep the layer of pre-shocked 
combustible gas between the shock wave and reaction zone due to detonation 
decoupling downstream, which cause to transverse detonation. Therefore the whole 
reflection wave is the complex wave consisting of detonation wave and inertia shock 
wave. Through several reflections back and forth between the upper and bottom wall, 
there is the last formation of planar detonation in horizontal combustor. But at 
downstream direction there undergoes detonation failure, shock reflection, detonation 
reinitiation and planar detonation. At upstream direction there undergoes oblique 
detonation, detonation reflection and planar detonation. 

Figure 5. Reinitiation event of detonation in the flow system 

Conclusions

Detonation diffraction in combustible flow mixture was studied numerically based on 
reactive Euler equation. Detonation fails with the effect of rarefaction wave around 
the corner downstream. Detonation wave structure has some characteristics of oblique 
detonation with compression of the incoming flow upstream. Due to restriction of 
upper and bottom wall there is the last formation of planar detonation both upstream 
and downstream. But detonation reinitiation is spontaneous reinitiation upstream and 
reinitiation by reflection downstream. 
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In this study, vibration of thin beams are analyzed by using point interpolation (PIM) and radial 
point interpolation (RPIM) methods with standard Gaussian integration and a nodal integration 
based on the Taylor series expansion. The effects of integration schemes, support domain sizes and 
RPIM shape parameters on the vibration modes are investigated. A cantilever beam problem is 
solved by linear elastic materials with uniform cross-section. The results are compared with finite 
element and available analytical solutions
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Abstract
This paper presents a parameter-free shape optimization method for designing stiffeners on thin-
walled structures subject to natural vibration. The design problems deal with natural frequency 
maximization problem and volume minimization problem, which are subject to a volume constraint 
and an eigenvalue constraint respectively. The boundary shapes of stiffeners are determined under 
the condition where the boundary is movable in the in-plane direction to the surface. The both 
optimization problems are formulated as distributed-parameter shape optimization problems, and 
the shape gradient functions are derived using the material derivative method and the adjoint 
variable method. The optimal free-boundary shapes of stiffeners are obtained by applying the 
derived shape gradient functions to the H1 gradient method for shells, which is a parameter-free 
shape optimization method proposed by one of the authors. Several design examples are presented 
to validate the proposed method and demonstrate its practical utility of the proposed method.

Keywords: Shape optimization, Parameter-free, Stiffener, Thin-walled structure, Shell, FEM

Introduction

Thin-walled or shell structures are widely used as basic structural components in various industrial 
products, such as car bodies, aircraft fuselages, and pressure vessels as well as in bridges and 
buildings. They are commonly stiffened by stiffeners to improve the bending rigidity of the basic 
structures. With recent enhancements of high speed, high function and weight reduction of thin-
walled structures, the vibration design in consideration of the dynamic characteristics has become 
more important than ever. The natural frequencies (i.e., vibration eigenvalues) usually represent the 
dynamic characteristics of structures, especially the lower order natural frequencies are considered 
as an evaluation measure of the dynamic stability. The dynamic response of the structures can be 
reduced by increasing the lower order natural frequencies (Alejandro and Kikuchi, 1992; Ma et al.,
1995). Moreover, the reduction of the dynamic response of a structure generally leads to the 
minimum weight for the structure design (Zhao et al., 1996).

For the natural vibration problems, this paper presents a shape optimization method for designing 
the free-boundaries of stiffeners and basic structures of thin-walled or shell structures. This method 
is based on the parameter-free optimization method for the boundaries of shells as mentioned above. 
Two kinds of natural vibration design problems are formulated here as distributed parameter shape 
optimization problems. One is a specified eigenvalue maximization problem subject to a volume 
constraint, and the other is its reciprocal volume minimization problem subject to a specified 
eigenvalue constraint. To eliminate difficulties caused by the “mode switching” problem (i.e., 
frequency crossing) (Eldred et al., 1995), the Modal Assurance Criterion (MAC) (Allemang, 2003)
is adopted to track the specified natural mode through changes in the eigenvalue maximization or 
eigenvalue constraint problem. Sensitivity functions (i.e., shape gradient functions) for the two 
design problems are theoretically derived using the material derivative method and the adjoint 

144



2

variable method. The optimal free-boundary shapes of stiffeners and the basic structure are 
determined by applying the derived shape gradient function to the H1 gradient method for shells. 

Variational equation for natural vibration of thin-walled structure

As shown in Fig. 1(a), a basic shell structure or stiffener with an initial bounded domain 3 is 
defined by the mid-area A and the domain of thickness direction (-h/2, h/2), and the side surface S is 
defined by the boundary A of the mid-area A.
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(a) Geometry of a shell (b) D.O.F and sign convention
Figure 1. Shell geometry consisting of infinitesimal flat surfaces

The weak formed eigenvalue equation for natural vibration in terms of rth mode ( ) ( ) ( )
0( , , )r r rw Uu

can be expressed as Eq. (1)

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 00 0(( , , ), ( , , )) (( , , ), ( , , ))r r r r r r ra w w b w wu u u u , ( ) ( ) ( )

00( , , ) , ( , , ) ,r r rw U w U  u u (1)

where 0u  , w and  express the in-plane displacement, out-of-plane displacement and rotational 

angle of the mid-area of the plate as shown in Fig. 1(b), respectively. ( )

 expresses a variation and U

expresses the admissible space in which the given constraint conditions of 0( , , )wu is satisfied. ( )r
indicates the eigenvalue of the rth natural mode. In addition, the bilinear forms a(·, ·) and b(·, ·) are 
defined respectively as shown below.

( ) ( ) ( ) ( ) ( ) ( )
00 ( , ) ( , ) 0 , 0 ,(( , , ), ( , , )) { }r r r B r M r S r

A
a w w c c u u kc dA                 u u , (2)

( ) ( ) ( ) ( ) ( ) ( )
00 0 0(( , , ), ( , , )) { ( ) }r r r r r r

A
b w w h w w u u I dA       u u ,                                        (3)

where Bc , Sc and Mc express an elastic tensor with respect to bending, shearing and membrane 

stress, respectively. ( , ) , ,
1( ( ))
2         expresses the curvatures and ,( )w     expresses the 

transverse shear strains. Moreover, and 3( /12)I h express a mass density and a second moment of
area, respectively. The constant k denotes a shear correction factor, which can be used as k = 5/6 
within Reissner theory of isotropic elastic plates (Reissner, 1945).

Shape optimization problem of stiffeners on the thin-walled structure

As shown in Fig. 2, the stiffened shell structure consists of a basic shell structure and stiffeners. To 
determine the optimal free-boundary shapes of stiffeners, the shape variations are considered as in-
plane variations V in the tangential direction to the surfaces.

Eigenvalue maximization problem
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Letting the eigenvalue equation in Eq. (1) and the volume be the constraint conditions and the 
eigenvalue of the specified rth natural mode be the objective functional to be maximized, a

Figure 2. Shape variation of stiffeners and the basic shell by V
distributed-parameter shape optimization problem for finding the optimal design velocity field of 
the stiffeners V , or As(= A sV ) can be formulated as shown below:

Given A,                                                                                 (4)

find As (or V)                                                                 (5)
minimize - ( )r (6)

subject to Eq.(1) and M (=
A
hdA )< M̂ (7)

where M and M̂ denote the volume of the thin-walled structure with or without stiffeners and its 
constraint value, respectively.

For the mode switching problem as mentioned in Section 1, the Modal Assurance Criterion (MAC) 
[29] is used to track the specified rth natural mode of the initial shape. The mode with a maximum 
value of MAC in all natural modes is regarded as the corresponding mode and is tracked.

( ) 2
( ) 0
0 ( ) ( )

0 0

| { } { } |
( , )

({ } { })({ } { })

r T
r s

s r T r T
s s

MAC
 

 
   

 (8)

where, ( )
0

r and s indicate the vectors of the rth mode of the initial shape and the each mode of the 
varied shape, respectively.

Letting 0( , , )wu and M denote the Lagrange multipliers for the eigenvalue equation and volume 
constraints, respectively, the Lagrange functional L associated with this problem can be expressed 
as

( ) ( ) ( )
00( , ( , , ), ( , , ), )r r r

ML A w w u u
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 00 0
ˆ(( , , ), ( , , )) (( , , ), ( , , )) ( )r r r r r r r r

Mb w w a w w M M     u u u u (9)

Then, the material derivative L of the Lagrange functional can be derived as shown in Eq. (21) 
using the formula of material derivative (Choi and Kim, 2005).

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 00 0(( , , ), ( , , )) (( , , ), ( , ), )r r r r r r rL a w w b w w      u u u u

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 00 0(( , , ), ( , , )) (( , , ), ( , , ))r r r r r r ra w w b w w


     u u u u

.
( ) ( ) ( ) ( )

00 ,
ˆ{ (( , , ), ( , , )) 1} ( ) , ,r r r r

Mb w w M M G C      u u n V V (10)
where,    

( )
( , ) ( , ), · [ B r

S S
G G dS c        n V nV ( ) ( ) ( )

, , 0 , 0 ,( )( )S r r M rkc w w c u u             
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( ) ( ) ( ) ( )
0 0 ){ ( } ·]r r r r

Mh w w u u I dS          nV (11)

The notation n in Eq. (11) is defined as an in-plane outward unit normal vector on boundary A .
Additionally, C expresses the admissible function space that satisfies the constraints of domain 

variation. The notation ( ) and 
.

(·) are the shape derivative and the material derivative with respect 
to the domain variation, respectively (Choi  and Kim, 2005).
When the optimality conditions with respect to the state variable ( ) ( ) ( )

0( , , )r r rwu , the adjoint variable 
0( , , )wu and M are satisfied, Eq. (10) becomes

, , .L G C n V V (12)

The sensitivity density function (i.e., the shape gradient density function) for this problem is derived 
as Eq. (13) by considering the quasi self-adjoint relationship as shown in (14).

( ) ( ) ( ) ( )
( , ) ( , ) , , 0 , 0 ,( )( )B r S r r M rG c kc w w c u u                       ( ) ( ) ( ) ( )

0 0 ){ ( }r r r rh w w u u I          (13)
( ) ( ) ( )
0

0 ( ) ( ) ( ) ( ) ( ) ( )
0 0

( , , )
( , , )

(( , , ), ( , , ))

r r r

r r r r r r

w
w

b w w


uu
u u

(14)

Volume minimization problem
With the aim of designing the lightweight of stiffened thin-walled structures, we formulate the 
reciprocal problem of that treated in the preceding section. Letting the eigenvalue equation in Eq. 
(1) and the eigenvalue of the specified rth natural mode be the constraint conditions and the volume
be the objective functional to be minimized. A distributed-parameter shape optimization problem is 
expressed as shown below:

Given    A,                                                                       (15)

find    As (or V)                                                             (16)
minimize   M (=

A
hdA )                                                       (17)

subject to    Eq.(1) and  ( )r = ( )ˆ r (18)

where ( )ˆ r is the constraint value of the eigenvalue of the specified rth natural mode. Letting 
0( , , )wu and  denote the Lagrange multipliers for the state equation and eigenvalue constraints, 

respectively, the Lagrange functional L associated with this problem can be expressed as

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 00 0(( , , ), ( , , ), ) (( , , ), ( , , ))r r r r r r rL w w   u u u u

( ) ( ) ( ) ( ) ( )
00

ˆ(( , , ), ( , , )) ( )r r r r ra w w     u u . (19)

Using the same procedure as in the case of the eigenvalue maximization problem, the shape 
gradient function of this problem is derived as shown in Eq. (20) by considering the quasi self-
adjoint relationship in Eq. (21).

( ) ( ) ( ) ( )
( , ) ( , ) , , 0 , 0 ,1 { ( ) )(B r S r r M rG c kc w w c u u                         ( ) ( ) ( ) ( )

0 0 ){ ( }}r r r rh w w u u I        

(20)
( ) ( ) ( )
0

0 ( ) ( ) ( ) ( ) ( ) ( )
0 0

( , , )
( , , )

(( , , ), ( , , ))

r r r

r r r r r r

w
w

b w w


uu
u u

(21)
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Shape optimization method for determining the optimal free boundaries

The non-parametric shape optimization method described here for the design of the stiffened thin-
walled structures is based on the H1 gradient method, which is also called the traction method and is 
a type of gradient method in a Hilbert space. The original traction method was proposed by 
Azegami in 1994 (Azegami, 1994; Azegami et al., 1997). One of the authors has developed the 
optimization method for shell based on the original method (Shimoda and Tsuji, 2007; Shimoda et 
al., 2009; Shimoda, 2011). It is a node-based shape optimization method that can treat all nodes as 
design variables and does not require any shape design parametrization. This approach makes it
possible to obtain the optimal boundary shapes of stiffened shell structures. The Dirichlet conditions 
are defined for a pseudo-elastic shell in the case of boundary shape optimization of stiffeners and 
the basic structure with this method. A distributed force proportional to the shape gradient function 

Gn is applied in the tangential direction to surfaces of the basic structure and stiffeners. The 
analysis for shape variation is called the velocity analysis. The shape gradient function is not 
applied directly to the shape variation but rather is replaced by a force, which varies shapes of
stiffeners and the basic structure. This makes it possible both to reduce the objective functional and 
to maintain the smoothness, i.e., mesh regularity, which is the most distinctive feature of this 
method.
In the design problems of the eigenvalue maximization and the volume minimization, firstly, the 
eigenvalue analysis is done using a standard commercial FEM code and the outputs of the analysis 
are utilized to calculate the shape gradient function. After that, the velocity analysis is implemented,
where a distributed force proportional to the negative shape gradient function Gn is applied to 
determine the design velocity field V. Finally the shape is updated iteratively using the design 
velocity field V. This process is repeated until the optimal shape of each design problem is obtained.

Results of numerical analysis

 
y x

z

Simply supported  

Fixed

Design boundaries

(a) Eigenvalue analysis (b) Velocity analysis
Figure 3. Boundary conditions of stiffened roof shell

The design example considered is a stiffener shape optimization of a roof shell stiffened by latticed 
stiffeners. Both eigenvalue maximization and volume minimization were carried out by the 
proposed method. The initial shape is shown in Fig. 3(a) along with the boundary conditions of the 
eigenvalue analysis, where both the round boundaries and the straight boundaries were simply 
supported. The constraint conditions for the velocity analysis are shown in Fig. 3(b), where the 
basic structure was fixed. The 1st natural mode of the initial shape obtained by the eigenvalue 
analysis is shown in Fig. 4. The specified 1st eigenvalue was maximized subject to the constant 
volume constraint, and the natural 1st mode was tracked. The optimal stiffener boundaries obtained 
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in the eigenvalue maximization problem is shown in Fig. 5(a). According to the magnitude of the
shape gradient function, the five stiffeners along the straight boundary of the basic structure were 
reduced, and the reduced volume shifted to the central stiffeners along the round boundary of the 
basic structure. Iteration histories of the compliance and the volume are shown in Fig. 6(a), in
which the values have been normalized to those of the initial shape. The results show that the 
eigenvalue of the optimized shape increased approximately 40% while satisfying the constant 
volume constraint. Furthermore, the 1st eigenvalue was set as the constraint and the volume was 
minimized while tracking the natural 1st mode. Fig. 5(b) shows the optimal stiffener shapes 
obtained in the volume minimization problem. Fig. 6(b) shows iteration histories of the compliance 
and the volume for the volume minimization problem. It is confirmed that the volume of stiffeners 
decreased to 18.2% of the initial shape while satisfying the constant 1st eigenvalue constraint.

Figure 4. The 1st natural mode of stiffened roof shell

(a) Eigenvalue maximization (b) Volume minimization
Figure 5. Optimization results of stiffened roof shell

(a) Eigenvalue maximization (b) Volume minimization
Figure 6. Iteration histories of stiffened roof shell
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Conclusions

This paper has proposed a parameter-free shape optimization method for designing the shapes of 
stiffened thin-walled or shell structures in the natural vibration problem. The optimal free boundary 
shapes of stiffeners can be obtained with the proposed method. A specified eigenvalue 
maximization subject to a volume constraint can be solved along with its reciprocal problem in 
which volume reduction is the objective. The proposed method has been applied to typical design 
problems of stiffened thin-walled structures, and the numerical results showed that smooth optimal
boundary shapes were obtained in each design problem to achieve the maximum eigenvalue or 
lightweight structure. It has been demonstrated that the proposed method is an effective tool for 
designing optimal stiffeners on thin-walled or shell structures.
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We present a multi-frontal direct solver for two dimensional isogeometric finite element method 
simulations with NVIDIA CUDA and perform numerical experiments for linear, quadratic and 
cubic B-splines. We compare the computational cost O(Np2) for 2D parallel shared memory 
implementation with the corresponding estimate O(N1.5p3) for a standard 2D sequential 
implementation. We conclude the presentation with observation  that computational cost of the 
shared memory direct solver scales like p2 when we increase the global continuity of the 
isogeometric solution, which is an adventage with respect to sequential isogeometric solver 
scalability of the order of p3. 
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The top problem for the B-splines based direct solver for Ck isogeometric finite 
element method has size O(N1/2 p). The resulting computational cost of the top problem solution is 
O(N3/2p3). This is the computationally most expensive part of the solution. 

The top problem for the direct solver for classical C0 finite element method has size 
O(N1/2). The computational cost of the top problem solution is O(N3/2). 

In the parallel shared memory implementation of the full Gaussian elimination for 
the top dense problem it is possible to perform row subtractions at the same time. There are  
O(N1/2p) rows to be subtracted at the same time, the size of each row is O(N1/2p), and these row 
subtractions must be performed O(N1/2p) times. This implies O(Np2) computational complexity of 
the isogeometric Ck finite element method shared memory direct solver. 
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The dual boundary integral equations 

Figure 1. A finite body with a crack
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Modeling strategy 

Figure 2. Three types of elements  

(a) 9-node discontinuous element (b) special crack-tip elements with one edge lying in the 

crack front (c) special crack-tip elements with two edge lying in the crack front 
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Figure. 4. Crack front local coordinate system 

Figure 5. A crack front element  

u
u

Numerical examples  
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Figure 7 Discretization of a square-shaped crack (side length 2a=2) with 49 nine-node 
discontinuous quadrilateral elements  

Figure 8. Variation of along the square-shaped front 

Table 1 Comparisons with other methods 
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Figure 9. Geometry of a finite cube with a central square-shaped crack under a uniform 
normal stress and meshes of the uncracked boundary 

Figure 10. Comparisons of along the square-shaped crack front in an infinite 
domain and a finite cube  
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Abstract
Radiative-convective heat transfer analysis with respect to fire whirlwind is performed in 
consideration of participating media using Radiation Element Method by Ray Emission Model 
(REM2), in which three dimensional analyses are then performed to investigate the thermal and flow 
fields by using the Finite Volume Method with introducing divergence of radiative heat flux for gas 
medium. The SIMPLE method is utilized to solve the discretized equations. Natural convection is 
caused from a plane source of constant temperature in the flat ground. Fire whirlwind is forcely 
generated stably just above the heat source with introducing air currents from four corners. In the 
analysis, one dimensional radiative exchange analysis above the heat source is compared with three 
dimensional one to reduce the computational load and time. Then, the composition of participating 
gases is altered to discuss the effect of radiative heat exchange to the whirlwind flow field. 
Key Words:  Fire Whirlwind, Radiative Heat Exchange, Participating Media, Natural Convection 

Introduction 
Our Japanese, especially the residents in east area of Japan, have experienced a large earthquake on 
March 11, 2011, i.e. East Japan great earthquake disaster (Takewaki et al., 2011). There were a lot of 
fires in the northeast area of Japan, for example in Kesen-numa City. Despite of a number of town 
area fires, a fire whirlwind was never observed in this disaster. However, fire whirlwind is still one 
of the concerned accidents in the earthquake (Hough & Bilham; 2005). 

When a large-scale wide area fire such as a town area fire or a forest fire occurs, there can be a strong 
rotating flow to be called fire whirlwind. Fire whirlwind is a tornado that includes flames, hot winds 
and sparks. Fire whirlwind is regarded as one of the worst cases which we should avoid at the time 
of a large-scale fire, because the whirlwind itself is critical and scatters sparks widely to promote 
spread of a fire. 

As a fire occurs, a flame makes an ascending current of air and uses up neighboring oxygen. 
Furthermore, to collect oxygen from a wide area, there is a current of air against the flame, resulting 
in big natural convection in the fire current of air. When the wind from a certain specified direction 
blows in this fire current of air, homogeneity of suction of air with an ascending current of air 
collapses. Then, a vortex is easy to come to occur, the fire current of air becomes a fire whirlwind 
that is an ascending current of air accompanied with rotating. Fire whirlwind may be pushed away by 
wind downstream, or may move in search of oxygen. 

Aiming at a property and elucidation of an outbreak factor of fire whirlwind as examples of the pasts 
for a lesson, investigation and a reproduction experiment of the outbreak situation (Graham, 1955; 
Emmons & Ying, 1967; Byram & Martin, 1970; Haines & Updike, 1971; Martin et al., 1976; 
Muraszew et al., 1979; Emori & Saito, 1982; Satoh & Yang, 1996; Hayashi et al., 2003; Liu, 2005; 
Kuwana et al., 2007; Liu et al., 2007; Kuwana et al., 2008; Chuah et al., 2011), numerical analysis 
are performed till now (Satoh & Yang, 1997; Battaglia et al., 2000; Snegirev et al., 2004; Hassan et 
al., 2005; Chuah et al., 2007; Grishin et al., 2009). Though various factors are thought about outbreak 
of a fire whirlwind, such as climatic condition or existence of underground flammable gas, it is hard 
to say that property and outbreak mechanism of a fire whirlwind are to be elucidated enough. 

Convective and radiative-convective heat transfer analyses with respect to fire whirlwind were also 
performed in our laboratory on former studies (Sakai and Watanabe, 2007; Sakai and Miyagi, 2010; 
Sakai, 2012), just radiative exchange between solid surfaces was carried out. Therefore, in this study, 
radiative heat exchange is dealt in consideration of radiative gas using Radiation Element Method by 
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Ray Emission Model (REM2) (Maruyama & Aihara, 1997). Radiative heat transfer effect on fire 
whirlwind is discussed. 

Then, three dimensional analyses are performed to investigate the thermal and flow fields by using 
the Finite Volume Method (Patankar, 1980) with introducing divergence of radiative heat flux for gas 
medium. The SIMPLE method is utilized to solve the discretized equations. Natural convection is 
caused from a plane source of constant temperature in the flat ground. Fire whirlwind is forcely 
generated stably just above the heat source with introducing air currents from four corners. For 
making of analysis models, a representative example of the fire whirlwind that occurred at Tokyo in 
the Great Kanto Earthquake (1923) is referred. 

In the analysis, one dimensional radiative exchange analysis above the heat source is compared with 
three dimensional one to reduce the computational load and time. Then, the composition of 
participating gases is altered to discuss the effect of radiative heat exchange to the whirlwind flow 
field.

Analysis and Modelling 
Radiative Exchange We consider the radiation element of participating medium, which is comprised 
of a polyhedron surrounded by polygons as shown in Fig. 1. The spectral radiation intensity, I , at   
rr in the direction ŝ  can be expressed in terms of the radiation energy balance by 

            
      


           

 
r

r rs ,
s , b, 4

ˆdI r,s ˆ ˆ ˆ ˆI r ,s I T I r,s s s d ,
dS 4

 (1) 

where   and s ,  are spectral absorption and scattering coefficients, respectively. b ,I   is spectral
black-body radiation intensity. Here, S  is the path length in the direction ŝ  and    ˆ ˆs s  is the phase 
function from the direction ŝ  to ŝ .

Fig. 1. Radiation element 

Considering the i-th participating radiation element, we assume that each radiation element is at a 
constant uniform temperature of iT  and its refractive index and heat generation rate per unit volume,
X,iq , are also constant and uniform throughout the element. A ray passing through the radiation 

elements attenuates by absorption, and a part of the ray is scattered. The ray is separated into absorbed, 
scattered and transmitted fractions. Moreover, it is assumed that the scattered radiation is distributed 
uniformly over the element. 

For anisotropic scattering media, we introduced an apparent extinction coefficient 
*  and thus, a 

corrected scattering albedo *  by introducing the delta function approximation (Maruyama, 1998). 
Thus, an anisotropic scattering medium can be treated as an isotropic scattering one. The third term 
on the right hand side of equation (1) can be approximated by 
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*1 1 * D

1 1
I x, d I x, d I

2 2
, (2) 

where 
DI  is the average scattered radiant intensity and   is directional cosine. 

A radiation element i can be regarded as either a volume element or a surface boundary. Equation (1) 
is integrated along the path length i i iˆ ˆS (s) V A (s)  and over all discretized solid angles, in which iV  and 

i ˆA (s)  are the volume and area projected onto the surface normal to ŝ , respectively. The spectral 
radiation energy, J ,i ,Q , from the radiation element i, is given by 

         D D R
J,i , i , b,i , i , i , i ,Q I I A , (3) 

where      D S
i , i , i ,1 , in which i , , D

i ,  and S
i ,  are emissivity, diffuse reflectivity and specular 

reflectivity, respectively. 
R
i ,A  is the effective radiation area (Maruyama & Aihara, 1997) which is 

defined as follows, 

  
      

R *
i , i i , i4

1 ˆ ˆA A (s) 1 exp S (s) d . (4) 

By introducing the absorption view factors A
i , jF  and the diffuse scattering view factors D

i , jF  defined by 
Maruyama (Maruyama, 1998) and equation (3), we can obtain the following equations: 

R
T ,i , i , b , i ,Q I A     , (5) 
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D
J,i , T ,i , j ,i J , j ,

j 1
Q Q F Q , (6) 

  


 
N

A
X,i , T ,i , j ,i J , j ,

j 1
Q Q F Q . (7) 

The heat transfer rate of the emissive power, T ,i ,Q  , or the net rate of heat generation, X,i ,Q  for each 
radiation element is given arbitrarily as a boundary condition. The unknown X,i ,Q  or T ,i ,Q  can be 
obtained by solving equations (6) and (7) using the method previously described by Maruyama and 
Aihara (Maruyama & Aihara, 1997). The relationship between X,iq   and X,i ,Q  is obtained by 



  X,i
X,i X,i ,0

i i

Q 1q Q d
V V

. (8) 

An analytical method for radiative heat transfer, i.e. the radiation element method by ray emission 
model, REM2, is used in radiative heat transfer analysis, and the Statistical Narrow Band (SNB) 
model is combined to the REM2 to consider the spectral dependence of the radiative properties. 

Thermal and Fluid Flow Fields The governing equations of thermal and flow fields are the 
continuum equation, the Navier-Stokes equation, and the energy equation. The thermal and flow 
fields are assumed to be unsteady state and three dimensional. These equations are normalized and 
transformed to the following generalized conservation equation. 

2 2 2

2 2 2(u ) (v ) (w ) S
t x y y x y z

          
           

       
, (9) 

where u , v  and w  are the normalized velocity components for x , y  and z  directions, respectively. 
Variable   takes 1 for the continuum equation, u , v  and w  for the Navier-Stokes equation, and 
normalized temperature T  for the energy equation. Generalized diffusion coefficient   takes 0 for 
the continuum equation, 1/Re  for the Navier-Stokes equation and 1/(Re Pr)  for the energy equation. 
Normalized source term S  takes 0 for the continuum equation, the summation of the normalized 
pressure term and the normalized buoyancy term by Boussinesq approximation, and the normalized 
source term from radiative exchange mentioned in the previous section (equation(8)). Turbulent flow 
is treated by using high Reynolds number turbulence model. 
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In the thermal and fluid flow analysis, equation (9) is discretized by using the Finite Volume Method 
(Patankar, 1980). The SIMPLE method is utilized to solve the discretized equations. Physical 
properties of the mixture are altered depending on the change of temperature. 

Analysis Procedure Fig. 2 shows an analysis procedure in this study. Temporal temperature 
distribution is initially given to analyze nongray radiative heat transfer by REM2. Then, the derived 
heat generation rate is introduced to the energy equation, and the thermal and flow field is analyzed 
by FVM using the SIMPLE method. The derived temperature is introduced to the REM2 again as an 
initial temperature distribution, and iteration is repeated until the derived distribution is converged to 
the initial distribution. Steady state solution is obtained through this iteration loop. 

Fig. 2. Flow chart of numerical simulation procedure Fig.3. Analytical domain 

Analytical Model Fig. 3 shows analytical domain for calculation, which scale is based on the Great 
Kanto Earthquake (1923) in Japan. Heat source on the bottom center has 800m in width and depth, 
and this value is representative length L. Therefore, the analytical domain is a cubic of 2,000m in 
width, depth and height. Heat source is applied uniform temperature of 2,000K, and the domain is 
assumed to be surrounded by circumstance of 293.15K. Initial temperature of the domain is also set 
to 293.15K. Mixture gas is constituted by water vapor, CO2 and Nitrogen. All the domain surfaces 
are assumed to be black for radiative exchange, and the surfaces except the bottom are opened. Fire 
whirlwind is forcely generated stably just above the heat source with introducing air currents from 
four corners. The currents velocities U are constant of 5m/s at the inlet surfaces of 600m in width 
and 200m in height. Combustion nor chemical reaction is not considered in the calculation. 

Table 1 shows concentration of participating gases in mixture for radiative heat exchange. Carbon 
dioxide has three values; no concentration, concentration in general atmosphere and the maximum 
concentration in case of fire. Water vapor also has three values; no concentration, concentration of 
saturated water vapor at the initial temperature and the concentration of saturated water vapor at 
boiling point. 

Table 1 Concentration of participating gases 
 Concentration of CO2 (ppm) Concentration of H2O (ppm) 

Case A 0 0
Case B 0 3.56×104

Case C 3.60×102 3.56×104

Case D 8.00×104 3.56×104

Case E 8.00×104 1.02×106

Results and discussions 
In our previous study, performing the numerical analysis of fire whirlwind with respect to scale effect, 
it was examined whether a relationship exists between a real phenomenon and the phenomenon in 
the reduction model with taking into account radiative heat transfer (Sakai & Miyagi, 2010). The P-
1 model was utilized to simulate the radiative heat transfer from the heat source at high temperature. 
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It was found that radiative heat exchange played an important role in the heat transfer at the higher 
temperature field, whereas just radiative exchange between solid surfaces was carried out.

In this study, radiative heat exchange is dealt in consideration of radiative gas using Radiation 
Element Method by Ray Emission Model (REM2) (Maruyama & Aihara, 1997). Radiative heat 
transfer effect on fire whirlwind is discussed. 

Comparison of 1-d and 3-d radiative heat exchange One dimensional radiative exchange analysis 
above the heat source is compared with three dimensional one to reduce the computational load and 
time. Fig. 4 shows the comparison of divergence of radiative heat flux above the heat source between 
one dimensional parallel analysis model and three dimensional analysis model. Even though the one 
dimensional analysis model omitted the effect of surrounding boundaries, these two results coincide 
comparable. Therefore, further analysis employs one dimensional model for radiative heat exchange. 

Fig. 4. Comparison of 1-d and 3-d radiative analysis (Distribution of divergence of radiative 
heat flux above the heat source) 

Comparison of convective flow analysis and radiative-convective flow analysis Fig. 5 shows heat 
generation rate for convective flow analysis and divergence of radiative heat flux for radiative heat 
exchange above the heat source. Though values of divergence of heat flux are smaller than those of 
heat generation rate, just convective flow analysis ignores these amounts to simulate. It is easily 
expected that the radiative heat exchange due to participating media plays an important role more 
than the radiative heat exchange between surfaces. 

Fig.5. Comparison of heat generation rate and divergence of heat flux above the heat source 

Fig. 6 shows comparison of temperature distribution above the heat source after 30 minutes from air 
current induction between convective flow analysis and combined radiative-convective flow analysis. 
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As expected from the distribution of heat generation and divergence of radiative heat flux, 
temperature distribution is different, especially until lower height 100m. Participating media have 
much influence to the temperature distribution, and play an important role. 

Fig.6. Comparison of temperature distribution above the heat source after 30 minutes from air 
current induction between convective flow analysis and combined radiative-convective flow 
analysis

Fig. 7 shows streamlines of the flow field. Lines are colored by velocity magnitude. Whirlwind is 
stably generated above the heat source, and is shrinked sharply with the height from the heat source. 

Fig.7. Streamlines of whirlwind 

Influence of Participating Media Concentration on Heat Exchange and Flow Distribution In 
practical fire whirlwind, combustion and chemical reaction release some participating media. In this 
section, representative participating media, i.e. carbon dioxide and water vapor is considered, and the 
concentration of these participating media is altered to evaluate the influence on heat exchange and 
flow distribution. 

Figs.8 and 9 shows temperature at the height of 10m from the bottom surface with changing the 
concentration of carbon dioxide and that of water vapor, respectively. Some values of both 
participating media concentration are added from the Table 1 for the combined analysis to observe 
the tendency between temperature and concentration. Water vapor plays more important role to the 
thermal field than carbon dioxide. 
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Fig.8. Temperature at the height of 10m from the bottom surface with changing the 
concentration of carbon dioxide 

Fig.9. Temperature at the height of 10m from the bottom surface with changing the 
concentration of water vapor 

Conclusions

In this study, three dimensional analyses are performed to investigate the thermal and flow fields by 
using the Finite Volume Method with introducing divergence of radiative heat flux for gas medium. 
Fire whirlwind is forcely generated stably just above the heat source with introducing air currents 
from four corners. One dimensional radiative exchange analysis above the heat source is compared 
with three dimensional one to reduce the computational load and time. Then, the composition of 
participating gases is altered to discuss the effect of radiative heat exchange to the whirlwind flow 
field. The following concluding remarks are gotten from the combined heat transfer analysis. 
 From the comparison of thermal and flow field between convective flow analysis and combined 

radiative-convective flow analysis, radiative heat exchange has a great influence to the thermal 
field and a less influence to the flow field. Flow field is much characterized by turbulent. 

 Increase of participating media concentration gives raise of temperature due to absorption and 
re-emission, and water vapor influences thermal field more than carbon dioxide. However, 
these calculations employ uniform concentration over the analytical domain. Release and 
diffusion of participating media have to be considered for more practical evaluation of the 
whirlwind. 
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Abstract
Vibration of double-walled carbon nanotubes (DWCNTs) are studied by using 
different beam models of continuum mechanics and the molecular dynamics (MD) 
simulations. The models of the double Euler beam (DEB) and the double Timoshenko 
beam (DTB), with the energy of van der Waals interaction between layers taken into 
consideration are applied to predict the natural frequencies of DWCNTs with one 
ends fixed. For the relatively long DWCNTs, the results obtained by the DEB model 
and the DTB model are very close, and the MD simulations show that these two 
models can predict the natural frequencies well. However, for the vibration of the 
relatively short DWCNTs, the difference between the DEB model and the DTB model 
becomes obvious, and the DTB model offers much better predictions than the DEB 
model.

Keywords double-walled carbon nanotubes, double-Timoshenko beam, molecular 
dynamics simulation, van der Waals, natural frequency

1. Introduction
Carbon nanotubes (CNTs) have attracted lots of researches for their novel electronic 
properties and superior mechanical strength (Ahlskog et al. 2001; Cumings & Zettl 
2000; Postma et al. 2001; Roschier et al. 2001; Rueckes et al. 2000). Experiments and 
MD simulations have been effectively used to study mechanical behavior, including 
vibrational behavior, of CNTs. Treacy et al. (1996) estimated Young’s modulus of 
isolated CNTs by measuring, in the transmission electron microscope, the amplitude 
of their intrinsic thermal vibration. Hsiesh et al. (2006) investigated the intrinsic 
thermal vibration of a CNT using MD simulations.  There are some difficulties 
encountered in experiments study on the mechanical behavior of CNTs, and MD 
simulations remain expensive for large scale systems. Continuum mechanics models, 
including the Euler beam model are widely used in vibration and buckling analyses 
and in sound wave propagation problems (Yoon et al. 2003a; Yoon et al. 2003b).
Besides, the Timosheko beam model with the rotary inertia and the shear deformation 
taken into account has been used to analyze the vibration and wave propagation of 
short CNTs which may be used widely as nanoelectronic materials (Ahlskog et al. 
2001; Roschier et al. 2001) and AFM tip (Ishikawa et al. 2002; Snow et al. 2002).
Yoon et al. (2005) studied vibration of short DWCNTs with supported-supported 
boundary condition and they found that the Timoshenko-beam model, rather than the 
Euler-beam model, is relevant for terahertz vibration of short DWCNTs. For more 
boundary conditions, Wang et al. (2006) solved the governing Timoshenko equations 
for DWCNTs by using the differential quadrature method. They show that the 
frequencies are significantly over predicted by the Euler beam theory when the 
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length-to-diameter ratios are small. Wang et al. (2010) studied the thermal vibration 
of single-walled CNTs based on the model of Timoshenko beam, together with the 
law of energy equipartition and MD simulations. Wang & Hu (2012) analyzed the 
difference in natural frequencies predicted by using the DEB model and the MD 
simulation, they found that the difference is obvious for high-order frequencies and 
more accurate models, such as Timoshenko beam model, are needed to predict the 
natural frequencies of a DWCNT.

The primary objective of this study is to derive theoretical solutions of DTB model 
and check the validity of it, in studying the vibration, simulated via the MD 
simulations, of a DWCNT with one end fixed and the other end free. For this purpose, 
Section 2 presents the natural frequency of a model of DTB to be used to model the
vibration of a DWCNT. Section 3 gives the MD simulation for the free vibration of 
DWCNTs based on the Brenner potential and Lennard-Jones pair potential. Section 4 
outlines a comparison, which is verified by using results of MD simulations in 
Section 3, between the DTB model and DEB model. Finally, the paper ends with 
Section 5 with some conclusions. 

2. Double-Timoshenko-beams model 

(a)

(b)
Figure 1. Models for DWCNT (a) Continuum mechanics model (b) Molecular 

structure model 
This section starts with the dynamic equation of a DTB of infinite length and uniform 
cross section placed along direction x  in the frame of coordinates ( , , )x y z , the
dynamic equations of the inner and outer tubes for a DWCNT are (Huang 1961; Ru 
2000)
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where ( , )kw x t  (k=1, 2) is the displacement of section x  of the kth tube in direction 
y  at the moment t, k  is the slope of the deflection curve of the kth tube when the 
shearing force is neglected, kA  is the cross section area of the kth tube, 2dk k

I y A 
is the moment of inertia for the cross section of the kth tube,   is the form factor of 
shear depending on the shape of the cross section, and  =0.5 holds for the circular 
tube of the thin wall (Timoshenko et al. 1972). jkC  is the coefficient of the van der 
Waals (vdW) interaction for the interaction pressure per unit axial length and 
estimated based on an effective interaction width (He et al. 2005). kE , k , kG  are 
Young’s modulus, mass density and shear modulus of the kth tube respectively. The 
boundary conditions of a cantilever beam are 

2 2

2 2

( , ) ( , )(0, ) 0, (0, ) 0, 0, 0k k
k k

w L t L t
w t t

x x
  

   
 

. (2) 

Both nested tubes with the same boundary conditions have the same vibrational 
modes, ˆˆ ( ), ( )w x x . The dynamic deflection and slope can be given by 

ˆ ( ) j t
k k nw a w x e  , ˆ ( ) j t

k k na x e   , (3) 
where ŵ  represents the deflection amplitude of the beam, ̂  the slope amplitude 
of the beam due to bending deformation alone, and 1j   . Let 

/x L  . (4) 
Substituting Equation (3), (4) into Equation (1), one obtains 
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The solutions ˆˆ ,n nw  of Equation(7) reads 

1 1 2 1 3 2 4 2ˆ cosh sinh cos sinnw C C C C           , (8a) 

1 1 2 1 3 2 4 2ˆ sinh cosh sin cosn C C C C               , (8b) 
where
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1/2
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. (9) 

And 2 4B C B   is assumed. 

In the case of 2 4B C B  , then Equation (7) should be replaced by (Huang 1961)
1 1 2 1 3 2 4 2ˆ cos sin cos sinnw C jC C C            , (10a) 

1 1 2 1 3 2 4 2ˆ sin cos sin cosn jC C C C                 , (10b) 
where 1 1j  .
In Equations (8) and (10), only one half of the constants are independent since they 
are related by Equations (5) as following 

2 2 2 2
1 1 1 1 1 1 1 1

1 1

1 ( )L
C b s r C C

b



        , (11a) 

2 2 2 2
2 1 1 1 1 2 2 2

1 1

1 ( ) ,L
C b s r C C

b



         (11b) 

2 2 2 2
3 1 1 2 1 3 3 3

1 2

1 ( ) ,L
C b s r C C

b



          (11c) 

2 2 2 2
4 1 1 2 1 4 4 4

1 2

1 ( ) .L
C b s r C C

b



         (11d) 

The natural frequency   of the cantilever Timoshenko beam can be determined 
from the determinant of the follow matrix 
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Solving Equation (12) and (13), one can obtain the natural frequency of the double 
Timoshenko beam with one end fixed. 

3. Molecular dynamics model 
The MD simulations are carried out using Brenner’s second generation reactive 
empirical bond order (REBO) potential (Brenner et al. 2002) which has been widely 
used in a great number of studies on the mechanical behavior of carbon materials. In 
the REBO potential, the chemical binding energy bE  can be simply written as a sum 
over nearest neighbors in the form 

b
(> )

= [ ( )- ( )]R A
ij ij ij

i j i

E V r b V r , (14) 

where ijr  is the distance between pairs of nearest-neighbour atoms i and j, ijb  is a 
many-body empirical bond-order function. The functions ( )R

ijV r  and ( )A
ijV r  are 

interatomic repulsion and attraction terms, which represent bonding from valence 
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electrons, respectively. 

The long range vdW interaction is calculated by Lennard-Jones 12-6 potential, given 
by

12 6

4E
r r
 

         
     

, (15) 

with well-depth energy of -22=4.7483 10 J  and equilibrium distance of 
=0.34nm .

The atoms in the red region shown in Figure 1(b) are fixed in order to simulate the 
cantilever boundary condition. The DWCNT is allowed vibrating freely for 62 10
steps with time step 1fs at a room temperature (300K) using Nose-Hoover thermostat 
(Hoover 1985; Nose 1984a; Nose 1984b; Nose 1991) after the system is fully relaxed 
for 2ns. The coordinates histories in y direction of one random of the free atoms are 
recorded for certain duration, and the natural frequencies are computed by using the 
fast Fourier transform (FFT) method. The frequencies of a (9, 0)/(18, 0) zigzag 
DWCNT with 7.614nm length  are shown in Figure 2, in which every peak 
represents one natural frequency of the DWCNT. It shows that although the diameters 
of the inner and outer tubes are different, the atoms oscillate in the same frequencies 
due to the effect of vdW force between these two tubes. 
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Figure 2. Magnitude-frequency curves of atoms on inner tube and outer tube 
with the same 7.614nm length  

4. Results and Discussions 
To predict the free vibration of a DWCNT, it is necessary to know Young’s modulus E
and the shear modulus G or Poisson’s ratio  . The previous studies based on the 
REBO potential gave a great variety of Young’s modulus and Poisson’s ratio of 
single-walled CNTs. For our calculations, the inner and outer tubes of DWCNT is 
assumed to have the same geometrical and material parameters where E=0.87TPa and 

=0.41  are given by MD tensile method introduced in (Liu & Wang 2012) when the 
thickness of the wall was chosen as 0.34nm.  

Vibration of (5, 5)/(10, 10) DWCNTs and (9, 0)/(18, 0) DWCNTs with one end fixed 
are simulated by MD method. Figure 3 and Figure 4 show the first-order natural 
frequencies of these two kinds of DWCNTs with different lengths calculated by MD 
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and beam models. From Figure 3 and Figure 4, it can be found that the DTB model 
and DEB model which is introduced by Yoon et al.(2003b) give very similar 
frequencies if the aspect ratio /L d  is about bigger than 8. However, the difference 
between these two beam models becomes obvious along with the aspect ratio getting 
small, and the DEB model gives the higher frequencies. From the comparison with 
results of MD simulations, the DTB beam model offers much better predictions than 
the DEB beam model. It suggests rotary inertia and shear deformation are significant 
for the vibration of short DWCNTs. And the DTB model is relevant for vibration of 
short DWCNTs. 
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Figure 3. (9, 0)/(18, 0) DWCNT frequencies calculated by beam models and MD  
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Figure 4. (5, 5)/(10, 10) DWCNT frequencies calculated by beam models and MD  

High-order frequencies can be obtained according to the magnitude-frequency curves 
as shown in Figure 2. Note that some peaks response frequencies of the longitudinal 
vibration not the transverse vibration of the DWCNT. And frequencies responded by 
these peaks should be ignored in the statistical process. Figure 5 shows the first ten 
frequencies of (5, 5)/(10, 10) DWCNTs in different lengths. One can see that the 
natural frequencies predicted by the DTB model are better than those based on the 
DEB model, especially when the DWCNT getting very short. That’s because the 
shorter of the DWCNT, the greater the impacts of rotary inertia and shear 
deformation on the free vibration of DWCNT. However, the differences in natural 
frequencies, mainly high-order frequencies, predicted by DTB model and the MD 
simulation still looks obvious. More accurate models, such as shell model, may give a 
better prediction for the natural frequencies of such a DWCNT. 
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Figure 5. The first ten natural frequencies of (5, 5)/(10, 10) DWCNTs in different 

lengths 

5. Conclusions 
Free vibration of cantilever DWCNTs is studied using MD simulation and a DTB 
model which considers vdW force between the inner and outer tubes and treats the 
inner and outer tubes as two individual Timoshenko beams. A theoretical solution of 
cantilever DTB model has been obtained to predict the resonant frequency of 
DWCNTs with one end fixed. A comparison for the first-order frequencies between 
DTB model and DEB model shows that for the relatively long DWCNTs, the results 
obtained by the DTB model and the DEB model are very close, and the MD 
simulations show that both of these two models can predict the natural frequencies 
well. However, for the vibration of the relatively short DWCNTs, the difference 
between the DTB model and the DEB model becomes obvious, and the DTB model 
offers much better predictions than the DEB model. For high-order frequencies of 
DWCNTs, DTB model gives much better predictions than DEB model, especially 
when the length of DWCNTs is very short. 
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Abstract
The LES with Smagorinsky model and the FW-H equation based on Lighthill acoustic theory were 
adopted to simulate the sound and flow field with different kinds of structures. Based on the 
analysis of field, drag and flow noise reduction mechanism of the structures with different shapes 
and sizes was gotten. The result demonstrate preliminarily that the match between the length and 
diameter of the cylindrical structure has different effect on the drag and flow noise reduction. The 
drag and noise reduction of the model studied in the paper with a length ratio of 0.1 and a diameter 
ratio of 0.55 is best. The relationship between hemispherical structure diameter and its drag and 
flow noise reduction effect is monotonic positive. 

Keywords: Structure, Drag and flow noise reduction, Separation of flow field, Numerical 
simulation, Multi-loads AUV. 

Introduction

Autonomous Underwater Vehicle (AUV) serves as the mobile node of underwater autonomous 
navigation, performs such tasks as surveillance and reconnaissance, marine environmental 
monitoring, navigation nodes, anti-mine warfare, anti-submarine warfare, detection and 
identification, load drop, time-sensitive target, and so on. No matter in civil field or in the military
field, it plays an important role, especially in deep sea confrontation in the future (UUV Master Plan,
2000, UUV Master Plan, 2004 and FY2011–2036, 2011). But with the progress of science and 
technology and the actual needs of military and civilian, considering the factors such as long 
distance, long term, and the aircraft technology developing a multiple load has become the 
development direction of the future. This aircraft is a multi-body system which made up of a load 
and delivery. When the load carries to the designated area, load separates step by step from the top 
which shown in Figure1. The idea for a new vehicle technology research has important realistic 
meaning and reference value, multiple sonar cloth, large gap sensor placement, one carrier segment 
carries more loads at a same time to complete the task which can greatly shorten the work time, 
reduce the engineering cost, and has many advantages.

Before-separation separation After-separation

 Multi-loads AUV Carrier

Load

convex

Figure.1 Diagram of separation
After the separation of multi-load AUV, AUV becomes into two parts-loads and carry, it 

destroys a good shape of the original AUV hydrodynamic characteristics, thus appears the bluff 
body structure. The emergence of bluff body structure makes the interference between the carrier 
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segment and flow field enhanced, greatly increases the resistance and flow noise of carry segment, 
reduces the sail distance of carry segment, destroys the sound concealed of carry segment and let 
segment not be able to reach the predetermined position to lay, finally impacts on the separation 
process. Therefore, how to reduce the flow resistance and noise of carry segment on the separation 
of multi- load AUV deployment is important. 

Studies have shown that many scholars(LIOW Y S, 2006 and SHAO C P, 2008 ) reduces the 
cycle alternating force on blunt object by arranging disturbed object to control the vortex shedding 
on the upstream or downstream of bluff body, thus achieves the purpose of vibration and noise 
reduction. Inspired by this, the paper controlled the separation of the flow field around carry 
segment by increasing the convex structure, used the finite volume method to solve Navier-Stokes 
equations, calculated the convex with different cross-sectional shapes (square, round) and got the 
influences of the convex on the carrier flow hydrodynamic performance, explored the results which 
the cross-sectional shapes and scales of convex controlled the separation of carrier flow field. All 
done above is provided for multi-load AUV design as the technical support. 

Governing equation 

1 LES basic idea and equation
The basic idea of LES can be summarized as follows: the instantaneous N-S equation directly 

simulates the large scale turbulent vortex, not the small scale eddy, while the effects of small vortex 
on large eddy can simulate by approximate model. To get the achievement of LES, two parts are 
needed to do: 

(1) build mathematical filtering function, filter out the vortex whose scale is smaller than 
filtering function from the turbulent transient equation of motion, break down the description of 
field equation of motion of large vortex, and filter out the motion effects of small vortex on large 
vortex, it can be reflected by adding the stress which is grid dimension stress into the motion 
equation of large eddy field; 

(2) Sub Grid-Scale model was built can be seen in the authors (Smagorinsky J, 1963).
By using the filtering function to filter the N-S equation, LES control equation is obtained. The 

filtering function determines the solution of the vortex’s scale. The continuity equation after 
filtering and the N-S equation is the same as the form of the general control equation, i.e.:
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2 Acoustic equation 
The noise module used in FLUENT code that based on the acoustic analogy of Lighthill, its 

basic principle is based on the simulation of time-varying flow. Ffowcs-Williams and 
Hawkings(1969) used the powerful theory of generalized function to develop the Lighthill equation, 
established FW-H equation which named with their name:
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Physical model and calculation method 

1 Physical model 
The physical model for the numerical simulation is shown in Figure.2. Where, (a) is the 

original model, which is a cylinder, length is 3500mm, maximum diameter is 534.4mm;(b) is a
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model with a cylindrical structure, cL is the cylindrical structure’s length, cD is the diameter;(c) is a
model with a hemispherical structure, the diameter of the hemisphere is sD .

cL

cD

L

D

2sD

Carrier Heispherical
Structure

Cylindrical
Structure

(b) (c)(a)

Figure.2 Model of simulation 
2 Calculation method 

Considering the symmetry properties of carrier structure and low computational expand, the 
paper used 2D axisymmetric calculation method. Structured grid is used in the numerical simulation 
(Figures.3 and 4), the total number of grid was about 20 million. Computational domain was a 
rectangle, the width direction was 10 times of the model radius, the longitudinal direction, to ensure 
the full development of the wakes, and this paper decided the front end to the flow section was 1.5 
times of the model’s length, the rear end to the flow section was 2.5 times of the model’s length. To 
describe the flow field accurately, according to the flow conditions and geometry, y+ of the grid’s
bottom took 10 to fully capture the information about the near-wall flow. 

Figure.3 Grid of cylindrical structure Figure.4 Grid of hemispherical structure
In the process of the whole calculation, the flow control equations, turbulence kinetic energy 

equation and turbulent dissipation equation coupled solution, and had achieved second-order 
accuracy format. A velocity inlet and pressure-outlet boundary condition was respectively used for 
imports and exports; wall was under a condition of adiabatic heating and no slip boundary 
condition. With the residual coefficient reached the following changes and no longer as the 
convergence criteria. The convergence criteria took the situation as a standard, which the 
correlation residual coefficient reached 1e-06 low and almost changed no more.

The SST turbulence model based on k  model was used for the steady-state’s numerical 
simulation; the results would serve as the initial value of unsteady calculation. The sound field was 
simulated by the Smagorinsky model which used large eddy simulation after the unsteady 
calculation was stable. In the flow area of the sound field calculation, the pressure fluctuation on the 
surface of the model would be used as the sound source of FW-H equation. Discrete control 
equations used the finite volume method, the time term and non-conservative part of convective 
term both were second order upwind format, the conservative part and diffusion term both were 
second-order central difference format, and the pressure and velocity coupling calculation used the 
algorithm of SIMPLEC. The time steps of unsteady calculation took 0.00005s to capture the high 
frequency noise and fulfilled the CFL condition.  
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Result of simulation

1 Result of Flow field
In order to study the effects of the convex section dimensions and cross section shape on the 

carrier segment’s flow resistance and noise, this paper carried out a series of carrier flow field 
simulation research with different cL , cD and sD values, the specific working condition is shown in 
table 1.

Table.1 Simulation model in paper
Cylindrical structure Hemispherical structure

0.4 ~ 0.8cD D  (per0.05)
0.05cL L 

0.4,0.45,0.5, 0.55,0.6,0.65, 0.7,0.75,0.8, 0.9,1sD D 0.1cL L 

0.15cL L 

The total drags which the object suffered are pressure drag and frictional drag. Pressure drag is 
mainly determined by the shape of the object, and friction drag is mainly determined by the object's 
surface area. The total Drag coefficient is defined as (Zhang Yuwen, 1998): 

20.5d

F
C

sv
                                                             (3) 

In the Eq. (3), F acts as the resistance on the object,  acts as medium density, s acts as the 
reference area (the maximum cross-sectional area of this model is 20.224m ), v acts as the velocity.

By comparing the different shapes of convex model and original model, the paper got the 
results about the drag reduction. Drag reduction factor is defined as 

1 100%F F
F

 
                                                         (4) 

In the Eq. (4), F is the resistance of the original model, 1F is the resistance of the convex model.

1.1 Cylindrical convex drag reduction effect
Table2 shows the drag coefficients of the original model and convex model with different 

cL L ( 0.5 0.6cD D   ). 
Table.2 Calculation results with different cL L

cD D cL L Pressure drag
coefficient

Frictional drag
coefficient

Total drag
coefficient

Original 0.8169 0.0096 0.8265

0.50
0.05 0.3866 0.0230 0.4096
0.10 0.2350 0.0319 0.2669
0.15 0.2512 0.0349 0.2861

0.55
0.05 0.3287 0.0253 0.354
0.10 0.2037 0.0363 0.2400
0.15 0.2446 0.0361 0.2807

0.60
0.05 0.2660 0.0280 0.294
0.10 0.2260 0.0335 0.2595
0.15 0.2768 0.0345 0.3113

From Table.2, when cD D kept the same value, the drag reduction of cylindrical convex 
platform showed a trend of increase firstly and then decrease with the increase of cL L . It didn’t 
show that the cylinder's length was longer, the drag reduction effect was better; but there was a 
suitable value that made the drag reduction effect was best.

Table.3 shows the drag coefficients of the original model and convex model with different 
cD D ( 0.1cL L  ). 
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Table.3 Calculation results with different cD D

cD D Pressure drag
coefficient

Frictional drag
coefficient

Total drag
coefficient

Original 0.8169 0.0096 0.8265
0.40 0.3411 0.0258 0.3669
0.45 0.2881 0.0289 0.3170
0.50 0.2350 0.0319 0.2669
0.55 0.2037 0.0363 0.2400
0.60 0.2260 0.0335 0.2595
0.65 0.2583 0.0315 0.2898
0.70 0.2906 0.0296 0.3202
0.75 0.3229 0.0276 0.3505
0.80 0.3931 0.0252 0.4183

From Table.3, when cL L kept the same value, the drag reduction of cylindrical convex 
showed a trend of increase firstly and then decrease with the increase of cD D . It didn’t show that 
the cylinder diameter was longer, the drag reduction effect was better; but there was a suitable 
diameter that made the drag reduction effect was best.

As can be seen from the above results, compared to the original model, the model with 
cylindrical convex suffered slightly increased frictional resistance, but the pressure drag which was 
more than 90% of the total drag was significantly reduced, thus formed the drag reduction effect. 
What can be found at the same time, the length and diameter of cylindrical convex had a certain 
relationship with the drag reduction effect, its length and diameter of the cylinder should reach a 
certain value, then achieved a good drag reduction effect. Analysis suggested that, to the flow 
around of original model, the boundary layer separation occurred ahead of time because of the 
existence of blunt body structure, produced bigger pressure in the original model, and then formed 
the most parts resistance of original model. However, the existence of the cylindrical convex 
delayed the separation of boundary layer and reduced the pressure drag of the model, thus achieved 
the goal of drag reduction. 

Figure 5 is a velocity vector diagram of the original model; Figure 6 is a velocity vector
diagram of the cylindrical convex. As can be seen from the figure, after the fluid came across the 
front face of carrier section, formed a large-scale and non-stable vortex, existed obvious adverse 
pressure gradient; while the connection of the convex and carrier formed a small-scale vortex, 
reduced the separation of the fluid, and lowed the resistance of the model. The model in this paper,
When 0.1cL L  and =0.55cD D , the drag reduction was best. 

Figure.5 Velocity of the original model        Figure.6 Velocity of the cylindrical convex

1.2 Hemispherical convex drag reduction effect
Table4 shows the drag coefficients of the original model and convex model with different sD D .

Table.4 Calculation results with different cD D

sD D Pressure drag
coefficient

Frictional drag
coefficient

Total drag
coefficient

Original 0.8169 0.0096 0.8265
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0.40 0.8019 0.0115 0.8134
0.45 0.7912 0.0119 0.8031
0.50 0.7805 0.0123 0.7928
0.55 0.7655 0.0125 0.7780
0.60 0.7454 0.0131 0.7585
0.65 0.7127 0.0139 0.7266
0.70 0.6800 0.0147 0.6947
0.75 0.6473 0.0155 0.6628
0.80 0.6144 0.0165 0.6309
0.85 0.4050 0.0263 0.4313
0.90 0.1956 0.0361 0.2317
1.00 0.0087 0.0635 0.0722

From Table.4, with the increasing of sD D value, the drag reduction effect of hemispherical 
convex increased. When 0.8sD D  , the drag reduction effect was below 20%; when 0.8sD D  , the 
drag reduction effect had increased dramatically. When 1sD D  , the drag reduction effect achieved 
more than 90%. The drag reduction effect of cylindrical convex was not exactly same the same 
result. Analyzing its reason, the existence of the hemispherical convex delay the separation of 
boundary layer, in addition, the “Streamline” of hemispherical convex reduced the resistance of the 
model. Due to the smaller side of hemispherical convex, smaller sD made the boundary layer delay 
effect wasn’t obvious, so the drag reduction effect was not enormous. 

Figure.7 is a velocity vector diagram of 0.75sD D  , Figure 8 is a velocity vector diagram
of 1sD D  . The two figures were good enough to reflect the above characteristics. From the 
diagrams, when 0.75sD D  , the convex in a certain extent reduced the scale of the vortex but not 
obvious; when 1sD D  , the fluid flowed along the surface and didn’t exist the whorl, it validated 
the calculation results of the above indirectly. 

Figure.7 velocity vector of 0.75sD D  Figure.8 velocity vector of 1sD D 
2 Sound field result analysis

As we all know, the flow field noise is mainly composed of the various scales of the vortex
and turbulence (Lu Yuntao, 2008). Predictably, the separation region of flow boundary layer is the 
main vocal position. By comparing the flow noise of feature point, studied the influence of the 
cross-sectional shape and size of the convex to the carrier flow noise. 

By convention (Wang Zhicheng, 2004), choose the vertical upper part 0.5L point (3.5,1.75,0) 
of original model as the feature point. According to the calculation result of flow, when the size of
the cylindrical projection was 0.1cL L  and =0.55cD D , the effect of drag reduction was best, in 
order to reduce the uncertainty of the variables and increase the reliability of the comparative study,
the paper used the fixed size 0.1cL L  and changed the value of cD D to study the influence 
characteristics of flow noise.
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Table5 is the calculation results of the average sound pressure level of different feature points
of convex structures. Figure 9 is the average sound pressure level of feature points under a situation 
of the original model, cylindrical convex with 0.55cD D  , hemispherical convex with 1sD D  .

Table.5 Calculation results of different convex structures
Model SPL/dB Noise Reduction/dB

Original 120.69 ——

Cylindrical
structure

0.5cD D  119.07 1.62
0.55cD D  117.88 2.81
0.6cD D  118.25 2.44

0.65cD D  118.89 1.8

Hemispherical
structure

0.4sD D  109.96 10.73
0.6sD D  108.49 12.2
0.8sD D  106.97 13.72
1sD D  94.45 26.24

Figure.9 SPL curves of different convex structures
As can be seen from Table5, the existence of cylindrical convex made the sound pressure level 

amplitude of feature spot lower about 2db, and the noise reduction showed a trend of increase firstly 
and then decrease with the changes of cD D . The existence of hemispherical convex made the sound 
pressure level amplitude of feature spot lower about 10 ~ 15db which was very obvious, and the 
noise reduction monotonically increased with the increasing of sD D .

From Figure 9, in the low frequency area ( 2f kHz ) the sound pressure level of different 
structure model changed smoothly without sharp fluctuation; in the high frequency area 
( 4 ~ 10f kHz kHz ), the sound pressure level of original model had a tremendous change, the sound 
pressure level with a convex model changed gently. Preliminary analysis suggested that the flow 
noise of flow field, the pressure distribution on the surface of the object and change are closely 
related. For the original model, there existed a large scale vortex in the surface of model, fluid in the 
whirlpool area appearance unsteady phenomenon such as transition, separation, reattachment and 
some other sharp changes (Fig 5), and the existence of convex structure reduced the scale of the 
eddy and the degree of the change (Fig 6 and 8), thus reduced the flow noise caused by the unsteady 
pressure change.

Conclusion 

In this article, by analyzing the flow field numerical simulation results of original model, 
cylindrical convex model with different sizes and hemispherical convex model with different sizes, 
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the law of drag reduction noise reduction with the convex cross-section shape and size of the model 
was found. In-depth analysis of these results was done and the following conclusions were gotten:

(1)The around blunt body structure of fluid flow tended to cause turbulent flow, initiate 
boundary layer and form a large scale vortex in the surface, thus created a larger pressure drag and 
caused a unsteady pressure fluctuation noise. The existence of convex structure changed the flow 
separation, inhibited the vortex and significantly reduced the pressure drag, thus achieved a drag 
reduction and noise reduction effect. 

(2)The numerical calculations of the cylindrical convex model showed that the length and 
diameter of cylindrical convex had a certain match relationship with the drag reduction and noise 
reduction effect, the length and diameter of the cylinder should reach a certain quantity so as to play 
a good drag reduction noise reduction effect. The paper believed that when the length ratio was10% 
and the diameter ratio was 55%, the drag reduction and noise reduction result was best. 

(3)The numerical calculations of the hemispheric convex model showed that the drag reduction 
and noise reduction effect monotonically increased with the increasing of hemispheric diameter. 
When the diameter ratio was close to 1, the drag reduction and noise reduction result was best. 

The conclusion of this paper provided a reference for the matching design research about the 
drag and noise reduction of the vehicle sail after the separation of convex structure and multi-load 
AUV, the next problems needed to be solved was the experimental verification to the flow field
characteristics of convex structure.
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Abstract
A practical framework is proposed for the auto-segmentation of the left ventricle (LV) endo-
cardium boundary in cardiac magnetic resonance (CMR) images. The segmentation method is 
based on the random walk (RW) algorithm, which requires user-selected background and 
foreground seeds. In this paper, the seeds are initialized automatically. The first image frame of a 
short-axis slice is first partitioned into different regions using the fuzzy clustering algorithm, and 
the LV region is identified using a heuristic method. Two circular region of interests (ROIs) are 
then defined based on the estimated centre of the partitioned LV region, which are used as the RW 
seeds initialization to segment the LV of the first image frame. The centre pixel of the adjacent 
image frame is then computed using the segmented LV of the previous frame. The foreground and 
background circular ROIs can then be defined and used as initialization of the RW algorithm to 
segment the adjacent image. The effectiveness of the proposed framework is verified by the 
experimental results on real CMR images.

Keywords: Cardiac Magnetic Resonance, Image Segmentation, Random Walk, Left Ventricle, 
Fuzzy Clustering.

1. Introduction

Cardiac image segmentation plays a crucial role and allows for a wide range of applications, 
including quantification of volume, computer-aided diagnosis, localization of pathology, and 
image-guided interventions. However, manual delineation is tedious, time-consuming, and is 
limited by inter- and intra- observer variability. In addition, many segmentation algorithms are 
sensitive to the initialization and therefore the results are not always reproducible, which is also 
limited by inter algorithm variability. Furthermore, the amount and quality of imaging data that 
needs to be routinely acquired in one or more subjects has increased significantly. Therefore, it is 
crucial to develop automated, precise, and reproducible segmentation methods.

Cardiac Magnetic Resonance (CMR) is a well established and rapidly advancing imaging modality 
in analyzing heart disease. It is considered by some authors to be the reference standard. CMR has 
proved to be more accurate than echo-cardiology in the calculation of the ejection fraction and also 
shown superior results in endo-cardium border segmentation. It has a wide topographical field of 
view and high contrast between soft tissues without the need for a contrast agent. This means there 
is a high discrimination between the flowing blood and the myocardium muscle. It is non-invasive 
with high spatial resolution and can be gated using an elec-trocardiogram (ECG) at different phases 
during the hearts pulse. In this study, the proposed framework aims to segment the left ventricle 
(LV) endo-cardium border in CMR images. 

Segmentation and tracking of LV in CMR data has been extensively addressed for the last decades
(Petitjean, 2011; Kang, 2012). Basically, the LV segmentation task can be approached by four 
major approaches: image-based methods (e.g., Weng, 1997), deformable model-based (e.g., Jolly, 
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2006) methods, registration-based methods (e.g., Lorenzo-Valdés, 2004), and graph-based methods 
(e.g., Kedenburg, 2006): The first approach utilizes the basic image analysis operators like 
thresholding, region-growing, image morphology, edge detection, pixel classification, etc, to 
delineate the LV boundaries from the image. The second approach trains a shape/curve model of the 
LV, and lets the curve model evolve in new subjects until it converges to the LV boundaries. The 
basic idea of the third approach is to transfer those expert-segmentations in training images (i.e., 
atlases) onto target image through image registration, and then fuse the transferred segmentations to 
derive an ultimate segmentation. The last approach has also been employed in LV segmentation 
without heavy reliance on explicitly learned or encoded priors, but the user has to initialize the set 
of foreground and background seeds.

Graph-based methods have been successfully employed in image segmentation without heavy 
reliance on explicitly learned or encoded priors. However, graph cuts algorithm proposed in 
(Boykov, 2000) is a fundamentally two-label algorithm, and susceptible to the “small cuts” problem 
in the presence of weak boundaries. The random walk (RW) algorithm proposed in (Grady, 2004 & 
2006) does not suffer from the “small cut” problem and extends naturally to an arbitrary number of 
labels. As the good performance of weak boundary detection, noise robustness, and the assignment 
of ambiguous regions, RW segmentation has been applied in cardiac data, MR brain images (Grady, 
2004 & 2006, Eslami, 2013, Dakua, 2011). However, manual selection of the seeds is a hard task in 
slow intensity varying medical images, and limits its application for real problems.

In this study, a new framework is proposed for the auto-segmentation of the LV endo-cardium 
boundary in CMR images. The segmentation method is based on the RW algorithm, and the seeds 
are initialized automatically. The first image frame of a short-axis slice is first partitioned into 
different regions using the fuzzy c-means (FCM) algorithm (Bezdek, 1981), and the LV region is 
identified using a heuristic method. Two circular region of interests (ROIs) are then defined based 
on the estimated centre of the partitioned LV region, which are used as the RW seeds initialization 
to segment the LV of the first image frame. The centre pixel of the adjacent image frame is then 
computed using the segmented LV of the previous frame. The foreground and background circular 
ROIs can then be defined and used as initialization of the RW algorithm to segment the adjacent
image. The effectiveness of the proposed framework is verified by the experimental results on real
CMR images from RV challenge website (http://www.litislab.eu/rvsc).

The rest of this paper is organized as follows: Section 2 reviews the related techniques and presents 
the proposed framework. The experimental results of the proposed framework are reported in 
Section 3. Finally, the conclusion is given in Section 4.

2. Methodology

In this section, we first brief review the FCM and RW algorithms, then present the proposed cardiac 
image segmentation framework, which is specifically for LV endo-cardium boundary delineation in 
CMR images. 

2.1 Fuzzy C-Means (FCM)

Mathematically, FCM algorithm is formulated to minimize the following objective function with 
respect to the membership function uk|ij and the cluster centre vk as given by

subject to (1)         
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Where c is the cluster number, m is the weighing exponent on fuzzy memberships, and a value of m
= 2 is known to give good results with the FCM algorithm. Note if m = 1, then the FCM becomes 
the hard K-means algorithm (Macqueen, 1967) with each point uniquely belonging to its nearest 
cluster. The uk|ij is the membership of the point xij in the kth cluster. The minimization of (1) gives 
the updating equations for membership uk|ij and cluster centre vk, which are given by

and                                                                    (2)             

The FCM algorithm is summarized as follows,
1) Fix the cluster number c, initialize the cluster centres vk (k=1,2,…c), and set the threshold be a 
small positive value, e.g., .
2) Alternatively update the membership function and cluster centre by using (2) until the changes 
between two iterations smaller than the threshold 

2.2 Random Walk (RW)

RW algorithm was first proposed by Leo Grady (2004 & 2006) for performing multi-label,
interactive image segmentation. User predefines a series of pixels as the labels, then the probability
that a random walker starting at each unlabeled pixel (a pixel can be considered as a node) will first 
reach one of the prelabeled pixels on different labels is calculated. A high-quality segmentation 
image can be obtained by assigning to each node the label corresponding to the greatest probability. 

The summary of the RW algorithm is described as follows:
1) Obtain a set of marked (or labeled) pixels with K labels (wher K is the number of the labels), 
either interactively or automatically.
2) Build the lattice, which is composed of nodes and edges. RW treats an image as a purely discrete 
object -- a graph with a fixed number of vertices and edges.
3) Choose a weighting function, which maps a change in image intensities to edge weights. The 
typical Gaussian weighting function is given by

(3)                          

Where gi indicates the image intensity at pixel i, and is the weighting parameter.
4) Solve each label by

(4)

Where xs (0 < s K ) represents a vector of probabilities for each node to reach to the seeds with
label s . Please refer to (Grady, 2006) for the definition of LU, BT and ms.
5) Assign to each node the label according to the maximum probability                , and the final 
segmentation can be obtained.

The detailed discussion of RW algorithm for image segmentation can be found in (Grady, 2004 & 
2006). It is noted that the seeds selection is the key step for RW implementation. Segmentation 
result is extremely sensitive to the position of seeds, and any improper position of seeds will lead to 
the false results. 
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2.3 The proposed framework

This study aims to propose a fully automated framework for cardiac image segmentation with the 
auto initialization of the background and foreground seeds for RW algorithm. The FCM algorithm 
and heuristic method are used to locate the LV region in the first image frame of a short-axis slice, 
then the seeds are initialized based on the centre of the located LV region, after that, the RW
algorithm is used to segment the first frame. In sequence, the centre of the segmented LV region of 
the current frame is then propagated to the adjacent frame to initialize the seeds and RW is used to 
segment the LV boundary in the frame. 

Fig.1 Illustration of the proposed framework for segmentation of a sequence of CMR images,
refer to the main text for the details. 

The proposed framework for the LV segmentation on a sequence of frames can be summarized as 
follows,
1) Given the first frame in Fig.1-a, set cluster number c=3, using the FCM algorithm to partition 
the first frame into different regions with three intensity levels, low, middle and high, as shown in 
Fig.1-b.
2)  Among the regions with high intensity level, choose two big regions whose centres have similar 
y coordinate, and identify LV as the right one (the left one is right ventricle (RV)), as shown in 
Fig.1-c. The LV region is indicated by red-colour rectangle.
3)  Calculate the centre of LV region, and initialize foreground and background seeds for the first 
frame, as shown in Fig.1-d. The green-colour and blue-colour dots indicate the foreground and
background seeds, respectively. 
4) Segment the first frame by using RW algorithm with the initialized seeds from step 3, the 
segmented LV boundary is shown in Fig.1-e. The Segmented LV boundary is indicated by red-
colour curve.
5) Calculate the centre of LV boundary, propagate it to the adjacent frame, and initialize foreground 
and background seeds for the adjacent frame, as shown in Fig.1-f. The green-colour and blue-colour 
dots indicate the foreground and background seeds, respectively.
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6) Segment the adjacent frame by using RW algorithm with the initialized seeds from step 5, the 
segmented LV boundary is shown in Fig.1-g. The Segmented LV boundary is indicated by red-
colour curve.
7) Repeat steps 5 and 6 to segment the next adjacent frame until it is done on all the frames in the 
sequence, as shown in Fig.1-h.

The location of LV region in the first frame in step 2 is based on the LV and RV intensity 
distributions and their overall relevant locations in the CMR images. 

3. Experimentation

To evaluate the performance of the proposed framework on cardiac LV segmentation, we apply it to 
the real CMR images from RV challenge website (http://www.litislab.eu/rvsc). In all examples, we 
fix the cluster number c=3 for FCM clustering algorithm and the weighting parameter 90 for RW
segmentation algorithm. The software used in this study is modified based on the MATLAB source 
code from L. Grady’s homepage (www.cns.bu.edu/~lgrady). In all examples, the green dots indicate 
the foreground seeds, blue dots indicate the background seeds, and red curves indicate the 
segmented LV boundaries.

Fig.2 The seeds initialization for the first frame, i.e., frame #100.

Fig.3 The segmentation results of the proposed framework on the frames #100 to #109 (only 
show the frames with even number). Here the number of background seeds and foreground 
seeds are 8 and 4, respectively. 
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Fig.4 The segmentation results of the proposed framework on the frames #100 to #109 (only 
show the frames with even number). First row, the number of background seeds and 
foreground seeds are reduced to 4 and 2, respectively. Second row, the number of background 
seeds and foreground seeds are reduced to 2 and 2, respectively. 

Fig.5 The segmentation results of different seed locations on the same original image. Note the 
locations of the background and foreground seeds are changed, which affect the segmentation 
results. 

The image size is 256x216, 20 images per cardiac cycle. The testing is performed on the patient #1, 
frame #100 to frame #119 (one cardiac cycle). We select frame #100 as the first frame, and locate 
the LV region by using FCM and heuristic method, as shown in Fig.2. The segmented result of the 
first frame is then propagated to initialize the seeds and segment all the frames in the sequence, as 
shown in Fig.3. It can be observed from the figure that the segmented LV boundaries are quite 
reasonable even though papillary muscles are adjacent to or fall inside the LV region in some 
frames. We need to highlight that whole segmentation procedure is fully automatic processed, 
which is desirable for practical clinic applications. It is noted that the segmentation results are not 
sensitive to the number of the seeds, if we reduce the number of background and foreground seeds 
from 8 and 4 to 4 and 2, or even 2 and 2, respectively, the segmentation results are quite similar, as 
shown in Fig.4. However, the locations of the background and foreground seeds may affect the 
segmentation results, as shown in Fig.5, the segmentation may fail if the seeds are not properly 
located. 
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4. Conclusion

Accurate and robust extraction of the LV cavity is the key step for analyzing heart functions 
quantitatively. In this study, we propose a framework for fully automated segmentation of the LV 
boundary in CMR images in terms of fuzzy clustering and graph segmentation techniques. The 
effectiveness of the proposed framework has been verified by the experimental results of LV 
segmentation on real CMR images. This study focuses on LV endocardial delineation only, to 
extend the proposed framework for LV epicardial delineation is one of the future research topics.
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Abstract
Full-scale testing of large unreinforced masonry walls subjected to in-plane static-cyclic loading is 
underway at ETH Zurich. During testing the measurements included all applied forces together with 
an overall and a local picture of the deformation state of the specimens. In order to achieve this, in 
addition to the traditional hard-wired instruments, i.e. LVDTs, a 2D Digital Image Correlation (DIC) 
measurement system was used. DIC is a cutting-edge, non-contact, optical measurement technique 
that provides full-field displacements and strains by comparing the digital images of the test 
object’s surface obtained before and after deformation. The present paper reports on the 
measurement procedure and discusses the results obtained and the applicability of DIC for strain 
measurements when testing large masonry walls at full-scale. A set of conclusions and 
recommendations for the practical application are also given.

Keywords: Full-scale testing, unreinforced masonry, digital image correlation, static-cyclic loading, 
strain measurement.  

Introduction 

A research project on the deformation capacity of unreinforced masonry structures has been 
initiated at the Institute of Structural Engineering of ETH Zurich. The objective of the research 
project, which should be seen as the first step of an initiative to investigate the limits of the 
deformation capacity of structural masonry, is the development of the basic building blocks for the 
displacement-based design of masonry structures. Before our own experimental program started, a 
thorough survey and assessment of existing experimental and analytical research in the area of the 
deformation capacity of structural masonry was carried out (Salmanpour et al., 2012a,b). The 
experimental work is divided into two phases, i.e. the preliminary and main phases, and consists of 
a total of 11 cyclic-static tests on full-scale unreinforced masonry walls in order to investigate the 
effects of the various factors, i.e. unit type, vertical pre-compression level, aspect ratio, size effect 
and boundary conditions on the deformation capacity of structural masonry. A novel approach will 
be developed and utilized for the purpose of applying experimental evidence collected from our 
own tests for the development of reliable mechanical models for structural masonry. The 
abovementioned experimental data, i.e. full-field information on displacements, deformation and 
strains of the specimens has been acquired using the Digital Image Correlation (DIC) method.  

From early in the 1950’s until recent years, various non-contact optical methods, e.g. electronic 
speckle pattern interferometry, shearography, Moiré interferometry, holographic interferometry and 
digital image correlation have been developed to extract full-field shape, deformation and motion 
information. Amongst the abovementioned methods, DIC is the most widely used because of its low 
requirements on equipment, easy application, wide range of measurement resolution and, above all, 
high accuracy. In principle, DIC is optical metrology based on digital image processing and 
numerical computing. It directly provides full-field displacements and strains by comparing the 
digital images of the specimen surface obtained before and after deformation. The DIC 
measurement system was first developed by a group of researchers at the University of South 
Carolina in the 1980s when digital image processing and numerical computing were still in their 
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infancy (Bing et al., 2009). Although DIC has been widely accepted and used in the field of 
experimental mechanics, its application has been limited to rather small specimens. However, in 
recent applications also tests on larger specimens, e.g. concrete and masonry walls, and even in-situ 
tests on large-scale structures, e.g. bridges and towers, have been considered (Salmanpour et al., 
2013 and McCormick and Lord, 2010). Such applications have been made possible by recent 
developments in computational technology and the availability of high-resolution digital cameras. 
Recently, tests on full-scale masonry shear walls were performed at ETH Zurich applying DIC to 
measure full-field displacements and strains. The present paper reports on the measurement 
procedure and discusses the results obtained and the applicability of DIC for strain measurements 
when testing large masonry shear walls at full-scale.  

Testing Program

In order to investigate the deformation capacity of structural masonry, a total of 11 static-cyclic 
tests were performed in two phases. Table 1 summarizes the details of the performed tests, where lw,
hw and tw are the length, the height and the thickness of the specimens, 0 is the pre-compression 
stress, and fx is the mean compressive strength of the masonry (perpendicular to the bed joints). The 
first phase (preliminary phase) of the experimental program included tests P1 to P4, and the second 
phase (main phase) of the experiments included tests T1 to T7.  

Table 1. Test program

Phase Test Units Specimen Dimensions 
lwxhwxtw [mm] 

Boundary 
Conditions 0/fx

Preliminary P1 Clay  1500x1600x150 Fixed Ends 0.10 

Preliminary P2 Clay  1500x1600x150 Fixed Ends 0.15 

Preliminary P3 Calcium-Silicate  1550x1600x150 Fixed Ends 0.10 

Preliminary P4 Calcium-Silicate  1550x1600x150 Fixed Ends 0.15 

Main T1  Clay 2700x2600x150 Fixed Ends 0.10 

Main T2 Clay 2700x2600x150 Fixed Ends 0.05 

Main T3 Clay 2700x2600x150 Fixed Ends 0.15 

Main T4 Clay 900x2600x150 Fixed Ends 0.10 

Main T5 Clay 1800x2600x150 Fixed Ends 0.10 

Main T6 Clay 3600x2600x150 Fixed Ends 0.10 

Main T7 Clay 2700x2600x150 Cantilever 0.10 

Figure 1 shows a picture of the test set-up. The specimens are built on 350 mm thick reinforced 
concrete foundations, which can be clamped to the strong floor by means of post-tensioned steel 
bars. The horizontal servo-hydraulic actuator reacting on the strong wall of the laboratory applies a 
shear force to the top of the walls through a stiff steel beam (loading beam). The loading beam is 
connected to the walls by a layer of mortar. The vertical load is applied by means of two servo-
hydraulic actuators reacting on the reaction frame. A more detailed description of the testing 
procedure can be found in Salmanpour et al. (2013).  
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Figure 1. Test set-up with tested wall T2 

DIC instrumentation and measurement procedure

During the tests, measurements included all applied forces together with an overall and a local 
picture of the deformation state of the specimens. In order to achieve this, in addition to the 
traditional hard-wired instruments, i.e. LVDTs, a two-dimensional DIC measurement system was 
used. DIC is a non-contact, optical measurement technique that provides full-field displacements 
and strains by comparing digital images of the test object’s surface obtained before and after 
deformation. In general, the implementation of the 2D DIC method comprises the following three 
steps: (1) specimen preparation; (2) recording images of the specimen’s surface before and after 
deformation; (3) processing the acquired images. This section reports and discusses issues on these 
three steps. 

Specimen preparation 

The digital image correlation technique relies on a contrasting speckle pattern on the surface of the 
test specimen. This pattern can be the natural texture of the surface or artificially made. The pattern 
quality has a dominant influence on the spatial resolution and accuracy of DIC results. In general, to 
achieve effective correlation, the pattern must be random, isotropic, i.e. must not exhibit a bias to 
one orientation, and highly contrasting, i.e. must show dark blacks and bright whites (Correlated 
Solutions, 2011). In addition to the above requirements, speckles should be neither too small nor too 
large. In DIC, a small subset of the image is tracked as the specimen moves and deforms. To 
perform the tracking, the subset is shifted until the pattern in the deformed image matches the 
pattern in the reference image as closely as possible; this match is calculated as the total difference 
in gray levels at each point. If the pattern is too large, we may find that certain subsets may be 
entirely on a black field or entirely on a white field. This does not allow us to make a good match. 
We can compensate for this by increasing the subset size, but at the cost of spatial resolution. 
Conversely, too small speckles can cause the aliasing effect resulting in images that often show a 
pronounced Moiré pattern in the measurement results (Correlated Solutions, 2011). As a rule, 
speckles should be 3-8 pixels in size to achieve effective correlation.
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Applying the pattern is the most important and challenging step in the implementation of 2D DIC 
method. There are several techniques for applying different pattern sizes on the specimen surface, 
e.g. spraying paint, printing, lithography, using toner powder and stencils.  For our own tests, the 
surface of the specimen was first coated with a white paint and then random black speckles were 
applied. Figure 2 shows the detail of the applied patterns on an area of 150×150 mm of the wall 
surface. Three different techniques were tried out for application of the speckles. In the first 
preliminary test (P3), the pattern was obtained by means of a marker pen, see Figure 2. A pattern of 
adequate density could not be obtained using this method. Although the compensation of the low-
density pattern was made possible, it came at the cost of spatial resolution. Hence, for the other 
preliminary tests, the pattern was applied using a stencil with randomly distributed openings 
produced using a laser printer. The stencil was made of acrylic glass and had the dimensions 
900×600 mm. The latter method appeared better and was less labor intensive. However, the 
material used for stencil degraded continuously during the pattern application and the stencil had to 
be re-printed. For the main tests, in order to increase the spatial resolution of DIC results, smaller 
speckles were created using a paint gun. Speckles of the right size could be achieved by adjusting 
the air pressure, paint flow and also paint viscosity. However, this technique was found to be prone 
to some too small speckles which can sometimes cause aliasing. 

Figure 2. Random pattern applied using: marker pen (left), stencil (middle) and paint gun 
(right)

Recording images of the specimen’s surface 

Two different conventional DSLR cameras were used during the testing. For the preliminary tests 
(P1 to P4), a Nikon D3 camera that utilizes a full-frame size CMOS sensor of 12.1 MP was used. 
The camera was positioned at a distance of 5 m from the specimen and recorded the specimen 
surface area with a spatial resolution of 0.68 mm. For the main tests, T1 to T7, a somewhat better 
camera, namely the Nikon D800E, was engaged. This camera includes a 36.3 MP full-frame size 
CMOS sensor. While almost all digital cameras employ an optical low-pass filter over their sensors, 
this filter has been removed in the Nikon D800E. Removing the effect of the low-pass filter should, 
theoretically, result in higher resolution and sharpness but at the expense of being more prone to the 
Moiré patterning. The camera was located at a distance of 6 m from the specimen and recorded the 
specimen surface area with a spatial resolution of 0.58 mm. Since accurate 2D DIC depends on the 
specimen being planar and parallel to the camera sensor, special attention was given to the 
alignment of the cameras. A professional flash lightning set, i.e. Elinchrom Style RX 1200 (see 
Figure 1), was used to ensure that the specimen surface was brightly and also evenly illuminated to 
maintain the maximum range possible.  
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Before applying the load, the reference image was taken and later compared to the subsequently 
taken images of the deformed states of the specimen. A custom-made device interacting with the 
DAQ system triggered the camera at pre-specified vertical forces (while applying the pre-
compression force) and horizontal displacements (while applying the cyclic displacement). On 
average, about 500 images per test were taken.  

Processing the acquired images 

The recorded digital images were first corrected to remove the lens distortion influence and then 
processed using licensed Vic2D commercial code to obtain full-field displacements and strains. The 
normalized squared differences criterion was chosen as the correlation criterion and to achieve sub-
pixel accuracy, the optimized 8-tap splines were used for gray value interpolation. The size of the 
subsets was determined based on minimization of the confidence interval. For the description of the 
principles and concepts of DIC, see Bing et al. (2009) and Sutton et al. (2009). It is worth 
mentioning that currently, in addition to commercial codes, several free university codes are also 
available for the application of DIC, see Table 2. 

Table 2. Commercial and free university DIC codes  

Commercial Codes Free University Codes 

Code Company Code University 

Vic2D and Vic3D Correlated Solutions MatchID Catholic University College 
Ghent, KULeuven 

StrainMaster LaVision Inc. Opticist The Catholic University of America 
ISTRA 4D Dantec Dynamics Matlab Code Karlsruhe Institute of Technology 

(KIT) and Johns Hopkins University ARAMIS GOM Gbmh 

DIC measurement results  

Using analyzed data the deformation of the specimen during static-cyclic loading can be tracked in 
detail. Figures 3 and 4 show the displacement and principal strain fields in specimen P4 just before 
the collapse of the specimen.   

Figure 3. Vertical (left) and longitudinal (right) displacement fields in wall P4  
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Figure 4. Major (left) and minor (right) principal strain fields in wall P4  

Accuracy of DIC measurement is a controversial issue because it is very difficult, if not impossible, 
to exactly determine the measurement errors. The accuracy of DIC measurement is influenced by 
several factors. Table 3 presents a short list of error sources of 2D DIC measurement (Bing et al., 
2009).

Figure 5. Confidence interval, in pixels, in wall P4 
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Table 3. Error sources of 2D DIC (Bing et al., 2009)

Errors related to specimen, loading and imaging Speckle pattern 
Non-parallelism between sensor and the object surface 

 Out-of-plane displacement
 Imaging distortion 

Noise during image acquisition and digitization 
Errors related to the correlation algorithm Subset size 
 Correlation function
 Sub-pixel algorithm 
 Shape function 
 Interpolation scheme

However, as shown by several studies, a displacement accuracy of 0.01 pixel can be achieved with 
typical setups. Hence, the displacement accuracies of 0.0068 and 0.0058 mm are expected in the 
preliminary and main tests. Figure 5 shows the confidence interval (in pixels) for specimen P4 just 
before the collapse of the specimen. The confidence interval is calculated using the covariance 
matrix of the correlation equation. Although it does not reflect bias, e.g. aliasing, it is an accurate 
noise estimate and can be used to estimate the accuracy of the measurements. A statistical analysis 
of the confidence interval values for specimen P4 showed that the spatial mean value of the 
confidence interval was 0.0082 pixel (just before the collapse of the specimen), which somehow 
confirms the expected displacement accuracy of 0.01 pixel.  

Conclusions

A successful implementation of the 2D DIC measurement technique using conventional DSLR 
cameras for cyclic-static tests on full-scale large masonry shear walls was reported. The obtained 
results proved that 2D DIC may be considered to be an effective technique to measure full-field 
displacements and strains with high level of accuracy and spatial resolution even in the case of large 
specimens and complicated deformation fields. Furthermore, using low-cost conventional DSLR 
cameras (compared to special industrial cameras) make this technique affordable in most of 
structural engineering laboratories.
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Abstract
The hybrid-type penalty method (HPM) is suitable for representing failure phenomena that occur
during the transition from continua to discontinua in materials such as concrete. The initiation and 
propagation of dominant cracks and the branching of cracks can easily be modeled as discrete 
cracks. The HPM represents a discrete crack by eliminating the penalty that represents the 
separation of elements at the intersection boundary. This treatment is easy because no change is 
required in the degrees of freedom for the discrete crack. In addition, it is important to correctly 
evaluate the deformation of continua before crack formation is initiated. To achieve this, we 
implemented a constitutive model of reinforced concrete for the HPM. In this paper, we present the 
implemented constitutive model and describe the simulation of a deep beam test using the HPM to 
demonstrate its capability for evaluating progressive failure.

Keywords: Hybrid-type penalty method, Discrete crack, Reinforced concrete

Introduction
Recent large earthquakes caused significant damage to concrete structures. Therefore,
understanding the failure mechanism of concrete structures is important. A dominant crack is 
initiated in a concrete structure because of tensile stress. The crack subsequently grows, propagates, 
and branches until the structure finally collapses. To predict the progressive failure of a concrete 
structure, accurate computation of a discrete crack is essential. Computer simulations can predict 
the crack growth, propagation, and branching that lead to failure of the concrete structure.

The rigid body spring model (RBSM) developed by Kawai (1977) is a good method for modeling a
discrete crack. The advantage of this method lies in its simplicity; there is no need to track the crack 
path. Initially, the model obtained good results when solving the problem of the strong nonlinearity 
of steel. It was then applied to discrete limit analysis of soils and concrete structures (Takeuchi et al.,
2005). Unfortunately, the elastic deformation in continua obtained by the RBSM is not accurate
because it models a continuum that connects the spring elements between the edges of rigid bodies. 
However, the RBSM is still used to model the realistic behavior of concrete structures, which 
includes cracking and failure (Gedik et al., 2011).  

The hybrid-type penalty method (HPM) developed by Takeuchi et al. (2009) refined the RBSM 
method for calculating the elastic deformations of elements using the finite element method; a 
Lagrange multiplier was also introduced to satisfy the subsidiary condition of continuous 
displacement in the hybrid-type virtual work formulation. The HPM is suitable for analyzing the 
progressive failure of concrete structures; this method offers the following features:

Accurate deformation can be calculated before crack initiation because an elastic element (called 
a subdomain in the HPM) is used. Even after crack initiation, accurately calculating the 
deformation within the elastic area between cracks is important.

The HPM models a discrete crack by eliminating the penalty caused by separation of the 
elements at the intersection boundary. This treatment is easy because no change is required in the 
degrees of freedom for a discrete crack.

The concentrated stress at the crack tip can be calculated without the use of the J-integral, which 
was originally developed by Rice (1968). The HPM can easily and accurately obtain 
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concentrated stresses around the crack by directly using the correct relationship between the 
tensile stress and displacement of the crack mouth opening. It can calculate not only the growth 
of the existing cracks but also the formation of new cracks. 

We simulated an anchor bolt pullout test in plain concrete, and the results matched well with the 
experimental results (Fujiwara et al., 2012). As a next step, we implemented a constitutive model of 
a reinforcing bar in the HPM to allow for computation of the progressive failure phenomena of a 
reinforced concrete structure.

In the present paper, we introduce the basic formulation of the HPM and describe an implemented 
constitutive model of reinforced concrete. We validated the accuracy of the constitutive model by 
simulating a deep beam test.

Theory of HPM

Governing Equation 

The basic equations of the elastic problem are as follows: 

, (1) 

, (2) 

, (3) 

where is the Cauchy stress tensor; is the body force per unit volume; is the infinitesimal strain 
tensor; is the constitutive tensor; is the differential operator; is the symmetric part 
of ; and is the displacement field in , where is the reference configuration of the 
continuum body with a smooth boundary . Here, is the geometric
boundary, and is the stress boundary. At the boundaries, the following conditions 
are satisfied:

, (4) 

, (5) 

where is the traction and is the field normal to the boundary .

Let consist of M subdomains with the closed boundary , as shown in Fig. 
1, that is,

where . (6) 

Figure 1. Subdomain  and its common 
boundary 

Figure 2.  Boundary between subdomains 
and 

We denote as the common boundary between two subdomains  and , which are 
adjoined, as shown in Fig. 2; is defined as follows: 

. (7) 
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The relation for the displacement of , which is the intersection boundary between and 
, is as follows: 

. (8) 

Equation (8) introduces a subsidiary condition into the framework of the virtual work equation with 
the Lagrange multiplier  as follows: 

, (9) 

where represents the variation in . From Eqs. (1) and (9), the following hybrid-type virtual 
work equation is obtained (Mihara and Takeuchi, 2008): 

. (10)

Here, N represents the number of common boundaries of the subdomain, and represents the 
virtual displacement. The superscripts  and represent the subdomains  and ,
respectively, related to the common boundary .

The physical interpretation of the Lagrange multiplier is that of a surface force at the boundary 
. In this paper, the Lagrange multiplier  on the boundary is defined as follows: 

. (11) 
Here, represents the relative displacement on the boundary , and is the penalty function.

Discretized Equation in Matrix Form 

The independent linear displacement field  in each subdomain is assumed to be as follows: 

. (12) 

Here, is the rigid displacement and rigid rotation at point , and is a 
constant strain in the subdomain .

In the case of a two-dimensional problem, the coefficients in Eq. (12) are as follows:

, , (13) 

, (14) 

. (15) 

Here,  and represent rigid displacements at point in a subdomain; represents rigid 
rotation; and , , and represent the constant strains in the subdomain.  

We obtain the following discretized equation: 

, (16) 
where

, . (17) 
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The discretized equation of the HPM is thus transformed into the simultaneous linear equation of 
Eq. (16) (Mihara and Takeuchi, 2008). The coefficient matrix of on the left-hand side can be 
obtained to assemble each stiffness matrix of the subdomain and the subsidiary condition on 
the boundary . Discontinuous phenomena such as opening can be expressed without changing 
the degrees of freedom by setting the right-hand side of Eq. (11) to zero.

Implementation of Constitutive Model of Reinforced Concrete

Constitutive Law for Compressive Stress of Concrete Material 

A typical compressive stress–strain relationship for concrete is shown by the dashed line in Fig. 3.
The stiffness gradually degrades with increasing stress up to the compressive strength fc. After the 
stress exceeds fc, softening occurs. The solid line in Fig. 3 represents a trilinear approximation for 
the skeleton curve, which was also adopted in the RBSM by Takeuchi et al. (2005). 

An origin-oriented model was adopted for the unloading path, as shown in Fig. 4. 

Trilinear approximation
Experiment

A

O

B
C

D
E

F
G

Figure 3. Skeleton curve of compressive stress Figure 4. Hysteresis rule in compressive stress

Constitutive Law for Tensile Stress of Concrete Material

The HPM can separate two subdomains by simply eliminating the penalty. This feature is suitable 
for representing a discrete crack in concrete. When the surface force at boundary reaches 
tensile failure strength , the penalty can then be eliminated, and the discrete crack can be 
computed as shown in Fig. 5. 

Reached

Crack : Normal stress
: Crack opening displacement

Eliminating the penalty

Figure 5. Surface force and tensile strength

The stress in the concrete gradually decreases as the crack opening displacement increases once the 
tensile failure is exceeded. This behavior is called tension softening. Hilerborg et al. (1976) 
introduced the fracture energy for this tensile softening behavior in a fictitious (or cohesive) crack 
model. The fracture energy is the area enclosed by the tension-softening curve, and it has a 
unique value that represents the strength of a concrete material with tensile strength . In the HPM, 
the tension-softening curve is defined as the relation between the normal stress and the crack 
opening displacement as shown in Fig. 6  

Many institutes and universities have conducted numerous tests in an effort to obtain the tension-
softening curve and fracture energy . In a Technical Committee Report, published by the Japan 
Concrete Institute (JCI) (2001), on a test method for the fracture property of concrete, several 
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institutes and universities reported the round-robin results of a three-point bending test on a notched 
beam. The thin lines in Fig. 7 indicate the results of these tests. For the HPM, we applied a tension-
softening curve that corresponds to these test results. 

: Tensile strength
: Fracture energy

Released
according to 

0

1

2

3

4

5

6

0 0.02 0.04 0.06 0.08 0.1

Crack opening displacement (mm)

Experiment
= 4 MPa,       = 0.15 N/mm

S
tre

ss
 (M

P
a) = 2.5 MPa,        = 0.05 N/mm

Figure 6. Tension-softening curve for concrete Figure 7. Test results of tension-softening 
curve (after JCI 2001) 

Nakamura et al. (1999) compared many empirical derivations of the tension-softening curve and 
determined that the empirical expression given by Hordijk et al. (1986) (Eq. (18)) matched well 
with past experiments; they used the following expression as a standard for comparison: 

, (18) 

where is the crack opening displacement (mm), and is the limit virtual crack opening 
displacement (mm) when the tensile stress is zero; this is given by 

, (19) 
where is the tensile strength (MPa) and is the fracture energy (N/mm).

Equation (18) was adopted to obtain the tension-softening curve in the present study because it 
corresponded better to the test results than the other proposed empirical expressions. 

The thick lines in Fig. 7 are examples of tension-softening curves obtained from Eq. (18). The thick 
dashed line represents the curve for tensile strength = 4.0 MPa and fracture energy = 0.15 
N/mm, and the thick solid line corresponds to = 2.5 MPa and = 0.05 N/mm. Almost all test 
results fell in the region between these two curves. Therefore, we can conclude that Eq. (18) can 
represent various materials in concrete.

The origin-oriented model was used for the unloading paths of tensile and compressive stresses.

Thus, stresses and displacements that occur after crack initiation can be calculated accurately 
because the fracture energy is determined directly.

Constitutive Law for Reinforcing Bar 

The reinforcing bar was implemented using layered elements. Fig. 8 shows a schematic image of
the layered element for reinforced concrete. The element consists of a concrete layer and arbitrary 
reinforced bar layers. The layer of a reinforced bar was modeled using a spring element identical to 
that used in the RBSM. The stiffness matrix for the penalty at the intersection boundary is 
obtained as follows: 

, (20) 

where is the penalty value, is the stiffness matrix of the concrete material, is the 
stiffness matrix of the i-th layer of the reinforced bar, and n  is the number of reinforced layers.  
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is obtained from the following relationship between traction and relative displacement at the 
intersection boundary: 

, (21) 

where  and are normal stress and tangential stress, respectively, at the surface ;  and 
are the relative displacements at the ; is the Young’s modulus of the steel; is the 
coefficient of the Dowel effect; is the length between two adjacent subdomains; and is the angle 
to the normal direction of the surface from the axial reinforcement steel (Fig. 9).  

A bilinear model was used to solve for the nonlinearity of the reinforcing bar. 

Reinforced concrete Layered element

First reinforced bar layer

Second reinforced bar layer

Concrete layer

Reinforced bar

a

b

Reinforcement steel

Figure 8. Modeling of reinforced concrete Figure 9. Direction of the steel

Validation 
To validate the HPM with a newly implemented reinforced concrete constitutive model, a deep 
beam test that shows typical progressive failure was simulated.

Description of Deep Beam Test

The crack model was implemented in the HPM to solve a progressive failure problem. This was 
validated through a simulation of the deep beam test. Details on this experiment were reported by 
the JCI (1993). 

The test model is schematically shown in Fig. 10. The deep beam was placed on steel plates, and a 
vertical load was applied to the loading plates. The specimen was 900 mm wide, 400 mm high, and 
100 mm thick. The specimen was reinforced with six bars.

160
460
900

32
0

40
0

100

30

100

Force
CL

(mm)

Reinforcement

Figure 10. Schematic of test model Figure 11. Simulation model

Simulation Model 

The simulation model is shown in Fig. 11. The supported point is indicated by a triangular marker. 
Only the vertical direction was fixed because the concrete block could be rotated during the test. A 
static load was applied to the top of the plate.  
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The material properties of the concrete, reinforced layer and steel plates are listed in Table 1. These 
values were set according to the JCI report (1993).  

Yamada’s rmin method (1968) extended Takeuchi et al.’s (2005) method. In the RBSM, this method 
is used as a nonlinear algorithm that can accurately represent the tensile cracking and compressive 
failure problems in concrete. This extended rmin method was used for the nonlinear algorithm in the 
present study.  

Table 1. Material properties.
(a) Concrete

Parameter Value
Compressive strength fc (MPa) 54.4

Tensile strength ft (MPa) 3.3
Young’s modulus E (GPa) 33.3

Poisson’s ratio  0.167
Thickness (mm) 100.0

Fracture energy Gf (N/mm) 0.13

(b) Reinforcement
Parameter Value

Young’s modulus E (GPa) 210
Thickness (mm) 29.79

Angle to the horizontal (°) 0.0
Tensile strength ft (MPa) 375.3

Coefficient of Dowel effect  0.005

(c) Steel plate
Parameter Value

Young’s modulus E (GPa) 210
Thickness (mm) 100.0
Poisson’s ratio  0.3

Numerical Results

Figure 12 shows the relationship between the shear force and vertical displacement. The dashed line 
represents the experimental results, and the solid line represents the numerical results. The 
numerical results matched well with the experimental results. In the numerical results, a large 
vertical displacement occurred after the concrete compressive stress under the loading plates
reached the compressive strength.
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Figure 12. Relationship between shear force and vertical displacement
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Figure 13. Deformation and contour of minimum principal stress 

Figure 13 shows the numerical deformation (amplification factor 40.0) with a contour of the 
minimum principal stress . Multiple progressive cracks propagated from the bottom support steel 
plate toward the upper loading steel plate in the concrete.
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Conclusions
A method to simulate progressive concrete failure was presented and verified using experimental 
test results. The presented method is an extension of the HPM, in which a constitutive model 
(discrete crack model) for reinforced concrete is implemented. The discrete crack was evaluated at 
the intersection boundary between subdomains of the HPM. Simulating the tensile stress behavior 
and crack displacement is easy; these were directly related to the fracture energy through empirical 
expressions that were introduced by Hordijk et al. (1986). The nonlinearity of the compressive 
behavior is considered in the compressive stress–strain components of the subdomain of the HPM 
on the basis of the trilinear approximation function of the empirical stress–strain relationship.  

Reinforcing bars were implemented using a layered spring element that is similar to that used in the
RBSM. A bilinear model was used to solve for the nonlinearity of the reinforcing bar.

To confirm the validity of the new HPM, we carried out a simulation of a deep beam test. The 
numerical results were compared with the experimental observations, and we obtained good 
agreement in the relationship between the shear force and vertical displacement.
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Abstract 

Massive concrete gravity dams supporting huge water reservoir are subjected to hydrodynamic 
forces resulting from the time-dependent stresses generated at the reservoir water-dam interface. 
Indian Standard Code (IS 1893-2003) suggests considering hydrodynamic pressure that varies with 
depth of reservoir and shape of the dam, similar to a pseudo-static analysis. Such an assumption 
leads to largely conservative analysis and over-safe design. This article reports the response of the 
Pine Flat Dam under seismic conditions considering hydrodynamic stresses on the upstream face, 
varying both spatially and temporally. The Kern County seismic ground motion has been chosen for 
the analysis, for which both S69E and vertical component of accelerations have been considered 
along with their combined action. GeoStudio 2007 modules of Sigma/W and Quake/W have been 
used in unison to achieve the modeling. The study illustrates a significant variation in the estimated 
seismic response when the hydrodynamic forces are included in the design. 

Keywords: Concrete gravity dam, Seismic response, Hydrodynamic effect, Geo-Studio 2007.  

Introduction 

Dams are barriers that impound water or underground streams for various purposes such as 
hydropower and hydroelectricity, water storage and irrigations, water flow stabilization, flood 
prevention, land reclamation, navigation, water channel diversion as well as recreation and aquatic 
beautification. Dams can be natural, anthropogenic, or animal-made. Based upon their construction 
materials, shape and purpose, dams can be classified structurally as arch dams, gravity dams, arch-
gravity dams, barrages, embankment dams, rock-fill dam, concrete faced-rock fill dam, and earth –
and-rock fill dams. In terms of usability, they can be categorized as saddle dams, weirs, check 
dams, dry dams, diversionary dams, underground dams and tailing dams. The importance of these 
structures convey the idea of the catastrophic disaster which can occur due to its failure, the main 
causes of which may include inadequate spillway capacity, piping through the embankment, 
foundation or abutments, spillway design error, geological instability caused by the water level 
fluctuation in the upstream, poor maintenance, extreme rainfall and seismic shocks and earthquakes. 
Failure of dams occurs quite rapidly without adequate prior warning with a potential of causing 
excessive calamity. 
 
During the earthquakes, the additional pressure exerted by the moving water on the upstream face 
of the dam is termed as hydrodynamic force. A similar situation arises when a wave impacts on the 
offshore jetties. The hydrodynamic forces are spatially and temporally variable, and in contrary, 
significantly different to the pseudo-static analysis conventions. According to the Indian Standards 
(IS 1893-2003), due to horizontal acceleration, instantaneous hydrodynamic pressure is produced 
on the dam face, opposite to the direction of the earthquake, which results in alternate cycles of 
compression and tension forces (extreme tension may lead to cavitations). The methodology 
detailed in the IS code to determine this hydrodynamic force is based on pseudo-static analysis, 
with no temporal variation of the same. This may lead to significant over-safe design.  
 
Pseudo-static method of analysis has been one of the earliest methods of estimating the 
hydrodynamic pressure distribution. ‘Added-mass’ effect of an incompressible reservoir fluid 
(Westergaard, 1933), linear momentum balance principle to investigate earthquake forces (Chwang 
and Housner, 1978), potential-flow theory (Chwang, 1978, 1979), and the application of Laplace’s 
equation (Zee and Zee, 2006) are the examples of the applicability of the pseudo-static analysis in 
such problems. It is worth mentioning that such analyses considers the worst condition of the 
earthquake force acting through a special location of the structure, and hence, avoids the temporal 
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effect of the earthquake motions on the developed hydrodynamic pressure and it’s time-dependent 
variation on the upstream face of the dam. The pseudo-static analyses reveals that the 
hydrodynamic pressure distribution is mostly parabolic and the maximum pressure occurs at the 
base (or near the base) of the dam. However, it is well understandable that the variation of 
hydrodynamic pressure is time-dependent, which varies during the event of an earthquake. To-and-
fro motion of the dam, reservoir and dam-reservoir foundation results in an alternate build-up and 
release of reservoir water-dam face interaction stresses, which are representations of the 
hydrodynamic pressures itself. Hence, the hydrodynamic pressure may be significantly different in 
comparison to that estimated from a worst-case scenario pseudo-static analysis. Both the 
distribution and magnitude of the forces along the upstream face of the dam are different, and at 
time might exceed the magnitudes as observed in the pseudo-static analysis. Hence, it is necessary 
to have a proper dynamic analysis of the dam-reservoir systems to understand the hydrodynamic 
pressure variation. Limited studies in this respect have been carried out, and hence, this aspect 
needs further investigation.  
 
Most of the earlier researches have been focused on to determine the hydrodynamic pressure 
variation on the upstream face of the dam, without delving deeper into finding what would be the 
consequence of the same on the response of the dam. This paper reports the findings of the dynamic 
analysis carried out on Pine Flat Dam to determine the effect of hydrodynamic stresses on the 
response of the dam. Chopra and Gupta (1981) reported the findings of a similar study on behavior 
of Pine Flat Dam considering the horizontal and vertical components of the Kern County 
Earthquake (Taft ground motion). The study reported the utilization of the first 20 sec duration of 
the motion with the PGA as 0.15g for horizontal (S69E) component and 0.083g for the vertical 
component of the motion. Since the entire duration of the strong motion was 54.14 sec (Fig. 1), the 
above segment with the corresponding PGA is not believed to provide proper representation of the 
effect of the earthquake in the generation of the hydrodynamic pressure. Based on the approach by 
Trifunac and Brady (1975), this article reports a more realistic application of the earthquake strong 
motions in the determination of effect of hydrodynamic pressure distribution on the response of the 
dam. Comparative data have also been reported herein to portray the differences in the results of the 
present study with that of the earlier one by Chopra and Gupta (1981). In order to achieve the 
dynamic analysis of the concerned dam and determine its response, a geotechnical finite element 
package, GEOSTUDIO 2007 has been used in the present study. 
 

    
Figure 1.  (a) Horizontal S69E and (b) Vertical component of the Kern County ground motion 

(Taft Lincoln station) 

GeoStudio Modeling of Pine Flat Dam 

Pine Flat Dam is a concrete gravity dam on the Kings River of central California in United States. 
The dam is 122 m high supporting the Pine Flat Lake, one of the largest reservoirs in California. 
The freeboard of reservoir is at level of 116 m. The upstream face of the dam is nearly vertical 
having a slope 0.05H:1V, while the inclined downstream side has slope of 0.78H:1V. The dam 
material (i.e. concrete) is a brittle material with no yield point and does not show any plastic 
deformation. Hence, linear elastic model has been used represent the behavior of unreinforced 
concrete gravity dam. The model comprises of two parts namely the concrete dam and the 
foundation rock. The presence of water in the reservoir is simulated through hydrostatic and 
hydrodynamic stresses. The modeling and subsequent analysis of the dam has been carried out on 
the basis of the following assumption: (i) Reservoir water is incompressible and inviscid, (ii) 
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Concrete gravity dam is perfectly rigid, and (iii) Hydrodynamic pressure at the surface of water is 
zero. The dam has been modeled and analyzed using the FEM package GEOSTUDIO 2007 and its 
various modules namely SIGMA/W (Load-deformation for hydrostatic stresses) and QUAKE/W 
(Generation of initial static stress conditions and equivalent linear dynamic analysis for dynamic 
and hydrodynamic stresses).  

Analysis of Pine Flat Dam 

The hydrodynamic analysis of the Pine Flat Dam has been carried out under the action of 1952 
Kern County strong motion recorded at Taft Lincoln station. For the analysis, the horizontal 
component of the motion (S69E) and the combined horizontal-vertical motion have been used; the 
motions were so chosen that a comparative study can be provided with the results reported by 
Chopra and Gupta (1981). The analysis has been carried out for both empty and full reservoir 
conditions to comprehend the effect of reservoir water on the seismic response of the dam. the 
hydrodynamic force have been determined using the methodology provided by Chwang and 
Housner (1978) and used on the upstream face of the dam (for a full-reservoir condition) in several 
segments to compromise on the variation of the continuous variation of the hydrodynamic pressure 
on the dam face. The entire analysis has been carried out in three stages which are described in the 
subsequent sections.  

Stage I: Empty Reservoir Condition 

Initial Static Condition under Geostatic Stress: This sub-stage has been modeled using the 
QUAKE/W ‘in-situ stress’ module and is used to simulate the development of geostatic stresses in 
the dam in an empty reservoir condition (hence, just after the construction of the dam). The dam 
rests on a 30m thick foundation rock. Both the dam and foundation has been considered to be 
perfectly rigid, and has been represented by a linear elastic model. The unit weight of the dam and 
foundation has been considered as 25 and 26 kN/m3 respectively, the Young’s modulus of the 
material are 22.5 and 68.94 GPa respectively, while the Poisson’s ratio has been considered to be 
0.2 and 0.33 respectively. The bottom of the foundation rock has been restrained from both 
horizontal and vertical movements, while the far-off lateral boundaries have been restricted from 
only horizontal displacements. Fig.2 depicts the GeoStudio model used.   
 
Dynamic Condition: In order to simulate the dynamic response of the dam after construction, the 
QUAKE/W ‘equivalent linear elastic dynamic’ model has been used. Apart from the material 
parameters defined for the in-situ condition, the Damping ratio for both the material has been 
chosen to be 0.1, and the shear stiffness (Gmax) for the dam and foundation has been chosen as 9.33 
and 25.92 GPa respectively (Chopra and Gupta, 1981).  
 

Stage II: Full Reservoir Condition 

Initial Static Condition under Geostatic Stress: This sub-stage has been modeled as has been 
mentioned for Stage I. 
 
Hydrostatic Stress Condition: The hydrostatic pressure has been applied on the upstream face of the 
dam using the ‘Load-deformation analysis’ unit of the SIGMA/W module. Based on the full 
reservoir level, the hydrostatic pressure is calculated for a triangular variation towards the base of 
the reservoir (Hydrostatic pressure, P= h, where  is the unit weight of water and h is the depth 
from the reservoir water level), with a zero value at the reservoir water level. The hydrostatic 
pressure is applied through stress boundary conditions, which require the stress value to be provided 
either as a constant or temporally varying. Unlike as stated, since the hydrostatic pressure varies 
continuously along the depth of the dam face below reservoir water level, which is not possible to 
be applied directly through stress boundary conditions. Hence, the upstream face of the dam has 
been divided into several segments (each segment being marked by two nodes of the finite element 
discretization), and the average of the hydrostatic pressures on those particular segments has been 
applied as the average constant hydrostatic pressure on the corresponding segment. Hence, the 
continuous hydrostatic pressure is applied as stepped incremental pressure on the segmented 
upstream face of the dam. The hydrostatic pressure boundary condition is shown in Fig. 3.  
 
Dynamic Condition: This sub-stage has been modeled as has been mentioned for Stage I. 
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            Figure 2 Geostatic stress condition   Figure 3 Hydrostatic stress condition 
 

Stage III: Full Reservoir Condition 

Hydrodynamic Stress: Hydrodynamic stress, generated due to colliding reservoir water with the 
dam face, is a coupled phenomenon, and requires a fluid-structure interaction module for its proper 
modeling and analysis. However, GEOSTUDIO 2007 does not have the same facility and cannot 
differentiate the reservoir water to be compressible/incompressible or viscid/inviscid. Hence, an 
uncoupled analysis have been attempted and reported to take into account the hydrodynamic stress 
analysis. Similar to the hydrostatic stress application, the hydrodynamic stress has also been applied 
on the segmented upstream face of the dam. Initially, following the Momentum method (Chwang 
and Housner, 1978) and based on the degree of inclination of the upstream face with the horizontal 
( ), the variation of the hydrodynamic pressure coefficient (Cp) with the normalized depth below 
freeboard (y/h) has been determined (Fig. 4). Based on the peak ground acceleration coefficient of 
the strong motion (a0), the hydrodynamic pressure is subsequently calculated as  

    0pp C a hγ=      (1) 

The estimated pressure corresponds to a pseudo-static condition, which has been subsequently 
modified to a temporal scale, p(t). The dam and foundation material have been considered as 
infinitely rigid (owing to its high modulus of elasticity) and hence, does not affect the propagation 
of the strong motion (i.e. does not result in significant augmentation or attenuation) through the 
body of the dam and foundation. Hence, the estimated pseudo-static hydrodynamic pressures are 
multiplied with the corresponding strong motion temporal acceleration factor ( (t) as obtained from 
the strong motion data modified for the PGA). The modified hydrodynamic pressure is then 
algebraically added to the estimated pseudo-static pressure (computed earlier) so as to maintain the 
latter as the mean of the temporal variation of the hydrodynamic stress. The procedure can be 
represented as: 

    ( ) ( ) ( ). 1p t p t p p tα α= ± = ±      (1) 

Similar to the application of hydrostatic pressure, the temporal hydrodynamic stress as estimated 
above is applied over different segments on the upstream face of the dam (Fig. 5). Fig. 6 depicts a 
typical variation of the hydrodynamic stress on one of the segments of the upstream face of the 
dam. 

Results and Discussions 

Static Analysis of the Pine Flat Dam 

Under both empty and full reservoir conditions, the static analysis of the dam has been carried out 
to determine the in-situ and geostatic stresses generated in Pine Flat dam due to the material 
properties and geometry of the structure. The empty reservoir condition simulates the immediate 
post-construction behavior of the dam; while the full reservoir condition represents the situation 
when the reservoir has been filled completely up to the desired level (i.e. the hydrostatic pressure of 
water is active). Fig. 7 shows the distribution of mean total stress on the upstream face of the dam 
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for the above two conditions. For the empty reservoir condition, the variation is nearly linear since 
the stresses are affected only by the geometry and weight of the structure. Upon the application of 
hydrostatic pressure on the upstream face, the crest of the dam suffers a displacement away from 
the reservoir (~ 20 mm), which results in a significant stress reduction in the upstream face (as 
evident from Fig. 7) especially near the toe of the dam.  
 

          
Figure 4 Variation of Cp (Chwang and Housner,       Figure 5 Hydrodynamic stress condition 
1978) 

   
Figure 6 Typical temporal hydrodynamic     Figure 7 Variation of mean total stress under 
pressures             in upstream dam-face under static conditions 

Dynamic Analysis of the Pine Flat Dam: 20 sec Kern County Motions 

Pine Flat Dam had been subjected to the Kern County Earthquake in 1952, and hence the same 
strong motion recorded with the Taft Lincoln Station has been used for the dynamic analysis of the 
same. In order to validate the present FE model, as used by Chopra and Gupta (1981) in a coupled 
hydrodynamic analysis, the first 20 sec of the motion (only horizontal and combined components) 
have been used in the present preliminary study with the corresponding PGAs as mentioned earlier. 
Fig. 8(a) depicts the variation of mean total stress in the upstream face under empty reservoir 
condition when only the horizontal S69E component has been used in analysis. It has been observed 
that although the PGA of the 20sec motion occurs at 6.6 sec, the maximum mean total stress occurs 
at a time step (6.7 sec) beyond the occurrence of PGA. The stresses at these two time-steps are 
significantly different from each other and are attributed to the accumulation of stresses during the 
earthquake motion. The dam also experiences tensile stresses towards the end of the seismic motion 
as evidenced from the negative stresses experienced. Similar exercise has been carried out 
considering the full reservoir condition (i.e. in the presence of hydrostatic pressure). As depicted in 
Fig. 8(b), the outcome has been similar to Fig. 8(a). The attempt has been repeated with the 
combined use of S69E and the vertical component of the Kern County motion, and the results have 
been compared with that reported by Chopra and Gupta (1981). Table 1 enlists the comparative for 
the full reservoir condition which shows a reasonable agreement between the results. 
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Figure 8 Variation of mean total stress for S69E component with (a) empty and (b) full 

reservoir conditions 
 

Table 1 Comparative study of mean total stresses under full reservoir condition 

Full Reservoir Condition 
S69E component S69E and Vertical components 

GeoStudio 
modeling 

Chopra and 
Gupta (1981) 

GeoStudio 
modeling 

Chopra and 
Gupta (1981) 

Max. mean total stress on the 
u/s face (kPa) 

1235.38 1055.7 1271.93 1221.3 

Max. mean total stress on the 
d/s face (kPa) 

1156.89 1435.2 1178.24 1552.5 

Relative crest displacement 
(mm) 

21 35 21 37 

Dynamic Analysis of the Pine Flat Dam: Modified Kern County Motions 

Chopra and Gupta (1981) considered the first 20 sec motion for the dynamic analysis using PGAs 
as 0.15g and 0.083g for the horizontal and vertical component respectively. However, this motion 
includes a rising part of significant time duration (~5 sec) beyond which the prominent intensity of 
the earthquake is experienced. Moreover, the actual Kern County motion is of significantly higher 
duration (54.14 sec) having a very long decaying tail as well. Hence, a 20 sec segment of the 
complete motion [as adopted by Chopra and Gupta (1981)] will not be a precise complete 
representation of the input motion. In order to assess the complete dynamic response of the dam, it 
is necessary to use the entire input motion. However, in this consideration, it is not advisable to use 
the PGA for the estimation of the mean temporal hydrodynamic pressure at a particular point on the 
upstream face of the dam. The PGA occurs momentarily, while the mean hydrodynamic stress is 
evaluated for the entire time duration, and is liable to be overestimated if the afore-mentioned 
procedure is used. In order to tackle such overestimation, the methodology proposed by Trifunac 
and Brady (1975) has been used. Instead of utilizing the entire strong motion history, the technique 
suggests to use only the effective duration that accommodates the stationary content of the signal 
(that part of the signal containing the significant maximum energy of the entire strong motion). This 
method is well suited for the signals having large anterior transition and posterior decay. The 
postulate suggests using the central 90% of the motion having the significant energy content. The 
same has been used to estimate the effective time duration for the Kern County motion components. 
Fig. 9(a) depicts the determination of the stationary content of the horizontal S69E component, 
pertaining to time duration of 3.72 sec to 32.44 sec. The root mean square (RMS) acceleration 
computed for this duration is obtained as 0.034g, and the maximum probable acceleration (MPA) is 
estimated to be three times the RMS acceleration (= 0.103g). The estimated MPA is considered to 
be the PGA of the modified motion (of time duration 2.73 sec). Fig. 9(b) shows the modified S69E 
component of the strong motion, which is further used for the present study. Similar exercise for the 
vertical component modified the time duration to 31.37 sec, and the MPA is obtained as 0.063g. 
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Figure 10 Typical hydrodynamic 
stress variation 

   
Figure 9 (a) Significant energy content of a strong motion as per Trifunac and Brady (1975) 

(b) Stationary content of strong motion signal and estimation of MPA 
 
The modified Kern County horizontal and vertical components are utilized as the input motions in 
the GeoStudio FE model and the dynamic response of the dam are inspected. It is observed that the 
magnitudes of mean total  stress for various conditions reduces as compared to the 20sec motion as 
has been used earlier, the latter exercise yielding more realistic results in terms of reducing the 
degree of overestimation. Table 2 provides a comparative of the results as reported by Chopra and 
Gupta (1981) to those obtained in the present study using the 20 sec S69E motion and 28.73 sec of 
the modified S69E motion. Apart from the maximum mean stresses, the maximum crest 
displacement is also significantly reduced which definitely leads to a more engineered and 
economic design of the dam geometry and configuration.  
 

Table 2 Comparative study of mean total stresses for Kern County S69E motion 

Full Reservoir Condition 
GeoStudio modeling 

Chopra and 
Gupta (1981) 20 sec S69E 

28.73 sec modified 
S69E 

Max. mean total stress on the u/s face (kPa) 1235.38 1034.57 1055.7 

Max. mean total stress on the d/s face (kPa) 1156.89 783.25 1435.2 

Relative crest displacement (mm) 21 12 35 

Hydrodynamic Analysis of the Pine Flat Dam: Modified Kern County Motions 

Using the mean hydrodynamic stress 
obtained from the stationary content of the 
Kern County strong motion components, the 
temporal and spatial variation of the 
hydrodynamic stresses on the upstream face 
of the dam is determined.  As enlisted in 
Table 3, the magnitudes of the stresses reveal 
that in comparison to the results obtained by 
Chopra and Gupta (1981), utilization of the 
stationary content of the signal results in the 
reduced hydrodynamic stresses on the dam 
face. It is also noticed that the hydrodynamic 
stresses and the relative crest displacement 
does not change with the inclusion of the 
vertical component in the excitation motion. 
This is attributed to the fact that in the 
present study, the temporal variation of the 
applied hydrodynamic stress at specified locations on 
the upstream dam-face has been determined solely on 
the basis of horizontal component, and hence the effect 
of the vertical component is not portrayed in the estimated hydrodynamic stresses. However, it is 
worth mentioning that a dam of irregular structure shows the non-coincidence of the centre of 
stiffness and centre of application of vertical seismic force, and hence, the effect of vertical 
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component of the strong motion should also be used for the estimation of the applied hydrodynamic 
stresses.  
 
Fig. 10 shows a typical variation of the temporal and spatial variation of the hydrodynamic stresses 
on the upstream face of the dam as obtained from the present study. The figure reveals that 
hydrodynamic pressure significantly varies with time, as well as along the height of the dam, during 
the occurrence of an earthquake. Due to the stress accumulations during seismic motions, the 
maximum hydrodynamic pressure, in most cases, had been observed to occur beyond the PGA 
time-step. The observed variation is substantially different than that defined by the ‘exact theory’ or 
the ‘momentum method’, as shown in Fig. 4 (Chwang and Housner, 1978). It can be well noted that 
the maximum hydrodynamic pressure need not always occur near the toe of the dam (which is 
portrayed by the pseudo-static analysis), rather can occur anywhere along the height of the dam 
during the occurrence of strong motion. 
 

Table 3 Comparative study of hydrodynamic stresses and relative crest displacement 

Full Reservoir Condition 

GeoStudio modeling Chopra and Gupta (1981) 

S69E 
(modified) 

S69E+ 
Vertical 

(modified) 
S69E 

S69E+ 
Vertical 

Max. mean total stress on u/s face (kPa) 156.8  156.8  483 420.9 

Max. mean total stress on d/s face (kPa) 126.9 126.9 317.4   55.2 

Relative crest displacement (mm) 2.2 2.2 11 6.6 

Conclusions 

The article reports the response of a concrete gravity dam subjected to seismic motions considering 
hydrodynamic effects. Stage-wise analysis has been carried simulating various conditions of 
geostatic, hydrostatic, seismic and hydrodynamic stress developments. Geostatic stresses, as 
expected, are found to vary linearly with the depth of the dam, while the presence of hydrostatic 
stresses lowered the stresses developed at the upstream dam face. In case of seismic motions, the 
maximum stress accumulated in the dam is observed at a time-step beyond the occurrence of the 
PGA. Strong motions have been found to generate tensile force in the dam face as well. 
Hydrodynamic stresses have been applied on the upstream dam face at specified locations and its 
overall effect on the upstream face of the dam has been investigated. Instead of using the entire 
strong motion, the stationary content of the strong motion with modified PGA has been applied to 
have a realistic assessment of the dynamic and hydrodynamic response of the dam. Comparison 
with the earlier literature shows a significant reduction in the generated stresses. The hydrodynamic 
stress is found to significant temporal and spatial variation in case of a seismic event, which is 
substantially different as conventionally treated by the pseudo-static methods, and should be 
accounted in the design and analysis of such dams. 
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Abstract
It is vitally important to ensure the safety of brittle materials. Therefore, it is essential to deeply 

understand the interaction of the material’s microstructure and crack propagation. In this study, we 
constructed a multi-phase-field crack model which can express both, grain growth and crack 
propagation. To evaluate the basic characteristics of the developed model, we performed two-
dimensional crack propagation simulations in a bicrystal when a crack enters a grain boundary by 
changing the ratio of the grain boundary energy to the crack surface energy and a threshold value of 
elastic strain energy for crack propagation. As a result, it is confirmed that the model can reasonably 
determine the crack path, depending on those conditions. Furthermore, by performing crack 
propagation simulations in a polycrystal, it is concluded that the model can properly express 
transgranular and intergranular cracks. 

Keywords: Multi-phase-field method, Crack propagation, Polycrystal, Fracture mechanics  

Introduction
Ferroelectric ceramics are widely used for ceramic condensers due to their superior properties in 
terms of dielectricity and insulation. In order to ensure the safety of brittle ferroelectric ceramics, it 
is important that microcrack propagation leading to fracture is evaluated accurately. However, the 
details of fracture have not yet been understood because fracture phenomena in microstructure are 
very complicated (Abdollahi and Arias, 2012). It is essential to deeply understand the interaction of 
the material’s microstructure and crack propagation, because these two factors are closely 
interrelated (Guo, Chang and Chen, 2012). There are many studies on the fracture behavior of
ferroelectric ceramics (Landis, 2003; Sheng and Landis, 2007; Zhu and Yang, 1999). However, 
since a fixed crack is assumed in most of these studies, investigations to understand the interaction 
of the material’s microstructure and crack propagation are required as soon as possible. 
The finite element method is the most famous numerical approach to evaluate crack propagation.
However, it needs complex remeshing operations around the crack tip (Nagashima, Omoto and Tani, 
2003; Kim, Wakayama and Kawahara, 1995). In addition, it is difficult to track the crack tip in 
complex microstructures. Recently, phase-field crack models have been developed (Henry, 2008; 
Song, Soh and Ni, 2007). Because the phase-field method does not need to track the crack tip 
position, it is thought that it can show its strength in crack propagation simulations in complex
microstructures. However, such a phase-field crack model has not yet been proposed. 
 In this study, we develop a multi-phase-field crack model which can express crack propagation in
those parts of the microstructure where grain growth takes place. To evaluate the validity of this 
model, we performed two-dimensional crack propagation simulations in a bi- and a polycrystal.

Multi-phase-field crack model

In the framework of the general multi-phase-field method applied to problems like grain growth, 
we construct a multi-phase-field crack model that can simulate crack propagation and grain growth 
simultaneously. Here, we use the multi-phase-field model proposed by Steinbach and Pezzolla
(Steinbach and Pezzolla, 1999).  
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Phase-field variable

 We use multiple phase-field variables 1, 2, …, n. Here, n is the number of grains and cracks and
the phase-field variable i is defined as i = 1 inside of grain or crack i and i = 0 in all other grains 
or cracks. i changes smoothly and rapidly at the grain boundary and crack surface regions. The 

phase-field variable i must satisfy the condition 1
1

n

i
i  at a grid point. 

Free energy functional

 The free energy functional can be described as

V
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where the double well potential fdoub and the gradient energy density fgrad are expressed as
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with Wij and aij being the energy barrier height and the gradient coefficient, respectively, in the 
grain boundary between grain i and j. felast is the elastic strain energy density.  

Time evolution equation 

Substituting Eq. (1) into the Allen-Cahn equation yields the time evolution equation of the phase-
field variable i:  
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where ijM is the phase-field mobility. The derivative of the elastic strain energy density is 
expressed as

ceji
j
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i
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with

klijijkle Cf
2
1

.     (6) 

Here, Cijkl is the elastic coefficient tensor of a material; ij is the strain tensor; and fc represents the 
threshold value of the elastic strain energy for crack propagation. The subscripts only in Eq. (6) 
indicate tensor components. Here, Eq. (5) only works at the crack surface between a crack and the 
surrounding material. The sign of the right side becomes negative when i represents a crack and it
becomes positive when i indicates bulk material. As a result, by substituting Eq. (5) into Eq. (4), the 
following final time evolution equation for i can be obtained:  
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Here, the gradient coefficient aij, the energy barrier height Wij, and the phase-field mobility ijM can 
be related to material parameters by the following equations: 
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,     (8) 

where  is the grain boundary or crack surface thickness (both are assumed to be identical), ij is the 
grain boundary energy, and Mij is the grain boundary mobility.

Simulations of crack propagation in a bicrystal

The basic characteristics of the multi-phase-field crack model derived in the previous section are 
investigated by performing crack propagation simulations in a bicrystal. Here, we evaluate the 
effects of the grain boundary energy and the threshold value of elastic strain energy on crack 
propagation into a grain boundary. The computational model and the boundary conditions used in 
the present simulations are shown in Fig. 1. Here, we set 1 = 1 in the crack, 2 = 1 in grain 1 and 3
= 1 in grain 2. The displacements of the left and bottom sides of the model are constrained to the x- 
and y-directions, respectively. The lattice size is set to x = y = 1 m, and an initial crack has a 
length of 1/3 of the width of the computational domain. The constant strain rate of & = 1 10-2 /s is 
applied to the top surface. For i, we set the zero Neumann condition in all boundaries. Moreover, 
the following parameters are used: grain boundary thickness of = 4 x, surface energy of the crack
of = 1 J/m2, and crack mobility of M = 1 10-5 m4/Js. In case of the conditions illustrated in Fig. 1, 
the gradient coefficient aij, energy barrier height Wij, and phase-field mobility ijM  in Eq. (8) are 
expressed as
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where a with and without subscript stands for the grain boundary and crack surface, respectively. In 
the present simulations, we assumed that the grain boundaries have zero mobility, though the 
present model can simulate the crack propagation in microstructure where the grains grow. 
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Figure 1.  Computational model and boundary conditions for a bicrystal

Effect of grain boundary energy 

The grain boundary energies gb are set to 2.0 , 1.7  and 1.5 . Figure 2 shows the calculated crack 
paths after crack propagation for three different grain boundary energies. In Fig. 2, the blue area 
represents the crack, the red areas represent grains 1 and 2 and the yellow line represents the grain 
boundary. As a result, we confirmed that the crack develops along the grain boundary for all grain 
boundary energies. In Fig. 2 (b) and (c), the crack propagates into grain 2 from the grain boundary. 
Because the crack path is determined in such a way as to reduce the total energy of the system, in 
case of small grain boundary energy, a larger energy benefit is obtained if the crack runs into the 
grain. We can also see that the crack progresses toward the lower left direction. The tendency is 
remarkable in case of larger grain boundary energy with larger tension. From the above, it is 
confirmed that the multi-phase-field crack model can represent the crack path in dependence of the 
grain boundary energy. 

Figure 2.  Crack propagation paths depending on the grain boundary energy
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Effect of a threshold value of the elastic strain energy 

 The variable threshold values of the elastic strain energy used for crack propagation are 0.1 MPa, 
0.5 MPa , and 1.0 MPa. Figure 3 shows the calculated crack path for three different threshold values. 
Here, we use gb = 2 . As evident from Fig. 3, it is observed that the crack propagation length in the 
grain boundary decreases with an increase of the threshold value. Moreover, the start time of crack 
propagation was delayed by increasing the threshold value. Therefore, it is confirmed that the 
threshold value of the elastic stain energy is appropriately incorporated into the model. 

Figure 3. Crack propagation paths depending on the threshold value of the elastic strain 
energy

Simulation of crack propagation in a polycrystal 

 In this section, we perform a crack propagation simulation in a polycrystal by applying the multi-
phase-field crack model. Figure 4 shows the time slices during crack propagation for a model size 
of 200 x  100 y. In the numerical model, an initial crack of length 20 x is placed at the center of 
the left side and 10 crystal grains are prepared. The other conditions are identical to those described 
in the previous section. Here, we use gb = 2 and fc = 0.5 MPa. From Fig. 4, we can see blue 
regions at some triple points in front of the crack tip. This phenomenon should not be considered 
strictly, because it is caused by the particular choice of the selected parameters. Nevertheless, it is
observed that transgranular and intergranular cracks can be automatically represented in a
polycrystal by the developed multi-phase-field crack model.
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Figure 4. Time slices during crack propagation in a polycrystal

Conclusions

 We developed a multi-phase-field crack model that can represent crack propagation and grain 
growth simultaneously. By performing two-dimensional crack propagation simulations in a 
bicrystal, the basic characteristics of the multi-phase-field crack model were evaluated by changing 
the ratio of the grain boundary energy to the surface energy of the crack surface and including a 
threshold value of the elastic strain energy. Furthermore, by performing crack propagation 
simulations in a polycrystal, it is concluded that the multi-phase-field crack model can appropriately 
represent transgranular and intergranular cracks.
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Abstract
In this paper, low-dispersion sampling-based importance measure analysis method is carried out for 
the anti-ice piccolo structure of anti-resonance design. First, the finite element model of anti-ice 
piccolo structure is established and the modal analysis is performed. Then based on the 
deterministic analysis, the importance measure model between structural size parameters and the 
natural frequency response is established. The proposed method uses the quadratic response surface 
methodology to fit the fundamental function between the natural frequency and variables, and a low 
dispersion sampling method is used to perform the structural parameter importance measure 
analysis. The analysis results can provide guidance for the anti-ice piccolo structural anti-resonance 
design.

Keywords: anti-ice piccolo structure, natural frequency, importance measure, low-dispersion 
sampling, response surface  

Introduction 

When an aircraft flies through clouds with low temperature or high humidity, the unexpected 
icing phenomenon may occur. Icing at wings will increase the aircraft weight, thus affect the 
maneuverability and stability of the aircraft. Light icing may trigger flight failures, and severe cases 
can lead to plane crash [1, 2]. Therefore, anti-ice design is needed for the civil and transport 
aircrafts, especially at the wing leading edge and other key parts. 

Anti-ice piccolo structure is the core part of a wing anti-ice system. Its location is close to aircraft 
engines, and it is subject to random excitations generated by the engines. Therefore, there exists the 
possibility of structural resonances. Once the resonance happens, it may result in structural fatigue 
failures [3, 4]. Therefore, anti-resonance design is needed for anti-ice piccolo structure. Importance 
measure analysis can find out those design parameters which significantly affect the structural 
dynamics performance. This can provide guidance for the anti-resonance design of anti-ice piccolo 
structure [5]. 

Among importance measure analysis methods, the Monte Carlo method has been studied 
extensively. The most important advantage of Monte Carlo method is that it is unrestricted by the 
number of random variables, the type of probability distributions and response function etc [6,7]. 
However, the traditional Monte Carlo method firstly draws random samples using the uniformly 
distributed random number generator, and then obtains the needed samples by the conversion 
according to the real distributions. It is pointed out that at the case of small sample size, the 
distribution characteristics of sample points obtained in this way are not evenly distributed. In order 
to improve the quality of sampling points, Hua and Wang[8] proposed low dispersion sampling 
method based on number theory. It is proved that the convergence rate of this method is faster and 
the computing cost is smaller than the random sampling methods[9]. Therefore, we adopt the low 
dispersion sampling method to perform parameter importance measure analysis for the anti-ice 
piccolo structure. 

In this paper, the anti-ice piccolo structure is taken as the research target, and the low-dispersion 
sampling-based importance measure analysis method is applied to perform importance measure 
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analysis for the anti-ice piccolo structure. First, the anti-ice piccolo structure finite element model is 
established and the modal analysis is performed. Then, considering the structural size dispersion 
and based on the deterministic analysis, the importance measure model between structural size 
parameters and the natural frequency response is established. The proposed method uses the 
quadratic response surface methodology to fit the fundamental function between natural frequency 
and variables, and a low dispersion sampling method is used to perform the structural parameter 
importance measure analysis. The analysis results can provide guidance for the anti-ice piccolo 
structural anti-resonance design. 

1. The importance measure analysis model for the anti-ice piccolo structure 

1.1 Modal analysis pipeline 
An aircraft wing anti-ice cavity structure is shown in Fig.1. Anti-ice piccolo is in the middle of the 
ice chamber. Its role is to assign the hot air coming from the engine to the wing leading edge. By 
heating the wing surface, we can achieve the purpose of anti-ice. 

Fig.1 Geometrical model of anti-ice cavity structure  
In this paper, we take one of the components of the anti-ice piccolo structure to perform the 

parameter importance measure analysis. The geometric dimension model of anti-ice piccolo 
structure is shown in Fig.2. 

Fig.2 Geometrical model of piccolo structure 
The finite element model (FEM) of anti-ice piccolo structure is shown in Fig.3, which is built 

with ANSYS software. The local mesh model is shown in Fig.4. 

Fig.3 FEM model of piccolo structure 

Fig.4 Local mesh model 
By the modal analysis, the first four steps of nature frequencies of anti-ice piccolo structure can 

be obtained. The analysis results of nature frequencies are shown in Table 1 and the first four steps 
of  natural mode shapes are shown in Fig.5. 

Table 1 First four steps of nature frequencies of piccolo structure  
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mode step 1 2 3 4 
nature frequency(Hz) 1538.4 1613.8 1819.0 1827.5 

Fig.5 First four steps of natural mode shapes of piccolo structure 
1.2 Importance measure analysis model of anti-ice piccolo structure 
Randomness exists in the dimension parameters of piccolo structure, and these random variables are 
independent. The distribution types and distribution parameters are shown in table 2. 

Table 2 Distribution type and parameter of the random variables 
 inputs Identifier the type of distribution mean standard deviation

Pipe diameter A(m) 1x Normal distribution 0.0558 0.001 
Pipe wall thickness B(m) 2x Normal distribution 0.001 0.00004 

Hole Side C(m) 3x Normal distribution 0.04 0.0008 
Diameter D(m) 4x Normal distribution 0.0018 0.00007 

Hole spacing E(m) 5x Normal distribution 0.04 0.0008 
Hole angle F( ) 6x Normal distribution 45 1

Assume that the probability density functions of the variables ( 1, 2, ,6)kx k  are marked with 
( )( 1,2, ,6)k kf x k . Then the joint probability density function of the structural parameters is 

6

1
( ) ( )k k

k
f f xx x .

In the anti-ice cavity structure, the piccolo structure is subject to random excitations. As can be 
seen in Table 1, the external excitation frequency  is close to the first natural frequency  of the 
structure. According to the stress-strength interference model, performance function of structure 
resonance failure can be calculated by Eq.(1): 

( , )g                                               (1) 
In engineering, a value  is first given according to the requirement of anti-resonance design. 

When ( , )g , the resonance structure fails; when ( , )g , the structure is safe. This shows 
that the natural frequency  is important for the anti-resonance design. The natural frequency  is a 
function of the basic variables 1 2 6( , , , )x x x . Therefore, performing importance measure analysis for 
the natural frequency is meaningful for anti-resonance design of the piccolo structure. 

According to Refs.[10, 11], the importance measures of the structural parameters for the natural 
frequency are defined below 

[ ( ( ) | )]
[ ( )]

k
k

Var E x
S

Var
x
x

( 1,2, ,6)k                                                  (2) 

where [ ( )]Var x  is the variance of ( )x , ( ( ) | )kE xx  is the mean value of ( )x .
In Eq.(2), the value of [ ( )]Var x  can be estimated by the Monte Carlo method. The estimated 

value ˆ [ ( )]Var x  of [ ( )]Var x  is formulated as 
2 2

1 1

1 1ˆ [ ( )] [ ( )] [ ( )]
N N

j j
j j

Var
N N

x x x                                              (3) 

Similarly, [ ( ( ) | )]kVar E xx  can be calculated by Monte Carlo method. Then substitute it into 
Eq.(2), the importance measures of the structural parameters can be obtained. The importance 
measure indicator kS  of the input parameter kx  characterizes the uncertainty of random variables kx

acting alone on the variability of the natural frequency ( )x . This variance-based importance 
measure can reflect the impact of input parameters variability on the variability of the natural 
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frequency. So it can provide guidance for engineers to adjust the input design parameters for the 
purpose of improving the anti-resonance capability. 
1.3 First natural frequency approximation based on quadratic response surface
In the process of importance measure analysis, structural natural frequency is an implicit function of 
input parameters, so it needs to perform the mode analysis with ANSYS software to obtain the 
natural frequency of anti-ice piccolo structure. If we directly use Monte Carlo method to repeatedly 
call the ANSYS software to implement random sample analysis, the computation cost will be very 
high. Therefore, in this paper, we use high-precision fitting method to fit the relationship between 
the natural frequency and input parameters so as to reduce the computation cost [12]. Among the 
response surface models, the fitting error of first-order response surface model is too large to reflect 
the true performance of structure. Although higher-order polynomial has higher fitting accuracy, it 
needs a high computational cost because a large number of items are involved. Especially in the 
case of multi-variable problem, the computational cost of fitting response surface will be 
unacceptable. For piccolo structure analysis, computational cost of second-order response surface is 
relatively small, and its fitting accuracy can meet the engineering application requirements [13, 14]. 
Therefore, this work uses quadratic response surface method to fit explicit functional relationship 
between the structure natural frequency and size parameters, and the formula is expressed as 

1 6ˆ( ) ( , , )=F x xx                 (4) 
where  is the statistical error. 

The quadratic polynomial response surface model contains 28 coefficients, and ˆ( )x  can be 
calculated by Eq.(5). 

6 6 6( ) ( ) ( ) ( )
0

1
ˆ ( ) ( 1, 2, , )p p p p

k k ij i j s
k i j i

c c x c x x p nx                          (5) 

where sn is the number of sample, and 0 1 27[ ]Tc c cc is the regression coefficient matrix. 
Eq.(5) can be written in the form of matrices , as shown in Eq.(6) 

ˆ Xc                                                                  (6) 
The regression coefficient matrix can be obtained by the least squares method. 

1 ˆ( )T Tc x x x                          (7) 
After the response surface model is obtained, we use 2R  (multiple correlation coefficient), 2

aR

(corrected multiple correlation coefficient) and %RMSE (root mean square deviation) to assess the 
adaptability of the model, which are calculated as follows 

2 1 E

T

SS
R

SS                                                 (8) 

2 ( 20)
1

( 1)
E s

a
T s

SS n
R

SS n                (9) 

( ) ( ) 2 ( )

1 1

1 1ˆ% 100 ( ) ( )
s sn n

p p p

p ps s

RMSE
n n

                                (10) 

where ( ) ( ) 2

1
ˆ( )

sn
p p

E
p

SS is squares sum of error, ( ) 2 ( ) 2

1 1
ˆ( ) ( )

s sn n
p p

T s
p p

SS n is the total squares sum. 

2 Methods for solving importance measures of the anti-ice piccolo structural parameters 

2.1 The existent method-random sampling method 
The Monte Carlo-based parameter importance measure analysis method needs to produce samples 
following the distributions of the basic variables, which are transformed from samples of uniform 
distribution [0,1]. Currently, there are many methods to generate samples that follow the [0,1] 
uniform distribution, and the simplest method is the random sampling. The samples generating 
recurrence formula can be expressed as 
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1( )(mod )
1, 2,

/
j j

j j

y y b M
j

r y M
                                          (11) 

where  is multiplier, M is modulus, b is incremental, and 0y is random source. All of them are pre-
selected non-negative integers. 
2.2 The proposed method-low dispersion sampling method 
Low dispersion sampling method excludes the randomness of samples by the number theory. Thus, 
it can be more specific and exact to give the evenly distributed sample points. There are three low 
dispersion point sets. They are good lattice points set, good points set, and best uniform points set. 
Among these three points sets, the good lattice points set and best uniform points set are finite sets, 
and their sample sizes are imposed, so they are not able to add additional sample on the basis of 
existing sample size [9]. When using Monte Carlo method to perform importance measure analysis, 
the required sample size cannot be known in advance, which restricts the application of the good 
lattice point set and the best consistent points set on the importance measure analysis. Nevertheless, 
the sample size of good point set is not limited, and its computation process is simple, which makes 
it possible for us to use it into importance measure analysis. Hua and Wang[8] give the construction 
method of good points set based on low-dispersion sample. The analysis process of this method is 
as follows. 

A six dimension good point 1 2 6( , , , )r r rr  iteration formats can be expressed as 
( ) int( )j

k k kr q j q j ( 1, 2, , ; 1, 2, ,6)j N k          (12) 
where int( )  denotes the tail section rounding operation, and kq  can be generated through the sub-
domain method, such as 

22cosk

k
q

s
( 1,2, ,6)k           (13) 

where s  is a prime number, and 13s .
Fig.6 shows the distribution characteristics -of 500 two-dimensional [0,1] uniformly distributed 

random samples that are generated by random sampling and low dispersion sampling respectively. 
Fig.6 clearly shows that low-dispersion sampling method under small sample size is better than 
random sampling method in terms of sample uniformity. 
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(a) random sampling                       (b) low dispersion sample 
Fig.6  500 Group 2D [0,1] uniformly distributed sample points 

3 Importance measure analysis of the structural parameters 

Based on the above analysis, we can get the process of parameter importance measure analysis for 
anti-ice piccolo structure, which is shown in Fig.7. 
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Fig 7. Flowchart of importance measure analysis for anti-icing cavity structural parameter 
By using the quadratic response surface method, we obtain the relationship function ˆ( )x

between the first natural frequency and size parameters. After the response surface model is 
obtained, we use the 2R  (multiple correlation coefficient), 2

aR  (corrected multiple correlation 
coefficient) and % RMSE (root mean square deviation) to assess the adaptability of the model with 
Eqs.(8)-(10). The result shows that the multiple correlation coefficient 2R  is 3.158%, the corrected 
multiple correlation coefficient 2

aR  is 2.49%, and the root mean square deviation (%RMSE) is 
0.98573%, which can meet the requirements of analysis accuracy. 

Then low dispersion sampling method is used to perform the parameter importance measure 
analysis. The analysis results are shown in Table 3 and Fig.8. 

Table 3 Results of importance measure analysis 
variable 1x 2x 3x 4x 5x 6x

measure 0.566144 0.296415 0.002300 0.029427 0.070208 0.000254 

1 2 3 4 5 6
0

0.1
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0.3

0.4

0.5

0.6

0.7

Fig.8 Diagram of random variables importance measure analysis results 
As can be seen from Fig.8, pipe diameter and pipe wall thickness of the structure have greater 

impacts. Therefore, in optimization design they should be especially focused on. 

4 Conclusions 

(1) Based on mode analysis with ANSYS software, the importance measure model between 
structural size parameters and the natural frequency response is established. The fitting process of 
structural natural frequency based on quadratic response surface method is proposed. 
(2) The flowchart of low-dispersion sampling-based importance measure analysis for the anti-ice 
piccolo structure is established. 
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(3) By the parameter importance measure analysis, we find that the pipe diameter and pipe wall 
thickness of the structure have important influences on the variability of the natural frequency. 
Hereby these parameters need to be paid more attention to in the anti-ice piccolo design. 
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System summary 
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2. System Flow 

Figure.6 System flow
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Frictionless Contact Problem, Node-Element Contact, Critical Area, 
Shear Deformation, Tangent Stiffness Method, Pass-Through
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2.1  General formulation 
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3.1  Euler-Bernoulli beam theory using simply supported coordinate 
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3.2  Euler-Bernoulli beam theory using cantilever coordinate 
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3.3  Timoshenko Beam Theory using simply supported coordinate 
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4.1  Frictionless contact analysis of a cantilever beam 
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4.2  Accuracy comparison of FEM to TSM 

4.3  Contact of double beams 
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2.1 Euler-Bernoulli beam and Timoshenko beam theory in small deformation 
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Abstract
This paper presents a numerical method to identify the intervals of thermal parameters for steady 
state convection-diffusion heat transfer problems when uncertainty of measurement is characterized 
by the interval. A two step strategy is suggested to estimate the lower and upper bounds of thermal 
parameters in the terms of central value and radius. A 2D numerical example is provided to verify 
the proposed approach. 

Keywords: interval; identification; uncertainty; estimate; thermal parameters.  

1. Introduction 

Thermal parameter estimation is an important issue related with many engineering aspects
(Rodriguez and Nicolau,2012;Liu and Xu,2000;Reverberi and Fabiano,2013), and is usually based 
on an assumption that measurement is deterministic. Unfortunately all measurements are 
indeterministic, and contain various uncertainties(Hugh and Steele,1999). Such uncertainties may 
result in fault results in the analysis process, and necessitate to take into account(Wang and 
Qiu,2010;Shome,1999).The point is how to estimate the uncertainty of thermal parameter caused by 
the measurement uncertainty. 

There are mainly three mathematical means to describe the uncertainty, including probabilistic 
method, fuzzy theory, and interval analysis(Rao and Berke,1997; Elishakoff,1998;Muhanna and 
Mullen,2001). The interval analysis does not require any prior knowledge or assumption of the 
uncertainty distribution inside their definition ranges as probability and fuzziness do, only the 
bounds of changes of the uncertain quantities are necessary(Jiang, Liu and Han,2008). As matter of 
fact, there were some previous reports concerned with the interval analysis in forward heat transfer 
problems. C.P. Sebastiao(pereiar,2004) presented an interval uncertainty assessment in 1-D thermal 
basin modeling via an Element-By-Element(EBE) technique, and provided good results in 
accordance with those given by the Mento Carlo and combinatorial methods. J.P. Li(Li and 
Chen,2009)employed a perturbation technique to acquire the lower and upper bounds of 
temperatures for the transient heat conduction problem with interval parameters. H.T. Yang(Xue 
and Yang,2013)developed two methods to estimate the bounds of temperatures by utilizing Taylor 
and Neumann expansion skills for convection-diffusion heat transfer problems when thermal 
parameters are uncertain and described by intervals. However by authors best knowledge, there 
seems no any report directly related to the interval estimation of thermal parameters for uncertain 
convection-diffusion heat transfer problems so far, although great achievement has been gained for 
the interval estimation of physical parameters in structural engineering(Wang and Qiu,2010;Jiang, 
Liu and Han,2008) and other aspects(Braems and Berthier,2000;Jorge,2004; Sergey and 
Nazin,2005).
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This paper focuses on the interval estimation of thermal parameters for the steady state conduction-
diffusion heat transfer problem when the uncertainty of temperature measurements is characterized 
by intervals. Section 2 gives a brief description of numerical modeling of forward convection-
diffusion heat transfer problems with interval parameters; Section 3 presents a two step strategy to 
estimate interval bounds of thermal parameters when measurement temperature is  characterized by 
interval; Section 4 provides 2D numerical tests to verify the proposed approach; Section 5 reaches 
the conclusion. 

2. Numerical modeling of forward convection-diffusion heat transfer problems with interval 
parameters 

The governing equation of steady state convection-diffusion heat transfer problems is(Platten and 
Legos,1984)

, ,i i ij j i
cu T k T Q, ix  (1) 

where T  stands for the temperature, c  and ijk  are heat capacity and thermal conductivity 
respectively, iu  refers to the vector of the fluid velocity, Q  is a volumetric heat source term, ix  is 
the vector of the coordinates,  represents the space domain of the problem and subscript ,i j
refers to a summation index( , 1, 2i j  for the 2D problem, , 1, 2,3i j  for the 3D problem). 

The boundary condition is given by 

BT = T 1ix  (2) 

i ij , jn k T = q 2ix  (3) 

where BT  and q  are prescribed functions, 1 2+  represents the whole boundary of , and in
refers to the outward unit normal along 2 .

Eqs. (1-3) can be formulated in a FEM form(Huebner and Thornton,1995) 

KT P  (4) 

where T  refers to the general nodal vector of temperature. 

T T
, , ,e e

e e
i ij i i i

e e

k d cu dK N N N N  (5) 

T T
e e

e e

e e

d dP N Q N q  (6) 

N  stands for a matrix of shape functions.  
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Assume the thermal parameter vector = , , , ,
T

ij ik u c Q qb  is an interval vector and is described 
by(Alefeid and Herzberger,1983;Moore,1979).

,I c eb b b b b  (7) 

/ 2cb b b / 2b b b 1,1e  (8) 

where cb  and b represent the vectors of central value and radius of Ib , b  and b  refer to the 
lower and upper bounds vectors of Ib .

Near the neighbor of cb , b can be described by

cb b b , [ , ]Ib b b b  (9) 

Utilizing the Taylor series expansion, the first order approximation of the solution of Eq. (4) can be 
written as(Qiu and Wang,2004) 

1

( )( ) ( )
cm

c c
j

j j

b
b

T bT b T b b T    (10) 

where

( )c cT T b   (11) 

1( ) ( )( )
cc c

c c

j j jb b b

K bT b P bK b T    (12) 

The lower and upper bounds of 
I

T  are estimated by 

    

1

1

( )( ) ( )
ccm

c c c c
j

j j j

b
b b

K bP bT b T T T b K b T   (13) 

    

1

1

( )( ) ( )
ccm

c c c c
j

j j j

b
b b

K bP bT b T T T b K b T   (14) 

where

      

1

1

( )( )
ccm

c c
j

j j j

b
b b

K bP bT K b T    (15) 
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utilizing Eqs. (11) and (15), lower and upper bounds of temperatures can be estimated for the 
convection-diffusion heat conduction problem with interval parameters.

3. Interval identification of thermal parameters 

Assume that the measurement temperature *T  is characterized by the interval via ** ,T T  where 

*T and *
T stand for lower and upper bounds of *T . The central value and radius of *T are given by 

* *
*

2
c T TT

* *
*

2
T TT  (16) 

Using *T and *
T , the interval estimation of thermal parameters can be realized via the identification 

of cb  and b .

The identification of cb and b is conducted by minimizing two 2L  norms defined by 

2*c c cLT b T  (17) 

2*L T b T  (18) 

where cT  and T  is given by Eqs. (11) and (15), L  is a matrix mapping the relationship of T  and 
the vector of measurement points.

The above minimizations can be realized by the L-M (Levenberg—Marquardt) 
algorithm(Levenberg,1994). For a problem defined by 

1M in
2

TF F  (19) 

the major procedure of L-M algorithm includes 

m+1 m  (20) 

nT TG G I = G F  (21) 

where TG  stands for the gradient matrix of  F  with respect to ,  is an non-negative damping 
factor, and I  refers to an identity matrix. 

When  , the above iteration stops,  refers to an error tolerance. 

For Eq. (17) 

cb  (22) 
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1

1

c m
c

c
j jj bb

T P KG L L K T
b

 (23) 

*c cF LT T  (24) 

For Eq.(18) 

b  (25) 

1

1

m
c

j j jb b
T P KG L L K T
b

 (26) 

*F L T T  (27) 

Therefore the lower and upper bounds of thermal parameters are given by  

cb b b  (28) 

cb b b  (29) 

4. Numerical verification 

For the simplicity, all the computing parameters are assumed dimensionless. 

Consider an inverse 2D steady state convection-diffusion heat transfer problem in a 10 10
rectangular domain which is meshed by 10×10 finite elements, as shown in Fig.1. 

The boundary condition is defined by

, 0 1T x y , ( , 10) 0T x y ,

[0,4]
( 0, ) 1

y
T x y ,

(4,10]
( 0, ) 0

y
T x y , ( 10, ) 0T x y

The effect of noisy data is taken into account in the form 

* *1nT T  (30) 

* *
1nT T  (31) 
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where *
nT  and 

*
nT  represents the vectors of lower and upper bounds of measured or stimulated 

temperature containing the noisy data,  is a random variable between -0.5~0.5, refers to a noisy 
level. 

Figure 1 The FE mesh of the rectangular plate 

Case 1 
1cc , cc c , cos 30c

xu , c
x xu u , sin 30c

yu , c
y yu u  is defined as the degree 

of uncertainty. The intervals of xxk  and yyk  are to be identified.  

Tab. 1 exhibits the solutions with different initial guesses; Tab. 2 presents solutions with different 
arrangement of measuring points as shown in Fig2; Tab. 3 gives solutions at different noisy levels.  

Tab. 1. The effects of initial guesses on the results 

Identified
parameters 

1 2 Actual 
valuesInitial

guesses
Results of 

identification
Iterative

steps
Initial

guesses
Results of 

identification 
Iterative

steps
c
xxk 0.1 0.6 6 5 0.6 9 0.6 

xxk 0.1 0.06 4 5 0.06 4 0.06 
c
yyk 0.1 0.5 6 5 0.5 9 0.5 

yyk 0.1 0.05 4 5 0.05 4 0.05 
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Tab. 2 The effect of different distribution of measuring points on the results 

Identified
parameters 

Results of identification 
Actual values 25 measuring 

points
15 measuring 

points
10 measuring 

points
c
xxk 0.6 0.6 0.6 0.6 

xxk 0.06 0.06 0.06 0.06 
c
yyk 0.5 0.5 0.5 0.5 

yyk 0.05 0.05 0.05 0.05 

Tab. 3. The effects of noisy data on the results 
Identified
parameters 

=1% =5%
Actual values 

Result Error(%) Result Error(%)
c
xxk 0.6041 0.68 0.5913 1.45 0.6 

xxk 0.0603 0.50 0.0593 1.17 0.06 
c
yyk 0.5078 1.56 0.4833 3.34 0.5 

yyk 0.0498 0.40 0.0504 0.80 0.05 

(a) 25 measuring points 

(b) 15 measuring points 
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(c) 10 measuring points 
Fig 2 Distribution of measuring points 

Case 2: 
1cc , cc c , 0.6c

xxk , xx xxk k , 0.6c
yyk , yy yyk k . The intervals of xu and yu  are to 

be identified.  

Tab. 4 and 5 exhibit solutions with different initial guesses and different arrangement of measuring 
points, Tab. 6 gives solutions at different noisy levels.

Numerical tests indicate 
1. Initial guesses seems no impact on the solution, as shown in Tab. 1 and Tab. 4 where the largest 
ratio between initial guesses and true values is 10. The accurate intervals were identified with few 
iterative steps which shows the high efficiency of the presented method. 
2. Since the problem defined in the numerical test is homogeneous the variation of number and 
location of measuring points gives no impact on the solution, as shown in Tab. 2 and Tab.5, 
respectively. 
3. The proposed algorithm is not sensitive to noisy data when 5% , the maximum relative error 
is 3.34% when 5% .
4. Only few iterations are required to obtain satisfactory results, as shown in Tab. 1 and Tab.4. 

Tab. 4. The effects of initial guesses on the results 

Identified
parameters 

1 2 Actual 
valuesInitial

guesses
Results of 

identification
Iterative

steps
Initial

guesses
Results of 

identification 
Iterative

steps
c
xu 0.1 0.866 12 5 0.866 6 0.866 

xu 0.1 0.086 4 5 0.086 4 0.086 
c
yu 0.1 0.5 12 5 0.5 6 0.5 

yu 0.1 0.05 4 5 0.05 4 0.05 

Tab. 5 The effect of different distribution of measuring points on the results 

Identified
parameters 

Results of identification 
Actual values 25 measuring 

points
15 measuring 

points
10 measuring 

points
c
xu 0.866 0.866 0.866 0.866 

xu 0.086 0.086 0.086 0.086 
c
yu 0.5 0.5 0.5 0.5 
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yu 0.05 0.05 0.05 0.05 

Tab. 6. The effects of noisy data on the results 
Identified
parameters 

=1% =5%
Actual values 

Result Error(%) Result Error(%)
c
xu 0.8714 0.54 0.8517 1.65 0.866 

xu 0.0869 1.05 0.0856 0.47 0.086 
c
yu 0.5041 0.82 0.4892 2.16 0.5 

yu 0.0504 0.80 0.0489 2.2 0.05 

Conclusions

Since there seems no direct report concerned with the inverse convection-diffusion heat transfer 
problems when the uncertainty of temperature measurements is characterized by the interval, this 
paper attempts to present a numerical model to solve this kind of problem. In terms of central value 
and radius of interval, a two step strategy is suggested to estimate the lower and upper bounds of 
thermal parameters and fluid velocity. The L-M method is employed in the estimation procedure, 
and a numerical test is given to illustrate the advantages of the proposed algorithm with the 
consideration of initial guess, arrangement of measurement points, and data noise. 

The presented model is verified via some numerical tests, however due to the lack of actual 
uncertainty information either from experiment or industry (some of parameter is based on 
assumption) more efforts for the further model V&V are required. For the model application of 
industry, in addition to the numerical verification similar to this paper, the experiment based 
verification is particularly required. On the other hand we need collect sufficient message on the 
interval uncertainty from industry, such as the width of interval, noisy level, etc., and validate/verify 
the proposed model via some industry cases to secure the validity of identification results.
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1 Inverse analysis loop  
2    do  
3      Solve the problem on the current coarse and fine FE mesh  
4      Compute FE error  
5      Compute goal function error on the coarse mesh  
6      if goal function error on the coarse mesh <  
7         < rate * relative FE error then  
8        Execute one step of (parallel) hp adaptivity  
9      else break endif  
10   enddo  
11   Compute goal function error on the fine mesh  
12   if goal function error on the fine mesh <  
13      < required accuracy then  
14     stop  
15   endif  
16   Propose new values for inverse problem parameters  
17 endloop 

o
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Stress around a circle hole in a finite plate 

Figure 1.  Calculation model  Figure 2. Discretization of plate end
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Figure 3.  Comparison of circumferential stress    

Figure4. Proper combinations- 1             Figure 5. Proper combinations- 2 

Figure 6.  Comparison of circumferential stress     Figure 7. Comparison of MFS/FEM 
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Characteristics of source loads 

 
  

 i

Figure 8.  Comparison of source load shape inside hole 

                    Figure 9. Comparison of source load shape outside plate end 
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Figure 1. Classification of membrane structures
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Domain variation of membrane structure 

V

V V
V

V V V

X X X

X X

X X V +

sV X X
X

Figure 2. Shape variation of membrane by V

287



sV X

Form-finding problems of membrane structures and derivation of shape gradient function 
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Calculated results for three types of membrane structures 

Figure 4. Optimization result of frame membrane structure 

Figure 5. Iteration histories for frame membrane structure 
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         Figure 6. Optimization result of pneumatic membrane structure

Figure 7. Iteration histories for pneumatic membrane structure
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Figure 8. Optimization result of 5-points spatial suspension membrane structure
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Ultra-Accurate Isogeometric Structural Vibration Analysis with Novel Higher 

Order Mass Formulations 
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Abstract
An ultra-accurate isogeometric structural vibration analysis is presented. The key ingredient of the 
proposed methodology is the development of novel higher order mass matrices which are realized 
though a new two-step mass construction method. Firstly by using the standard consistent mass 
matrix a special reduced bandwidth mass matrix with equal order of accuracy is designed under the 
mass conservation constraint. A mixed mass matrix follows through a linear combination of the 
consistent mass matrix and the reduced bandwidth matrix. Subsequently the desired higher order 
mass matrix is then rationally deduced from the mixed mass matrix by optimizing the linear 
combination parameter in order to minimizing the frequency error. It turns out that for the semi-
discrete free vibration analysis, the orders of accuracy associated with the proposed higher order 
mass matrices are two orders higher than those of their corresponding consistent mass formulations. 
Meanwhile, a detailed analysis of the full-discrete formulation with Newmark temporal integration 
demonstrates that the accuracy of the full-discrete frequency associated with the higher order mass 
matrices is superior compared with that of the standard consistent matrix matrices. The ultra-
accurate performance of the proposed method is illustrated through several examples. 

Keywords: isogeometric analysis, structural vibration, semi- and full-dsicretzation, frequency 
accuracy, higher order mass matrix.  

Introduction 

To seamlessly integrate the computer aided geometry design (CAGD) and the finite element 
analysis (FEA), Hughes et al. [1] proposed the isogeometric analysis where the CAGD data, i.e., the 
non-uniform rational B-splines (NURBS) and control points, is directly employed as the shape 
functions and geometry input for the finite element analysis. Thus exact geometry is preserved in 
the isogeometric analysis regardless of the model refinement. Meanwhile, high order smoothing 
convex approximation can be readily constructed for the NURBS basis functions, which makes 
isogeometric analysis ideal for the solution of problems with high order governing differential 
equations.

The excellent performance of isogeometric analysis has been demonstrated in many important 
problems [1-4], one of which is the structural vibration analysis. It has been shown by Cottrell et al. 
[5] and Reali [6] that the frequency spectra by isogeometric analysis are much more accurate than 
those by the typical higher order finite elements. Later Shojaee et al. [7] employed the isogeometric 
approach for free vibration analysis of thin plates. Thai et al. [8] investigated the static, free 
vibration, and buckling behaviors of laminated composite shear deformable plate with the 
isogeometric method. Very recently, Wang at al. [9] developed a set of novel higher order mass 
matrices for structural vibration analysis with ultra-accurate frequency accuracy. These higher order 
mass matrices are constructed by a two-step rational method. In the first stage, a reduced bandwidth 
mass matrix with the same order accuracy as the consistent mass matrix is developed, where the 
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mass conservation is maintained. Then an optimal linear combination of the reduced bandwidth 
mass matrix and the consistent mass matrix yields the desired higher order mass matrix. An 
elevation of two orders of frequency accuracy is observed for the higher order mass matrix. 

In this work the higher order mass matrix formulations for isogeometric analysis are first 
summarized, whose accuracy is demonstrated via classical free vibration examples. Thereafter a 
fully discrete formulation is introduced for the higher order mass isogeometric analysis to examine 
its discrete properties. The temporal discretization is completed by the widely used Newmark 
method. The full-discrete frequency is then derived with the aid of the semi-discrete frequency. 
Comparison between the full-discrete frequency and the continuum frequency is presented in detail. 
It turns out the higher order mass isogeometric analysis produces more favorable full-discrete 
frequency compared with the consistent mass formulation. Finally transient analysis results are also 
given to illustrate the proposed methodology. 

Isogeometric Higher Order Mass Matrix 

Isogeometric Basis Functions 

The isogeometyric analysis often employs B-Spline and NURBS as the basis function for geometric 
description and finite element analysis. A set of n p-th order B-spline basis functions ( )apN ’s are 
recursively defined as follows [1]:

( 1) ( 1)( 1) 1 1 1( ) ( )( ) / ( ) ( )( ) / ( ) for 1ap a p a a p a a p a p a p aN N N p  (1) 

where in case of 0p , 0 ( ) 1aN  for 1a a  and otherwise 0 ( ) 0aN .  is the parametric 
coordinate, a  is the a-th knot of the knot vector 1 1{ 0, , , , 1}T

a n pk . A NURBS 

basis function ( )p
aR  is given by assigning a weight aw  to each B-spline basis function ( )apN :

1
( ) ( ) / ( )

n
p

a ap a bp b
b

R N w N w  (2) 

Through tensor product operation, 2D NURBS basis function ( , )pq
abR  takes the following form: 

1 1
( , ) ( ) ( ) / ( ) ( )

n m
pq

ab ap bq ab cp dq cd
c d

R N N w N N w  (3) 

where abw  is the 2D weight for geometry description. ( )bqN  is the -q th  order basis function and 
m  is the number of basis functions in the  direction, respectively. 

Construction of Higher Order Mass Matrices 

Here we consider the quadratic isogeometric approximation of an elastic rod with cross section area 
A and density . In this case the element consistent mass matrix eM  and stiffness matrix eK  are 
given by [9]: 

6 13 1 2 1 1
13 54 13 ,   1 2 1

120 6
1 13 6 1 1 2

ec eAh EA
h

M K  (4) 
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where h  is the element length. Consider the classical semi-discrete vibration model problem: 

Md Kd 0  (5) 

in which d  contains the coefficients associated with the control points, the overhead dots represent 
time differentiation. It is noted that since NURBS basis functions are not interpolatory functions in 
general, d does not represent physical values of the control points and thus proper treatment of 
essential boundary conditions is required [10, 11]. Based on Eqs. (4) and (5), it is shown that the 
frequency error associated with the consistent mass matrix is [9]: 

4/ 1 ( ) /1440h kh  (6) 

where k  is the wave number.  and h  are the exact continuum frequency and the semi-discrete 
(spatially discrete) frequency. In [9], an equal order accurate reduced bandwidth mass matrix erM
can be postulated as follows: 

2 4

7 / 2 13 / 2 0
13 / 2 54 13 / 2 ,  / 1 (4 )( ) / 240 (18 )( ) / 2880

120
0 13 / 2 7 / 2

er h

r
h

r r r kh r kh

r r

M  (7) 

with r  being an adjustable coefficient. Clearly selecting 4r  gives us a 4th order accurate mass 
matrix that reduces the half-bandwidth of the consistent mass matrix by 1.  

To establish a higher order mass matrix, we further consider the following mixed mass matrix emM
through linear combination of ecM  and erM :

4 6

5 15 2
(1 ) 15 2 50 4 15 2

120
15 2 5

/ 1 (7 6 )( ) /1440 (29 28 )( ) / 40320

em er e

h

s s s
h

s s s s s
s s s

s kh s kh

M M M
 (8) 

where s  is a parameter. Thus we can choose 7 / 6s  to achieve a 6th order accurate higher order 
mass matrix: (7 ) / 6eho e erM M M .

Though the tensor product formulation, the previous algorithm can be extended to construct 
multidimensional higher order mass matrix. In 2D case, we have the following quadratic higher 
order mass matrix [9]:  

6(13 ) /12,   / 1 11( ) /120960eho ec er h khM M M  (9) 

where ecM  and erM  are the 2D consistent and reduced bandwidth mass matrix whose explicit 
expressions can be found in [9].

Analysis of Fully Discrete Algorithm with Higher Order Mass Matrices 

The analysis of the fully discrete algorithm can be completed for the following model problem 
through the standard modal reduction technique for Eq. (5): 

2( ) 0hq q  (10) 

where q  is the generalized displacement. As for the temporal discretization, we consider the 
Newmark method. According to this method, the advancement of the variables such as 
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displacement, velocity and acceleration at time nt , i.e., { ,  ,  }n n nd v a , to their corresponding 
counterparts at 1nt , say, 1 1 1{ ,  ,  }n n nd v a , follows the following formula: 

2

1 1 1 1(1 2 ) 2 ,   (1 )
2n n n n n n n n n

t
t td d v a a v v a a  (11) 

where 1n nt t t ,  and  are parameters. Introducing Eq. (11) into Eq. (10) gives [12]: 

2

2 2
1

2

2 (1 2 )( )
2[1 ( ) ] 1 ( ),   { ,  } ,  

( 1)( ) 1

h

h hT
n n

h

t t
t tq q

t

y Ay y A  (12) 

with A  being the amplification matrix. In the following discussion, 1/ 2  is employed. The 
characteristic equation of A  is: 

2 2 2
1 2 1 2det( ) 2 0,   1 ( ) / [21 ( ) ],    1h hA A A t t AA I  (13) 

where I  is the 2 by 2 identity matrix,  is the eigenvalue of A  that has the following form: 

,  1,  i he i t  (14) 

with h  being the full-discrete frequency that is different to semi-discrete frequency. The 
comparison of h  and the exact continuum frequency  is a useful index to measure the accuracy 
of the discrete algorithm. Substituting Eq. (14) into Eq. (13) leads to: 

2 2sin ( / 2) 1/ [4 (2 / ) ]h ht t  (15) 

For the 1D quadratic isogeometric higher order mass matrix we have [9] 

20[6 2cos(2 ) 4cos( )] ,   7 / 6
2 cos(2 ) 2(30 4 )cos( ) 60 6

h c kh kh
s

h s kh s kh s
 (16) 

where c  is the wave speed. While in 2D case, h  is given by [9]: 

40 cos(4 ) 28cos(3 ) 112cos(2 ) 4cos( ) 145
,   13 /12

cos(4 ) 52 cos(3 ) (900 92 )cos(2 )
(3600 116 )cos( ) 2700 155

h kh kh kh khc
s

s kh s kh s khh
s kh s

 (17) 

Further substituting Eqs. (16) and (17) into (15) gives the respective fully discrete frequencies: 
1D rod model problem: 

2
2

2 2 2 2

2 2

20 [6 2cos(2 ) 4cos( )]sin
2 480 4 (60 6 ) (8 160 )cos(2 )

[8 (30 4 ) 320 ]cos( )

h t t kh kh
t h s sh t kh

h s t kh

 (18) 

2D membrane model problem: 

2
1

2
2 2

cos(4 ) 52 cos(3 ) (900 92 )cos(2 )
(3600 116 )cos( ) 2700 155

sin 4
2 10 ( ) [145 cos(4 ) 28cos(3 ) 112cos(2 ) 4cos( )]

h

s kh s kh s kh
h

s kh st
c t kh kh kh kh

 (19) 
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Results and Discussions 

Accuracy of Semi-discrete Frequency 

First we consider a free vibration elastic rod problem, the geometry and material properties for the 
elastic rod are: length L=10, cross section area A=1, material density 1 , and Young’s modulus 

1E . Figure 1 list the fundamental frequency results for the vibrations of fixed-fixed, fix-free, 
free-fixed, free-free elastic rods using quadratic basis functions, where three types of mass 
formulations are compared, i.e., the consistent mass matrix “CM”, the reduced bandwidth mass 
matrix “RBM”, and the higher order mass matrix “HOM”. The periodic basis functions are used to 
eliminate the boundary effect. The numerical results in Fig. 1 apparently demonstrate that the 
proposed higher order mass matrix has a 6th order of accuracy, while both the accuracy orders for 
the reduced bandwidth matrix and the standard consistent mass matrix are 4. 

L L

L L

 
Figure 1. Comparison of h  and  for 1D rod vibration problem

Accuracy of Full-discrete Frequency 

The accuracy for the fully discrete algorithm with the proposed higher order mass matrix 
formulations is shown in Figs. 2-5. For convenience of presentation, the Courant number 

/C c t h  is employed in the discussion. In Fig. 2 and 3, the 1D comparisons of the full-discrete 
and continuum frequency are plotted with respect to the element size and Courant number, four 
typical Newmark methods, i.e., central difference method ( 0 ), Fox-Goodwin method 
( 1/12 ), linear acceleration method ( 1/ 6 ) and average acceleration method ( 1/ 4 ). The 
results reveal that in general the higher order mass formulation gives the most favorable full-
discrete frequency accuracy. Similar conclusions are also observed for the frequency comparison 
for the 2D membrane model problem results as shown in Fig. 4. The transient analysis results of 2D 
fixed square membrane under the initial velocity 0 sin( )sin( )v x y  in Fig. 5 once again 
demonstrate that the higher order mass formulation yields the superior solution accuracy, where unit 
geometric and material properties are adopted. 
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Figure 2. Comparison of h  and  with varying element size for 1D rod problem 

Figure 3. Comparison of h  and  with varying Courant number for 1D rod problem
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Figure 4. Comparison of h  and  with varying element size for 2D membrane problem 

Figure 5. Comparison of the center deflection errors for a fixed square membrane under 
given initial velocity 
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Conclusions

An ultra-accurate isogeometric method was presented for structural vibration analysis. This method 
is featured by the novel higher order mass formulations. The higher order mass matrix was 
rationally formulated by optimally combining the consistent mass matrix and the so-called reduced 
bandwidth mass matrix that has an equal order of frequency accuracy with its consistent counterpart. 
For free vibration analysis, two orders of extra accuracy were gained by the higher order mass 
matrix. Furthermore, by introducing the Newmark time integration method, the accuracy of the 
fully discrete algorithm with the present higher order mass isogeometric approach is studied in 
detail. The full-discrete frequencies for four typical Newmark time integration methods, i.e., central 
difference method, Fox-Goodwin method, linear acceleration method and average acceleration 
method were compared with the continuum frequency with respect to the element size and the 
Courant number, respectively. Moreover, a 2D transient membrane example was also presented to 
investigate the dynamic response of the proposed method. All the numerical results universally 
demonstrated that the most favorable solution accuracy is attached with the proposed higher order 
mass isogeometric method.  
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Abstract
A numerical study on concrete debris ricocheting off sand ground is presented in this 
paper. The numerical package ANSYS LS-DYNA is used to model the whole process 
of the impact of concrete debris on sand ground. A set of formulation is retrieved 
from the numerical results to predict the ricochet angle and the ricochet velocity in 
terms of the incident angle and the incident velocity. The debris size effect on the 
ricochet phenomenon is studied. It is found that for the range of the debris size 
studied in this paper, the debris size only has very minor influence on the ricochet. 

Keywords: Ricochet, Concrete debris, sand, debris size, LS-DYNA.

Introduction 

Ricochet phenomenon appears when a hard projectile impacting on a relatively soft 
target medium with a certain impact condition. In general, the ricochet process could 
be controlled by the shape, the size, the strength, the launching velocity and the 
incident angle of the debris as well as the mechanical properties of the target medium 
(i.e. ground conditions). In the past, most research work has focused on the ricochet 
of projectiles off water surface and debris with different materials against soft ground. 
Soliman et al. (1976) studied the impact of steel and duralumin balls on water and 
dry, fine sand surfaces analytically and experimentally. It was found that for a given 
medium (e.g. water or sand), there exists a limiting incident angle beyond which 
ricochet does not occur, regardless of the incident velocity. On the other hand, when 
the incident angle is less than the limiting angle, there is an upper bound for the 
incident velocity beyond which ricochet does not occur. This upper bound is usually 
named as the (upper) critical incident velocity (for that angle). Knock et al. (2004) 
studied the impact of masonry debris against hard and soft grounds and concluded 
that the shape of masonry debris is not a major factor affecting the ricochet 
phenomenon. 

Since experiments are costly, time-consuming and limited in obtaining data, 
numerical simulation is an attractive alternative for studying the high speed impact 
and ricochet phenomenon. In this paper, a numerical study on concrete debris impact 
on sand surface is presented. In the current study, numerical simulations were 
performed by using Arbitrary Lagrangian Eulerian (ALE) formulation with multi-
material (MM) models. A total of six types of concrete debris are employed, namely 
20mm, 50mm and 80mm  spheres and 40mm, 60mm and 100mm chamfered cubes. 

Ricochet of projectiles against water is defined as an impact or a rebound such that at 
no time was the projectile fully below the water surface (Johnson 1998). However, 
when using sand as the target medium, it is found that concrete debris is more likely 
to come out of the sand after an impact (Xu et al. 2013). Furthermore, it is obvious 
that concrete debris is able to stand on a sand surface, while it sinks when it is placed 
on a water surface. Hence, the definition of ricochet against water may not be 
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applicable for the present study and a new criterion should be employed to define the 
ricochet of concrete debris against sand.

Numerical model of impact 

All numerical simulation works in this study are carried out by using the commercial 
software ANSYS LS-DYNA. The Arbitrary Lagrangian Eulerian (ALE) algorithm 
embedded in ANSYS LS-DYNA is adopted to model the impact process of concrete 
debris on sand surface. The concrete debris is meshed by a Lagrangian grid as solid, 
whereas the air and the sand are meshed by an Eulerian grid as fluid. An advance 
fluid structure interaction algorithm (FSI) is used to model the interaction between the 
debris and the sand/air. 

The material type Mat_Null (Mat 9) in ANSYS LS-DYNA (LSTC 2007) is employed 
for air. This material type has no shear stiffness or yield strength and behaves as a 
fluid. The cut-off pressure is set as 0, so that only positive pressure is considered. The 
equation of state (EOS) for air is expressed as p=0.4E( / 0), where p is the pressure, 
is the current density, 0 is the reference density which is taken as 0=1.29kg/m3

(density of air) and E is the initial internal energy which is taken as E=2.5×105Pa.

The Material Type 16 (Mat 16) in ANSYS LS-DYNA (Livermore Software 
Technology Corporation 2007) is used to model the concrete behavior. The Mat 16 
Mode II provides an automatic internal generation of a simple model for concrete. 
The material property for concrete debris is taken as: density c = 2400kg/m3, shear 
modulus G = 3.414×1010Pa and Poisson’s ratio  = 0.18. By using Mat 16 Mode II 
model, a two-curve model with damage and failure, namely the maximum yield 
strength curve and the failure model curve, can be defined. The maximum yield 
strength max and the failed strength failed are expressed as 

 , (1)

In Eq. (1), a0, a1, a2, a0f and a1f are coefficients which can be determined by a0=fc’/4,
a1=1/3, a2=1/(3fc’), a0f=0 and a1f=0.385, where fc’ is the concrete compressive 
strength. In the present numerical simulation, the compressive strength of the 
concrete is set as fc’ = 45MPa. The two curves are shown in Fig. 1(a). The change in 
yield strength with respect to plastic strain is taken into account. The relationship is 
given in the form: 

  (2) 

where coefficient b1 is set as 1.25, p is the pressure, p is the plastic strain and cut is 
obtained by the expression: 

  (3) 
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In Eq. (3), A0 = -145. The yield strength of concrete is given by 

  (4) 

The relation between  and  is shown in Fig. 1(b). As the concrete strength is much 
higher than that of the sand, the EOS is not set for concrete material. A tri-linear 
polynomial function is automatically generated from the unconfined compressive 
strength and Poisson’ ratio by ANSYS LS-DYNA. 

(a) The strength curves for concrete

(b) The relation between scaled yield strength and effective plastic strain 
Figure 1. Model for concrete material

The strength equation of the sand is modeled by the Mohr-Coulomb criterion, in 
which tension strength is set as 0 and cohesion effect is excluded. The Tresca 
criterion is used as the cut of limit for the shear strength. The shear strength curve for 
sand can be expressed as 

  (5) 

where 1 and 3 are the maximum and minimum principal stresses, P is the pressure 
and Pmc is the Mohr-Coulomb pressure (=0.186GPa), beyond which yield strength is 
pressure insensitive (Grujicic et al. 2008). Hence, the tension cut-off value ( 1- 3) is 
0.258GPa.
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Figure 2. The EOS of sands

The EOS used for sand is shown in Fig. 2. The initial and the reference densities of 
sand are both set as 1700kg/m3. The friction coefficient between the concrete debris 
and the sands is set as 0.6 (Leonards 1965) in the numerical simulation. 

(a) Configuration (X-Z plane) 

(b) X-Y plane 
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(c) A-A plane   (d) B-B plane 
Figure 3. The Eulerian mesh for the sand and air 

For the ALE mesh used, after introducing symmetric condition, only half model is 
considered as shown in Fig. 3, where the X-Z plane (Y=0) is the symmetric plane. In 
Fig. 3a, the red part is the impact target (sand) with dimensions of 1.2m (X) × 0.25m 
(Y) × 0.4m (Z), and the upper part is air with the dimensions of 1.2m (X) × 0.25m 
(Y) × 0.15m (Z). The meshing scheme of the sand medium and the air is shown in 
Figs. 3b to 3d. In order to mesh the chamfered cube by hexahedral elements, the half 
cube is first divided into 3×3×2=18 hexahedrons (Fig. 4a). The four chamfered 
corners are modeled by collapsed hexahedron. The middle point of the chamfered 
edge is shifted by =0.0033mm, 0.005mm and 0.0083mm for the 40mm, 60mm and 
100mm cube, respectively, as shown in Fig. 4b. Each hexahedron is then further 
meshed by 3×3×3 hexahedral linear elements. 

(a) The half model of the chamfered cube

(b) The shift of the middle point of the chamfered edge
Figure 4: Model of the chamfered cube

64 elements

6 elements

16 elements
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The methodology employed for analysis 

In each simulation, a set of given vertical and horizontal incident velocities, vix and 
viz, are assigned to all the nodes affiliated to concrete debris so that the debris has no
rotation before it touches the sand surface. At the end of a simulation, the vertical and 
horizontal rigid body velocities, vox and voz, when the concrete debris emerges above 
the surface level entirely are recorded. The out-going velocity vo is calculated by vo=
(vox

2+voz
2)1/2. The out-going angle o is calculated by o=arctan(voz/vox). 

The impact outcome parameters, namely the angle change of debris path = i+ o
and the ratio vo/vi are employed in the numerical study to find out the relationship 
between the impact responses ( o and vo) and the incident conditions ( i and vi). As it 
is found in (Xu et al. 2013) that the two impact features are almost independent of the 
impact velocity vi, only the plot of against i and vo/vi against i are illustrated in 
this paper. 

As shown in the authors’ previous work (Xu et al. 2013), a parameter =(vo/vi)2=5% is 
adopted to distinguish ricochet. This ricochet criterion is also employed in the present 
study. It is noted that although the total kinetic energy after impact can be obtained in 
numerical simulations, only the kinetic energy corresponding to translation is 
considered. 

The numerical results 

In this section, the numerical results are presented. The 20mm, 50mm and 80mm  
spherical debris and the 40mm, 60mm and 100mm chamfered cubic debris are 
employed. It is noted that the numerical modeling was calibrated by comparing the 
numerical and the experimental results from 50mm  spheres, 60mm and 100mm 
cubes in (Xu et al. 2013).

The plot of  against i is shown in Fig. 5. It can be found from Fig. 5 that a linear 
function can be retrieved to evaluate the outgoing angle vo based on the incident angle 
vi as: 

  (6) 

The plot of vo/vi against i is shown in Fig. 6. The scatters in Fig. 6 show a strong 
linear relationship and the outgoing velocity vo can be expressed as: 

  (7) 

o i0.37 5.5

o i i0.8 0.018v v
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Figure 5. The plot of  against i

Figure 6. The plot of vo/vi against i

Applying vo/vi = 0.224, which implies =5%, into Eq. (7), it can be found that the 
critical ricochet angle for the concrete debris against sand surface is c=32°.

Conclusions

In this paper, the numerical modeling to simulate concrete debris impacting on sand 
surface is presented. A total of six types of concrete debris are employed in the 
numerical simulation. It is found that the concrete debris impact response is 
independent of the debris size and shape. A unique set of formulations are provided 
for concrete debris to predict the outgoing angle and the outgoing velocity based on 
the incident angle and the incident velocity. 
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Abstract
The mechanical behaviors of Ni-coated single-walled carbon nanotubes (SWCNTs) reinforced 
magnesium matrix composites are investigated using molecular dynamics (MD) simulation method. 
The results show that the Young’s modulus of the Ni-coated SWCNT/Mg composite is obviously 
larger than that of the uncoated SWCNT/Mg composite. The results also show that the interfacial 
bonding of SWCNT/Mg composite can be drastically increased by addition of Ni coating to provide 
an effective channel for load transfer between the nanotube and Mg matrix. Furthermore, the 
influences of Ni coating number on the interfacial bonding characteristics of SWCNT/Mg 
composites also are studied. For three types of Ni coating number, i.e., without Ni coating, with one 
layer of Ni and two-layer of Ni, the final pullout interfacial bonding strength of the Ni-coated 
SWCNT from Mg matrix about are 3.9 and 11.9 times larger, respectively, than that of the uncoated 
SWCNT.

Keywords: Magnesium matrix composites, Mechanical properties, Molecular dynamics simulation, 
Carbon nanotube.

Introduction

Metal matrix nanocomposites reinforced with carbon nanotubes have good mechanical properties, 
high shear strength, high temperature resistance and excellent abrasion resistance, so they are 
widely used in automobile, aerospace and other high-tech areas. Usually studies on carbon nanotube 
reinforced metal matrix composite are focused on its macro-mechanical properties; however, it is 
less involved in the microscopic behavior caused by heterogeneity. 

Accurate methods of interface tests are difficult to be conducted and the description theory is not 
yet complete, so molecular dynamics simulation has been widely used in the study of interfacial
behavior. The tensile properties of nickel-coated armchair single-walled carbon nanotube reinforced 
gold matrix composite were studied by Song (2010) with molecular dynamics. A modified 
embedded atom method was used by Uddin (2010) to predict mechanical properties of single-
walled and multi-walled nanotubes reinforced nickel monocrystal composites. They found that large 
volume fraction and large diameter carbon nanotubes with modified coating can be effective in 
improving mechanical properties of the composites.

Carbon nanotubes reinforced magnesium alloy composites have excellent mechanical properties 
than other metal alloys, so it had become a research focus in the field of nano-composite mechanics. 
Some scholars studied effects of the volume fraction, distribution, interface characteristics and 
fabrication process of carbon nanotube on its mechanical properties. The interfacial bonding 
problem of carbon nanotube and matrix is still a challenge and carbon nanotubes reinforced 
magnesium matrix composite’s interfacial behavior studied by molecular dynamics have not been 
reported. In this paper, using self-compiled molecular dynamics simulation program, we studied the 
tensile properties of carbon nanotubes reinforced nano-crystal magnesium composites without Ni 
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coating, with one-layer of Ni and with two-layer of Ni, respectively, and found some laws of Ni-
coated carbon nanotubes affecting the mechanical properties of the composite. These laws provided 
some references in the design of nanotubes reinforced magnesium matrix composite.

Potential Function and Calculation Model

In order to simulate the single-walled carbon nanotubes (SWCNTs) reinforced nano-monocrystal 
magnesium composite accurately, we chose EAM/FS potential proposed by Finnis and Sinclair
(1984) and EAM potential shown in the work by Daw and Baskes (1984) to describe the interaction 
of HCP magnesium atoms and nickel atoms, respectively. According to the rule of mixture, we 
chose Lennard-Jone potential to describe the interaction of magnesium, nickel and carbon atoms as 
well as magnesium and nickel metal. Describing the interaction of carbon atoms in SWCNTs, we 
chose AIREBO potential used in the work by Stuart and  Tutein (2000).

Figure 1. Top and side view of composite model embedded by SWCNT with two-layer of Ni

Composite models with two-layer of Ni-coated interface are shown in Fig.1. The model’s actual 
size is 3.851×3.851×5.211nm. In the simulation, displacement loading was applied along the Z-axis 
direction. The simulation process was as follows: the unconstrained relaxation was conducted on 
the initial configuration so that the system reached a steady free state; fixed one end of the model 
and applied 0.001 tensile strain along the Z-direction on the atom of the other end. Then did a 
relaxation of 2400 3000 steps in 10~170ps so that system returned to equilibrium state. Added the 
same displacement load and repeated the above-mentioned process. 

Simulation Results and Analysis

Relaxation Process

Before molecular dynamics simulation, we balanced the simulation system. At 0.01 K, we 
minimized the energy of nano-monocrystal magnesium composite with carbon nanotubes without 
Ni coating and with one layer of Ni embedded in. The step-length of simulation is 5fs with a 
relaxation of 30000 steps. Fig. 2 (a) and (b) respectively show the potential energy variation curves 
of magnesium composites reinforced by (6, 6) SWCNTs without Ni coating and with two-layer of 
Ni during the balance process. As can be seen from Fig.2, the system without Ni coating reached 
equilibrium substantially at 7ps, but for that with tow-layer of Ni, the time of equilibrium was more 
than 150ps.

311



3

-5 0 5 10 15 20 25 30

-4036

-4034

-4032

-4030

-4028
Po

te
nt

ia
l E

ne
rg

y/
eV

Time/ps

(6,6)

-50 0 50 100 150 200 250 300

-8000

-7200

-6400

Po
te

nt
ia

l E
ne

rg
y/

eV

Time/ps

(6,6)

Figure 2. Potential energy variation curves of magnesium composites reinforced by (6, 6) 

SWCNT: (a) without Ni and (b) with two-layer of Ni

Before molecular dynamics simulation, we balanced the simulation system. At 0.01 K, we 
minimized the energy of nano-monocrystal magnesium composite with carbon nanotubes without 
Ni coating and with one layer of Ni embedded in. The step-length of simulation is 5fs with a 
relaxation of 30000 steps. Fig. 2 (a) and (b) respectively show the potential energy variation curves 
of magnesium composites reinforced by (6, 6) SWCNTs without Ni coating and with two-layer of 
Ni during the balance process. As can be seen from Fig.2, the system without Ni coating reached 
equilibrium substantially at 7ps, but for that with tow-layer of Ni, the time of equilibrium was more 
than 150ps.

Mechanical Properties of CNT/Mg composite

The stress-strain curves of (6, 6) CNTs reinforced magnesium matrix composite are shown in Fig.3.
It can be seen that the strength of the interface with Ni coating is higher than that without Ni coating 
and the strength of the two-layer is higher than the one-layer.
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Interface Bonding Strength of CNTs/Mg composite

Diameters and interfacial characteristics of single-walled carbon nanotubes have an important 
impact on the interface strength of the CNTs / Mg composite. The change trend of interface 

(a)    (b)    
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bonding strength is shown in Fig.4. It can be seen that CNT’s diameter and Ni layer greatly 
influenced the interfacial strength of composite. Whether there existed Ni layer on the interface or 
not, the interface bonding strength between carbon nanotubes and magnesium decreased as CNT’s 
diameter increased. Ni layer on the interface improved the strength of carbon nanotubes reinforced 
composite greatly and the more the nickel atom was, the higher the interfacial strength was. The 
interfacial strength of the CNTs reinforced composite increased more than 200 percent with every 
increase of Ni layer. Fig.5 shows the morphology of the carbon nanotube pulled out from the 
magnesium matrix completely. It can be seen that there existed a strong interaction between Ni and 
Mg atoms.

Fig. 5 The model of SWCNT after being pulled-out

Conclusions

This study investigated effects of Ni layer on mechanical properties of the modified SWCNT 
reinforced magnesium matrix composite. The calculation results indicate that with a fixed diameter 
of CNTs, the Ni-coated CNT/Mg composite had a higher elastic modulus, yield strength and 
interfacial strength than that without Ni layer. And the more the Ni layer was, the higher the elastic 
modulus, yield strength and interfacial strength was. Besides, when the diameter of CNTs was 
smaller, its coupling with interfacial Ni layer was better. CNTs/Mg composites with smaller 
diameters and more nickel layers had better mechanical properties. This conclusion has an 
important guiding significance for the design of high-performance CNTs / Mg composite.
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1 Modified Inertia relief method and its accuracy analysis
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Figure 1. The simple spring-mass model 
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Figure 2. The simple dynamic model presented by Wu and Yu
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2 Numerical examples of the modified inertia relief method 

Table 1. The results of inertia relief method and dynamic analysis 
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5  Numerical example of new hybrid method 

5.1 A simplified car model 
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5.2 Optimization process of the new hybrid method 
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Abstract 
Damage identification of structures is always attractive to researchers because it plays an important 
role in the health monitoring in many civil engineering structures. When carrying out a health 
monitoring, sensors are usually laid on a beam to record acceleration signals, in which the modes of 
the beam can be extracted to construct indicators for detecting damages of the investigated beam. It 
should be noted that it is difficult to measure rotational signals of the beam at a position where 
sensors are laid, thus only the modal translations can be available. Although the pure modal 
translations can still be used to construct indicators and often it is the case, an indicator taking into 
account modal rotations is suggested in application to consider the effect of signal noise on the 
accuracy of measurement. In this paper, modal rotations were reconstructed by modal translations 
using the  principle of static condensation. Then both modal translations and rotations were used to 
build an indicator based on an idea regarding element modal strain energy together with the theory 
of data fusion. The modal translations were extracted from accelerations recorded on a beam using 
stochastic subspace identification (SSI). Studies were carried out on choosing values of parameters 
in SSI in order to eliminate the effect of noise as nearly as possible. The simulation given by a FEM 
model and analyses of real accelerations recorded on a reinforced concrete beam show that this 
proposed damage indicator with elimination of noise effects is able to determine the locations of  
damage in the investigated beams.  

Key Words:  Damage identification, Element modal strain energy, Data fusion, Reconstructed 
modal rotations

Introduction 

The initial defects of materials, improper construction methods and the combination of effects by 
long time load and environment, as well as sudden hazard may lead to damage in civil engineering 
structures. Structural health monitoring (SHM) can help to prevent significant damage and so to 
improve structural reliability and durability. Damage identification in early stage using recorded 
structural dynamic responses is an important branch of SHM. In practice, some dynamic responses 
are difficult to measure, such as rotations of a structure. So many damage identification methods 
utilize only structural translations, i.e. shear-type structural model (Hjelmstad et al, 1995). Damage 
indicators based on element modal strain energy were proved by researchers to be sensitive to 
damage and able to resist noise (Shi et al, 2002; Liu et al, 2004). Such indicators need structural 
rotational information and consequently researchers often used only simulations to verify them. In 
this paper, modal rotations were reconstructed by modal translations using the principle of static 
condensation (Guyan, 1965; Zhao and Li, 2003). Then both modal translations and rotations were 
used to construct a damage indicator based on element modal strain energy together with the theory 
of data fusion. The modal translations were extracted from accelerations recorded on a concrete 
beam using stochastic subspace identification (SSI). In order to eliminate the effect of noise as 
nearly as possible, studies were carried out on choosing values of parameters in SSI prior to 
constructing the indicator. The constructed damage indicator was applied to damage identification 
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of both simulated simple beams and a test simple beam. The results show that the indicator with 
elimination of noise effects is able to locate the damaged parts in the investigated beams. 

Value choosing of parameters in stochastic subspace identification 
There have been many papers related to stochastic subspace identification (SSI). The principle of 
SSI can be referred to reference (Peeters, 2000). 
Determination of the order of system is usually regarded as most important in the modal parameter 
identification using SSI. However, it was found by simulations of simple beams that there were 
relations among the row block number i of Hankel matrix, the order of system n and the signal 
noise ratio (SNR). So the value of i is also important to the modal parameter identification. But 
there has been no reported work to prove it so far. Analyses on choosing values of i and n will be 
carried out as follows. 

Figure 1. The finite element model of a simple beam 

Figure 2.  The relation between i/n and SNR 
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A simple beam model was built in ANSYS, of which the configuration is shown in Figure 1. The 
cross section dimension was 0.25×0.20 m2, the span length was 6m. The Young’s modulus was 
32Gpa and the density was 2500 kg/ m3. The beam was divided into 12 elements uniformly and the 
nodes were numbered from the left to the right. 
The vibration modes of the beam were obtained by modal analysis in ANSYS and by SSI 
respectively. The former is called exact modes. As for the latter, the following steps are adopted.  

1) Accelerations at each node were calculated by dynamic analysis in ANSYS. 
2) The accelerations were added with white noise of different amplitude (Cao and Lin, 2010). 
3) The noise-polluted accelerations were used as signals to identify structural modes with SSI. In 

the process, i was taken as different values with signals of different SNR to get different modes. 
4) Comparing the modes identified with different values of i with the corresponding exact modes, 

the values of i of the modes the most related and the least related to the exact mode were called TM 
and TL respectively. 

5) Using SNR as the abscissa, the value of i/n as the ordinate, the values of i/n corresponding to 
TM and TL were plot with black dots and blue asterisks respectively. 
The above steps were repeated 10 times considering the random property of noise. 
As shown in Figure 2, it is easy to find the relations of i/n and SNR by the distribution of the blue 
asterisks and the black dots. For the first three modes, with SNR being around 40dB, when i/n is 
taken as 1.2~2.2, 1.4~2.2 and 1.2~2.0 respectively, the modes related to the corresponding exact 
modes well. So it is suggested that, when SNR is about 40dB, i/n is taken as 1.5~2.0 to get the best 
results. 

Reconstruction of structural modal rotations 
The dynamic equilibrium equation of a bending-type structure is expressed as 

{ } { } { } { }( )
0

C KC K f tx xM x x xxx xx
J C C K Kx x

ϕ ϕ
ϕ ϕ ϕϕ ϕϕ ϕ ϕϕ

+ + =                                             (1) 

The relation of rotational vector and translational vector can be easily obtained by eq.1 
1

xK K xϕϕ ϕϕ −= −                                                                      (2) 
The global stiffness matrix is expressed as 

1

n

ii i
i

K b K
=

=                                                                       (3) 

Where, ib is the parameter of the ith element to be identified. iK  is the elemental stiffness matrix 
with the parameter ib  being extracted. 
Similarly, for the respective block matrix, the following holds, 

( )

1

n i
xx i

i

K b K ϕϕ
=

=                                                                    (4) 

( )

1

n i

i
i

K b K ϕϕϕϕ
=

=                                                                     (5) 

 in which,                                                 1 2( , ,..., )n n n nB b I b I b I=                                                         (6) 
n is the number of elements, nI is n n×  unit matrix. 

(1) (2) ( )
( , ,..., )

n T
x x x xK K K Kϕ ϕ ϕ ϕ=                                                         (7) 

(1) (2) ( )
( , ,..., )

n TK K K Kϕϕ ϕϕ ϕϕ ϕϕ=                                                        (8) 
So we have 

xxK BKϕϕ =                                                                 (9) 

K BKϕϕϕϕ =                                                                (10) 
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Eq.2 can be rewritten as, 
1( ) xBK K xϕϕ ϕϕ −= −                                                        (11) 

By the above steps, the modal rotations can be evaluated by modal translations. 

Damage indicator based on element modal strain energy and data fusion theory 
 Element damage variable 
Liu et al (2004) constructed a damage indicator based on element modal strain energy (EMSE), 
called element damage variable. The element damage variable of the jth element is expressed as 

d u
j j

j d u u
j j j

EMSE EMSE
D

EMSE EMSE EMSE

−
=

− +
                                                         (12) 

Where u
ijEMSE and d

ijEMSE are EMSEs of the jth element in intact and damaged state respectively. 
And are expressed as, 

1

m
u T
j i j i

i

EMSE Kϕ ϕ
=

=                                                                  (13) 

1

m
d T
j i j i

i

EMSE Kϕ ϕ
=

=                                                                (14) 

In which, jK  is the stiffness matrix of the jth element, iϕ and iϕ are the ith mode under intact and 
damaged state respectively. 
Since damage leads to reduction of structural stiffness, the value of EMSE of damaged state should 
be larger than that of intact state calculated by Eq.13 and Eq.14 respectively. If the numerator in 
Eq.12 is not taken the absolute value, as in Eq.15, the damaged element will always give positive D 
while those intact elements will often do reversely. So by both the value and sign of D, it is much 
easier to identify the damaged elements, which has been verified by the authors (Cao et al, 2008). 

d u
j j

j d u u
j j j

EMSE EMSE
D

EMSE EMSE EMSE

−
=

− +
                                                (15) 

 Multi-source information fusion 
Multi-source information fusion or multi-sensor information fusion  is a new technology which has 
been developed since 70s in the last century (Waltz 1990; Linn et al, 1991; Hall, 1992; Kang, 1997; 
Yang, 2004; Wan et al, 2005; Han et al, 2006; Liu et al, 2008). The principle is that information 
obtained by data fusion from several sensors is more useful than that from only one sensor. The 
main techniques involved include classic derivation and statistics, Byes derivation, Dempster-
Shafer evidence theory, fuzzy theory, etc. In this paper , Dempster-Shafer evidence theory (D-S 
theory in short) (Shafer, 1976; Han et al, 2006) is used to improve the indicator based on EMSE. 
The basic idea of D-S theory is as follows. 
Assume that  are n incompatible events, are m sensors. The 
occurrence probability of the jth event by the ith sensor is ( )  , then the occurrence probability of 
event P is, 

( )∏
=∩ ≤≤

                                         (16) 

in which,  
( ) ( )∏∏

≠∩ ≤≤=∩ ≤≤

=
ΦΦ

                              (17) 

 Damage indicator 
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Previously, the value of number i of Hankel matrix row block was suggested to ensure exact 
extraction of modes by SSI. However, the extracted modes are still influenced by noise. So the D-S 
evidence theory will be used to carry out data fusion for results obtained by different values of i to 
eliminate noise as nearly as possible. 
Firstly, the change of EMSE is defined as, 

=                                                                  (18) 

in which, Dj is calculated by Eq. 15.      
That n elements being damaged is thought as n events. The values of LEMSE corresponding to m
values of i are regarded as information given by m sensors. By eq.16, the damage indicator based on 
EMSE and data fusion theory is, 

∏
=∩ ≤≤

−=                                                   (19) 

in which 

∏∏
≠∩ ≤≤=∩ ≤≤

=
ΦΦ

                          (20)

P means the pth element. 

Simple beam simulations 
A simple beam simulation was used to verify the suggested damage indicator. The simple beam was 
the same as that in Figure 1. Damage of element was simulated by the reduction of element stiffness. 
The cases of damage see table 1. With white noise excitations being applied at the 4th node, 
acceleration responses at each node of intact and damaged state were calculated respectively. Noise 
was added into the responses with two SNR correspondingly, i.e. 40dB and 30dB. SSI was used to 
extract the first three modes of the beam under intact and damaged state respectively from the 
noised responses. Then the modal rotations were estimated by eq.11. Both the modal translations 
and rotations were utilized to construct the damage indicator by eq.19. The results are shown in (a) 
to (e) of Figure 3. 
In single damage cases, the suggested damage indicator can locate the damaged elements even 
under 30dB noise. However, the adjacent elements are wrongly identified as damaged. In two 
damage cases, the element with less damage can be identified, but the value of damage indicator is 
close to those of wrongly identified elements. If the two elements have damage of the same degree, 
the results are better. So it is possible to identify damage of a simple beam with the suggested 
damage indicator. Even under heavy noise with SNR being 30dB, the damage elements can still be 
located. 

Table 1. Damage cases of the simple beam 
Damage case Damaged elements Damaged extent 

1 7 7-10% 

2 4 7 non-symmetric  4-10% 7-10% 

3 4 9 (symmetric  4-10% 9-10% 

4 4 7 non-symmetric  4-10% 7-20% 

5 4 7 9 4-10% 7-10% 9-10% 
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(a) damage case 1 
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(b) damage case 2 
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(c) damage case 3 
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(e) damage case 5 
Figure 3. Damage detection of the simple beam under different noise levels 

The test simple beam 
The test beam was a simple reinforced concrete beam, with section dimension being 210x190mm, 
and span length being 4.5m. Three steel bars and two steel bars, with diameter being 12mm, were 
uniformly distributed in the tension side and compression side respectively. The confined steel was 

8@225. The thickness of concrete cover was 20mm. Nine acceleration sensors were evenly 
distributed on the top of the beam, dividing the beam into ten segments, see Figure 4. 

Figure 4. The layout of acceleration sensors on the test beam 

Firstly, the beam was excited by a wood hammer. The accelerations of free vibration were recorded 
by the nine sensors. Then damage in the beam were made by cutting a slot. The slot was of U shape, 
on both sides and the bottom of the beam, 20mm wide and 20mm deep. After the first slot was cut 
in the middle of the 3rd segment, the beam was excited and accelerations were recorded. And then 
the second slot was cut in the middle of the 6th segment and accelerations of free vibration of the 
beam were also recorded. At last, in the middle of the 8th segment the last slot was cut and 
accelerations were recorded. 
With the recorded accelerations, damage indicators were constructed by the procedure suggested 
previously. The results are shown in Figure 5. 
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(a) damage in the 3ird element (the first cut)  (b) damage in the 3ird and 6th elements (the second cut)  (c) damage in the 3ird, 6th 
and 8th elements (the third cut) 

Figure 5.  Damage detection of the test beam 

From Figure 5, after the first cutting was made, the suggested damage indicator could locate the 
damaged segment, i.e. the 3rd segment. However, the 9th and 10th segment were wrongly identified 
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as damaged. By checking the original signals recorded by the 8th and 9th sensors, the signals were 
found with heavier noise than the others. It is estimated that the two sensor were not adhesive 
tightly to the top of the beam when the first dynamic test was made. And maybe they were not as 
tight as should be in the second dynamic test. When the 6th segment and 8th segment were damaged, 
the damage indicator could also locate them, although the 7th segment was wrongly recognized as 
damaged. 

Conclusions 
Structural modal translations were extracted from accelerations by stochastic subspace 
identification. Modal rotations were reconstructed by modal translations using the principle of static 
condensation. Both modal translations and rotations were used to calculate the change of element 
modal strain energy, which was then utilized to construct a damage indicator based on the theory of 
data fusion. Analyses were also carried out on choosing values of parameters in SSI for eliminating 
the effect of noise. The constructed damage indicator was applied to damage identification of both 
simulated simple beams and a test simple beam. 
The results of simulations show that the suggested damage indicator could locate the damaged 
elements of simple beams even under heavy noise in one damaged element cases, although the 
adjacent elements were wrongly recognized as damaged. In multi-damage cases, the less damaged 
element could not be detected when the difference of damaged level between any two elements is 
higher than the damaged level of the less damaged element. 
As for the test simple beam, the damage indicator could identify the damaged segments after the 
slots were cut sequentially. The adjacent segment was wrongly identified, but its value of damage 
indicator was smaller than that of damaged segments. 
It can be seen from the results from simulation and test that the suggested damage indicator can 
locate the position of damage of beam-type structures. It is sensitive to small damage. Moreover,  it 
is able to resist noise at a considerable level. 
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Abstract
Based on the continued fraction theory and the diagonalization procedure of the scaled boundary
finite element method (SBFEM) for infinite acoustic fluid with uniform cross section, the high-
frequency and the doubly asymptotic continued fraction formulations were derived. These
formulations were applied to analyze a transient response of infinite acoustic fluid with uniform 
cross section under upstream excitations. Based on the transient response, the stability and 
convergence of the continued fraction formulations were discussed. Numerical results showed the 
doubly asymptotic continued formulation converged much faster than the high-frequency continued 
fraction formulation to analytical solutions. Comparison of computational efficiency between the 
continued formulation and the dynamic mass matrix was made. Computational costs of the 
continued fraction formulation were much less than that of the dynamic mass matrix.  

Keywords: SBFEM, Continued fraction formulation, Infinite acoustic fluid, Transient analysis.

Introduction
The infinite acoustic fluid with uniform cross section is often encountered in dam-reservoir 
interaction problems. To obtain the dam-reservoir interaction response, the infinite acoustic fluid
was truncated into a near-field with arbitrary geometry in the vicinity of dam and a far-field with 
uniform cross section which extends to infinity. The near-field can be easily modeled by FEM or 
BEM et al, while the far-field with uniform cross section can be modeled by transmitting boundary 
conditions (Gogoi and Maity (2006)), BEM (Czygan and Estorff Von (2002)) and so on. An 
alternative to model a far field, the scaled boundary finite element method (SBFEM), was verified 
to model accurately and effectively unbounded medium problems (Wolf and Song (1996)). 

Based on the SBFEM formulation in displacement, Lin and his co-authors developed and applied 
the SBFEM to solve the semi-infinite acoustic fluid with uniform cross section problems in the 
frequency domain (Lin et al. (2007), Lin et al. (2010)), while Li and his co-authors improved the 
SBFEM for frequency problems of the semi-infinite acoustic fluid with uniform cross section (Fan 
and Li (2008), Li et al. (2008)), based on the SBFEM formulation in dynamic stiffness. In addition,
based on the dynamic mass matrix, Li (2011) also applied the SBFEM to solve the transient 
analysis of the semi-infinite acoustic fluid with uniform cross section. Its results were very similar 
to solutions from other methods, but in the author’s experience, its computational efficiency was 
affected greatly by convolution integrals in the SBFEM. In order to improve the computational 
efficiency of SBFEM, a diagonalization formulation of SBFEM and a Bessel function to evaluate 
the dynamic stiffness of SBFEM were proposed by Li (2009) and Li (2012), respectively. Although 
these methods improved the SBFEM efficiency, they still need a convolution integral evaluation
which results in the nonlinear increase of computational cost with analysis step number increasing.
An alternative, a continued fraction formulation, was proposed by Prempramote et al. (2009), which 
can avoid the evaluation of convolution integral. Based on the continued fraction formulation and 
the SBFEM diagonalization formulation, this research derived the continued fraction formulation in 
matrix form of infinite acoustic fluid with uniform cross section.
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SBFEM Formulation for Infinite Acoustic Fluid with Uniform Cross Section

Figure 1. Infinite acoustic fluid with uniform cross section

For an infinite acoustic fluid with uniform cross section of arbitrary geometry as shown in Figure 1
only subjected to upstream excitations in x direction, the whole infinite acoustic fluid can be 
modeled by the SBFEM, which only needs the discretization of cross section of the infinite fluid. Its 
boundary conditions can refer to the reference (Li et al. (2008)). Ignoring effects of surface waves
and absorption of side walls and bottom, its SBFEM formulation satisfies (Li (2009)) on the cross 
section

   SEEMEV  
 010022

n (1)
The symbols  S , , nV are the dynamic stiffness matrix of infinite fluid after SBFEM 
discretization, velocity potential vector and equivalent normal velocity vector caused by upstream 
excitations, respectively.  is the excitation frequency. 0E , 2E , 0M are SBFEM coefficient 
matrices, which were defined by Wolf and Song (1996). nV is expressed as

 A
dAvn

T
fn NV (2)

The symbol A denotes the cross section. fN is the shape function of acoustic fluid finite element. 

nv is normal velocity. Using the diagonalization technique (Li (2009)), one has
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where the square matrix X is the eigenvector matrix and the matrix is the eigenvalue matrix of 
the eigenvalue equation (4); I , c , H are the identity matrix, the sound speed in fluid and the height 
of cross section, respectively.

Continued Fraction Formulation of Dynamic Stiffness Matrix
According to the continued fraction theory (Prempramote et al. (2009)) based on the dynamic 
stiffness of semi-infinite layer with constant depth, the order HM high-frequency continued fraction 
solution of Equation (3) is equivalent to

       YIYCS 1)1(
d

1)1(
d

d
d ii 


  

cc
(7)

     1)1(
d

)(
1

)(
d i   jjj

c
YYY ),...,2,1( HMj  (8)

xy


bottom

side wallside wall

infinite fluid 

H

z

332



3

Substituting Equations (7, 8) into Equation (3) yields
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In order to improve the accuracy of Equations (7, 8) in low frequency range, the residual term 
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H MY of Equation (8) is denoted as
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Note that continued fraction formulations of Equations (7-17) are expressed in a matrix form. The 
formulations with 0L M and 0L M are called a high-frequency and a doubly asymptotic
continued fraction formulation, respectively.

Time-Domain Formulation Based on Continued Fraction Formulation
Re-writing Equation (1) yields
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Substituting Equations (7, 8) into Equation (18) yields
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where d)0(
d  and )(

d
j is an auxiliary variable. Substituting Equations (12, 13) into Equation 

(21), one has
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Substituting Equation (14) into Equation (23) leads to
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Combining Equations (18, 21, 22, 25), one has
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Equation (27) is the time-domain governing equation of infinite acoustic with uniform cross section
based on the continued fraction formulation.

Note that Equations (1-31) are applicable to two- and three-dimensional problems because its 
derivation process is independent of problem dimension. If the SBFEM coefficient matrices 0E , 2E ,

0M are from two-dimensional or three-dimensional problems, Equations (1-31) are for two-
dimensional or three-dimensional problems. Therefore, these equations’ accuracy is only validated 
by two-dimensional problems in the following section.

Numerical Examples
Consider transient responses of vertical rigid dam-reservoir system shown in Figure 2 under 
horizontal (upstream) excitations shown in Figure 3, where the reservoir is full of acoustic fluid 
with uniform cross section, and the surface wave and reservoir bottom absorption are ignored. Its 
aim is to validate the accuracy of Equation (27). Reservoir water height 180H , water density 

1000 kg/m3, sound speed in water c=1438.656m/s. The reservoir was discretized by 10 three-
node SBFEM elements.

Figure 2. Rigid vertical dam-reservoir system

H

Rigid dam

334



5

0 2 4 6
-0.4

-0.2

0.0

0.2

0.4

a/
g

Figure 3. Horizontal accelerations (Left: Ramped; Right: El Centro)

Figure 4 shows the pressure at the heel of dam obtained by different order HM and LM
continued fraction formulations under horizontal ramped acceleration shown in Figure 3. Time step 
increment is 0.005s. Results from high-frequency continued fraction formulation with 50H M ,
100 were different with that obtained from dynamic mass matrix after the time 2.5s, while results 
from doubly asymptotic continued fraction formulation with 5LH  MM and 10LH  MM
were much more accurate, especially at late time, which showed that the doubly asymptotic
continued formulation can obtain more accurate results than high-frequency continued fraction 
formulation. Figure 5 plots the pressure of dam's heel from the doubly asymptotic continued
fraction formulation under horizontal El Centro acceleration shown in Figure 3. With the order 
increasing, results gradually tend to those from dynamic mass matrix. Results from dynamic mass 
matrix were almost similar to analytical solutions (Li (2009)). Figure 6 plots results from the doubly 
asymptotic continued fraction formulation with 10LH  MM using different time step increments
0.0002s and 0.005s. Results from 0.0002s are more accurate than those from 0.005s. Figures 4-6
show that results from the continued fraction formulation become more and more similar to exact 
solution when time step increment becomes smaller and smaller and the order of doubly asymptotic
continued fraction formulation becomes higher and higher, which validates the convergence of 
Equation 27.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

p/
(

aH
)

 MH=50,ML=0
 MH=100,ML=0

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

p/
(

aH
)

MH=5,ML=5
MH=10,ML=10

Figure 4. Pressure at the heel of rigid vertical dam under ramped acceleration
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Figure 6. Pressure at the heel of rigid vertical dam under different time increment 

Through solving eigenvalues of Equation (27), it can be found that real parts of eigenvalues are 
positive when HM and LM are greater than zero, which ensure Equation (27) is stable. When LM
is equal to zero, real parts of eigenvalues of Equation (27) are zeros, which ensure Equation (27) is 
not divergent. Maybe that is why results from high-frequency continued fraction formulation are not 
convergent to analytical solutions. 

Table 1. Response computational time comparison

Time step 1000 2000 5000
Dynamic mass matrix, matrix dimension 20 20 0.35s 2.17s 25.25s
Continued fraction formulation with ML=Mh=5, 

matrix dimension 240 240 0.07s 0.14s 0.34s

Continued fraction formulation with ML=Mh=10, 
matrix dimension 440 440 0.28s 0.58s 1.38s

Table 1 lists the response computational cost based on the dynamic mass matrix and the 
continued fraction formulation. Response computational time of dynamic mass matrix is only the 
time cost to evaluate the response based on convolution integral, not including the dynamic mass 
matrix evaluation time. The response computational cost of the continued fraction formulation is the 
time to solve Equation (27). Table 1 shows the efficiency of the continued fraction formulation is
much higher than that of the dynamic mass matrix, although the continued fraction formulation
increase the dimension NN  of response solving matrix equation up to
   NMMNMM 22 LHLH  .

Conclusions

The continued fraction formulation of infinite acoustic fluid with uniform cross section was derived,
which is applicable to two- and three-dimensional problems. The formulation can accurately model 
the infinite acoustic fluid and its calculation efficiency is much higher than the convolution integral 
efficiency of SBFEM based on dynamic mass matrix.
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Abstract
Metal foams were usually prepared and tested as light-weight and efficient energy absorption 
materials. Controversial results among different tests and numerical simulations show that the 
mechanisms of strain rate effect of metal foams are not clear yet. To study the main mechanisms of 
strain rate effect of metal foams during split Hopkinson pressure bar (SHPB) tests, numerical 
simulations were carried out by FEM, in which metal foams were simulated with 3D Voronoi 
models. In these simulations, the matrix material of metal foams is assumed to have no strain rate 
sensitivity, which helps to determine the strain rate effect of metal foams clearly. The numerical 
simulations show that metal foams' specimens still exhibit some strain rate sensitivity even the 
matrix material without strain rate sensitivity. Further quantitative analysis reveals that effects of 
inertia and localized deformation of metal foams are two main causes to induce the strain rate 
sensitivity of metal foams. 

Keywords: Metal foams, Strain rate effect, Inertia, Localized deformation,3D Voronoi model  

Introduction 
Metal foams, as light-weight and highly effective energy absorption materials, are wildly employed 
as protective materials to resist impact loading (Gibson1997). With the development and 
application of metal foams, an accurate measurement of its dynamic properties become especially 
important.  A split Hopkinson pressure bar (SHPB) (Kolsky1949) is the most common device to 
measure dynamic properties, with which the characteristic of compression deformation, energy 
absorption and strain rate sensitivity of metal foams have been intensively investigated. However, 
the experimental results showed that strain rate effect of metal foams were inconsistent and divided 
into two categories: the apparent strain rate sensitivity(Mukai1999, Dannemann2000, Paul2000 and 
Mukai2006) and the independent strain rate sensitivity (Deshpande2000 and Hall2000). Under 
dynamic conditions, strain rate effect of metal foams have attributed to the effect of strain rate 
sensitivity of cell wall's materials (Deshpande2000), micro-inertial effects (Paul2000, 
Deshpande2000 and Paul2000) and the effect of compressed air pressure in closed-cell foams 
(Gibson1997 and Deshpande2000). For these factors are too difficult and complex to be 
quantitatively measured in tests, which factor plays a vital role in strain rate sensitivity also is not 
clear yet. 
A series of SHPB tests indicated the compressed deformation of metal foams were observed to be 
non-uniform(Tan2005, Cady2009,Edwin Raj2009 and Shen2010), especially in high speed impact 
tests. The strain distribution of aluminum foams were quantitatively analyzed and showed the 
maximum localized strain can be more than 100% greater than the average values, specially the 
maximum strain occurred on the front end of specimens under middle and high speed impact 
tests(Yang2013). SHPB technique is based on the assumption of one-dimensional wave propagation 
and stress equilibrium in the bars, which is simply assumed that uniform deformation occurred on 
specimens. However, the tests results showed that the deformation of metal foams were not well 
satisfied the assumptions of SHPB under dynamic conditions. The obviously localized deformation 
will likely affect the results.  

For complexity of dynamic tests and micro-structure of metal foams, analysis of mechanisms of 
strain rate effect, especially quantitatively analysis, will be a challenge and significance. In present 
work, we have carried out numerical simulation by FEM, in which metal foams were simulated 
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with 3D Voronoi models, to analyze the mechanisms of strain rate effect of metal foams during split 
Hopkinson pressure bar tests.

Numerical simulation 

Meso-structures of metal foams, as shown Figure.1, with the characteristic of random spatial 
distribution, are very complex.  For an excess of units and complex contact properties, it is too 
difficult to build the finite element model of metal foams according to the real meso-structure , 
especially in 3D FE models. In order to retain the main characteristic of random porous structure 
with controlled porosity, meso-structures of metal foams were constructed using Voronoi models, 
shown in Figure.2. The macro-scale dimension of both Voronoi specimen and solid specimen in 
simulation were set as diameter of 35 mm and length of 17.5 mm.  There are about 1200 pores in 
the Voronoi model, which was constructed using the method as Yang (Yang2013 ) , with the 
average pore diameter of 3mm and porosity of 80%. For purpose of comparison, a solid specimen 
with the same size as Voronoi model was constructed.  SHPB models were carried out according to 
real device to keep the characteristic of stress wave propagation in bars. The striker bar, incident bar 
and transmission bar included in SHPB were set as diameter of 37 mm, length of 1600 mm, 8000 
mm and 4000 mm, respectively.  

       Figure.1  Section of Aluminum foams Figure.2 SHPB model and specimens model

The FE analysis was perfomed on ABAQUS explicit. Figure. 2 shows the FE models for the whole 
testing system. The cell walls of Voronoi specimen were modeled using general-purpose shell 
element (S4R) with edge length less than 0.4 mm. Eight nodes solid element with edge length of 4 
mm was used for the strike, incident bar and transmission bar. A general-contact interaction was set 
among the parts. In order to learn the mechanism of strain rate of the metal foam clearly, the 
material of cell walls is assumed to be no sensitive to the strain rate. Table 1 lists the mechancial 
properties of Voronoi foams and Hopkinson bars. The material is considerd as an elastic-plastic 
material with little hardening.

Table 1. Material properties in simulation 

Material Elastic
modulus

Density
[kg/m3]

Poisson's 
ratio Yield stress Hardening

modulus
Bulks (bars) 70 GPa 2.7e3 0. - 

Cell walls (foams) 70 GPa 2.7e3 0.33 50MPa 40MPa 

Results and discussion 

Five different compressed speeds of specimens were carried out to study strain rate effect of metal 
foams. The impact speed of striker bar is from 10m/s to 70m/s, corresponding  strain rate range 
514/s to 3744/s in Voronoi specimen. When radial deformation overflowed the section of bars,   the 
test results would be invalid. Hence, the impact  speed of striker bar was restricted in a narrow 
range from 10m/s to 50m/s, corresponding  strain rate range 300/s to 2439/s, on the solid specimen 
tests.  Simulation results, as shown in Figure.3, indicated that there are some strain rate sensitivity 
occurred on Voronoi specimens and absence on solid specimens.  
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  (a) Voronoi specimen                                     (b) solid specimen 
Figure.3 Stress-strain curve of specimens under different impact speed 

Four factors as strain rate sensitivity of cell walls' material, micro inertia, air compressed pressure 
and localized deformation would affect the strain rate sensitivity of specimen. In these models, there 
is no strain rate sensitivity on matrix and no air compressed pressure. Hence, it just needs to 
consider the effect of inertia and localized deformation. With the observation of deformation of 
both Voronoi and solid specimens, it is found there are non-uniform deformation on Voronoi 
specimen, the concentration of strain occurred on one end or both  ends and substantially uniform 
deformation on solid specimen. For the effect of inertia, there are some peaks on the initial stage of 
curves as shown Figure.3. The strain-stress curves of solid specimen aligned with each other after 
the peaks, while the curves of Voronoi specimen are different and still showed some strain rate 
sensitivity. For the existence of pores, localized deformation of Voronoi specimen is much different 
to that of solid specimen, which also led to different performance of strain rate sensitivity.   
In this work, we can extract stress of bar ends directly and then analyzed the relationship between 
stress of bar ends and average strain of Voronoi specimen, as shown in Figure.4. The performance 
of strain rate sensitivity on the incident bar end is obvious, while that of transmission bar end is 
absence. For the obviously different performance of strain rate sensitivity on bar ends, the effect of 
inertia of cell wall and localized deformation on the ends of Voronoi specimens were further 
analyzed. 

       
         (a) Incident bar end                              (b) Transmission bar end 

Figure.4 Stress-strain curves of Voronoi specimen 

The performance of inertia which is resistance of changes specimen momentum or particle motion 
state, can be expressed as the acceleration of cell walls: 
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where, im represents  basic unit quality of Voronoi specimen, ia represents corresponding axial 
acceleration, 0A represents the initial area of specimen. Voronoi specimen was divided into eight 
equal parts to analyze the effect of inertia and localized deformation. The effect of inertia on the 
front part and the back part  were assumed to represent the effect of inertia to incident bar end and 
transmission bar end, respectively.  
Figure.5 shows the effect of inertia on both incident bar end and transmission bar end.  The effect of 
inertia on incident bar end is great and that on transmission bar end can be neglect, which agree 
with the experimental observation by high-speed photography(Yang2013) :  there is no obvious 
movement occurred in the transmission bar under first impact in SHPB tests.  

Figure.5 Effect of inertia on bar ends (3744/s) 

The spatial distribution of strain of Voronoi specimen under impact is non-uniform, especially on 
the end of specimen, as shown in Figure.6 (a).  Localized strain of the front end of specimen is 
always much greater than average strain of specimen under high -speed impact tests. While the 
localized strain of the back end of specimen is little lower than average strain at the first stage of 
curves (shown in Figure.6(a)) and become greater than average strain when average strain is more 
than 25%. With the increasing of impact speed, lower localized strain occurs on the back of 
specimen at the first stage of curves, which is consistent with the finding of Yang (Yang2013). 
Localized strain is much different from average strain of specimen, which may means that the stress 
is also non-uniform. Unfortunately, strain rate sensitivity was discussed only according to the 
relationship between stress and average strain of specimens. Figure.6(b) shows the stress-strain 
curve under quasi-static test (0.1/s). Under SHPB impact tests, when localized strain B is greater 
than average strain of specimen, corresponding stress B is greater,  it will show "positive strain rate 
sensitivity", on the other hand, localized strain A is lower than average strain, it will show "negative 
strain rate sensitivity". This can explain some confusing relationship between stress and average 
strain, the stress under greater impact speed is little lower, under different impact speed test on the 
transmission bar end. 
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                                       (a)                                                                    (b) 

Figure.6 Relationship between localized strain and average strain 

To quantitatively analyze the performance of strain rate sensitivity, it can be described as the 
difference of stress corresponding to the same strain under different strain rates (set benchmark as 
quasi-static (0.1/s) result). Based on numerical simulation, the effect of inertia and localized 
deformation on the performance of strain rate sensitivity could be quantitatively measure. Table.1 
illustrates the relationship between strain rate sensitivity and the effect of inertia and localized 
deformation on the ends of specimen under different strain rates. The quantitatively results shows 
that the performance of strain rate sensitivity is approximately equal to the sum of the effect of 
inertia and localized deformation. It means that effect of inertia and localized deformation are the 
primary cause of the strain rate sensitivity under the condition of cell wall material with no strain 
rate sensitivity. 

Table.1 Relationship between strain rate sensitivity and effect of inertia and localized deformation  

Imposed strain rate [s-1]
Incident bar end 

2815 3744 
Average strain [%] 5.4 15.6 25.3 35.8 5.8 15 24.8 35 

Localized strain [%] 35.5 59.6 63.5 64.2 36.6 67.9 71.8 72.5
Effect of inertia [MPa] 1.1 0.2 0 0 2.9 1.3 0.3 0 

Effect of localized deformation [MPa] 1.5 2.3 2 1.3 1.6 2.7 2.4 2 
Performance of strain rate sensitivity [MPa] 2.6 2.8 1.9 1.2 4.4 4.1 3 1.8

Imposed strain rate [s-1]
Transmission bar end 

2815 3744 
Average strain [%] 5.4 15.6 25.3 35.8 5.8 15 24.8 35 

Localized strain [%] 1 10.7 26 50 1.6 6.2 14.9 29.5
Effect of inertia [MPa] - - - - - - - - 

Effect of localized deformation [MPa] -0.5 -0.3 0 0.6 -0.5 -0.5 -0.5 -0.4
Performance of strain rate sensitivity [MPa] -0.4 -0.2 -0.1 0.5 -0.5 -0.4 -0.6 -0.5

Conclusions

In the present paper, the FE model, using 3D Voronoi model simulated meso-structure of metal 
foams, was built to study the performance of strain rate sensitivity under different impact speeds (or 
strain rates). The numerical results indicated that metal foams show some strain rate sensitivity even 
under the condition of cell walls' material with no strain rate sensitivity, which was attributed to the 
effect of inertia and localized deformation. The performance of strain rate sensitivity on incident bar 
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end and that on transmission bar end are very different: obvious strain rate sensitivity on incident 
bar end and absence of strain rate sensitivity on transmission bar end. Therefore, different data 
processing method during SHPB tests may be a cause of controversy on the existing literature. 
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Abstract  
The damping performance of concrete can be improved when mixed with polymer. In this paper, the 
standard test methods were used to compare mechanical properties and durability between polymer 
concrete and ordinary concrete. Vibration tests and fatigue experiments were carried out with two 
prestressed simple beams respectively made by polymer concrete and ordinary concrete. The loss 
factors of ordinary cement mortar and polymer cement mortar were measured by using dynamic 
viscoelastometer, and they were also analyzed by scanning electron microscope. The experimental 
results show that the flexural strength, splitting tensile strength and durability of the polymer 
concrete are higher than those of ordinary concrete. The elastic modulus and compressive strength 
of the former decrease slightly but yet meet the requirement of code. The loss factor of polymer 
cement mortar is higher than that of the ordinary cement mortar, due to the reticular formation of 
the polymer. The damping ratio of the polymer concrete beam is significantly greater than that of 
ordinary concrete beam, and their fatigue performance are similar. 

Key words: polymer concrete, high damping, mechanical properties, durability,   fatigue 
performance 

Introduction 

At present, high-speed railway is playing an increasingly important role in the fast-growing Chinese 
economy. The technology involved, however, has been proven to be challenging. Trains travelling 
in high-speed cause more bridge vibration than those in normal speed. Consequently, enhancing 
structural resistance to vibration has become the focus of recent studies. Since 1990s, researchers 
around the globe have been dedicating themselves to improve the property of concrete by means of 
adding macromolecular material, for instance: a series of studies have been conducted by Prof. 
Chung and his team to improve the damping property and stiffness of cement paste (Fu and 
Chung,1996; Li and Chung, 1998; Wen and Chung, 2000). Reference (Amick and Monteiro, 2005) 
reviewed the application of polymer concrete for vibration mitigation in mechanical and optical 
engineering. Reference (Cao et al, 2011) provided a means of increasing the damping ratio of 
concrete by adding carboxylic styrene butadiene latex (CSBL). Reference (Liu and Ou, 2003a; Liu 
and Ou,2003b; Liu and Zhou,2008) improved the loss factor of cement mortar and analyzed its 
microscopic mechanism by using scanning electron microscopy (SEM). Reference (Yao et al, 2005) 
pointed out that the mechanical performance and wearing resistance of concrete modified by CSBL 
are much better. Wan (2005) succeeded in improving the crush resistance of concrete by adding 
CSBL.
On the basis of previous work (Cao et al, 2011), the authors prepared polymer concrete in line with 
both construction and mechanical requirement by using materials of different origin, and conducted 
analysis that follow: comparison of damping and fatigue properties between normal and polymer 
concrete; durability tests, such as the property of polymer concrete to resist permeability, 
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carbonization, shrinkage and early cracking; micro-structure analysis by using SEM. 

Raw material and mix ratio adopted in the experiment 

Ordinary Portland cement manufactured by YA DONG CEMENT CORPORATION LIMITED; 
Water consumption of standard consistency: 25.6%;28d compressive strength: 43.2 MPa;Coal ash: 
manufactured by YONG SHUN in Jiangyou, (water requirement ratio: 88%);Gravel: machine-made 
coarse gravel (maximum diameter: 30mm), continuous grading;Water reducing agent: catalytic high 
efficiency water reducing agent Polymer emulsion: CSBL (SD622S) manufactured by BASF in 
Gaoqiao, Shanghai (solid content: 47%; film-forming temperature: 11 ) Cement mix ratio is in 
line with the standard of C60: 1:2.52:2.82:0.36. Workability is shown in Table 1. Cement-mortar 
proportion is shown in Table 2. SD00: cement without any polymer;SD15: cement with 15% 
polymer; SJ00: cement mortar without any polymer;SJ15: cement mortar with 15% polymer; 

Table 1 Workability of the specimen 
Indicators 

of 
workability

Slump 
mm

Expansion
mm

SD00 195 600
SD15 240 590

Table 2 Cement-mortar proportion 

NO. Water-ceme
nt ration 

Polymer-
cement 
ration 

Fluidity 

SJ00 0.42 0 243 
SJ15 0.32 15 242 

Mechanical property experiments 

Mechanical properties including cube strength (CS), static compressive strength elasticity modulus 
(SC), bending strength (BS) and splitting tensile strength (SS) were tested in accordance with the 
standards regulated in reference (National Standard of the People's Republic of China, 2002). Trial 
cube sizes for each test are as follow: CS: 150mm×150mm×150mm SC: 
150mm×150mm×300mm BS: 100mm×100mm×400mm SS: 150mm×150mm×150mm.Results are 
shown in Table 3: 

Table 3 Mechanical properties 

NO. CS 
MPa

SC 
(GPa) 

BS 
MPa

SS 
MPa

S00 68.4 38.49 6.13 4.51 
S15 61.5 37.01 7.2 4.65 

As indicated in Table 3, the presence of polymer results in a slight decrease in both cube strength 
and elasticity modulus, which still meets the requirement of C60 concrete. Table 3 also indicates an 
improvement in bending and splitting tensile strength.  
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Durability experiments  

Durability properties including permeability, chloride ion permeation, carbonization, shrinkage and 
early cracking were tested in accordance with the standards regulated in reference (National 
Standard of the People's Republic of China, 2009).

Water permeability resistance test  

The test was conducted by using concrete permeability automatic recording instrument and 
graduated compression method. Specimens were prepared in the shape of truncated cone (top 
diameter: 175mm; bottom diameter: 185mm; height: 150mm). At the end of compression process, 
neither SD00 nor SD15 shows any signs of leakage. 

Fig 1 Concrete permeability automatic recording instrument 

Chloride ion permeation resistance test 

The test was conducted by using RCM method and chlorine ion diffusion coefficient meter (see Fig 
2). Specimens were prepared in cylinder shape (height: 50mm; diameter: 100mm). Test results after 
maintenance 28d in standard conditions are shown in Table 4.  

Fig 2 Test device 
Table 4 Chloride ion diffusion coefficient 

NO. SD00 SD15

DRCM ×10-12

m2/s
4.2316 2.3707

Carbonization test 

The test was conducted by using carbonization chamber (CO2 concentration: 20±3 ; humidity: 
70±5 ; temperature: 20±5 ). Test results are shown in Table 5. 

Table 5 Carbonization depth (mm) 

NO. 3d 7d 14d 28d 

SD00 2.2 3 3.7 6.8 

SD15 0 0 0 0 
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Early cracking resistance test

This test was designed to find out the property of concrete to resist early cracking under restrains. 
Test mold is made 800mm×600mm×100mm with all four sides welded with channel steels and 
fixed on a bottom slab with bolts. 7 stress-triggered risers made of angle bars (50mm×50mm, 
40mm×40mm) and steel slabs (5mm×50mm) are fixed on the bottom slab and parallel with the 
short side of mold. 
According to observation, reference concrete shows two visible penetrating cracks and a number of 
minute cracks on the surface. Polymer concrete shows two visible penetrating cracks and two 
smaller crack on the surface. Test results are shown in Table 6. 

Table 6 Plate anti-cracking test results 

NO. Average cracking area 

mm2/crack

Number of cracks on unit area 

crack/m2

Total cracking area on unit area 

mm2/m2

S00 10.2 12.5 127.5

S15 9.4 8.3 77.9

Shrinkage test 

Shrinkage tests include contact and non-contact approaches. The latter is mainly adopted for free 
shrinkage of early age concrete, whereas the former is for long term shrinkage. Non-contact test 
was done by using concrete shrinkage measuring instrument developed by China Academy of 
Building Research, which is capable of yielding accurate value of early shrinkage. Contact test was 
done by using horizontal concrete shrinkage device with an accuracy of 0.001mm. The trial cubes 
were prepared in 100mm×100mm×515mm. Test environment: constant temperature (room 
temperature: 20±2 ) and humidity (relative humidity: 60±5%);  

Fig 3 Non-contact concrete shrinkage test 

Fig 4 Contact concrete shrinkage test 
Early shrinkage test collected data of 120 hours. Shrinkage rates are shown in Fig 5. Polymer 
concrete shows higher rate of early shrinkage but kept within 225×10-6 at the scale of 120 hours.
Shrinkage rate at age 1d, 3d, 7d, 14d, 28d, 45d, 60d till 330d. Results are shown in Fig 6. 
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Fig 5 Early shrinkage 

Fig 6 Long time shrinkage 
According to the test results, conclusions can be drawn that polymer concrete shows: better 
properties in terms of permeability and early cracking resistance; better chloride ion permeation 
resistance (78% higher than regular concrete); no signs of carbonization 28 days after the test which 
indicates a strong property of resistance; slightly higher early shrinkage rate than regular concrete 
but lower rate after 45d. 

Cement mortar damping test 

CSBL is a polymer material, the most significant feature of which is viscoelasticity. The damping 
mechanism of polymeric material is directly related to its dynamic mechanical relaxation properties. 
The mechanical part of vibrational energy absorbed by polymeric material is dissipated in the form 
of heat, through which damping is achieved. Damping property of a material can be expressed with 
loss factor as shown in Equation (1): 

                  
6= / 2 / 10 uD W E E μεη π −′′ ′=                     (1) 

In Equation (1) E′′ =loss modulus E′  =storage modulus. 
By using dynamic mechanical analyzer (DMA-Q800) and dual cantilever beam method, motar 
cubes (40mm×10mm×5mm) were tested for its loss factor (temperature: -200C-400C; frequency: 
1HZ-10HZ ). Comparison indicates that the loss factor of SJ00 and SJ15 exhibit similar trend on 
1HZ, 3HZ, 5HZ, 10HZ and decreases in order (10HZ: the lowest; 1HZ: the highest ). Loss factor 
comparison on 10HZ is shown in Fig 7. 
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Fig 7 Dissipation modulus on 10 HZ of SJ00 and SJ15 
As indicated in Fig 7, the presence of polymer doubled cement mortar’s loss factor which means a 
great increase of damping property.  

SEM test 

The test was done by using JSM-5900LV. A small gilded section of 28d cement mortar was chosen 
for SEM analysis. Results are shown in Fig 8. 

        
a SJ15 5,000x magnification SEM    b SJ15 1,000x magnification SEM 

        
c SJ00 5,000x magnification SEM    d SJ00 1,000x magnification SEM 

Fig 8 SEM results 
As indicated in both 1,000x and 5,000x magnification SEM: fibrous C-S-H of regular cement 
mortar crosslinks with acicular ettringite crystal, forming discontinuous and reticulated porous 
skeletal framework; cement mortar with polymer material is producing polymeric membrane, 
mingling with hydration products of cement and forming densely filled fluffy networks. Such 
structure is capable of dissipating part of the effects caused by vibrational load in the form of heat, 
which increases the damping property of cement. 
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Fatigue test 

Test beam specifications are as follow, cross section: 300mm×180mm;length: 4200mm;actual span: 
3900. 
Beside regular reinforcement, lower part of the beam is equipped with linear prestressed tendons. 
The cross section and reinforcement are shown in Fig 9. 

Fig. 9 Experimental beam and cross section 
Fatigue test is conducted through third point loading. Upper loading limit equals to the cracking 
load of the beam, approximately 37kN; lower limit is 6kN ; loading frequency = 6.9Hz. 
After 2,000,000 fatigue loading, neither B15 nor B00 were damaged. Cracking trend of both beams 
are similar: developing fast before 500,000 times loading cycles and stabled afterwards. 

Fig 10 Comparison of steel-strain of B00 and B15  
Fig 10 shows the strain pattern of regular steel reinforcements in reaction to fatigue loading. The 
strain of B00 and B15 increases fast before 500,000 loading cycles and slows down afterwards; 
very small strains are detected after 1,000,000 cycles; strains become very close to each other after 
1,500,000 cycles. It is in line with the patter of cracking development: grows fast before 500,000 
cycles and slows down afterwards. Accordingly, adding polymeric material has no impacts on strain 
development, and the fatigue property of polymer concrete is equal to regular concrete in normal 
application. 

Dynamic test 

The test was conducted by applying exciting hammer on the top of beam and 5 acceleration 
transducers (to record acceleration signals) were evenly distributed in the direction of length. The 
signals were analyzed by using stochastic subspace identification (SSI). SSI is a widely adopted 
technique, by which the recorded signals can be analyzed to obtain the structural dynamic 
characteristics, such as frequencies, mode shapes and damping. Comparing to other signal 
processing methods, SSI can use only the structural outputs to get useful dynamic information. SSI 
used here is one featuring reference-based data-driven. The details are referred to (Peeters and 
Roeck, 1999).  
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Table 7 Damping ratio of B00 and B15 
Test beam B00 B15 
Damping 
Ration %

0.87 1.31 

Table 7 shows the damping ratio of BD00 and BD15 (both intact) in the first vibration mode. 
Results indicate that the damping ratio of polymer concrete beam is 50% higher than regular 
concrete beam. 

Conclusions 

Compared to regular concrete:
1 polymer concrete shows slightly lower property in terms of compressive strength and elasticity 
modulus, but higher rupture strength and tensile splitting strength. 
2 Polymer concrete exhibits great improvement in terms of carbonization, chloride ion permeation 
and early cracking resistance. Its shrinkage is slightly higher in early age than regular cement, but 
lower after 45d. 
3 The loss factor of cement mortar nearly doubled after adding polymeric materials. The dynamic 
test of prestressed rectangle simple beam indicates that polymeric materials are capable of greatly 
increase the damping ration of concrete. 
4 SEM analysis shows that the compact reticular formation of polymer enfolds cement hydrates, 
increasing its resistance to environmental erosion and damping property.  
5 The fatigue test of prestressed rectangle simple beam shows that the fatigue property of polymer 
concrete is equal to regular concrete in normal application.  
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Abstract

An accurate, efficient and reliable two-noded beam element is presented in this paper for the static 
and dynamic analysis of laminated composite beams. The element formulation is based on the 
quasi-conforming element technique and a new sixth-order beam theory proposed by the second 
author in which the average rotation of beam cross-section is employed as the independent field
variable instead of the rotation at the beam midplane used in other higher-order beam theories. The 
element stiffness matrix of the resulting beam element is given explicitly; consequently it is very 
computationally efficient. Furthermore, this new shear flexible beam element exhibits higher 
accuracy than the conventional shear flexible beam elements, as it possesses a linear bending strain 
field although there are only three nodal parameters associated with bending deformation at each 
node. Both static and dynamic analyses of laminated composite beams with different aspect ratios 
and boundary conditions are solved. The numerical results clearly demonstrate that the present 
composite beam element is not only efficient and locking free but also very accurate. The free 
vibration analysis of composite beams also indicates that the use of the average rotation of the beam 
cross-section improves the prediction accuracy of the higher-mode flexural frequencies.

Keywords: Shear flexible beam element, Sixth-order beam theory, Quasi-conforming element 
technique, Composite beam, Higher-mode flexural vibration

Introduction

Laminated composite beams are widely used in various engineering structures because of the high 
specific stiffness and high strength. The transverse shear deformations play an important role in the 
analysis of composite beams. Various shear deformable beam theories and shear flexible beam
elements have been proposed for the static and dynamic analyses of composite beams in the past 
few decades (Kapania and Raciti, 1989; Chandrashekhara and Bangera, 1993; Shi et al., 1998, 1999; 
among others). The theoretical and numerical modeling of composite beams is still attracting many 
researchers’ attention even today (Carrera and Giunta, 2010; Feng et al., 2012). Among all the 
refined beam theories, the simple third-order shear deformation beam theory presented by Bickford 
(1982) or reduced from Reddy plate theory (1984) is very attractive in the finite element modeling 
of composite beams, as it does not need the shear correction factors and the warping of the cross-
section can be accounted for to a certain extent.

Shi and Voyiadjis (1991) demonstrated that the assumed strained method what is based on the 
quasi-conforming element technique (Tang et al., 1980) is a very efficient approach to formulate the 
shear flexible arch/beam elements and shell elements, since the resulting elements are not only free 
from shear locking, but also free from the time consuming numerical integration.  Shi et al. (1998, 
1999) presented efficient and accurate two-noded composite beam elements based on the third-
order shear deformation beam theory. The composite beam elements developed by Shi et al. (1998,
1999) yield accurate results for the static analysis and the lower-mode frequencies of flexural 
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vibration of composite beams. However, the accuracy of the predicted higher-mode frequencies, e.g. 
the fourth and fifth-mode frequencies, is not good enough (Shi and Lam, 1999).

Hutchinson (1986) studied the influence of the different definition of the rotation variable used in 
plate theories on the accuracy of higher-mode frequencies of the clamped plates. Hutchinson 
showed that the plate theory in which average rotation across the plate thickness is used can 
correctly predict both the fundamental natural frequency and the higher-mode frequencies of the 
clamped plates, but the theory in which the midplane rotation is used can only give the correct 
solutions of the first and second natural frequencies, but predicts physically impossible results for 
the third and fourth natural frequencies. Shi and Voyiadjis (2011) proposed a beam theory with the 
sixth-order differential equations (for bending only) based on a refined third-order transverse shear 
function which is similar to that used in Bickford beam theory. However, one major difference of 
this new beam theory from other higher-order beam theories is that the averaged rotation of the
beam cross-section is defined as a displacement variable as opposed to the rotation measured at the 
beam midplane used in other higher-order beam theories. Wang and Shi (2012) demonstrated that 
this new sixth-order beam theory is not only accurate but also capable of predicting correct 
boundary layer solutions at the locations with displacement boundary conditions.

The objective of this paper is to present a new composite beam element with the averaged rotation 
of beam cross-section as one of the nodal degrees of freedom by using the sixth-order beam theory
proposed by Shi and Voyiadjis (2011) and the quasi-conforming element technique. The resulting 
two-noded beam element is not only free from the shear locking, but also free from the numerical 
integration. Both static and dynamic analyses of composite beams with various aspect ratios and 
boundary conditions are solved here to evaluate the accuracy and reliability of the new composite 
beam element. The results of numerical examples show that the sixth-order beam theory proposed
by Shi and Voyiadjis (2011) can yield more accurate results, especially the higher-mode flexural 
frequencies of composite beams than Bickford beam theory.

The static analysis of finite element formulation of composite beams based on the sixth-order 
beam theory

The new finite element formulation of composite beams is based on the sixth-order beam theory 
proposed by Shi and Voyiadjis (2011), which has been proved a high efficiency and accuracy sixth-
order theory in both static and dynamic analysis.

Displacement fields and strains of shear deformable beams

The displacement field in the sixth-order beam theory proposed by Shi and Voyiadjis (2011) is of 
the form

30
0( , , ) ( , ) ( ) ( )w

u x z t u x t z z z
x

   


    


, 0( , , ) ( , )w x z t w x t (1)

where u0 and w0 are the axial displacement and the deflection of a point on the beam reference 
plane respectively; x is the averaged rotation of the beam cross-section through the beam thickness;
 is the transverse shear strain of the beam cross-section; h is the beam thickness; 4/1 and 

)3/(5 2h . The transverse shear strain  takes the form
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It follows from Eq. (1) that the normal strain and the transverse shear strain under consideration 
take the form
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The expression of strains above results in a C1-continuity element under the displacement-based 
formulation. The strains in Eq. (4) are the functions of the deflection and transverse shear 
deformation. Corresponding to the strains defined in Eq. (4), the simplest nodal degrees of freedom 
at node i, qi can be chosen as

0
0 0[ , , ( ) , ]T

i i i i

w
u w

x





iq , 1, 2i  (5)

The nodal variables in Eq. (5) result in a cubic approximation for deflection w0 and a linear 
transverse shear strain  . Then Eq. (4) can give a linear element bending strain. Because the 
bending strain is the dominant term in bending problems, then in finite element analysis, the strain 
expressions derived from the displacement defined in Eq. (1) should lead to a more accurate 
solution than those higher-order beam theories which give a constant bending strain over an element,
even though they have the same number of degrees of freedom at each node (Shi et al., 1998).

Stiffness matrix of the sixth-order composite beam element

Now consider a straight beam of length l and rectangular cross-section with thickness h and width b.
The strain energy density of the beam, U is of the form

/2

/2
( 4 )

2
h

e x xx x xz xz xzl h

b
U e Q e e Q e dzdx


   (6)

where Qxx and Qxz are the longitudinal Young’s modulus and transverse shear modulus respectively, 
and they are functions of z. Substituting Eqs. (3, 4) into Eq. (6) leads to

2 21 [ ( 2 )
2

             ( ) ( )( ) ( )( )]
e m xx m b xx b hs xx xx xx hs xxl

xx b m m b xx xx m hs hs m xx xx b hs hs b

U e A e e D e e D F H e S

B e e e e B E e e e e F D e e e e dx

    
   

     

       
 (7)

in which 
/2 2 3 4 6

/2
, , , , , (1, , , , , )

h

xx xx xx xx xx xx xxh
A B D E F H b z z z z z Q dz


  ,

2/2 2
2/2

5 5( )
4

h

xx xzh

z
S b Q dz

h
  (8)

The element strains in Eq. (7) can be expressed in terms of the element nodal displacement q and 
the element strain matrices as follows

m ee  mB q , be  b eB q , hse  hs eB q ,   s eB q (9)

Consequently, the strain energy in an element of length l, e takes the form

2 21 [ ( 2 )
2

( ) ( )( )

        ( )( )]

e xx xx xx xx xxl

xx xx xx xx

xx xx

A D D F H

S B B E

F D dx

  

 

 

     

    

 

T T T T
e m m b b hs hs

T T T T T
s s m b b m m hs hs m

T T
b hs hs b e

q B B B B B B

B B B B B B B B + B B

B B + B B q

(10)

If we define element bending, membrane, transverse shear, higher-order shear and coupling 
stiffness matrix, respectively, as

xxl
D dx  T

b b bK B B , xxl
A dx  T

m m mK B B , xxl
S dx  T

s s sK B B (11a)
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2 2( 2 )xx xx xxl
D F H dx     T

hs hs hsK B B (11b)

( ) ( )( ) ( )( )xx xx xx xx xxl
B B E F D dx         T T T T T T

c m b b m m hs hs m b hs hs bK B B + B B B B + B B B B + B B (11c)

Then the element stiffness matrix K is of the form

e b m s hs cK = K + K + K + K + K (12)

Element strain matrix obtained from the quasi-conforming element technique

In conventional displacement-based finite element formulation, the element strain matrices in Eq. (9)
are obtained from the interpolated displacement function in the element. However, these matrices 
will be evaluated by the quasi-conforming element technique (Tang et al., 1980) in this work. For a 
quasi-conforming element, the element strain field is interpolated directly over the element domain 
rather than differentiated from the assumed displacement field, and the compatibility in an element 
domain is satisfied in a weak form. Let a prime signify the assumed element strain field, then the 
element strain energy in Eq. (10) can be modified as

( ) ( ) ( ) ( )e e b b m m s s hs hsl l l l
M e e dx N e e dx Q e e dx P e e dx                  (13)

where M , N , Q and P are the test functions corresponding to their relevant strains. A cubic 
displacement w0, a linear transverse shear strain  and a linear displacement u0 can be interpolated 
over the element from the element nodal variables. Then a suitable element stain field for the strains 
defined in Eq. (4) can be approximated as

2
0

1 22b b b b

d w d
e e x

dx dx
       , 0

m m m

du
e e

dx
   , 2 2s s se e    , hs hs hs

d
e e

dx
    (14)

where bi (i=1, 2), m , s and hs are the assumed element strain parameters which can be
determined from the weak form of compatibility given in Eq. (13) at element level. A linear 
bending strain is assumed here which is corresponding to the cubic deflection w0 given by the 
element nodal displacements. The assumed constant transverse shear strain in Eq. (14) is one order 
lower than the interpolation given by the two nodal shear strain variables, which is equivalent to the 
reduced integration in the displacement-based formulation. In the quasi-conforming element 
formulation, 2es and ehs can be approximated independently. It should be pointed out that the 
bending strain defined in this way optimally utilizes the given nodal variables since the bending 
strain is the dominant term in the beam analysis. The shear locking can be avoided by the quasi-
conforming element technique (Shi et al., 1991, 1998). By substituting the matrices B into Eqs. (11)
and (12), the element stiffness matrix can be obtained. Therefore, the resulting element stiffness 
matrix can be evaluated explicitly, i.e. no numerical integration is needed, which makes the 
resulting beam element very computationally efficient.

The dynamic analysis of finite element modeling of composite beams based on Shi’s sixth-
order beam theory
Velocities of shear deformable beams

It follows from the Eq. (1) that the velocities in the x-direction and z-direction respectively take the 
form

30 0( ) ( )x

u wu
v z z z

t t t x t
  

   
     
    

, 0
z

w
v

t





(15)
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Equation of motion of composite beam element

In dynamic analysis, the equation of motion is derived in terms of the element stiffness matrix and 
the mass matrix from Hamilton’s Principle. Ue and Kke are the element strain energy and kinetic 
energy respectively, and then the Hamilton’s Principle states that

0

( ) 0
t

e ket
elem

U K dt   (16)

In dynamic analysis of natural frequency of system, the work done by external forces is neglected 
and the damping is not considered. And Eq. (16) leads to the equilibrium equations of a system as

Mq + Kq 0 (17)

where M and q are the global mass matrix and acceleration vector of the system. Consequently, the 
frequency  can be evaluated by

2( - ) K M q 0 (18)

The mass matrix based on the sixth-order beam theory will be presented in next section.

Consistent mass matrix for sixth-order beam theory

The kinetic energy of an element Kke corresponding to the sixth-order theory takes the form
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(19)

where ( )z is the density across the beam thickness. By defining
/2 2 3 4 6

/2
, , , , , (1, , , , , )

h

A B D E F H h
J J J J J J b z z z z z dz


  (20)

The element kinetic energy Kke can be written as
2

2 2 2 2 2 20 0 0

2 2
0 0 0 0

1 ( ) ( ) ( ) ((1 2 ) 2( ) )( )
2

2 2(( 1) ) 2(( 1 ) ) ]
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(21)

The equation above shows that similar to the stretching and bending coupling in the stiffness matrix 
there is also an axial and rotary velocity coupling in the mass matrix when the density is not 
symmetric about the reference plane of the composite beams. The coupling of the transverse shear 
velocity and the deflection slope velocity is always non-zero as long as the transverse shear 
deformation is not zero. In the finite element analysis, the element displacement can be interpolated 
in terms of the element nodal displacement vector qe as

0u  u eN q , 0w  w eN q , 0w
x




 wx eN q ,   eN q (22)

where Nj (j=u, w and  ) are the interpolation matrices. By substituting Eq. (21) and (22) into (16), 
one obtains the consistent element mass matrix Me as

e w u wx uw u wxM = M + M + M + M + M + M + M (23)
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with
Al

J dx  T
w w wM N N , Dl

J dx  T
wx wx wxM N N , Al

J dx  T
u u uM N N

2 2[(1 ) 2 (1 ) ]D F Hl
J J J dx        TM N N , [ ]B Bl

J J dx   T T
uw u w w uM N N N N

[ (( 1) ) (( 1) ) ]B E B El
J J J J dx         T T

u u uM N N N N                                  (24)

[ (( 1) ) (( 1) ) ]D F D Fl
J J J J dx           T T

wx wx wxM N N N N

wM , u0M and wxM are, respectively, the usual transverse, axial and rotary inertia matrices; M is 
the mass matrix resulting from the higher-order displacement; and u0wM , u0M and wxM are the 
coupling terms of different components of the axial displacement. The variational consistent mass 
matrix above can account for the contribution of the higher-order displacement to the mass matrix 
and the results show that the consistent mass matrix can provide more accurate results than those 
given by lump mass matrix (Shi and Lam, 1999).

Numerical examples

The accuracy of new finite element formulation based on Shi and Voyiadjis’ sixth-order beam 
theory is evaluated by three examples of statics and dynamics of composite beams with different 
aspect ratios boundary conditions in this section.

Example 1 simply supported composite beam under uniformed load
A four layered composite beam of rectangular cross-section is considered in this example. Its length 
to thickness ratio is 100, and its mechanical and geometrical properties are shown bellow.

1 144.8E GPa , 2 9.65E GPa , 12 13 4.14G G GPa  , 23 3.45G GPa , 12 0.3  , L/h=100, h/b=1

Table 1. Non-dimensional* deflections of simply supported composite beam
Lamination 

schemes Element formulations No. of elements
4 8 16

[0]
HQCB-8A (Shi et al, 1998) 0.08267 0.08597 0.08677

Chandrashekhara et al (1993) 0.06282 0.07519 0.08155
Present 0.08273 0.08598 0.08679

[0/90/90/0]
HQCB-8A (Shi et al, 1998) 0.09369 0.09738 0.09827

Chandrashekhara et al (1993) 0.07107 0.08551 0.09225
Present 0.09364 0.09733 0.09825

*the non-dimensional deflection is defined in Shi et al. (1998)

The beam element of HQCB-8A in the table is a C1 composite beam element presented by Shi et al.
(1998) which is based on Bickford beam theory (1982) and the quasi-conforming element technique.
The results of Chandrashekhara et al. (1993) in Table 1 were given by a beam element based on the 
same type beam theory and the conventional displacement-based element formulation. It can be 
seen from the results in the table that the new beam element based on the sixth-order beam theory of 
Shi and Voyiadjis yield almost the same results as HQCB-8A in this numerical example; and the 
present beam element gives much better results than the conventional beam element.

Example 2 Laminated composite beams with different aspect ratios and different boundary 
conditions under the action of uniformed distributed load

Four equal thickness laminated composite beams with different boundary conditions and different 
length to height ratios are considered in this example. The material properties of the laminated 
composite beams are the same as the previous example. The lamination scheme of this example is 
[0/90/90/0]. The boundary conditions here include the clamped-clamped ends (denoted by CC); the
clamped-free ends (CF); the clamped-simply supported ends (CS) and the simply supported ends
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(SS). The non-dimensional maximum deflections of the beams given by various methods are listed 
in Table 2. Eight elements are used in the present analysis. The results in the table show that the 
beam element presented in this paper is not only free from shear locking but also very accurate. 

Table 2 Influence of boundary conditions and aspect ratios on the accuracy of solutions

Boundary 
conditions Element types

Aspect ratio L/h Analytical Solution of thin 
beams (Timoshenko et al,

1972)15 100 1000

CC
HQCB-8A (Shi et al, 1999) 0.03344 0.01998 0.01966

0.01967Kadoli et al (2008) 0.02993 - -
Present 0.03344 0.01997 0.01965

CF
HQCB-8A (Shi et al, 1999) 1.0038 0.9497 0.9481

0.9439Kadoli et al (2008) 0.9108 - -
Present 1.0034 0.9503 0.9485

CS
HQCB-8A (Shi et al, 1999) 0.05657 0.04113 0.04078

0.04090Kadoli et al (2008) 0.0517 - -
Present 0.05600 0.04088 0.04052

SS
HQCB-8A (Shi et al, 1999) 0.1112 0.09738 0.09706

0.09831Kadoli et al (2008) 0.1035 - -
Present 0.1111 0.09733 0.09702

Example 3 Laminated composite beam under uniformed load with different boundary conditions 
and different aspect ratios
The four layered laminated composite beams considered in Example 2 with the density of 1389.23
kg/m3 are taken in this example for free vibration analysis. Twenty elements are used for the whole 
beam. The first five non-dimensional flexural frequencies (designated by f(1)-f(5)) of thick 
composite beams (L/h=15) are tabulated in Table 3. The nondimensional frequency is defined by 

)/( 3
1

2 bhEJL Aii   . Some other numerical results and analytical solutions are also listed in Table
3 for comparison. The numerical solutions of ABAQUS are obtained by the 8-noded solid elements, 
and two-layers of solid elements are used for each lamina of the laminated beam.

Table 3. Nondimensional frequencies of symmetric [0/90/90/0] cross-ply beams with L/h =15

Formulation BCs Nondimensional frequency at various vibration modes
f(1) f(2) f(3) a(1) f(4) f(5)

Present
(20 elements)

SS 2.4952 8.4551 15.7208 17.2113 23.2552 30.7395
CC 4.6228 10.4438 17.2895 - 24.4919 31.7930
CS 3.5313 9.4970 16.5073 17.2110 23.8354 31.1695
CF 0.9163 4.9085 11.5193 17.2110 18.8428 26.3646

HQCB-8A
(Shi et al. 1998)

SS 2.4979 8.4364 15.5932 - 22.8974 30.0061
CC 4.6194 10.4162 17.1724 - 24.2001 31.2144
CS 3.5264 9.4736 16.4201 - 23.5591 30.6107
CF 0.9199 4.9054 11.4886 - 18.6886 25.9931

Chandrashekhara 
et al. (1993)
Analytical 
solutions

SS 2.5023 8.4812 15.7558 - 23.3089 30.8386
CC 4.5940 10.2906 16.9559 - 24.1410 31.2874
CS 3.5254 9.4423 16.3839 - 23.6850 31.0569
CF 0.9241 4.8925 11.4400 - 18.6972 26.2118

ABAQUS
(808 mesh)

SS 2.4862 8.4415 15.7185 - 23.3170 30.9390
CC 4.5866 10.3185 17.0647 - 24.2398 31.6197
CS 3.5108 9.4336 16.4144 17.1934 23.7902 31.2835
CF 0.9181 4.8749 11.4333 17.1920 18.7360 26.3304

The frequencies of the axial vibration, denoted by a(1), of the beams with boundaries of SS, CS and 
CF predicted by the present beam element are also listed in the table. The a(1) of 3D composite 
beams are given by ABAQUS for the beams with the boundary 0),,0( zyu . One can see from the 
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results in Table 3 that the present element which is based on the sixth-order beam theory of Shi and 
Voyiadjis (2011) yields more accurate results especially for the higher-mode frequencies than the 
beam element HQCB-8A which is based on the third-order shear beam theory of Bickford (1982). 
The major difference between the sixth-order beam theory of Shi and Voyiadjis and the third-order 
shear beam theory of Bickford lies on the different definitions of the rotation of the cross-section; 
the former employs an averaged rotation across the beam cross-section and the later uses the 
rotation measured at the beam midplane. As matter a fact, Hutchinson (1986) showed that the third-
order shear plate theory yielded the incorrect results of the higher-mode frequencies of a clamped 
circular plate when the rotation along the clamped boundary was fixed at the plate midplane.

Acknowledgements
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Conclusions
This paper presents a new beam element which is based on the quasi-conforming element technique
and a new beam theory with the averaged rotation of beam cross-section as one of the field variable
proposed by Shi and Voyiadjis. There are two conclusions can be made from the result comparisons
conducted in the paper.
1. The present assumed strain beam element is not only free from shear-locking as well as free 

from the time consuming numerical integration, but also very accurate.
2. The averaged rotation across the beam cross-section used in the sixth-order beam theory of Shi 

and Voyiadjis yield more accurate higher-mode frequencies than the high-order beam theories 
with the rotation of the cross-section measured at the beam midplane.
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Abstract
Hydrodynamic coefficients in the motion equations of any underwater vehicle are inherent 
characteristics of the body geometry, the geometry and location of control surfaces and other 
appendages and separation of centers of gravity and buoyancy. This paper reports the prediction of 
values of straight-line hydrodynamic coefficients for a portable autonomous underwater vehicle 
(PAUV) by using empirical methods and Computational Fluid Dynamics (CFD), which is being
developed by Northwestern Polytechnical University for ocean reconnaissance. At the same time, 
hydrodynamic coefficients test results in wind tunnel are shown in this paper. And computational 
results by empirical methods and CFD are compared with experimental results from wind tunnel
tests of the same PAUV. It is proved that the trends in variation of forces and moments are captured 
well by CFD. 

Keywords: PAUV, Hydrodynamic coefficient, CFD, Wind tunnel 

Introduction
As a new generation of Autonomous Underwater Vehicles, a kind of low cost, small and portable 
vehicles have been developed, such as REMUS (Remote Environmental Measuring UnitS), which 
could provide an affordable means of performing scientific researches, including coastal ocean 
survey, pollution identification and source tracking, in the coastal ocean, bays and estuaries,
etc.( Allen, B. Stokey, R. etc.). In recent years, Chinese researchers in universities or institutes 
began to study the portable autonomous underwater vehicle (PAUV) and to design and fabricate 
PAUV, which is small, low-speed and accessible AUV. As well known, the controllability and 
motion stability characteristics of underwater vehicles are commonly evaluated in terms of 
hydrodynamic coefficients (HDCs) or hydrodynamic derivatives, which are used in the rigid body 
equations of motion to express the external forces acting on the vehicle due to its motion in the fluid 
(Abkowitz M. A.). And coefficients in non-dimensional form are considered to be inherent 
characteristics of the body geometry, the geometry and location of control surfaces and other 
appendages of AUV. 
Shape and hydrodynamic layout design of a PAUV, which is being developed by Northwestern 
Polytechnical University (NWPU), are described in this paper. In order to ensure optimized 
maneuvering characteristics for the vehicle to meet its designated roles, the hydrodynamic 
coefficients need to be gotten during initial design phase. In this paper, methods of computing these 
parameters are described, including empirical methods, numeric simulation method, and full-scale 
model wind tunnel tests. 

System Description of Hydrodynamic Layout

Hull shape 

The Shape of NWPU PAUV was designed according to minimize drag based on torpedo shape.
Fig.1 shows the vehicle bare body shape. The bare vehicle is 1850mm long with a columniform 
body diameter of 200mm. The head section shape and tail section shape are all designed based on 
Granville series. The axial length of head section ( hL ) is 150mm and the length of tail section ( AL ) 
is 450mm. 
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Figure 1. Bare body shape of NWPU PAUV 

Layout of Rudders 

The rudder (Fig. 2) was designed based on aerofoil form for two reasons: one is low speed and the 
other is motion stability. The hydrodynamic layout is cruciform arrangement (Fig. 3). 

200mm

90
m

mNACA6408

2Sv=0.0143m

Figure 2. Rudder

Figure 3. Hydrodynamic layout of NWPU PAUV 

So the vehicle’s specifications are given in Table 1.

Table 1. Specifications and characteristics of NWPU PAUV

Items               Specifications and characteristics
Dimension            200mm(D) 1850mm(L)
Weight                                              50kg 
Displacement                                   0.051m3 

Maximum depth                           150m
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Operation time                                 40h
Speed                                                 3-5knots
Main thruster                                  single screw propeller

Empirical Calculation of Main Linear Hydrodynamic Coefficients

The controllability and motion stability characteristics of UUV are commonly evaluated in terms of 
hydrodynamic coefficients or hydrodynamic derivatives, which are used in the rigid body equations 
of motion to express the external forces acting on the vehicle due to its motion in the fluid (W. S. 
Richardson, P. B. Stimson, etc.). So, in initial design phase, it is important to evaluate main 
hydrodynamic coefficients by using empirical methods. It is well known that main hydrodynamic 
coefficients include drag coefficient, lift coefficient, lateral force coefficient, pitch moment 
coefficient, yaw moment coefficient and roll moment coefficient. The forces and moments are 
nondimensionalized by 20.5 v S  and 20.5 v SL respectively, where  is the density of water, v is 
velocity of wind, S is max transect area, and L is the length of the PAUV.
For PAUV with torpedo shape, empirical calculation of main hydrodynamic coefficients is shown 
as follows (Y. W. Zhang, etc): 

A. Drag Coefficient
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where, K is correctional coefficient, [1.1,1.15], AV is volume of tail section of bare body, AL is
length of tail section, '

AL is nominal axial length of tail section, cL is length of columniform 
section. hV is volume of head section of bare body,  hL is length of head section, fbC is friction 
drag coefficient of plate in fluid. 

B. Lift Coefficient 

yrhyfhyby CCCC  (2)
where, ybC is lift coefficient of bare body, yfhC is lift coefficient of  horizontal fins, yrhC is lift 
coefficient of elevators.
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where, 0dC is drag coefficient of bare body when attack angle ( ) is zero, AS is area of tail end 

section, 2

4
DS


 is max transect area of body.  
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where,   is ratio of span to chord of fin, fA is area of fin.
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where, r is ratio of span to chord of rudder, 
D
a

a  , a is span of rudder, rA is area of rudder, h

is the deflection angle of rudder . 
C. Lateral Force Coefficient

As the symmetry of shape, the calculation methods of lateral force coefficient are similar with lift 
coefficient.

D. Pitch Moment Coefficient
zrhzfhzbZ MMMM  (6)

where, zbM is pitch moment coefficient of body, zfhM is pitch moment coefficient of horizontal 
fins, zrhM is pitch moment coefficient of elevators.

LD
V

D
L

M zb 2
4

)0.0130.622


 (7)

where, V is the volume of body. 

L

L
CM fh

yfhzfh - (8)

where, fhL is distance of lift point of horizontal fins from origin of body coordinate. 

L
L

CM rh
yrhzrh - (9)

where, rhL is distance of lift point of elevators from origin of body coordinate. 
E. Yaw Moment Coefficient

As the symmetry of shape, the calculation methods of yaw moment coefficient are similar with 
pitch moment coefficient.
It is noticeable that the origin of coordinate is at the buoyancy center of PAUV.

Numeric Simulation

Grid Generation 

Quality of grid generation in numerical simulation takes an important role to gain accurate
simulation results of hydrodynamic coefficients. So, most of the human time and effort required in 
numerical simulation analysis (for example CFD) studies is spent in grid generation. 
For studying rectilinear flow past the PAUV, the intermediate volume was meshed using tetrahedral 
elements, creating an unstructured mesh around the PAUV in a rectangular domain. The length of 
rectangular is 5L with width is 5D and height is 5D, which can be seen in Fig. 4. 
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Figure 4. Rectilinear flows at various angles of attack 
To evaluate the rectilinear hydrodynamic coefficients, the PAUV was to be placed at various angles 
of attack. This was efficiently implemented by rotating the enclosing rectangular domain of the 
specified angle, and then re-meshing (unstructured mesh) the intermediate volume. 

Governing Equations 

Since the velocity of PAUV changed from3 to 5 knots, the Reynolds number is not high for the 
flow to be simulated. Also the Reynolds-averaged Navier-Stokes (RANS) equations were used in 
this paper. 

Solver Settings  

The 3-dimensional double precision segregated solver was used for steady flow and the SIMPLE 
algorithm was selected for pressure-velocity coupling. First order upwinding was adopted initially,
followed by second order upwinding after the solution residuals had dropped by about 3 orders of 
magnitude. Residuals of continuity, velocities and turbulence parameters were monitored and 
convergence criteria were set as 10-6 for all residuals.

Turbulence Model 

Renormalization Gradient k   model was adopted as turbulence model in this paper. 

Model Wind Tunnel tests 

According to the shape and hydrodynamic layout of the PAUV, full-scale model wind tunnel test at 
the same Reynolds number with numerical simulation was accomplished.
For the symmetry of shape and hydrodynamic layout, side slip angle (Fig. 5) and elevators 
deflection angle (Fig. 6) change tests are accomplished, and the wind velocity is 26.5m/s. 

Figure 5. Side slip angle change test     Figure 6. Elevators deflection angle change test

Results

For the NWPU PAUV, based on test data processing, the main hydrodynamic coefficients or 
derivative are listed in Tab. 2 by empirical method, numeric simulation and wind tunnel tests. 
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Table 2. Results of main hydrodynamic coefficients or derivatives 
Parameters Empirical method    Numeric simulation  Wind tunnel test

dC 0.1650 0.1673 0.1726

yC                         2.8631                2.7512                      2.6896 

zm                        0.5621                0.5532                      0.5608

zC                       -2.8631               -2.7512                    -2.6896 

ym                        0.5621                0.5532                      0.5608 

xm                         0.0025                0.0022                      0.0031 

According to Tab. 2, the results of empirical method, numeric simulation and wind tunnel test are 
almost consistent.  

Conclusions

For initial design of UUV, quick answers are sought to question like effects of variation in size and 
location of control surfaces, adequacy of dynamic stability and maneuverability. So computation of 
hydrodynamic coefficients is important in initial design phase of UUV’s design.  
The computational results in this paper aim at maneuvering analysis of the NWPU PAUV. The max 
error for main hydrodynamic coefficients or derivatives comparing wind tunnel test is less than 10%. 
For accurately evaluating NWPU PAUV motion characters, rotary hydrodynamic coefficients 
computational methods are due to further study. 
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Polymer matrix filled with ferromagnetic particles is a class of smart materials  whose 
mechanical properties can be changed under different magnetic field. They are usually referred to 
as magnetorheological elastomers (MREs). A finite element simulation was presented to describe 
the mechanical behavior of MREs with the nonlinearity of the particle magnetization being 
incorporated. By introducing the Maxwell stress tensor, a representative volume element (RVE) 
was proposed to calculate the Young’s modulus and shear modulus of MREs due to the applied 
magnetic field. The influences of the applied magnetic field and the particle volume fractions in 
the shear modulus and Young's modulus were studied. Results show that the shear modulus 
increases with the magnitude of the applied magnetic field, while the Young's modulus decreases.  

Keywords: Magnetorheological elastomers; Mechanical properties; Maxwell stress tensor; 
Representative volume element 

Introduction 

Magnetorheological elastomers (MREs) are a new material, whose structure is that micro-sized 
ferrous particles disperse in a polymer matrix. The materials have rheological properties that can 
be changed by an applied magnetic field continuously, rapidly and reversibly. The increasing 
interest in MREs has heightened the need for potential applications in vales, dumpers,brakes and 
sensor constructions. Some theoretical models were established to simulate MREs. The widely 
used one now is the dipole model (Davis,1999; Jolly,1996; Shiga and Okada,1995). However, it 
puts the dipole as the center of the sphere thus being limited to the case of larger particle spacing. 
The dipole theory indicates that the ferromagnetic particles are linear magnetization. In fact, the 
particles are nonlinear. The distribution of magnetic field in MREs can be calculated by the 
magnetic finite element method. The shear modulus, the particle volume fraction and the 
relationship between the size of the magnetic field were obtained by considering the nonlinear 
magnetization of particles. This work can provide guidance for the optimized material and device 
design. 

Modeling procedure 

Representative volume element 

As shown in Fig. 1, a representative volume element was used to simulate MREs. 
Two dimension square RVE was regarded as the rubber matrix, which includes 
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several circles representing carbony1 iron particles CIPs. 

 
Fig. 1 RVE model 

Governing equations 

Cauchy's equation of continuum mechanics reads  

 
2

2 ext
d
dt

   
r T f   (1) 

where   is the density, r is the coordinates of a material point, T is the stress tensor, 

and extf  is an external volume force such as gravity ( =ext f g ). It is an equation 

solved in the structural mechanics physics interfaces in the special case of a linear 
elastic material, which neglects the electromagnetic contributions. In the stationary 
case, there is no acceleration, and the equation representing the force balance is 

 ext   0 T f   (2) 

In certain cases, the stress tensor T can be divided into two parts. One depends on the 
electromagnetic field quantities and another is the mechanical stress tensor, 

 EM M T T    (3) 

It is sometimes convenient to use a volume force instead of the stress tensor. This 
force is obtained from the relation 

 em EM f T   (4) 

as stated in the structural mechanics physics interfaces 

 M em ext   0 σ f f   (5) 

Magnetic equations 

In a current free region, where  0. H It is possible to define the scalar magnetic 

potential, mV  from  the relation  .mV H Using the constitutive relation between 

the magnetic flux density and magnetic field 

 0 ( ) B H M   (6) 

together with the equation 
 0 B   (7) 
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 then Vm  can be obtained from the equation 

 0 0 0( ) 0mV    M   (8) 

 
 
 

Fig. 2 HB curve 
The nonlinear magnetic behavior of the steel particles is molded by using a HB curve 
to specify the magnetic constitutive relation. Fig. 2  

Mechanical equations 

The expressions for the stress tensor in a general electromagnetic context stem from a 
fusion of material theory, thermodynamics, continuum mechanics, and 
electromagnetic field theory. With the introduction of thermodynamic potentials of 
mechanical, thermal, and electromagnetic effects, explicit expressions for the stress 
tensor can be derived in a convenient way by forming the formal derivatives with 
respect to the different physical fields (Kovertz,1990;Wilson,1988). Alternative 
derivations can be made for a vacuum (Wangsness,1986) but it is difficult to polarize 
and magnetize materials. In general, an elastic solid material of that is dielectric and 
magnetic (nonzero M), the stress tensor is given by the expression 

  
0 0

1 1( )
2

T T

 
        IT B B B MB B B M B   (9) 

where in ( )B ,  the dependence of B has not been separated out. Thus  is not a 

purely mechanical stress tensor in this case. Different material models give different 

appearances of ( )B . The electromagnetic contributions to ( )B , which represent 

piezoelectric, dielectric, and magnetization effects. The expression for the stress 

B(T) 

H
(A

/m
) 
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tensor in vacuum, air, and pure conductors can be derived from this general 
expression by setting =0M  . The Maxwell stress on CIPs causes the deformation of 
the RVE. 

Simulations procedures 

A test of the MREs was simulated to investigate the changes of shear modulus and 
Young's modulus with different magnetic field and radius of CIPs. The values of 
magnetic field are 0.5e-5wb/m, 1e-5wb/m, 1.5e-5wb/m, and 2e-5wb/m (Fig.3 and 

Fig.4 ), respectively. The radius of CIPs is 1.5 m 2 m 2.5 m 3 m 3.5 m

4 m 4.5 m (Fig.5), respectively. 

Results and discussions 

 
Fig. 3 different magnetic fields for tension deformation 
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Fig. 4 different magnetic fields for shear deformation 

When no shear deformation occurs, 0  , the magnetic field contribution to the 

normal stress and shear strain is equal to the magnetic energy density function of the 
first derivative of strain,  

 
2 3 2 3

0 0
3 3

04
p p

B

M d M d
r r

   
     (10) 

Young's modulus is: 

 
2 3

0
3

0

( ) pM d
E B

r
 

    (11) 

As stated in the above equation, the magnetic field will cause magnetic force and the 
load will result in compression of the matrix (rubber), which is actually magnetic 
pre-stressed. This is because that the CIPs attract each other, which increases the 
reliability of material in some ways. But in the contact force between the particles and 
the rubber, the rubber is easy to be torn. The MREs working in the compressed state 
are unreasonable (the compressed state becomes the extrusion of the two rigid iron 
balls). Young's modulus induced by the magnetic field is negative. Its physical 
meaning is the magnetic energy and a matrix strain energy conversion. With 
increasing the magnetic field (Fig.3). MREs will become softer. The results of the 
simulation show that the shear modulus increases with the magnitude of the applied 
magnetic field, while the Young's modulus decreases (Fig.4).  
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Fig. 5 different radius of CIPs 

Conclusions 

The study focuses on the mechanical behavior of MREs. A two-dimension RVE was 
introduced with CIPs and pure rubber. Mechanical behavior of the RVE was 
simulated under magnetic field. It is demonstrated that the shear modulus increases 
with the magnitude of the applied magnetic field, while the Young's modulus 
decreases. Additional research should focus not only upon the applied magnetic field, 
but also considering the magnetostriction of MREs.  
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Abstract
Truss topology optimization with Genetic Algorithm usually requires very large computational cost, 
especially for large-scale problems. To decrease the structural analyses, Genetic Algorithm with 
Two-level Approximation (GATA) was proposed in previous work which showed good efficiency. 
However, the optimization process sometimes converges to sub-optimum points for its low 
capability in global optimum searching. The present paper proposes an Improved Genetic 
Algorithm with Two-level Approximation (IGATA) which includes several changes to the basic 
genetic algorithm developed previously A modified Lemonge penalty function is adopted for 
fitness calculation, and an Elite selection strategy is proposed to improve the quality of initial points. 
Example demonstrates reduced computational cost and increased reliability of the algorithm due to 
these changes. 

Keywords: Truss, Topology optimization, Genetic algorithm, Two-level approximation  

Introduction 
The two-level multi-point approximation algorithm, proposed by Huang and Xia (1995), combines 
a mathematical programming method and approximation concepts. This algorithm is very efficient 
when performing size optimization of a structure. To improve the efficiency of truss topology 
optimization, Dong and Huang (2004) proposed a GA with a Two-level Approximation (GATA), 
which combines a simple GA with the efficient Two-level Approximation method. GATA obtains 
an optimal solution by alternating topology optimization and size optimization. Because there are 
no structural analyses during the execution of the GA, the computational efficiency is greatly 
improved and the structural analyses can be reduced to the order of tens. Later, Xian and Huang 
(2008; 2009) modified the multi-point approximation function in the form of a branched function 
for application in the field of optimal actuator/sensor location in a piezoelectric truss. However, 
owing to the weak exploitation capabilities and premature convergence of the simple GA, the 
algorithm often reaches a local optimum, and not global optimal solution. 

In this paper, with the aim of solving the shortcomings mentioned above, an Improved GA with a 
Two-level Approximation (IGATA) is proposed. IGATA inherits the optimization strategy from 
GATA, but certain improvements are applied to the approximation function and GA to strengthen 
the capability of seeking an optimum solution. These improvements address two aspects. First, the 
original static exterior penalty function is replaced by an improved Lemonge penalty function, 
which is adaptive and can address various problems without artificially setting any parameters. 
Second, faced with the difficulty of convergence, an Elite Selection Strategy (ESS) is adopted, 
which improves the quality of initial points and allows searching in more domains. The 
effectiveness and efficiency of the proposed IGATA is demonstrated using two numerical examples.  

Problem descriptions 
The truss topology optimization problem in GATA is formulated in (1). Here, X={x1, x2,…, xn}T is 
the size variable vector, with xi (i=1,2,…n) denoting the cross-sectional area of bar members in the 
i-th group and n denoting the number of groups. ={ 1, 2,…, n} is the topology variable vector: if 

i=0, members in the i-th group are removed, and xi is set to a very small value xi
b, which is 

generally calculated as 10-4 multiplied by the initial value of xi; if i=1, members in the i-th group 
are retained, and xi is optimized between the upper bound xi

U and the lower bound xi
L.
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(1)

If some bar members are removed, the corresponding constraints are eliminated, such as the stress 
constraints of the removed members. Thus, j indicates whether the respective constraint is 
eliminated; if j=0, the j-th constraint is eliminated, otherwise if j=1, the j-th constraint is retained. 
Here, f i

(p)(X) and gj
(p)(X) are the approximation functions of objective function fi(X) and normalized 

constraints gj(X), respectively, in the p-th iteration, and J1 is the number of considered constraints. 
xi(p)

U, xi(p)
L are the moving limits of xi, and xi(p)

U, xi(p)
L are the upper and lower bounds of xi in the 

p-th iteration. 

Optimization strategy of GATA

GATA is an optimization method which can perform truss topology and size optimization 
simultaneously. In the p-th iteration process, GATA is implemented as follows: First, structural and 
sensitivity analysis is implemented on a truss structure with Xp={x1p, x2p,…, xnp }T. Second, the 
results of the structural and sensitivity analysis at Xp are used to construct a first-level 
approximation problem using the multi-point approximation function. For further details, please see 
the works by Dong (2004).Third, an optimization strategy is implemented. In this strategy, the GA 
generates sequences of 0/1 variable vectors, l,k,p={ l,k,p,1,…, l,k,p,n}T. Each sequence is the genotype 
of one individual in the population, representing a topology configuration. For the l-th individual in 
the initial generation, GATA seeks the optimum X*

l,k,p (k=1) by means of an efficient dual method. 
Then the fitness, fitness(X*

l,k,p), is obtained using W(p)(X*
l,k,p) and gj

(p)(X*
l,k,p) (k=1) by means of the 

penalty function method. After the fitness values of all the individuals in the initial generation have 
been calculated, the genetic operator works on the sequences of  and generates the next generation 
(k+1 k). The dual method is then repeated. This optimization strategy terminates when the 
maximum generation of the GA, maxG, is reached. Finally, Xp+1 is selected by (2) and (3) signaling 
the start of the (p+1)-th iteration, the p-th iteration terminates, and p+1 p.

*
1 , ,{ | 1, , ; 1, , max }p l k pX X l Popsize k G                 (2)

*
1 , ,( ) { ( ) | 1, , ; 1, , max }p l k pfitness X max fitness X l Popsize k G    (3)

If the convergence criteria are satisfied before iteration p reaches the artificial threshold, say 100, a 
convergence solution is obtained; if not, a non-convergence solution is reached. GATA terminates 
under both conditions. 

The computational cost of GATA is low because it requires only a few structural analyses. However, 
numerical tests have shown that results of GATA are not always perfect, because it can easily be 
trapped in a sub-optimum design or even get infeasible design if the initial design of p-th iteration 
Xp is infeasible and far from the optimal design. Conversely, it may be difficult for GATA to reach 
convergence with a long iteration process if an optimum is obtained. These problems are solved by 
IGATA. 
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Validity of topology configuration check

Under some circumstances, the topology configuration may not be valid, e.g., if load nodes are 
removed, part of the structure can move, or the structure is not a geometrically stable one . In GATA, 
the validity of the topology configuration is checked before calculating the fitness of each 
individual, which means that invalid individuals cannot to be considered by the GA.

Improvements to GATA 

Modified penalty function 

The penalty function, which penalizes an infeasible solution depending on its violation of 
constraints, is essential for a GA to deal with the constrained optimization problem (Su et al., 2009). 
One kind of exterior penalty function is used by GATA to cope with the constraints, which can be 
considered as static penalty function (see (4)). The method for calculating fitness is given in (4)-(6). 
Here a and b, which are used to control the number of copied individuals in the new population, are 
functions that include F2 as an argument. Therefore, a and b retard the premature convergence of 
the GA. 

2

1 , , , ,
1

( ) max(0, ( ))
J

q

l k p j l k p
j

F f X R g X                                  (4) 

1 1
2

1 1

min( )1
max( ) min( )

s
F F

F
F F

                                                    (5) 

2AdaptValue aF b                                                                 (6) 

Values of penalty factor R, penalty exponent q, and normalized exponent s are obtained by trial and 
error depending on the specific optimization problems. Always bad or even infeasible solutions are 
obtained if these values are not correctly initialized, which is an intrinsic defect of the static penalty 
function. One approach to solve this problem is to make the penalty function adaptive. 

The Lemonge penalty function is an adaptive penalty function that can automatically adjust the 
level of penalty depending on the constraints. This penalty function was originally applied in size 
optimization of trusses (Barbosa and Lemonge, 2003; 2004). After various improvements, the 
penalty function has been applied in topology optimization of skeletal structures under frequency 
constraints (Liu, 2011; 2012). Based on the topology optimization model given in (1), the Lemonge 
penalty function and corresponding fitness function are shown in (7) and (11), respectively. 

1

1 21

1

( ) ( ) ( )
J

j
l j lJ

j
j

j

v
penal X W X v X

v
                                               (7) 

( )

1

1( ) ( )
Popsize

p
l

l

W X W X
Popsize

                                                   (8) 

( )( ) max 0, ( )p
j l j lv X g X                                          (9) 

1

1 ( )
Popsize

j j l
l

v v X
Popsize                                                     (10) 

( )
max( ) ( ( ) ( ))p p

l l lfitness X f W X penal X                         (11) 

( )
max 1,2,..,

max ( ) ( )p p
l ll Popsize

f W X penal X                                        (12) 
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( )W X is the average of the objective function of all the individuals in the population, which is 
calculated by (8); vj(Xl) denotes the violation level of the j-th constraint of l-th individual, which is 
calculated by (9) jv  is the average of vj(Xl) in the population; J1 is the number of considered 
constraints; and Popsize is the population size. 

Compared with the exterior penalty function used by GATA, the Lemonge penalty function has the 
ability to create an adaptive penalty without using other parameters, thereby avoiding any 
adjustment of parameters. As such, it can tackle various problems and its versatility is good. To 
better align the method for calculating fitness using the Lemonge penalty function to deal with truss 
topology optimization, some improvements have been incorporated. 

1) The treatment of eliminated constraints and invalid individuals 
The Lemonge penalty function includes all the constraints. In fact, some eliminated constraints need 
to be dealt with flexibly as shown in (13). Xl

* is the optimum of the size optimization of the l-th
valid individual, and gj

(p)(Xl
*) is the multi-point approximation value of the j-th constraint gj(X*).

1( 1,..., )
(p) *

j l j(p)
j l

j

g (X ) 1
g (X ) j J

0.01 0
                                        (13) 

To ensure that genetic operators do not operate on invalid individuals, their fitness should be set to 
zero. Moreover, invalid individuals should be excluded from the method for calculating fitness (see 
(14) and (45)). NS is the number of valid individuals in the population, W(p)(X l

*) is the weight of the 
l-th valid individual, W  is the average of W(p)(X l

*) in the population, and jg is the average of 
gj

(p)(Xl
*) of valid individuals in the population. 

( )

1

1 ( )
SN

p
l

lS

W W X
N

                                                                          (14) 

( )

1

1 ( )
sN

p
j j l

ls

g g X
N

                                                                          (15) 

The violation level of the j-th constraint of the l-th individual and its average are given in (16) and 
(17). Based on (7), the penalty function is shown in (18), where J1 is the number of considered 
constraints.

( )( ) max 0, ( )p
j l j lv X g X                                                          (16) 

1

1 ( )
s

l

N

j j
ls

v v X
N

                                                                             (17) 

1

1 21

1

( ) ' ( )
J

j
l j lJ

j
j

j

v
penal X W v X

v
                                                        (18) 

Here, gj
(p)(Xl

*) (j=1,…,J1) is not the result of structural analysis, but the multi-point approximation 
value. It is usually a positive value close to zero or a negative one. Thus, penal(Xl

*) may be singular; 
see (18). By modifying (17) and (18) as shown in (19) and (20), this problem can be solved and the 
penalty function retains its adaptivity. 
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g
                                                      (20)

2) Slight amplification of fitness 
If the stochastically generated valid individuals satisfy (12), their fitness values will be zero 
according to (11). Such individuals will not be available to the genetic operator, thus limiting the 
diversity of the population. Hence, we multiply the fitness values by a factor R equal to 1.01 to 
make all the fitness values of valid individuals positive (see (21)). After this transformation, the 
fitness of all valid individuals is slightly larger than before. 

)X(penal)X(WmaxRf ll
N,..,,i

p
max

s

                                                  (21)

3) Critical constraint scale factor 
The optimal structure always contains several critical constraints. Consequently, an individual with 
more critical constraints should have better adaptability. Thus, we add the value Mcrit/J1 to (11) to 
ensure that individuals with more critical constraints have better fitness; see (22). Mcrit is the 
number of critical constraints, while Mcrit/J1 is the critical constraint scale factor, which denotes the 
number of critical constraints relative to the total number of considered constraints. If gj

(p)(Xl
*) (-

10-2,10-3), it is treated as a critical constraint. The upper bound of the critical constraints’ 
determination interval (10-3) is positive, and therefore, an individual that violates a constraint 
slightly has good fitness, which is helpful for maintaining population diversity and avoiding 
premature convergence of the GA. 

( )
max

1

( ) ( ( ) ( )) (1 )p p crit
l l l

M
fitness X f W X penal X

J
                    (22) 

Elite Selection Strategy 

Different topology configurations map one-to-one onto different degenerate sub-regions of the 
design variables’ space. In the p-th iteration of IGATA, after the GA terminates, an elite individual 
must be selected to proceed to the (p+1)-th iteration. In other words, the “best” p+1 and Xp+1 need 
to be determined. If Xp+1 is selected according to (23) and (24), it may take more iterations for 
IGATA to converge. This difficult-convergence phenomenon can be ascribed to the poor quality of 
Xp+1.

Xp+1 {X*
l,k,p|l=1,…,Popsize; k=maxG}                               (23)

fitness(Xp+1)=max{fitness(X*
l,k,p)| l=1,…,Popsize; k=maxG}                             (24)

Multi-point approximation is not global approximation. If Xp+1 is an infeasible design and far from 
the boundary of the feasible region, then Xp+1 seriously violates the constraints; see (25) and (26).

0, e.g., =1.0. Under this condition, the size optimization optimum may vary greatly from the real 
optimum, which will probably give rise to slow convergence or even an infeasible solution. Thus, 
ESS is proposed to overcome the difficulty of convergence. 

gmax(Xp+1)                                                                        (25) 

gmax(Xp+1)=max{ 1g1(Xp+1),…, mgm(Xp+1)}                                          (26)

The ESS is a method that aims for excellent individual selection. In the p-th iteration, it is 
implemented after the GA terminates. Before it is implemented, a parameter called the maximum 
constraint value control threshold (MCVCT) is set in the range of 0.01-1.0. The ESS is given in the 
p-th iteration as follows. 
1)Select an individual with the maximum fitness from the maxG-th generation and label the 
individual as SEL(1). 
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2)Order the objective function values of all the valid individuals from the first to the maxG-th
generation in ascending order; select four individuals labeled as SEL(2),SEL(3), SEL(4), and SEL(5)
from the front. It should be noted that the five individuals (SEL(s), s=1,…,5) must each have a 
different topology configuration. In other words, SEL(1),… , SEL(5) differ from each other, and 
W(p)(X*

SEL(2)) … W(p)(X*
SEL(5)).

3)Carry out structural and sensitivity analysis at X*
SEL(1). If gmax(X*

SEL(1)) MCVCT, then the ESS 
terminates. If gmax(X*

SEL(1)) MCVCT, carry out structural and sensitivity analysis at X*
SEL(2) and 

compare gmax(X*
SEL(2)) and MCVCT. This process terminates only when gmax(X*

SEL(w)) MCVCT
(gmax(X*

SEL(1)),.., gmax(X*
SEL(w-1))>MCVCT, w=1,2,3,4,5) or gmax(X*

SEL(5))>MCVCT(gmax(X*
SEL(1)),…,

gmax(X*
SEL(5))>MCVCT). Then, the selected individual that will move into the (p+1)-th iteration is 

labeled as SEL; see (27). SEL is defined as in (28), while min should satisfy (29) and (30). 

Xp+1=X*
SEL                                                                           (27) 

max (1) max (5)

max (1) max ( 1) max ( )

min ( ), , ( )
( ),..., ( ) , ( )

SEL SEL

SEL SEL w SEL w

g X g X MCVCT
SEL

w g X g X MCVCT g X MCVCT
(28)

max min max (1) max (5)( ) min( ( ), , ( ))SEL SELg X g X g X                (29)

,min 1,2,3,4,5w                               (30)

If X*
SEL is an infeasible solution, its violation is controlled by the ESS, which accelerates the rate of 

convergence. For small-scale problems, IGATA may need only a few structural analyses to obtain 
the optimum. Meanwhile, the ESS helps search in more degenerate sub-regions, which extends the 
search region and improves the capacity for finding a better feasible solution. 
Figure1 gives a flowchart of the procedure for IGATA. 

Figure1. A flowchart of IGATA 
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Numerical examples 

This example is explained in detail in works by Huang and Wang (2008). The IGATA and GATA 
parameters are set as follows: Popsize=30, maxG=30, Pc=0.90, Pm=0.05. In addition, for IGATA, 
MCVCT=1.0. Figure 2 shows the topology configuration of IGATA, Figure 3 illustrates the 
iteration process of IGATA, and Table 1 gives the optima reported by various studies in the 
literature. 

Figure 2. Original structure and topology configuration of 9-bar planar truss 

Figure 3. Iteration process 

Table 1. Results obtained by different studies for the 9-bar planar truss 

Var

Optimization results 

GA 

(Huang and Wang, 2008)
GATA 

IGATA 

(proposed)

Cons 1 Cons 2 Cons 1 Cons 2 Cons 1 Cons 2 

A1=A2 1.4081 1.6770 0 0 1.3881 1.7224 

A3=A4 9.3185 9.3190 2.3312 2.3313 9.3153 9.3147 

A5=A6 5.6003 5.6195 2.7955 3.0061 5.5888 5.5885 

A7=A8 0.0 0.0 11.264 11.2643 0 0 

A9 5.5556 5.6449 0 0 5.5548 5.5564 

No. of 

analyses 
— — 4 4 9 4 

Weight 1417.19 1439.99 1768.521 1784.557 1414.691 1437.383 

Feasibility Feasible Feasible 3.0×10-4 2.7×10-4 5.68×10-4 3.17×10-4

Note: Cons- Constraint set No. 
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Comparing the results of GATA and IGATA, we can see that their corresponding topology 
configurations are different, with IGATA being lighter, which means that IGATA can better 
confirm degenerate sub-regions and improve the capability of finding optimum. Although the 
number of structural analyses is not given in works of Huang (2008), it is substantial (possibly 
thousands to tens of thousands). In contrast, the computational cost of IGATA is greatly reduced. 

Conclusion
An improved topology optimization method for truss structures was presented in this paper. This 
method inherits the optimization frame of the GA with a Two-level Approximation. The discrete 
variables (0/1 variables representing the existence of each bar member) are optimized by means of a 
GA, while the continuous size variables are optimized through a series of second-level 
approximation problems. Various modifications, including a modified Lemonge penalty function, 
and the Elite Selection Strategy have been implemented to improve the global optimum searching 
capability and convergence rate. The modified Lemonge penalty function works without any 
adjustment to arguments and includes a critical constraint scale factor, which means that individuals 
with more critical constraints have better fitness. The Elite Selection Strategy controls the violation 
of X*

SEL, which improves the quality of the initial points and extends the search domain. Sometimes, 
the Elite Selection Strategy results in the fact that the structural analyses are more than iterations. 
However, the improved method has a lower computational cost. Numerical experiments have 
shown that Improved GA with a Two-level Approximation can rapidly and in a stable manner 
obtain a solution. The effectiveness of IGATA is comparable to GATA and other methods. 

References 

Barbosa, H.J.C. and Lemonge A.C.C., (2003), A new adaptive penalty scheme for genetic algorithms. Inform Sciences J.
156, pp.215-251. 

Dong, Y. and Huang H., (2004), Truss topology optimization by using multi-point approximation and GA. Chinese 
Journal of Computational Mechanics J. 21, pp.746-751. 

Huang, H. and Xia R.W., (1995), Two-level multipoint constraint approximation concept for structural optimization. 
Structural Optimization J. 9, pp.38-45. 

Huang, J. and Wang Z., (2008), Topology optimization design for discrete structures using genetic algorithm. 
Engineering Mechanics J. 25, pp.32-38. 

Lemonge, A.C.C. and Barbosa H.J.C., (2004), An adaptive penalty scheme for genetic algorithms in structural 
optimization. International Journal for Numerical Methods in Engineering J. 59, pp.703-736. 

Liu, X. (2011), The improvement of automatic grouping genetic algorithms and its application in structural engineering. 
Dalian University of Technology, Dalian 

Liu, X.F. and Cheng G.D. and Yan J. et al., (2012), Singular optimum topology of skeletal structures with frequency 
constraints by AGGA. Structural and Multidisciplinary Optimization J. 45, pp.451-466. 

Su, R. and Gui L. and Fan Z. Topology and sizing optimization of truss structures using adaptive genetic algorithm with 
node matrix encoding. In: Fifth International Conference on Natural Computation, Tianjin, China, 2009. IEEE, pp 
485-491 

Xian, K.-c. (2009), Optimal Actuators Locations for adaptive structures and structure optimization including discrete 
variables. BeiHang University, Beijing 

Xian, K.-c. and Huang H., (2008), Research on algorithm of optimal actuator/sensor location for piezoelectric truss. 
Chinese Journal of Computational Mechanics J. 25, pp.827-832. 

413



Free vibration analysis of 2D FG plates by a meshfree boundary-
domain integral equation method 

*Y. Yang1, 2, K.P. Kou2, V.P. Iu2, C.C. Lam2, Ch. Zhang1

Abstract 

Keywords:

Introduction 

414



Exponential Material Properties 

415



Problem Formulation and Numerical Solution Method 

416



417



Numerical Examples and Discussion 

418



419



420



Conclusions 

421



References 

422



423



APCOM & ISCM
11-14th December, 2013, Singapore

1

Direct determination of critical load combinations for elastoplastic structures 

subject to multiple load cases

*S. Tangaramvong, and F. Tin-Loi
School of Civil and Environmental Engineering, The University of New South Wales, NSW 2052, Australia

*Corresponding author: sawekchai@unsw.edu.au

Key Words: Structural design, Multiple load cases, Elastoplasticity, Integer program

Abstract

The paper presents a mathematical programming based approach for the safety assessment of 
nonlinear structures that can be subject to a number of predefined load combinations. The objective 
is to determine in a single step the critical load combination, for which the chosen maximum (or 
minimum) response (e.g. stress or displacement) occurs. Assuming elastoplastic material properties, 
the governing formulation takes the form of challenging nonconvex and nonsmooth optimization 
problem, known as a 0-1 mathematical program with equilibrium constraints or 0-1 MPEC. The 
numerical algorithm proposed to solve the 0-1 MPEC is a regularization technique that involves 
iteratively processing a series of reformulated mixed integer nonlinear programming problems 
(MINLP) using a penalty function. Optimal solutions to each MINLP subproblem are obtained by 
the proposed novel space search formulation or FSS scheme.

Keywords: Structural design, Multiple load cases, Elastoplasticity, Integer program

Introduction

The safety assessment of structures under multiple load cases provides a well-accepted numerical 
approximation for the critical structural responses, such as the extreme maximum and minimum 
bound values to some specified variables of interest, e.g. member forces, nodal displacement, etc. 
Various papers in this area (see e.g. Mullen and Muhanna, 1999; Suarjana and Law, 1994) have
established reliable theoretical and numerical treatments, albeit solely for elastic material related 
problems. It is useful, and often mandatory, to incorporate the influence of material nonlinear 
properties for the realistic assessment of practical engineering mechanics applications.

The present study proposes a pair of novel mathematical programming based approaches to directly 
identify the maximum bound value in one case and the minimum bound value in the other case to 
some selected set of response variables of an elastoplastic structure subjected to various pattern load 
cases. The governing problem takes the “nonstandard” and difficult form known in the nonconvex 
and/or nonsmooth optimization theory as a 0-1 mathematical program with equilibrium constraints 
or 0-1 MPEC (Kocis and Grossmann, 1989; Luo et al., 1996). The specific equilibrium constraints 
are characterized by complementarity conditions (representing plastic behavior). We propose a
penalty regularization technique to transform the challenging original 0-1 MPEC to a standard 
mixed integer nonlinear programming or MINLP problem, and then successively solve a series of 
MINLP subproblems to iteratively enforce the complementarity. A novel formulation space search 
or FSS algorithm (López and Beasley, 2013) is adopted to capture the best (optimal) solution for 
each of the MINLP subproblems. We illustrate the application and robustness of the proposed 
method through one of the many examples we have solved.
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Critical Load Combinations as a 0-1 MPEC

Our work adopts a standard “line” finite element framework, where the structure is suitably 
discretized into n elements, m basic stresses/strains, d degrees of freedom and y yield functions. The 
nonlinear material properties are accommodated through the classical plastic hinge concept.
Plasticity is confined solely at fixed critical zones, namely the two ends for each generic element,
whilst the rest of the member between these ends remains elastic. A computationally advantageous 
piecewise linear plastic concept (Maier, 1970) is adopted to provide a close approximation to the 
actual nonlinear yield surfaces, as a number of linear hyperplanes.

The generic formulations describing the path-independent or holonomic elastoplastic response of 
the structure under a single load case are written as follows (see e.g. Maier, 1970; Tangaramvong 
and Tin-Loi, 2007, 2008):

,FQC T (1)

,peCu  (2)

,EeQ  (3)

,Np  (4)

.,, 0TT  w00rQNw (5)

More explicitly, equilibrium between basic stresses Q  m and externally applied forces F  d is 
given in Eq. (1) through a (constant) compatibility matrix C  md. The linear compatibility 
relation between nodal displacements u  d and basic strains, written as a summation of elastic 
e  m and plastic p  m strains, is described in Eq. (2). The elastic constitutive behaviors are 
expressed in Eq. (3) using a positive definite stiffness matrix E  mm.

The associative flow rule in Eq. (4) defines the plastic strains p as functions of plastic multipliers 
  y through a constant normality matrix N  my, which collects unit normal directions to all 
piecewise linear yield hyperplanes. Finally, the complementarity condition (viz. wT = 0) in Eq. (5) 
between the two sign-constrained variables, namely the yield functions w 0  y and the plastic 
multipliers  0 describes the inherent holonomic structural behavior that permits reversal of 
plastic strains at the potential plastic hinges, where r y is a vector of yield limits.

Simply collecting and manipulating the governing holonomic Eqs (1) to (5) provides the following 
state problem in mixed static-kinematic variables (Q,u,):

.,,

,
,

0TT

T






w00rQNw

0ENECuQ
0FQC

(6)

The state problem given in Eq. (6) is a mixed complementarity problem or MCP (Dirkse and Ferris, 
1995a). For any predefined force vector F, the key response variables (Q,u,) can be obtained by 
solving the MCP (6) using, for instance, the state-of-the-art complementarity solver, namely PATH
(Dirkse and Ferris, 1995b), that is available from within the general algebraic modeling system or 
GAMS (Brooke et al., 1998), that we adopted for this work.
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When pattern load cases, as for practical design instances, are considered, it is essential that the 
critical load combination leading to the worst value to some response variables of interest is 
determined. An attempt to achieve this typically involves exhaustive trial-and-error and often 
requires excessive computing and designer-time resources, especially when a large number of load 
cases are concerned. To circumvent this, the present method develops a robust optimization 
technique that determines, within a single step, the critical load case associated with the maximum 
(or minimum) response variable of the structure under all possible load combinations.

We first replace the known force vector F in Eq. (6) with the set of all s possible predefined load 
cases f  ds and additional unknown binary (0 or 1) variables   s:

.fF  (7)

The variables  play the crucial role in automatically selecting which particular load case fi  d

for i = 1 to s is retained (viz. i = 1) or eliminated (i = 0) from the structural system. A direct 
determination is then enabled by forming an optimization problem, in variables (,Q,u,), that 
maximizes (or minimizes) an objective function representing the specific response variable Y (i.e. 
some basic stress Qi, nodal displacement ui, etc.), subject to the constraints describing the 
holonomic elastoplastic relations in Eq. (6) and the multiple load cases in Eq. (7):

.,,

,

,subject to

Yminmax

0

)(or 

TT

T






w00rQNw

0ENECuQ
0QC

(8)

The problem in Eq. (8) belongs to the challenging class of “nonstandard” optimization programs, 
known as a 0-1 MPEC (Kocis and Grossmann, 1989; Luo et al., 1996). In addition to the difficulties 
associated with the presence of complementarity constraints making the problem severely 
nonconvex and/or nonsmooth, the binary variables  impart computationally nasty disjunctive and 
combinatorial conditions to the 0-1 MPEC (8). To date, there are no known algorithms that can 
guarantee the (global) optimality to the solutions of MPECs, let alone of 0-1 MPECs. The best 
method is often dependent on the nature of the specific problem.

Penalty-FSS Algorithm

In this section, we propose a combined penalty regularization (Tangaramvong and Tin-Loi, 2007, 
2008) and FSS (López and Beasley, 2013) technique as a scheme to obtain the optimal solutions of 
the 0-1 MPEC (8). The 0-1 MPEC (8) is first reformulated as a standard MINLP problem by 
replacing the complementarity condition with the penalized term (viz. wT or wT) added 
directly to the objective function, where  denotes a (positive scalar) penalty parameter. We attempt 
to enforce the complementarity condition by iteratively increasing the parameter . Thus, the 
penalty algorithm we use processes a series of MINLP subproblems, each represented by 

,,

,
,subject to

YYminmax

00rQNw

0ENECuQ
0QC

ww






 )(or)(or

T

T

TT 

(9)

with increasing  (e.g.  = 10) until the preset tolerance on the original complementarity condition
(e.g. wT  106) is satisfied.
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The success of the penalty method relies on the ability to capture the optimal solutions for each of 
the MINLP subproblems (9). Unfortunately, directly processing such a problem entails severe 
combinatorial difficulties and is likely to fail in generating optimal results. A better numerical 
(albeit heuristic) method, namely FSS (López and Beasley, 2013), is proposed to circumvent these
challenges, by simply adding the following additional nonlinear constraint to increase the 
“tightness” of the original MINLP (9):

, )(T 1 (10)

where  is a (positive) relaxation parameter to FSS and 1 a unit vector. Therefore, the original 
MINLP subproblem (9) can be rewritten as:

.

,,

,

,subject to

YYminmax
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(11)

The algorithm attempts to explore, at inner-level iterations, various different sets of MINLP 
solutions by initially setting  to some suitable value and subsequently decreasing  to tighten the 
binary constraints. After obtaining the multiple sets of MINLP solutions, the best value is selected
as the “optimum” to the original MINLP (9).

The proposed penalty-FSS algorithm can be summarized in the pseudocode as follows:

Step (a) – Initialization
 Set: initial , , maximum penalty iterations (maxplt), maximum FSS iterations (maxfss), 

100T w , 0bestY for maximization (or 1000bestY for minimization), rpt = 0
Step (b) – Penalization

 For j = 1 to maxplt
if 6T 10w , terminate, end
go to FSS Step (c) to obtain the solutions of MINLP (9)
increase  = 10

end
Step (c) – FSS

 For k = 1 to maxfss
if rpt > 3 or   105, terminate, end
solve MINLP (11)
if Y = Ybest

count rpt = rpt + 1
elseif Y > Ybest for maximization (or Y < Ybest for minimization)

update: Ybest = Y and variables (best,Qbest,ubest,best)
reset rpt = 0

end
decrease  = 0.1

end
 Update: Y = Ybest,  = best, and so on. Return to Step (b)
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In Step (a), we initialize the penalty parameter to  = 1, and the FSS relaxation parameter  by 
processing the following relaxed (continuous but bounded) system to the original MINLP 
problem (9) in noninteger variables (,Q,u,): 

,

,,

,

,subject to

YYminmax

10
00rQNw

0ENECuQ
0QC

ww







 )(or)(or

T

T

TT 

(12)

and hence from the solutions obtained in Eq. (12) 

.)(T 1 (13)

It is clear that the optimization given in Eq. (12) is a standard nonlinear programming or NLP 
problem that can be easily solved by any available NLP code, such as GAMS/CONOPT (Drud, 
1994). Furthermore, the solutions obtained from the relaxed NLP (12) provide a good 
approximation to the initial variables of MINLP (11).

In Step (b), each MINLP (9) subproblem is processed using the FSS scheme in Step (c), where a 
series of increasingly “tighter” MINLPs (11) is solved by systematically reducing the value of .
Thus, different sets of solutions to MINLP (11) are generated, and the best optima are updated. The 
FSS Step (c) terminates when either the MINLP (11) solve finds more than three consecutive 
identical solutions or the FSS parameter  is sufficiently small, namely   105.

We process the MINLP solve using the GAMS/DICOPT solver (Kocis and Grossmann, 1989). The 
proposed penalty-FSS algorithm is coded within a MATLAB framework that is linked directly to 
the GAMS environment through a MATLAB-GAMS interface software (Ferris, 1998).

Illustrative Example

The three-span continuous beam in Fig. 1 with three identical vertical point loads of 80 kN, each 
independently applied at midspan, is considered. This structure was previously investigated by 
Mullen and Muhanna (1999) to illustrate applications of the fuzzy finite element method to obtain 
the maximum and minimum bounds to the bending moments under multiple load combinations,
where only elastic material properties were assumed.

1 2 3 4 5 6

80 kN 80 kN 80 kN

2@6m = 12m 2@6m = 12m 2@6m = 12m

Figure 1. Three-span continuous beams under multiple load cases.

In the present study, we further incorporate the influences of elastic perfectly plastic material (steel) 
properties: modulus of elasticity of E = 2  108 kNm2; cross sectional area of A = 6000  106 m2;
second moment of area of I = 30  106 m4; and flexural force plastic capacity of Q2u = 175 kNm. 
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As is practical for the beam structure, a pure bending yield model is adopted for each of the 
potential plastic hinges, namely at member ends.

The beam discretization consists of 6 elements, 18 basic stresses/strains, 16 degrees of freedom and 
24 yield functions. The pattern loads generated by the three point loads (Fig. 1) lead to 8 possible 
combinations (e.g. one point load at each span, two point loads at two adjacent spans, etc.).

Table 1. Critical bending moments and associated load patterns by penalty-FSS method.

Element 1 Element 2 Element 3
1
2Q 1

3Q 2
2Q 2

3Q 3
2Q 3

3Q

Maximum Y  175

{A}

36

{B}

32.5

{C}

168

{D}

168

{B}

Minimum Y  36
{B}

175
{A}

168
{D}

32.5
{C}

130
{E}

(a)

(b)

(c)

(d)

(e)

Figure 2. Critical load combinations (a) pattern A, (b) pattern B, (c) pattern C, (d) pattern D
and (e) pattern E, where  denotes plastic hinge.

The proposed penalty-FSS algorithm successfully computed the critical (viz. the most maximum 
and the least minimum) bounds to flexural forces (unit kNm) at the two start iQ2 and end iQ3 nodes 
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for each of the members 1 to 6. In view of symmetry of the structural system, the obtained results of
a half beam, namely members 1 to 3, are summarized in Table 1, where positive and negative signs 
define clockwise and anticlockwise flexural directions, respectively. The critical load patterns (also 
indicated in brackets in Table 1) corresponding to each of the 0-1 MPEC solutions are displayed in 
Fig. 2. The CPU times are not reported as each of the 0-1 MPEC (8) solves only took few seconds
to furnish the results for the modest 2.7-GHz Pentium personal computer with 3-GB RAM running 
WinXP.

The accuracy of these optimal solutions is validated through a comparison with the results found 
from the complete (exhaustive) MCP (6) solves involving 8 possible load combinations.

Conclusions

A mathematical programming based penalty-FSS method has been proposed for the direct 
determination of the critical bound to some response variables of structures under multiple load 
cases. The present study incorporates the influences of material (elastic perfectly plastic) 
nonlinearity, as is necessary for the realistic safety assessment of the structures. The key feature of 
the proposed scheme is to compute, within a single step, the most maximum in one case and the 
least minimum in the other case response values of interest for the structure subjected to known 
design multiple load combinations. The specific pattern load corresponding to each of the critical 
bounds is obtained as a by-product.

The governing problem takes the form of a challenging optimization problem, known in the 
nonconvex and/or nonsmooth optimization literature as a 0-1 MPEC. To circumvent the difficulties 
associated with nonconvexity and disjunctiveness, a penalty-FSS algorithm has been proposed. 
Such a scheme enforces the complementarity condition by iteratively processing a series of 
penalized MINLP subproblems with successively increasing penalty parameter. The solutions of are 
searched at an inner-level enumeration using the FSS technique by introducing an additional 
“tightness” constraint to the MINLP subproblem. By suitably decreasing the FSS relaxation 
parameter, various different sets of optimal solutions to the original MINLP subproblem can be
identified, and the algorithm then selects the best optimum.

A number of numerical examples, a simple one of which has been provided herein, indicate the 
robustness and efficiency of the proposed penalty-FSS method. The scheme can accurately capture
the desired optimal bound solutions, as validated by computationally expensive exhaustive MCP 
solves representing all possible load cases.

A straightforward extension to the present scheme is to incorporate various other nonlinear 
behaviors found in practical engineering mechanics applications, such as nonlinear geometry and 
physically instabilizing softening materials.
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Abstract
In this paper, a new computational method based on multiphase model was presented to deal with 
the thermal interactions between compressible fluids and complicated-shaped structures with
thermal conductivities as well as its mechanical interactions. The numerical procedures of our 
method are divided into three stages, advection, diffusion and acoustic stages, and the phase 
averaged governing equations are discretized with a finite volume method (FVM). The present 
method was applied to the natural convection flows in a rectangular cavity and the calculated results
were compared with the reference computational results for temperature and velocity distributions. 
As a result, it was shown that the natural convection flows could be reasonably simulated by our 
method. In addition, the natural convections arising in the porous media were calculated with the 
present method. Through the numerical experiments, its applicability to complicated-shaped
structures was discussed.

Keywords: Compressible fluid, Complicated-shaped structure, Multiphase model, Natural 
convection.

Introduction

In many engineering subjects, it is important to predict accurately heat transfers in the domain,
which contains compressible fluids and complicated-shaped structures. In the management of spent 
fuel storage system of nuclear power plants with the concrete cask for extended periods, the 
temperature distributions in the canister, which stores spent fuels and helium gas, need to be
predicted accurately for the development of the helium leak detection system (Takeda et al., 2008).
The canister has complicated-shaped internal structures and the temperature and pressure 
differences are large when the helium leakage from the canister occurs. Thus, it is essential to 
estimate the thermal interactions compressible helium gas and the influence of internal structures.
For example, a finite element method (FEM) using unstructured grids has been used with thermal
coupled problem between fluids and complex geometries (Goung et al., 1990). Such methods using 
unstructured grids can accurately predict the phenomena. However, the generations of grids become 
difficult as the shapes of geometries become complex. 
The multiphase model (Ushijima et al., 2007 and 2009) enables us to predict thermal and 
mechanical interactions between incompressible fluids and complicated-shaped structures easily
with simple structured grids. In this paper, a new computational method based on multiphase model 
was proposed to deal with the interactions between compressible fluids and complicated-shaped
structures. The present method was applied to the natural convection flows in a rectangular cavity. 
As a result, it was shown that the natural convection flows could be reasonably simulated by our 
method. In addition, the natural convections arising in the porous media were calculated with the 
present method. Through the numerical experiment, its applicability to complicated-shaped
structures was discussed.

432



2

Computational Method

Governing Equations

The multiphase field consisting of fluids and solids is considered, where fluids are compressible and 
each phase is immiscible. In this study, solids are taken as fluids which do not move.
Averaged governing equations for the multiphase field, which contain compressible fluids, consist
of mass conservation equation in Eulerian description, momentum equations and energy equation
given by

∂ρ
∂t


∂ ρui( )
∂xi

 0 (1)

∂ ρui 
∂t


∂ ρuiuj( )
∂x j

 − ∂p
∂xi


∂τ ij

∂x j

 ρgi (2)

∂ ρe( )
∂t


∂ ρeuj( )
∂x j

 −p
∂ui

∂xi

τ ij
∂ui

∂x j

−
∂qj

∂x j

(3)

where t is time, xi is the i-th component of two-dimensional orthogonal coordinates and gi is the 
acceleration of external force in xi direction. While velocity component ui and internal energy e are
the mass-averaged value in the mixture of phases, volume-averaged variables are defined for 
density ρ, pressure p, viscous stress τij, heat flux qj. For example, e and p are defined as

e  ∑k ρkVkek

∑k ρkVk

and p  ∑k Vk pk

V
(4)

Furthermore, e, τij, qj and the state equation are given by

e CVT (5)

τ ij  
∂ui

∂x j


∂uj

∂xi

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−

2
3
 ∂um

∂xm

δij (6)

qj  −λ
∂T
∂x j

(7)

p  (γ −1)ρe (8)

where  CV,  T,  μ, λ and γ are specific heat at constant volume, temperature, viscosity, thermal
conductivity and specific heat ratio respectively. These are volume-averaged variables and 
coefficients same as ρ, p, τij and qj.

Numerical Procedures

In our method, the numerical procedures are divided into three stages, advection, diffusion and 
acoustic stages, like CCUP (Yabe et al., 2004) and TCUP method (Himeno et al., 2003). The
governing equations are written by conservation forms and the multiphase model is applied. The
governing equations of each stage are discretized with a finite volume method (FVM) and variables, 

, u, T and p, are updated in all stages. Thus, the mass conservation law is sufficiently satisfied in 
a calculation area. On the other hand, in CCUP and TCUP method, the governing equations are 
written by non-conservation forms. Therefore, the conservation of mass in the calculation area is 
not necessarily satisfied.
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Figure 1 shows the flow chart of numerical procedures. In the advection and diffusion stages,
advection and diffusion terms are calculated respectively. Pressure and gravity terms are calculated
in the acoustic stage. After that, phase averaged variables are updated based on volume of solids. 
These calculations are performed iteratively and numerical solutions are calculated in time 
evolution. In what follows, variables after advection and diffusion stages will be expressed as Q’
and Q’’ respectively. In addition, variables after acoustic stage are Qn+1.

Figure 1. Flow chart of numerical procedures

Advection Stage

Governing equations of advection stage are given by

∂ρ
∂t


∂ ρui( )
∂xi

 0 (9)

∂ ρui( )
∂t


∂ ρuiuj( )
∂x j

 0 (10)

∂ ρe( )
∂t


∂ ρeuj( )
∂x j

 0 (11)

Equations (9), (10) and (11) express advection equations of , u, e respectively.
The advection terms are calculated with a fifth-order TVD scheme (Harten, 1984). After that, T’
and p’ are updated from ’, u’, e’ with Eqs.(5) and (8).

Diffusion Stage

Governing equations of diffusion stage are indicated as follows :

∂ρ
∂t

 0 (12)

∂ ρui( )
∂t


∂τ ij

∂x j

(13)

∂ ρe( )
∂t

 τ ij
∂ui

∂x j

−
∂qj

∂x j

(14)

In this stage, right-hand sides of Eqs.(13) and (14) are calculated and variables are updated with the
following equations :
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ρ '' ui ''−ui '
Δt


∂τ ij '
∂x j

(15)

ρ ''CP T ''−T '( )
γΔt

 −
∂ ρ 'CVT 'uj '( )

∂x j


∂ τ ij 'uj '( )
∂x j

−
∂qj '
∂x j

−
ρ '
2
∂uj '2

∂t
(16)

p ''− p '  γ −1
γ

ρ ''CP

ρ ''CPJ 1
T ''−T '( ) (17)

where μJ is Joule-Thomson coefficient.

Acoustic Stage

Governing equations of acoustic stage are given by

∂ρ
∂t


∂ ρui( )
∂xi

 0 (18)

∂ ρui( )
∂t

 − ∂p
∂xi

 ρgi (19)

∂ ρe( )
∂t

 −p
∂ui

∂xi

(20)

Equations (18), (19) and (8) applied to Eq.(20), we can obtain the equation of pn+1 as follows :

1
ρ ''CS

2

pn1 − p ''
Δt

 − ∂
∂xi

−
1
ρ ''

∂pn1

∂xi

Δt ui ''
⎛

⎝
⎜

⎞

⎠
⎟ (21)

where CS is the sound speed. Equation (21) is discretized and solved with the SOR method (Young,
1954). The variables, un+1, en+1 and ρn+1, are calculated with the following equations :

ui
n1  ui '' −

1
ρ ''

∂pn1

∂xi

 gi

⎛

⎝
⎜

⎞

⎠
⎟Δt (22)

ρ '' e
n1 − e ''
Δt

 pn1 ∂ui
n1

∂xi

(23)

ρn1 − ρn

Δt
 −∂ρ

nui
n1

∂xi

(24)

Application

Natural Convection in a Rectangular Cavity

In order to confirm the validity of the present method, it was applied to the 2D natural convection 
flows in a rectangular cavity as shown in Fig.2. The lengths l1 and l2 are 0.04 [m], while the left-
hand side wall is heated at Th and the right-hand side wall is cooled at Tc, the temperature difference 
ΔT = Th - Tc is 1.465 [K] in Fig.2. Adiabatic conditions are imposed on the top and bottom walls. 
On the wall boundaries, non-slip conditions are imposed.
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Fluids are taken as air, which satisfy the equation of state. The initial spatially averaged temperature
T0 and pressure P0 are 283.15 [K] and 1.0 [atm]. Regarding physical properties of fluids, viscosity μ,
thermal conductivity λ, specific heat at constant pressure and volume CP, CV, are μ = 1.82 × 10-5

[kg/(m•s)], λ = 2.587 × 10-2 [W/(m•K)], CP = 1.007 × 103 [J/(kg•K)] and CV = 7.17 × 102 [J/(kg•K)]
respectively. The number of fluid cells is 100 × 100.
Figures 3, 4 and 5 show comparisons of calculated results in the steady states by the present method
and reference results by TCUP method (Himeno et al., 2003). As shown in these figures, the 
predicted results are almost in good agreement with the results by TCUP method. From these results,
it was shown that the present method enables us to predict a natural convection appropriately.
In addition, err*, which made dimensionless the total change of the mass of air in a calculation area, 
is defined as err* = |M – M0|/M0. Here M and M0 are the total mass of air in the calculation area at 
each time step and in the initial state. The maximum value of err* obtained in the calculation was 
5.713 × 10-15.  From this result, it was shown that the mass conservation law is sufficiently satisfied 
in the calculation area.
In the following cases, the temperature difference was set to ΔT = 100 [K] and density variations 
were compared with the result in ΔT = 1.465 [K]. The density variations are estimated with
Lagrangian derivative of non-dimensional density Dρ*/Dt . Here ρ* is given by ρ* = ρ / ρ0 and ρ0 is
the spatial averaged density in the initial state. It is noted that Dρ*/Dt = 0 in incompressible fluids.
Figure 6 shows the distributions of Dρ*/Dt in the steady state and Table 1 shows maximum and 
minimum values of Dρ*/Dt in each case. In Figure 6 and Table1, the densities change near the 
heated and cooled wall and absolute values of variations increase as ΔT increases. In general, 
compressibility effects become large as ΔT increases. Thus, it can be said that calculated results are
appropriate and the present method enable us to estimate the compressibility effects of fluids.

x1

x2

T h

T
c

l1

l2

Figure 2. Calculation area

Figure 3. Comparison of temperature distributions
(Left : present results, Right : TCUP (Himeno et al., 2003))

Figure 4. Comparison of u1 distributions               Figure 5. Comparison of u2 distributions
(Left : present calculations, Right : TCUP (Himeno et al., 2003))
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(a) ΔT = 1.465 [K] (b) ΔT = 100 [K]
Figure 6. Distributions of Dρ*/Dt

Table 1. Maximum and minimum values of Dρ*/Dt

ΔT [K] Max [1/s] Min [1/s]
1.465 1.615×10-3 -1.618×10-3

100 1.576 -1.663

Natural Convection in Porous Media with Thermal Conductivity 

To confirm the applicability of the present method to complicated-shaped structures, natural
convections in porous media with thermal conductivity were calculated.
As shown in Figure 7, 32 cylinders are located in a calculation area. The lengths l1 and l2 are 0.17
and 0.33 [m], while the diameter of the cylinders d is 0.03 [m] and the interval between each 
cylinder s is 0.01 [m] respectively. The left-hand side wall is heated at Th = 310 [K] and the right-
hand side wall is cooled at Tc = 300 [K], the temperature difference ΔT = Th - Tc is 10 [K] in Fig 7.
Adiabatic conditions are imposed on the top and bottom walls. On the wall boundaries, non-slip
conditions are imposed. The physical properties of fluids (air) were set same values as the preceding 
section and physical properties of the solids (cylinders) were same as that of fluids. In addition, the
number of fluid cells is 51 × 99.
Figure 8 shows temperature distributions ((a) t = 1.0 [s], (b) steady state). First, heats transferred by
convections in the fluids area. After that, the temperatures of solids changed by heat conductions in
the solids. Thus, the temperature differences between the fluids and the solids occurred at t = 1.0 [s]
in Fig 8 (a). In the steady state, the temperatures of solids became equal to that of fluids as shown in
Fig 8 (b). Figure 9 is the vertical distribution of T at x1

* = 0.5 in the steady state. Here, xi
* and T* are

defined as follows :

xi
*  xi

li

and T *  T −Tm

Th −Tm

(25)

where, li is the length of the calculation area, Th is the temperature of the heated wall and Tm is the
temperature at x1

* = 0.5 and x2
* = 0.5. In the calculated result, the top area is high temperature and 

the bottom area is low temperature. This is the typical temperature distribution of the natural 
convection in the closed cavity.
Predicted the horizontal velocities u1 at x1

* = 0.5 and the vertical velocities u2 at x2
* = 0.5 are shown 

in Fig 10 and 11 respectively. Here, ui
* is defined as follows :
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ui
*  ui

Ui

(26)

where, Ui is the maximum value of |ui| in the calculation area. As shown in these figures, buoyancy-
driven flows occurred near the heated and cooled walls and cyclic flows were predicted in the fluids 
area. Thus, it can be said that the present method enables us to predict the natural convections in 
porous media with thermal conductivity reasonably.

x1

x2

T h

T
c

d

s

l1

l2

(a) t = 1.0 [s] (b) Steady state
(t = 10.0 [s])

Figure 7. Calculation area Figure 8. Temperature distributions

Figure 9. Vertical distribution of T (x1
* = 0.5)
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Figure 10. Vertical distribution of u1
* Figure 11. Horizontal distribution of u2

*

(x1
* = 0.5)                                                                (x2

* = 0.5)

Conclusions

In this paper, a new computational method based on multiphase model was proposed to deal with 
the thermal and mechanical interactions between compressible fluids and complicated-shaped
structures with thermal conductivities. The numerical procedures of our method are divided into 
three processes, advection, diffusion and acoustic stages, and the phase averaged governing 
equations are discretized with a finite volume method (FVM). Thus, the mass conservation law is 
sufficiently satisfied in a calculation area in our method. 
The present method was applied to the natural convection flows in a rectangular cavity and the 
calculated results were compared with the reference computational results for temperature and 
velocity distributions. As a result, it was shown that the natural convection flows can be reasonably 
simulated by our method. It was also confirmed that the mass conservation law is satisfied 
sufficiently in the calculation area, and the present method enables us to estimate the 
compressibility effects of fluids by the temperature difference. In addition, the natural convections 
arising in the porous media were calculated with the present method. Through the numerical 
experiment, its applicability to complicated-shaped structures was verified.
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Abstract

Attempt was made to analyse aerodynamics of hypersonic vehicle near space with slip NS 
methods. The applicability of several different slip boundary conditions was investigated. The 
difference between continuum and rarefied predictions for surface properties of cylinder and 
trapezoid wing was shown. The results show that present code was valid for predicting slip 
regime flow by comparing with results in reference.Type-2 slip model proposed by Gokcen had 
more extensive rarefied limit, and could give a best agreement with DSMC results in higher 
Knudsen numbers comparing with other slip models. Peak transfer rate differences range from 
over 1.6% for 50KM to almost 14.5% for 80KM. Pressure coefficient on the surface is little 
affected by rarefied gas effect, while heat transfer rate is most influenced by that. 

Keywords: near space; hypersonic vehicle; aerodynamics; rarefied gas effect; slip model 

0.Introduction

Future hypersonic flight vehicles[1] have many specific performance features, such as long 
distance and accurate attack, and maneuvering flight. Therefore, these vehicles in atmosphere 
must have the ability of large passage maneuvering flight, the characteristics of long-time flight 
and high lift-to-drag ratio aerodynamic configurations, and specific trajectories. A typical 
configuration property is the sharp leading edges. The flight passage suffering transitional flow 
effect is much larger due to the smaller characteristic length scale, and hence in flight at high 
altitude, the vehicles can globally or locally suffer transitional flow effect. So, it is a key and 
important problem that the transitional flow effects on aerodynamic force and heating for flight 
vehicle design. Aerodynamic force and heating for these type vehicles in rarefied flow regime
are very different from that in continuum flow regime. These difference are never been paid 
much attention for traditional blunted vehicles due to more redundancy design used. However, 
future hypersonic flight vehicles allow only to taking less redundancy, and thus aerodynamics in 
the near space need to be investigated in detail.

At low altitude, traditional CFD method is generally used in continuum flow regime. As 
increasing of altitude, flow changes gradually from continuum flow regime to near free molecule 
flow regime. In that processing it need to be answered that when continuum breakdown is 
starting, and how much error that will result in. The continuum breakdown criteria was 
investigated by many researchers[2-6]. The rarefied gas effect on aerodynamics of hypersonic 
vehicles near space have been investigated little[7-9]. 
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The applicability of different slip models will be investigated around cylinder, and then The
comparison of the aerodynamics of hypersonic vehicle near space using slip method and noslip 
method in transitional flow regime will be made.  

1.Computational approach 

A. N-S equation 

3-D laminar N-S equation can be written as v v vQ F G H F G H
t x y z x y z

      
     

      

Here, Q is a conservative vector. F G H are convection vector flux in three direction 
respectively, and vF vG vH  are viscous vector flux in corresponding direction. 

Roe scheme is used for space discretization under the finite volume frame, minmod limiter 
is adopted. The center-difference method is used for viscous numerical flux.LU-SGS implicit 
time integration method is introduced. 

B. Slip boundary models 
Four type models are investigated in this paper. Type1 is defined by Maxwell model. Type2 

is Gokcen[10] slip model. Lockerby[11] model is defined as Type3. HS model is Maxwell slip 
model modified by hard sphere model.  

Type1 (Corresponding to CFD(1) in reference [9]) is given by               
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Type2 (Corresponding to CFD(2) in reference [9]) is given by               
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Type3 (Corresponding to CFD(3) in reference [9]) is given by               
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C. Main dimensionless parameters
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Error can be written as 2

2

100%noslip slip

slip

q q
Error

q


 

Here qnoslip is no_slip results qslip2 is slip results with Type2 model. 

2.Code validation and applicability analysis of different slip models

The flow over cylinder is simulated to analyse applicability of above several slip models at 
Mach number of 10, 25. Cylinder diameter is 304.8mm. The argon flow is considered in this 
work[9]. Knudsen number based on diameter is 0.002 0.05 0.25,respectively. Free steam 
temperature is 300K. 

A. M=10 U=2624m/s TW=500K 

               
(a)Pressure contours and streamline (b)Pressure contours and vector

(Kn=0.002)                                  (Kn=0.05) 
Fig.1Flow field with different methods(Ma=10)

Fig1(a) show pressure contours at Knudsen number 0.002, and Fig.1(b) show pressure 
contours and vector. It can be concluded from Fig.1(a) that  at the continuum regime, the 
agreement of flow between slip boundary conditions and no slip boundary conditions is very 
good. Present slip method can capture the shock structure and wake eddy. As Knudsen number 
increases to 0.05, the flow is well within the slip regime. The flow demonstrates breakdown in a 
larger area of the flow in each of the three regions(shock, boundary layer and wake). The slip 
CFD shock is much thicker than the no_slip CFD shock. Velocity-slip at the wall can be seen 
clearly with slip boundary conditions. The difference of pressure contours at the wake can be 
found evidently. It can be predicted from previous several flow difference that wall pressure, 
heat flux may be very different.  

(a)Present results
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(b)Computational results in reference [9]
Kn=0.002                       Kn=0.05                       Kn=0.25 

                 Fig.2 Heat transfer rate on the surface at different Knudsen numbers (Ma=10) 
Figure 2 quantify the differences in the surface properties by comparing CFD and DSMC 

predictions for heat flux coefficient at Mach number 10. Where Fig.2(a) shows present results, 
and Fig.2(b) shows computational results in reference [9]. At a Knudsen number of 0.002, the 
flow is within the continuum regime, and the results predicted by CFD and DSMC are in 
excellent agreement. As Knudsen increasing to 0.05, 0.25, the results predicted by different slip 
models keeps no longer in agreement. It can be found the heat flux coefficient shows 
surprisingly good agreement between the type-2 case and DSMC even at the higher Knudsen 
number of 0.05,0.25. The surface properties predicted by DSMC tended to be lower than those 
predicted by CFD, even for the CFD cases implementing slip conditions. From comparison 
among several different types of slip boundary conditions, the best agreement appeared to be 
obtained using Type-2 slip model. It can be concluded that present results are consistent with 
computational results in reference [9]. 

(a)Present results

(b)Computational results in reference [9]
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Kn=0.002                       Kn=0.05                       Kn=0.25 
Fig.3 Pressure coefficient on the surface at different Kn numbers( Ma=10) 

Pressure coefficient on the surface at different Kn numbers are shown in Fig.3, and Fig.3(a) 
is  present results, Fig.3(b) is reference’s results. At Knudsen number of 0.002,0.05, the results 
predicted by slip NS keep a good agreement with those by DSMC. Pressure coefficient by 
DSMC tend to be lower than those by CFD at Kn=0.25. The main reason can be explained by 
that shock thickness predicted by DSMC is bigger than that by CFD, and compressibility
predicted by DSMC is more weakly than that predicted by CFD. Above all will result in a bigger 
pressure after shock wave. It can be concluded from Figs.(2-3) that pressure coefficient variation 
is more sensitive to rarefied gas effect than heat flux coefficient, and present results keep an 
excellent agreement with computational results in reference [9].

B. M=25 U=6585m/s TW=1500K

Kn=0.002                       Kn=0.05                       Kn=0.25 
Fig.4 Heat transfer rate on the surface at different Kn numbers( Ma=25) 

Kn=0.002                       Kn=0.05                       Kn=0.25 
Fig.5 Pressure coefficient on the surface at different Kn numbers( Ma=25) 

Fig.4 shows heat flux coefficient on the surface at different Kn numbers with mach number 
of 25.Fig.5 shows corresponding pressure coefficient distribution. They are computed by 
different slip models, and compared with DSMC results in reference [9]. The surface properties 
at mach number of 25 is similar to that at mach number of 10. Even at Mach-25 case, type-2 
CFD solution also keeps a less error than others. 

It can found form above all that present code is valid for predicting slip regime flow by 
comparing with results in reference[9]. Type-2 slip model can be adopted in more extensive
rarefied limit. At a bigger Knudsen number, surface properties predicted by DSMC tend to be 
lower than those by slip CFD. Comparing with heat flux rate, pressure is more sensitive to 
rarefied gas effect. Like conclusion in reference[9], all of the slip boundary conditions increases 
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the computational expense of the CFD simulations, with the Type-2 being the most expensive. If 
possible for designing, other slip boundary conditions may be a good choice.  
3 Aerodynamics of trapezoid wing in near space

Aerodynamics of trapezoid wing in near space is investigated with Type-2 slip model at 
mach number of 15. The altitude range is from 50km to 80km, and the angle of attack is 10°. 
Wall temperature is 500K. Wing head diameter is 30mm.Wing is with 1.96m root chord length, 
0.63m tip chord length, 0.5m span length. Swept back angle is 20°. Fig.6 shows grid in the 
computation region.Fig.7 shows slice station of trapezoid wing. 

Fig.6 Grid in the computation region     Fig.7 Slice at different stations

50km                60km              70km               80km 
Fig.8 heat flux at different stations 

50km                   60km             70km               80km 
Fig.9 Error at different stations

Figs.(8-9) show respectively heat flux and its error along both the slice stations. At a lower 
altitude, the heat transfer rate along slice station shows surprising agreement between slip case 
and no_slip case. As altitude increasing, the difference of results predicted by different methods 
tends to be evident. With windward compressed and leeward expanded, rarefied gas effect 
firstly appear on the windward, and so the difference of results predicted by different methods 
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is smaller on the windward than on the leeward. It can seen from Fig.9 that the maximum error 
is at the expanding region of wing leading edge, and error of heat transfer on the surface of the 
wing range from 5% for 50km altitude to almost 15% for 80km altitude. 

                Table1 Aerodynamics with different methods
H

(km)
CAf

(×100)
CA 

(×100)
CN 

(×100) L/D

50
No_slip 0.4496 0.7410 5.339 3.096

Slip 0.4493 0.7410 5.334 3.094
Error 0.07% 0.00% 0.09% 0.06%

60
No_slip 0.8509 1.150 5.473 2.492

Slip 0.8454 1.145 5.423 2.485
Error 0.65% 0.44% 0.92% 0.28%

70
No_slip 1.770 2.083 5.757 1.740

Slip 1.738 2.051 5.448 1.689
Error 1.84% 1.56% 5.67% 3.02%

80
No_slip 4.245 4.593 6.342 0.676

Slip 4.083 4.422 5.382 0.591
Error 3.97% 3.87% 17.84% 14.38%

Table1 shows comparison of aerodynamics by different methods. It can be concluded that 
as flight altitude increases, friction coefficient, axial force coefficient and normal force 
coefficient increase, and the ratio of Lift-to-Drag decrease. It can be seen from the error results 
that rarefied gas effect enhance much as flight altitude increasing, traditional CFD method is 
invalid in continuum breakdown region and cannot give an accurate velocity jump boundary 
condition. So error tends to be increasing as rarefied gas effect enhancing.

Table2 Peak heat flux with different methods

H (km)

Q 
(kW/m*m)

50 60 70 80

No_slip 5701.9 2816.6 1348.4 594.1

Slip 5614.9 2755.7 1272.1 518.8

Error 1.55
% 2.21% 5.99% 14.52% 
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Table2 shows variation of peak heat transfer rate as flight altitude. The density increases , and 
peak heat transfer rate decreases sharply as flight altitude increasing. Like aerodynamics, the error 
of peak heat transfer rate also increases as flight altitude increases with continuum breakdown.  

4.Conclusions

Different slip model validation was investigated by comparing cylinder flow. Hypersonic 
aerodynamics of trapezoid wing in near space flying near continuum flow regime was analyzed 
with slip CFD method in this paper. The difference between slip CFD and no_slip CFD simulations 
was quantified lastly.The main contents and achievements are concluded as follows: 

1 Present code was valid for predicting slip regime flow by comparing with results in reference.
2 Type-2 slip model proposed by Gokcen had more extensive rarefied limit, and could give a 

best agreement with DSMC results in higher Knudsen numbers comparing with other slip models. 
3 The surface properties predicted by DSMC tended to be lower than those by CFD, so CFD 

solutions could give much redundancy for thermal protection designing. 
4 The surface pressure was less affected by continuum breakdown than heat transfer rate.
5 For present trapezoid wing, as flight altitude ranged from 50km to 80km, error of heat 

transfer on the surface of the wing is from 5% to 15%, with peak heat transfer rate ranging from 
1.6% to 14.5% at stagnation, and the error of the ratio of Lift-to-Drag is from 0.06% to 14.38%. 
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Abstract
In this paper, a parametric model of a stiffened shell is built with Python language in Abaqus. The 
explicit FEM is used as an analysis tool in the optimal design of stiffened shell structures. The skin 
thickness and stiffener size are designed and optimized. The optimization contains two strategies: 
one is to obtain the minimum mass subjected to the structural performance, and the other is to 
obtain the high structural performance subject to the mass. In spite of the advantages of computer 
capacity and speed, the enormous computational cost of complex simulations makes it impractical 
to rely exclusively on simulation codes for the purpose of design optimization. To solve this 
problem, a surrogate model is built employing the experimental design and Kriging model, 
constructing the relationship between variables and standard deviation of the objective, reduced the 
computing time of uncertainty analysis in optimization to improve computing efficiency.

Keywords: Stiffened shell structures, Post-buckling, Explicit FEM, Optimization, Kriging 
surrogate model.  

Introduction

Stiffened shell structures are by far the most consumed structural components in the aerospace 
industry due to good stability, design ability and low cost. Buckling of such structures is often of 
mayor concern to designers. However, it is still a difficult task to perform a stability analysis of 
stiffened shells when the post-buckling behavior is considered. In fact the post-buckling analysis is 
quite necessary for completely describing the stability characteristics of stiffened shells. In this 
situation, the optimization problem with stability objective/constraints of these structures becomes
difficult to evaluate.

Literature [1,2] pointed out that the explicit finite element method is an effective way to analysis the 
post-buckling behavior. However, because of explicit finite element analysis aims to simulate 
structural response under impact loads, an appropriate loading rate is important to quasi-static 
loading process simulation. Before optimization performing, the appropriate loading rate is 
determined firstly by comparing the effect of loading rate on numerical results. We set skin 
thickness, rib height, width and quantity as design parameters, using the Python language to build a
parametric model for optimization. This procedure uses the commercial finite element software 
Abaqus as working platform. Because of discrete design parameters existing, Kriging surrogate 
model method and multi-island genetic algorithm are employed firstly to get a preliminary design, 
and then applying sequential linear programming algorithm to obtain the optimized design of other 
continuous variables’ optimization problem based on the preliminary design. 

In this paper, the optimization contains two strategies: one is to obtain the minimum mass subjected 
to the structural performance, and the other is to obtain the high structural performance subject to 
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the mass. The numerical results show that the mass decreases 14.2% or the loading capacity 
increases 19.3% through the above optimal processes, respectively. The proposed optimization 
procedure provides an effective tool for the safe exploitation of stiffened shell structures. 

1 Model introduction

The parametric model (skin thickness, the number of ribs, height, width) built by Python language
is shown in Figure 1. The stiffened shell’s height is 1200.0mm, diameter is 2000.0mm, and the skin 
thickness is 2.0mm. There are nine hoop ribs and fifty longitudinal ribs in the stiffened shell. The 
rib’s height is 10.0mm, width is 4.0mm. The material of the structure is aluminum alloy, which 
elastic modulus is 70GPa, Poisson's ratio is 0.3, yield strength is 350MPa, ultimate strength is 
450MPa, elongation is 10%, and the material density is 2.7 × 109ton/mm3. Full integration 4-node 
shell element is employed to mesh the structure, and one skin cell between ribs has 5*5 elements.
To ensure accuracy, the height direction along the rib is meshed by two elements.

Figure 1. Finite element model

2 Loading rate selection

For the structure shown in Figure 1, post-buckling load of the structure is 282.81 ton though the 
engineering algorithms [3]. To apply explicit finite element algorithm to obtain the post-buckling 
load, the boundary and loading condition are clamping the lower end and applying a displacement
on vertical downward face of the structure, the load size is 6mm.

Because of explicit finite element analysis aims to analysis structural response under impact loads, 
we need to select the appropriate loading speed in order to simulate quasi-static loading process
firstly. Solving 5 load time conditions (10ms, 20ms, 30ms, 40ms, 50ms) respectively, and the 
support reaction force - displacement curves are shown in Figure 2. One can observe from the 
results, when the loading speed relatively faster, the support reaction force - displacement curve 
becomes unstable, and the post-buckling load of the structure is also higher. When load time is 
10ms, the post-buckling load obtained from explicit finite element analysis is 395.87 ton higher 
than the engineering algorithm’s result. And when the loading time increases, the calculated post-
buckling load gradually decreases. If load time is chosen as 50ms, the analysis result is 281.93ton 
agreeing well with the engineering algorithm. 
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Figure 2. Support reaction force - displacement curves 

From the comparison of the results of different loading rates, we can also find that the post-buckling 
load getting smaller when loading time over 30ms and the result of loading time is 50ms can be 
treated as a convergence solution. Because the computing time is proportional to the loading time,
we choose 50ms as the loading time in the following calculations but not a longer loading time. 

Figure 3. Instability process

Figure 4. Stress distribution when post-buckling load reaching

Figure 3 and Figure 4 shows steps of instability process of the structure when loading time is 50ms 
and the stress distribution when post-buckling load reaching. Though observation of the figures, one 
can find that the skin local buckled firstly, and then whole structure buckled. During this process, 
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the maximum stress in the structure is 230MPa lower than the yield stress. So the structure not 
makes use of the material because of instability.

3 Parameter Optimization

3.1 Optimal column type and solution strategy 

The two optimization formulations are showed following, the (a) formulation is the minimize 
structure weight optimization, and the (b) formulation is for maximize the structure performance 
optimization: 

find     ,  ,   ,  ,  
min      
s.t.       40 60 
              6 10 
            1.5 2.5
            7.5 12.5 
            3.0 5.0  
            282      

mpt zjn hjn jg jk

mass

zjn

hjn

mpt

jg

jk

RF ton

 
 
 
 
 


( )a

find     ,  ,   ,  ,  
max      
s.t.        40 60 
               6 10
             1.5 2.5 
             7.5 12.5 
             3.0 5.0  
             53.2      

mpt zjn hjn jg jk
RF

zjn
hjn
mpt
jg
jk

mass kg

 
 
 
 
 


( )b (1)

The mpt is the thickness of skin, and the zjn and hjn are respective the number of longitudinal ribs
and ring ribs, which are integer variables. It should be noted that the actual number of ring ribs is 
hjn+1. jg and jk are respective the height and width of the ribs. mass is the total mass of the 
structure. Rf is the maximum post-buckling load of the structure. As to the structure in the figure, 
the parameters are, mpt=2.0, zjn=50, hjn=8, jg=10.0, jk=4.0, and the total mass and the post-
buckling load are 53.22Kg and 281.93ton, respective. 

Because of the integer variables, the optimization problem could not use the sequential linear 
programming algorithm directly. So the Kriging surrogate model method is first use to get an
approximate model, and then the multi-island genetic algorithm is used to obtain a preliminary 
design based on the approximate model. At last, applying sequential linear programming algorithm
to get the optimized design of continuous variables’ optimization problem based on the preliminary 
design. 

Initial Design

Kriging Method

Approximate Model

Preliminary 
designOptimized Design

Sequential linear 
programming algorithm

Design Parameters: mpt, jg, jk

M
ulti-island genetic 

algorithm

Figure 5. Optimization Process
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3.2 Numerical examples 

As mentioned in the previous content, the initial parameters are mpt=2.0, zjn=50, hjn=8, jg=10.0, 
jk=4.0. Firstly, establish an approximate model using Kriging surrogate model (in this paper, we 
randomly select 100 design points to build an approximate mode). The two optimization
formulations have same design parameters and the needed structure response, so one approximation 
model is sufficient. The parameters and objective values of final optimized designs under these two 
optimization formulations are both showed in table 1. The results show that the optimized designs 
reduce the 14.2% weight of the structure or increase 19.3% of the post-buckling load, respectively.

Table 1. Optimization Results Summary
Initial 

Design minimize structure weight 
maximize the structure post-

buckling load

( )mpt mm 2.00 1.51 1.52 1.77 1.79 

zjn 50 46 46 41 41

hjn 8 10 10 9 9

( )jg mm 10.00 11.94 12.50 11.14 11.25 

( )jk mm 4.00 3.32 3.53 4.93 4.93 

( )
mass
kg

Approximate

model 
43.94 52.58 

Finite element 

model 
53.22 43.97 45.67 52.55 53.12 

( )
RF

ton

Approximate

model 
283.26 368.55 

Finite element 

model 
281.93 266.55 282.50 332.16 336.26 

Figure 6 shows support reaction force - displacement curves of two optimized designs. Figure 7 and 
Figure 8 show the buckling modes and stress distributions when total structure buckled (the left 
figure is optimized design got by minimizing the total structure weight). Compare with the initial
design, the stress when total structure buckled of the two optimized designs both reaching the yield 
stress, which means that the material are fully utilized. And because of it, the support reaction force 
- displacement curves are stable without any flutter.
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Figure 7. Buckling modes of optimized designs 

Figure 8. Stress distributions when total structure buckled
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4 Conclusions 

In this paper, explicit finite element algorithm is used to solve the grid stiffened cylindrical shell 
post-buckling load. The skin thickness, rib height, width and quantity are set as the design 
parameters, and two optimized designs under two optimization formulations are obtained. Because 
of there are integer variables, the Kriging surrogate model method and the multi-island genetic 
algorithm are firstly used to get a preliminary design based on the approximate model, and then 
using sequential linear programming algorithm to get the optimized design of other continuous 
variables’ optimization problem based on the preliminary design. The results show that the method 
used in this paper can get a reasonable and effective design for an optimization problem which 
contains both integer variables and continuums variables.
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 ABSTRACT
In carrying out a structural design, mechanics sensibility is important. However not all registered 

architects have sufficient mechanics sensibility. The purpose of this research is to offer the design 
know-how by analysis of the optimal solution in order to cultivate mechanics sensibility. This 
research formulates the form height and the section depth size, with the minimum weight for the 
load and span length, for a three hinge H-beam truss, using the admissible stress formula of 
compression. Analysis and verification of the form are performed by parameter analysis after 
formulation, and then the differences between both patterns are considered. 

This research compared 2 patterns for an asymmetric three hinge truss. The conclusions gained 
are as follows:  
1) In terms of form height, a truss with a same section size will be higher than that with a different 
section size. 
2) In terms of section size, for a section size of short span, a pattern with same component section
size is larger than that with different component section sizes. On the other hand, for section size of 
long span, a pattern with different component section size is larger than that with same component 
section sizes. 
The above-mentioned conclusions contribute to design know-how for three hinge trusses, with such 
know-how being effective to cultivate mechanics sensibility.

 KEYWORDS
Mechanics sensibility, Mechanics rationality, Design know-how, Optimal design

1. INTRODUCTION
In carrying out a structural design, mechanics sensibility is important. However not all registered 

architects have sufficient mechanics sensibility. In order to cultivate sensibility generally, it is 
important to experience a "genuine article ". What is the "genuine article" for mechanics sensibility? 
In this research, the minimum weight solution is treated as the "genuine article". It is thought that 
by analyzing the mechanics rational forms which become minimum weight, under the structure 
form to which the domain for a design, the loading condition, and the boundary condition were set,
it is possible to gain design knowhow. The objects of this paper are as follows: 
 The asymmetrical truss with different component section sizes and with compression force 
 The asymmetrical truss with equal component section sizes and with compression force 

The purpose of this research is to determine the form height and the section depth size with the 
minimum weight for the load and span length and height position, and it is to provide design 
know-how by comparing both patterns in order to cultivate mechanics sensibility.

2. The asymmetrical truss with different component section sizes and with compression force
This model is shown in Figure 1. Although section shape does not need to be considered for a 

tension member, the section shape does need to be considered for a compression member with 
buckling phenomenon. The section shape parameters of a component are shown in Figure 2. 

455



 

  

component A component B

N

Figure 1. Model Figure 2. The form ratio of a section

2-1. Analysis method
This research formulates the form height with the minimum weight for the load and span, using 

the admissible stress formula of tension and compression. The optimal form with mechanics
rationality is searched using the created formula. Analysis and verification of the form are 
performed by parameter analysis.

2-2. Formulization
For the formulization, refer to the last paper. (Toru Katori, 2012) 

2-3.Analysis result
When the values of N were from 100 to 200 [kN] at 20 [kN] intervals, the values of L were from 

300 to 600 [cm] at 50 [cm] intervals, the values of section depth size of the component A of 
assumption 2 and 3 and the section depth size of the component B of assumption 3 were from 1 to 
20 [cm] at 0.01 [cm] intervals, and the values of a1 were from 0.1 to 0.5 at 0.1 intervals, the form 
height and the sectional depth size with the minimum weight were computed. The sectional depth 
size ratio and the height ratio are shown from Figure 3 to Figure 5. Here, the value of compressive 
force, span length, and material strength are normalized as a formula (1) in order to give general 
versatility. 
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Figure 3. The height ratio for different component section size

sectional depth D
flange width B 
web thickness t1 
flange thickness t2 
 
rg1=B/D(=1.0) 
rg2=t1/D(=0.03), 
rg3=t2/B(=0.07) 
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Figure 4. The section depth size ratio of the component A for different component section size
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Figure 5. The section depth size ratio of the component B for different component section size

2-4. Verification and the approximate expressions of exponential functions 
Figure 3 to 5 show that the height ratio of assumption 1 can be approximated as a straight line.

The height ratio of assumption 2 and 3 and the section depth size ratio can be approximated as the 
exponential functions. The approximate expressions of assumption 1 and 3 of the height ratio were 
determined by using the values of a1=0.3, 0.5. The approximate expressions of assumption 2 of the 
height ratio were determined by using the values of a1=0.1, 0.4. The approximate expressions of the 
section depth size ratio were determined by using the values of a1=0.1, 0.3, 0.5. The approximate 
expressions are expressed from a formula (2) to (6).

The height ratio for the external force ratio and height position ratio 
Assumption 1: r1'= -0.0706a1 + 0.2853         (2) 
Assumption 2:r1'= (1.4115a1+0.1168)N1(0.315a1-0.037)    (3) 
Assumption 3:r1'= (-0.749a1 +2.243)N1(-0.0635a1 + 0.2154) (4) 

The section depth size ratio for the external force ratio and height position ratio 
The component A: D1A’= (-1.2162a12+0.9635a1-0.0023) N1 (-0.2603a1+0.3921) (5) 
The component B: D1B'= (0.3615a1-0.0083) N1 (0.0198a1+ 0.2445)        (6) 

We carried out numerical experiments in order to check the validity from formula (2) to (6). The 
validity of the height ratio of assumption 1 and 3 was verified for a1=0.4, the validity of the height 
ratio of assumption 2 was verified for a1=0.2, 0.3, and the validity of the section depth size ratio 
was verified for a1=0.2, 0.4. The form height and the sectional depth size with the minimum weight 
were computed. The relation between the assumed height ratio and an actual height ratio is shown 
in Figure 6. The relation between the assumed section depth size ratio and the actual section depth 
size ratio is shown in Figure 7 and Figure 8. 
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Figure 6. The height ratio for different component section size
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Figure 7. The section depth size ratio of the component A for different section component size
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Figure 8. The section depth size ratio of the component B for different section component size
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2-5.Consideration 
The following results were found: 
1. Assumption 1 is dependent on the height position and the span length regardless of external 

force or material strength. However, assumption 2 and assumption 3 are dependent on external 
force, material strength, the span length, and the height position. 

2. In terms of height ratio, from Figure 3 to 5 show that in the range from a1=0.1 to 0.2 only
assumption 2 is present. In the range from a1=0.3 to 0.4, all from assumption 1 to 3 are present.
And at a1=0.5, assumption 1 and 3 are present.

3. As the value of a1 increases, the actual section depth size ratio becomes larger. Furthermore, the 
increment of the actual section depth size ratio for the vertex position ratio is the same degree.

4. The approximation formula of height ratio in assumption 1 can be expressed by a straight line.
The approximation formula of height ratio in assumption 2, 3, and the approximation formula 
of actual section depth size ratio can be expressed by an exponential function of the force ratio.
Figure 6 to 8 show that the accuracy of the approximate expression is good. 

5. In terms of the height ratio, Figure 3 to 5 show that an inversion phenomenon occurred for the 
vertex position ratio. On the other hand, this did not occur for the actual section depth size ratio. 
In regards to this too, further investigations will be carried out.

3. The asymmetrical truss with same component section sizes and with compression force
This model and the section shape parameters of a component are shown in Figure 1 and Figure 2.  

3-1. Analysis method 
When the span length and height form, height position ratio, and the form height were set, the 

sectional depth sizes with the minimum weight were computed. When determining the member 
section, the stress ratio of the two components was compared, and the section size of member 
component whose stress ratio is close to the 1 is adopted. 

3-2. Analysis result
When the values of N were from 100 to 200 [kN] at 20 [kN] intervals, the values of L were from 

300 to 600 [cm] at 50 [cm] intervals, the values of the form height were from 50 to 200 [cm] at 0.05
[cm] intervals, the values of section depth size were from 1 to 20 [cm] at 0.01 [cm] intervals, and 
the values of a1 were from 0.1 to 0.5 at 0.1 intervals, the form height and the sectional depth size 
with the minimum weight were computed. The sectional depth size ratio and the height ratio is 
shown in Figure 9 and Figure 10. Here, the value of compressive force, span length, and material 
strength are normalized as a formula (1) in order to give general versatility. 
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3-3. The approximate expressions of exponential functions, and Verification
Figure 9, 10 shows that the height ratio of assumption 1 and 2 can be expressed by straight lines. 

The height ratio of assumption 3 and the section depth size ratio can be expressed by exponential 
functions. The approximate expressions of assumption 1 and 2 of the height ratio were determined
by using the values of a1=0.1, 0.3, 0.5. The approximate expressions of assumption 3 of the height 
ratio were determined by using the values of a1=0.3, 0.5. The approximate expressions of the 
section depth size ratio were determined by using the values of a1=0.1, 0.3, 0.5. The approximate 
expressions are expressed from formulas (7) to (9).

The height ratio relation with the external force ratio and height position ratio 
Assumption 1, 2:  r1'= -0.1916a1+0.3483             (7) 
Assumption 3: r1'= (-3.345a1 + 3.541)N1(-0.163a1 + 0.2651)                    (8) 

The section depth size ratio relation with the external force ratio and height position ratio 
D1'= (0.364a1-0.0074)N1(0.022a1 + 0.2457) (9) 

We carried out numerical experiments in order to check the validity from formulas (7) to (9). The 
validity of the height ratio of assumption 1 and 2 was verified for a1=0.2, 0.4, the validity of the 
height ratio of assumption 3 was verified for a1=0.4, and the validity of the section depth size ratio 
was verified for a1=0.2, 0.4. The form height and the sectional depth size with the minimum weight 
were computed. The relation between the assumed height ratio and an actual height ratio is shown 
in Figure 11. The relation between the assumed section depth size ratio and the actual section depth 
size ratio is shown in Figure 12. 
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3-4. Consideration 
The results gained are as follows:

1. Assumption 1 and assumption 2 are dependent on the height position and the span length 
regardless of external force or material strength. However, assumption 3 is dependent on 
external force, material strength, the span length, and the height position. 

2. With regard to the height ratio, in the range from a1=0.1 to 0.3, only assumption 2 is present. At 
a1=0.4, all assumptions 1 to 3 are present. At a1=0.5, only assumptions 1 and 3 are present.

3. As the value of a1 increases, the actual section depth size ratio becomes larger. Furthermore, the 
increment of the actual section depth size ratio for the vertex position ratio is the same degree. 

4. Assumption 1, 2 for the height ratio can be expressed by straight lines. Assumption 3 for the 
height ratio, and the actual section depth size ratio can be expressed by exponential functions of
the force ratio. Figure 9 to 10 show that the accuracy of the approximate expression is good. 

5. In terms of the height ratio, an inversion phenomenon occurred for the range of a1=0.3 to 0.5 
when the external force ratio increases. On the other hand, in terms of the section depth size 
ratio, inversion phenomenon did not occur for the vertex position ratio. In regards to this too, 
further investigations will be carried out. 

4. Conclusions
This research compared 2 patterns for an asymmetric three hinge truss, that is, their two 

component member sizes are same or different. The conclusions gained are as follows:  
1. From Figure 3 and Figure 9, the approximate expressions of assumption 2 are expressed by 

curve in case of the different component section sizes, but are constant in case of the same 
component section sizes. 

2. From Figures 6 to 8 and Figure 11, 12, the approximate expressions of the actual section depth 
size ratio and the height ratio are effective. 

3. In terms of the height ratio, an inversion phenomenon occurred for the vertex position ratio, for 
2 patterns together. On the other hand, for the actual section depth size ratio, an inversion 
phenomenon did not occur. 

4. A form height of truss with same component section size is higher than that with a different
component section size. 

5. For component member of short span, member section size of same component member pattern 
is larger than that of different component member pattern. On the other hand, for component 
member of long span, member section size of different component pattern is larger than that of 
same component member pattern. 
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The above-mentioned conclusions contribute to an element of design know-how for three hinge 
trusses, and it is thought that such know-how will be effective for the cultivation of mechanics
sensibility. Hereafter, it is necessary that the design know-how is learned by analyzing the 
mechanics rational forms which become minimum weight, under various structure forms. 
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Abstract
The aim of this paper is to determine the creep and relaxation responses of single chondrocytes in 
vitro. Firstly, Atomic Force Microscopy (AFM) was used to obtain the force-indentation curves of 
single chondrocytes at the strain-rate of 7.05 s-1. This result was then employed in inverse finite 
element analysis (FEA) using porohyperelastic (PHE) idealization of the cells to determine their 
mechanical properties. The PHE model results agreed well with AFM experimental data. This PHE 
model was then utilized to study chondrocyte’s creep and relaxation behaviors. The results revealed 
that the effect of fluid was predominant for cell’s mechanical behaviors and that the PHE is a good 
model for biomechanics studies of chondrocytes.

Keywords: Biomechanics, Chondrocytes, Finite Element Analysis, Porohyperelastic, AFM.

Introduction

Chondrocytes are cytoskeleton (CSK)-rich eukaryotic cells which are the mature cells in cartilage 
tissues performing a number of functions within the cartilage. The deterioration of the mechanical 
properties of these cells is believed to be one of the main factors in the development and 
progression of osteoarthritis (Jones et al. 1997, Trickey, Lee and Guilak 2000). Cellular behaviour 
in response to external stimuli such as shear stress, fluid flow, osmotic pressure and mechanical 
loading have been investigated recently (Guilak, Erickson and Ting-Beall 2002, Ofek et al. 2010,
Wu and Herzog 2006).

There are several continuum mechanical models that have been developed for the single cell as well 
as other biological tissues (Lim, Zhou and Quek 2006). One of them is porohyperelastic (PHE) 
model which can account for the non-linear behavior, fluid-solid interaction and rate-dependent 
drag effects is potentially a good candidate for investigating the responses of a cell to external 
loading and other load-induce stimuli. This PHE model considers soft tissues as porous materials 
consisting of a pore fluid that saturates the tissue and percolates and exudes transiently relative to 
the deformable porous elastic solid skeleton. Although the PHE model has been widely and 
effective utilized in biomechanics, e.g. articular cartilage modeling (Oloyede and Broom 1991,
Oloyede and Broom 1996), its application in the modeling of the single living cell has been quite
limited.

Because of recent advances in nanotechnology, a number of new experimental techniques for 
characterizing and studying the mechanical behavior of living cells have been developed. One such 
technique is based on Atomic Force Microscopy (AFM) which is a state-of-the-art experimental 
facility for high resolution imaging of tissues, cells and artificial surfaces, including probing the
mechanical properties of samples both qualitatively and quantitatively (Touhami, Nysten and 
Dufrene 2003, Rico et al. 2005, Zhang and Zhang 2007, Lin, Dimitriadis and Horkay 2007,
Kuznetsova et al. 2007, Faria et al. 2008, Yusuf et al. 2012). Its principle is to indent the 
material/sample with a tip of microscopic dimension which is attached to a very flexible cantilever 
and the force is measured from the deflection of the cantilever to obtain the force-indentation (F-
curve (Darling, Zauscher and Guilak 2006, Faria et al. 2008, Ladjal et al. 2009). This powerful tool 
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is increasingly applied in the study of cell responses to external stimuli such as mechanical and 
chemical loading. This tool is ideal for bridging the research gap in the understanding of microscale 
responses of biological organisms.

The aim of this study is to utilize the PHE model to explore the creep and relaxation responses of 
non-living chondrocytes using Atomic Force Microscopy (AFM) and inverse finite element analysis 
(FEA).

Methodology

1. Sample preparation and AFM set-up

The chondrocytes were cultured using Dulbecco’s Modified Eagle’s Medium (low glucose) 
(GIBCO, Invitrogen Corporation, Melbourne, Australia) supplemented with 10% fetal bovine 
serum (FBS) (HyClone, Logen, UT) and 1% penicillin and streptomycin (P/S) (GIBCO, Invitrogen 
Corporation, Melbourne, Australia). After culturing for a week until the cells were confluent, they 
were detached using 0.5% Trysin (Sigma-Aldrich).  They were seeded onto poly-D-lysine (PDL, 
Sigma-Aldrich) coated cultured petri dish for 1-2h. Chondrocytes were placed on the PDL surface 
to form a strong attachment while keeping their morphology round. Then the chondrocytes were 
fixed using 4% Paraformaldehyde (Sigma-Aldrich) for 20 minutes before changing it to Phosphate 
Buffered Saline (PBS, Sigma-Aldrich). All the samples were stored at -40C until required for
experiments. Biomechanical testing was conducted at room temperature. Atomic Force Microscopy
(AFM) (NT-MDT SOLVER P47-PRO SPM) was used in this study. A triangular colloidal probe 
CP-PNPL-BSG-A-5 (NanoAndMore GMBH) cantilever attached to a crystal cantilever holder was 
used in the experiment. This allows the scanning and force spectroscopy of samples in liquid. The 
colloidal probe is of diameter 5 μm and its spring constant is 0.08 N/m.

The force-indentation curves of single chondrocytes were first obtained with the AFM. The 
porohyperelastic (PHE) FEA model of the chondrocyte was then developed and used to determine
its mechanical properties by inverse analysis, where the experimental data was used as input. 
Following this, the model was extended to study the creep and relaxation responses of the cell.

2. Porohyperelastic (PHE) field theory

It has been applied in many engineering fields including Soil Mechanics (Sherwood 1993) and 
Biomechanics (Simon 1992, Meroi, Natali and Schrefler 1999, Nguyen 2005, Olsen and Oloyede 
2002); with the theoretical details extensively presented by several authors (Simon 1992, Simon et 
al. 1996, Simon et al. 1998b, Simon et al. 1998a, Kaufmann 1996). The field equations for the 
isotropic form of this theory are summarized below:

Conservation of linear momentum:

 = 0 (1)

Conservation of fluid mass (Darcy’s law): = (2)
Conservation of (incompressible) solid and (incompressible) fluid mass:+ = 0 (3)
The constitutive law: = + ,       = (4)
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= + ,    = ,    = (5)

where , , , , , and are first Piola-Kirchhoff total stress, fluid stress, symmetric 
permeability tensor, Lagrangian fluid velocity, Finger's strain, second Piola-Kirchhoff stress and 
effective strain energy density function, respectively. Neo-Hookean strain energy density function 
shown below would be used in this study (Brown et al. 2009, ABAQUS 1996):= ( 3) + ( 1) (6)
where J is the volume strain of the material, = / is the first deviatoric strain invariant, and 
C1 and D1 are material constants.

The hydraulic permeability of the chondrocyte was assumed to be deformation-dependent in this 
study. The constitutive law of deformation-dependent permeability proposed by (Holmes and Mow 
1990) was adopted. In order to adopt this to finite element simulations, the permeability was 
employed as a function of void ratio which is the ratio of the volume of fluid to the volume of solid 
component as proposed by (Wu and Herzog 2000):=  1 (7)

where k0 is the initial permeability, e0 is the initial void ratio, and  and M are non-dimensional 
material parameters. 

Note that void ratio e relates to porosity n e.g. the volume of the matrix occupied by fluid by: = /(1 ). The chondrocyte’s water content was determined to be around 60% of total volume 
(Oswald et al. 2008). Thus, the initial void ratio e0 was calculated to be e0 = 1.5. The material 
parameters  and M have been determined to be 0.0848 and 4.638, respectively in (Holmes 1986),
and used in (Wu and Herzog 2000, Holmes and Mow 1990, Moo et al. 2012). Figure 1 presents the 
strain-dependent permeability used in ABAQUS model in this study.

The volume strain of the cell is given by: = = (8)
where V and V0 are deformed and undeformed volume of material, respectively.

3. Chondrocytes diameter

In order to develop a FEA model, there are several important parameters required. One of these is 
the chondrocytes diameter. It was measured with a Leica Light Microscope M125 (Leica 
Microsystems). Note that only the round chondrocytes were picked for measurement and the 
diameter is the average of the horizontal and vertical diameters, leading to 16.99 ± 2.041 μm (n = 
50) (Figure 2). This average diameter was used in the FEM modeling of the single chondrocyte.

4. Finite Element Analysis (FEA) model

A finite element analysis (FEA) model of a single chondrocyte was developed (Figure 3) to study 
its micro-deformation response, using the commercial software ABAQUS version 6.9-1 (ABAQUS 
Inc., USA). The atomic force microscopy (AFM) nano-indentation experiment was simulated with 
this model. Because both the chondrocyte and AFM tip are spherical, axisymmetric geometry and 
element-approximation was assumed, thereby saving computational cost (ABAQUS 1996). The 
model consists of a chondrocyte cell of diameter 17 μm which was indented with a colloidal probe 
of diameter 5 μm. At first, the chondrocyte was indented to a maximum strain of around 15% of 
cell’s diameter (corresponding to a displacement of approximately 2.5 μm). The reaction forces 
were then extracted and compared to the experimental data to determine cell’s mechanical 
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properties which are C1, D1 and k0 in Eq. (6) and (7) using inverse FEA procedure. This model was 
also used to study the relaxation of chondrocytes by keeping the displacement of the tip constant. 
Secondly, the force of 27.7 nN was applied on the spherical tip and kept constant to study 
chondrocyte’s creep response. This force value was the maximum force obtained from previous 
model.

Figure 1 Deformation dependent hydraulic 
permeability

Figure 2 Chondrocytes diameter 
measurement

Figure 3 FEM model of single chondrocyte

RESULTS AND DISCUSSION 

1. AFM experiment

Before conducting force spectroscopy to probe the mechanical properties of chondrocytes, scanning 
was done to locate the position of single chondrocytes using the contact mode scanning method.
Figure 4 presents the height scanned image of chondrocytes. Using this image, the cantilever was 
adjusted so that the colloidal tip was placed centrally at the top of the chondrocyte to apply a load.
Following this, the cell was indented to approximately 15% of its diameter at strain-rate of 7.05 s-1,
and the force-indentation curves were recorded.

2. FEM results

In the first model, the chondrocyte was indented to 15% strain of cell’s diameter. The PHE model 
using Neo-Hookean strain energy density function was developed and analyzed using inverse FEA
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modeling methodology in order to capture the behavior of the cell. The software ABAQUS was 
utilized with pore fluid/stress axisymmetric elements with the PHE constitutive material law 
presented earlier. The material parameters which were determined using inverse FEA procedure 
mentioned above are presented in table 1.

Table 1 PHE model material parameters (Oswald et al. 2008)

C1 D1
Initial permeability 
k0 (μm4/N.s)

Initial void 
ratio e0

0.00105 3060 6.14×109 1.5

Figure 5 presents the AFM experimental data and PHE simulation results. It is observed that the 
PHE model agreed well with AFM experiment demonstrated that this model can be used to capture 
cells’ mechanical behavior. The relaxation of the cell was then studied by keeping the displacement 
of spherical tip constant for around 70 s. It can be observed that the PHE can capture the relaxation 
of chondrocyte very well (Figure 6). Note that the relaxation response was fast because of the effect
of pore fluid pressure developed during indentation. This pressure gradient caused the fluid to 
exude out from the cell fast enough in the relaxation state. The volume strain of the chondrocyte at 
the end of transient and relaxation states were determined to be 0.969797 and 0.829007, 
respectively using Eq. (8). It demonstrated that there was loss of fluid during relaxation state. This 
response will be considered clearer in the next model.

In the second model, the chondrocyte was applied a force of 27.7 nN on cantilever tip instead of 
displacement in the first model. This force was then kept constant for around 70 s to study the creep 
response of the cell. When the force was kept constant, the chondrocytes continued to deform until 
its deformation reached an asymptotic value (Figure 7). This is when the cell is in its equilibrium 
condition. In order to have a clearer understanding, the von Mises or solid skeleton stress and fluid 
pore pressure at the closest node to the cantilever tip was shown in Figure 8. It is observed that the 
Mises or solid stress increased significantly in the transient state and gradually reached its 
maximum value in the steady state e.g. when the applied force was kept constant. Also, in this 
steady state, the pore pressure dropped to its asymptotic/limiting low value. It demonstrated that the 
solid skeleton provided load bearing stiffness in this state where the pore pressure is practically 
zero.

It is worthy to note that pore fluid pressure reached its maximum value earlier compared to the 
applied load (Figure 8). It demonstrated that the effect of fluid is superior only in the beginning of 
the indentation. In brief, in the transient state, all of applied load was taken by the pore fluid 
pressure. The load was then transferred from fluid to solid skeleton when the pore pressure dropped 
and all of load was taken by solid skeleton after all. These results reveal the predominant role of the 
fluid in determining the responses of a chondrocyte to mechanical stimuli.

CONCLUSIONS

Both creep and relaxation responses of single chondrocytes were investigated in this study using 
AFM and inverse FEA modeling methodology. The results revealed that PHE model can capture 
these responses very well and that the effect of fluid was predominant for cell’s mechanical 
behaviors. This model can also be improved to account for other behaviors i.e. swelling effect. 
Thus, PHE is a very good candidate for exploration of mechanical deformation responses of 
chondrocyte cells.
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Figure 4 Height image of chondrocyte Figure 5 Force-indentation curves of AFM 
and FEM-PHE model with Neo-Hookean 

density function

Figure 6 Relaxation behavior of 
chondrocyte

Figure 7 Creep responses of 
chondrocytes

Figure 8 The von Mises or solid skeleton stress and pore pressure versus time curves
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Figure 1.  System of impact test
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Figure 2.  Wave analysis model of ball impact on specimen 
at the bar end of load cell 

Experimental Results and Numerical Simulation
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Figure 3. Moment of ball collision

Figure 4. Effect of deformation velocity
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Figure 5. Identified viscoelastic property
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Table 1. Material properties of bird-strike model

Figure 6. Numerical model of bird strike

Figure 7. Simulated bird strike(M = 1.81 kg, V = 79.9 m/s)

Conclusion 
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Direct numerical simulation of unsteady natural convection boundary layers on 

an evenly heated plate with time-varying heating flux 
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Figure 1.  The three development stages of an unsteady natural convection boundary layer. 
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Figure 2.  Time series of T, vi, θw, and vm at y=0.1, 0.3, 0.5, 0.7 and 0.9 for the case of 

Ra=108, Pr=7 and fn=0.1. 
 

2. At the dimensionless transition time scale s: 
 

Validation and quantification of scalings with numerical results 
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Figure 3.  Validation and quantification of the scalings at the start-up stage with the 
numerical results. 
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2.  

Figure 4.  Validation and quantification of the scalings at the dimensionless transition time 
scale s with the numerical results.
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3.  

Figure 5.  Validation and quantification of the scalings at the quasi-steady state with the 
numerical results.
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Abstract
Nonlinear acoustic wave propagation equation with void fraction (volume fraction of gas phase) is 
derived and numerically solved for the simulation of HIFU (High Intensity Focused Ultrasound) 
with micorbubbles in the present paper. HIFU is one of promising treatments for cancer. The 
focused pressure waves generate heat and necrose cancer cells. It has been lately reported that the 
existence of micorbubbles enhances heating at the focal area and the present paper is intended to 
clarify this mechanism with numerical approach. After describing the derivation of the governing 
equations and the detail of the numerical method, computed results with varying initial void 
fractions and bubble sizes are presented to show the propagation of ultrasound and the bubble 
motions in the focal area. Additionally heat generation by microbubbles are also simulated and 
evaluated.

Keywords: Ultrasound, Bubble, CFD, Multiphase, HIFU (High Intensity Focused Ultrasound)

Introduction

HIFU (High Intensity Focused Ultrasound) is a promising treatment for cancer because of its low 
invasiveness, high controllability and low cost compared with other existing methods. On the other 
hand, HIFU has a problem when it is applied to deep body such as liver cancer. Ultrasound may 
reflect and refract due to non-uniformity of body tissue and the focal area then shifts or diffuses. At 
the same time, attenuation of ultrasound during the propagation is not also negligible. As a result, 
insufficient energy reaches the lesion. To overcome this problem, utilization of microbubbles is 
proposed (Bailey et al., 2001; Holt and Roy, 2001). Bubbles exposed in ultrasound oscillate 
volumetrically and convert kinetic energy of ultrasound into heat energy. This phenomenon has 
been experimentally observed but the detailed mechanism has not yet been clear. In this paper, 
ultrasound wave propagation in fluid with microbubbles is numerically simulated. First, nonlinear 
acoustic wave propagation equation with void fraction (volume fraction of gas phase) is derived. 
Second, the above equation is solved with Keller equation that describes the volumetric motion of a 
bubble, varying initial bubble size and void fraction. Finally heat generation by bubbles is 
numerically simulated solving the heat conduction equation to evaluate the effect of bubbles.

Derivation of Equations

Nonlinear acoustic wave propagation equation with void fraction is derived from the following two 
conservation equations and one constraint.
• Conservation of mass

fL L 
t


fL LuLj 

x j
 0 (1)
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• Conservation of momentum
fL LuLi 

t


fL LuLiuLj 
x j

 iP  (2)

• Volume constraint
fG  fL 

4
3

rG
3nG  fL  1  (3)

Suffix L denotes liquid and G denotes gas. f the volume fraction,  the density, u the velocity, P the 
pressure and r the radius. Here bubbles are assumed to be all spherical and to keep number density 
nG be constant. Following the derivation of KZK (Khokhlov – Zabolatskaya – Kuznetsov) equation 
(Zabolotskaya and Khokhlov, 1969; Kuznetsov, 1970) to introduce small perturbation up to the 
second order terms and Aubry et al.’s idea of ultrasound propagation in inhomogeneous medium 
(Aubry et al., 2003), the following equation is obtained finally.

     

2 fL p 
t 2  cL0

2 2
2 p

x j
2 x j
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2

t 2 fL p2 
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c pL
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t L0cL0

2
2 fL

t 2

(4)

where  is heat conductivity, c is speed of sound, p is perturbation pressure, cv and cp are specific 
heat at constant volume or pressure, respectively and suffix 0 denotes the equilibrium state.  is 
called nonlinear coefficient and is a material property. For volumetric oscillation of bubbles, the 
Keller’s equation (Keller and Kolodner, 1956) is solved together with eq. (4). 

rG 1 1
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drG
dt
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1 1
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d
dt
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2
rG

4L
rG

drG
dt
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(5)

where rG is bubble radius,  is the surface tension,  is viscosity coefficient. PG, the pressure inside 
of the bubble, is obtained with a reduced-order model (Preston and et al., 2002; Sugiyama et al.,
2005). Lastly the heat conduction equation (6) is used for estimating the temperature rise around the 
focal area.

Lc pL
T


x L
T
x


r L

T
r


1
r L

T
x

Wth Wvis (6)

where Wth and Wvis  are time-averaged heat source terms of
Wth  G

T
r rR

4 rG
2

Wvis  4L
1
rG

drG
dt

drG
dt

4 rG
2

(7)

and they are the thermal conduction from a bubble and the viscous dissipation of surrounding liquid, 
respectively.

Numerical Methods

Equations (4) and (6) are solved by a finite difference method. The spatial terms are discretized 
with second order central difference and the temporal terms are discretized with second order 
backward difference, resulting the second order accuracy scheme. The Keller’s equation (5) is 
integrated with 2nd order Runge-Kutta method.

507



3

Results and Discussions

The present problem setup is illustrated in Fig. 1. The right hand side of area is assumed to be 
human body and bubbles are uniformly distributed. The outside of the body is filled with water. 
Thus reflection and fraction are expected to occur at the interface. Typical conditions are 
summarized in Table 1.

Figure 1.  Problem Setup

Table 1. Summary of conditions
Liquid phase, Gas phase Water, Air

Liquid density 1,000 kg/m3

Sound speed of liquid 1,500 m/s
Liquid viscosity 8.64 10-4 Pa·s

Liquid specific heat at constant pressure 4.179 J/kg K
Liquid specific heat ratio 1.012

Liquid thermal conductivity 6.1 10-1 W/m K
Coefficient of nonlinearity 3.5

Initial pressure 101.3 kPa
Input frequency 1.0 MHz

Wave cycle Continuous wave
Void fraction 0.0, 1.0 10-6, 10-5, 10-4

Bubble radius 2.4, 3.4, 4.4, 10.0 m
Surface tension 7.2 10-2 N/m

Gas specific heat ratio 1.4

First, Figure 2 shows a comparison with the other research result (Okita et al., 2012) of similar problem 
setting, solved with a stricter but more time consuming method. The maximum pressure distribution on 
the axis of symmetry shows good agreement, especially the pressure drop at the focal area with higher 
void fraction case. Figures 3 show maximum absolute pressure distribution under the continuous wave 
radiation with two void fractions. High void fraction prevents ultrasound to penetrate and the pressure in 
focal area is much lower. Figures 4 compare the effect of bubble size with initial void fraction of 10-6. The 
radius of 3.4μm is the resonance radius of 1MHz for the linear theory. However the result suggests that 
2.4μm is closer to the resonance due to the nonlinear effect, because the bubbles react more violently.
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Figure 2  Validation of the present method; maximum pressure distribution on the axis of 
symmetry. left: Okita et al. (2012), right: present

   

0.0                               [MPa]                               6.0
(a) fG0=10-6            (b) fG0=10-5                           (c) fG0=10-4

Figure 3  Pressure distribution for different void fractions

   

1.0                               [rG/rG0]                               7.0
(a) rG0=2.4[m]   (b) rG0=3.4[m]                     (c) rG0=4.4[m]

Figure 4  Maximum radius distribution for different initial radius
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Finally, Figures 5 give temperature rise due to the bubbles after 30 second in cases of Fig. 3. In the case of 
2.4μm radius, bubbles oscillate close to the interface and thus the temperature at the focal area does not 
rise.

   

1.0                               [rG/rG0]                               7.0
(a) rG0=2.4[m]   (b) rG0=3.4[m]                     (c) rG0=4.4[m]

Figure 5  Temperature rise for different initial radius

Conclusions

In order to be applied for HIFU simulation, nonlinear acoustic wave propagation equation with void 
fraction was derived and numerically solved with Keller’s equation. A simple setup of focused 
ultrasound field with microbubbles gave reasonable results and revealed the effect of void fraction 
and bubble size. Heat conduction equation was also solved to demonstrate the heat generation of 
bubbles.
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Abstract
Many tunnels built in mountainous areas go through active faults whose dislocation 
can severely affect the stability, strength and serviceability of the tunnels. In this 
study, finite element method was used to simulate the dislocation of the faults, and we 
investigated the effects of main factors such as fault dip angle and tunnel lining 
segment length on the internal stress and deformation of lining structures of the 
tunnels. Failure mechanism of the lining structures was studied, and the sensitivity of 
the main factors was analyzed. It is found that the optimal lining segment length of 
the tunnel was 5m.   

Keywords: Finite element method, Tunnels through faults, Lining structures, 
Dislocation of faults, Internal stress, Deformation. 

Introduction 

Faults are often encountered in highway tunnel constructions. It is a normal way to 
avoid faults in highway tunnel constructions in existing design standards[1]. But with 
the rapid development of Chinese national economy and the exploitation of land 
resources, a number of tunnels constructions projects inevitably encounter faults 
problems, Especially, in strong earthquake areas. In these areas the faults which the 
tunnels go through are often active faults. The tunnels go through active faults are 
hugely impacted by the dislocation of the faults, which have direct impacts on the 
constructions and operation safety of the tunnels.
The impacts of the faults fracture zone on the tunnel structures are mainly manifested 
in below two aspects. The first is that the faults fracture zone take place dislocation 
along the faults surfaces which are often called dislocation problems. The second is 
that dynamic response characteristics of tunnels in the faults fracture zone under the 
earthquake which are often called vibration problems. After investigating the designs 
and studies on tunnels engineering which go through active faults, a lot of studies are 
concentrated on the anti-seismic of tunnels. Appropriate engineering measures of 
anti-seismic are relatively mature, but the measure of anti-relatively dislocation is 
very little. 
John Caulfield, et al (2004) designed the tunnel in southern California Claremont 
water pressure tunnel by expanding its section size and reducing the length of the 
lining segments. A lot of shear seams in the lining of the tunnel were set in southern 
California Claremont water pressure tunnel projects[2,3].

1
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Russo M, et al (2002) proposed to build relatively flexible connections in Turkey 
Bolu highway tunnel projects.[4-6].
In China in the construction of WuXiaoLing tunnel (2004) also met the same problem. 
The tunnel go through an activities fault. The design of the tunnel taken a way of 
expanding section size and set aside shear displacement seams in the lining of the 
tunnel[7].
A R Shahidi, et al (2005), in Greece Koohrang-  water pressure tunnels project also 
adopted a relatively flexible connection design. Numerical calculations was used to 
certificate that the tunnel was safe when the fault take place dislocation[8].
Jiang Shuping, et al (2008), respectively discussed both of the methods of 
overexcavation design and hinged design of the tunnels[9].
Hinge design is a way which minimize the length of lining segments. A certain range 
of the lining segments structures besides the faults become relatively independent 
after the tunnels which adopted hinge design. The rigid linings of the tunnels are 
connected by flexible connectors. When the fault take place dislocation the 
mechanical behavior are concentrated on the flexible connectors or part of the 
structures, which will cause localized structural damage and not lead to an overall 
destruction of the whole tunnel structures. 
In order to fully reveal the mechanics, deformation and failure characteristics of the 
lining structures of the tunnels under the dislocation of faults. Numerical simulation 
of finite element method was adopted to analyze the mechanical and deformation 
behavior of the tunnel structures under the activity of the dislocation of the faults. 
Horseshoe-shaped section tunnels are the most widely used in tunnels engineering, so 
horseshoe-shaped section tunnels were chosen in numerical simulation of the tunnels 
which go through the faults. In order to reveal better the deformation and failure 
mechanisms of the dislocation of the faults on the lining structures of the tunnels, we 
carried out study on the mechanical behavior of the faults. 

Engineering geology and tectonic 

According to the regional geological data, geological survey and geophysical drilling 
results, the engineering geology of tunnel zones were below successively: Quaternary 
Holocene strata colluvium (Q4c+dl), Quaternary Holocene alluvial (Q4al+pl), Fourth 
Department of Holocene debris accumulation layer (Q4sef) and the Triassic 
Feixianguan group (Tf), Permian Yangxin group (Py), Liangshan group (Pl) and 
Carboniferous Zongchanggou (Cz)[10].
Folds traces were not obvious in this tunnel area. The occurrence of the rock in the 
entrance of the tunnel was 121° 49°. The occurrence of the rock in the exit of the 
tunnel was 321° 71°. The inclination and incidence were subject to effects of the 
tectonic, and they change quickly in the tunnel area. There were two kinds of faults 
respectively named F22 and F22-1 going through the tunnel area. Fault F22 go 
through the tunnel near the entrance of the tunnel, and Fault F22-1 go through the 
tunnel at the middle of tunnel area. Fault F22-1 and Fault F22 were secondary faults 
in Longmen Central Fault in China. The two faults active in the 5·12 Earthquake in 
China and formed cracks in the body of the mountain. A 3-8m width fracture can be 
seen in Fault F22, and this fracture formed a groove ground subsidence. The large 
sinking height was approximately 2m. The fracture extends continuously. 

2
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Finite element model establishment and parameters selection 

Modeling and model size

The study on the stress and deformation of tunnels structures were strict and complex 
three dimensional problems in condition of faults taking place dislocation. The 
longitudinal of tunnels was the largest impacted by the activity of the dislocation of 
the fault. Therefore, the fault and the tunnel structures could be set orthogonal 
relation in space when establishing a 3d finite element model. In order to fully reveal 
the longitudinal deformation and mechanical behavior of the tunnel lining structures 
under the dislocation of the tunnel and reduce the impact of the boundary of the 
tunnel, the finite element model size was below: Length×Width ×Height = 120 m ×80 
m × 80 m, namely vertical length of the tunnel was 200 m, the lateral width of the 
tunnel was 60 m, the depth of the tunnel was 40 m and the depth of  the top of tunnel 
was 100 m.  

Boundary conditions and fault activity simulation implementation

On the left and the right sides of the finite element calculation model, X direction and 
Y direction horizontal displacement were restricted respectively. Z direction 
displacement of the lower plate of the fault was restricted, while its upper plate could 
active. The fault was a thrust fault. The active pattern was the upper plate of the fault 
move up while its lower plate kept stable. In the model a displacement was added on 
the upper plate to simulate the vertical dislocation of the fault. The average 
dislocation on the fault was 0.5m. The basic conditions of the model were below: 
A. The model was composed of bedrock, concrete lining of the tunnel and fault 
fractured zones. 
B. The tunnel went through the faults fractured zones in the model. The left part of 
the fault was called the lower plate, and the right part of the faults was called the 
upper plate. The two parts could dislocate along the fault surface. The dislocation 
pattern was reverse faulting. 

 Material constitutive and calculations parameters 

As geotechnical materials have heterogeneity, anisotropy, strength-difference effect 
and other characters. Any one model can not fully accurately represent these 
characteristics of geological materials. There are three categories of constitutive 
models which are respectively elastic model, plastic model and elastic-plastic model 
currently in rock and soil. In this analysis model soil and tunnel lining were assumed 
to be ideal elastic-plastic material. D-P yield criterion and the associated flow rule 
were adopted because D-P yield criterion could take into account the effects of 
principal stress and hydrostatic pressure on yield and destruction of the tunnel. Its 
yield surface smooth and non-angular. It help to determine the direction of the 
increment of plastic strain and numerical calculations. The material parameters are 
less and easy to be test or conversed by the Mohr-Coulomb criterion and its material 
constant. D-P parameters can be conversed as follow formulas. 

2sin39
cos9c

y 2sin39
sin

Contact surface was set between the upper plate and the lower plate of the fault. 
Between soil and the lining structure a contact surface was also set. Contact analysis 
was made on these surfaces in the model. Friction coefficient of the contact surface 
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between the upper plate and the lower plate was 0.3. Friction coefficient between 
strata and tunnel lining structures was 0.7. Coulomb friction model was adopted in 
the numerical analysis. The inter force and deformation laws of the lining of the 
tunnel were analyzed under different amount of dislocation in this model. The 
average calculation dislocations amount was 50cm. 
Rock, lining and fracture zones were simulated by solid element. The material of 
initial support and secondary lining of the tunnel adopted elastic-plastic constitutive. 
Rock adopted D-P yield criterion and incremental elastic-plastic constitutive. 
Calculation parameters and calculation model are shown in Table 1 and Figure 1. 

Table 1 Calculation parameters of rock, fracture zone and lining of the tunnel  

Material’s
name   

Modulus
/GPa

Poisson's 
ratio

G
/kN.m-3

Friction
angle / o

Cohesion
/MPa

Rock 0.5 0.38 22 34 0.3
Fracture

zone 0.05 0.4 18 30 0.1

Lining 28 0.20 25 58 3

Finite element numerical model of cross-fault tunnel under the dislocation of fault is 
shown in Figure 1. 

Figure 1 Finite element numerical model of cross-fault tunnel under the 
dislocation of the fault 

FEM numerical results 

Four kinds of lining segment lengths of the tunnel were taken into account in FME 
calculation model. They were respectively 15m, 10m, 5m and no shear seam in tunnel 
which was mean the tunnel was continue. Tunnel lining segment length could be 
optimized according to FEM calculation. 
Response results contrast of different lining segments lengths of the tunnel are shown  
in Fig.2- Fig.6. 
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Figure 2 Vertical displacement of the arch top of the tunnel for different lining 
segment lengths along longitudinal 

Figure 3 Vertical displacement of the arch bottom of the tunnel for different  
lining segment lengths along longitudinal  

Figure 4 Mises equivalent stress of the arch top of the tunnel for different lining 
segment lengths along longitudinal 
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Figure 5 Contact stress of the tunnel which the length of segment is 10m under 
the dislocation of the fault

Figure 6 Contact stress of the arch bottom of the tunnel for different lining 
segment lengths along longitudinal 

Table 2  Maximum Mises stress of the tunnel for different lining segment 
lengthss

Lining segment length Maximum Mises stress 
/MPa

No shear seam in tunnel 21.91
15m 20.98
10m 17.5
5m 13.12

6
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Conclusions

According to dynamic response calculations and the comparison charts of the tunnel 
structures for different lining segment lengths below conclusions can be get. 
 (1) It is better to adopt chain segmented structures than non-segmented structures in 
tunnel engineering. Chain segmented structures tunnel can reduce the influence of the 
dislocation of the fault on the tunnel structures.
Although vertical displacement along tunnel longitudinal increase with the lining 
segment length of the tunnel decrease, but the affect zone of the displacement 
mutation was significantly reduced. The affected zone of dislocation of the fault on 
the tunnel was 40m when there was no shear seam in the ling structures. When the 
lining segment length was 5m, the affected zone was the minimum, and the affected 
length along tunnel longitudinal was shorter than the lining segment length. 
 (2) After adopting chain segmented structures, the maximum Mises stress of the 
tunnel lining reduced and the stress reduced more quickly when the lining segment 
length become shorter. The maximum Mises stress was13.12MPa when the lining 
segment length was 5m, and it was 59.88% of the Mises stress of the tunnel with no 
shear seam . While the maximum Mises were almost the same between the tunnel 
which the lining segment length was 15m and the tunnel with no shear seam. 
The distribution of Mises stress was more uniform with the lining segment length 
decrease. The maximum stress was mainly concentrated on the lining arch waist of 
the tunnel near the fault. Contact stress in the tunnel lining reaches maximum near the 
surface of the fault. With the lining segment length decreases, contact stress of the 
tunnel lining decrease. Contact stress of the tunnel changed abruptly from the tunnel 
with no shear seam to the tunnel which the lining segments length was 15m.  
 (3) The plastic zone significantly reduced when the tunnel adopt chain segmented 
structures than no-chain segmented structures. When the lining segment length was 
15m, the plastic zone of the lining was mainly distributed in one lining segment 
length range  near the fault surface. When the lining segment length was 10 m, the 
plastic zone of the lining was mainly distributed in one-two lining segment length 
range near the fault surface. It can be seen the plastic zone of chain segmented 
structures significantly reduced with the lining segment length decreases. The 
maximum equivalent plastic strain decreased with the decrease of the lining segment 
length.
Based on the above analysis, when chain segment structures were adopted in tunnel 
engineering, the maximum stress, the distribution of the plastic zone and the 
maximum equivalent plastic strain of the lining significantly reduced. With the 
decrease of section length, the stress significantly reduced, and it become more 
uniform. The plastic zone and the maximum equivalent plastic strain were also 
significantly reduced. When the lining segment length was 5m, the tunnel could adapt 
to the dislocation of the better than that of the lining segment length was more than 
5m.The tunnel which segment length was 5m give full play to the lining of carrying 
capacity and had good resistance. If the segment length is too short the project costs 
will increase and it will cause no necessary waste. Also it will increase the 
construction process and increase the difficulty of construction control when the 
lining segment length is too short. Therefore the lining segment length of chain 
segment structures tunnel was recommended 5m. 
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Abstract
To improve the performance of stent expansion for reducing a risk of vascular 
restenosis injuries, an adaptive optimization method based on the kriging surrogate 
model is proposed to decrease the dogboning effect (i.e. the ends of a stent opening 
first during expansion) and the radial recoil of stent dilation. Integrating design of 
experiment (DOE) methods with the kriging surrogate model can build an 
approximate functional relationship between the objective function and the design 
parameters, replacing the expensive reanalysis of the stent dogboning rate and the 
radial recoil during the optimization process. In this adaptive process, an infilling 
sampling criterion termed expected improvement (EI) is used to balance local and 
global search and tends to find the global optimal design. Finite element method is 
used to analyze stent expansion. As an example, a typical diamond-shaped coronary 
balloon-stent system is investigated, where six key geometries of stent and the length 
of balloon are selected to be the design variables. Numerical results demonstrate that 
the proposed adaptive optimization method can effectively improve the performance 
of stent dilation. 

Keywords:  Coronary stent, Dogboning, Elastic recoil, Multi-objective optimization, 
Kriging surrogate model 

1 Introduction 
Cardiovascular diseases are one of the principal causes of mortality, often related to 
atherosclerosis which may lead to the progressive formation of plaque and eventually 
cause an obstruction (stenosis) for blood flow through the artery (Beule, 2006). 
Currently, three of the most common treatments for a narrowed or weakened 
coronary artery disease are coronary artery bypass grafting, percutaneous 
transluminal coronary balloon angioplasty, and percutaneous transluminal coronary 
stenting with the aid of coronary balloon angioplasty. Of these, the coronary stent 
market increased rapidly because of their high initial success rate, minimal invasive 
nature, and improved long-term effectiveness compared to coronary artery bypass 
grafting or coronary balloon angioplasty. A stent is a wire metal mesh tube used to 
overcome the acute elastic recoil during coronary balloon angioplasty offering radial 
strength. Coronary balloon angioplasty restores blood flow through narrowed or 
blocked arteries. Once the balloon removed, the stent remains the shape to act as a 
scaffold and help prevent arteries from becoming narrowed or blocked again. 
Although intravascular stents are nowadays routinely and successfully used, this 
endovascular intervention still remains suboptimal, as the success rate is limited by 
mechanical failure and restenosis. This phenomenon is related to both arterial injury 
and inflammatory response of the wall against the stent struts. Therefore, efforts 
aiming at reducing the injury caused by stent implantations are continuously being 
researched into. 

Previous studies indicate that the dogboning phenomenon (i.e. the ends of a stent 
opening first during expansion), which is due to non-uniform balloon-stent expansion, 

519



and radial elastic recoil have a significant impact on thrombosis and hyperplasia 
development (Lim, 2008; Mortier, 2008). This mechanical injure that is caused by the 
struts of stent is often thought to induce an inflammatory response, which results in 
thrombosis and affects artery restensis (Mcclean, 2002; Rogers, 1995; Rogers, 1999 
and Schulz, 2000). It is believed that the stent design may affect stent expansion 
performance, including the dogboning phenomenon and radial elastic recoil. Thus, it 
is important in stenting to predict and optimize the dogboning effect and radial elastic 
recoil before manufacturing the stent. 

Computer simulation (e.g., finite element analysis (FEA)) can be a very useful tool to 
study the stent expansion (Dumoulin, 2000; Tan, 2001; Lally, 2005 and Holzapfel, 
2005). Dumoulin and Cochelin (2000) evaluated and characterized the mechanical 
properties and behaviors of a balloon expandable stent. Etave (2001) compared the 
performance of two types of stents. In terms of stent design, Migliavacca (2002; 2004 
and 2005) and Beule (2006) assessed the mechanical properties and behavior of 
balloon-expandable stents to determine how the FEA method could be used to 
optimize stent designs. It is easy to perform and analyze the effective factors, but the 
obtained ‘optimal stents’ in the literature mentioned above are only the best 
combinations of given geometric parameter levels and are not the optimal solution in 
the design space. In addition, design modifications with enough comparisons are 
usually time-consuming and costly because they require too much structural 
reanalysis or experimentation for a nonlinear system. In the previous approaches, an 
optimization scheme was developed using Lagrangian interpolation elements (Lucas, 
2007).

The dogboning and radial recoil are two important issues for assessing the quality of 
stent expansion (Lim, 2008and Wang, 2006). But, as the most of the problems in 
reality, it is a nonlinear, implicit function of the geometrical parameters and internal 
pressure loads for the stent. Depending on the fidelity of simulation for stent dilation, 
it can become computationally expensive, limiting structural optimization of the stent. 
Therefore, it is challenging to reduce the computational cost of predicting the 
dogboning rate during the optimization process. Consequently, some approximation 
models are widely used during engineering to construct simplified approximations for 
the analysis codes, providing a surrogate model of the original code. In the present 
paper, we use kriging models as alternatives to traditional second-order polynomial 
response surfaces for constructing global approximations for stent optimization. The 
kriging model (Lophaven, 2002 and Jones, 1998], a semi-parametric approach that 
does not rely on any specific model structure, is much more flexible than approaches 
based on parametric behavioral models (Costa, 1999). 

Keeping the consideration above in mind, in the present paper, the kriging model was 
used to build an approximate function relationship between the objective function and 
the design parameters, replacing the expensive reanalysis of the stent dogboning rate 
and the radial elastic recoil during the optimization process. The optimization 
iterations are based on the approximate relationship for reducing the high 
computational cost. An adaptive optimization method based on the kriging surrogate 
model with a Latin Hypercube Sampling strategy was proposed to minimize the radial 
recoil and the absolute value of the stent dogboning rate during the expansion process. 
The adaptive process was implemented by the EI function (Jones, 1998), which can 
balance local and global searches and tends to find the global optimal design, even 
with a small sample size. The ANSYS program was used to analyze the deformations 
and dogboning rates of the stents. 

2 Methods 

2.1 Finite element model 

A typical diamond-shaped coronary stent (shown in Fig. 1) was investigated in this 
study. All data on the geometries and loading case for the investigated stent were also 
assumed as in Chua (2004). A balloon with an 11.4 mm length and a 0.12 mm 
thickness was placed inside the stent. Its outside diameter was equal to the inside 
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diameter of the stent. Geometric dimensions of the stent are shown in Fig. 1. A time-
related pressure (shown in Fig. 2) was loaded on the inner surface of balloon. 

Fig. 1 Balloon-stent system model and design 
variables: ,  1,...,5,   and iW i T L . Four POIs used to 
validate the FEA simulation for radial recoil 
calculation.

Fig. 2 Time-related 
pressure

Bi-linear elastic-plastic and hyper-elastic (Mooney-Rivlin) materials were assumed 
for slotted tube stents and balloon. All material properties used were based on the 
data available from previous studies (Chua, 2002 and 2004). 

The stent’s dilatation involves nonlinearities such as elasto-plasticity and large 
deformation. Therefore, a three-dimensional representation solid 185 in ANSYS was 
utilized to model the stent. The element has plasticity, large deflection, and large 
strain capabilities. It also has mixed formulation capability for simulating 
deformations of nearly incompressible elastoplastic materials. Shell 181 which is 
well-suited for large strain nonlinear applications was employed to model the balloon. 
Due to the symmetry of the entire structure, only 1/16 of the model (1/8 in 
circumferential direction and 1/2 in axis direction) was needed to predict the 
dogboning rate and radial recoil. 

2.1 Optimization problem 

Generally, the dogboning effect exists throughout the expanding process. It usually 
reaches its maximum in the beginning of loading (Kiousis, 2009 and Zahedmanesh, 
2010), but the struts do not reach to the vessel wall. While, from 25ms-32ms, the 
dogboning observed during this period was relatively large (Li, 2013) and it can cause 
serious transient mechanical injury. The dogboning rate of the stent was defined as: 

distal proximal
radial radial

proximal
radial

Dogboning Rate ( ) d d
DR

d
                                   (1) 

where distal
radiald  and proximal

radiald  are the distal and proximal radial displacements of the stent 
at 32ms, respectively. It is easy to be found that if the distal of stent was over-
expanded DR  is larger than 0, while is the proximal of stent was over-expanded DR
is less than 0. Therefore, in order to expand the stent uniformity along the 
longitudinal direction, we need to minimize DR .

The following equation was used to define radial recoil: 

loading unloading4
POI(No. ) POI(No. )

loading
1 POI(No. )

1Radial Recoil ( )
4

i i

i i

R R
RR

R
                                   (2) 
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where loading
POI(No. )iR  and unloading

POI(No. )iR  are the radius at the POI of the stent (shown in Fig.1) at 
32ms and 42ms, respectively. Obviously, RR  is the average of the radial recoil at the 
POIs.

Our objective is to find a set of design variables that both DR and RR are all 
minimized. A common approach in multi-objective optimization is to optimize a 
weighted average of all the objective functions. Therefore consider the objective 
function

1 2DR RR                                                     (3) 

Because the two objectives are mutually incompatible, it is not easy to choose 
appropriate weights 1  and 2 . Moreover, the two objectives have different scales. If 
we scale both DR  and RR  to a same range [0, 1], then we might be able to assign 
some reasonable weights. We need to improve the objective function in order to do 
this. And the optimization problem for the coronary stent during the expanding 
process can be defined as follows: 

min min
1 2

max minmax min

5

     ( )

. .      0.22 0.34,  1,...4
            0.2 0.3
            0.1 0.14
            4.5 6.5

i

DR DR RR RR
Min f

DR DR RR RR

S t W i

W

T
L

x

                        (4) 

where
min

DR  and 
max

DR  are the minimum and maximum of DR  in the samples, 

minRR  and maxRR  are the minimum and maximum of RR  in the samples, x is a vector 
of design variables, which consists of the geometrical parameters , 1,...,5iW i  and T 
of stent and L which is the length of balloon, as shown in Fig. 1. In this study, 

1 2 0.5 .

3 Results and Discussion 

The dogboning rate and radial recoil of a typical diamond-shaped coronary stent were 
minimized by the proposed method. The initial trial samples were selected for 
building kriging surrogate model, which include a initial experience design and 
another 30 samples selected by the LHS. The dogboning rate and radial recoil of 
stents for all trial samples are simulated by ANSYS software, EI function was 
employed to balance local and global search for design space. The optimization 
process started from the initial point with the minimum value of optimization function 
in all the sample points. The optimization process stops when the Euclidean norm 
between real value ( )kf x  from FEM simulation and predictive value ˆky  from kriging 
predictor falls below a given tolerance 1  and the Euclidean norm between current 
and previous iterates falls below a given tolerance 2 . 27 iterations were needed to 
obtain the optimal solution shown in Fig.3.  
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Fig. 3 Optimization iteration process 

The optimization result was shown in Table 1 by comparing to the original design. 
The absolute value of the dogboning rate at 32 ms was reduced by 94.21%. It 
indicates that the dogboning effect was almost eliminated. Furthermore, the absolute 
value of dogboning rate after unloading at 42 ms was reduced by 89.43%, although it 
was not considered in the optimization objective. The average of radial recoil was 
reduced by 15.17%. Because the radial recoil is not only related to the structure, but 
also related to the materials and the expansion process, it is hard to eliminate the 
radial recoil completely. Both the dogboning and radial recoil are two important 
features to evaluate the stent expansion performance, but they have same 
contradictory factors. From the optimal result, the optimal stent with the greater 5W
resulted in higher radial force, which means that the optimal stnet have a better 
support capacity to artery wall. This is the reason for the decrease of radial recoil of 
optimal stent. But the stent with a higher radial force is hard to be expanded. 
Generally, if the stent with a higher radial force and it is hard to be dilated, the ends 
of it will open first during expansion, that is the dogboning effect. However, the 
smaller 2 3 4, ,  and W W W T  and appropriate 1W  and L  resulted in lower dogboning, 
although they can result higher radial recoil. Our proposed adaptive optimization 
method can effectively find a set of design variables that minimizes both dogboning 
and radial recoil. 

Table 1 Optimization results 
1W

(mm)
2W

(mm)
3W

(mm)
4W

(mm)
5W

(mm)
T

(mm)
L

(mm)
P

(MPa)
DR

(t=32ms)
DR

(t=42ms) RR

Original 
stent 0.28 0.28 0.28 0.28 0.249 0.12 5.8 1.8654 0.0622 0.0634 0.0178

Optimal
stent 0.235 0.22 0.22 0.22 0.3 0.1 5.63 1.9077 0.0036 0.0067 0.0151

The radial displacement distributions of the original and optimal stents at 32 ms are 
shown in Fig. 4. The diameters of both the original and optimal stents at the proximal 
(marked in Fig. 4) ends are dilated from 2.54mm to 4.54mm. The radial displacement 
of the original stent at the distal ends was much larger than that at the proximal ends. 
In contrast, the proximal and distal radial expansions of the optimal stent are similar 
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and the dogboning effect is nearly absent. The smaller absolute value of dogboning 
rate indicates more uniform expansion along the length of stent.

Fig. 4 The radial displacement distributions of the original and optimal stents 

The proximal and distal radius of bath the original and optimal stents during the 
dilation process are shown in Fig. 5. The proximal radius of all the stents in the 
sample points were dilated to the same nominal radius (2.27mm) after unloading. The 
smaller distance between the curves of the proximal and distal radials of stent 
indicated a more uniform dilation of stent along its length. Fig. 5, shows that the 
distance between the curves of the proximal and distal radials of the optimal stent was 
smaller than that of original one, particularly in the period from 25 ms to 32 ms, 
where this distance was almost zero. This indicates a uniform dilation of the optimal 
stent along its length, and the dogboning effect was almost completely eliminated. 
The reduction of the radius during the period from 25ms to 42ms demonstrated radial 
recoil of stent. Because the radial recoil is not only related to the structure, but also 
related to the materials and the expansion process, it wasn’t decreased completely in 
this study. 

Fig. 5 The proximal and distal radius of original and optimal stent in the dilation 
process
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Conclusions

This paper present an adaptive optimization method based on the kriging surrogate 
model to minimize both the dogboning and radial recoil. The kriging surrogate model 
integrating design of experiment (DOE) methods was applied to construct an 
approximate relationship between the objective function and geometries of the 
balloon-stent system. The EI function was employed to balance local and global 
searches and tended to find the global optimal design. As an example, a typical 
diamond stent was investigated. The results showed that the proposed optimization 
method effectively decreased both the dogboning and radial recoil of stent.

In addition to dogboning and radial recoil, there are some other issues with respect to 
the design of coronary stents: (1) radial force, (2) flexibility, (3) minimal 
foreshortening, (4) minimal longitudinal recoil, (5) minimal coverage area, and (6) 
fatigue durability. These issues have mutual restriction relationship and mutual 
influence between them. Therefore, multi-objective optimization considering more 
issues mentioned above should be taken into account in our future studies. 
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Abstract
Transient dynamic crack analysis in two-dimensional, layered, anisotropic and linear 
magnetoelectroelastic solids is presented in this paper. A time-domain boundary element method 
(BEM) is developed for this purpose. The layered magnetoelectroelastic solids are modeled by the 
multi-domain formulation and the time-domain dynamic fundamental solutions for homogeneous 
linear magnetoelectroelastic solids are applied in the present BEM. A Galerkin-method is used for 
the spatial discretization of the boundary integral equations and a collocation method is 
implemented for the temporal discretization of the arising convolution integrals. An explicit time-
stepping scheme is obtained to compute the discrete boundary data including the generalized crack-
opening-displacements (CODs). Numerical examples are presented and discussed to show the 
effects of the interface, the material combinations and the dynamic loading on the intensity factors.

Keywords: time-domain BEM, magnetoelectroelastic composites, interior and interface cracks, 
dynamic intensity factors, impact loading.

Introduction
Due to their inherent coupling effects between mechanical, electrical and magnetic fields 
magnetoelectroelastic materials offer many possibilities for advanced smart structures (Nan, 1994).
Layered or laminated composites are important applications of magnetoelectroelastic materials 
because they can be optimized to satisfy the high-performance requirements according to different 
in-service conditions. Interface cracks, may be induced by the mismatch of the mechanical, electric, 
magnetic and thermal properties of the material constituents during the manufacturing process and 
the in-service loading conditions, are one of the most dominant failure mechanisms in layered or 
laminated composites. Although the dynamic crack analysis in homogenous magnetoelectroelastic 
solids have been presented in several works (e.g., Sladek et al., 2008, Sladek et al., 2011, Wünsche 
et al., 2012) the analysis of interface cracks in layered magnetoelectroelastic solids is rather limited 
due to the problem complexity.
In this paper, the dynamic analysis of interface crack in two-dimensional, layered and linear 
magnetoelectroelastic solids under impact loading is presented. A time-domain boundary element 
method (TDBEM) is developed. The homogeneous magnetoelectroelastic layers are modeled by the 
multi-domain BEM formulation. The time-domain dynamic fundamental solutions for 
homogeneous and linear magnetoelectroelastic solids are applied in the present BEM. The spatial 
discretization of the boundary integral equations is performed by a Galerkin-method, while a 
collocation method is implemented for the temporal discretization of the arising convolution 
integrals. An explicit time-stepping scheme is applied to compute the discrete boundary data 
including the generalized crack-opening-displacements (CODs). In contrast to a crack inside a 
homogenous material the asymptotic crack-tip field for an interface crack between two dissimilar 
linear magnetoelectroelastic materials shows different kinds of oscillating and non-oscillating 
singularities. This makes an implementation of a special crack-tip element very difficult and 
therefore only standard elements are used at the crack-tips. A displacement-based extrapolation 
technique is applied to minimize the error in the computation of the dynamic intensity factors. To 
investigate the effects of the interface, the material combinations and the dynamic loading on the 
dynamic intensity factors, numerical examples are presented and discussed.
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2

2 Problem formulation

Let us consider a piecewise homogeneous, layered and linear magnetoelectroelastic solid with an 
interface crack. In the absence of body forces, free electric charges, magnetic induction sources and 
applying the quasi-static assumption for the electric and magnetic fields, the cracked solid satisfies 
the generalized equations of motion

)t,(u)t,( KJKi,iJ xx  ,


 


otherwise,0

2,1K,J,JK
JK (1)

and the constitutive equations

)t,(uC)t,( l,KiJKliJ xx  . (2)
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Further, the initial conditions

0)0t,(u)0t,(u ii  xx , (4)

the boundary conditions

)t,(t)t,(t II xx  , tx , (5)

)t,(u)t,(u II xx  , ux , (6)

with tI being the traction vector defined by

)(e)t,()t,(t jjII xxx  , (7)

and the continuity conditions on the interface except the crack-faces

)t,(u)t,(u II
I

I
I xx  , ifx , (8)

)t,(t)t,(t II
I

I
I xx  , ifx (9)

are applied. In Eqs. (1)-(9), ui, , ij, Di, Bi are the mechanical displacements, the electric 
potential, the magnetic potential, the mechanical stresses, the electric displacements and the 
magnetic inductions; , cijkl ij ij, eijk, hijk ij denote the mass density, the elasticity tensor, the 
dielectric permittivity tensor, the magnetic permittivity tensor, the piezoelectric tensor, the 
piezomagnetic tensor and the magnetoelectric tensor. t and u are the external boundaries where 
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the generalized tractions tI and the generalized displacements uI are known and if is the interface 
, the interface cracks are 

considered as free of mechanical stresses, electric displacements and magnetic inductions with

0)t,()t,( ciJciJ   xx , (10)

c± are the two crack-faces. The generalized crack-opening-displacements (CODs) are 
defined by

)t,(u)t,(u)t,(u cIcII   xxx (11)

A comma after a quantity represents spatial derivatives while a dot over the quantity denotes time 
differentiation. Lower case Latin indices take the values 1 and 2 (elastic), while capital Latin 
indices take the values 1, 2 (elastic), 4 (electric) and 5 (magnetic).

3 Time-domain boundary integral equations

The initial-boundary value problem is solved with a spatial Galerkin-method. The time-domain 
BIEs for the generalized displacements and the generalized tractions can be written in a weighted 
residual sense as

  
 

 xyI
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IJI
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IJxJ dd)t,(u)t,,(t)t,(t)t,,(u)(d)t,(u)( yyxyyxxxx , (12)
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where IJ
G(x,y,t), 

tIJ
G(x,y,t), vIJ

G(x,y,t) and wIJ
G(x,y,t) are the generalized displacement, traction and higher-order 

traction fundamental solutions. The dynamic time-domain fundamental solutions for homogeneous,
anisotropic and linear magnetoelectroelastic solids are not available in explicit form (Rojas-Díaz et 
al., 2008, Wünsche et al., 2012). Using the Radon transform technique the fundamental solutions in 
the 2D case can be defined by a line integral over a unit circle as
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where H(t), n, cm and PIJ
m are the Heaviside step function, the wave propagation vector, the phase 

velocities of the elastic waves and the projector (Wünsche et al., 2012). By integration by parts and 
applying the properties of the time convolution the time-domain generalized displacement 
fundamental solutions can be divided into a singular static and a regular dynamic part as

)t(f)t,,(u)t(f),(u)t(f)t,,(u D
IJ

S
IJ

G
IJ  yxyxyx . (15)

Like the displacement fundamental solutions, the traction and the higher-order traction fundamental 
solutions can also be divided into their singular static and regular dynamic parts.

4 Dynamic intensity factors for an interface crack

The intensity factors for an interface crack between two dissimilar linear magnetoelectroelastic 
materials can be computed from the generalized crack-opening displacements (CODs)
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where K=K1+iK2 is the complex stress intensity factor, K4 is the electric displacement intensity 
factor and K5 is the magnetic induction intensity factor, 1 2 are the bimaterial constants, an 
overbar denotes the complex conjugate and i stands for the imaginary unit. The complex Hermitian 
matrix H as well as the eigenvectors w, w4 and w5 are defined by the material properties and can be 
computed similar to an interface crack between two piezoelectric materials (Suo et al., 1992).

5 Numerical solution algorithm

To solve the time-domain BIEs (12) and (13) numerically a solution procedure is presented in this 
section. The layered piecewise homogeneous and magnetoelectroelastic solids with interface cracks 
are dealt with by the multi-domain technique. A collocation method is used for the temporal 
discretization while the Galerkin-method is applied for the spatial discretization. For the spatial 
discretization, the crack-faces, the external boundary of each homogeneous sub-domain and the 
interfaces of the cracked magnetoelectroelastic solid are discretized by linear elements. All 
boundary integrations can be computed analytically by special techniques. Linear shape functions 
are used for the temporal discretization and all time integrations can also be performed analytically. 
Only the line integrals over the unit circle arising in the dynamic parts of the time-domain 
fundamental solutions need to be computed numerically by the standard Gaussian quadrature.
The asymptotic crack-tip field for an interface crack between two dissimilar magnetoelectroelastic
materials shows different oscillating and non-oscillating singularities in the generalized stress field 
(Gao and Tong, 2003, Fan et al., 2009). This makes an implementation of special crack-tip elements 
rather difficult. For this reason, only standard elements are applied at the crack-tips for interface 
cracks. This is in contrast to crack-tips inside a homogeneous sub-domain. In this case special 
crack-tip elements can be implemented to describe the local square-root behavior of the generalized 
CODs near the crack-tips properly. This makes an accurate and a direct calculation of the intensity 
factors from the numerically computed CODs possible.
After temporal and spatial discretizations and considering the initial conditions the following 
systems of linear algebraic equations can be obtained for each sub-domain 
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k1kK;Dk1kK;DKSKSKSK uTtUTuTtUuC , (17)
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By invoking the continuity conditions (8) and (9) on the interface if and by considering the 
boundary conditions (5) and (6) as well as the crack-face boundary conditions (10), Eqs. (17) and 
(18) can be summarized and recast into a common system of linear algebraic equations









 





 )()(
1K

1k

k1kKk1kKK111K uAtByDCx , (19)

where xK is the vector of the unknown boundary data, yK represents the vector of the prescribed
boundary data, Ak, Bk, C1 and D1 are the system matrices. Eq. (19) is an explicit time-stepping 
scheme and the unknown boundary data can be computed time-step by time-step.

6 Numerical examples

In the following, numerical examples are presented and discussed to show the effects of the 
interface, the mismatch of the material properties, the coupled fields and the dynamic loading on the 
intensity factors (IFs). To measure the intensity of the electric and magnetic loading the following 
loading parameters are introduced 
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0, D0 and B0 are the mechanical, electrical and magnetic loading amplitudes. For 
convenience of the presentation, the real part K1 and the imaginary part K2 of the complex dynamic 
stress intensity factors as well as the electric displacement intensity factor K4 and the magnetic 
induction intensity factor K5 of the interface crack are normalized by

0

1*
1 K

)t(K)t(K  ,
0

2*
2 K

)t(K)t(K  ,
0

4
I
22

I
22*

4 K
)t(Ke)t(K


 ,

0

5
I
22

I
22*

5 K
)t(Kh)t(K


 , (21)

where aK 00  with a being the half-length of an internal interface crack. In the same sense the 
dynamic intensity factors for a crack inside a homogenous layer, as defined in (Wünsche et al., 
2012), are normalized by
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As example a rectangular, layered and linear magnetoelectroelastic plate with a central interface 
crack of length 2a as shown in Figure 1 is considered. The poling directions are normal to the 
interface crack. The geometrical data are h=20.0mm, w=10.0mm and 2a=4.8mm.
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Figure 1. An interface crack in a rectangular layered magnetoelectroelastic plate

On the left and the right boundary of the cracked plate an impact tensile loading t)= 0H(t), an 
impact electric loading D(t)=D0H(t) and an impact magnetic loading B(t)=B0H(t) is applied. The 
external boundary and the interface are discretized by an element-length of 1.0mm and each crack-
face is approximated by 20 elements. A normalized time-step of cL t/h=0.05 is chosen, where cL is 
the quasi-longitudinal wave velocity. As material a BaTiO3-CoFe2O4 composite, with BaTiO3 being 
the piezoelectric phase and CoFe2O4 the piezomagnetic phase, is used (Nan, 1994). Figure 2 shows 
the numerical results of the present time-domain BEM obtained for different loadings and BaTiO3-
CoFe2O4 with a volume fraction vf=0.5 for both layers. This special case is equal to an interior 
crack inside a homogenous magnetoelectroelastic plate. The normalized dynamic intensity factors 
for an interface crack between to magnetoelectroelastic layers with volume fractions of vf=0.5 for 
domain I and vf=0.2 for domain II are presented in Figure 3.
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Figure 2. Normalized dynamic intensity factors for an interior crack subjected to different 
loadings

Figures 2 indicate that, if an electric and magnetic impact is applied, the normalized dynamic mode-
I stress intensity factor starts from a non-zero value at t=0. This is due to the quasi-static assumption 
on the electromagnetic fields, which implies that the cracked magnetoelectroelatic plate is 
immediately subjected to an electromagnetic wave and as a consequence the crack opens at t=0. In
contrast, the elastic waves induced by the mechanical impact need some time to reach the crack, as 
clearly observed for the case e=m=0. The peak values of the normalized dynamic intensity factors 
decrease with increasing electric and magnetic loading amplitudes. The dynamic mode-II intensity 
factors vanish, since no shear stress components are induced for all applied loadings normal to the 
crack-faces in the case of a transversely isotropic material behavior.
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Figure 3. Normalized dynamic intensity factors for an interface crack subjected to different 
loadings

The real part of the complex intensity factor, the electrical displacement intensity factor and the 
magnetic induction intensity factor for the interface crack, as shown in Figure 3, have a similar 
global behavior than the dynamic mode-I, mode-IV and mode-V intensity factors for an interior 
crack in a homogenous magnetoelectroelastic plate. In contrast to the homogenous case, the crack 
opening and sliding modes I and II are coupled each other for the interface crack and therefore the 
imaginary part of the complex intensity factor is unequal zero. In can be observed, that the applied 
electric and magnetic loading may lead to a physically meaningless crack-face intersection in 
different time ranges for the case e=m=0.5. This requires an advanced iterative solution procedure 
for the crack-face contact analysis which is not considered in this work. 
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Conclusions

Transient dynamic crack analysis in layered and linear magnetoelectroelastic solids is presented in 
this work. For this purpose, a time-domain BEM is developed which uses a Galerkin-method for the 
spatial discretization and a collocation method for the temporal discretization. Both temporal and 
spatial integrations are carried out analytically. Only the line integrals over the unit circle in the 
dynamic fundamental solutions are computed numerically. An explicit time-stepping scheme is 
obtained for computing the unknown boundary data. Since the generalized displacement field for a 
crack in the interface between two dissimilar magnetoelectroelastic materials shows different 
oscillating and non-oscillating singularities the intensity factors are computed by a displacement 
extrapolation technique. The presented numerical examples indicate a significant influence of the 
interface, the material combination and the dynamic loading condition on the dynamic intensity 
factors.
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Figure 1. Nasal cavity geometry with sectioned slices,labelled S1 to S7. 
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Figure 2. Flow chart showing the transformation from a cavity geometry in 3D domain into a 
2D domain. 
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Figure 3. Flow process in unwrapping the surface of a 3D model into a 2D domain. 
Characteristic lines are defined at the apex of the septum wall, middle meatus, and inferior 
meatus.

Results 
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Figure 4. Local peaks, identified with the red arrows, are found near slice S4. The three red 
lines running in the axial direction are the characteristic lines defined in Figure 3. 
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Figure 5. Nasal deposition patterns for 10μm particles in 3D and UV domains. (a). Top view of 
3D particles deposition pattern. (b). Particles deposition pattern in UV domain. (c). Deposition 
pattern with background of WSS. (d)(e). Deposition patterns with flow streamlines showing 
the influence from the inhaled air. 

Figure 6. Time dependent deposition patterns for 10μm particles in the UV domain. Each 
image represents the total fraction of all deposited particles. 
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Abstract

In order to improve the computational efficiency of newly developed gas-kinetic 
scheme in engineering simulations, the time-implicit GKS is constructed in 
combination with several common-used time-implicit methods, such as LU-SGS, 
Point-Relaxation, GMRES and LU-SGS based on the numerical Jacobian matrix. 
Besides, the Crank-Nicholson method is adopted to achieve second-order accuracy in 
time. Numerical tests show that implicit schemes based on the numerical Jacobian 
matrix constructed by gas-kinetic fluxes are better than that based on macroscopic 
eigen decomposition, due to the distinctive characteristics of GKS, which describes 
particle movement at the microscopic level. The results also show that the 
time-implicit technique leads to a significant improvement of computational 
efficiency.

Keywords: Gas-kinetic scheme, time-implicit, computational efficiency

Introduction

The gas-kinetic scheme (GKS) has shown good performance in various fluid 
problems, including high speed flows, turbulent flows, etc. When solving engineering 
problems, besides accuracy, computational efficiency is also an important issue. 
Therefore in order to improve the computational efficiency, it is worthy to extend
GKS to time-implicit.

In researches on time-implicit technique, approximate factorization (AF) has achieved 
great success. Based on AF, lower-upper symmetric Gauss-Seidel (LU-SGS),
point-relaxation (PR), liner-relaxation and etc. have been proposed. In these methods, 
fluxes are decomposed according to the eigenvalues of Jacobian matrix. Because of 
simple structure and good stability, these methods, especially LU-SGS, have been 
widely used in many CFD schemes including GKS (Xu, Mao & Tang, 2005; Li & Fu,
2006). However it is not difficult to notice the shortcomings. First, the approximation 
decomposition of inviscid fluxes introduces errors, which leads to the spatial accuracy
loss of the left side of Eq. (5). Second, the decomposition is based on Euler equations. 
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When solving viscous problems with Navier-Stokes (NS) equations, the viscous 
spectral radius is added on diagonal terms directly. This introduces too many 
approximations to viscosity fluxes. Third, in GKS, the evolution of fluxes is 
computed by the microscopic distribution function, which is the integral solution of 
BGK equation,
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Here 0
lf and 0

rf are the initial distribution function, g the equilibrium state, H 

Heaviside function and  the collision time. Consequently, the mismatch between 
fluxes and matrix decomposition affects the performances of the implicit methods in 
GKS. Thus more accurate matrix decomposition is needed. Sun, Wang & Liu (2009)
and Zhang & Wang (2004) have proposed implicit method (marked as JA) with the 
idea of numerical Jacobian matrix, in which the Jacobian is calculated and 
decomposed from the fluxes only. The method is expected to be more suitable for 
GKS.

In recent years, generalized minimum residual (GMRES) (Luo, Bauma & Lohner,
2001) has been widely studied. In GMRES, numerical differential is applied in 
generating the orthogonal basis of Krylov subspace. So the mathematical and physical 
properties of GKS fluxes can be maintained. It is worth mentioning that the inviscid
and viscous fluxes are coupled in GKS. So the numerical Jacobian contains the effect 
of viscosity naturally. No special treatments on viscosity terms are required. In
addition, the numerical Jacobian doesn’t lose space accuracy, which keeps the same as 
the right-side residual items in Eq. (5).

In this paper, the performances of the common-used time-implicit methods are tested 
in GKS. The second part is an introduction of the numerical schemes. The third part is 
numerical experiments, which is followed by conclusions.

Time-implicit methods

The time schemes can be written as, 

     
1

11 .
n n

n nQ Q
R Q R Q

t
 




  


(2)

When 1  , the scheme is time-explicit. When 0  , the scheme is backward-Euler 
(BE), which is of first-order accuracy in time. When 0.5  , the scheme is CN,
which is second-order accurate.
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The implicit scheme can also be written as,

      
1 1

1
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Q Q Q Q

R Q
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(3)

When 0.5  , the scheme is second-order accurate, but additional storage for 1nQ 

is required.

When solving equation (2) or (3),  1nR Q  is linearized as,

   1 1, .
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n n n n n nR
R Q R Q Q Q Q Q

Q
  

       
(4)

The uniform expression of implicit schemes can be obtained,

.
n

n nI R
Q R S

Q

  
         

(5)

Here nS is the source term and   the pseudo-time step. Different implicit 

schemes focus on different treatments of the left side of Eq. (5). For LU-SGS, the 
fluxes of the left side are decomposed by maximum eigenvalue. For PR, they are
decomposed by positive and negative eigenvalues. For JA, the Jacobian and 
decomposed fluxes are calculated by numerical differential.

For GMRES, the convergence of solution is related to the condition number of the 
left-side matrix, which can be reduced by the preconditioner. In the present study, 
LU-SGS is adopted as the preconditioner. 

Among the implicit schemes considered in this paper, LU-SGS is the simplest one,
and requires minimal computation and storage cost for a single-step. In PR and JA, 
the left-side matrix can’t be completely diagonalized, so a 5 5 system of equations
should be solved at each grid point. Besides, in order to store the numerical Jacobian, 
JA requires much more storage. In GMRES, the extra storage is little due to the
matrix-free approach, and the computational cost for a single-step is determined by 
the number of orthogonal basis.

Numerical experiments

Case 1: Advection of Density Perturbation

When combined with GKS, the time-implicit schemes are all second-order accurate in 
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time, which can be tested with this one-dimensional case. The computational domain 

is chosen as  1,1 . The case is inviscid and the initial condition is set to be (Li, Xu & 

Fu, 2010),

   1 0.2sin , ( ) 1, ( ) 1.x x U x p x     (6)

For this case, the exact solution is,

    , 1 0.2sin , ( , ) 1, ( , ) 1.x t x t U x t p x t      (7)

The computed accuracy of different time-implicit schemes is shown in Fig. 1. JA and 
GMRES show second-order accuracy, while LU-SGS couldn’t achieve second-order. 
As mentioned before, the approximation reduces the accuracy of the matrix in 
LU-SGS. Although it’s nominally second-order accurate in time, the final accuracy 
couldn’t be maintained.
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Figure 1 Errors in density vs. cell size of different time-implicit schemes.

Case 2: Sod Shock Tube

The shock tube problem is a typical unsteady case, which can be used to test the 
performance of the time-implicit scheme in flow field containing shock. The 

computational domain is chosen as [ 0.5,0.5] .The initial condition is set to be (Luo, 

Bauma & Lohner, 2001),

1, 0, 1.0 0.5 0
0.125, 0, 0.1 0 0.5.

U p x

U p x



     
    

(8)

The final computation time is t=0.2. Time steps are set to be 0.004, 0.008 and 0.012.
GMRES with BE and CN are used in this case.
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Figure 2 shows the distribution of physical quantities computed with different time 
steps. In the case with shock wave, although the temporal accuracy of CN can’t
achieve second-order, the solution still shows lower dissipation than the first order.
Besides, it can be observed that the time step has little effect on the results, which is 
important for time-implicit scheme. 
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Figure 2 Density and velocity distributions predicted by GMRES.

Case 3: Cavity Flow

This case is chosen to test the computational efficiency of time-implicit schemes 
when dealing with steady flow problems. A grid with 128 128 cells is used. The 
computation condition is set to be (Su, Xu & Ghidaoui, 1999),

0.15, Re 100.Ma   (9)
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Figure 3 Computational efficiency (Left: iterations, Right: CPU-time).

As shown in Fig. 3, the iteration number for implicit schemes to achieve steady state 
is dramatically reduced when compared with the explicit method, especially for 
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GMRES and JA. However, in respect of CPU time, LU-SGS still has superiority,
while JA is the most time-consuming one among these schemes. 

Figure 4 presents the velocity distributions along the central lines calculated by 
different time-implicit schemes. The results agree well with each other, which confirm 
the reliability of the implicit schemes. However it can be found that there is some 
difference between the present calculations and Ghia’s data. This comes from the flux 
construction, not the time-implicit techniques, where the quasi-one-dimensional
extension is adopted for the sake of computational cost, which can introduce large
dissipation (Li & Fu, 2006a). In order to illustrate this, the multidimensional flux,
where the tangential slopes are included at a cell interface, is tried in the same test 
case. As shown in Fig. 5, with the help of multidimensional flux, GKS-GMRES, as 
well as the explicit scheme, yields much better results.
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Figure 4 Velocity distributions along vertical and horizontal lines.
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Figure 5 Velocity distributions along vertical and horizontal lines computed with 
multidimensional schemes.
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Case 4: Rotating Flow inside 3D Cavity

A cubic box rotates along an axis in the z-direction and drive the internal fluid. The 
computational condition is set as (Jin, Xu & Chen, 2010),

1, 0.15, Re 1000
64 64 64.

z

x y z

Ma

N N N

   
     (10)

In order to keep the rotating speed of the cavity and simplify the boundary conditions, 
moving mesh technique is applied in this simulation. 

Figure 6 shows the velocity profile in the symmetry plane along the vertical centerline
after one cycle ( 2t  ). When the explicit scheme is adopted, about 10000 iterations 
are required in one cycle. With GMRES, 128 iterations are satisfactory, which can 
give acceptable results compared with the explicit computation. With 1024 iterations,
the difference can hardly be observed. So it can be concluded that the time-implicit 
technique has effectively improved the computational efficiency of GKS in 
three-dimensional unsteady flow.
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Figure 6 Velocity distributions along vertical central lines in the symmetry plane.

Conclusions

In this paper, the time-implicit GKS is constructed in combination with common-used 
time-implicit techniques and validated by several typical test cases. The results show 
a remarkable improvement of the time-implicit GKS in computational efficiency
while preserving second-order accuracy. For flow with discontinuities, such as shocks,
the scheme can still keep high accuracy.
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Abstract
A kind of new hypersonic vehicle makes long-time flight in transitional flow regime 
where boundary slip effect caused by low gas density will have an important 
influence on the thermal environment around the vehicles. Numerical studies on the 
boundary slip effect as hypersonic vehicles fly in high Mach number has been carried 
out. The method for solving non-equilibrium flows considering slip boundary, surface 
catalysis and chemical reactions has been built up, and been validated by comparing 
the thermal environment results with STS-2 flight test data. The mechanism and rules 
of impact on surface heat flux by different boundary slip level (Knudsen number from 
0.01 to 0.5) has been investigated in typical hypersonic flow conditions. The results 
show that the influence mechanisms of boundary slip effect are different on 
component diffusion heat flux and convective heat flux; slip boundary increases the 
near wall temperature which diminish the convective heat; whereas enhances the near 
wall gas diffusion heat because of the internal energy’s growing. Component 
diffusion heat flux takes a smaller portion of the total heat flux, so the slip boundary 
condition reduces the total wall heat flux. As Knudsen number goes up, the degree of 
rarefaction increases, the influences of slip boundary on convective and component 
diffusion heat flux are both enhanced, total heat flux grows by a small margin, and 
boundary slip effect is more distinct. 

Keywords: Non-equilibrium, thermal environment, boundary slip, surface catalysis 

Nomenclature 

Symbols 
iC mass fraction of species i

iD diffusion coefficient of species i

ih enthalpy of species i

nK Knudsen number 
Ma Mach number 
P Pressure

rP Prandtl number 
q heat flux 
R universal gas constant 
T temperature 
U velocity 
α accommodation coefficient for energy 
ρ density
μ molecule viscosity  
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η conductivity
λ mean free path 
γ ratio of specific heat 
σ accommodation coefficient for moment 
Subscripts
i species i 
w wall
s slip boundary 

Introduction 

Continuum hypothesis will break down at high altitude where energy exchange 
between molecule and molecule, molecule and surface is inadequate. Scott (Scott, 
1973) first presented the surface slip boundary conditions for a multi-component 
mixture with diffusion and surface recombination. In obtaining these boundary 
conditions, he used a first order velocity distribution function at the edge of the 
Knudsen layer next to the wall where velocity slips and temperature jumps. Gupta
(Gupta, 1985) suggested that for an accurate prediction of the aerothermal 
environment of a hypersonic vehicle entering the Earth’s atmosphere in low Reynolds 
number, or flight in high altitude regime, the multi-component, non-equilibrium gas 
chemistry, as well as the wall slip and catalysis effects, must be evaluated. 

In the last three decades, a great deal of researches were undertaken to understand 
these surface slip effects. Based on STS-2 flight data, Zoby (Zoby, 1982), Scott (Scott, 
1982), Daiß (Daiß, 1997) studied windward aero-heating of space shuttle with high 
angle of attack, when the flow condition is near rarefaction, Knudsen number from 
0.001 to 0.03. Results show that besides the multi-component mixtures, non-
equilibrium reactions and surface recombination, surface slip condition must be 
considered to obtain reasonable numerical results. Another typical research is 
validation of sharp and blunt 25° double cones. Several numerical methods were 
compared with a series of test data. Mesh distribution, difference schemes and surface 
slip conditions were analyzed. Results show that the pressure and heat transfer rate 
match well on the cone forebody, through the separation zone, and on the second 
cone, except that the heat transfer rate on the cone forebody is over predicted by 
about 20%. 

In this paper, aeroheating mechanism of surface recombination with slip surface 
conditions was focused on. First of all, the numerical method applied in double cone 
and STS -2 flight mentioned above was evaluated. The validation showed good 
agreement with test data and flight data. Then aeroheating of a cone was studied with 
different surface catalytic conditions and different Knudsen number. 

CFD methods 

The CFD codes have been applied for several hypersonic researches. Basic equations 
are 3-D full Navier-Stokes equations with 7 species of air using Park's chemical 
reaction model2. For the time integration, Lower-Upper Symmetric Gauss-Seidel 
(LU-SGS) scheme is applied. Convective terms are discrete by AUSM+ scheme 
(Liou, 2003). 
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Surface slip boundary condition follows Davis's slip model (Davis, 1970), where 
velocity, temperature and mass fraction at the Knudsen layer are described with 
equations below. Local mean free path is decided by molecule viscosity and gas 
density. and is respectively the accommodation coefficient for moment and 
energy, and the value is between 0 and 1. 
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Full catalytic and non catalytic surface conditions are involved to describe surface 
recombination. Considering low surface temperature, mass fraction of species on 
surface is set equal to that of free stream for full catalytic condition. Heat transfer rate 
are solved by equations below, where first term is convective heat flux and the second 
term is mass diffusion heat flux. 

i
flux i i

s i s

CTq D hn n
η ρ ∂∂= +∂ ∂

Sharp Double Cone Test Validation (Candler, 2002) 

Data from Runs 35 of the Holden's experiment (Harvey, Holden and Wadhams, 2001) 
is compared at Mach number equals 11.3. The test was performed in an impulse 
shock tunnel with nitrogen as the test gas. Calibration runs were made ahead to verify 
the uniformity of the flow in test section. The tests were carried out at the same 
nominal conditions as in calibration test. Because of the high temperature and 
pressure, a kind of molecule vibrational excitation would occur, so thermal non-
equilibrium may be considered. In the simulation thermal equilibrium and chemical 
reactions are assumed, both no-slip boundary and slip boundary are employed. The 
flow condition at the nozzle outlet is shown in Table 1. Outline of the double cone is 
shown in Figure 1, with a 25° first sharp cone and a 55° second cone. The diameter of 
the base is 261.02 mm. Grid condition of these simulations is set as a symmetric 
structural form, grid number of streamwise, normal direction and circular direction is 
281×161×33.

Table 1. Flow condition at the nozzle outlet 
Ma Radius /m-1 U/m•s-1 T/K TW/K P/Pa
11.3 1.33×105 2.71×103 138.9 297 22.05 
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Figure 1. Outline of the sharp double cone (unit: mm) 

Figure 2 shows the computed presure distribution and streamlines in the 
axisymmetric plane. An evident separate swirl can be seen in the corner. The pressure 
increases suddenly at the reattachment point.  

Figure 3 shows the temperature profile with two different surface conditions. Flow 
structure is almost the same, but the separation area of slip wall is somewhat bigger 
than that of nonslip wall. Surface velocity slip makes more gas stay in the separation 
cornor that causes a bigger vortex. A depressed region on the separation bow shock is 
obsered where free stream forces separation shock moving towards the wall, pressure 
and heat transfer rate enhanced at streamwise x=0.13m as presented in Figure 4.  

Figure 4 plots total heat transfer rate with two silp conditions along x direction, 
agreement between calculation and experiment is obained. Note that the length of 
separation zone and the peak heat rate match the test data well, except that 10% over 
prediction at the first cone. The difference between slip wall and nonslip wall is not 
significant. Surface slip decreases the heat transfer rate along the full cone.  

 
Figure 2. Pressure distribution and streamlines in the separation area 
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Figure 3. Temperature distribution in the flow field 

 
Figure 4. Heat transfer rate of double cone 

Results and Discussion 

STS-2 Flight Data Analysis 
According to the trajectory of space shuttle, simulations are taken at H=92.35km and 
H=79.11km, where Knudsen number are 0.028 and 0.0023. Accommodation 
coefficients of 0.5 and 1 are considered with both full catalytic and non catalytic 
conditions. The flow at the trajectory point of Knudsen number equals 0.028 can be 
considered as a typical slip flow case.  

Figure 5 plots the heat transfer rate of the calculation and flight data. Recombination 
coefficient of STS-2's TPS material is near zero, so the heat flux calculated with non 
catalytic condition is rational and close to the flight data. The agreement between the 
calculated and measured heat flux is poor when accommodation coefficient is set to 1. 
A possible reason for the discrepancies might be that the reasonable accommodation 
coefficient should be smaller than 1. Figure 5 shows that the agreement becomes 
better when accommodation coefficient is set to 0.5. Difference between two 
accommodation coefficients is large than 20%. When Knudsen number equals 0.0023, 
difference caused by accommodation coefficient is reduced to about 10%. It is 
guessed that the actual accommodation coefficient is close to 0 when flow is near free 
molecule flow.  
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Figure 5. Comparison of heat transfer rate of STS-2 flight 

Cone with Catalytic Conditions 
Surface catalytic conditions with slip effect were studied. Based on a blunt cone, 
calculations were done with Knudsen number, which is the ratio of the mean free path 
to the cone diameter, equal 0.05, 0.01 and 0.00185. Both full catalytic and non 
catalytic condition was considered. For wall slip effect, accommodation coefficient 
was set to 1. Flow at Ma equals 20 involves intense chemical reactions behind the 
shock and increases the capability of atoms recombination near the wall. Table 2 
shows the test configurations. Because the configuration is very simple grid number 
of streamwise, normal direction and circular direction is set as 61×161×33. 

Table 2. Test configurations for catalytic and slip effects 
Cases Radius/m Ma Kn  Tw/K Surface catalytic Wall Slip 

1 0.175 20 0.00185 300 Full catalytic/Non 
catalytic Slip/Nonslip

2 0.175 20 0.01 300 Full catalytic/Non 
catalytic Slip/Nonslip

3 0.025 20 0.05 300 Full catalytic/Non 
catalytic Slip/Nonslip

Figure 6 shows comparison of slip and nonslip condition when Knudsen number is 
0.05. Shock layer of slip wall is a little thicker than nonslip. The temperature behind 
the shock is higher. In contrast with the isothermal wall of 300K, slip temperature at 
the Knudsen layer is almost 2000K, which makes gas behind the shock dissociate 
more.
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Figure 6. Comparison of temperature and O between slip and nonslip wall 

Figure 7 shows surface pressure of different Knudsen number. Pressure with different 
slip conditions is almost the same at any Knudsen number. Considering slip surface 
effect is enhanced as Knudsen number goes up, the case of Kn equal 0.05 is chosen to 
analyze the mechanism.  

Figure 8 shows the distribution of the heat transfer rate. Both differences between the 
mass diffusion heat flux and the convective heat flux are evident. Surface slip lead to 
higher surface temperature and better thermal conductivity which increases the mass 
diffusion heat transfer rate. On the other hand, the gradient of the temperature on the 
wall decreases when the surface slip temperature increases, which decreases the 
convective heat transfer rate.  

    
Kn=0.00185   Kn=0.01   Kn=0.05

Figure 7. Comparison of surface pressure 

     
Figure 8. Heat transfer rate of Kn=0.05

Despite two mechanisms are widely divergent, total heat transfer rate keeps 
decreasing with slip wall condition. Figure 9 and Figure 10 show discrepancy 
between slip wall and nonslip wall with different catalytic surface. When Knudsen 
number is below 0.01, the difference of the total heat flux between two slip conditions 
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is less than 5%. The difference increases to almost 20% when Knudsen number rises 
to 0.05. Meanwhile it can be found that the mass diffusion part of the heat flux 
decreases quickly as Knudsen number goes up. The reason is that low density reduces 
the chemical reaction rate and decreases the gas recombination on the wall. 

     
Kn=0.00185   Kn=0.01   Kn=0.05

Figure 9. Comparison of heat transfer rate with full catalytic 

     
Kn=0.00185   Kn=0.01   Kn=0.05

Figure 10. Comparison of heat transfer rate with non catalytic 

Figure 11 plots the temperature profile along the stagnation line. In despite of 
Knudsen number and chemical reaction, the temperature increases anyway. The 
discrepancy of temperature between slip wall and nonslip wall increases as Knudsen 
number rises.  

     
Kn=0.00185   Kn=0.01   Kn=0.05

Figure 11. Temperature along the stagnation line 

Conclusions

Surface slip effect in hypersonic flow with chemical reactions was studied. Two cases 
were simulated and compared with test data to verify the numerical method. Slip and 
nonslip flow of a blunt cone were calculated to understand the mechanism of slip 
effect with different catalytic conditions. Some specific conclusions are: 
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1. Numerical method employed characterizes the double cone detail flow. The 
prediction of the heat transfer rate agrees well with the test data. Slip surface may 
somewhat enlarge the separation area and reduce the peak heat flux. 

2. Accommodation coefficient in slip boundary model plays a key role in predicting 
the heat transfer rate. It functions importantly when Knudsen number get larger. 

3. Surface slip leads to larger mass diffusion heat flux and smaller convective heat 
flux. When Knudsen number goes up, discrepancy between slip and nonslip wall get 
larger. Bigger Knudsen number which means smaller gas density slows down atoms 
recombination in chemical reactions. 
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Abstract
When a large thin-walled tank structure is subjected to internal pressure, large local bending 
moment and stress gradient is formed in the transition zone between the cylinder shell and the semi-
spherical shell. It is known that it is difficult to realize the constant strength design through the 
traditional method. Also, the topological optimization is relatively difficult due to the existence of 
internal pressure on the design region. In this paper, firstly finite element method is conducted to 
analyze the conventional design of the transition zone; it is discovered that there is a change of 
force transmission path from the inner wall to the outer wall, which produces a high stress gradient 
in the transition zone. Secondly, based on the concept of force transmission path control, two 
weakened zones are constructed respectively in the transition ring and the thick section of cylinder 
shell; then a parameter optimization model is formed. Finally, sub-model approach is introduced 
and Non-dominated Sorting Genetic Algorithm (NSGA) is adopted for the parameter optimization. 
Then, more uniform stress distribution of the welding zone is obtained, and the maximum stress 
value is decreased from 227.3 MPa to 137.5 MPa. 

Key words: Large thin-walled tank structure; Transition zone; Welding zone; Force transmission 
path; Parameter optimization. 

Introduction 

The propellant tank is critical for a space launch vehicle in liquid propellant: the quality and mass of 
the tank structure play an important role in the product use, and can even affect the range or 
carrying capacity of the launch vehicle [1]. The propellant container is a typical aluminum alloy 
thin-walled structure. The tank can be divided into three main parts: the cylinder shell, the semi-
spherical shell and the short cylinder shell. Different parts are welded together with transition rings 
to form a closed propellant container, and the tank can be connected with other sections through the 
short cylinder shell.  

The internal pressure of large thin-walled tank structure is often high, and also there is strict weight 
requirement in the design process. It is resulted that the load carrying capacity of the structure is 
approaching to its limit. Therefore, it is of high difficulty to design the structure. Besides, on the 
one hand, the weld seams in the transition zone are intensive and its strength is low. On the other 
hand, both analytical method and finite element method (FEM) show that: large local bending 
moment is formed in the transition zone under the action of internal pressure, and there exists large 
axial stress gradient from the inner wall to the outer wall, which make the carrying capacity further 
reduced. So the design of transition zone is the critical factor in the design of the tank.

The conventional design method, using engineering algorithm, mainly takes into account the 
geometric smoothness and production process. However, the effect of transition zone local 
topography on the carrying capacity of the structure cannot be considered in detail. Also, the 
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topological optimization is relatively difficult due to the existence of internal pressure on the design 
region. The parameter optimization method can be applied to the design of transition region, to 
reduce the local moment near the weld seam and obtain more uniform stress field in the welding 
zone, so as to improve the bearing capacity and reliability of the structure. Currently, the method 
has been widely applied to the structural design of space vehicles. With regard to the post-buckling 
problem of grid-stiffened tank under axial compression, Hao et al. [2] proposed a hybrid 
optimization approach based on surrogate model and smeared stiffener model. The surrogate model 
was built for optimization using multi-island genetic algorithm to obtain the minimum mass 
solution under buckling constraints, with significant weight reduction achieved.

In this paper, firstly, finite element analysis is conducted for the conventional design of large thin-
walled tank subjected to internal pressure, to obtain the stress distribution; then, based on the idea of 
controlling force transmission path, the morphology of the transition zone was constructed as a 
parameter optimization model; finally, with the maximum axial stress in the welding zone as the 
optimization objective, and the maximum Mises stress in the transition zone as a constraint, the sub-
model method was introduced to conduct parameter optimization[3], so as to obtain a more uniform 
stress distribution in the welding area. 

1 Analysis of the conventional design approach 

Generally, the transition zone refers to the transition ring and the welded edges with adjacent 
structure of the tank; the welding zone refers to the weld seam and its heat affected zone. The 
strength of the welding zone is relatively low, and its stress distribution is affected by the 
topography of the transition zone. The stress distribution can be calculated by analytic method for 
the transition zone between the cylindrical section and semi-spherical shell with uniform thickness 
[4]. But the transition zone of tank structure is much more complicated, so the stress field cannot be 
obtained by analytic method. Therefore, the conventional design method mainly takes the geometric 
smoothness and production process into consideration. The conventional design of large thin-walled 
tank and the transition zone refers to Fig.1.

Stress analysis shows that: for large diameter thin-walled tank structure, the stress caused by 
internal pressure is much larger than that caused by bending moment, axial force, shear load, etc. 
Therefore, the high stress in the transition zone caused by internal pressure is the main concern of 
tank structural design. Hereinto: the stress field in the welding zone between the transition ring and 
semi-spherical shell is relatively uniform, thus the design can be accomplished with engineering 
algorithm; while the stress field in the welding zone between the transition ring and cylinder is more 
complicated, and thus higher stress gradient is produced under the action of local bending moment. 

The Axial stress distribution of the welding zone between the transition ring and cylinder is shown 
Fig.2: the experimental result is obtained by internal pressure test of the tank; the axial position of 
the strain gauges is in the weld center, close to the transition ring with a distance of about 7.2 mm, 
and there was a uniform circumferential distribution; also there were four strain gauges on the inner 
wall and eight strain gauges on the outer wall. From the figure it can be seen that: the 
experimentally measured stresses on the inner wall have good consistency, and are close to the 
FEM result; while the experimental stresses on the outer wall have large dispersion, almost 
uniformly distributing around the finite element result. This is because the local welding 
deformation causes a deviation of the stress from the theoretical value, which cannot be considered 
in the finite element method. But the FEM result still reflects the average stress to some extent. In 
addition, the FEM result also indicates that: in the welding zone there is high stress gradient and in 
the transition ring the inner wall stress is higher than the outer wall stress; yet in the cylindrical 
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section the outer wall stress is higher than the inner wall stress instead and there exists a point in the 
middle where the inner wall stress equals the outer wall stress. This is because the inner walls of the 
semi-spherical shell and the transition ring are aligned, while the outer walls of the thick section and 
thin section of the cylinder are aligned. Thus the transmission path of axial stress can be concluded 
as: semi-spherical shell  inner wall of transition ring  outer wall of thick section of cylinder 
thin section of cylinder. 

Semi-spherical shell 

Transition zone weld seam 

Cylinder shell

Interior

Weld seam 
and its heat 
affected zone 

Semi-spherical shell

Figure 1  Design of large thin-walled tank and the transition zone 

A preliminary improvement about the conventional design method is: making the equal stress point 
right in the weld center by using the finite element method. However, there exists a problem that as 
the strength of the welding zone is relatively lower and the weakest position of strength is in the 
fusion line, equal capacity design cannot be achieved by this method. 
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Figure 2  Axial stress of the welding zone  
(positive horizontal coordinate corresponds to the cylinder) 
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2 Construction of parameter optimization model 

The conventional design method cannot be used for equal strength design, and topology 
optimization can not be conducted due to the existence of internal pressure on the design zone. In 
this section, according to the stress distribution feature of the transition zone and based on the 
concept of force transmission path control, the morphology of the transition zone is constructed and 
then a parameter optimization model is formed. 

The FEM result of the conventional design has shown that the transmission path of axial stress is: 
semi-spherical shell  inner wall of transition ring  outer wall of thick section of cylinder  thin 
section of cylinder. It has a change from the inner wall to the outer wall in the transition zone, 
which produces a high stress gradient in the welding zone. To avoid this high stress gradient, one 
solution is to control the force transmission path by constructing weakened zones at both sides of 
the welding zone. In detail, some material in the inner wall of the transition ring is removed so that 
the axial stress of the semi-spherical shell can transfer from the middle of the transition ring; and 
meanwhile double-sided milling is employed in the thick section of the cylinder so that the axial 
stress can also transfer from the middle. Based on these, the basic morphology of the transition zone 
is constructed, and the parameter optimization model is established, as shown in Fig.3. (The scale in 
the schematic is not uniform) 

YH1

YH2

X

YH3

YH4

YH5

Tn

Tw

transition zone
welding zone

transition ring

 thin section of 
cylinder

semi-spherical

inner outer

 thick section of 
cylinder

Figure 3  Schematic of the parameter optimization model of the transition zone 

The two geometrical points in the weakened zone of the transition ring are described by four
parameters, i.e., YH1 YH2 X; and the morphology of the thick section of cylinder is depicted 
by five parameters: YH3 YH4 YH5 Tn Tw. The meanings of these parameters are explained 
in Table 1. 
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Table 1  Meanings of the optimization parameters 

Described region Parameter Geometrical description 
X Minimal thickness of the transition ring 

Inclination of the weakened zone 

YH1
Distance from the weakened zone to the edge of semi-

spherical shell 
Transitional ring 

YH2
Distance from the minimal thickness point to the heat 

affected zone 
YH3 Distance from the weakened zone to the heat affected zone

YH4
Distance from the weakened zone to the thin section of 

cylinder 
YH5 Axial size of the weakened zone 
Tn Depth of the inner wall weakened zone 

Thick section of 
cylinder 

Tw Depth of the outer wall weakened zone 

3 Local optimization based on sub-model method 

The aim of this section is as follows: to optimize the force transmission path without regard to the 
material nonlinearity; according to the structure feature of large thin-walled tank, axisymmetric 
model is employed and also geometrical nonlinearity is taken into consideration. Besides, in order 
to reduce the computation work, the sub-model method is introduced in the parameter optimization 
process.
By using the sub-model technology, the degrees of freedom of the model have been reduced by half 
and the computation time has been reduced to only 1/8. Moreover, as there exists proper distance 
from the boundary of the sub-model to the optimization zone, trial computation has shown that the 
change of optimization variables has little effect on the stress and displacement fields on the 
boundary of the sub-model. Thus there is only weak coupling between the optimization variables 
and the boundary of the sub-model, and the convergency of the optimization can be guaranteed. 

3.1 Update rule of sub-model boundary 

After the introduction of sub-model method in the optimization process, iterative optimization is 
conducted to the sub-model, in which the boundary conditions remain unchanged. However, the 
change of sub-model parameters has certain influence on the computational result of the global 
model, which accordingly has influence on the sub-model boundary conditions. Therefore, the more 
the step number of sub-model optimization iteration, the more its boundary conditions deviate from 
the true situation. For this reason, the update rule of sub-model boundary should be determined 
during the optimization process. 

The indicator of the maximum displacement variation in the sub-model is defined as following: 
0

max max
0
max

i

i

u u
D

u


          (1) 

Hereinto: is the maximum displacement of the sub-model region in the computational result of 
global model, is the maximum displacement of the sub-model in the ith optimization applied to 
the sub-model. 

0
maxu

max
iu

The update rule of sub-model boundary is given as follows: when Di is greater than the set value Dc,
or  is greater than the set value N, the sub-model boundary conditions should be updated. In this i
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rule, Dc and N are related with the optimization scale and optimization algorithm. Generally, Dc
should be less than 50%, and N should be less than 50. The update procedure of sub-model 
boundary conditions is illustrated in Fig.4. 

Figure 4  Optimization procedure after introducing sub-model 

3.2 Parameter optimization of tank transition zone 

The two optimization formulations are showed following: 
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Hereinto:  is the maximum axial stress in the welding zone, S  is the maximum Mises 
stress in the transition zone, 

22_HF S

b  is the tensile strength of the material, the meaning of other 
parameters is listed in table 1. 

After several trials, it was found that this optimization problem has the features of non-convex and 
multi-peak, so the global optimal solution cannot be obtained solely by the mathematical 
programming method. Thus the genetic algorithm is used for the parameter optimization. The non-
dominated sorting genetic algorithm is chosen for the optimal solution: 28 populations are set; the 
crossover probability is 0.9; the crossover distribution index and mutation distribution index are 
10.0 and 20.0 respectively. 

The results of parameter optimization are listed in Table 2: the objective function, i.e., the 
maximum stress is decreased from 227.3 MPa to 137.5 MPa. It shows an obvious optimization 
effect.

Table 2  The optimization parameters and constraint conditions 

Optimization parameters Objective Constraint
YH1 YH2 X YH3 YH4 YH5 Tn Tw HF_S22 S

Initial value 16.3  24.3  3.2  4.6 6.3  9.5  31.7 0.6 0.6 227.3 462.3 
Optimal value 5.24  17.60  3.79  3.68 4.36 12.59 63.56 0.09 0.63 137.5 434.5 

The axial stress distribution of the transition zone near the weld seam is shown in Fig.5: the trend of 
stress distribution is unchanged: in the transition ring the inner wall stress is still higher than the 
outer wall stress; and in the cylindrical section, the outer wall stress is still higher than the inner 
wall stress. However, the stress gradient is reduced a great deal, with the stress difference between 
the inner wall and outer wall being reduced to 20% of the conventional design. After parameter 
optimization, more uniform stress distribution is achieved in the welding zone. 

-20 -10 0 10 20

Inner wall – original 
Outer wall – original 
Inner wall – opt 
Outer wall – opt 

A
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Axial distance to the weld center 

Figure 5  Axial stress in the transition zone 
 (positive horizontal coordinate corresponds to the cylindrical section) 
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4 Conclusions 

The conventional deign can not achieve the equal stress design of the welding zone of large thin-
walled tank structure. This paper adopts the finite element method to make an analysis about the 
existing problem and it is discovered that the reason causing high stress gradient in the welding 
zone is a change of the force transmission path from the inner wall to the outer wall. Then, based on 
the concept of force transmission path control, the weaken zone is constructed in the transition zone 
and then a parameter optimization model is formed. Finally, sub-model approach is introduced and 
non-dominated sorting genetic algorithm is used for the parameter optimization in the transition 
zone. After optimization, more uniform stress distribution is obtained, with the maximum stress of 
the welding zone being decreased from 227.3 MPa to 137.5 MPa. 
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Abstract
In this work we use the Particle Filter Method to solve a state estimation problem resulting from the 
application of Hodgkin-Huxley's model to Purkinje fibers, by applying Liu and West's Auxiliary
Sampling Importance Resampling (ASIR) algorithm. This algorithm allows the simultaneous 
estimation of state variables and parameters. The estimation of the action potential in Purkinje 
fibers can be related to the identification of heart anomalies. The use of Bayesian particle filters is 
of great interest for such specific application, since they take into account uncertainties in the 
mathematical models for the evolution of the state variables and the measurements. Simulated
measurements are used in this work to examine the accuracy of the Particle Filter Method under
analysis.

Keywords: Particle Filters, Bayesian estimate, Hodgkin-Huxley's model, Purkinje fibers.

Introduction

Hodgkin and Huxley (1952) proposed a model for the action potential in an axon, in terms of an 
electric circuit with capacitance and ionic currents. Sodium and potassium ions are the most 
important in the action potential and are distinguished in terms of their own proper currents, in 
comparison to the other ions. The model involves a non-linear system of four ordinary differential 
equations, whose coefficients are given in terms of functions of the applied potential. Although
Hodgkin-Huxley's model has been originally proposed for the experimental data involving an axon, 
it has also been used to model the action potential in heart cells, like Purkinje fibers (Noble, 1962). 

State estimation problems are dynamically solved within the Bayesian framework (Kaipio and 
Somersalo, 2004; Arulampalam et al., 2001). In this framework, an attempt is made to utilize all 
available information in order to reduce the amount of uncertainty present in inferential or decision-
making problems. As new information is obtained, it is combined with previous information to form 
the basis for statistical procedures. The formal mechanism that combines the new information with 
the previously available information is known Bayes’ theorem (Kaipio and Somersalo, 2004). 
Monte Carlo methods have been developed in order to represent the posterior density in terms of 
random samples and associated weights and can be applied to non-linear models with non-Gaussian
errors (Kaipio and Somersalo, 2004; Arulampalam et al., 2001; Ristic et al., 2004; Doucet et al.,
2001; Orlande et al., 2012), such as the one under analysis in this work.

In this paper we extend our previous work (Estumano et al., 2013) in order to compare the results 
obtained with the Sampling Importance Resampling (SIR) algorithm and the Auxiliary Sampling 
Importance Resampling (ASIR) algorithm (Kaipio and Somersalo, 2004; Arulampalam et al., 2001; 
Ristic et al., 2004; Doucet et al., 2001), to results obtained with the algorithm proposed by Liu and 
West (2001). This paper is focused on the use of Hodgkin-Huxley’s models for the action potential
in Purkinje Fibers (Noble, 1962). The three algorithms are compared in terms of their computational
times and RMS errors. We note, beforehand, that Liu and West's algorithm is the most general of 
the three algorithms listed above, since uncertainties in the model parameters are taken into account 
through Gaussian kernel smoothing (Liu and West, 2001). Other recent applications of inverse 
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problems to Hodgkin-Huxley's model include the works of Dokos and Lovell (2004) and Meng et 
al. (2011).

Hodgkin-Huxley’s Model

Hodgkin and Huxley, in their classical paper of 1952, examined the behavior of an axon under the 
effects of an imposed electric current across the cell membrane. The cell electric potential was 
assumed to be independent of the position within the cell, that is, the intracellular electric resistance
was neglected. In their experiments, Hodgkin and Huxley (1952) observed that the conductance of 
some ions across the cell membrane, like sodium and potassium, varied with changes in the axon's
potential. The imposed electric current across the cell membrane was then modeled in terms of 
capacitive and ionic currents. Being the sodium and potassium ions recognized as the most 
important ones in this process, their currents were treated separately from those corresponding to
the other ions, which were quantified in a global manner and referred to as leakage current. For the 
model, an inflow of ions was assumed as positive.

A basic difference between axons and Purkinje fibers results from the fact that in the last ones the 
potassium flow is governed by both a fast and a slow channel dynamics. In addition, the flow of 
ions other than sodium and potassium through the cell membrane can be neglected, so that the 
analogous electric circuit for the problem is presented in Figure 1. The imposed electric current is
null for the case involving Purkinje fibers because these cells are auto-excitable (Noble, 1962).
Therefore, the equation for the action potential in Purkinje fibers is given by (Noble, 1962):

    0m
m Na m Na K m K

dV
C G V V G V V

dt
 −  −  (1)

Figure 1. – Electric circuit for a Purkinje fibers (Noble, 1962)

The equations given by Noble (1962) for sodium and potassium conductances of a Purkinje fiber 
are given, respectively, by:

3
,

max
Na Na Na lG G m h G  (2)

490 901.2exp 0.015exp 1.2
50 60

m m
K

V V
G n

 ⎛ ⎞ ⎛ ⎞ −  ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(3)

where m and n represent the open fraction, or probability of the channels being open, for sodium 
and potassium, respectively, while h is the probability of the channel being closed for the sodium 
ions. The variables m and n are also referred to as the activations of the ion transfer through the 
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cell membrane, while h is referred to as the inactivation for the sodium ion transfer. In equation 
(2), max

NaG refers to the maximum sodium conductance.

Hodgkin and Huxley (1952) proposed the following ordinary differential equations to describe the
ion channels opening/closing dynamics:

 1α β − m m

dm
m m

dt
 1α β − h h

dh
h h

dt
 1α β − n n

dn
n n

dt
(4-6)

The parameters for the computation of the activations m and n and inactivation h in Eq. (4)-(6) are
given as (Noble, 1962):

480.1
48exp 1
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 −
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900.002exp
80
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V
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(10-12)

Other parameters for the application of Hodgkin-Huxley's model for a Purkinje fiber are presented 
in Table 1 (Estumano et al., 2013).

Table 1. Parameters for Hodgkin-Huxley's model for Purkinje fiber
Parameter Values Parameter Values Parameter Values

Cm  F cm−2  12  NaV mV 40  ,Na lG mS 0.14

 max
NaG mS 400  kV mV -100

State Estimation Problem

In order to define the state estimation problem, consider a model for the evolution of the vector x in
the form (Kaipio and Somersalo, 2004; Arulampalam et al., 2001; Ristic et al., 2004; Doucet et al.,
2001; Orlande et al., 2012):

1 1( , )k k k k− −x f x v (13)

where the subscript k = 1, 2, …, denotes a time instant tk in a dynamic problem. The vector xnR∈x
is called the state vector and contains the variables to be dynamically estimated. This vector 
advances in accordance with the state evolution model given by Eq. (13), as a non-linear function of 
the state variables x and of the state noise vector vnR∈v . Consider also that measurements 

zn
k R∈z are available at tk, k = 1, 2, …. The measurements are related to the state variables x

through the general function h in the form

( , )k k k kz h x n (14)
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where nnR∈n is the measurement noise. Equation (14) is referred to as the observation
(measurement) model.

The state estimation problem aims at obtaining information about xk based on the state evolution 
model (13) and on the measurements 1: { , 1, , }k i i k z z given by the observation model (14). The
state estimation problem addressed in this work deals with Hodgkin-Huxley's model applied to 
Purkinje fibers. Therefore, the state variables are given by

T [ , , , ]mV m h nx (15)

with state evolution models given by Eqs. (1) to (12). Measurements of the cell potential, Vm, are 
supposed available for the estimation of the state variables.

Due to its nonlinear character, the Particle Filter Method was used for the solution of the present 
state estimation problem (Kaipio and Somersalo, 2004; Arulampalam et al., 2001; Ristic et al., 2004; 
Doucet et al., 2001; Orlande et al., 2012). In this method, the required posterior density function is 
represented by a set of random samples (particles) with associated weights, which are then used for 
the sequential computation of its associated statistics. The particle filter algorithms generally make 
use of an importance density, which is proposed to represent another density that cannot be exactly 
computed, that is, the sought posterior density in the present case. Then, samples are drawn from 
the importance density instead of the actual density (Kaipio and Somersalo, 2004; Arulampalam et 
al., 2001; Ristic et al, 2004; Doucet et al., 2001; Orlande et al., 2012).

The set of particles from time t0 to time tk is denoted as 0:{ , 0, , }i
k i Nx and their associated 

weights as { , 0, , }i
kw i N , where N is the number of particles. The weights are normalized, so 

that
1

1
N

i
k

i

w


∑ . The sequential application of the particle filter might result in the degeneracy

phenomenon, where after a few states very few particles have negligible weight (Kaipio and 
Somersalo, 2004; Arulampalam et al., 2001; Ristic et al., 2004; Doucet et al., 2001; Orlande et al.,
2012). An attempt to overcome this difficulty is to use a resampling step in the application of the 
particle filter, where particles with small weights are discarded and particles with large weights are 
replicated. In the Sampling Importance Resampling (SIR) algorithm, resampling is applied every 
time step (Arulampalam et al., 2001; Ristic et al., 2004). Although the resampling step reduces the 
effects of the degeneracy problem, it may lead to a loss of diversity and the resultant sample may 
contain many repeated particles, which is more likely to occur in the case of small state evolution 
noise (Kaipio and Somersalo, 2004; Arulampalam et al., 2001; Ristic et al., 2004; Doucet et al.,
2001; Orlande et al., 2012). In addition, in the SIR algorithm the state space is explored without the 
information conveyed by the measurements at the specific instant that the state variables are sought. 
With the Auxiliary Sampling Importance Resampling (ASIR) algorithm an attempt is made to 
overcome these limitations, by performing the resampling step at time tk-1, with the available 
measurement at time tk (Arulampalam et al., 2001; Ristic et al., 2004). The resampling is based on 
some point estimate i

k that characterizes π(xk|xi
k-1), which can be the mean of π(xk|xi

k-1) or simply a 
sample of π(xk|xi

k-1). If the state evolution model noise is small, π(xk|xi
k-1) is generally well 

characterized by i
k, so that the weights i

kw are more even and the ASIR algorithm is less sensitive 
to outliers than the SIR algorithm. On the other hand, if the state evolution model noise is large, the 
single point estimate i

k in the state space may not characterize well π(xk|xi
k-1) and the ASIR 

algorithm may not be as effective as the SIR algorithm.
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We note that the functions fk(.) and hk(.), in the evolution and observation models, respectively,
contain several constant parameters, here denoted as the vector θ . However, in general, such
parameters are not deterministic or might not be deterministically known. Therefore, the samples 
need to be extended to { , : 0, , }i i

k k i Nx θ with associated weights { : 0, , }i
kw i N . In this work, 

the algorithm developed by Liu and West (2001), and based on the ASIR algorithm, is used for the 
solution of the state estimation problem, with the vector of state variables given by equation (15) 
and the vector of parameters given by:

Τ
,[ , , ]max

m Na Na lC G Gθ (17)

Such parameters were selected for the present analysis because they are the ones with larger 
variabilities in the open literature.

The algorithms of the SIR and ASIR filters, as well as the one due to Liu and West, can be found in 
Kaipio and Somersalo (2004), Arulampalam et al. (2001), Ristic et al. (2004), Liu and West (2001),
Orlande et al. (2012), Colaço et al. (2012) and are not repeated here for the sake of brevity.

Results and Discussion

In this paper, the three algorithms described above are compared in terms of their RMS errors and 
computational times, for cases dealing with axons and Purkinje fibers. The CPU times correspond 
to a computational code running under the Matlab platform, in an Intel i5 CPU with 6 Gb of RAM 
memory. The RMS error is computed as

    2

1

1 M

est i exa ii
RMS x t x t

M 
 −⎡ ⎤⎣ ⎦∑ (18)

where the subscripts est and exa denote the estimated and exact values of the state variable  ix t at
time ti, while M is the number of time steps. A similar definition was used to compute the RMS 
errors for each parameter θθ . The RMS errors were compared in terms of the means of 100 
repetitions of the particle filter estimates, in order to avoid any bias resulting from different sets of 
simulated measurements used in the analysis (Hamilton et al., 2013).

Simulated measurements of the cell potential, Vm, were utilized in the present work. Such 
measurements were generated from a numerical simulation of the deterministic dynamic problem 
for the Purkinje fibers. Errors in the simulated measurements were additive, uncorrelated, with a 
Gaussian distribution, zero mean and a constant standard deviationσ , so that the likelihood
function at time tk is given by

2
22

1 1( | ) exp [ ( ) ( )]
22

mod
k k m k m kV t V tπ

σπ σ

⎧ ⎫
 − −⎨ ⎬

⎩ ⎭
z x (19)

where the superscript mod refers to the measurement variable computed with the observation 
model given by Eq. (14). Simulated measurements were considered available in time intervals of 10
ms . For the results presented below, the parameters given by Eqs. (1) to (12) and Table 1 were
used in the analysis. The initial conditions for these cases were taken 
as  0 70mV mV − ,  0 0.079m  ,  0 0.323n  and  0 0.602h  (Estumano et al., 2013). The
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errors in the evolution model were additive, uncorrelated, with Gaussian distribution, zero mean and 
a constant standard deviation of 5% of the absolute value of the state variables at the initial time. 
The standard deviations of the measurements were taken as 5% of the maximum absolute value of 
the measured variable, that is, σ = 0.05|Vm,max|.

The results obtained for the estimation of the state variables and the model parameters with Liu and 
West's algorithm are presented in figures 2 and 3, respectively. Such results were obtained with 500
particles. Figure 2 shows an excellent agreement between exact and estimated state variables, even 
for those for which measurements are not available, such as m, n and h. Similarly, uncertainties in 
the model parameters are appropriately taken into account as depicted from figure 3. Note in this 
figure that the exact values of the parameters fall within the confidence intervals of the estimates. 
Figures 2 and 3 reveals the robustness of Liu and West's algorithm as applied to the present problem, 
which was capable of accurately estimating state variables and model parameters, despite the large 
uncertainties in the evolution and measurement models, as well as in the model parameters.
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Figure 2: Estimation of the state variables

Tables 2-4 present the RMS errors and the computational times for the three Particle filter 
algorithms examined in this work, for various numbers of particles (Np). Let us first examine tables 
2 and 3, which present the results obtained with the SIR and the ASIR algorithms, respectively. 
Such algorithms deal only with the estimation of the state variables. These tables show, as expected, 
a reduction on the RMS errors, followed by an increase in the computational time, as the number of 
particles is increased. In addition, we notice in tables 2 and 3 that the RMS errors tend to approach a 
constant value as the number of particles is increased. According to tables 2 and 3, similar RMS 
errors were obtained with the ASIR algorithm by using less particles than those of the SIR 
algorithm. Although the ASIR algorithm is more expensive than the SIR algorithm in terms of 
computational time for the same number of particles, the ASIR algorithm is capable of providing 
accurate results with a much smaller number of particles. As a result, the computational times are 
smaller with the ASIR algorithm than with the SIR algorithm, for results of comparable accuracy.
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Figure 3: Estimation of the model parameters

Table 2: RMS errors and computational times for the SIR algorithm
Np CPU Time (s)

mV (mV) m n h
20 3.12 2.8126 0.0945 0.0806 0.0289
50 7.35 1.6984 0.0889 0.0743 0.0240
100 15.01 1.5899 0.0884 0.0698 0.0231
500 72.07 1.5811 0.0883 0.0669 0.0221
1000 140.08 1.5778 0.0882 0.0662 0.0221
2000 247.73 1.5769 0.0882 0.0662 0.0220

Table 3: RMS errors and computational times for the ASIR algorithm
Np CPU Time (s) mV (mV) m n h
50 15.91 1.4275 0.0902 0.0757 0.0191
100 48.00 1.4195 0.0901 0.0732 0.0182
200 111.03 1.4118 0.0900 0.0711 0.0174
300 205.77 1.4069 0.0900 0.0706 0.0173
400 332.19 1.4043 0.0900 0.0692 0.0170
500 485.80 1.4021 0.0900 0.0685 0.0170

The results obtained with Liu and West's algorithm (2001) are presented in table 4. A comparison of 
tables 3 and 4 reveal an increase on the computational time, for the same number of particles, when 
Liu and West's algorithm was used, caused by the simultaneous estimation of parameters and state 
variables. Anyhow, both state variables and parameters can be accurately estimated (see also figures 
2 and 3) with this algorithm. In addition, the RMS error was reduced when the uncertainties on the 
parameters was taken into account, as compared to the original ASIR algorithm.
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Table 4: RMS errors and computational times for Liu and West's algorithm
Np CPU Time (s) mV (mV) m n h mC  F cm−2  NaG (mS) ,Na lG (mS)

50 96.76 1.1360 0.0109 0.0133 0.0109 0.0621 5.2964 0.0003
100 191.55 1.1417 0.0111 0.0133 0.0129 0.0734 7.0376 0.0008
200 383.40 1.1373 0.0108 0.0132 0.0138 0.0662 8.6214 0.0007
300 574.81 1.2897 0.0108 0.0134 0.0173 0.0885 8.5989 0.0007
400 765.37 1.1356 0.0108 0.0133 0.0126 0.1613 9.3856 0.0009
500 957.93 1.1402 0.0109 0.0135 0.0135 0.0782 8.9281 0.0009

Conclusions

Particle filter methods are the most general techniques for the solution of state estimation problems 
involving nonlinear and non-Gaussian models. In this paper, three different particle filter algorithms 
were applied to the estimation of state variables of the model proposed by Hodgkin and Huxley to 
describe the action potential in excitable cells. Cases involving Purkinje fiber are examined in the 
paper, by using simulated measurements of the action potential. Although the SIR and the ASIR
algorithms are capable of accurately estimating the state variables, we notice that the more general 
algorithm by Liu and West allows the simultaneous estimation of the state variables and model 
parameters. Furthermore, such quantities can be estimated with better accuracy than those related to 
the estimation of only the state variables. 
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Abstract 

A meshless iterative domain decomposition approach is presented to solve linear 
elastic fracture mechanic (LEFM) problems. The global domain of the problem is 
decomposed into sub-domains, where each one is addressed using an appropriate 
meshless method. The sub-domain which has embedded cracks is modeled by the 
method of fundamental solutions (MFS) with the help of the numerical Green’s 
function (NGF) approach and the sub-domain without cracks is modeled by the 
meshless local Petrov-Galerkin (MLPG) procedure. The specific computations of 
each method are performed separately, coupled with a successive update of variables 
procedure, restricted to interface unknowns, to achieve the final convergence. The 
iterative solution procedure presented yields good results as compared with the 
boundary element method and analytical solutions for stress intensity factor 
computations. 

Keywords: Iterative coupling, MLPG, MFS, Green’s function, Crack, Meshless.  

Introduction 

Meshless methods have been increasingly applied to obtain solutions of partial 
differential equations as an alternative to mesh type methods like the boundary 
element method (BEM) and the finite element method (FEM). Previous references on 
the development of alternative meshless methods can be found in the works by 
Belytschko et al. 1996 and Atluri 2002. However, like in any numerical approach, 
meshless methods can present inherent drawbacks depending on the engineering 
problem to be solved. To circumvent this, coupling procedures using the appropriate 
meshless method for each typical problem region can be adopted, improving not only 
efficiency, but also solution accuracy for different coupled engineering problems as 
shown in the works by Godinho and Soares, 2013. 
 
A meshless method that has been applied to a large range of problems is the local 
Petrov-Galerkin (MLPG) method presented by Atluri and Zhu 1998. The MLPG is a 
truly meshless method, not requiring any type of mesh discretization. However, this 
flexibility in solving engineering problems can be computationally expensive in some 
cases. By using the MLPG to solve linear elastic fracture mechanics (LEFM) 
problems one needs to introduce several points near the crack tips, what may lead to a 
computationally expensive  procedure. 
 
The method of fundamental solutions (MFS), developed by Kupradze and Aleksidze 
in 1964 is  a simple meshless boundary-type method. In order to build the solution, 
MFS uses a linear combination of fundamental solutions associated with the problem. 

575



2 
 

This is done without using any integrals, greatly simplifying its implementation. This 
particularity actually exposes the great drawback of the MFS, which is the necessity 
of defining the location of the virtual sources to generate a good solution. For LEFM 
problems a regularized version of the MFS employing the numerical Green's function 
procedure MFS-NGF has been developed, which greatly facilitates the  positioning of 
the virtual sources, as shown in the work by Fontes, Santiago and Telles, 2013.  
 
The purpose of the present paper is to use an efficient iterative coupling procedure to 
solve LEFM. The problem domain is divided in sub-domains. Here, the NGF 
procedure is adopted for embedding a precise crack representation within the MFS 
idea while for standard elastic regular sub-domains the MLPG is adopted. This 
strategy permits to solve the principal problem in a decoupled manner without the 
necessity to introduce several near crack tip points to capture accurate stress intensity 
factors (SIF), as in the standard MLPG approach for fracture mechanics applications 
found in the works by Ching and Batra 2001 and Miers and Telles 2011. The 
adoption of MFS with the NGF approach to selectively represent the cracks of the 
problem alleviates the computer time burden found in traditional MLPG. 

Governing equations 

For a two-dimensional linear elastic body , bounded by the boundary , the Navier 
equation in terms of displacements  can be written in the form:  
 

 (1) 

 
where  is the shear modulus,  is the Poisson's ratio and  is the body force 
component. The displacement  is solved from Eq. (1) satisfying the boundary 
conditions: 
 

   and     (2) 
 
In the above equation,  and  are the prescribed displacements and tractions on the 
boundary  and , respectively. The external boundary of the body is  .  
 
Due to the presence of cracks in the elastic medium, there will be opposite surfaces 
sharing the same geometric position, this creates difficulties in the implementation of 
numerical methods, like singularity of the system matrix or degeneration of the 
boundary integral equation as discussed by Telles, Castor and Guimaraes, 1995. So, 
to circumvent such a limitation, the MFS formulation using the alternative NGF 
procedure as a Green's function is proposed in what as follows. 
 
Numerical Green’s Function (NGF) 

The fundamental solution used in this work is the numerical Green’s function as 
presented in the work by Telles, Castor and Guimaraes, 1995. The NGF is written in 
terms of a superposition of the Kelvin fundamental solution and a complementary 
part, which ensures that the final result is equivalent to an embedded crack unloaded 
within the infinite elastic medium subject to a unit applied load, given by  
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 (3) 

 
where  is the fundamental displacements in j direction at the field point  due 
to a unit point load applied at the source point  in i direction. The kernel   
represent the known Kelvin’s fundamental solution for the uncracked body (see 
Brebbia, Telles and Wrobel, 1984). Here,  stands for complementary 
components of the problem defined as an infinite space containing crack(s) of 
arbitrary geometry. An analogous superposition can be made for tractions where 

 is added to its Kelvin counterpart. 
 
The NGF procedure presents a suitable feature for mesh-free methods, it introduces 
the existing crack surfaces without need to include boundary condition points there 
for the problem representation. This is guaranteed by the traction-free crack 
representation simulated by the addition of the complementary solutions  and 

. A general alternative to obtain the complementary solutions in a real 
variable numerical approach can be found in the work by Telles et al., 1995. Consider 

 and using the Somigliana’s identity, the complementary solutions can be 
defined in terms of the following boundary integral equations 

 

 
  

(4) 

  

 
 

(5) 

 
where  is the crack opening displacements of the 
Green’s function. Here,  and  stand for superior and inferior surfaces of the 
crack , with . Also,  originates from the hyper-singular formulation. 
 

Prescribing traction boundary conditions  along the crack 
surface and evaluating the limit of Eq. (5) as , the following hyper-singular 
boundary integral equation for unknowns  can be written  
 

 
 

(6) 

where, the symbol "=" indicates Hadamard’s finite part integral and . The 
point collocation technique is adopted to solve Eq. (6); hence the following square 
system of equations, in matrix notation, is generated as  
 

 (7) 
 
where S is a square matrix with dimension (  is the number of 
subdivisions of the surface crack) dependent only on the crack geometry and vectors 

 and  contain the unknown fundamental crack openings and the 
independent traction values, respectively, in normal and transversal directions, due to 
the unit point load at source point  in i direction. Finally, Eq. (3) and its traction 
counterpart are used to numerically compute the Green's function. 
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The method of fundamental solutions 

Consider the boundary value problem of an elastic solid of domain  enclosed by a 
boundary  governed by the Navier Equation (1), subjected to mixed boundary 
conditions given in Eq. (2) in the absence of body forces. The method of fundamental 
solutions (MFS) establish that the approximate solution can be constructed by a 
summation of similar problems solutions given by the following matrix notation  
 

 (8) 
 (9) 

 
where  and  are approximations for displacements and the tractions 
corresponding to a point , respectively,  and  are matrices of NGF 
coefficients, usually  are the virtual sources and   is the unknown 
intensity factor vector. The superscript  represents the MFS variables. 
 
First, an indirect problem must be solved to compute the intensity factors . The 
boundary  is represented by M field points , then N source points  are chosen 
and distributed forming a fictitious boundary surrounding . In order to enforce the 
boundary conditions (2)  in Eqs. (8-9) one obtains a linear system of equations: 
 

 (10) 
 
where  is a dense matrix of NGF coefficients either  or   and  is the right-
hand side vector of boundary conditions. Finally, once all the values of  are 
determined, the displacements and tractions at any point on the boundary can be 
evaluated using Eqs. (8-9). 
 
An important result for LEFM problems is the stress intensity factor (SIF). As we are 
using the NGF procedure, it can be calculated by a natural superposition of the 
fundamental generalized crack openings  obtained as the solution of Eq. (7) and the 
intensity factors , written as  
 

 

 

 

(11) 

where  and  are the generalized openings of the crack calculated over the crack 
line. Details can be found in the work by Fontes, Santiago and Telles, 2013. 
 
The meshless local Petrov-Galerkin method 

Among the several formulations of the MLPG, here we use the version known by 
MLPG-1, as described in the work by Atluri and Shen, 2002, based on the moving 
least square (MLS) approximation for the displacement field . In the MLPG-1, the 
weight function in the MLS approximation is taken to be the test function in each 
sub-domain over which integrals are calculated. Details about the MLS can be seen in 
the work by Lancaster and Salkauskas, 1981. As shown in Atluri and Zhu, 2002 one 
can obtain a generalized local weak form of the Eq. (1) and boundary conditions (2) 
over a local sub-domain  covering the whole global domain  given by each point 

 and local boundary . Taking into account the stress-strain 
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relation and the strain-displacement relation, a system of linear equations can be 
written: 
 

 (12) 
 
where, for  
 

 
 

(13) 

 

 
 

(14) 

 
where  is the same MLS weight function associated with a point ,  is a matrix 
that depends on whether the problem is one of plane stress or plane strain,  is the 
shape function from the MLS approximation,  and  represent partial derivatives 
of the weight function  and of the shape function , respectively,  is a matrix 
composed of terms related to the outward normal direction to the boundary and  is a 
penalty factor employed to enforce satisfaction of the essential boundary conditions. 
The superscript  represents the MLPG method  variables. 

Iterative coupling of the MFS with the NGF approach and the MLPG 

The iterative coupling is a technique that consists of partitioning the global domain of 
the problem in subdomains and solving the coupling iteratively until the satisfaction 
of an established convergence criteria. Such an iterative coupling technique has the 
advantage permitting the solution for each subdomain region separately. The MFS is 
employed for embedded cracks with the help of the NGF and the MLPG can be 
employed for alternative geometries, leading to a truly meshless coupling. 
 

 
 
  

 

There are several types of iterative coupling procedures as shown in the work by 
Elleithy and Al-Gahtani, 2000. Here a sequential iterative algorithm proposed in the 
work by Lin et al., 1996 with the same optimal relaxation parameter is employed. To 
illustrate the algorithm, consider Eqs. (10) and (12) and Fig. 1. The main problem was 
subdivided in two problems. Subdomain comprehends a crack embedded and is to 
be solved by the MFS-NGF procedure, whereas subdomain  is to be solved by the 
MLPG method. 
 
In order to solve the coupled problem, compatibility and equilibrium conditions at the 
interface , between the subdomains  and  , can be written: 
 

   and     (15) 

 

Figure 1. Subdomais and common interface for the coupling procedure. 
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where the subscript  represents the common interface  and vectors 
 , ,  and   represent 

the decomposed displacement and tractions for each meshless method. The iterative 
coupling  algorithm comes from a successive renewal of the interface variables 
defined in Eq. (15) as follows: 
 
1. The  principal  problem  is  decomposed  in two  or  more  sub-problems  and   each  
    one is modeled by either the MLPG method or the MFS for cracks; 
2. Choose over the common interface  for the MFS; 
3. Solve Eq. (10) and obtain the tractions  using Eq. (9) for subdomain ; 
4. Assemble matrix and nodal force vector Eqs. (13-14) using ; 
5. Solve Eq. (12) for displacements ; 

6. Check  convergence  at  the  interface   values,  i.e.:    

if  yes  then  stop;  otherwise   set   and return to 
step 3 until convergence at step 6. 
 

In all examples an optimal choice for the relaxation parameter  as presented in the 
work by Lin et al., 1996 has been used. Considering the square error functional: 
 

 
  

 

(16) 

Minimizing the Eq. (16) with respect to the relaxation parameter  one can obtain an 
optimal dynamic value for the next iteration as: 
 

 
 

(17) 

 

where  and . 
 

 

Figure 2. SIF for the Brazilian bi-material case. 
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Numerical results 

Consider the Brazilian disk test developed by professor Carneiro (Carneiro, 1943), 
which is an useful method for determining the tensile strength of concrete materials. 
Here, a Bi-material disk specimen, with a central crack of length , is subjected to a 
compression load in plane stress. The dimensions are shown in Fig. 2. The problem is 
modeled by MFS with the NGF procedure in the interior circle using 52 boundary 
points and the outer circle is modeled by the MLPG method using 1000 points (no 
symmetry). The problem was solved for various values of crack length  with fixed 
radius  and R . The SIF is normalized with respect to , 
calculated for several ratios of  and . 
 
Fig. 2 shows the SIF versus the ratio of the shear modulus  for several values of 

. It is noted that as the crack distance ratio  increases the SIF increases. The 
result for  and some values of  exhibits less than 2% of relative error, 
as presented in Table 1 comparing with close form solutions presented in the work by 
Yarema et al., 1984. The authors could not find results of SIF for other  ratios 
on the literature to compare with. 
 

Table 1. Normalized SIF for the Brazilian test with . 

  (current paper)  (ref.) error (%) 
0.1 1.0227 1.01500 0.76 
0.2 1.0645 1.06004 0.42 
0.3 1.1257 1.13555 0.87 
0.4 1.2565 1.24310 1.08 
0.5 1.3852 1.38690 0.12 

 
Another example is an isotropic plate with one horizontal crack and one inclined 
crack, both of length   subjected to uniform stress (see Fig. 3). This example 
was chosen to show an interesting capability of the iterative coupling procedure when 
using the NGF procedure to represent cracks. In Fig. 4 the circular subdomains are 
modeled by the MFS-NGF procedure. The circular subdomains for crack AB and 
crack CD have 18 and 14 points, respectively. Each crack is divided in 10 segments 
and each segment has 12 integration points. In this case, matrix S defined in Eq. (7), 
for each crack, has the dimension of . So the iterative coupling technique 
can be used to decoupling the matrix S and solve two MFS+NGF problems separately.  
 
For the MLPG subdomain, 513 points are used, the dimensions are W=h=10, 
2a/d=0.1,  and . Normalized SIF results are compared with the 
BEM+NGF for an infinite plate in Table 2. These numerical results indicate that the 
iterative coupling approach is quite effective for decoupling problems with multiple 
cracks. 
 

Table 2. Normalized SIF for a the MFS+NGF/MLPG and the BEM+NGF 

 MFS+NGF/MLPG  BEM+NGF 
 Tip A Tip B Tip C Tip D  Tip A Tip B Tip C Tip D 

 1.0112 1.0112 0.759 0.759  1.0071 1.0072 0.754 0.755 
 -0.0007 -0.0008 0.436 0.436  -0.0005 -0.0006 0.435 0.435 
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Concluding remarks 

In this paper an iterative coupling between two meshless methods is presented to 
solve LEFM problems. The use of NGF in the MFS subdomains allows for accurately 
solving crack problems saving computational cost. Another advantage is that matrix S 
for the crack geometry can now be decoupled, improving the computational potential 
of the NGF procedure. Good results for SIF computations were obtained in the two 
examples presented. Further improvements can be obtained if one takes advantage of 
parallel computing, a natural procedure for the coupling routine presented here. 
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Abstract 
Hybrid probabilistic interval dynamic analysis of vehicle-bridge interaction system 
with a mixture of random and interval properties is studied in this paper. The 
vehicle’s parameters are considered as interval variables and the bridge’s parameters 
are treated as random variables. By introducing the random interval moment method 
into the dynamic analysis of vehicle-bride interaction system, the expressions for the 
mean value and standard deviation of the random interval bridge dynamic response 
are developed. Examples are used to illustrate the effectiveness of the presented 
method. A hybrid simulation method combining direct simulations for interval 
variables and Monte-Carlo simulations for random variables is implemented to 
validate the computational results.  

Keywords: Vehicle-bridge interaction system, probabilistic interval analysis, random 
interval moment method, random interval dynamic response. 

Introduction 

The coupled vehicle-bridge dynamic system has attracted considerable attentions over 
the past two decades (Yang and Lin, 2005; Ju and Lin, 2007; Zhang et al., 2008).  The 
values of system parameters are given precisely in most of studies. Actually, vehicles 
moving on a bridge have nondeterministic characteristics because the system 
parameters are not constant.  

Probabilistic methods are preferred when information of uncertain parameters in the 
form of preference probability function is provided. And these have been widely used 
to predict the response and in the implementation of structural system reliability 
evaluation of uncertainty (Liu et al., 2011). In probabilistic methods, uncertain 
parameters are modeled as random variables/fields and uncertainties of loads are 
described by random processes/variables. However, sometimes it is hard to get the 
enough probabilistic information for structural parameters as their values are affected 
by a lot of non-deterministic factors. Meanwhile, loads of many scenarios can hardly 
be modeled as random variables due to large changes in their magnitudes. The 
interval methods can be used when the probability function is unavailable but the 
range of the uncertain parameter is known. In the past decade, significant progress in 
analysis and optimal design of structures with bounded parameters has been achieved 
(Qiu et al., 2009; Jiang et al., 2008; Impollonia and Muscolino, 2011). 

It is desirable to model structural parameters/loads as random variables if sufficient 
information can be obtained to form the probability density functions. Meanwhile, 
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some structural parameters/loads might be best considered as interval variables if the 
information/data are not enough to model uncertain structural parameters and 
loadings as random variables, especially in the early design stages. Consequently, 
hybrid probabilistic interval analysis and reliability assessment of structures with a 
mixture of random and interval properties has been conducted (Gao, 2010). The 
random interval moment method has been developed by the authors to determine the 
mean value and standard deviation of random interval responses of structures under 
static forces (Gao, 2010). 

As aforementioned, some parameters of vehicle-bridge interaction system could be 
considered as random variables and some of them might be assumed as interval 
variables. For example, the change range of vehicle's mass is large due to the 
different loading conditions; therefore, these can be taken as interval variables. In 
contrast, the change ranges of bridge's parameters are small because of the strict 
manufacturing standards, which can be considered as random variables.  Therefore, a 
hybrid probabilistic interval analysis model for vehicle-bridge coupled systems needs 
to be developed. 

Random interval moment method 

Let )(RX  be the set of all real random variables on a probability space ),,( PA ,
Rx is a random variable of (R). R  denotes the set of all real numbers. x  (or x )

and x  are the mean (deterministic) value and standard deviation of Rx , respectively. 

RyyytytyyyI ,,],[  is an interval variable of )(RI  which denotes the 

set of all the closed real intervals. y and y  are the lower and upper bounds of interval 

variable Iy , respectively. Interval variable Iy can also be written as 

IcI yyy ; ],[ yyyI ;
2

yy
yc ;

2
yy

y cF y
y

y        (1) 

where cy , y , Iy  and Fy  represent the midpoint value, maximum width (interval 

width), uncertain interval and interval change ratio of the interval variable Iy .

Without loss of generality, random interval variable RIZ is the function of multiple 
random and interval variables, which are respectively represented by random vector 

),,,( 21
R
n

RRR xxxX  and interval vector ),,,( 21
I
m

III yyyY . The deterministic 

values of RX  and IY are ),,,( 21 nxxxX  and ),,,( 21
c
m

ccc yyyY .

The Taylor series to the first-order of the random interval variable ),( IRRI YXfZ

about ( ,R IX Y ) is expressed as 
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where R is the remainder term. 

From this equation, and the higher order terms R  is ignored, the expectation and 
variance of random interval variables ),( IRRI YXfZ  can be calculated as (Gao et 
al., 2010)  
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 (4) 

Vehicle-bridge interaction model 

In the vehicle-bridge interaction system, the bridge is modeled as a simply supported 
beam (Yang, 2005) and the vehicle is represented by a half-car model as shown in 
Figure 1. Here, vm , 1m and 2m  denote the sprung and unsprung masses respectively; 
the suspension system is represented by two linear springs of stiffness 1sk , 2sk and
two linear dampers with damping rates 1sC , 2sC ; the tires are also modeled by two 
linear springs of stiffness 1tk , 2tk  and two linear dampers with damping rates 1tC ,

2tC ; , E , I and L are the mass per unit length, elastic modulus, moment of inertia 
and length of the beam respectively. 

In this study, parameters of the vehicle 
1

Im ,
2

Im , and 
v

Im , are considered as interval 

variables, meanwhile, bridge’s parameters, R , RE  and RI , are treated as random 
variables. The equation of motion governing the transverse vibration of the bridge 
under the moving vehicle with uncertain parameters can be written as  
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                   Figure 1. Model of vehicle-bridge interaction system 
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where C is the damping of the bridge, ( , )IRW x t  is the random interval vertical 
displacement of the bridge, ( )RI

vx t is the random interval vertical displacement of the 
moving vehicle, 

1
( , )RIf x t  and 

2
( , )RIf x t are the random interval contact forces, 

( )x vt is the Dirac delta function evaluated at the contact point at position x vt ,
and v  is the speed of the moving vehicle. Using the modal superposition method, the 
solution to Eq. (5) can be expressed as in terms of the mode shapes ( )j x .
                                
In this paper, the Wilson’s damping hypothesis is adopted. As vehicle mass is much 
less than the bridge mass and the tires’ damping is quite small. Using the Duhamel 
integral solution, the displacement response of the bridge can be calculated by 

1 2
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In this study, the contribution of tires’ stiffness to bridge vertical displacement 
response is omitted due to the assumption that the bridge mass is much greater than 
that of the vehicle(Yang, 2005). Additionally, bridge damping is treated as 
deterministic because the existing research outcomes show that the mechanism of 
structural damping is still not clear enough.  

Furthermore, the lower and upper bounds of the mean value of the bridge's 
displacement ( )RIW  are given by 
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The lower and upper bounds of the variance of the bridge's displacements 
2 ( , )RIW x t  are 
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Numerical Simulations 

In this paper, the vehicle-bridge interaction model is demonstrated as the Figure 1. 
The bridge's parameters are considered as Gaussian random variables. The parameters 
of vehicle are treated as interval variables. The nominal values (mean/midpoint 
values) of system parameters taken in the numerical simulation are listed in Table 1. 
The unit of the bridge displacement response is meter in this paper. 
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In this study, the bridge damping ratios bj  for all modes are taken as 0.05. For the 

sake of simplicity, the coefficient of variation (COV) of R , RE  and RI  is adopted to 
represent the dispersal degree of random variables. Meanwhile, the interval change 
ratio (ICR) of 

1

Im ,
2

Im , and 
v

Im is used to describe the scatter level of interval 
variables. vehicle speed, 5 /v m s is taken into account to investigate the influence 
of vehicle velocity on the bridge response. 

Table 1. Data of the vehicle-bridge model

Data of the bridge (mean value) Data of the vehicle (midpoint) 

E=

The mean value of the random interval bridge displacement response at its mid-span 
is given in Figures 2(a) (COV( R , RE , RI )=0.05, ICR(

1

Im ,
2

Im ,
v

Im )=0.2) and(b) 

(COV( R , RE , RI )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.1),  when different combinations of 
uncertain parameters are taken. Figure 2 shows the mean bridge displacement 
response when the randomness of all random parameters and all interval parameters 
are considered. From Figure 2, it can be observed that the interval width of bridge 
response increases when the interval changes of interval variables become larger.  

In summary, the mean value of the random interval bridge response is independent of 
the dispersal degrees of random system parameters as expected. The interval width of 
the mean value of bridge response is directly proportional to the uncertainties of 
interval variables and vehicle speed.     
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      (a)                                                                  (b)  
Figure 2. Mean value of random interval bridge displacement response  

The standard deviation (SD) of the random interval bridge displacement response at 
its mid-span is shown in Figures 3(a) and (b). It can also be observed that the interval 
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width of the standard deviation of the random interval bridge response is directly 
proportional to the uncertainties of random and interval variables from Figures 3. 

To validate the accuracy of the random interval moment method (RIMM) presented 
in this paper, a hybrid simulation method (HSM) is employed. This hybrid simulation 
method (HSM) combines direct simulation for interval variables and Monte-Carlo 
simulations for random variables. 

To show the differences between the results generated by the RIMM and HSM in 
detail, the relative errors of mean value and standard deviation of bridge displacement 
are listed in Tables 2 and 3. Given the maximum relative error is 1.10% , while the 
coefficients of variation for all random parameters are 0.05 and the interval change 
ratios of all interval parameters are 0.2, the mean values calculated by the two 
methods are very closed to each other. For the standard deviation, the maximum 
relative error is 6.45%, which can be accepted because the hybrid simulation times 
used in this study are not enough to provide convergent results. 10,000 simulations 
used in the two rounds of HSM cannot yield convergent and reliable results although 
the total simulations are 106. The accuracy of the results obtained by the HSM can be 
improved if more simulations are implemented.

0 1 2 3 4 5 6 7 8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

                                    Time(s)                                     

S
D

 o
f D

is
pl

ac
em

en
t(m

)

Lower bound(RIMM)
Upper bound(RIMM)
Upper bound(HSM)
Lower bound(HSM)

0 1 2 3 4 5 6 7 8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time(s)

S
D

 o
f D

is
pl

ac
em

en
t(m

)

Lower bound(RIMM)
Upper bound(RIMM)
Upper bound(HSM)
Lower bound(HSM)

(a)                                                                 (b) 
Figure 3. Standard deviation of random interval bridge displacement 

Generally, the accuracy of these results is satisfactory in practice. The presented 
random interval moment method has much less computational work than the 
simulation method. It should be noted that the accuracy of the results of random 
interval moment method can be further improved if second or higher order Taylor 
expansions are used. 

Table 2. Comparison of mean values  

Time (s) Upper bound Lower bound 
RIMM HSM Error RIMM HSM Error 

1 0.02663 0.02671 0.29% 0.01793 0.01790 0.17% 
2 0.04437 0.04461 0.55% 0.02958 0.02947 0.36% 
3 0.05327 0.05353 0.49% 0.03550 0.03549 0.02% 
4 0.05671 0.05680 0.16% 0.03781 0.03768 0.35% 
5 0.05459 0.05467 0.14% 0.03639 0.03610 0.81% 
6 0.04420 0.04436 0.37% 0.02961 0.02929 1.10% 
7 0.02482 0.02506 0.97% 0.01636 0.01625 0.68% 
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Table 3. Comparison of standard deviations  

Time Upper bound Lower bound 
RIMM HSM Error RIMM HSM Error 

1 0.00521 0.00547 4.72% 0.00347 0.00339 2.33% 
2 0.01394 0.01415 1.50% 0.00923 0.00894 3.22% 
3 0.00886 0.00894 0.91% 0.00589 0.00577 2.14% 
4 0.03162 0.03182 0.62% 0.02108 0.02095 0.63% 
5 0.00852 0.00854 0.19% 0.00568 0.00549 3.54% 
6 0.02617 0.02797 6.45% 0.01744 0.01713 1.83% 
7 0.01596 0.01638 2.57% 0.01064 0.01024 3.87% 

Conclusions

In this paper, stochastic dynamic response of vehicle-bridge interaction system with 
uncertainties is investigated by extending the random interval moment method to the 
dynamic coupling system. The uncertainties of system are modeled as random and 
interval variables. The expressions for calculating the bounds of expectation and 
variance of the random interval bridge response are derived. Using these 
formulations, the upper and lower bounds of mean value and standard deviation of 
bridge response can be very easily obtained. The results obtained by the presented 
random interval moment method are in very good agreement with those determined 
by Monte-Carlo simulation method. The relative errors of these two methods are 
quite small when the change ranges of system parameters are not large.  
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Abstract 
Structural dimension and shape optimization based on the structural dynamic reliability is 
investigated in this paper. Structural gross mass is taken as the objective function and the structural 
dynamic reliability is incorporated into the constraints. The dynamic reliability constraints are 
transferred and simplified, and the normalization of design variables is discussed to avoid some 
variables being drowned by others during optimization due to their different dimensions and orders 
of magnitude. The optimal models of dimension and shape with dynamic reliability constraints are 
then presented. Numerical examples are used to illustrate the results of different optimal designs, 
which demonstrate that the efficiency to solve the structural optimization with dynamic reliability 
constraints can be significantly improved if the design variables and their initial values are selected 
properly. 

Keywords: Dimension and shape optimization, normalization of design variables, dynamic 
reliability constraints, random process excitation. 

Introduction 

Structural reliability optimization conducted from 1960s and has been extensively investigated 
(Chen et al., 1997; Gao et al., 2003; Kang and Luo, 2010; Li et al., 2011; Jiang et al., 2010). 
Probabilistic approaches have been developed to account for the uncertainties in structural 
parameters, such as stochastic finite element method, perturbation method, response surface method 
and Monte-Carlo simulation based methods. First-order and second-order reliability methods have 
been proposed and improved to assess the reliability/safety of structures with uncertain properties. 
The randomness of forces has been also considered in the reliability assessments. Structural 
optimization with the reliability constraints accounting for the uncertainties in structural parameters 
and inputs has been investigated by many researchers and has been widely applied to the design of 
different types of structures (Gao, 2006). However, dynamic reliabilities or random process 
excitations were rarely adopted in the structural optimal design. In reality, the external loads are 
often random process excitations such as winds, earthquake motions, waves and explosions.  

In this paper, a framework is presented to optimize the dimension or shape of the truss structures in 
the context of the element or system dynamic reliability constraints. Central to the construction of 
this framework is the reasonable mathematic models of dimension and shape optimization of truss 
structures where the minimization of structural gross mass is taken to be the optimization goal, with 
a particular emphasis on the discussion of the simplification of element and system dynamic 
reliability constraints, as well as on the normalization of design variables in order to facilitate the 
optimization. Finally, the feasibility and rationality of models and method given are demonstrated 
by the implementation of examples and some important conclusions are obtained. 

Construction of general optimization models with implicit dynamic reliability constraints 

Due to the different optimization aims, choices of the optimal design variables are different too. In 
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the topology optimization, topology variables are design variables whether structural elements with 
topology variables exist or not; in the shape optimization, the coordinates of structural nodes are 
design variables; in the dimensions optimization, cross-section areas of structural elements are 
design variables. Generally, optimization with only one kind of design variables is presented, but 
sometimes it is necessary to consider the optimization including several kinds of design variables 
simultaneously. For this purpose, both shape and dimension optimizations are considered at the 
same time in the following deduction.

Because external loads are random process excitations, all constraints like structural displacement 
and stress are then functions of random process in the dynamic optimization and they are given in 
the form of dynamic reliability. For the two-side boundary constraints (Ma et al., 2010), the optimal 
model of structural dimensions and shape for the minimal gross mass is constructed in Eq. (1) 
where design variables are bars’ cross-section areas and nodal coordinates and the dynamic 
reliability constraints are nodal displacement and element’s stress 
                find : T

nAAAA ),,,(}{ 21 , T
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                    ..ts : 0)})(min())(max{(*
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where elemental cross-section areas A  and nodal coordinates Z  are design vectors;  is mass 
density of bars; iA  and il  are cross-section area and bar’s length corresponding to the ith type of 
design variables; )(AW  is the gross mass; jx  and eS  are the displacement response of the jth 

degree of freedom and the stress response of the eth element under random process excitation 
respectively; xju , xjl , Seu  and Sel  are the upper and lower transcending bounds of displacement 

of the jth degree of freedom and stress of eth element respectively; *
jxR  and *

esR  are dynamic 

reliabilities required by design; )Pr(  is the dynamic reliability solved; uiA  and liA  are upper and 
lower bounds of the ith type of cross-section area design variables; uiZ  and liZ  are upper and lower 
bounds of the ith type of nodal coordinate design variables; ne  and me  are dimensions of cross-
section area design vector and nodal coordinate design vector; N  is the number of displacement 
constraints and M  is the number of structural elements. 

If the dynamic reliability is one-side transcending bound (Ma et al., 2010), constraints in Eq. (1) can 
then be replaced by 

..ts :    0}0,)({* TttxPR xjjrx j
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               0}0,)({* TttsPR seerse
   ( Me ,,2,1 )

                                       uiili AAA       ( nei ,,2,1 )
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where xj  and Se  are transcending bounds of displacement of the jth degree of freedom and stress 
of eth element respectively. 
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Optimization models of truss structures under stationary stochastic process excitation 

Considering the structural determinate parameters, structural dynamic responses are stationary 
stochastic process too when external excitation is a stationary random process. From the first-
passage failure theory, Poisson equations to compute the dynamic reliability of single degree of 
freedom with two-side boundary, symmetric boundary and one-side boundary are respectively  
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In Eq. (3), )(tYi
 and )(tYi

 are roots of mean square values of stationary response )(tYi

(displacement, stress or strain) and its derivation response )(tYi , respectively. Yil  and Yiu  are 
lower and upper safe bounds of )(tYi , and Yi  is the safe bound too. The two-side boundary 
dynamic reliability is most common among Eqs. (3)-(5). 

Then the structural displacement and stress dynamic reliability constraints with the two-side 
boundary are 
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where
jx ,

eS ,
jx and

eS  are roots of mean square values of the jth nodal displacement response 

)(tx j  and the eth-element’s stress response )(tS e  and their corresponding derivation response 

respectively. xju , xjl , Seu , Sel , *
jxR  and *

esR  are the same as those in Eq. (1). 

The structural dimension optimization model with dynamic reliability constraints of the two-side 
boundary is 
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Similarly, optimization models with symmetric boundary dynamic reliability constraints and one-
side boundary dynamic reliability constraints can also be obtained. Here only dynamic reliability 
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constraints of symmetric boundary are given in Eq. (9) 
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When bar’s cross-section areas are design variables and the minimization of structural gross mass is 
the objective function, the dimension optimization model based on the system reliability is 

                               find : T
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i
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where )(APj  and )(APf  are firs-passage failure probability of the jth displacement response and 
first-passage failure probability of the whole system respectively, and both of them are implicit 
complex random-process function; *

jP  and *
fP  are the failure probabilities of the jth displacement 

and the system respectively; m  is the number of displacement constraints. 

In Eq. (10), the solution to system dynamic reliability constraint is very difficult. Especially for 
hyperstatic structures of higher degree or complicated structures, it is impossible to accurately 
compute the system failure probability. For multi-degree of freedom system, due to the correlation 
of responses which leads to the correlation of dynamic damage modes, one can not obtain the 
precise value of system dynamic reliability at all. So two kinds of extreme cases (complete 
correlation 1ij  and complete no correlation 0ij ) among every damage modes are considered. 
From the reliability theory, the structural system dynamic reliability (Chen et al., 1997) is 

n

i
rirri tPtPtP )}(min{)()(            )0( Tt                    (11) 

where the dynamic reliability function of the ith element }0,)({)( TttYPtP uiilirri ,
)(tYi  is the dynamic response of the ith element, ui  and li  are upper and lower bounds given for 
)(tYi . When 1ij , the right equal sign holds, when 0ij , the left equal sign holds, when 

10 ij , inequality holds.  

Eq. (11) shows that the dynamic reliability of structural weakest element is the upper bound of 
)(tPr . Suppose that there are )( nmm  structural elements whose dynamic reliabilities are less than 

1 in ],0[ T , to obtain the lower bounds of )(tPr  by a smallest amount of computation, only the 
elements with 1)(tPri  ( nmmi ,,,2,1 ) are searched, the elements with 1)(tPri  are rejected. 
Then it is necessary to determine a weakest element with the smallest dynamic reliability and 1m
weaker elements. The searching sequence is as follows 
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)}({min
1,1

tPrimni
seek for the (m-1)th weakest among the left )1(mn  elements 

Taking the lower bound 
n

i
ft tP )(  of )(tPr  as system dynamic reliability, the constraints of the new 

optimization model with the same design variables and objective function same as those in Eq. (10) 
are 

..ts : *)( jj PAP ),,2,1( mj
n

i
fft PtP *)(                                                                                        (12) 

Because the lower bound of system dynamic reliability is smaller than practical system dynamic 
reliability, the optimal results under the constraints in Eq. (12) tend to conservative, which is 
acceptable in the practical engineering. 

Example 

In Figure 1, elastic module GpaE 210 , mass density 
3/7800 mkg . A random load P  acts on the node 3 in the 

vertical direction, excitation source is the Gaussian white 
noise process with zero mean value and its power spectrum 
density is sNSP

2100 , the load’s durative time st 1000 .
The two-side symmetric boundary is Mpa100 , the stress 
dynamic reliability of every bar is 0.99. The objective 
function is the structural gross mass W . When the design 
variables are bars’ cross-section areas with initial 
values 2005.0 m , the dimension optimal results are listed in 
Table 1.

Table 1.  Dimensions optimal results under dynamic reliability constraint 
parameters )(1 2cmA  )(2 2cmA  )(3 2cmA  )(4 2cmA  )(5 2cmA  )(6 2cmA

initial 50 50 50 50 50 50
optimum 23.7908 20.9263 30.1170 11.4981 2.0000 10.5384 

parameters )(7 2cmA  )(8 2cmA  )(9 2cmA  )(10 2cmA )(kgW minR

initial 50 50 50 50 909.2346 1
optimum 5.9143 4.8669 13.7567 20.4613 258.0997 0.9900

From results of Table 1, the structural gross mass reduces to 28.4 percent of the original mass on the 
basis of ensuring the stress reliability. Moreover, among optimal results of )10,,2,1(iAi , 3A  is 
the greatest and 5A  is the smallest, this is because bar 3 is the an important workload bearing 
element while bar 5 is the less important one according to the analysis of theoretical mechanics. 

In the following, structural shape and dimension are optimized simultaneously under dynamic 
reliability constraint. Taking )10,,2,1(iAi  and ordinates of node 4, 5 and 6 as design variables 
simultaneously, initial values of Ai  are 2005.0 m , initial values of three ordinates are m2 . The 
optimal results are given in Table 2.  

Figure 1. 10-bar truss 
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Table 2. Shape and dimension optimum results under dynamic reliability constraint 
parameters )(1 2cmA  )(2 2cmA  )(3 2cmA  )(4 2cmA  )(5 2cmA

initial design 50 50 50 50 50
optimum 14.1104 14.8950 16.6942 3.3414 3.6604

parameters )(6 2cmA  )(7 2cmA  )(8 2cmA  )(9 2cmA  )(10 2cmA

initial design 50 50 50 50 50 
optimum 7.8812 3.4494 4.9532 13.5123 65.7645

parameters )(4 mY )(5 mY )(6 mY )(kgW minR

initial design 2 2 2 909.2346 1
optimum 4.94243 3.38567 0.22864 209.5853 0.9900

From Table 2, it can be observed that  
1) the gross mass reduces further under the premise of dynamic reliability satisfying the 

constraint condition. 
2) the optimal results of dimension variables are different from those in Tab.11, and 10A  is the 

greatest while 8A  is the smallest, 3A  and 1A  are still comparatively greater as the connection 
elements of structural root, which is similar to the conclusion of Tab.11. 

The structural shape after optimization is showed in Figure 5, and it tends to a triangle as a whole 
which enables structure to be more stable and is a better load-carrying shape. 

Conclusion 

The structural optimal design based on dynamic reliability is 
more complicated than conventional structural static optimal 
design, and optimal design with system dynamic reliability 
constraint is more complicated than that with element 
dynamic reliability constraint. How to quickly finish 
structural dynamic analysis and further improve 
optimization methods are critical to the widespread 
application of dynamic optimal design based on the dynamic 
reliability. 

Because it’s very hard to obtain system dynamic reliability 
according to Eq. (10) and sometimes it is impossible at all. 
So one can only consider two extreme cases to 
approximately evaluate it. Moreover, its solution is based on the simplified dynamic reliability 
which is suitable for many engineering structures because their responses are often narrow band 
processes. The dynamic reliability obtained by the simplified method does not greatly differ from its 
true value because the upper bound of the integral interval of power spectral density is not much 
greater than the intermediate value, thus the lower bound of system dynamic reliability will not 
much smaller than its true value. Hence the optimization results are just comparatively conservative 
and still applicable in practical engineering when lower bound of system dynamic reliability is used 

Some measures such as reasonably choosing design variables (dimensions or shape parameters) or 
evaluating initial values of the design variables can effectively enhance the efficiency of dynamic 
optimal design based on dynamic reliability. 

Figure 2. shape optimal result 
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Abstract
The shield beam is the main load-bearing component of the hydraulic support. The structural 
optimization design of one shield beam is fulfilled by the response surface method. Using the 
weight as the objective function, the structural optimization mathematical models of shield beam is 
set up. The experimental design is performed in the ANSYS software and uniform design. The 
maximum stresses of shield beam are gotten in the different sizes. The response surface models of 
design parameters and maximum stresses are fitted by the least squares method. The structural 
optimization design of shield beam is completed by the random direction method. This research 
implements the structural optimization design of hydraulic support shield beam in a modern design 
method, and provides a valuable guidance for the hydraulic support research and development. 

Keywords: hydraulic support, shield beam, structural optimization design, response surface method.  

Introduction 
The shield beam is one of the main components of the hydraulic support to bear load. Optimizing
the design of the shield beam structure can reduce its weight, which plays an important role for the 
sustainable development of coal machinery enterprises.  

Traditional structural optimization of the shield beam structure can be roughly divided into two 
types.One is that, according to the theory of material mechanics or mechanical formula, the 
response of the structure can be computed and the design variables and objective functions can be 
chosen, then to optimize the design using efficient optimization algorithm (Liu, 2007). For 
numerous simplifications to models, this method would yield the optimization results more-
conservative outcome.While the other is that, the response of the structure is obtained by using 
finite element software and is chosen as the constraint condition, then to select the suitable 
optimization strategy for more accurate structure optimization design (Yao, 2011a).This approach, 
where each iteration will be made during the optimization process with finite element calculations, 
is running slowly. 

To overcome the insufficiency of above traditional optimal design methods, by using the response 
surface methodology, this research has realized the structure optimization of shield beam for a 
certain type hydraulic support. With section dimensions of the shield beam as variables, ANSYS is 
used to calculate the stress of the shield beam under partial loads, and the response surface method 
of uniform design experiment is applied to obtain the functional relationship between stress values 
and section dimensions of the shield beam. For the weight reduction purpose, the structure 
optimization design of shield beam is performed under the constraints of structure strength and 
geometrical dimension. It is proved that the optimization method is feasible and effective by finite 
element analysis and validation results. 

Optimization Based on Response Surface Method 
The optimization based on response surface method generally includes such certain steps as, 
experiment design, response surface model, and searching for the optimal point (Liang, etc.,2010). 

1

Experiment design is for the sake of scientific and reasonable arrangement of test schemes with 
fewer experiments to get more properties of design space (Kleijnen, 2005a). A scientific experiment 
design can arrange various experimental factors reasonably and analyse test data effectively, thus 
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realizing more rich and reliable data obtained with using less resources. Commonly used 
experimental design methods are full factorials orthogonal design of experiment and uniform 
design experimentation, etc. 

The uniform design experimentation, which will distribute design points evenly within the design 
space, is chosen in this research. Compared with other methods, the uniform design experimentation 
can require less experiment times, and improve the precision of response surface to a certain extent 
(Li, etc.,2005b). Using this approach, several numerical simulation tests are carried out to obtain a 
series of design points, whose number and locations are determined. On this basis, the function 
relationship between control variables and target variables is established with regression method, 
namely, response surface model. The response surface model reflects the function relationship 
between target variables (dependent variable) and several control variables (independent variables). 
As this function relationship is generally curve or curved surface, which is called as response 
surface model. 

Because the response surface model is based on series of regression of test data, the quality of 
regression analysis directly determines the accuracy of response surface model (Todoroki, A. and 
Ishikawa, T., 2004). In the field of structural mechanics, the response surface function model often 
adopts the quadratic polynomial forms, such as 

2

n n n

n n

                                                      (1) 0
1 1 1

( ) i i ij i j
i i j

Y X a a x a x x

where, a0, ai and aij are undetermined coefficients, xi (i=1,2,…n) are basic variables. In order to 
simplify the calculation and avoid application range restrictions for the response surface, the 
constant term, first-order term and second-order squared are remained, and the second-order cross 
term is neglected, namely, the simplified form is 

                                                           (2) 2
0

1 1

( ) i i ii i
i i

Y X a a x a x

Searching for the optimal point in the generated response surface model typically includes to select 
the design objectives, constraints and the optimal algorithm. For different situations, the 
mathematical constraints are appended to the model, the design objectives and a series of the search 
algorithms for the optimal point are provided, such as gradient algorithm, random direction method, 
penalty function method, etc. The random direction method, which possesses the easy procedures 
and fast convergent rate, is adopted here. 

The Response Surface Model Establishment 
Shield Beam Statics Analysis 

The shield beam of a certain type hydraulic support is taked as the research object. Finite element
model for the shield beam is established under ANSYS environment, then the shield beam is 
meshed freely with SOLID187 element. According to the technical specifications and load-bearing 
situation of hydraulic support under partial loads (Qin, etc.,2011b), the corresponding boundary 
conditions and loads are applied, and ANSYS structural statics analysis is performed to obtain the 
stress distribution and deformation conditions for the shield beam, as shown in Figs. 1 and 2. The 
figures show the shield beam's stress situation and deformation under partial loads, where the 
maximum stress value of the shield beam is 359.61 MPa, and the maximum deformation is 8.96 
mm.

To verify the reliability of the finite element analysis, the real physical prototype stress test for the 
shield beam is also made. According to the characteristics of stress distribution of the shield beam, 
paste positions of the foil strain gauge are determined for the physical stress tests, and the stress 
values of the test points are obtained. The locations of the testing points are shown in Fig. 3. At the 
same time, the corresponding 6 positions at finite element model of shield beam are selected too, 
where the average stress results are recorded. A comparison of finite element calculation results and 
measured values is shown in Table 1. 

The finite element results and the experimental results are not consistent to a certain degree, which 
is caused by the test error and calculation error. The long-time experiment results in unstable 
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working environment of the strain gauge, possible different characteristics of each strain gauge, and 
angular deviation and position deviation for the gauge patch, all these factors will lead to test errors. 
When finite element model is being simulated, parameter settings, grid division and the differences 
among the constraint boundary conditions will cause calculation errors. Therefore, it is possible to 
cause larger relative error of some individual points. 

Figure 1. Shield beam's stress distribution       Figure 2. Shield beam's deformation 

Figure 3. Locations of test points 

Table 1. Experimental verification
Number of 
measuring

points

Finite element 
results/MPa

 Measured 
results/MPa

Relative 
error/%

1 129.96 120.37 7.97
2 56.36 53.73 4.89
3 42.52 46.96 -9.46
4 164.05 138.04 18.84
5 322.84 305.35 5.72
6 113.24 120.28 -5.85

Uniform Design Experimental Analysis 

As shield beam’s structure is complex, there are more parameters affecting the component strength. 
Since the distance between the shield beam’s front and back hinged points is already determined 
during overall design of hydraulic support, the lightest weight will be treated as the optimization 
objective of shield beam. In other words, the minimum sectional area will be regarded as 
optimization objective (Zhu, etc., 2012). The shield beam, made up of upper and lower cover plates 
and vertical ribs, is a box welded structure with a cross section of 5 cavities, which is shown in Fig. 
4.

Figure4. The shield beam’s cross section 
3
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Where, x1 is the distance between the first cavity and middle plane, x2 is the width of the second and 
third cavities, x3 is the height of the cavity, x4 and x5 are the thickness of upper and lower cover 
plates and the thickness of the vertical rib, separately. 

In this paper, the uniform design experimentation is used to carry out response surface experiments. 
Through the parameterized modeling to realize the change of size of thickness, and the finite 
element analysis of each group of dimensional data, we can obtain the maximum stress value of the 
shield beam. The quadratic polynomial without cross terms is taken as the response surface 
equation which contains 5 parameters and 11 unknown coefficients (that is equal to 2n+1, n is the 
number of parameter). So, 16 times orthogonal tests, namely including 16 levels 5 parameters, can 
be determined and performed. The test results are shown in Table 2. 

Table 2. Uniform test table 
Times x1/mm x2/mm x3/mm x4/mm x5/mm max/MPa

1 190.00 128.00 160.00 24.33 21.20 340.51
2 193.33 138.00 172.00 27.00 20.13 334.67
3 196.67 148.00 150.00 24.00 19.07 356.14
4 200.00 124.00 162.00 26.67 18.00 364.59
5 203.33 134.00 174.00 23.67 21.47 327.02
6 206.67 144.00 152.00 26.33 20.40 350.47
7 210.00 120.00 164.00 23.33 19.33 346.41
8 213.36 130.00 176.00 26.00 18.27 352.32
9 216.67 140.00 154.00 23.00 21.73 340.67
10 220.00 150.00 166.00 25.67 20.67 346.29
11 223.33 126.00 178.00 22.67 19.60 325.40
12 226.67 136.00 156.00 25.33 18.53 351.94
13 230.00 146.00 168.00 22.33 22.00 350.93
14 233.33 122.00 180.00 25.00 20.93 336.66
15 236.67 132.00 158.00 22.00 19.87 335.18
16 240.00 142.00 170.00 24.67 18.80 347.15

Using the least-square method to fit the response surface function, 
2
154321 0061.04884.1816922.123887.17542.165428.24835.3849 xxxxxxye

                            (3) 2222
5432 4595.43031.00026.00625.0 xxxx

where ye is a response value of the maximum stress. 

According to the evaluation formula of multiple correlation coefficient (equation (4)), we can 
evaluate the fitting degree and get R2 for every response surface function. The relative high 
evaluation index (R2=0.9664) for equation (3) proves that the fitted response surface function is 
suitable, which means that the response surface experiment is well with respect to practical 
simulation, and it will provide a good foundation for the next step of structure optimization. 
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The lightest weight of the shield beam, is equivalent to the minimum cover of cross section area of 
the shield beam. From the Fig.2, the objective function can be made as 

5

5

s

                                                 (5) 4 1 2 5 3( ) 2 (2 4 6 ) 6F X x x x x x x

The constraint conditions of the structural optimization on shield beam are divided into the 
following kinds: 

Strength conditions: It is ensured that the the maximum stress value of the shield beam under partial 
loads must not exceed the allowable stress. There is 

/e sy n                                                                         (6) 

s —the material's yield limit (MPa); sn —allowable safety factor. 

The thickness restrictions of the shield beam: Considering the factors such as the ventilation section, 
the gas emission, pedestrians and the overall effect of the support, a thickness range of shield beam 
is often specified in the design. There is 

                                                                     (7) min 3 4 max2T x x T

minT —the minimum thickness of the shield beam; —the maximum thickness of the shield beam 
(mm). 

maxT

The overall thickness restrictions of the abdomen: Considering that the shield beam of hydraulic 
support has certain stiffness, the abdomen design should define a minimum thickness. There is 

1 2 5 m2( 2 3 ) inx x x c                                                                    (8) 

minc —lower bound of the total thickness of the abdomen (mm). 

Boundary conditions: The value of the parameter is restricted by various specification of the plate, 
also by the overall or partial stiffness and deformation. Therefore, the design variables are within a 
certain range. There is 

                                                                     (9)     1, 2, ,5i i il x u i

il —the lower bound of the variable (mm); —the upper bound of the variable (mm). iu

So the mathematical model can be summarized as follows: 
Min 4 1 2 5 3( ) 2 (2 4 6 ) 6F X x x x x x x5

X=[x1,x2,x3,x4,x5]

s.t. min 3 4 max

1 2 5 m2( 2 3 )
   1, 2, ,5i i i

in

/
2

e s sy n

T x x T

x x x c

l x u i

Optimization and Validation Results 

In this paper, the random direction method is programmed with MATLAB to solve optimization 
model. Combining with actual production requirements, the optimal results of design variables for 
engineering process can be obtained as shown in Table 3. 
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Before optimization, the cross sectional area of the shield beam is 0.0769 m2, and through 
optimization, the cross sectional area of the shield beam decreases to 0.0678 m2. That means, the 
shield beam themselves in weight will be reduced by 11.8%. 

According to the above optimization, the shield beam has to be modeled again. Under the unilateral 
loading conditions of top beam, the finite element analysis for the shield beam is performed again. 
The contours of stress and displacement of the optimized shield beam are shown in Figs. 5 and 6. 

Table3. Design variables optimization results 

Parameters
Upper
limit

value/mm

Lower
limit

value/mm

Original
value/mm

Optimal 
value/mm

x1 190 240 225 221
x2 120 150 140 135
x3 150 180 170 172
x4 20 28 25 22
x5 15 22 20 19

Figure 5. Optimized stress distribution of the shield beam 

Figure 6. Optimized deformation of the shield beam 

Conclusions
(1) Based on the response surface method, the structural optimization on shield beam is proposed. 
And the response surface method and the finite element analysis are applied for shield beam 
structure optimization. The shield beam sectional dimension of a certain type Hydraulic Support is 
optimized to verify the practicality of the method. 

(2) The independent variables of response surface function are chosen according to sectional 
dimensions of shield beam, and the experiment design is carried out by using uniform experimental 
methods. The least-square is used to fit the response surface function, which can approximately 
reflect the relation between the sectional dimension and the maximum stress. 

6
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(3) Since the response surface function fitting is independent of the specific structure shape, the 
method has a certain universality and can be applied to other structures optimization for hydraulic 
support.
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Abstract
Due to the accident involving the Fukushima-Daiichi nuclear power plants, it becomes necessary to 
construct a numerical scheme to precisely evaluate the process of meltdown, including phase 
transformation among solid, liquid and gas phases. In this study, we constructed a model for gas-
liquid two-phase flow with a high density ratio. We used the phase-field method to express a
droplet of molten nuclear fuel flowing down a wall. By performing a dam break simulation using 
the developed model, we confirmed the model’s validity. We also performed a numerical 
simulation of a droplet falling down a solid surface with wettability. The wettability was modeled 
by setting the boundary condition of the phase-field variable. As a result, we confirmed that the 
developed model can express the typical characteristics of a falling droplet on a wall.

Keywords: Two-phase flow, Phase-field method, Navier-Stokes equation, Contact angle, Droplet  

Introduction
The development of a simulation model able to accurately evaluate the meltdown process was made
urgent by the accident at the Fukushima-Daiichi nuclear power plants. This process includes phase 
changes, such as melting and solidification, as well as the falling down of molten material. In order 
to simulate gas-liquid two-phase flow including phase change, we needed to choose an interface 
tracking method. The volume of fluid (VOF) method (Tomiyama, Sou, Minamigawa and Sakagushi, 
1991; Minato, Ishida and Takamori, 2000; Tan, Aoki, Inoue and Yoshitani, 2011) and the level-set 
method (Olsson and Kreiss, 2005; Tan, Aoki, Inoue and Yoshitani, 2011) are widely used as 
interface tracking methods for gas-liquid two-phase flow. Since the VOF method uses a sharp 
interface, applying it to treat complicated morphologies is difficult. The level-set method requires 
re-initialization of the advection equation, leading to large calculation costs. Therefore, in this study 
we used the phase-field method as an interface tracking method. The phase-field method has 
multiple advantages; it can automatically construct an interface of complex shape and express 
interface migration simply by solving a time evolution equation. The biggest reason for applying 
the phase-field method in this study is that it enabled the expression of phase changes among gas, 
liquid and solid states using the multi-phase-field method. The purpose of this study was to 
construct the gas-liquid two-phase flow model which can express a falling droplet on a wall using
the single phase-field method.

Numerical model and calculation technique

Governing equations of the two-phase flow model

In this study, we constructed a model to simulate gas-liquid two-phase flow with a high density 
ratio in order to express droplets falling on a solid surface. The phase-field method was used as an
interface tracking method and was coupled with the Navier-Stokes equation for incompressible 
flows. In phase-field method, we used the Cahn-Hilliard equation with an advection term of 
conservation form, where the phase-field variable  was regarded as a conserved quantity to keep a 
constant liquid volume. The phase-field variable  was defined as 0 in the gas phase and 1 in the 
liquid phase, and it continuously and sharply changed from 0 to 1 in the interface region. The 
Navier-Stokes equation includes surface tension force and gravity force terms, considered body 
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force in previous work (Anderson, McFadden, and Wheeler, 1998; Inamuro, Ogata, Tajima and 
Konishi, 2004; Takada, Matsumoto, Matsumoto and Ichikawa, 2008; Borcia, Borcia and Bestehorn, 
2006; Borcia and Bestehorn, 2007). The governing equations of the gas-liquid two-phase flow 
model are
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where u
r  denotes the velocity vector; M , phase-field mobility;  , chemical potential; a , the 

gradient coefficient; W , the energy barrier;  , density; p ,pressure;  , viscosity; and g
r , the 

gravitational acceleration vector. The gradient coefficient a and energy barrier W are related to 
physical properties by the following equations.

b
a

3
 (4)


b

W
6

 (5)

Here,  denotes interface width;  , the interface energy between gas and liquid; and b , the
coefficient to be related to the interface ( 2.2b ). We assumed that the density  and viscosity 
continuously changed in the interface region, with a change in the phase-field variable, according to 
following equations. 

   1vl                                                                 (6) 
   1vl (7)

The subscripts v  and l represent the gas and liquid phases, respectively.

Numerical scheme

The Cahn-Hilliard equation was solved by a perfectly explicit method. The Laplacian discretization 
of the phase-field variable and chemical potential was evaluated with a fourth-order central 
difference scheme. The advection term was evaluated with a third-order upwind scheme. Time 
integration was evaluated with a first-order forward difference scheme. The solution of the flow 
field was obtained using the SMAC method. The Poisson equation for pressure was discretized by a 
second-order scheme and the sparse matrix was solved using the SOR method. The diffusion term 
was evaluated with a second-order central difference scheme. The advection term and the time 
integration were calculated with the same scheme as the Cahn-Hilliard equation. 

Dam break problem

The dam break problem is well-known for validity verification of gas-liquid two-phase flow 
calculation code. Therefore, in this study we confirmed the reliability of our calculation code using 
a two-dimensional calculation of this problem. The computational model of a water-air system is 
shown in Figure 1. The initial water column width a and height an2 were m1015.57 3a and

m103.114 32 an (aspect ratio 22 n ); the same values were used in a previous experiment by 
Martine and Moyce (Martine and Moyce, 1952). The physical properties were as follows 

3kg/m1000l , sPa10137.1 3  
l , 3kg/m226.1v , sPa1078.1 5  

v , 23 J/m108.72  , x 4  and 
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 sJ/m100.1 54  
M . The lattice number was set to 160160 . The lattice sizes, x  and y , and the 

time increment t were m1043.1 3 yx  and s1005.1 6t . In all boundaries, we set the 
following conditions: 0 n

r , 0 n
r , 0un

rr and 0 pn
r , where n

r  denotes the normal vector. 
Equation (8) represents a static contact angle of 90 degrees and Equation (9) represents the fact that 
fluids cannot pass through the wall boundaries. 

Figure 1.  Computational model for the dam break problem. 

Time variations of the front coordinate z and height  when the water column is broken by the
gravity force are shown in Figure 2.  Here, z  ,  and respective times are nondimensionalized by 

azZ / , agntTz / ,  anH 2/  and agtTh / .
As shown in Figure 2(a), the front position moved more rapidly in the simulation than in the
experiment. This is because the experiment was not perfectly two-dimensional even though it was 
performed in a thin region of the thickness dimension. In addition, the initial rectangular water 
column and its sudden breaking were difficult to express in the experiment. In Figure 2(b), the time 
variation of the height corresponds faithfully. Although there are some discrepancies between the 
numerical and experimental results, we see reasonable agreement between them and can thus 
confirm the reliability of our calculation code.

(a) front              (b) height
Figure 2. Time variations of front and altitudinal contact lines in the dam break problem. 
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Droplet falling on a solid surface with wettability

Boundary conditions for wettability

In order to give wettability to the boundary, we introduced an idea which implements the geometry 
shown in Figure 3. This model is different from that used in previous work (Briant, Papatzacos and 
Teomans, 2002); it directly gives wettability to the boundary. The contact angle  formed by the 
interface energy between solid and liquid and between liquid and gas (black vectors in Figure 3) is 
geometrically identical to the angle formed by the normal vector n

r of the wall and the outward 
interfacial normal vector  (red vectors in Figure 3). Then, by calculating the inner product of the 
two red vectors, the boundary condition giving wettability to the left boundary is given by the 
following equation. 

















issignotherwise,
issignthen0cosif

cos1
cos

2

2 



yx                                  (16) 

Figure 3. Boundary condition of wettability.

Numerical conditions and results

We conducted the numerical simulation of a droplet falling down a solid surface with wettability. 
The leftmost part of Figure 4 shows the computational domain and initial condition. The velocity of
the initial semicircular droplet was set to zero. The boundary condition of the phase-field variable 
on the left wall was set to the Neumann condition considered wettability given by Equation (16).We
set the contact angle to 70  °. The other boundary conditions were identical to those used for the 
simulation of the dam break problem in the previous section. The other parameters were also 
unchanged from the previous simulation, with the following exceptions:  sJ/m100.5 57  

M ,
m100.5 5 yx and s1099.8 9t .
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Figure 4 shows the morphological changes of a droplet on a solid surface with wettability. The 
upper part of the droplet becomes thin and the lower part expands as time progress. The bottom and 
side of the droplet become flat. In the simulation, we assumed phase-field mobility. If we used a
larger value, the droplet shape would tend to be round due to the influence of curvature. To perform 
quantitative simulation, we needed to accurately identify the value of phase-field mobility. Time 
variations of advancing and receding contact angles are shown in Figure 5. In the early stage of 
falling, the contribution from the boundary condition is larger than that from the gravity force. 
Therefore, the advancing and receding contact angles approached the static contact angle 70  °. 
With time, because the contribution from the gravity force became larger, the advancing contact 
angle increased and the receding contact angle decreased to minimize the system energy. 

Figure 4.  Computational domain and morphological changes of droplet on a wall surface 
with wettability. 

Figure 5.  Time variations of advancing and receding contact angles. 
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Conclusions

We constructed a model for gas-liquid two-phase flow with a high density ratio by using the phase-
field method. Using the two-dimensional dam break problem, we confirmed that our calculation 
code can reasonably simulate gas-liquid two-phase flow with a high density ratio. Next, we 
conducted a simulation of a droplet falling down a solid surface with wettability, where the 
wettability was modeled by setting the boundary condition of the phase field variable. It was 
observed that advancing and receding contact angles are changed by the contributions of the 
boundary condition and the external force.
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Uncertainty in long-term behavior and buckling of concrete-filled steel tubular 

columns 
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Abstract 
This paper presents a long-term and buckling analysis of concrete-filled steel tubular (CFST) 
columns under sustained axial compression by accounting for the uncertainties of creep and 
shrinkage of the concrete core. The intervals of the final shrinkage strain and final creep coefficient 
of concrete core are derived from test results. An interval analytical model based on the 
algebraically tractable age-adjusted effective modulus method is proposed for the uncertain long-
term and buckling analysis of CFST columns. An interval finite element model was developed in 
this paper for long-term behavior and buckling analysis. Perturbation method was employed to 
determine the two bounds of the solution. The results of the proposed analytical model and finite 
element model were compared with experimental results and analyzed. 

Keywords: creep, shrinkage, interval analysis, interval finite element analysis, perturbation method  

1. Introduction 

Concrete-filled steel tubular (CFST) columns have been used in construction since the mid-1980s 
(Schneider, 1998) and become increasingly popular in both high-rise buildings and bridges (Shams 
and Saadeghvaziri, 1997). A CFST section consists of a steel tube and a concrete core (Fig. 1). 
Creep and shrinkage of the concrete core occur with an increase of time, which influence the long-
term behavior of CFST columns significantly. It is of great importance to correctly predict effects of 
creep and shrinkage of the concrete core on the long-term behavior of CFST columns. 
 

 Steel section 

 

 

 

  

 

Figure 1. Cross-sections of CFST columns 

 
Experimental and analytical studies have been performed by pioneers over the past three decades. 
Terrey et al. (1994) conducted similar experiments on circular CFST columns axially loaded at an 
earlier age of the concrete core. The first test on square CFST columns was carried out by Morino et 
al. (1996)and six concentrically loaded columns, two eccentrically loaded columns and one flexural 
member were tested. Experiments for similar cross-sections were implemented by Uy (2001) 

Concrete 
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applying axial loading to the CFST columns at 14 and 28 days of age of the concrete core 
respectively. Square CFST columns subjected to higher sustained loads were investigated by Han et 
al. (2004). Terry et al. (1994), Uy (2001) and Han et al. (2001) predicted the concrete time-
dependent behavior by using the age-adjusted effective modulus (AAEM) method proposed by 
ACI-209. Cheng et al. (2005) introduced a three-dimensional nonlinear laminated element into the 
long-term modeling and assumed the creep behavior to be described by the Kelvin model. All of 
these experimental and analytical investigations treated the creep and shrinkage behaviors of the 
concrete core as deterministic phenomena.  
 
However, it is noted that the creep coefficient obtained from tests vary significantly from one 
experiment to another. Very different predictions of the time-dependent behavior of CFST columns 
have been reported in different studies. This shows that the uncertainties of creep and shrinkage of 
the concrete core do exist. To predict the long-term behavior of CFST columns reasonably, these 
uncertainties have to be considered. Uncertain analysis of engineering structures has been 
developed in the last two decades and probabilistic methods are usually used if sufficient 
probabilistic information is available to validate the distributions or probability density functions of 
random variables. Other non-probabilistic approaches such as interval arithmetic and fuzzy sets 
theory are excellent alternatives when the statistical data of variables are not enough. For the long-
term analysis of CFST columns considering the creep and shrinkage of the concrete core, 
probabilistic methods require probabilistic distributions of the final creep coefficient and final 
shrinkage strain to be determined first. Unfortunately, the available test data for creep and shrinkage 
of the concrete core of CFST sections are quite limited. Hence, it is impossible to derive correct 
probabilistic distributions of the final creep coefficient and final shrinkage strain.  
 
In this paper, intervals are adopted to represent the uncertainties. In interval model, only the lower 
and upper bounds are required, which will be determined from the currently available experiment 
results for the final creep coefficient and final shrinkage strain. The age-adjusted effective modulus 
method (AEMM) (Bažant, 1972) is used to describe the creep of the concrete core and a virtual 
work method is used to establish the differential equation for the long-term-analysis of CFST 
columns that are subjected to a sustained axial uniform compression. Interval analyses are then 
implemented to predict the uncertain long-term behavior of CFST columns and buckling loads 
caused by the variations of the creep and shrinkage of the concrete core. Finally, an extensive 
parametric study is carried out to evaluate the influence of time, load level, steel ratio for CFST 
columns. 
 
2. Interval analytical analysis 
2.1 Interval linear elastic analysis of long-term behavior of CFST column 
To predict the long-term performance, interval constitutive model considering creep and shrinkage 
of the CFST column needs to be established. The basic assumptions adopted for the interval long-
term linear elastic analysis of CFST columns in this paper are: (1) deformations of the CFST 
columns are elastic and satisfy the Euler–Bernoulli hypothesis; and (2) the steel tube is fully bonded 
with the concrete core. Then, the linear strain of the CFST column can be expressed as 
                                                                             u                                                                       (1) 
where u is the vertical displacement along the longitudinal direction of the CFST column. Based on 
the age-adjusted effective modulus method (AEMM), the stress in concrete can be expressed as 

                                                    ( ) (c ec sh ecE E u )sh                                                 (2) 
where Eec is the age-adjusted effective modulus of concrete, sh is the shrinkage strain of concrete 
and can be given by AS3600 (2001) 
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35

shfinal
sh t t

t
                                                              (3) 

where t is the loading time, shfinal is the final shrinkage strain of concrete when t →∞. Eec can be 
calculated by 

                                                      0
0 0

( , )
1 ( , ) ( , )

c
ec

E
E t

t t
                                                    (4) 

where 0  is the age at loading, 0( , )t is the aging coefficient and 0( , )t  is the creep coefficient 
that can be expressed as 

                                                      
0.6

0
0 0.6

0

( )( , ) [ ]
10 ( ) final

t
t

t
                                                 (5) 

where final  is the final creep coefficient when t →∞. The aging coefficient 0( , )t  can be 
expressed as (Gilbert, 1988) 

                                                        
*

0
0

0

1
( , ) 1

20
t

t
t

                                                   (6) 

where 
                                                                       * 1 0

2 0

k
k

                                                               (7) 

with  
                                                                      ,71.33

1 0.78 0.4k e                                                    (8) 

                                                                   ,71.33
2 0.16 0.8k e                                                   (9) 

                                                                    0.118
,7 0 1.25finalt                                                  (10) 

 
As the concrete core is assumed to be fully bonded with the steel tube, the deformations of the steel 
and concrete must be compatible with each other. Consequently, their mechanical membrane strains 
are equal to each other and the mechanical strains at the interface between the steel tube and 
concrete core are the same. Therefore, the stress s  in the steel tube can be written as 

                                                                     '
s s sE E u                                                         (11) 

where Es is the Young’s modulus of steel. 
 
The differential equations for the long-term analysis of the CFST column can be obtained using the 
virtual work method. When the virtual work principle is used for the long-term equilibrium of the 
CFST column, it can be stated as  

                                                    0
s c

s cV V
W dV dV Pu                                     (12) 

where Vs is the volume of the steel tube, Vc is the volume of the concrete core, ( ) denotes the 
Lagrange operator of simultaneous variations. By substituting Eqs. (1), (2) and (4), the statement of 
the principle of virtual work given by Eq. (13) can be written as 

                                     "
0

0

( ) ( ) 0
L

L
s s c ec s s c cW A E A E u udy A A P u                      (13) 

Integrating Eq. (13) by parts leads to the differential equation of equilibrium for the long-term 
behavior of CFST column 

                                                                                 " 0u                                                             (14) 
and leads to the static boundary condition for CFST column as  
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                                                          + 0s s c cA A P  at x=L                                                  (15) 
where L is the length of the CFST column. The essential geometric boundary condition is 

                                                                      u = 0 at x = 0                                                            (16) 
The long-term displacement of the CFST column can be obtained from Eq. (14) - (16) as 

                                                                c ec sh

s s c ec

P A E
u x

A E A E
                                                        (17) 

and the strain of the steel tube and concrete core can be obtained from Eq. (17) as 

                                                 ' 0 0

0 0

/ [1 ( , ) ( , )]
/ [1 ( , ) ( , )]

c c sh

s s c c

P A E t t
u

A E A E t t
                                   (18) 

In this paper, the final creep coefficient final  and the final shrinkage strain shfinal can be described 
in terms of interval variables as 

                                                                 [ , ]I
final final final                                                     (19) 

                                                               [ , ]I
shfinal shfinal shfinal                                                    (20) 

Based on the interval arithmetic and the deterministic solutions of long-term displacement, the 
interval long-term displacement of CFST column can be obtained from Eq. (17) as 

                                                   0 0

0 0

/ [1 ( , ) ( , )]
/ [1 ( , ) ( , )]

c c sh

s s c c

P A E t t
u x

A E A E t t
                                   (21) 

                                                        0 0

0 0

/ [1 ( , ) ( , )]
/ [1 ( , ) ( , )]

c c sh

s s c c

P A E t t
u x

A E A E t t
                                  (22) 

and the interval strain of the steel tube and concrete core can be obtained from Eq. (18) as 

                                                    0 0

0 0

/ [1 ( , ) ( , )]
/ [1 ( , ) ( , )]

c c sh

s s c c

P A E t t

A E A E t t
                                      (23) 

                                                     0 0

0 0

/ [1 ( , ) ( , )]
/ [1 ( , ) ( , )]

c c sh

s s c c

P A E t t

A E A E t t
                                     (24) 

 
2.2 Interval buckling analysis 
The classic equilibrium equation for column can be expressed as   

                                                                                         
4 2

4 2 0d v d v
EI P

dx dx
                                                                   (25) 

where x denotes the axial coordinate, v is the transverse deflection, P is the applied axial force, E is 
the Young’s modulus and I is the second moment of area. By using the kinematic boundary 
conditions that v =0 at 0,x L  and the static boundary conditions, the solution of Eq. (25) can be 
obtained as 
                                                                        1 sinv C x                                                              (26) 
where  is a time-dependent dimensionless axial force parameter defined by 

                                                                      2

s s ec c

P
E I E I

                                                        (27) 

where P can be express as  
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                                                              s s c ec c ec shP A E A E A E                                           (28) 
Considering the ecE  is an interval variable, Eq. (26) becomes 

                                                    1 sin
I I

s s s c ec c c ec sh
I

s s ec c

A E A E A E
v C x

E I E I
                                   (29) 

and the critical load can be obtain as when =
I I

s s s c ec c c ec sh
I

s s ec c

A E A E A E
n

E I E I
.  

The interval critical load I
crP  can be expressed as 

                                                                    
2 2

2

( )I
I s s ec c

cr

n E I E I
P

L
                                              (30) 

when  

                      
2 2 22 2 2

2 2

( )( )[ ]
( ) ( )

s s ec c c ec shI s s ec c c ec sh

s s c ec s s c ec

n E I E I A E Ln E I E I A E L
L A E A E L A E A E

                  (31) 

 
3. Interval finite element analysis 
The equilibrium equations of the CFST column can be derived from the principle of virtual work 
that requires 

                          { } { } { } { } { } { } 0
s c

T T
I I I I I T

s cV V
dU d dV d dV du p                  (32) 

The relationship between the stress and strain of concrete core can be expressed as 
                                                                { } [ ]{ }I I I I

c ec shD                                               (33) 
where [ ]I

ecD is the interval stress-strain matrix for concrete core. Similarly, the relationship between 
the stress and strain of the steel tube is 

                                                                      { } [ ]{ }I I I
s sD                                                    (34) 

Strains are determined from displacements, that is 
                                                                     { } [ ]{ }I IB u                                                     (35) 

where [ ]B  is the strain-displacement matrix.  
Substituting Eqs. (33) to (35) into Eq. (32) yields  

  { } { [ ] [ ][ ]{ } [ ] [ ][ ]{ }(1 ) { }} 0
s c

I
I T T I I T I I sh

s ec IV V
dU du B D B u dV B D B u dV P            (36) 

The CFST member is assumed to deform from the previous equilibrium state defined by {P} and {u} 
to an incremental equilibrium state defined by{ }P P and{ }u u . Applying principle of virtual 
work, we can obtain  

                                                               ( ) 0I IdU u u                                                    (37) 
By using Taylor’s series expansion, Eq. (40) becomes   

                                                   ( ) ( ){ } { } { } { } 0T I T
I

dU dU
u p

u p
                                (38) 

Substituting Eq. (36) to Eq. (38), we have 
                                                   { } ( ) { } ( )I T I I I T I

Tdu K u u du P u                                    (39) 
where Iu  is the increment of interval displacement of the structure, ( )IP u  is the increment of 
load. ( ) I

TK u  is the interval tangent stiffness matrix of the structure and can be expressed as 
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( ) [ ] [ ][ ] [ ] [ ][ ] [ ] ( [ ])[ ]
s c c

I
I T I T I T Ish

T s ec ecIV V V
K u B D B dV B D B dV B D B dV  

  I I I
s ec shK K K                                                          (40) 

of which I
sK  is the linear interval elastic stiffness matrix for steel tubular, I

ecK  is the interval 
effective stiffness matrix for concrete core, and I

shK  is the interval strain stiffness caused by 
shrinkage. I

ecK  and I
shK  are both dependent on time. The tangent stiffness matrix is updated after 

each increment of load or each increment of displacement due to creep and shrinkage.  
 
4. Model validation and discussions 
4.1 Determination of intervals for the final shrinkage strain and creep coefficient 
The empirical values of the final shrinkage strain I

shfinal and creep coefficient I
final  are proposed 

in several experimental studies. The value of the final shrinkage strain given by Han et al. (2004), 
Morino et al. (1996), Terrey et al. (1994) and Uy (2001) is 43.5, 83.6, 50 and 160, respectively. 
Correspondingly, the final creep coefficient is 0.5, 0.83, 1.0 and 1.5 respectively. These values vary 
considerably. To account for these variations in the long-term analysis of CFST columns, the 
interval of the final shrinkage strain and creep coefficient of their concrete cores can be derived 
from these test results as shfinal  = [43.5, 340] and final  = [0.5, 1.7] respectively, which are used in 
this study. It can be expected that the results obtained by the interval models proposed in this paper 
will contain these experimental results, in other words, the experimental results will fall into the 
interval bounds produced by the proposed models. 

 
4.2 Long-term behavior of CFST column by interval analytical analysis 

Han et al. (2004) carried out long-term tests on CFST square section columns. The dimensions of 
the square section are 100 mm and the thickness of the square section is 2.93 mm. The length of the 
CFST columns is L = 600mm. Young’s modulus of the steel tube Es = 202 × 103 MPa and Young’s 
modulus of the concrete core Ec = 29200 MPa. The first loading time is 28 days after concrete core 
casting. A central axial load of 360 kN was applied to the CFST columns.  

 
Figure 2. Comparison of creep and shrinkage strains 

 

The analytical interval solution for the strain of CFST columns is compared with the test results in 
Figure 2. It can be observed that the interval uncertainty analysis can provide good upper and lower 
bounds for test results. 

 
4.3 Interval numerical buckling analysis 
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Figure 3. Interval critical buckling load on long-term sustained loading 

 
 

 
Figure 4. Compression force on concrete core when buckling 

 
 

Fig. 3 shows the interval critical buckling load under long-term sustained load obtained by the 
interval finite element analysis method. Figs.4 shows the compression force on concrete core 

/c crf N  with time t, respectively. Young’s modules of the steel and concrete are 
200sE GPa and c 30E GPa .The size of section is100mm 100mm 3mm . The length is 1000 

mm. 
 
It can be seen from Fig. 3 that when time t increases, the critical buckling load decreases 
significantly due to the effects of the creep and shrinkage. The decrease range is [7%, 20%] at 
t=300days. Fig. 4 shows that, along the time t, the “buckling resistance contribution” from the 
concrete is decreasing while form the steel tubular is increasing. 

 

 
Figure 5. Axial strain for limit point buckling 
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Fig. 5 shows the compression force on the concrete core with axial strain. Buckling is investigated 
in a way that the column under an incremental load and the load criterion applies (Zhou, 2010). 
When creep buckling tends to happen, increment of the load becomes very small. From these 
figures, it can be seen that the axial strain is becoming smaller when buckling happens, in other 
words, the buckling resistance of the column is decreased due to the creep and shrinkage. 

 
5. Conclusions 
This paper presents a theoretical study on the uncertain long-term and buckling analysis of 
concrete-filled steel tubular columns. An interval analytical model based on the algebraically 
tractable age-adjusted effective modulus method is proposed to describe the time-dependent 
behavior of concrete in CFST columns. The solution of this model is compared with the 
experimental results reported by other researchers, which show the good agreements. Based on the 
energy method, the formulations for elastic buckling of the steel plate in rectangular CFT columns 
under axial compression are derived. An interval finite element was developed to describe the long-
term behavior and analysis buckling. The buckling load or buckling time can be evaluated using this 
model.  
 
In the future, the proposed models will be further developed to analyze other types of CFST 
structures accounting for the uncertainties in their material and geometric properties. 
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Non-linear elastic in-plane buckling of crown-pinned arches  
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Figure 1. Crown-pinned arches subjected to different loading cases 
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Non-linear in-plane equilibrium 
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Figure 2. Arch geometry  

649



Finite element model 
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Figure 3. Finite element model of a crown-pinned CFST arch  

Figure 4. Limit point buckling of rotationally restrained crown-pinned arches  
under a central concentrated load  
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Figure 5. Limit point buckling of rotationally restrained crown-pinned arches  
under a uniform radial load 

Comparison of finite element results with analytical solutions 
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Figure 6. Comparison between analytical and finite element results of limit point buckling  
of a crown-pinned CFST arch under a central concentrated load 

Figure 7. Comparison between analytical and finite element results of limit point buckling  
of a crown-pinned CFST arch under a uniform radial load
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Abstract
Enhanced oil recovery (EOR) by injecting steam into oil wells is widely used to make the oil less 
viscous, thereby improving its mobility and recovery. Steam is generated by steam generators and 
supplied to oil wells through a steam distribution network. In order to optimize the effects of EOR, 
it is necessary to predict steam properties in the distribution network with high accuracy. In this 
paper, a newly developed steam distribution network simulator for EOR systems is introduced. The 
features of the simulator are providing: (1) a highly accurate prediction of steam properties 
including phase change (steam to drain) in a complex steam distribution network by adopting a pipe 
flow model using the finite volume method and the Newton-Raphson method and a steam 
distribution network flow model according to graph theory and (2) a dedicated interface for 
operators to build the steam distribution network model easily by referring to a topographic map. 
The simulation results show that the developed simulator is useful to evaluate and modify an
existing steam distribution network and to design a new one. 

Keywords: Steam Distribution Network, Simulator, Two-phase Flow, EOR.  

Introduction 

Enhanced oil recovery (EOR) by injecting steam into oil wells has been the most widely used 
recovery method for heavy and extra-heavy oil production in sandstone reservoirs. For the steam 
injection, several steam generators are located throughout the oil field to produce the steam that is 
fed into a distribution network. As the distribution network becomes more complex and larger, the 
steam flow becomes more complicated and the steam properties along the pipes vary greatly. 
Additionally the heat loss from the pipe to the surrounding air makes the steam condense into a 
drain and these condensations also complicate the steam flow. Thus, the effective operation of the 
EOR systems requires an understanding of the steam flow in the distribution network that may be 
done using numerical simulation.  

The requirements for the steam distribution network simulation of EOR systems are: (1) providing 
highly accurate prediction of steam properties including phase change (steam to drain); (2) having 
applicability to complex and large distribution networks with multiple loops, steam generators and 
oil wells; and (3) realizing easy building of a distribution network model for the simulation. Many 
studies on the fluid and heat flow in a distribution network have been reported. However most of 
the mathematical models or computer programs that were developed in these studies do not satisfy 
the above-mentioned requirements simultaneously. Majumdar et al. (1997) developed a computer 
program for analyzing steady compressible flow with phase change and heat transfer in a complex 
distribution network. This program involves complicated procedures for operators to build a 
distribution network model with long distance pipes, since the operators must divide each of the 
pipes into many partial pipes to predict steam properties with high accuracy. This paper describes a 

1
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newly developed steam distribution network simulator for EOR systems. The simulation results are 
a highly accurate prediction of steam properties including the phase change. The results also show 
that the developed simulator is useful to evaluate and modify an existing steam distribution network 
and to design a new steam distribution network.

Mathematical model of pipe flow 

The following three sections describe the mathematical model and the user interface developed to 
satisfy the above-mentioned requirements for the steam distribution network simulation of EOR. 

Governing equations

In this paper, the pipe flow is assumed to be one-dimensional steady compressible flow with phase 
change and heat transfer. Additionally the pipe geometry is assumed to be straight with a constant 
diameter and surrounded by thermal insulation. The governing equations for the pipe flow are the 
mass conservation, the momentum conservation and the energy conservation equations which are 
given by

0 zm&  (1) 

     02  wFAzpAzAmv &      (2) 

  0 wqPzhm&     (3) 

where Fw denotes wall friction force and qw wall heat flux that flows from the pipe to the 
surrounding air. For the two-phase flow, the slip flow model (JSME, 2006) is chosen. In the slip 
flow model, the specific volume v in Eq. (2) and the specific enthalpy h in Eq. (3) are given by

       GL vxvxv  22 11      (4) 

  GL xhhxh  1     (5) 

where the void fraction is defined using Thom’s void fraction correlation (Thom, 1964). To deal 
with one-phase flow and two-phase flow, the equations for calculating Fw and qw are switched 
depending on the phase status of the pipe flow. Details of the equations appear in Appendix A. The 
independent variables in Eqs. (1), (2) and (3) are mass flow rate, pressure and specific enthalpy. 
Other thermodynamic properties of steam and water are calculated using the equation of IF97 
(IAPWS, 1997) 

Discretization of governing equations according to the finite volume method

In order to predict the steam properties with high accuracy, Eqs. (1), (2) and (3) are discretized 
according to the finite volume method, where the number of control volumes is set to be high 
enough to resolve the spatial distribution of the properties. The proposed method uses the staggered 
grid approach (Patankar, 1980) in order to preventing pressure oscillations. In this approach, the 
mass and energy conservation equations are solved on a control volume gird and the momentum 
conservation equation is solved on a staggered grid as shown in Fig. 1. The mass flow rate is 
defined at the staggered grid center and all of the thermodynamic properties are defined at the 
control volume grid center.  

Integrating Eqs. (1) and (3) over the control volume grid gives  

02121   ii mm &&      (6) 
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0ˆˆ
,21212121   iwiiiii qzPhmhm &&     (7) 

 where 21
ˆ
ih  is defined at the control volume gird face. The first order upwind scheme is used to 

obtain the value of 21
ˆ
ih , thus 

      iiiiiiii hmmhmmhm 22ˆ
2121121212121   &&&&&     (8) 

The value of 21
ˆ
ih  can be obtained in the same way as 21

ˆ
ih . Integrating Eq. (2) over a staggered 

grid gives 

      02121211
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21   iiiiiiiii mmmKzppAmvAmv &&&&&       (9) 

Computational scheme using the Newton-Raphson method 

The discretized equations (Eqs. (6), (7) and (9)) are non-linear and require iterative calculation. The 
proposed method applies the Newton-Raphson method (NRM) (Shamir and Howard, 1968), where 
pressure is corrected so that it satisfies the mass conservation equation (Eq. (6)). The pressure 
correction equation is given by 

  1
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1
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where the superscript n1 denotes the previous iteration number. Eq. (10) forms a set of linear 
equations in terms of dpi. Once solved, the current iteration pressure is updated by n

ip

    (12) i
n
i

n
i dppp  1

The current iteration mass flow rate n
im 21& and specific enthalpy are calculated by substituting 

into Eqs. (7) and (9). The calculation process of ,

nhi
n
ip

n
ip n

im 21&  and is repeated until convergence.  n
ih

Mathematical model of the steam distribution network flow 

Representation of the steam distribution network according to graph theory 

According to graph theory, an arbitrary steam distribution network can be represented as a directed 
linear graph. The network consists of a number of oriented lines connected to nodes as shown in Fig. 
2. Lines contain pipes and nodes contain branches, steam sources (steam generators) and steam 
sinks (oil wells). Lines are connected to one another by nodes and each line is associated with an 
upstream and a downstream node. The topology of a directed linear graph of Nl lines and Nn nodes 
can be described by a Nl x Nn node incidence matrix B with the typical element: 

   +1,  if line j is directed away from node k
bjk= 1, if line j is directed toward node k            (13) 

   0, if line j is not connected to node k

Figure 1 Control volume and staggered grid structure
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Figure 2 Representation of a network
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The node incidence matrix B for the network shown in Fig. 2 is as follows: 

    (14) 
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Computational scheme 

The governing equations for the steam distribution network flow are the mass and the energy 
conservation equations at nodes and the momentum conversation equation at lines. The proposed 
method uses the NRM to solve the network flow. In the same way as the pipe flow calculation, the 
pressure at nodes is calculated by the following pressure correction equation: 

    (15) 























































1

1

T

,

1,
T

1

,

1,

0

0

n

n

Nnode

node

N lNline

line

nl
m

m

dp

dp

y

y

&

M

&

MO BBB





jm

i
ijjy

1
21,     (16) 

Once dpnode,j is solved, the current iteration pressure at nodes  is updated by n
jnodep ,

    (17) knode
n

knode
n

knode dppp ,
1

,,  

Current iteration mass flow rate at lines  can be computed from the above-mentioned pipe 

flow model and current iteration specific enthalpy at nodes  can be computed from the energy 

conservation. The calculation process of ,  and is repeated until convergence.

n
jlinem ,&

n
knode,

n
jnodeh ,

n
knodeh ,p n

jlinem ,&

User interface of the simulator 

The simulator provides a dedicated user interface (Fig. 3) for operators to build the distribution 
network model easily and to visualize the simulation results. The simulator first takes in a 
topographic map where the actual distance is associated. Then the operators can build the 
distribution network model by referring to the map. The pipe length can be calculated automatically 
using the actual distance associated with the map and the other pipe specifications such as diameter, 
thickness etc. are defined by the operator inputs. At the beginning of the simulation, each of the 
pipes is automatically divided into control volumes whose number is set to be high enough to 
resolve the spatial distribution of the steam properties. In this paper, the pipe is divided into control 
volumes of 10 meters in length. On the completion of the simulation, the results can be visualized 
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Figure 3 User interface of the developed simulator
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as a numeric form or a graphical form. In the provided user interface, the operators can build the 
distribution network model and calculate the network flow without special knowledge of numerical 
simulation.  

Results and discussion 

An example steam distribution network flow was calculated to demonstrate the functionality of the 
developed simulator. Fig.4 shows the layout of the network that included two loops, two steam 
sources (nodes 1 and 2) and four steam sinks (nodes 3, 4, 5 and 6). The boundary conditions of the 
steam sources and steam sinks are given in Fig. 4 and the pipes data are given in Table 1. The pipe 
thickness and the thermal insulation thickness of all the pipes was 0.03 m. Node 1 supplied 
superheated steam and node 2 supplied saturated steam. 

The results for the example network are shown in Table 2. Because the flow direction for line 13 
was left-to-right (from node 6 to node 12), node 1 supplied the steam to nodes 3, 4, 5 and 6, while 
node 2 supplied the steam to nodes 5 and 6. The steam flowing into nodes 3 and 4 was superheated 
steam. In contrast, the steam flowing into nodes 5 and 6 was partially condensed into the drain, 
since the distance from node 1 to node 5 or 6 was far and the heat loss of the steam supplied by 
node 1 was large. Fig. 5 shows the spatial distribution along lines 17 and 18 flow for five steam 
properties: pressure, temperature, quality, flow resistance coefficient, and heat transfer coefficient 
between steam and pipe. The phase status of the pipe flow changed from one-phase flow to two-
phase flow at the pipe length of 1230 m. The flow resistance coefficient and heat transfer 
coefficient were constant over the one-phase region, while they increased throughout the two-phase 
region due to the steam condensation. Because the developed simulator divides each of the pipes 
into control volumes automatically and switches the equations of wall friction force and wall heat 
flux depending on phase status of the pipe flow, it can predict steam properties including phase 
change with high accuracy. 

5

In order to estimate the effect from degradation of heat insulation, the thermal insulation thickness 
of lines 17 and 18 was changed from 0.03 m to 0.005 m. The results around lines 17 and 18 for this 
condition are compared in Table 3 with the original condition (Italic font). Because heat loss of 
lines 17 and 18 increased and large quantities of the steam were condensed, the quality at nodes 6 
and 15 decreased. In order to increase the quality at nodes 6 and 15, a mobile steam source that 
supplied saturated steam was connected to node 15. The steam pressure and temperature supplied 
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Table 2 Results for the example network 
Line

number

Mass flow
rate

(kg/s)
1 31.92
2 5.61
3 11.74
4 8.31
5 8.63
6 8.85
7 19.38
8 7.64
9 7.64
10 -4.23
11 -12.54
12 -12.54
13 11.87
14 3.51
15 9.12
16 0.48
17 -8.36
18 -8.36

Node
number

Pressure
(MPa)

Tempera
-ture
( )

Quality
(-)

1 10.00 350 1.00
2 10.00 311 1.00
3 8.00 325 1.00
4 8.00 308 1.00
5 8.00 295 0.92
6 8.00 295 0.93
7 9.70 346 1.00
8 9.53 341 1.00
9 9.46 324 1.00

10 9.44 328 1.00
11 9.63 341 1.00
12 9.36 313 1.00
13 9.35 306 0.98
14 9.25 305 0.93
15 9.25 305 0.95
16 9.33 308 1.00

Table 3 Results for estimating the effect 
from degradation of heat insulation  
Node

number
6 8.00 8.00 295 295 0.67 0.93

12 9.38 9.36 312 313 1.00 1.00
13 9.37 9.35 306 306 0.98 0.98
14 9.28 9.25 306 305 0.93 0.93
15 9.28 9.25 306 305 0.67 0.95
16 9.35 9.33 306 308 0.93 1.00

Temperature
( )

Quality
(-)

Pressure
(MPa)

Figure 4  Layout of the example steam distribution network
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Table 1 Pipes data
Line

number
Length

(m)
Diameter

(m)

1 500 0.2731
2 1000
3 500
4 1000
5 500
6 500
7 750
8 2000
9 750

10 750
11 2000
12 750
13 1000
14 750
15 2000
16 1500
17 2000
18 750

0.1682

0.2731

Table 4 Results for connecting 
the mobile steam source

Node
number

Pressure
(MPa)

Temperature
( )

Quality
(-)

6 8.00 295 0.74
15 9.48 307 0.74
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311 (degC)
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8.00 (MPa) 8.00 (MPa)

Table 1 Pipes data
Line

number
Length

(m)
Diameter

(m)

1 500 0.2731
2 1000
3 500
4 1000
5 500
6 500
7 750
8 2000
9 750

10 750
11 2000
12 750
13 1000
14 750
15 2000
16 1500
17 2000
18 750

0.1682

0.2731

Table 4 Results for connecting 
the mobile steam source

Node
number

Pressure
(MPa)

Temperature
( )

Quality
(-)

6 8.00 295 0.74
15 9.48 307 0.74

Table 4 Results for connecting 
the mobile steam source

Node
number

Pressure
(MPa)

Temperature
( )

Quality
(-)

6 8.00 295 0.74
15 9.48 307 0.74

by the mobile steam source were 9.5 MPa and 307 °C.  The results of nodes 6 and 15 for this 
condition are shown in Table 4. Owing to the saturated steam supplied by the mobile steam source, 
the quality at nodes 6 and 15 increased. By using the developed simulator, it is possible to evaluate 
and modify an existing steam distribution network and to design a new one. 

Conclusions

A steam distribution network simulator for EOR systems was developed. The simulator provides: 
(1) highly accurate prediction of steam properties including phase change (steam to drain) in a 
complex steam distribution network by adopting the pipe flow model using the finite volume 
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Figure 5 Steam properties along lines 17 and 18 flow
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method and the Newton-Raphson method and the steam distribution network flow model according 
to graph theory and (2) a  dedicated interface for operators to build the steam distribution network 
easily by referring to a topographic map. The simulation results showed that the developed 
simulator is useful to evaluate and modify an existing steam distribution network and to design a 
new one. The developed simulator is also applicable to the steam distribution network in 
petrochemical complexes or district heating facilities.   
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Appendix A. Equations for wall friction force and wall heat flux 

Wall friction force   

The wall friction force is modeled as the product of the flow resistance coefficient K and the square 
of the mass flow rate which is given by 

 mmmKFw &&&      (A-1) 

where m is the small mass flow rate for stabilization of pipe flow calculation. For the one-phase 
flow, K is expressed with the Darcy-Weisbach equation and the Swamee-Jain equation (Swamee 
and Jain, 1976). For the two-phase flow, K is expressed with the Nozu equation (Nozu et al., 1998).

&

Wall heat flux   

The wall heat flux is given by the following equation 

   RLdTTq atmw       (A-2) 

where
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The equation for the heat transfer coefficient between steam and pipe hi is switched depending on 
the phase status of the pipe flow. hi for the one-phase flow is expressed with the Gnielinski equation 
(Gnielinski, 1976) and hi for the two-phase flow is expressed with the Shah equation (Shah, 1979).

References for Appendix A 

Gnielinski, V. (1976), New equations for heat and mass transfer in turbulent pipe and channel flow, Int. Chemical 
Engineering, 16-2, pp. 359–368. 

Nozu, S., Katayama, H., Nakata, H. and Honda, H. (1998), Condensation of a refrigerant CFC11 in horizontal microfin 
tubes (Proposal of a correlation equation for frictional pressure gradient), Experimental Thermal and Fluid Science,
18, pp. 82-96. 

Shah, M. M. (1979), A general correlation for heat transfer during film condensation inside pipes, Int. J. Heat Mass 
Transfer, 22-4, pp. 547-556. 

Swamee, P. K. and Jain, A. K. (1976), Explicit equations for pipe-flow problems, J. Hydraulics Division (ASCE: 
American Society of Civil Engineers), 102-5, pp. 657-664.

Appendix B. Nomenclature 
A  Cross-sectional area (m2) r3 Pipe outer radius with heat insulator (m) 
B Incidence matrix (-) T Temperature (°C) 

v Relative volume (m3/kg)b Incidence matrix element (-) 
x Vapor quality (-)d Pipe inner diameter (m) 
z Space coordinate (m) dp Correction of pressure (Pa) 

Fw  Wall friction force (N/m3) z Control volume gird size (m) 
h Specific enthalpy (J/kg) 

Greekhi Heat transfer coefficient between steam  
and metal of pipe (W/K/m2)   Void fraction (-) 

ho Heat transfer coefficient between thermal 
insulator and atmosphere (W/K/m2) Subscripts

K Flow resistance coefficient (1/kg/m) atm Atmosphere 
k Thermal conductivity (W/m/K) G Saturated steam
L Pipe length (m) i Control volume gird index 
m&
m&

  Mass flow rate (kg/s) ins Thermal insulation  
j Line index  Small mass flow rate for stabilization (kg/s) 

m Number of staggered grids (-) k Node index
Nl Number of lines (-) L Saturated water 
Nn Number of nodes (-) m Metal of pipe 
P Wetted perimeter (m2) line Value at line 
p Pressure (Pa) node Value at node 
qw Wall heat flux (W/m2)

SuperscriptsR Thermal resistance (K/W) 
r1 Pipe inner radius (m) n New iteration step 

n1 Previous iteration step r2 Pipe outer radius without heat insulator (m) 
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Abstract
This paper presents a numerical method using the CIVA-stabilized finite element method based on 
SUPG (CIVA-SUPG) for tsunami simulations. The Boussinesq equation is employed for the 
governing equation in order to treat both the wave nonlinearity and dispersion effects. The equation 
is divided into two phases, an advection phase and a non-advection phase. The CIVA method is 
employed to the advection phase and the stabilized finite element method based on SUPG is 
employed to the discretization for non-advection phase. The present method is applied to several 
benchmark examples to show the validity and efficiency of the method. For the application example, 
the present method is employed to the tsunami simulation generated by Great East-Japan 
earthquake. 

Keywords: CIVA-SUPG finite element method, Tsunami, Boussinesq equation, Wave run-up 

Introduction
A number of flood disasters by tsunami occur in various parts of the world. The flood disasters by 
tsunami waves cause the enormous damage to the human life and economic activities. In order to 
estimate the extent of the disaster quantitatively, it is important to use accurate numerical method 
for tsunami waves. The two-dimensional shallow water equation and the Boussinesq equation are 
normally used for the governing equation for tsunami waves. The shallow water equation can 
describe the wave nonlinearity, however, the wave dispersion effect is not considered in the shallow 
water equation. On the other hand, Boussinesq equation can treat both the wave nonlinearity and 
dispersion effects, the equation is suitable for the governing equation for tsunami simulation. 

For the tsunami numerical simulation, a number of numerical methods have been proposed. The 
finite difference is well used. However, it is necessary to use the nesting techniques in order to use 
the fine grid at the nearshore area since the regular grid is employed in the finite difference method. 
On the other hand, the finite element method does not need the nesting techniques since the 
unstructured grid is employed. Therefore, the finite element method is suitable for tsunami 
simulation since that can treat the complicated geometry easily. 

This paper presents a numerical method using the CIVA-stabilized finite element method based on 
SUPG (CIVA-SUPG) for tsunami simulations. The Boussinesq equation is employed for the 
governing equation. The governing equation is divided into two phases, an advection phase and a 
non-advection phase. The CIVA method (Tanaka, 1999) is employed to the advection phase and the 
stabilized finite element method based on SUPG (Takase et al, 2010) is employed to the 
discretization for non-advection phase. The moving boundary technique based on fixed grid is 
employed. The present method is applied to several numerical examples to show the validity and 
efficiency of the method. For the application example, the present method is applied to the tsunami 
simulation generated by Great East-Japan earthquake using an unstructured triangular grid with the 
element Courant number constant. 

Governing Equations 

For the governing equation, the Boussinesq equation is employed. This equation can treat the wave 
nonlinearity and dispersion effects. The governing equation can be described as follows: 
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Where H , iu , g , z and n  are total water depth, depth averaged velocity, acceleration of gravity, 
still water depth,  bed slope and Manning’s coefficient, respectively.  

The governing equation can be divided into two phases as below: 
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Eq. (3) is equation of advection phase (advection equation), the Eq. (4) and (5) are equations of 
non-advection phase.

Numerical methods

Advection Phase 

The solution of Eq. (3) for advection phase is computed by the CIVA method (Cubic Interpolation 
with Volume/Area co-ordinates) proposed by Tanaka (1999). The method is an extended method of 
CIP for unstructured-grid, and the solution for advection equation is solved by the cubic 
interpolation as: 
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Figure 1. CIVA method                             Figure 2. Area coordinate 

Where, f  is the discharge fluxes Hui  for ix  directions and iL is the area coordinates (see Fig. 2). 
In order to compute the nodal value at P1 at time level n+1, the position of node P1 at time level n 
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3

(Point P) is determined by using the velocity at time level n. Then, the value at point P is obtained 
by Eq. (3) using three nodal values at time level n. The computed value is transported to point P at 
time level n+1. (see Fig.1) 

Non-advection Phase 

After the advection phase, Eqs. (4), (5) are discretized by the stabilized finite element method based 
on SUPG method (Streamline-Upwind Petrov Galerkin) using the results of the advection phase. 
Eqs. (4), (5) can be expressed by the vector form as follows: 
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Here U , R , K , iA  and G are unknown vector, bed slope term, dispersion term, nonlinear term 
and friction term respectively. The valuables with overline are the computed results by the 
advection phase. Appling the stabilized finite element method to Eq. (7), the weighted residuals 
equation is given as follows: 
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  (8) 

Here is the SUPG stabilization parameter,  is the shock-capturing parameter. In Eq. (8),  the first 
term, second term and right hand side term are Galerkin terms, the third term are SUPG 
stabilization terms, the fourth terms are shock-capturing term. For the spatial discretization, the 
continuous linear interpolation element is employed. For the discretization in time, the implicit 
method based on Crank-Nicolson method is employed. 
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Moving Boundary Techniques 

In order to describe the behavior of the tsunami run-up and run-off, the Eulerian approach using 
fixed grid is employed for the moving boundary condition. Fig. 3 shows the definition sketch for the 
treatment of moving boundary. Every nodal water depth is compared with the small water depth 
at every time step.  Each element is classified into three types; wet, dry or partial wet element 
(Kawahara and Umetsu (1986)).  

 Wet element : The water depth for all three nodes are greater than .The element is  
included in the computational area.  

 Dry element : The water depth for all three nodes are smaller than .The element is omitted 
 from the computational area. The nodal velocity is assumed to be zero. 

   
 Partial wet element : The water depth for one  or two nodes are greater than .The element 

 is included in the computational area. The nodal velocity is assumed to  
be zero and the water depth is assumed to be  for the node located 
on dry bed. 

Figure 3.  Moving boundary technique 

Numerical Examples 

The present method is applied to several numerical examples to investigate the validity and 
efficiency. 

Dam-break Problem 

The present method is applied to dam-break problem in the rectangular tank. The computational 
model and initial water depth are shown in Fig. 4. The dam is broken instantaneously at time t = 0s. 
In this problem, the shallow water equation is employed for the governing equation in order to 
investigate the numerical accuracy comparing with the theoretical result. For the numerical 
condition, the time increment is assumed to be 0.001sec. For the boundary condition, the slip 
boundary condition is set to the wall. 
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Figure 4. Computational model 

         
              Figure  5. Computed water depth           Figure 6. Zoom up around x=8.0m 

Fig. 5 shows the comparison with the theoretical solution for water depth at time t = 1s. Fig. 6 
shows the zoom-up around x = 8.0m. The computed results obtained by the present method are 
good agreement with the results obtained by the SUPG method (Takase et al, 2010). 

Tsunami Run-up Problem 

The present method is applied to a tsunami run-up problem in the tank. Fig.7 shows the 
computational model which is used by the experiment by National Defence Academy of Japan 
(Fujima et al, 2009). The wave paddle moves to make the incident wave. Fig. 8 shows the time 
history of velocity of paddle which is applied to the boundary condition for the velocity for 1x
direction at the paddle. The slip boundary condition is set to other walls. For the numerical 
condition, the time increment is assumed to be 0.005s and the Manning’s coefficient is assumed 
0.01 31m/s . The computed results were compared with the experimental data at the observation 
points of P1, P2, P3 and P4 (see Fig. 7). 

  Figure 7. Computational model                          
Figure 8.  Velocity of wave paddle 
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            Figure 9. Comparison with the experimental results at the observation points 

Fig. 9 shows the comparison of water elevation with the experimental results at the observation 
points P1-P4. From this figure, the computed results by the present method are good agreement 
with the experimental results at all observation points.   

Tsunami Simulation by the Great East Japan Earthquake 

The present method is applied to tsunami run-up simulation by the Great East-Japan Earthquake as 
the application example. The unstructured triangular mesh with the element Courant number 
constant is employed. The initial water surface displacement is given by the faults model proposed 
by Mansinha and Smyilie (1971). The fault data proposed by Tohoku University Ver. 1.0 
(http://www. tsunami.civil.tohoku.ac.jp/hokusai3/J/events/tohoku_2011/model/), is employed. Fig. 
10 shows the computational domain and the initial condition for water elevation. Time increment is 
assumed to be 0.1s. The non-slip boundary condition is employed at the coastline and the open 
boundary condition is employed at the open boundary.  The treatment method for moving boundary 
is employed at the land area. In this simulation, we focus on the Onagawa area because the area had 
big damage by tsunami. 

Fig. 11 shows the computed results at time = 900s. The wave dispersive effect is clearly shown in 
the results. 

Figure 10. Initial condition             Figure 11. Wave propagation (time=900sec) 
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Figure 12. Wave propagation and run-up at Onagawa (time=2700s) 

Figure 13. Wave propagation and run-off at Onagawa (time=3780s) 

Fig. 12 shows the computed wave propagation (left) and the run-up at Onagawa area (right) at time 
=2700s, which is the state that the maximum water elevation is observed at Onagawa by first 
tsunami wave. Fig. 13 shows the computed wave propagation (left) and the run-off at Onagawa area 
(right) at time =3780s, which is the state that the minimum water elevation is observed at Onagawa 
by first tsunami.  

Figure 14. Computed inundation area       Figure 15. Tsunami damaged area 
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Figure 16. Time history of water elevation at point A and B 

Fig.14 shows the computed inundation area by the first wave in Onagawa. Fig. 15 shows the 
investigation map of tsunami damaged area at Onagawa. The red area shows the inundation area 
and the blue area shows the building damaged area. The computational result is good agreement 
with the observed data. Fig.16 shows the time history of water elevation at the observation points A 
and B in Fig. 15. From the figure, the maximum water elevation over 20m is obtained at time = 
2700s.

Conclusions

The CIVA-stabilized finite element method has been presented for tsunami simulation. The 
Boussinesq equation is employed for governing equation. In order to show the validity and 
efficiency, the present method is applied to several numerical examples. From the results, the 
following conclusions are obtained. 

For the dam break problem, the computed results by CIVA-SUPG finite element method are good 
agreement with the theoretical results comparing with the stabilized finite element method based on 
SUPG. For the tsunami run-up problem, the computed results by present method are good 
agreement with the experimental results.  

For the application example by the Great East Japan Earthquake, the computed inundation area is 
good agreement with the observed data. 

From the results in this paper, it can be concluded that the present method is useful for tsunami 
simulation. 

We plan to consider the effect of collapse of building in future works. 
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Abstract 
This paper presents a large-scale tsunami simulation based on the three-dimensional parallel SUPG-
VOF method. The three-dimensional Navier-Stokes equation and continuity equation are employed 
for solving velocity and pressure. The advection equation is employed for solving interface function 
between air and water. The stabilized finite element method based on unstructured grid is employed 
for the discretization for governing equations. In order to handle the large-scale tsunami simulations, 
several parallel implementations are designed by using MPI, OpenMP and hybrid method with 
MPI/OpenMP. The presented method is applied to several tsunami wave problems to show the 
validity and efficiency. 

Keywords: Tsunami simulation, Stabilized finite element method, SUPG-VOF method, Parallel 
computing, Three-dimensional Navier-Stokes equation  

Introduction 
The huge tsunami wave generated by the Great East Japan Earthquake (March 11, 2011) damaged 
the coastal area, and it is recognized that the tsunami cause the enormous damage to the human life 
and economic activities. There have been presented a number of numerical methods for tsunami 
simulation. The shallow water equation and Boussinesq equation are normally used for the 
governing equations. However, in order to predict the damage of structures, the three-dimensional 
simulation based on Navier-Stokes equation is required. There have been presented a number of 
numerical methods for Navier-Stokes equation with free surface. Based on the frame of reference 
used, these approaches can be classified into two categories: interface-capturing method using 
Eulerian stationary mesh and interface-tracking method using Lagrangian moving mesh. The 
interface-capturing method generally utilizes the VOF method (Hirt and Nichols (1981)) and level 
set method (Sussman et al. (1994)). On the other hand, the interface-tracking method generally 
utilizes the ALE method (Hughes et al. (1981)) and space-time method (Behr and Tezduyar (1993)). 
In the case of the three-dimensional Navier-Stokes equation, the simulation becomes quite large-
scale and it is essential to use the parallel computing techniques. Parallel computing techniques are 
classified into three methods (Pacheco (1997), Changra et al. (2001)): process parallelism using 
MPI, thread parallelism using OpenMP, and hybrid parallelism combined these two methods.  
 
This paper investigates three types of parallel computing methods for three-dimensional tsunami 
simulation. Each of the method is executed on a supercomputer CRAY XE6. Three-dimensional 
Navier-Stokes equation with the incompressibility condition is employed as the governing equation. 
The interface-capturing approach based on VOF method is employed because the method is robust 
in the applicability: for example, the method can be usefully applied to the complicated phenomena 
involving breaking waves. The stabilized finite element method based on SUPG/PSPG (Tezduyar 
(1992)) using P1/P1 element is employed for the spatial discretization. The full implicit scheme 
based on Crank-Nicolson method is used for the temporal discretization. 
  
In Section 2, we describe the governing equations. The stabilized formulations are described in 
Section 3. Parallel implementation is described in Section 4. The present method is applied to 
numerical examples in Section 5. The conclusions are stated in Section 6. 
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Governing Equations 

To model a free surface flow, we consider two immiscible fluids, A and B, with densities A  and 

B  and viscosities A  and B . An interface function   serves a marker identifying fluids A and B 
with the definition  = {1 for fluid A, 0 for fluid B and 0.5 for two-fluid interfaces}, as shown in 
Fig. 1. In this context, the density and viscosity,   and  , are defined as 
 

  BA   1                                                                 (1) 
  BA   1                                                                 (2) 

 
The evolution of the interface function is governed by a time-dependent advection equation as 
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where   denotes the space domain. The velocity, iu , is obtained from the solution of the unsteady 
Navier-Stokes equations under the incompressibility condition as 
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where p  is the pressure and if  is the external force. The following conditions are imposed at the 
boundary. 
 

ii gu     on   g                                                                   (6) 

ij
i

j

j

i
ij hn

x
u

x
up 
































     on   h                                            (7) 

 
where g  and h  denote the Dirichlet and Neumann boundaries. ij  is the Kronecker delta. 
 

 
Figure. 1 Distribution of interface function 
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Finite Element Formulations 

The stabilized finite element method based on the SUPG/PSPG method with shock capturing is 
employed for the governing equations. The stabilized formulation of Eqs. (4) and (5) can be written 
as follows. 
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where iw  and q  denote weighting functions, S , P  and  C  are stabilization parameters given by 
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 / , t  is the time increment, eh  is the element length and eRe  is the element Reynolds 

number. 
 
In Eq. (8), the first four integrals, together with the right-hand side, represent the Galerkin 
formulation of Eq. (4) and Eq. (5). The first series of element-level integrals in the formulation are 
the SUPG and PSPG stabilization terms. The second series of element-level integrals are the shock 
capturing terms.  
 
The stabilized formulation of Eq. (3) can be written as follows. 
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where S  and   are the stabilization parameters given by 
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In Eq. (13), the first integral represents the Galerkin formulation of Eq. (3). The first series of 
element-level integrals in the formulation are the SUPG stabilization terms. The second series of 
element-level integrals are the discontinuity capturing terms. 

 
The linear tetrahedral element is employed for the discretization in space and the Crank-Nicolson 
method is employed for the discretization in time. The advection speed is approximated on the basis 
of the second-order Adams-Bashforth method. The GPBi-CG method is employed for solving the 
simultaneous linear equations. Also, the interface-sharpening/mass-conservation algorithm 
(Aliabadi and Tezduyar (2000)) is employed in order to express the interface clearly and conserve 
the mass for each fluid. In this approach, the interface function   which is calculated from the 
simultaneous liner equations is replaced by ̂  as follows. 
 

aac   1ˆ ,                    c0                                                  (16) 
   aac    111ˆ 1 ,          1c                                                  (17) 

 ˆ                                                                            (18) 
 
where a  is a sharpning parameter, and 10  c  is a mass conservation level. 

Parallel Implementation 

Parallel implementation is a technique for fast computation and realization of large-scale computing. 
Parallel computing techniques are classified into three methods of program parallelism: process 
parallelism, thread parallelism, and hybrid parallelism combined these two methods. MPI is used 
for the process parallelism and OpenMP is used for the thread parallelism. To minimize the amount 
of interprocessor communication, the automatic mesh decomposer, METIS, is employed. 
 
Table 1 shows the specifications of the parallel supercomputer. Fig. 2 shows the architecture of the 
CPUs and memories in a node for CRAY XE6. In this paper, four type of parallel computing 
methods are investigated, as shown in Fig. 3. 
 
Table 1. Specifications of the parallel supercomputer 

 used to calculate 
 

CRAY XE6 
 

CPU 
Memory size (1 Node) 
Number of cores 
O.S. 
Compiler 

AMD Opteron 6238 (2.9GHz) 
64GB 
16cores2CPUs940nodes 
SUSE Linux Enterprise Server 11 
Intel Composer XE2011 

 
                                                                                                     Figure 2. Architecture of the CPUs 

and  memories in a node 

691



5 
 

 
Figure 3. The four type of parallel computing methods 

 

Numerical Examples 

The four type of parallel computing methods are applied to two numerical examples: the dam-break 
problem and large-scale tsunami simulation. 

Dam-Break Problem 

The parallel computing methods are applied to the dam-break problem, as shown in Fig. 4. The 
computational domain was discretized by a uniform finite element mesh with 233   40   190 
elements ( zyx   direction). The total number of nodes and elements are 1,832,454 and 
10,624,800, respectively. The density/viscosity of water and air are assumed as 1000.0kg/m3 / 
1.010-3Pa  s and 1.293kg/m3 / 1.810-5Pa  s. The slip condition is employed at the wall boundary 
condition. The time increment t  is assumed to be 0.0001 s. 
 
Fig. 5 shows the time history of the waterfront line. The computed result obtained by the present 
method is good agreement with the experimental results (Koshizuka et al. (1995) and Martin, 
Moyce (1952)). Fig. 6(a) and 6(b) show the speed-up ratio and parallel efficiency versus the total 
number of cores/nodes. In this figures the normalization are performed using the flat MPI using 1 
node. From the results of parallel performance, it can be seen that the good parallel efficiency are 
obtained in all approaches and the significant difference is not appeared. 
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Figure 4. Computational domain and           Figure 5. The time history of 
                  initial condition                                      the waterfront line 

 

 
Figure 6. Comparison of speed-up and efficiency 

 

Large-scale Tsunami Simulation 

The parallel computing methods are applied to the large-scale tsunami simulation. Fig. 7 shows the 
initial condition and the finite element mesh. The total number of nodes and elements are 6,738,732 
and 37,560,556, respectively. The minimum mesh size is assumed to be 0.50m around the water 
surface and structures. The density and viscosity of water and air are same as the dam-break 
problem. The slip boundary condition is employed at solid boundary. The time increment t  is set 
to be 0.050 s. 
 
Fig. 8 shows the computed results at t 30.0s and 45.0s. Fig. 9(a) and 9(b) show the speed-up ratio 
and parallel efficiency versus the total number of cores/nodes. In this figures, the normalization are 
performed using the flat MPI using 2 nodes. From the result of parallel performance, it can be seen 
that the result by flat MPI shows a better parallel efficiency compared with those using Hybrid A 
and Hybrid B, and the result by Hybrid-B is better than that by Hybrid-A by the effect of the 
conflict of memory access. Fig. 10 shows the mass conservation ratio versus the time. From this 
figure, it can be seen that the mass of each fluid is conserved. 
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Figure 7. Initial condition and the finite element mesh 

 
 

 
Figure 8. Computed results 

 
 

 
Figure 9. Comparison of speed-up and efficiency 
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Figure 10. Mass conservation ratio 

Conclusions 

A parallel computational methods using MPI, OpenMP and hybrid method with MPI/OpenMP are 
investigated for three dimensional tsunami simulation based on SUPG/VOF method. The following 
conclusions can be made: 
 
 The good parallel efficiency is obtained in all approaches and the significant difference is not 

appeared in the small-scale simulation example. 
 The good parallel efficiency is obtained in flat MPI compared with those using Hybrid-A and 

Hybrid-B in the large-scale simulation example, and the result by Hybrid-B is better than that 
by Hybrid-A by the effect of the conflict of memory access. 

 
From the results obtained in this paper, it can be concluded that the proposed computational 

method with MPI parallelization is a useful and powerful tool for the large-scale tsunami simulation. 
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Abstract 
Liquid-solid two-phase flow with heat transfer is directly simulated to investigate the effect of 
temperature gradient within the solid objects. The interaction between fluid and particles is solved 
by our original immersed solid approach on a rectangular grid system. And a discrete element 
model with soft-sphere collision is applied for particle-particle interaction. A new heat conduction 
model is proposed for the heat conduction at the solid-liquid interface by considering the interface 
direction. The method is applied to liquid-solid two-phase flows in a confined square domain with 
a hot bottom plate and a cold top plane under a relatively low Rayleigh number. In dense condition, 
the particles of high heat conductivity induce strong convection and promote the heat transfer, while 
the particles of low heat conductivity depress the incoming heat flux from the bottom wall, resulting 
in low Nusselt number. The above simulation results highlight the importance of temperature 
distributions within the particles and liquid. 

Keywords: Multiphase flow, Solid dispersion, Immersed solid object, Thermal flow, Heat 
conductivity 

 Introduction 
Solid-dispersed two phase flows often involve heat (and mass) transfer through the interface. 
Temperature distributions in both fluid and solid phases play important roles on the fluid-solid 
interaction. 
For numerical simulation of heat transfer problem in a flow including multiple solid objects, an 
immersed boundary method has an advantage. Kim et al. (2001) and Kim and Choi (2004) proposed 
a heat source/sink method for imposing iso-thermal and iso-heat-flux boundary conditions at the 
immersed boundary of a fixed particle. Similar approaches were proposed by Pacheco and co-
workers (Pacheco, Pacheco-Vega, Rodić and Peck, 2005; Pacheco-Vega, Pacheco, Rodić, 2007) 
with a successive determination algorithm of the temperatures inside the body to match the iso-
thermal and iso-heat-flux conditions at the immersed boundary. Ren et al. (2012) proposed an 
implicit formulation of the momentum and heat source/sink approach. The boundary force and heat 
flux are solved implicitly so that the no-slip and fixed temperature conditions are enforced on the 
immersed boundary. 
The above researchers simplify the problem by imposing a boundary condition of either constant 
temperature or constant flux. And, there are few previous studies that deal with a conjugate heat 
transfer problem (convective and conductive heat transfers) in a two-phase flow including freely-
moving particles (Yu, Shao and Wachs, 2006; Ueyama, Moriya,Nakamura and Kajishima, 2011). 
In the present work, we study a heat transfer problem in a multiphase flow of dispersed solid 
particles including the effect of local heat flux at the liquid-solid surface (and therefore temperature 
gradient within the solid object). To facilitate the treatment of interaction problem between the fluid 
and a large number of relatively moving particles, a fixed grid approach is adopted. 
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The interaction between fluid and particles is solved with our original immersed solid approach 
(Kajishima, Takiguchi, Hamasaki and Miyake, 2001; Yuki, Takeuchi and Kajishima, 2007) on a 
rectangular grid system. The method employs a simple procedure for the momentum-exchange by 
imposing a volume force (as an interaction force) on both solid and fluid phases. The method has 
been applied for studying a clustering process with a total of 1000 spherical particles in a turbulent 
flow (Kajishima, Takiguchi, Hamasaki and Miyake, 2001; Kajishima and Takiguchi, 2002; 
Kajishima, 2004). Also the usefulness of our method has been demonstrated by Nishiura et al. 
(Nishiura Shimosaka, Shirakawa, and Hidaka, 2006) through the analysis of sedimentation process 
employing a total of  spherical particles. In the present study, to include the effect of conjugate 
heat transfer in a liquid-solid interaction problem, a heat flux decomposition model is proposed for 
the heat conduction at the liquid-solid interface. The model employs a procedure for solving the 
temperature field in an Eulerian frame by considering the interface direction. 
The present method is applied to a direct numerical simulation of laminar natural convection of 
relatively low Rayleigh number in a confined square domain including multiple particles of round 
shape. By including the particles of different ratios of heat conductivity (solid to liquid), we look 
into the effect of the solid temperature distribution on the behaviour of the particles, and the heat 
transfer mechanism is studied in the solid-dispersed two-phase flow field. 

Governing Equations and numerical Methods 

Governing equations 

The governing equations for fluid are the equations of continuity, momentum and energy: 
 

  , (1)  
  , (2)  

  . (3)  

 
Here, an incompressible fluid is assumed and Boussinesq approximation is employed to include the 
effect of density fluctuation. In the following, viscous coefficient ( ), heat capacity per unit 
volume ( ) and thermal conductivity ( ) are assumed to be constant. 

Fluid-solid interaction model: Immersed solid approach 

Momentum exchange at the fluid-solid interface is solved by an immersed solid approach 
developed by Kajishima and the co-workers (Kajishima, Takiguchi, Hamasaki and Miyake, 2001; 
Kajishima and Takiguchi, 2002; Kajishima, 2004), on a uniformly distributed fixed grid system. 
This is briefly described below. 
A velocity field  is established through volume-averaging the local fluid velocity  and the local 
particle velocity  in a cell: 
 

  , (4)  
 
where  ( ) is the local solid volume fraction in the cell. The particle velocity  is 
decomposed into translating and rotating components as . This mixture velocity 
field  is assumed to obey the following equation: 
 

  . (5)  
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Interaction term  works to assign the mixture velocity that satisfies the non-slip boundary 
condition at the interface (Kajishima, Takiguchi, Hamasaki and Miyake, 2001; Kajishima and 
Takiguchi, 2002; Kajishima, 2004). For time-update, the 2nd-order Adams-Bashforth and Crank-
Nicolson methods are employed for the convective and viscous terms, respectively. The pressure 
gradient term in Eq. (5) is treated implicitly by a fractional step method. With the corrected velocity 
field , the fluid-solid interaction term  is modelled as: 
 

  , (6)  

 
where  is the time increment. 
For motion of the particles, Newton’s equations for momentum and angular momentum are solved. 
The same force as Eq. (6) applies to the fraction of the solid in the cell with the opposite sign. The 
surface integration of the hydrodynamic forces is changed to the integration of  over the volume 
of the particle : 
 

  , (7)  

  . (8)  

 
The above replacement from surface to volume integrations considerably facilitates the computation 
of the solid motion, and also the use of the same body force  for both (fluid and particle) phases 
in a shared Cartesian cell ensures no leakage of momentum between the phases. Eqs. (7) and (8) are 
solved with a predictor-corrector method (Ueyama, Moriya,Nakamura and Kajishima, 2011). 

Temperature field and interfacial heat conduction 

Temperature field is treated in an Eulerian way irrespective of the substance occupying the cell. The 
numerical simulation are conducted under  and . The following equation 
is solved with heat flux : 
 

  . (9)  

 
In the present work,  is given by a single equation that covers both phases as well as the interface. 
The discretised temperature gradient  at  cell is decomposed into surface-normal 
component  and tangential component . In an interfacial cell partially 
occupied by the solid object (local solid volume fraction ), the following mean heat conductivities 
are defined in the surface normal and tangential directions, respectively: 
 

  , (10) 

  . (11) 
 
Assuming that the solid and fluid temperatures match with each other at the interface, the heat flux 
(covering the interfacial cell)  is given by the following formula: 
 

  . (12) 
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Eq. (9) is time-updated with the Crank-Nicolson method for diffusion term with the treatment of Eq. 
(12). This semi-implicit scheme stabilises the computation and enables simulation with particles of 
very high/low heat conductivities. 

Interparticle and particle-wall collision model 

A soft-sphere model is used to allow multiple-body collisions for interparticle and particle-wall 
collisions. A spring and dashpot model is employed to calculate the contact forces. In the present 
study, the same parameter values as Tsuji et al. (1993) are used for the spring constant, restitution 
coefficient and friction coefficient. 
Tsuji et al. (1993) suggested the following condition for determining the time increment to 
sufficiently resolve the eigen oscillation of the mass-spring system: 
 

 
 . 

(13) 

 
In the present study, the smallest value of the right hand side of the above equation is found to be 

 for the smallest  employed in the following section. Considering the numerical 
accuracy of the momentum and energy equations from our preliminary study, the time increment is 
fixed to , hereafter. 
In the present study, no heat exchange or heat source is modelled in the interparticle collisions. 

Results and discussion 

Solid-dispersed two-phase flow under natural convection is studied for different heat conductivity 
ratios (solid to fluid). The non-dimensional numbers used are Rayleigh number ( ) and Prandtl 
number ( ). 
In the present work, the computational domain is a square shape of side length , and the particles 
are initially arranged regularly in the domain. Temperature difference between the top and bottom 
wall is kept constant ( ), and no heat flux is given at the lateral walls. The non-slip condition 
and the Neumann condition are applied for the velocity and pressure, respectively, on the solid 
walls. The equations are non-dimensionalised with the reference length , the reference velocity 

, the reference pressure  and the characteristic temperature difference . To 
investigate the natural convection on the particles behaviour and heat transfer, Prandtl number, 
density ratio, and specific heat ratio are set to unity. 
In the following, interaction between the fluid and particles is simulated with different ratios of heat 
conductivity. 

Dense case with bulk solid volume fraction 38.5% (2-D) 

Table1: Simulation parameters. 
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Figure 1: Schematic of arrangement of particles. 

We look into the effect of the heat conductivity ratio on the particle motion in a natural convection 
of Rayleigh number . The particles are initially arranged regularly in the domain as illustrated in 
Figure 1. The other parameters are summarised in Table 1. The bulk solid volume fraction is 38.5%. 
Figure 2 shows instantaneous flow and temperature fields at t = 1000 by employing the particles of 

and . In both cases, the particles and fluid are found to constantly circulate in one 
direction around the domain centre after the initial developing stage. However, the local 
concentrations of the particles and time-averaged flow fields are different for the two cases. Figure 
3 and 4 compare the time-averaged temperature and velocity fields and the time-averaged local 
solid volume fraction in each cell, respectively, for the two heat conductivity ratios. 
For the particles of , as shown in Figure 2(a), temperature gradient within the particle 
hardly re-distributes within the particle or to the fluid. From Figures 3(a) and 4(a), the concentrated 
isothermal lines and a region of high number density of the particles is found near the top and 
bottom walls. These suggest that, once a layer of particles is formed in those regions, the particles 
of poor-conductivity intercept the heat exchange with the walls. Therefore, low heat conduction in 
the particle could cause weak fluid convection and low Nusselt number. 
On the other hand, for the case of , the particles efficiently transfer the heat to ambient 
fluid and generate temperature gradient in the fluid phase, resulting in strong fluid convection as 
observed in Figure 3(b). It is also characteristic, from Figure 4(b), that a region of low number 
density of the particles is found near the domain centre due to high rotating speed of the particulate 
flow and number density of the particles is distributed evenly except for the domain centre. 
The heat transfer rate in two-phase natural convection system is compared for different particle 
conductivities. For evaluating heat transfer rate, the following Nusselt number is used with the heat 
flux at the hot (bottom) wall: 
 

  . (14) 

 
Figure 5 compares the time evolutions of Nusselt number for five different  cases. The average 
level of the Nusselt number is found to increase as the heat conductivity ratio increases. 
The above results show that the solid heat conductivity largely influences the flow pattern in solid 
dispersed two-phase flows and that the circulation of the particles enhances the heat transfer rate by 
transporting the heat from bottom to top. 
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(a)  (b)  

Figure 2: Instantaneous flow field and contours of temperature for different heat conductivities. 
Rayleigh number is  and bulk solid volume fraction is 38.5%. Colour shows the magnitude of 
the fluid velocity and iso-contour of temperature. 

 

  
™(a)  (b)  

Figure 3: Time-averaged temperature and velocity fields for different heat conductivities. 
Rayleigh number is . Average is taken between t = 500 and 1500. Magnitude the fluid 
velocity are levelled by colour, and iso-contours of temperature are plotted at constant intervals. 
 

  
(a)  (b)  

Figure 4: Time-average local solid volume fraction in a cell for different heat conductivities. 
Average is taken between t = 500 and 1500. 
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Figure 5: Comparison of time evolutions of Nusselt number for different ratios of heat conductivity. 
Solid volume fraction is 38.5%. 

Dilute case with bulk solid volume fraction 6.54% (3-D) 

Our method is extended to 3-D liquid-solid two-phase flow of Rayleigh number . Figure 6 is an 
example of an instantaneous flow field including  spherical particles of  in a cubic 
domain. The other parameters are summarised in Table 2. The bulk solid volume fraction is 6.54%. 
The particles and fluid move randomly in the initial developing stage. After that, the particles and 
fluid are found to constantly circulate in one direction around the domain centre. Our preliminary 
study shows that, for different  and Rayleigh numbers, characteristic flow behaviours (such as 
circulating mode and weak oscillating mode) are observed. 

Table2: Simulation parameters. 

 

 
Figure 6: Instantaneous flow field and contours of temperature for different heat conductivities. 
Rayleigh number is  and bulk solid volume fraction is 6.54%. Temperature distribution on the 
surface of each particle and velocity vectors in a vertical cross section. 
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Conclusions 

To simulate solid-dispersed two-phase flow with heat transfer, a method considering the effects of 
temperature distribution within a particle was developed based on our original immersed solid and a 
discrete-element methods. 
The method is applied to 2-D and 3-D liquid-solid two-phase flow under a relatively low Rayleigh 
number. In the dense condition (2-D), the particles of a high heat conductivity induce the heat 
convection of the fluid, and promote the heat transfer of the system. On the other hand, for the low 
heat conductivity case, the particles concentrate in the near-wall regions and intercept the heat 
transfer from the hot wall to the fluid, resulting in low Nusselt number. 
These results highlight the effect of temperature distributions within the particles as well as liquid 
on the overall heat transfer performance in the multiphase flow. 
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Abstract 
This paper presents an interactive mesh modification system for three dimensional unstructured 
mesh using virtual reality (VR) technology. The present system is developed by the VR 
programming languages, OpenGL and CAVE library. Users can check the details of three 
dimensional mesh structures and can modify the shape of mesh idealization in VR space 
interactively. For the mesh modification methods, the node relocation method and the mesh 
refinement methods are implemented. The linear and 2-nd order tetrahedron elements are available 
in this system. Users can change the nodal position of the bad quality element in case of the node 
relocation method, and can refine the bad quality element in case of the mesh refinement method 
interactively. The present system is applied to the mesh modification for the simulation of 3D solid 
analysis and is shown to be a useful tool to assist the high quality computing. 

Keywords: Virtual reality, Mesh modification, Node relocation, Mesh refinement.  

Introduction 
The three dimensional finite element simulations are becoming more powerful and popular tool for 
various CAE (Computational Aided Engineering) problems in accordance with the development of 
hard- and software of computers. Especially, the theory of automatic mesh generation is remarkable 
and a number of automatic mesh generator has been presented (Lo(2013), Cheng et al.(2013)). 
However, in some cases bad quality elements are created by the automatic mesh generator when the 
shape of computational domain is complicated. Users will try to modify the quality of mesh using 
the mesh idealization show on 2D display with perspective drawing. However, it is difficult to 
understand the position information for the depth direction cleanly. 
 
This paper presents an interactive mesh modification system for three dimensional unstructured 
mesh using virtual reality technology in order to overcome the problem. Authors focused on 
immersive virtual reality device such as CAVE.  Users can check the details of three dimensional 
mesh structures and can modify the shape of mesh idealization in VR space interactively by using 
the controller. Generally, the mesh modification method can be classified into three methods; the 
node relocation method, the mesh refinement method and the replacement method using higher 
order element. In this system, the node relocation method and the mesh refinement method are 
implemented. Users can change the nodal position of the element in the node relocation method, 
and can refine the element in the mesh refinement method. The present system is available for the 
unstructured tetrahedron elements based on linear and 2-nd order elements. The system is 
developed by the VR programming languages, Open GL and CAVE library.  
 
The present system is applied to several mesh modification examples for the 3D finite element 
simulation and is shown to be a useful tool to assist the high quality computing. 

CAVE Environment 

The present system is designed for the use of virtual reality system based on IPT (Immersive 
Projection Technology) such as CAVE (Cruz-Neira et al. 1993). The stereoscopic view is realized 
in VR space by creating the images that corresponds to binocular retinal images. The mesh 
modification system is developed by using VR device “Holostage” of Chuo University. The 
“Holostage” consists of a PC cluster (one master-PC and four-slave-PC), three projectors, three 
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large screens and a position tracking system. The stereoscopic image from the arbitrary viewpoint 
of user is displayed in VR space by the position tracking system. Users can move in VR space 
freely like the real space. Therefore, users can check the three-dimensional structure of the mesh 
clearly and it can be expected to modify the mesh accurately and easily. Users can see the 
stereoscopic image by using the liquid shutter glasses in Fig. 1. The silver balls which are mounted 
to the controller and liquid shutter glasses are marker (see Fig. 1) to track the position information 
by the tracking device. Fig. 2 shows the scene the user modifies the mesh idealization manually 
using the present system. The red color virtual beam is generated from the controller shown in the 
figure. User can specify the target node or mesh by moving the tip of the virtual beam. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Device for VR system                          Figure 2.  CAVE  environment 

The three-dimensional mesh modification system 

Users can check the details of three dimensional mesh structures and modify the mesh quality 
interactively in VR space by the present system. The present system is developed by the VR 
programming languages, Open GL and CAVE library. The system is available for the unstructured 
tetrahedron elements based on linear and 2-nd order elements as shown in Fig. 3. 
 
Fig. 4 shows the flow chart of the present system. First, the mesh quality is computed, and then the 
mesh quality is improved by the mesh modification by both node relocation and mesh refinement 
methods. Users can select the modification method from the menu which is displayed in the VR 
space. Users can change the nodal position of the bad quality element in the node relocation method, 
and can refine the bad quality element in the mesh refinement method.   
 
The mesh quality Qm can be evaluated by the following equation (Freitag and Knupp ,2002). 
 
 
 
 
 
 

                                                                         (1) 
 

Where Li denotes the length of the edge of the element, V is the volume of the element. The mesh 
quality is to be 1 if the element is to be a regular tetrahedron and the value is to be big value if the 
element becomes a bent element. In this system, the elements which exceed the setting value for 
mesh quality are displayed by the red color in VR space. 
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            Figure 3. Tetrahedron elements                       Figure 4. Flow chart of the system    

Modification Method by node relocation method 

Users can select functions from the menu interface as shown in Fig. 5. In the modification method 
by node relocation, if users move the tip of beam generated from the controller to the main node 
and click the button of controller, then the node can be specified and users can modify the element 
by the movement of tip of beam, as shown in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Menu interface                       Figure 6. Modification of node relocation 
 

In case of the 2-nd order tetrahedron elements, users move only the main nodes of the top of the 
element, and the position of the midside node on the edge is interpolated automatically. 
 
In order to avoid the violation of the geometrical shape of the computational domain by the node 
relocation, the node movement condition must be specified for the nodes on the boundary surface. 
The condition is prepared by the geographical information, which is obtained by the mesh data. The 
nodes on the boundary surface can be classified into three types as follows; (a) Fixed node: The 
nodes on the uneven edge-line or surface (red nodes in Fig. 7) are assumed to be fixed point, (b) 1D 
movement node: The nodes on the even edge-line of the structure (green nodes) can move on the 
edge-line only, (c) 2D movement node: The nodes on the even surface of the structure (light blue 
nodes) can move on the surface only. In this system, the control of the movement of nodes is 
performed by the node movement condition which is generated by the information of unit normal 
vector as shown in Fig. 8 and Fig. 9. 
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Figure 7.  Node movement condition       
                      

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Normal unit vectors             Figure 9. Classification of node movement condition 
 
The normal unit vector of each triangles ne can be evaluated by the following equation.  
 
 
 
 

                                                                         (2) 
 
Where, vector a and b is shown in Fig. 8. If the values of normal unit vectors for the triangles 
connected to the node have only one value, the node can be specified as the 2D movement node. If 
the values of normal unit vectors for the triangles connected to the node have two different values, 
the node can be specified as the 1D movement node. On the other hand, if the values have more 
than three different values, the node can be specified as the fixed node. Users can recognize the 
node movement condition using the nodal color information same as Fig. 7 in VR space. 

Modification Method by Mesh Refinement Method 

In the modification method by mesh refinement, the elements which exceed the setting value for 
mesh quality are refined.  
 
Users can specify the element and decide the position by using the controller. If users move the tip 
of beam generated from the controller to the inside of the element and click the button, then the 
element can be specified. At this time, in order to investigate the judgment that the element includes 
the tip of beam or not for all elements of the mesh, the mapping method (Shirayama, 2002) using a 
generalized coordinate system is employed. The mapping method can be applied to the 2-nd order 
tetrahedron element. 
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Figure 10. Mesh refinement methods 
 
Fig. 10 shows mesh refinement patterns in this system. In the case of (a), a new node is generated at 
the centroid of the element. The connectivity of the element except the refined element does not 
change. However, the shape of the element becomes bent in this case. On the other hand, in the case 
of (b), a new node generated at the middle point on the each edges of the element. Therefore the 
shape of subdivided mesh is resemblance. However, the connectivity of the neighboring elements 
around the subdivide element changes and we have to manage the change of the connectivity.  
 
The refinement patterns of neighboring elements can be classified into 64 patterns as shown in 
Table 1 since the tetrahedral element is constituted by 6 edges (26=64) where the possibility of the 
generation of a new node. Fig. 11 shows an example that the number of shared edge is two. 
Considering the rotational property of the element in (a) and (b), the left and right patterns are one 
and the same. The refinement patterns are reduced to 11 patterns if the rotational property of the 
elements is considered. Consequently, the mesh refinement is performed by using the 11 patterns. 
Fig. 12 shows the example for mesh refinements, where (a) shows the initial mesh and (b) shows 
the refined mesh, in which the blue elements show the subdivided element and the red elements 
show the neighboring elements for the subdivided elements. The validity of the algorithm of mesh 
refinements is shown in this figure. 
 

 
Table 1. The refinement patterns of  

neighboring elements  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                           Figure 11. Example that the number of 

shared edge is two edges   
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Figure 12. An example of the element refinement 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. The generated node 
 
Fig. 13 shows the mesh refinement for the neighboring element in case of Fig.11 (a) for linear (top) 
and 2-nd order (bottom) tetrahedron elements. In case of the 2-nd order (bottom) tetrahedron 
element, the midside nodes A and B are changed to the main nodes and a new midside node is 
generated at the center of each new edge (totally 8 nodes) 

Application Examples 

In order to investigate the validity and efficiency of the present system, the system is applied 
several mesh modification examples. 

Dental Implants mesh 

The system is applied to the mesh for stress analysis of dental implants which uses the 2-nd order 
tetrahedron elements. (Hirano et al. 2008). Fig. 14 shows the mesh idealization in VR space using 
display functions; node color ON/OFF and midside node ON/OFF. In this system, fixed node is 
displayed in red, 1D movement node is displayed in green, 2D movement node is displayed in light 
blue (as shown in Fig. 7) and the node inside the domain and midside node is displayed in blue. 
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The mesh modification by node relocation is employed and the modification time by using the node 
color ON/OFF function is compared. Fig. 15 shows the comparison of the distribution of mesh 
quality before and after the mesh modification by node relocation. In this case, the bad shaped 
elements which exceed the mesh quality values “10” (29 elements) are modified. From the Figure, 
it can be seen that the bad shaped elements which exceed the mesh quality values are erased 
perfectly.  
 
The operation time for mesh modification are compared using the node color ON/OFF function and 
the results are 7m55s (ON) and 8m50s (OFF) respectively. From, this the operation time is reduced 
more than 10% by using the node color function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                Figure 14. Dental implants mesh                     Figure 15. Distribution of mesh quality 

City Model Mesh 

The present system is applied to the mesh modification for wind flow simulation in urban area as 
shown in Fig. 16. Fig. 17 (left) shows the zoom-up surface idealization around the base of building. 
From this figure, it can be seen that the mesh located on the junction with the building base and the 
ground surface, do not reproduce the proper shape. In order to modify the nodal position on the 
surface boundary, the node movement condition must be released for this type of problem. So, the 
node movement condition is released for the node where users change the position of node. Fig. 17 
(right) shows the mesh idealization after the mesh modification. From this figure, the proper shape 
of building and ground surface can be reproduced by the mesh modification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 16.  City model mesh 
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Figure 17. Comparison of before and after modification 

Conclusions 

An interactive mesh modification system for three dimensional unstructured mesh using VR 
technology has been developed in this paper. And, we got the following conclusions. 
 
 Users can check and modify the mesh idealization interactively and easily by using the 

controller in VR space. From this, users can understand the three dimensional unstructured 
mesh structures by using the present system. 
 

 The mesh modification system based on the node relocation method and mesh refinement 
method has been successfully developed. For the finite element, the four nodes linear and the 
ten nodes 2-nd order elements are available. 

 
From the results obtained in this paper, it can be concluded that the present system provide useful 
tool to realize the high quality computing simulations. In the future, we plan to do to confirm the 
effectiveness of the system by application to actual problems. 
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Abstract
This paper presents a simulation system for tsunami evacuation using virtual reality technology. 
The system can be classified into two parts: simulation part and visualization part. For the 
simulation part, the simulation of tsunami wave considering the collapse of building is carried by 
the Boussinesq equation using finite element method. Then the simulation of evacuation based on 
multi-agent model is performed. For the visualization part, the simulation results are visualized by 
the stereoscopic view using virtual reality technology. The present system is applied to the 
evacuation analysis by the tsunami waves at studied area is shown to be a useful tool to investigate 
the damage of building and human being by tsunami waves. 

Keywords: Virtual Reality, Evacuation analysis, Multi-Agent, Tsunami Simulation 

Introduction 
A number of tsunami disasters occur annually in various part of the world. In order to estimate the 
extent of a disaster quantitatively, it is necessary to estimate the behavior of natural phenomena 
which causes the natural disaster. There have been presented a number of numerical methods to 
evaluate the damage by the tsunami waves, such as the methods based on the finite difference 
method, finite volume method and finite element method, The finite element method is one of the 
powerful tool to investigate the damage by tsunami wave since the finite element method can treat 
the arbitrary land and building shape.  

Recently, the numerical evacuation analysis is becoming popular to estimate the extent of the 
damage of human being. In the evacuation analysis, it is very important to evaluate the evacuation 
behavior of the human being in the time during the disaster accurately. The evacuation behavior is 
strongly related to the circumstance, age and sex of the refugees. The multi-agent model is one of 
the techniques which can evaluate the evacuation behavior accurately (Uno and Kashiyama (2008)).  

This paper presents a simulation system for Tsunami evacuation using virtual reality technology. 
The present system can be classified into two parts: simulation part and visualization part. For the 
simulation part, the simulation of tsunami wave considering the collapse of building is carried by 
the Boussinesq equation using finite element method (Tonegawa and Kashiyama (2009)). Then the 
simulation of tsunami evacuation based on multi-agent model. For the visualization part, the 
simulation results are visualized by the stereoscopic view using virtual reality technology. From this, 
users can understand the simulation results easily. Also, as the view from the refugee’s eye can be 
created in the VR space, the user can understand the feeling of refugee easily. The present system is 
applied to the evacuation analysis by the tsunami waves at studied area is shown to be a useful tool 
to investigate the damage of building and human being by tsunami waves. 

Tsunami Numerical Simulation 

Governing Equation

The Boussinesq equation is employed for the governing equation in order to consider the effect of 
the wave and dispersion. The governing equations can be described as:  
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Abstract 
This paper presents a road traffic noise evaluation system based on spatialization of sound using 
virtual reality technology. The key feature of the system is that the road traffic noise is provided for 
users by both audio and visual information under various road and vehicle conditions. The 
geometric acoustic theory is employed for the simulation of traffic noise to realize the real-time 
simulation. In order to improve the reality, the sound source data for the auralization in VR space 
are generated from the various car driving tests. This system is applied to several examples in order 
to investigate the validity of the method. 

Keywords: Geometric acoustic theory, Road traffic noise, Stereoscopic sound field, Virtual reality 

Introduction 
The evaluation of road traffic noise is very important for planning and designing of road 

environment, because the road traffic noise infect the human body such as disruption of sleep and 
psychological malaise and so on. There have been presented a number of numerical simulation 
methods in accordance with the development of computer. The theory for numerical simulation can 
be classified into two approaches; wave acoustic theory and geometric acoustic theory. The 
geometric acoustic theory is very useful for the development of the real time simulation system 
because the computational time is much shorter than the wave acoustic theory. 

Generally, the numerical results are visualized using computer graphics (CG). However it is 
difficult to understand the noise level intuitively with CG, because the visualization is not auditory 
information. In order to overcome the problem, several systems that expose road traffic noise as the 
auditory information have been presented in the past studies (Nagano et al. (1999), Makanae et al. 
(2004)). However, there have not been presented a system that presents auditory and visual 
information simultaneously under the various road environments. The present author developed a 
system to expose the numerical results both with auditory and visual information using virtual 
reality (VR) technology (Tajika et al. (2010), Shibata et al. (2011)). The ASJ RTN-Model 2008, 
which is the Japanese standard model for road traffic noise, was employed for the model based on 
the geometric acoustic theory. The system was designed as an interactive system which realizes the 
real time simulation. However, the following problems are pointed out from the point of the reality 
of our system; 1) The effects of directivity of the sound wave and delay of the arrival time are not 
considered. 2) The sound source of the vehicle in the system is not related to the vehicle type and 
speed. 
This paper presents an advanced road traffic noise evaluation system that can overcome above 

mentioned problems. In order to consider the effects of directivity of the sound wave and delay of 
the arrival time, we realize stereoscopic sound field in VR space. Furthermore, the sound source 
data for the auralization in VR space is generated from the various vehicle driving test. 

VR Environments 

The IPT (Immersive Projection Technology) is employed for VR technology. Fig.1 shows the VR 
system “HoloStage” of Chuo University, Japan. This system is composed of three large and flat 
screens and three high-performance projectors corresponding to the screen. The front and side 
screens are transmissive ones and the bottom screen is reflective one. The projector shows the CG 
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image for left and right eyes alternatively with 120Hz. Users wears the shutter glasses ( Fig.2 (a)), 
which will open and close the shutter with the synchronization to the CG image through infrared 
emitters . Users can move the arbitrary position using the controller (Fig.2 (b)). This system has 
7.1ch sound speakers (Fig.2 (c)) and the VR space is created by the auditory information and the 
visual information. Observer’s motion is captured by a system called VICON Tracking system
(Fig.2 (d)), which is the optics type motion tracking system. The positions of makers fitted to 
shutter glasses and controller are tracked by the tracking system. 
 

                   
     

Figure 1. VR system (Holostage)                       Figure 2. The device of VR system 
 

A Road Traffic Noise Evaluation System Using VR Technology 

The interactive road traffic noise evaluation method is designed for the use of CAVE 
environments based on the immersive projection technology (IPT). The auditory information of 
road traffic noise is created using the MAX (Cycling’74). Fig.3 shows the concept of the system.
This system provides two presentation methods for computed road traffic noise level, a) auralization 
function, which presents the auditory information of the road traffic noise based on numerical 
results with the stereoscopic animation of vehicle run (Fig.3 left), and b) visualization function, 
which presents the stereoscopic iso-surface of the road traffic noise level by CG image with the 
road environment’s CG (Fig.3 right). Users can easily understand how big the noise of the 
simulation results using the auralization function. On the other hand, users can easily understand the 
spatial distribution on the noise level using the visualization function. 

 

 
 

Figure 3. The concept of the system 
 

The present system provides following three characteristics. First, users can move to arbitrary 
position and can hear the road traffic noise that correspond with the position, since the road traffic 
noise level is computed in real time using the position of user (Fig.4 (a)). Second, users can change 
the road environment; height of noise barrier, pavement type (drainage pavement and dense 
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pavement) and passage years after pavement (Fig.4 (b)). Third, users can change the vehicle 
conditions; vehicle type, vehicle speed and running distance of vehicle (Fig.4 (c)). Fig.5 shows the 
available road environments for the simulation in this system. Table 1 shows the input data in case 
of the road environment with noise barrier and users can set the data using the interface function 
which is displayed on the front screen as shown in Fig.6. Fig.7 shows computational result when 
building is set. 
 

 
Figure 4. The overview of the system 

 

 
Figure 5. Surrounding road environments 

 
    Table 1. Input data 

 

    
 

Figure 6. Interface function 
 

 
 

Figure 7. Computational result 
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Computation of road traffic noise level 

The road traffic noise level is computed by using the ASJ RTN-Model 2008 (The Acoustic Society 
of Japan (2009)). The sound pressure level is evaluated in real time by the model, since the model is 
based on the geometric acoustic theory. 
The computation is performed using the position data of the vehicle, the observer, and the 

surrounding environment in real time using a motion tracking system. Fig.8 shows the sound 
propagation with sound barriers. The A-weighted sound power level of vehicle noise LWA can be 
expressed as: 
 

                                                 CVbaLWA  10log                                                             (1) 
 

where a is the factor related to the types of vehicle (the values for standard car, bike, subcompact 
car, middle car and large car are assumed to be 46.7, 47.6, 51.5, 44.4, 49.6, respectively), b is the 
coefficient relate to the vehicle speed, V is the vehicle speed, C is the correction term (the noise 
reduction with drainage pavement etc, the change of road vehicle noise by the vertical slope, the 
directivity of vehicle noise). 

 The A-weighted sound pressure level LA of direct sound which is propagation from vehicles is 
evaluated as: 
 

corWAA LrLL  10log208                       (2) 
 

where r is the distance in a straight line between observer and vehicle, corL  is the correction 
concerning with attenuation factors (attenuation caused by diffraction, grand effect and atmospheric 
absorption). 
 When it is necessary to consider about the plural propagations such as direct sound, reflection and 
diffraction sounds, the A-weighted sound pressure level is computed as: 
 











 



max ,

0

1010log10
i

i

L

A

iA

L                                       (3) 

 

where maxi  is the number of the sound propagations, iAL ,  is the sound pressure level corresponding 
the sound propagation. The Doppler effect is also considered in this system. 
 

 
 

Figure 8. Sound Propagation by ASJ RTN-Model 2008 
 

Development of Stereoscopic Sound System 

In order to improve the presence of auralization function, the spacialization of sound field is 
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achieved. The system consists of two parts; visualization and auralization parts as shown in Fig.9. 
The sound source data is obtained from the various vehicle driving test which is explained in the 
next section. The Open Sound Control (OSC) which is UDP/IP protocol is used for the data 
communication. The spatialization of sound is achieved by the method named “ambisonics” (Ward, 
2001, Tanigawa et al. (2013)), which is based on the spherical surface function expansion, using 
computational results and sound source data. For the preparation of CG image, the Open GL and 
CAVE library are employed and the Max is employed for the specialization of sound. 
 

 
 

Figure 9. Flowchart of the stereoscopic sound system 

Implementation of the Sound Source Data 

Observation of road traffic noise 

In order to obtain the sound source data for the road traffic noise, the observation of driving sound 
for various type of vehicle is performed at The National Institute for Land and Infrastructure 
Management, Tsukuba, Japan. Fig.10 shows the type of vehicles which are used for the observation. 
The sound is observed by the noise level meter which is set to the fixed point as shown in Fig.11. 
The vehicle speed is changed from 50km/h to 100km/h with the constant interval 10km/h. The 
sampling frequency of the noise level meter is assumed to be 20kHz.  
Fig.12 (a) shows the observed waveform in case for the standard car 90km/h. In this figure, the 

maximum sound pressure is normalized as 1.0 and the time when the vehicle pass through the front 
of the noise level meter is assumed to be 0 sec. From this figure, it can be seen that the sound 
pressure involves the distance attenuation clearly. 
 

 
Figure 10. Type of vehicle in driving tests 
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Generation of sound source data for auralization 

In order to generate the sound source data for auralization from the measured data, it is necessary 
to remove the effects of the distance attenuation using the geometrical relation as shown in Fig.10. 
In this figure, 1T  is the actual elapsed time, '1T  is the elapsed time considering the sound speed 
(time at observation point), S  is the sound pressure at vehicle and 'S is the sound pressure at 
observation point. The sound pressure )'(' 1TS  can be expressed by the following equation 
considering the distance attenuation.  
 

 )(
)(

1)'(' 1
1

1 TS
TR

TS                (4) 

 

 
 

Figure 11. Measurement of vehicle noise 
 

where ))(()( 2
1

2
01 VTrTR   denotes the horizontal distance between observer and vehicle, and   

denotes other sounds such as reflected sound and background noise, and which is assumed to be 0. 
Time '1T  is expressed by the following equation. 

 
 

0

1
11

)('
c
TRTT         (5) 

 

where, 0c is acoustic velocity. From Eq. (4) and (5), the time 1T  can be expressed as: 
 

)'(
)1(2

)')(1(4'4'2
12

0

2
0

2
1

2
0

2
11

1 TF
M

QTMTT
T 




    (6) 

 
 

where, variable of M0 and Q0 is 0/ cV  and 00 / cr . Therefore, the sound pressure at the vehicle )( 1TS  
can be evaluated by following equation as the function of '1T . 
 

)'(')'())'(( 111 TSTTFS                 (7)  
 

where )'( 1T  is the correction coefficient which can be written as ))'(( 1TFR . Fig.12 (b) shows the 
sound source data which is used for the auralization of the road traffic noise system. From this 
figure, it can be seen that the effects of the distance attenuation is removed. Fig.13 shows the 
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comparison of power spectrum in case that the both sound at 1000Hz are assumed as 0dB. It can be 
seen that both power spectrums coincide with each other. Fig.14 shows the comparison of power 
spectrum for various type of vehicle in case that the speed of vehicle is 100km/h. From this figure, 
the power spectrum of large truck and bike are big in the range of low frequency comparing with 
others. 
 

 
 

Figure 12. Generation of sound source data 
 

      
 

Figure 13. Comparison of power spectrum          Figure 14. Comparison of power spectrum  

Application example 

The present system is applied the traffic simulation with various type of vehicle as shown in 
Fig.15. The sound source data generated from the various car driving tests is implemented to the 
simulation. Fig.16 shows the scene that the observer uses the system. The computed results are 
compared with the measured results by the noise level meter (vehicle velocity:100km/h, pavement 
of road:drainage pavement, passage years of pavement:0year) as shown in Fig.17. From this figure, 
it can be seen that the computational results are good agreement with the measurement. 
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Figure 15. Computational condition                     Figure 16. Scene that the observer 
        uses the system 

 
Figurre 17. Comparison of computational and measured results 

Conclusion 
A road traffic noise evaluation system based on spatialization of sound using virtual reality 

technology has been presented. In order to consider the effects of directivity of the sound wave and 
delay of the arrival time, a stereoscopic sound field has been developed in VR space. Furthermore, 
the sound source data for the auralization in VR space has been generated from the various vehicle 
driving tests. The following conclusions can be obtained. 
 
 
 The reality and presence of the system has been improved by the spatialization of sound field in 

VR space.  
 The power spectrum of generated sound source data for auralization is good agreement with the 

observed data, and the high quality sound source data has been obtained. 
The verification of the present system to the complicated road environment is left in the future work.  
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The theoretical and computational aspects of interval methodology based on Chebyshev 
polynomials for modeling complex nonlinear multi-body dynamic systems in the presence of 
parametric and external excitation uncertainties is formulated, implemented, and validated. Both the 
parameters uncertainties and external excitation uncertainties are modeled by uncertain-but-
bounded interval variables, where the bounds on the magnitude of uncertain parameters or external 
force are only required, not necessarily knowing the probabilistic distribution densities. The 
Chebyshev inclusion function which employs the truncated Chevbyshev series expansion to 
approximate the original nonlinear calculates sharper range than the traditional Taylor inclusion 
function. The coefficients of the Chebyshev polynomials are calculated through the Mehler 
numerical integral method. The multi-body systems dynamics are governed by differential algebraic 
equations (DAEs) which are transformed to nonlinear equations with interval parameters at each 
integral step by HHT-I3 methods, and then the proposed method for nonlinear systems with interval 
parameters can be employed to find the interval region of the system responses. The numerical 
example results show that the novel methodology can reduce the overestimation largely and is 
computationally faster than the scanning method.  

Keywords:  interval method; Chebyshev polynomials; uncertain analysis; DAEs  

Introduction 
Modern multibody systems containing such as mechanisms, robotics, vehicles, and machines etc. 
are often very complex and consist of many components interconnected by mechanical joints and 
force elements. The governing equations of such systems are often governed by index-3 differential 
algebraic equations (DAEs). Although mathematical modeling tools for multibody dynamics 
simulation have experienced a tremendous growth, most researches were based on the assumption 
that all parameters of multibody systems are deterministic. However, the realistic engineering 
multibody systems often operate under some degree of uncertainty which may be resulted from 
variability in their geometric or material parameters, or caused by the assembly process and 
manufacturing tolerances and/or wear, ageing and so on. Hence, the multibody dynamics models 
must account for these uncertainties for achieving the realistic predictions of the system responses. 

Interval arithmetic has appeared several decades, but interval theory was not mainly concentrated 
until the appearance of Moore's work (Revol, Makino et al. 2005). Interval arithmetic can obtain the 
system response bounds quickly, because it is not a type of optimization algorithm which needs a 
large mount of iterations. However, interval arithmetic has its own drawback that is the calculation 
results may be overestimated too much caused by the wrapping effect. How to reduce the 
overestimation is the key for interval arithmetic. Many interval methods have been proposed to 
solve the static problems (Zingales and Elishakoff 2000; Chen, Lian et al. 2002; Gao 2006; 
Muhanna, Zhang et al. 2007; Wang, Elishakoff et al. 2009; Gao, Song et al. 2010). However, the 
interval methods for solving the dynamics problems which are expressed as differential equations 
including ODEs and DAEs are presented not much. The numerical methods for solving differential 
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equations contain much iteration which aggravates the overestimation, so besides using the interval 
set theory, many other particular algorithms are introduced to reduce the overestimation. Interval 
Taylor series method (Nedialkov, Jackson et al. 1999; Alefeld and Mayer 2000; Jackson and 
Nedialkov 2002) and Taylor model method (Berz and Makino 1999) are the two important 
methods. The Taylor model uses higher order Taylor series to approximate the system responses 
and adds a remainder interval to guarantee the interval ranges contain all the possible results, which 
reduces the wrapping effect induced by the dependency of interval variables. Lin's VSPODE (Lin 
and Stadtherr 2007) combined the two methods to solve the ODEs with interval parameters, which 
made the interval results sharper. The mechanical dynamics problems are generally governed by 
DAEs, especially by the index-3 DAEs. The numerical solution of DAEs has a comparatively short 
history related to ODEs, still, numerically solving DAEs poses fundamental difficulties not 
encountered when solving ODEs (Negrut, Jay et al. 2009).  

To reduce the overestimation of interval inclusion function, the Chebyshev inclusion function using 
the truncated Chebyshev series to calculate the bounds of function with interval parameters is 
proposed. The Chebyshev inclusion function can reduce the overestimation effectively, because it 
can be expressed as cosine functions which make the interval range sharper for non-monotonic 
functions. Utilizing the Chebyshev inclusion function on DAEs with interval parameters, the 
overestimation can be controlled effectively. For Mehler integral is an interpolation quadrature 
formula, the solutions at each interpolation point are needed, and the traditional HHT-I3 numerical 
method is used to produce the solutions at each interpolation point. At last, the interval arithmetic 
can be employed to calculate the bounds of solutions of DAEs based on the obtained Chebyshev 
inclusion function. 

Modeling and Solving the Multibody Dynamics System 
The constrained equations of the dynamics of multibody systems can be expressed as (Negrut, Jay 
et al. 2009)

      
 

t t t

t

T
q

q = v
M q v = Q ,q, v, ,u - q,

q, = 0

&

& ,      (1) 

where nRq are the generalized coordinates, nRv are the generalized velocities, mR are the 
Langrage multipliers, and : cR Ru represent time dependent external dynamics, e.g. control 
variables. The matrix M(q) is the generalized mass matrix,   t tQ ,q, v, ,u  represents the vector of 
generalized applied forces, and  tq, is the set of m holonomic constraints. The notation in bold 
denotes vector, while the notation in italic denotes scalar.

The classical numerical techniques for DAEs contain two classes: state-space methods and direct 
methods (Bauchau and Laulusa 2008). The major intrinsic drawback associated with state-space 
methods remains the expensive DAE to ODE reduction process that is further exacerbated in the 
context of implicit integration (Negrut, Jay et al. 2009). Direct methods discretize the constrained 
equations and transform the DAEs to algebraic equations at each integral step. Many direct methods 
have been proposed to solve the index-3 DAEs, such as the Newmark method (Newmark 1959), 
HHT-I3 (Negrut, Rampalli et al. 2007), and generalized -method (Chung and Hulbert 1993) and so 
on. In this paper, we use the HHT-I3 method which would be described as follows. 

Discretize the Eq. (1) with respect to time leads to the following equations (Negrut, Jay et al. 2009) 
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where h is the integration step-size, an+1 is the approximation of   1nt h q&& , and the initial value 
a0 can be set as 0 0a = q&& , subscript n denotes the nth integral step, and subscript q denotes the 
derivative of q. ,  , and  are the parameters of HHT-I3 method that confirm the conditions as 
follow: 

   21 3,0 , 1 4, 1 2          .    (3) 
The smaller value of leads larger numerical dissipation for HHT-I3 method, but it makes the 
solution more stability. The last two equations of Eq. (2) are the nonlinear system of 

 T1 1 1n n n  w a , so the Newton method can be used to solve the system. The Newton method 
does not consider the uncertain parameters in the equations, and the method treating for 
uncertainties will be presented in following sections.

Interval Arithmetic 
Let us define a real interval [x] is a connected nonempty subset of real set R . It can be expressed as 

 
_ _

, :x x x x R x x x
 

            
,         (4) 

where x is the lower bound of interval [x] which also can be noted as inf([x]); x  is the upper bound 
of interval [x] which also can be noted as sup([x]). The set of all intervals over R is denoted by IR
where

_ _ _

, : , :IR x x x x R x x
  

        
.           (5) 

Interval arithmetic operations are defined on the real set R such that the interval result closes all 
possible real result. Given the two real interval [x]and [y],

          : ,  for , , ,x y x y x x y y          .   (6) 
Consider a function f from Rn to Rm. The interval function [f] from IRn to IRm is an inclusion 
function for f if

         ,nx IR f x f x   .     (7) 
The direct calculation of an enclosure for a function using interval arithmetic will often lead to large 
overestimation. To make the result sharper, the higher order Taylor series expansion can be used. If 
the function f is n+1 times differentiable on the interval [x], the nth-order Taylor inclusion function 
(Jaulin 2001) can be obtained as follows: 

              
       111 1...

! 1 !n

n nn n
T c c cf x f x f x x f x x f x x

n n
             

,   (8) 

where xc denotes the midpoint of [x]

    1
2cx mid x x x   .        (9) 

And  x  is a symmetry interval of [x], which is expressed by 

  ,
2 2

x x x x
x

      
.            (10) 

In the above, the Eq. (8) calculates the rigorous enclosure for the function f(x). The last term in the 
right hand side of Eq. (8) is usually neglected to obtain the approximate enclosure of f(x) in 
engineering. Some specific interval function can be calculated through some special algorithms, e.g. 
the trigonometric function (Jaulin 2001) and so on.. 
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Chebyshev Method for Multibody Dynamics System with Interval Parameters  

Chebyshev inclusion function 
If the function f(x) is contained in C[a, b], which means f(x) is continuous on [a, b], then it can be 
approximated as truncated Chebyshev series with degree n (Li, Wang et al. 2003), shown as follow 

     0
1

1
2

n

n i i
i

f x p x f f C x


   ,       (11) 

where fi are the constant coefficients, and Ci(x) denotes the Chebyshev polynomial. The Chebyshev 
polynomial for  1,1x  of degree n is denoted by Cn and is defined by (Rivlin 1981)

              cosnC x n ,                      (12) 
where    arccos 0,x   , n denotes the nonnegative integer. The Chebyshev polynomial on [a, b]

of degree n is also defined by Eq. (12), but here  2
arccos

x b a
b a


  

   
. For multi-dimension problem, 

the polynomials are the tensor product of each one-dimension polynomial. For example, the k
dimensions Chebyshev polynomials of  1,1ix   , i=1,2,…, k can be expressed as 

     
1 2, ,..., 1 1 1,..., cos ...cos

kn n n k k kC x x n n  ,     (13) 

where  arccosi ix  . The corresponding multi-dimension function f(x) can be approximated as  
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 f x f x ,         (14) 

where p denotes the total number of zero(s) to be occurred in the subscripts 1,..., ki i ,  
1 ,..., ki iC x  is the 

k-dimensional Chebyshev polynomials given in Eq. (13), and 
1,..., ki if  denotes the vector including the 

coefficients of Chebyshev polynomials which can be calculated by Eq. (15) 

 
1,..., 1 1 1 10 0
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   f f ,   (15) 

where k denotes the number of dimension, and subscript i1,…, ik =0, 1,…, n. The numerical integral 
methods should be used to calculate the Eq. (15), and the Mehler integral method is suitable. The 
Mehler integral is a type of interpolation integral which can be expressed as 

 1 1 1

1

,..., 1
1 1

2 ... cos ,...,cos cos ...cos
k k k

k

k m m

i i j j j k j
j j

i i
m

   
 

  
 

 f f ,    (16) 

where m denotes the number of interpolation points, j denotes the interpolation points 
           2 1 , 1,2,...,

2j

j
j m

m
 

  .               (17) 

Similar to Taylor inclusion function, we define the Chebyshev inclusion function of f(x) which can 
be expressed as 

        
1

1

,..., 1 1
0 0

1... cos ...cos
2n k

k

pn n

C j j k k
j j

j j 
 

        
 f x f ,  (18) 

where    0,  . Eq. (18) can be calculated through the algorithm of interval trigonometric 
function shown in section 3. 

Chebyshev method for solving multibody systems containing interval parameters 
From section 2, we know that the numerical method for solving the multibody dynamics system 
transform the DAEs to nonlinear equations at each integral step. When consider the uncertain 
parameters and uncertain external excitation are contained in the multibody system, such as the 
length tolerance of components inducing the mass and center of mass uncertain, the density 
uncertainty leading the mass and the moment of inertia uncertain, and the fluctuated driving force, 
the DAEs can be transformed to nonlinear equations containing uncertain parameters.  
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Since the DAEs are transformed to nonlinear equations at each iteration step, the nonlinear 
equations with interval parameters will be researched. Consider the q dimensions function 
group

1 2, ,..., qf f f


   F , where : , 1, 2,...,q
if x R R i q   X . If the uncertain parameters which are 

expressed as interval parameters  k a,b exist in the nonlinear system, the nonlinear system can be 
described as 

 ,F X = 0 .          (19) 

The solution set of Eq. (19) is a function with respect to uncertain parameters , and its interval 
solution is     X

      1 ,    Y=0
X = F Y X .         (20) 

Considering the Chebyshev inclusion function Eq. (19), the interval solution     X  can be 

calculated as 
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j j 
 

        
 X X ,    (21)  

where  0, k , and the coefficients vector 
1,..., kj jX can be obtained through Eq. (16) 
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where l denotes the interpolation points expressed by Eq. (17), and  1
,...,

kl l X  denotes the 

solution of nonlinear system shown in Eq. (19) when the values of uncertain parameters are set as 

1

T
cos ,..., cos

kl l     . The detail algorithm for solving multibody systems with uncertain parameters 
can be described as Algorithm 1.
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From the calculation flow, we find that the algorithm solving the uncertain problem is similar to a 
type of sampling method, but its pre-processing and post-processing are particular. Thus, the 
proposed method can be used in black box problems even, but the accuracy and efficiency should 
be researched further. 

Numerical Application  
In this section, the numerical example which is slider crank mechanism containing interval 
parameters is presented. In the slider crank mechanism, the length of crank is firstly considered as 
an interval parameter, we hope to obtain the range of slider displacement in the whole calculation 
period. The schematic of slider crank is shown in Fig. 1, and the parameters are shown in Table 1. 

1

2

1x

2x
3x

3y

2y
1y



Figure. 1 The schematic of slider crank

Table 1. The parameters of slider crank
parameters l1(m) l2(m) m1(kg) m2(kg) m3(kg) c(N/(m/s)) k(N/m)  (Nm)

value 0.15 0.56 0.37 0.77 0.45 1 5 -0.5

As shown in Fig. 1, point A, B, and C is the gravity center of crank, connecting rod, and slider 
respectively. 1 and 2 denotes the angle between the global coordinate and the local coordinate of 
crank and connecting rod respectively. The slider is connected with a spring damper, and the spring 
force is zero when the angle 1 and 2 equal to zero. l1 and l2 denotes the length of crank and 
connecting rod; m1, m2, and m3 denotes the mass of crank, connecting rod, and slider respectively; c
is the damp coefficient of spring damper, k is the stiffness of spring damper, and  denotes the 
external torque applied on the crank. Choose the seven generalized coordinates which are 

 1 1 1 2 2 2 3, , , , , , T
x y x y x q , where the subscript 1, 2, and 3 denotes the crank, connecting rod, and 

slider, respectively. Suppose the length of crank l1 containing uncertainty with 1% of its nominal 
value, noting it as 

   1 1 1 1
ˆ 1 0.01 1,1l l      .                     (23) 

The system is solved for a period of 2s by using the Chebyshev method with 5th-order polynomials 
and the second-order Taylor method, respectively. To ensure the precise ranges of results, the 
scanning method (Buras, Jamin et al. 1996) is employed with symmetrical 30 sampling points. The 
results are shown in Fig. 2.

Figure. 2 The displacement of piston with uncertain crank length
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The results obtained by Chebyshev method enclose the range of scanning method tightly in the 
initial period, compared with the Taylor inclusion function method. 

Figure. 3 The displacement of piston with uncertain crank length and torque
Secondly, we also consider the external torque   under interval uncertainty with 1% of its nominal 
value, and the uncertain external torque is then expressed as 
      2 2ˆ 1 0.01 [ 1,1]           (24) 

The initial conditions keep unchanged. Solve the system for a period of 2s using the Chebyshev 
method with the 5th-order polynomials and the second-order Taylor method. The results are shown 
as Fig. 3. For the computational time, the proposed Chebyshev method requires 422s, while the 
Taylor method and scanning method needs 1392s and 10584s, respectively. 

Conclusions
A new interval numerical method using Chebyshev series to solve the multibody dynamics system 
with uncertainties is presented. Interval method is mainly used in the cases that only the bounds of 
uncertain parameters are known. To weaken the drawback of interval method, overestimated too 
much, the Chebyshev inclusion function which employs the truncated Chebyshev series to 
approximate the original function is proposed. The Chebyshev polynomials approximation theory is 
also used in solving the nonlinear system with interval parameters. To solve the multibody system 
dynamics problems containing uncertain parameters, the classical HHT-I3 method is used to 
transforms the DAEs to nonlinear systems at each integral step, so the proposed algorithm for 
solving nonlinear system with interval parameters can be ultilized. The numerical example of slider 
crank mechanism is presented, where the length of crank and torque forced on crank are considered 
as interval parameters. The numerical results show that the results of Chebshev method enclose the 
results of scanning method tighter than the Taylor method, also the Chebyshev method is higher 
efficient than both scanning method and Taylor method. The proposed method is similar to the 
sampling method which may even settle the black box problems.  
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Abstract
Independent Component Analysis has recently been employed in structural damage detection and 
blind source separation to extract source signals and the unmixing matrix of the system from 
response signals. This novel method relies on the assumption that source signals are statistically 
independent. This paper looks at statistical independence, its measures and testing procedures. First 
the concepts of kurtosis, negentropy and mutual information are reviewed, followed by Bakirov’s 
measures of coefficient of statistical independence and distance correlation between two signals 
coupled with Hypothesis testing to avoid Type I and Type II error. Bakirov’s tests are 
nonparametric, simple to implement and do not require any approximation. Algorithms developed 
by Bakirov and associates to test the statistical independence of two arbitrary signals are reviewed. 
A case study using signals commonly found in vibration testing showed that Bakirov’s tests are 
both reliable and rigorous. They are then applied to investigate the effects of corrupted signals by 
various forms on the statistical independence and performance of fastICA, a popular independent 
component analysis algorithm.  

Keywords: Statistical independence, Bakirov’s dCov test, Independent component analysis, 

Structural damage detection, Multivariate statistics, Package “energy”, fastICA. 

Introduction 

Independent Component Analysis (ICA) is fundamentally a blind source separation method that 
seeks to separate underlying components from available data whether the data are in the form of 
sounds, images, vibration responses or financial share prices. Since 1990s, Independent Component 
Analysis has been of great interest to researchers in diversified areas of statistics, medical imaging, 
telecommunication and structural damage detection( Comon and Jutten, 2010, Hastie et al, 2008, 
Hyv rinen et al, 2001, Zang et al 2004). Essentially, ICA relies on response data collected by 
sensors, called mixture signals, and the assumption that the independent component sources, called 
source signals, are statistically independent, to extract the unknown source signals. Most of the 
studies require that there are as many sensors as there are independent components and that the 
system behaves linearly, but non-linear behavior and both under-determined and over-determined 
cases have also been solved. A well known case study is the so called cocktail party problem: 
identify speech by two speakers in a room by using sounds recorded by two microphones. A 
demonstration is given on http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi.

ICA assumes that there is a relationship between S, the vector represents source signals, or 
underlying components and X, the vector represents mixture or response signals of the system to 
the source signals. In the simplest form, the relationship is linear and can be expressed as: X = AS, 
where X is available from sensors output, A is called the mixing matrix. W, the inverse of A is 
called the unmixing matrix. While both A or W and S have to be determined, ICA seeks the 
optimum solution out of all possible W such that the statistical independence of S is maximized. 
Naturally the product of A and W must be the identity matrix. In statistics, ICA is considered as 
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supervised learning which includes principal component analysis and factor analysis. It is also 
connected to the technique of projection pursuit in multivariate statistics (Hastie et al, 2008). This 
has led to many novel methods of medical diagnosis of neurology and image processing. The 
restriction that has been stated by Hyv rinen et al (2001) is that not both variables are normal or 
Gaussian random signals. First, let us look at the concept of statistical independence (SI) and 
different measures and tests to evaluate statistical independence (SI). 

Statistical Independence 

 Consider two scalar variables X and Y, X is said to be independent of Y if knowing the value of Y 
does not give any information on the value of X. This conceptual definition leads to the use of 
probability density function (pdf), a normalized histogram, of an event. When two events are 
studied, conditional probability, P(B|A), is defined as the probability that event B occurs given that 
event A occurs; and joint probability, P(A&B) is defined as the probability of both A and B occur. 
They are related by the rule P(B|A) = P(A&B)/P(A).  

Two events are statistically independent if P(B|A) = P(B). It then follows that if A and B are 
independent: P(A&B) = P(A).P(B). The joint probability can be found by constructing a 
contingency table, however it should be noted that marginal probabilities can be found from joint 
probability but the reverse is not true except in the case of statistical independence. This leads to the 
notion that two scalar variables X and Y are statistically independent if and only if their jpdf is a 
product of their individual pdf which are also called marginal pdf: 

pXY(x,y) = pX(x) . pY(y)      (1) 

In Eq. 1, x and y are particular values of variable X, Y respectively.

Note that in Eq.1, cumulative distribution functions can replace the  respective probability density 
functions, as so do expected values of absolutely integrable functions of variables, including 
positive powers of x and y: 

E{g(x).h(y)} = E{g(x)}. E{h(y)}        (2) 
  E{xp yq} = E{xp} . E{yq)}                                      (3) 

Where operator E stands for expected value, p and q are positive integers. It follows from Eq. 3 that 
SI is more stringent requirement than un-correlatedness, as un-correlatedness requires only E{x.y} 
= E{x}. E{y}, i.e only for the case that both p and q equal 1. Thus statistical independence implies 
un-correlatedness but the reverse is not true, except for normal or Gaussian random variable. A 
simple example is given by Stone (2004), in which two simple pendulums swinging 900 out of 
phase, x = cos(t), y =  sin(t), giving correlation coefficient of zero, hence x and y are uncorrelated 
but they are statistically identical.  At the same time, variables describing physically independent 
phenomena are intuitively thought to be statistically independent but it is not generally true. 

Statistical Independence can also be defined in terms of characteristic functions of X and Y and 
their joint characteristic functions, where characteristic function of X is the inverse Fourier 
transform of its pdf and jpdf respectively, i.e. fX(t) = E{eitX} and fXY(t,s) = E{ei(Xt+Ys)}. Note that 
characteristic functions are complex. In a similar fashion as using pdf and jpdf: X and Y are 
statistically independent if:

   fXY(t,s) = fX(t). fY(s)      (4) 
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In most engineering applications variables are obtained from random process without further 
knowledge of the joint distribution, hence the jpdf cannot be determined from marginal pdfs, unless 
statistical independence is assumed or implied.  

It must be noted that testing of the equality of the two sides of either of Eq. 1-4 highlights the basic 
concept of statistical hypothesis testing: a test must have hypotheses, the null and alternative 
hypothesis, a corresponding statistic and a measure of the reliability of the test. In other words the 
testing of Eq. 1 itself must be perceived in a probabilistic sense, not in a deterministic sense. This is 
to ensure not to commit Type I (rejecting true null hypothesis) and Type II error (accepting false 
null hypothesis).

Probably the first paper on statistical independence was due to Wilks (1935). Most researchers of 
ICA argue that the mixtures, as a consequence of Central Limit Theorem, would be more gaussian 
than the sources. As a consequence, a heuristic assumption is that the sources would be more non-
Gaussian, hence the objective is seeking sources as variables of maximum non-Gaussianity, 
effectively using non-Gaussianity as a measure of statistical independence (Hyv rinen et al, 2001). 
Non-Gaussianity of a variable can be measured by kurtosis and negentropy. Kurtosis is defined as 
kurt(x) = E{x4} – 3(E{x2}) i.e. a normalized version of fourth moment of statistical distribution to 
make kurtosis of a normal or Gaussian random variable to be zero. Although simple to calculate, 
kurtosis is sensitive to outliers. The concept of entropy in Thermodynamics, representing the degree 
of being unstructured, unorganized, unpredictability, is also popular in Theory of Information. For a 
distribution Y, entropy of a variable is defined in terms of probability density function (pdf)  as 
H(y)=  - ( )log ( )p y p y dy . Negentropy J is then defined as J(y) = H(yGauss) – H(y), where yGauss is a 
Gaussian random variable of the same covariance matrix as y, which is shown by Information 
Theory to have the largest entropy among all random variables of equal variance. Thus negentropy 
is always non- negative. It is more involved to compute negentropy than kurtosis, and like kurtosis, 
it refers to only one variable and would fail as a measure of independence when one variable is a 
multiple of the other.  

In most engineering applications, the variable has a finite number of values, as a consequence 
kurtosis of variables, even of the same distribution model, would depend heavily on how many 
elements are taken into account. As an example  a variable was obtained by the Gaussian random 
generator in Matlab to yield a variable X of 1,000 elements, kurtosis was then found for varying 
number of elements from 100 to 1000. A typical result is shown in Table 1. 

Table 1: Kurtosis of variables of varying number of elements from a normal (Gaussian) 
random variable

Element
no

100 200 300 400 500 600 700 800 900 1000 

kurtosis -.3049 -.1041 -.1139 .0774 .0048 .2558 .2273 .1708  .2210 .1999 

A more rigorous concept is mutual information of two variables X and Y defined as: 

( , )( , ) ( , ) log
( ) ( )
XY

XY
y Y x X

p x y
I X Y p x y

p x p y 

 
  

 
     (5) 
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It can be seen that mutual information is zero when the two variables are independent and ICA aims 
to minimize the mutual information among candidates of the source signals.  Hyv rinen et al (2001) 
argued that this approach gives rigour to the more heuristic approach of using kurtosis and 
negentropy and is equivalent to method based on maximum likelihood estimation. However this 
measure of statistical independence also requires the knowledge of jpdf. Mutual information can be 
defined in terms of Shannon entropy, which can be further estimated (Comon and Jutten, 2010 ). 

Bakirov’s measures of statistical independence 

Bakirov and his associates published two papers, Bakirov et al (2006), Szekely et al (2007) 
addressing the needs to have measure of statistical independence that are non-parametric, that is 
independent of the statistical model that one has to assume otherwise. Such a measure has to be 
practical to implement and conform to requirements of statistical hypothesis testing: null and 
alternative hypothesis, a test statistic and a confidence indicator of the test. 

1. Coefficient of independence 
Bakirov, Rizzo and Szekely proposed a statistic In based on the idea of independence coefficient I, 
defined in terms of characteristic functions: 

2 2

( , ) ( ) ( )

(1 | ( ) | )(1 | ( ) | )
XY x Y

X Y

f t s f t f s
I

f t f s




 
      (6) 

In itself is defined for a finite subset of variable of n elements, based on various Euclidean norms, or 
“distances” of distributions of X, Y and of their joint distribution Z, hence does not require the joint 
characteristic function as I. However, the authors proved that in the limit, In tends to I and 0 In  1, 
where the sublimit 0 corresponds to statistical independence. 

Further, it is shown that for all confidence level  below 0.215, the null hypothesis H0 that X and Y 
are independent is rejected when 1(1 / 2)nnI     where -1is the inverse function of the 
cumulative distribution function of the standard normal distribution. This assertion would yield a 
parameter indicating the strength of the hypothesis testing, normally given by the p-value of the 
hypothesis testing. It is normally accepted that p-value less than 0.05, H0 would be rejected. The 
calculation of In is computing extensive for large n. 

2. Distance of covariance 
Szekely, Rizzo and Bakirov (2007)  proposed the concept of distance covariance, dCov  (X,Y) and 
distance correlation, dCor  R(X,Y), defined respectively as: 

2 2(X, Y )  ||f - f f ||XY X Y                         (7)
2

2

2 2

( , )( , )
( ) ( )

X Y
R X Y

X Y


 

                   (8) 

It can be seen from Eq. 7 that dCov is directly related to the definition of statistical independence. 
Further, the authors proved that the right hand side of Eq. 7 does not need information on the joint 
characteristic function and can be calculated as the limit of: 

2
1 2 3(X, Y )  S 2n S S           (9) 

Where S1, S2 and S3 can be calculated in terms of Euclidean norms related to distributions of X, Y. 
Similar hypothesis testing with statistic 2 (X, Y )nn and p-value are also proposed. 

3. Implementation in R language 
The authors proposed two tests called mvI.test  and dcov.test. Both tests use the null and alternative 
hypotheses H0: p(x,y) = p(x).p(y), H1: p(x,y)  p(x).p(y). They are implemented as options in the 
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module indep.test of the package “energy’” developed by Rizzo and Szekely in R language.  The 
mvI.test corresponds to the coefficient of independence and takes longer than the dCov.test, as 
many times as the number of elements which can be in thousands or more. These tests yield the p-
value of the null hypothesis test and it is widely accepted that H0 should be rejected if p-value < 
0.05. It should be noted that in statistical hypothesis test, p-value is viewed as a measure of the 
strength of the hypothesis test.

In this paper, Bakirov’s dCov test is used to evaluate the statistical independence of source signals, 
measured by p-value of the test, before sending them to evaluate performance of ICA or to act as 
excitation signals in vibration testing or finite element simulation. 

Statistical independence testing of common signals used in vibration 

In this test, the interest is statistical independence of various excitation signals commonly used in 
vibration testing. Source signals of 1,000 elements were generated in Matlab, except that impact 
force signals were obtained in a vibration impact hammer test.  These signals were then paired and 
tested for statistical independence by Bakirov’s dCov test. Certainly if one signal is an exact copy 
or a multiple of the other, no matter what kind of signal, they would be tested dependent. The 
results are reported in Table 2. Typical plots of two signals for the case of sine-sawtooth pair and 
sinusoidal function  of different frequencies (and also amplitude and phase) are shown in Figure 1 
and 2. 

Table 2: Statistical Independence of pairs of signals of 1,000 elements 

Unirandom, Unirandom (gemerated at different times) 0.660 
Unirandom, Sine 0.415
Uirandom, Impact 0.635
Impact, Sine 0.5
Sine, Sine of different frequency 0.76 
Sine, periodic Sawtooth of different frequency 0.965 
Gaussian random, Gaussian random 0.815
Impact, Impact sampled at different points of structures 0.015
Unirandom (u), 5*u 0.005
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Statistical independence testing of corrupted signals
1. One signal partially corrupted by the other signal:

Figure 3: Uniform random source S2 versus S1                              Figure 4: Plot of first 100 elements of S1 and S2 

Next S1 was kept unchanged, S2 was changed by a varying percentage e% of the source signal S1. 
The new S2 is designated S2*, i.e. S2*= S2 + e%.S1. These new sets of signals S1 and S2* were 
then tested for statistical independence by Bakirov’s dCov test. The following values of e% were 
investigated: 1, 2, 3, 4, and 10. The results are reported in Table 3,

Table 3: Effect of e% corruption of one signal on the other 

e% 0 1 2 3 4 5 10 

p-value of 
dCov test 

0.425 0.555 0.43 0.185 0.045 0.005 0.005 

It can be seen from Table 3 that in this case, Bakirov’s dCov test of SI is very stringent: an addition 
of only 4% of S1 to S2 would make them not independent, 

2. Effect of random noise on statistical independence 
In this test, S1 was in the form of a sine wave and S2 was a sawtooth wave of equal amplitude of 
1.00, as shown in Figure 5. They were then corrupted by Gaussian random noise of increasing 
amplitude of 0.05, 0.10, 0.15, 0.20. A plot of corrupted signals at amplitude of 0.10 is shown in 
Figure 6. The signals are tested for statistical independence in a similar fashion. The results are 
shown in Table 4. 
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Table 4: Effect of corruption of both signals by gaussian random noise 

e% random noise 0 5 10 15 20 
p-value dCov test 1.00 1.00 0.965 0.855 0.510 

It was found that for the case of similar amplitude signals, Gaussian random noise, commonly 
exhibited by equipment used in vibration testing, does decrease the p-value of dCov test, but signals 
were still independent at 20% noise.

3. Evaluation the performance of Independent Component Analysis 
As previously mentioned, Independent Component Analysis uses statistical independence as the 
objective function in searching for the blind sources from measured mixture signals. One popular 
algorithm is fastICA. Available in R, Matlab, C++ and Python programming, fastICA was 
developed by Marchini, Heaton and Ripley and can be downloaded from 
http://research.ics.aalto.fi/ica/fastica/. Basically it employs an approximation of negentropy as the 
objective function in searching of the unmixing matrix W under the constraints that W is an 
orthonormal matrix after the data has been centered, normalized and whitened. As the name implies 
it is a very fast algorithm, using fixed point iteration scheme for maximizing negentropy. It should 
be noted that the output of fastICA (source signals S, matrices A and W) are ambiguous as far as 
sign, scale and order are concerned. Here, the performance of fastICA was judged by the equality of 
A*W with the identity matrix of the same order. The signals used are S1 and S2* in Table 3. They 
were multiplied by a chosen A to yield the mixture signals which were then passed to fastICA for 
processing.  The results are reported in Table 5, where A0 is the mixing matrix corresponding to 
zero e%. It can be seen from Table 5 that up to adding 3% of S1 to S2, fastICA performed 
satisfactorily as far as the criterion of A*W = I is concerned, as expected. This equality is still 
satisfied at 4% but the mixing matrix obtained at this p% value is very different from the previous 
ones. This is further highlighted by inspecting the values of the ratio of the determinants of A at e% 
cases to that of the 0% case which was designated as A0. At 4% the ratio was 0.0048 instead of 1. 
At 10%, p-value was 0.005, fastICA failed to give the complete solution and no results reported. 

Conclusions

The notion of statistical independence is very important in the area of blind source separation, 
including independent component analysis. It is shown that the non-parametric tests developed by 
Bakirov and associates, especially dCov test, provide a good measure of statistical independence. It 
was found that many signals commonly used as excitation sources in vibration testing are 
statistically independent, except when one is a multiple of the other, sinusoidal functions of the 
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same frequency and impact signals sampled between the same hammer tip-structures in impact 
tests. The test was used to investigate effects of various sources of corruption on statistical 
independence: corruption of one signal by a small percentage of the other can affect enormously the 
statistical independence while corruption by random noise on both signals can be tolerated to a high 
level. It was also found that the statistical independence measured by p-value in dCov test is related 
to performance of fastICA, a popular package of ICA. It is recommended that Bakirov’ measures of 
statistical independence should be incorporated in an independent component analysis algorithm. 

Table 5: Results of effects of statistical independence on performance of fastICA

e% dCov p-
value

Mixing matrix A Unmixing matrix W A*W detA/detA0 

0 0.425 
8.33133 7.69348

18.4173 7.9057

0.03809 0.03707

0.08873 0.04014 1.0000   0.0000   
0.0000                1.0001 

1

1 0.555 
7.865551 8.01238

7.50953 18.7385

0.090281 0.0386

0.03618 0.0379 1.0000          0.0001   
-0.0001               1.0000 

1

2 0.43 
8.023941 7.693739

18.73223 7.90597

0.03809 0.037068

0.090251 0.03866 1.0000   0.0000   
-0.0000               1.0000 

1

3 0.185 
7.87029 7.69384

18.8896 7.906206

0.03809 0.03707

0.09101 0.037919 1.0000     0.0000   
-0.0000               1.0000 

1

4 0.045 
0.006301 0.99998

0.99998 0.0063

0.006301 0.99998

0.99998 0.0063 1.0000    0.0000  
0.0000                1.0000 

0.0048 
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Abstract
The Structural Reliability theory allows the rational treatment of the uncertainties and gives the 
methods for the evaluation of the safety of structures in presence of uncertain parameters. The main 
challenge is the computational cost, since the failure probability with respect to an assigned limit 
state is given as the solution of a very complicated multidimensional integral. The most robust 
procedure is the Monte Carlo Simulation (MCS), but especially in its crude form is very 
demanding. For this reason, wide popularity has been gained by the First Order Reliability Method 
(FORM) by its simplicity and computational efficiency. However, for strongly nonlinear systems 
the FORM approximation is not very close to the exact one. To this aim, in this paper we introduce 
a novel Linear approximation of the limit state, based on the Support Vector Method (SVM), and 
which allows to improve the FORM solution, starting from the knowledge of the design point.

Introduction

Recently it has been largely recognized that a realistic analysis of the structural systems should take 
into account all the unavoidable uncertainties appearing in the problem at hand. In this context a 
powerful tool is represented from the structural reliability theory (Madsen et al. 1986, Ditlevsen & 
Madsen 1999, Melchers, 1999) which gives a rational treatment of the uncertainties and which 
allows the assessment of the evaluation of the safety of structures in presence of uncertain 
parameters.
The failure probability fP with respect to an assigned limit state is defined as

  0

( )f
g

P f d


  X
x

x x (1)

where x is an n  vector collecting the basic random variables, ( )y g x is the Limit State 
Function (LSF), ( ) 0g x is the Limit State Surface (LSS) separating the failure set ( ) 0g x from 
the safe set ( ) 0g x , ( )fX x is the joint probability density function of the random variables 

1 2, , , nx x xK . The evaluation of the failure probability fP is known in closed form only for a very 
restricted number of cases, in the most general case it is necessary to solve numerically a 
multidimensional integral, which is computationally demanding.
The most robust procedure for the evaluation of the failure probability is represented by the Monte 
Carlo Simulation (MCS), which however, especially in its crude form, requires an excessive 
computational effort for the evaluation of the very small failure probabilities.
For this reason, wide popularity has been gained by the First Order Reliability Method (FORM) by 
its simplicity and computational efficiency, moreover extensive numerical experimentation has 
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shown that it gives good approximations of the failure probability for most practical problems. 
However, it is known that the FORM approximation is not adequate for limit state surfaces which 
depart significantly from linearity around the design point.
In this paper we overcome this shortcoming with a particular type of Response Surface 
Methodology (RSM) based on the Support Vector Method (SVM) and the theory of the statistical 
learning (Vapnik 1995, Burges 1998).
The basic idea of the RSM is the building of a surrogate model of the target limit state function, 
defined in a simple and explicit mathematical form; once the Response Surface (RS) is built, it is 
possible to substitute the RS with the target LSF, and then it is no longer necessary to run 
demanding finite element analyses; starting from this definition, FORM itself is a particular kind of 
RS, which approximates the LSS with the hyperplane passing through the design point *u and 
normal to the design point direction, the latter being the ray joining the origin of the standard 
normal space with the design point. 
The RS models can be built to find the design point with reduced computational cost (Bucher & 
Burgound 1990, Alibrandi & Der Kiureghian 2012); recently, many alternative response surface 
methodologies have been proposed, whose aim is the improvement of the FORM approximation 
(Bucher & Most, 2008; Alibrandi & Ricciardi 2005, Alibrandi & Ricciardi 2008, Alibrandi, 
Impollonia & Ricciardi 2010). 
To the latter cathegory belong the RS approaches based on the SVM (Hurtado 2004; Alibrandi & 
Ricciardi 2011). Using the SVM the reliability problem is treated as a classification approach 
(Hurtado & Alvarez 2003), since we are not interested to the exact value of the LSF, but only to its 
sign. Therefore the samples are labelled with the value “ 1 ” (safe sample) and “ 1 ” (unsafe 
sample) and this requisite is less strong than approximating the exact value of the LSF. 
In the existing approaches based on SVM, the improvement of the FORM solution is obtained by 
choosing non-linear models for approximating the limit state; conversely, in this paper, we adopt a 
simple linear model, where the constraints of correct classification are relaxed, accepting therefore 
that some points may be misclassified (Alibrandi 2012)
The starting model is built choosing a set of sample points along the design point direction, the 
latter being the direction of probabilistic interest. In this way, starting from the knowledge of the 
design point, it is possible to approximate the limit state with an hyperplane close to FORM but 
secant to the limit state, giving rise to an alternative Linear response surface based on SVM 
(LSVM), and giving a better approximation than FORM.

Structural Reliability Analysis as a classification approach

Usually the multidimensional integral (1) is very difficult to be evaluated, and then some 
approximate techniques are used. As a first step, a probabilistic coordinate transformation is done 
toward the standard normal space and the failure probability is given as

  0

( )f
g

P f d


  U
u

u u (2)

In (2) the integrand function is the multivariate normal standard probability density function (pdf), 
while the integration domain is the region failure ( ) 0g u . According to (2), the failure probability 
can be obtained using the Monte Carlo Simulation (MCS), considering a set of N samples 

1 2, , , Nu u uK and evaluating the ratio between the number fN of samples belonging to the failure 
region ( ) 0g u and the total number of simulated samples N :
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P I g

N N 

     u (3)

where [ ]I  is an indicator function, equal to 1 if ( ) 0jg u and zero otherwise. The quality of the 
obtained approximation is determined evaluating the coefficient of variation of ,f MCSP ; it is 
however well known that the MCS, especially in its crude form, requires an excessive 
computational effort. 
Alternatively, a good estimate of (2) is obtained by approximating the target Limit State Function 
(LSF) ( )y g u , usually complicated and implicit, with an approximate model ( )y g u% % , called 
Response Surface (RS). Once the RS is built, it is no longer necessary to run demanding Finite 
Element Analyses, but we can use the surrogate model. In the following we will consider only 
problems where the limit state surface has neither peak or valleys, nor multiple design points. 
From (3) it is seen that we are not interested to the value ( )y g u of the LSF, but to its sign 

sign[ ( )]z g u , so that the points iu belonging to the safe region have the value 1iz   , and the 
points iu belonging to the failure region have the value 1iz   . It is easy to see that the building of 
a surrogate model ( )y g u% % such that it satisfies only the sign constraints sign[ ( )]z g u , is 
equivalent to the building of a RS which models directly the LSS. Then, according to the RS 
Methodology, the estimated failure probability can be evaluated using (3), by substituting the 
indicator function [ ( ) 0]jI g u with [ ( ) 0]jI g u% . 
A function which separates the points belonging to the safe set from the ones belonging to the 
failure set, is named classifier, since attributes a class (“safe” or “failure”) to each point. The LSS 
  0g u is the target classifier, while a RS which approximates the LSS, is able to classify 

correctly only a limited number of points. Clearly, because the RS works well, it is necessary that it 
classifies correctly the points at least in the region of probabilistic interest.

A Linear Response Surface based on SVM

Let be known a set of m sampling points 1 2, , , mu u uK , while 1 2, , , my y yK and 1 2, , , mz z zK be the 
corresponding values of the LSF ( )i iy g u and signs sign[ ( )]i iz g u , respectively. 
Suppose that the target LSS is linear, ( )g c  u a u , then the sampling points iu are linearly 
separable. Consider now the approximated LSS ˆ ( )g b  u w u , where w determines the 
orientation of the plane, while the scalar b determines the offset of the plane from the origin. 
Clearly, when the number of support points converges toward infinity m  , then the linear 
classification function becomes coinciding with the target LSS, i.e. w a , b c . Conversely, for 
a limited number of support points, there are infinite possible planes that classify the points 
correctly. Intuitively, a hyperplane that passes too close to the sampling points will be less likely to 
generalize well for the unseen data, while it seems reasonable to expect that a hyperplane that is 
farthest from all points will have better generalization capabilities. Given a set of m sampling 
points, the margin is defined as the minimum distance between points belonging to different 
classes. Therefore, the optimal separating hyperplane is the one maximizing the margin.

Recall from the elementary geometry that the distance i of a point iu from the hyperplane 
ˆ( ) 0g u reads as i i b   w u w ; noticing that ˆ( ) 0g b   u w u is invariant under a positive 

rescaling, we choose the solution for which the function ˆ ˆ( )y g u becomes one for the points 
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closest to the boundary, i.e. 1i b  w u . The couple of hyperplanes ˆ ( ) 1sg b   u w u , 
( ) 0g  u u and ˆ ( ) 1fg b    u w u , ( ) 0g  u u , are called canonical hyperplanes (or 

support hyperplanes). The distance from the closest points to the boundary ˆ( ) 0g u is 1  w , 

and the margin becomes 2M  w , as shown in Figure 1(a).

Figure 1. (a) Linear SVM, (b) Non-linearly separable SVM

Maximizing the margin is equivalent to minimize 2w , giving rise to the following Quadratic 
Programming (QP) problem
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where the inequality constraints are equivalent to 1i b  w u , ( ) 0i ig  u u , and 1i b   w u , 
( ) 0i ig  u u . It is here noted that (4) is a standard convex optimization problem, so the 

uniqueness of the solution is guaranteed and moreover there are many robust algorithms that can 
effectively solve it.
Among the m sampling points, the support vectors are the SVm points lying on the support 
hyperplanes 1i b   w u ; in Figure 1(a) the support vectors are represented from the filled 
markers. It is seen that only the support vectors contribute to defining the optimal hyperplane, thus, 
the complete sampling set could be replaced by only the SVm support vectors, and the separating 
hyperplane would be the same.
Suppose now that the LSS is non-linear, so that it is not possible to identify an hyperplane which 
correctly classifies all the sampling points. To this aim, we relax the constraints of (4) by 
introducing the slack variables 0i  , giving rise to 1i ib    w u , ( ) 0i ig  u u and 

1i ib     w u , ( ) 0i ig  u u . The variables i give a measure of the departure from the 
condition of correct classification. In particular, when 0 1i  the point is well classified but falls 
inside the margin, while when 1i  the point is not well classified. Finally, if 0i  the point is 
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correctly classified, see Figure 1(b). Under this hypothesis, the optimal separating hyperplane has 
maximum margin with minimum classification error. The optimization problem (4) becomes
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Outline of the procedure

It will be used the following iterative procedure:
1 Probabilistic transformation toward the n-dimensional standard normal space, as it is usually 

done in reliability analysis;
2 Evaluation of the design point *u and of the corresponding reliability index *  u , together 

with the FORM approximation  ,f FORMP    , see Figure 2.

3 Choice of a set of sampling points ku , 1, 2,k  K along the design point direction * *u u . 

Classification of failure and safe points belonging to the direction through [ ( )]k kz sign g u ;
4 Building of a first LSVM model through (5), together with its margins;
5 Choice of a new point ku inside the margin and its classification;
6 Building of the SVM model through (5) and evaluation of the estimated failure probability. 

Since the LSVM is a linear response surface we have  ,f LSVM LSVMP    , LSVM being the 
distance of the LSVM from the origin of the standard normal space. 

7 If the convergence on fP is achieved stop, else go to step 5.

Figure 2. FORM and LSVM
1u
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LSVM

LSVM
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Example 1 – Static Analysis of a 2-dof frame

As a first example, we applied the proposed approach to a shear type frame with two-stories, 
subjected to two deterministic concentrated loads, 1 2F F F  with random stiffnesses 

1 1 1(1 )k k x  and 2 2 2(1 )k k x  , being 1F  , 1 2 1k k  and the fluctuations 1x , 2x modelled as 
two independent Gaussian random variables with zero mean and standard deviation 0.20 
(Figure 3a). Be 2 1 2( , )X x x the horizontal displacement of the second storey, and the considered 
limit state is 1 2 2 1 2 2,lim( , ) ( , )g x x X x x X  , with 2,lim 2.25X  . The failure probability is 

39.427 10fP   obtained using MCS, with an estimated coefficient of variation equal to 1%
fP  , 

and required 1,050,848 analyses. The corresponding generalized reliability index is 
 1 1 2.348G fP     . 

Figure 3. Example 1: (a) 2-dof shear-type frame, (b) LSS, FORM and LSVM

As shown in Figure 3(b), the LSS is nonlinear, and The FORM solution gives a failure probability 
3

, 11.593 10f FORMP   , with a relative error 22.97%FORMe  . The LSVM achieves the convergence 

after 328 samples, obtaining 2.344  and corresponding failure probability 3
, 9.471 10f LSVMP  

(relative error 0.46%LSVMe  ). In Figure 4(a) we represent the obtained failure probabilities in 
terms of the number of samples, while in Figure 4(b) the corresponding relative errors are shown.

Figure 4. Example 1: (a) Failure Probability, (b) Relative error, in terms of the number of samples

)a
2F

2

2
k 2

2
k

1

2
k

1

2
k

1F

-2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

5

u1

u 2

*u

FORM

LSVM

  0g u

)b

757



7

50 100 150 200 250 300 350 400 450 500

10
-4

10
-3

samples

Fa
ilu

re
 P

ro
ba

bi
lit

y

Pf

Pf,SVM

50 100 150 200 250 300 350 400 450 500
-20

-15

-10

-5

0

5

10

15

20

samples

E
rro

r (
%

)

eFORM

eSVM

Example 2 – Nonlinear random waves

Let ( )XXS  a wave spectrum partitioned into N components of equal interval  . The second-
order wave elevation is represented as (Longeut-Higgins 1963, Moarefzadeh & Melchers 2006) 

2 2 2

1 2
1 1 1

N N N

n n nm n m
n n m

u u u    
  

     (6)

where 1 2 2, , , Nu u uK are normal standard random variables, while 1 and 2 are the first and second 
order terms of the nonlinear sea elevation, 
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(7)

being  n nG    , with  G  the spectral density function of the sea elevation. As a case 
study, we considered the JONSWAP spectrum with a shape factor of unity

  5 4exp[ 1.25( ) ]pG a       , where 0.4p  rad/sec is the peak frequency, a is a scaling 
factor that is selected so that the area under the spectrum is 15 m2 (Low 2013). The spectrum is 
divided into 40N  harmonic components from 0.2 to 1.2 rad/sec. It is required to evaluate the 
probability that the wave elevation is greater than 15 m, that is P =Prob[ 15]f   ; the Limit State 

Function is    15G  u u , while the number of basic random variables is 2 80n N  . It is 
here noted that ( ) u is a quadratic function of the normal standard random variables, from which it 
follows the nonlinearity of the Limit State Surface.
The “exact” solution obtained with a MCS is 41.035 10fP   with a coefficient of variation 

5%
fP  and it required 3,863,373 samples. The FORM approximation is 4

, 1.15 10f FORMP  

with a relative error 11.11%FORMe  , while the LSVM, after 355 samples, gives
4

, 1.021 10f LSVMP   ( 1.28%LSVMe  ). In Figure 5 we represent the obtained failure probabilities 
and the corresponding relative errors in terms of the number of samples.

Figure 5. Example 2: (a) Failure Probability, (b) Relative error, in terms of the number of samples
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Conclusions

FORM is a powerful tool for Structural Reliability Analysis, and in most cases of practical interest 
it gives a good approximation of the failure probability. However, for limit state surfaces which 
depart significantly from linearity around the design point, the FORM solution may be inadequate. 
In this paper we presented a Linear response surface based on SVM, called LSVM, which starting 
from the design point direction, allows an improvement of FORM, requiring a reduced number of 
sampling points. Two simple numerical examples showed the accuracy and effectiveness of the 
presented procedure. 
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Abstract

 This paper proposes a novel device based on the Magnetorheological (MR) fluid which has the 
capability to change stiffness and damping under control. MR fluid is a type of smart material 
whose properties could be controlled by the external magnetic field. Most of MR devices are MR 
dampers, which normally are used as variable damping devices. The presented device consists of 
two hydro-cylinder-spring structures and one MR valve linking these two structures. The 
rheological characteristics of MR fluid in the fluid flow channels of MR valve are controlled by the 
strength of magnetic fields, which directly affect the link conditions. The equivalent stiffness and 
damping coefficients of the device thus varies with the rheological characteristics of MR fluid 
simultaneously. A mathematical model is established to describe the properties of the proposed 
device based on the Bouc-wen model. The mathematical model the simulation results indicate that 
the proposed device can control both the stiffness and damping which has potential to be applied for 
restrain vibration mitigation efficiently.

Keywords: Variable stiffness and damping, MR damper, effective stiffness and damping 

coefficients

Introduction

In the engineering circle or daily life, there exists a great deal of vibration and most of them are 
harmful which may result in financial loss or endanger lives. Numerous researchers from various 
fields investigate the methods to reducing and controlling the vibration. The traditional passive 
vibration control method [1] is widely used, but the effect of controlling vibration is not well at 
certain working conditions especially in the changing conditions. Because of the fixed stiffness and 
damping, the passive control devices normally are designed for a certain stable working condition.
This kind of vibration control methods can not adjust for the changing conditions, which may even 
induce the vibration worse at some conditions. The active vibration control methods are proposed 
for providing extra energy to mitigate the vibration. This method needs more power and the control 
strategies of the control system are complicated, the requirement of active vibration control methods 
limits their applications in practice. Semi-active vibration control method is a method which 
balance the advantages of the two methods mentioned above. By changing the parameters itself
with less energy to adjust the changing conditions, the semi-active control method achieve 
improved performances over a wide operating range and has long been receiving people's attention. 

The damper based on magnetorheological fluids (MRF) is a typical semi-active device. MR fluid is 
one kind of smart materials, which is similar to the electrorheological (ER) fluid. Because of many 
merits, such as quick response, easy control, low energy, changing reversely etc. , the MR damper
become one of the most potential vibration control device. The rheological properties of MRF is 
highly related to the external magnetic field induced by control current and  the parameters of MR 
damper can be easier changed by controlling the current[2].  Researchers do a lot of study on the 
theory and application of the MR device. In order to analyze the ER damping mechanism, Stanway 
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et al proposed a Bingham model [3]. Due to similar behavior [4], the Bingham model is also widely 
used to describe the MR damper. Spencer build a model containing a Bouc-Wen hysteretic operator
and this model can describe the characteristics of MRF very well, especially for the hysteretic
performance[5]. Xu proposed the temperature phenomenological model with mass element [6] and do 
some research on house anti-seismic capability by using MR damper. Laura M. Jansen studied 
various algorithms used to control multiple MR dampers and analyze the performance of the 
algorithms by making comparisons [7]. Lord Corporation did a lot of researches on development and 
application of MR damper and their products were used in the cable-stayed Dongting Lake Bridge
to reducing the rain-wind induced vibration. Seung-Bok Choi applied the MR damper to a full-car 
model and derived the governing equations of motions based on the skyhook controller[8]. The 
result of the experiment indicated that MR damper can improve the security and comfort. Beside, 
MR damper is widely used in the aerospace, military machine, electrical appliances, etc. The simple 
MR device is MR damper and MR damper only can change the damping. Deng developed a series 
of adaptive tuned vibration absorbers[9-11] based on MR elastomer(MRE) which has changeable and 
controllable stiffness. It will be better for restraining vibration if the damping and stiffness are both 
variable. W.H. Li proposed a MR bladder can change the damping and stiffness simultaneously [12].
The model is composed by two air springs and the two springs were connected by a MR valve. The 
equivalent stiffness of the device is controlled by MR valve. However, the device is very large and 
requires extra equipment to provide air pressure. Liu propose a model which may have variable 
stiffness and damping capability [13-14]. The model is consisted of two elements in series and every 
element contain a variable damping and a spring in parallel [15].  

The purpose of this paper is to present a novel vibration control device with controllable damping 
and stiffness. This device is based on the MRF and it is consisted of two MR dampers in series. A
model is build to describe the device and simulated by Simulink. In the model, Bouc-Wen model is 
used to describe the characteristics of the MR damper. The force versus displacement figures and 
force versus velocity figures are got through simulation and used to discuss the parameters on the 
capability of changing equivalent damping and stiffness. 

Model of the MR damper  

Fig.1 Bouc–Wen model

MR damper is based on the MRF and the characteristics of MR damper is complex. Bouc-Wen
model is one of the most widely used models to describe the characteristics of MR damper. As 
shown in Fig.1, the Bouc-Wen model is consisted by three part: a spring with constant stiffness, a 
damper related to the magnetic field and a Bouc-Wen winding [2] which can represent the hysteresis. 
The equation of Bouc-Wen  are as follows
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xmxcxkzfF  000  1

xAzxzzxz nn   |||||| 1  2

The characteristic curve of the MR damper is obtained through the Eq.(1) to Eq.(2)  shown in Fig.2. 
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(a)                                                                          (b)
Fig.2 Simulinked damping forces of the MR damper under a 1.00 Hz sinusoidal excitation 

with amplitude of 10.00 mm for three current levels: (a)the force versus displacement, (c) the 
force versus velocity

Fig.2.(a) shows the relation between force and displacement and x-axis and y-axis are the force and 
displacement respectively. The area of the loop showed in Fig.2.(a) represents work of the damper 
force which indicate the damping and the ratio of the curve reflect the stiffness. Fig.2.(b) shows the 
relation between force and displacement and x-axis and y-axis are the force and velocity 
respectively. The ratio of the curve reflects the damping. Through these two figures, the damping is 
increased with the increasing current and the stiffness neatly has no change.

Model of the novel variable stiffness and damping device

A model of the novel vibration control device is shown in Fig.3.(a) and the equivalent model is 
shown in Fig.3.(b). The model is composed of two MR dampers in series. The damping and 
hysteretic loop is changed with the variable current and the stiffness is fixed. The initial values of 
all the parameters is fixed when the MR damper is designed. The model of the device is equivalent 
to the model shown in Fig.3.(b). and Eq.(1) is expressed as Eq.(3):

xmxcxkzfF  0 (3)
The equivalent damping 'c  and the equivalent stiffness 'k are as followings [11]
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Eq.(1) and Eq.(2) show that 'k is related with the parameters 1k , 2k , 1c , 2c ,  . 1k , 2k are 
determined by the design of MR damper. 1c , 2c are determined by the magnetic induction intensity
generated by controllable current.  is determined by the input excitation. The stiffness and 
damping of the device can be controlled by controlling these parameters.  

(a)                                             (b)

Fig.3 The structure of the vibration control system 
(a)Original model and (b) Equivalent model

Discussion of the characteristics of the device

As shown in the above analysis, the equivalent damping and stiffness of the proposed structure has 
the relationship with the parameters. In order to analyze the influence induced by the changing 
parameters on the equivalent stiffness and damping of system. The force versus displacement 
diagrams are showed in the Fig.4 and Fig.6. The force versus velocity diagrams are showed in the 
Fig.5 and Fig.7. In each figure, there are six subplots and the stiffness ratio of two springs is 
different. In each subplot, there are three curves corresponding three different control currents: 0.5A, 
1A, 1.5A. Comparing the same curve in different subplots of one figure can be used to analysis
influence of the stiffness ratio between two springs. Comparing the different subplots in one figure
can be used to analysis influence of the changing of the ratio between two different springs to the 
change of the damping. Comparing the two figures can be used to analysis the influence of the 
different MR damper in the control current. In figures, the unit of k is

1mN and the unit of c 
is

1 msN .

Fig.4 shows the relation between force and displacement in six different stiffness ratios. In each 
subplot, the control currents of MR damper 1 are varied and the currents of MR damper 2 are fixed.
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In each subplot of Fig.4, the area of loop under the curve is varied with the change of current, but 
the changes of slope of the curves are inconspicuously. When the current achieved at 1.5 A, a strong 
nonlinearity behavior is encountered for k1 at 40000 N/m and 6000 N/m.  It can be conclude that the 
damping of system is varied with the increasing current and the stiffness of system neatly has no 
change.    
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Fig.4 damping forces versus displacement with varying current on MR damper 1 in different 
parameter: (a) k1=2500N/m, k2=2500N/m, (b) k1=20000N/m, k2=2500N/m, (c) k1=40000N/m, 

k2=2500N/m, (d) k1=60000N/m, k2=2500N/m, (e) k1=80000N/m, k2=2500N/m, (f) k1=100000N/m, 
k2=2500N/m 
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Fig.5 shows the relation between force and velocity in six different stiffness ratios and the 
parameters are in the same with Fig.4. In each subplot, the slope of curves are varied which also 
indicate that the damping is varied with the increasing current.

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

1
x 10

4

Velocity/(m/s)

Fo
rc

e/
(N

)

(a)

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

1
x 10

4

Velocity/(m/s)

Fo
rc

e/
(N

)

(b)

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

1
x 10

4

Velocity/(m/s)

Fo
rc

e/
(N

)

(c)

-0.1 -0.05 0 0.05 0.1
-2

-1

0

1

2
x 10

4

Velocity/(m/s)

Fo
rc

e/
(N

)

(d)

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

1
x 10

5

Velocity/(m/s)

Fo
rc

e/
(N

)

(e)

-0.1 -0.05 0 0.05 0.1
-2

-1

0

1

2
x 10

4

Velocity/(m/s)

Fo
rc

e/
(N

)

(f)

I=0.5A

I=1A
I=1.5A

I=0.5A

I=1A

I=1.5A

I=0.5A

I=1A
I=1.5A

I=0.5A

I=1A

I=1.5A

I=0.5A

I=1A

I=1.5A

I=0.5A

I=1A

I=1.5A

Fig.5 Simulinked damping forces versus velocity with varying current on MR damper1 in 
different parameter: (a) k1=2500N/m, k2=2500N/m, (b) k1=20000N/m, k2=2500N/m, (c) 

k1=40000N/m, k2=2500N/m, (d) k1=60000N/m, k2=2500N/m, (e) k1=80000N/m, k2=2500N/m, (d) 
k1=100000N/m, k2=2500N/m 

Fig.6 shows in the same with Fig.4, the difference is that the control currents of MR damper1 is 
fixed and the current of MR damper2 is varied. The area of loop under the curve is varied with the 
increasing current which indicate that the damping is varied and the change of slope of the curves is 
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inconspicuously which indicated that the stiffness neatly have no change. The area of loop under the 
curve and the slope of the curves both are varied which indicated that the stiffness and damping 
both change dramatically with the increasing current. The stiffness changing capability is largely 
influenced by the parameters especially for the ratio of two spring elements. At last, the stiffness 
will maintain a constant with increasing current when the current is larger than a limited value. 
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Fig.6 damping forces versus displacement with varying current on MR damper2 in different 
parameter: (a) k1=2500N/m, k2=2500N/m, (b) k1=20000N/m, k2=2500N/m, (c) k1=40000N/m, 

k2=2500N/m, (d) k1=60000N/m, k2=2500N/m, (e) k1=80000N/m, k2=2500N/m, (f) k1=100000N/m, 
k2=2500N/m 

Fig.7 shows in the same with Fig.5, the difference is that the control currents of MR damper1 is 
fixed and the current of MR damper2 is varied. Comparing among the subplots of Fig.5, it clearly 
shows that the area of loop changed with the increasing current which indicate that the damping is 
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varied. Comparing the four figures, the MR damper2 has more influence on the change of the 
stiffness and damping of the system and these two equivalent damping and stiffness will be 
increased with the increase of the stiffness ratio of two spring elements.  

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

1
x 10

4

Velocity/(m/s)

Fo
rc

e/
(N

)

(a)

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

1
x 10

4

Velocity/(m/s)
Fo

rc
e/

(N
)

(b)

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

1
x 10

4

Velocity/(m/s)

Fo
rc

e/
(N

)

(c)

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

1
x 10

4

Velocity/(m/s)

Fo
rc

e/
(N

)
(d)

-0.1 -0.05 0 0.05 0.1
-2

-1

0

1

2
x 10

4

Velocity/(m/s)

Fo
rc

e/
(N

)

(e)

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

1
x 10

4

Velocity/(m/s)

Fo
rc

e/
(N

)

(f)

I=0.5A

I=1A

I=1.5A

I=0.5A

I=1A

I=1.5A

I=0.5A

I=1A
I=1.5A

I=0.5A

I=1A

I=1.5A

I=0.5A

I=1A

I=1.5A

I=0.5A

I=1A

I=1.5A

Fig.7 damping forces versus velocity with varying current on MR damper2 in different 
parameter: (a) k1=2500N/m, k2=2500N/m, (b) k1=20000N/m, k2=2500N/m, (c) k1=40000N/m, 

k2=2500N/m, (d) k1=60000N/m, k2=2500N/m, (e) k1=80000N/m, k2=2500N/m,  
(f) k1=100000N/m, k2=2500N/m 
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Conclusion 
In this paper, a novel vibration device with variable stiffness and damping is proposed on the basis 
of MR fluids. A Bouc-Wen model is used to describe the characteristics of MR device. An 
equivalent model is built to analyze the equivalent damping and stiffness of the system. Through 
analyzing the characteristics of MR damper, it is clear that simply MR damper has no capability of 
changing stiffness. Comparing the original model with the equivalent model, it will be found that 
the stiffness and damping of the system is related with stiffness and damping of MR damper
constituting the device. The results of simulation show that the stiffness and damping of the device 
both are varied with the variable current simultaneously at certain parameters.  
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Abstract
With the rapid development of industrial cameras, binocular stereo vision is widely used in the field 
of manufacturing. Using two or more image points of one point in space to restore space depth 
information is called stereo vision, which process is three-dimensional reconstruction. Nowadays 
binocular vision which applied for vibration test is widely used .While binocular stereo vision is 
normally used in static test and has been rarely reported for the dynamical measurement. So it is 
important to establish this dynamic error model and analyze error sources to improve measurement 
accuracy. In this paper, an error analysis of binocular vision for dynamical test is presented. For this 
measurement system of binocular vision, errors of results are generated by the deviation between
the calculated world coordinate values and the actual world coordinate values. On the assumption
that the calibration result is correct, an error model of dynamic measurement is established in the 
article which the deviation of Z coordinate value between the ideal point and the reconstructed point 
is mainly studied. This deviation is so-called reconstruction error. In this model, two cameras are 
non-synchronized. And the effects of motion parameters, such as amplitude, frequency, phase when 
double cameras take photos of one point respectively with simple harmonic motion or sinusoidal 
movements are analyzed. The proposed model is close to the actual situation and can be used to set 
up cameras and control cameras’ non-synchronized time to improve measurement accuracy when 
performing dynamic measurement.

Keywords: Binocular vision, Error model, Dynamic measurement, 3D reconstruction. 

Introduction

In the field of measurement, vibration test is widely studied. Now two common methods can be 
used to achieve vibration test. One can be achieved indirectly by sensors and the other method is to 
use a laser. The former requires the sheet sensor to attach on the target point, so the structure of this 
method is complicated with lower precision; although the latter method is simple, it can’t be applied 
to long distance test and the intensity is susceptible to be affected by external environment. These 
two methods are single-point measurement method. Currently, visual technology is developing 
rapidly. And vibration test that achieved by the use of visual measurement technology has been 
proposed. Especially binocular vision technology is widely used. This emerging measurement
method is a full field type which has various advantages, such as experimental convenience, high 
precision, quick access to large amounts of information, automatic processing [1].  

According to what are mentioned above, understanding and learning binocular vision technology 
has great significance. The basic model of binocular vision is pinhole model, which theoretically 
requires at least two photos to be realized 3D information of one scene point. This process is called 
3D reconstruction [2]. Theory of binocular vision in practical application has a high practical value, 
for example, in the industrial field binocular vision technology can be used to identify and 
positioning some parts of the shape of quite different shape and colors and make them separated; in 
the field of public security, binocular vision can be used to reproduce the scene of the accident 
scene and determine responsibility [3-4]. In view of that, binocular vision has gradually improved and 
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affects our lives. In order to improve the measurement accuracy, the establishment and analysis of 
3D reconstruction error model based on binocular vision is very important. And error models based 
on binocular vision are involved in many papers. H.J.Yu analyzed the relationship between 
structural parameters of binocular vision and measurement results. Theoretically, the relationship 
between coordinate measurement precision and angle of two cameras’ optical axis or the baseline 
distance are analyzed [5]. In order to improve the measurement precision for visual measure system,
research on the influence of stereovision structure based on binocular vision is presented by 
A.X.Guo. A structure parameter model of binocular visual measure system is investigated with the 
trigonometric method [6]. Q.j.Li once proposed a measurement system of parallel-axes binocular 
stereoscopic. The Monte-Carlo method was used in simulating and analyzing the errors which 
caused by the calibrated parameters [7]. L.F.Cai analyzed image recognition errors' influence on the 
measurement accuracy of the visual system. And the relationship between structural parameters of 
visual system and measurement errors is introduced [8]. S.F performed left-right consistency checks 
and compared matching error between the corresponding pixels in binocular disparity calculation, 
and classified the stereoscopic images into non-corresponding, binocular fusion, and binocular 
suppression regions [9]. Gal’Pem derived some basic relations analytically for the determination of 
the degree of distortion and the connection between coordinates of object and image for 
stereoscopic vision are derived. The degree of distortion is calculated and its effect on stereo-vision 
is discussed [10]. Derek Bradley proposed an error correction algorithm which can solve the 
mismatch problem of multi-cameras’ polar constraint. And this error correction method error 
algorithm is more effective in reducing camera calibration errors in the same scene than error 
algorithm of reprojection [11].

In the previous paragraph, error models mostly belong to model of static measurement. This static
theory has been quite mature because the measurement error in this stationary case is easier to 
control. While error theory of dynamic test based on binocular vision is very rare. Because this 
dynamic measurement should consider not only the factors that must be considered in static 
measurement, such as calibration error, matching error, pixel positioning error of camera’s CCD, 
etc, but also asynchronous error and the movement of  moving objects. X.L.Zhang built a system of 
binocular vision measurement which the two optic axes are parallel. That was adopted to measure 
the attitude of measured missile which is moving [12]. This model of binocular vision is not realistic
and does not take into account the motion form of measured object that has effect on the 
measurement results. The motion parameters such as amplitude, frequency and phase will have a 
certain impact on measurement accuracy. Today achieving vibration test by binocular vision is an 
irresistible trend which belongs to the category of dynamic test. Therefore, the establishment of
error model based on binocular vision in dynamic measurement and reconstructed error analysis on 
various cameras’ parameters and motion parameters of measured object is the key. 

In this paper, a dynamic measurement model base on binocular vision which relatively closes to the 
reality is mainly established. The double cameras has a certain distance between front and rear, left 
and right, up and down and there is a tiny angle between cameras’ optical axes. This article focuses 
on the analysis on the deviation of 3D coordinate values that caused by these two non-synchronized 
cameras between original point and reconstructed point under the premise there is no calibration 
error. First, the deviation is calculated when a spatial point does uniform motion respectively on 
each axis based on that established model. Second, assuming that the measured point respectively 
does simple harmonic motion on each axis or propagates forward as a form of a sine wave on a 
plane,  the error equals to precious deviation which affected by motion parameters is discussed.  
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One Dynamic Error Model Based on Binocular Vision

For actual measurement, one system of binocular visual is not a standard system, for example, two 
cameras has a certain distance between front and rear, left and right, up and down, and two optical 
axles of cameras are not necessarily parallel . Theoretically parameters of camera system will affect 
the measurement accuracy such as focal length, the baseline distance of two cameras, the angle 
between the two optical axles of cameras and so on. In order to close to the actual situation and 
consider these parameters, a model based on binocular vision as shown below is built.

Figure1. A model of 3D reconstruction based on binocular vision

The system parameters are reflected in fig1 and 1C , 2C are the optical centers of the two cameras.
The right optical axis revolved around Z-axis which has an extremely angle between the two 
optical axles. This system puts the coordinate system of the left camera as the world coordinate 
system. Spatial point P has two projection points on the two cameras, respectively 1p ( 1x , 1y ) and 

2p ( 2x , 2y ). And some formulas can be obtained by the principle of similar triangle. 
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Then coordinate values of point P ( cX , cY , cZ ) can be obtained according to (1) (2)
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The above formulas are obtained in the static case which reflects the 3D information of one spatial 
point by the use of binocular vision. While theory of dynamic testing based on binocular vision is 
not yet ripe. So the following dynamic system in fig.2 based on binocular vision is established 
which the double cameras are non-synchronized in order to analyze the deviation of the 3D 
coordinate values between actual reconstructed point ''P and original point P .

Figure2. Schematic of 3D reconstruction in dynamic measurement

The schematic of dynamic test is shown in figure2.The left camera exposures earlier than the right 
one and point P moves to point 'P when the right camera starts to take pictures. Point 'P also has 
the two projection points in imaging planes, respectively '

1p ( '
1x , '

1y ), '
2p ( '

2x , '
2y ). In the actual 

process of reconstruction, projection point 1p and '
2p are used to restore 3D coordinate information. 

Here assuming that the point P does uniform linear motion respectively along X-axis, Y-axis, Z-
axis and corresponding displacement are X , Y , Z .And the deviation between P and ''P will be 
calculated in the latter. 

1) When Point P  does uniform motion along X-axis, reconstructed 3D coordinate values are 

f
Zx

X c
c

''
1'' 

f
Zy

Y c
c

''
1'' 

772



APCOM & ISCM  
11-14th December, 2013, Singapore 

c

ccc

ccc
c Z

ZsbhYXhZ
ZsbYhhXX

yxyxyx
sbfhyx

Z
)()1())(1(
)()1()1)((

)()()(
)()(

'
2

'
21111

'
2

'
2''














       (4)

c

ccc

c
ccc Z

ZsbhYXhZ
XhZ

ZZZ
)()1())(1(

))(1(''








                                          (5)

2) Similarly when Point P does uniform motion along Y-axis, reconstructed 3D coordinate values
are 
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3) When Point P  does uniform motion along Z-axis, reconstructed 3D coordinate values are 
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4) Assuming that point P moves to 'P ( XX c  , YYc  , ZZc  ) when the right camera
starts to take pictures, the actual reconstructed 3D coordinate values are obtained as follows. 
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Error Analysis of Dynamic Measurement

For this dynamic testing model based on binocular vision in fig.2, point P can moves with 
different ways, such as harmonic motion, sinusoidal motion etc. The motion parameters, such as 
amplitude, frequency and phase, of point P which has effect on 3D coordinate values will be 
analyzed when point P respectively does these two motions. 

A Error Analysis of Z Coordinate of Point P with Harmonic Motion 
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In the following, point P  does harmonic motion on each axis. Fig.3 reflects characteristics of 
harmonic motion which )2sin(   ftAPt  .The area of shaded portion represents the 
distance S that point P  has traveled during the unsynchronized time t of the two cameras. 

Figure3. Characteristics of harmonic motion

dt
dt
dx
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= dtftAf
t
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)2cos(2                                                                                    (12) 

1) When point P  does harmonic motion on X-axis, the distance X which point P has traveled on 
X-axis is equal to S . Put S into the above equation (5), then the error of Z coordinate between 
origin point P and reconstructed point ''P in this occasion can be got. In order to discuss the 
measurement error here, supposing that 5 , cX =12 mm , cY =10 mm , 

cZ =10 mm , mmb 50 , mmhs 10 , st 00  , ust 5 . Look at figure 4(a), if 

given Hzf 50
6
  , the relationship between error and amplitude can be obtained. And the 

greater amplitude, the greater error; if given mmA 10
6
  , the relationship in figure 4(b)

between error and frequency can be obtained. And the higher frequency, the greater error; if 
given mmA 10 , Hzf 50 , the relationship in figure 4(c) between error and phase can be 
obtained, the relationship curve is a cycle cure with a period of  . According to this picture, phase 
has little effect on the error.

2) When point P  does harmonic motion on Y-axis, the distance Y which point P has traveled on
Y-axis also equals to S .If S was put into the above equation (7), the error of Z coordinate can 
also be obtained. Error analysis of Z coordinate is similar to the upper part. Here given the same 
parameter values like the upper part, respectively relation formulas between error and amplitude or 
frequency or phase can be obtained. The following cures reflect the relationships between the error
which caused by Y-axis and these three parameters.

3) When point P  does harmonic motion on Z-axis, the distance Z that point P has traveled on Z-
axis also equals to S .If S was put into the above equation (9), the error of Z coordinate can be 
obtained. The process of error analysis is the same as the previous two cases. And the relationships
between error and various parameters are shown below in figure4. 
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Figure4.The relationships between motion parameters and errors of Z coordinate of point 
P with harmonic motion on each axis (a) Relationship between error and amplitude. (b) 
Relationship between error and frequency. (c) Relationship between error and phase.

Figure4 (a), (b), (c) respectively reflects the relationships between error of Z coordinate and 
amplitude, frequency or phase when point P does harmonic motion on the each axis. Error increases
with the larger amplitude or greater frequency. And when frequency varies in the range of 
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KHz4030  , the error stays in a flat stage. At last, the relation curves between error and phase 
are cycle curves with a period of which reflect phase has little effect on the error.

B Error Analysis of Z Coordinate of Point P with Sinusoidal Motion 

Here the second motion of point P which point P propagates forward as a sine wave 
on XOY plane will be discussed. The characteristics of sinusoidal motion are reflected below in 
fig.5 .And this wave equation is formula (13). Assuming velocity  is one constant and equals
to smm /104.3 4 , then displacements including X and Y respectively on the horizontal 
direction and the vertical direction can be calculated when the point P moves to 'P during the 
time t in this case.

Figure5. Characteristics of sinusoidal motion 
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Here 5 , cX =12 mm , cY =10 mm , cZ =10 mm , mmb 50 , mmhs 10 , st 00  and
substituting X , Y , 0Z into equation(11), then the relationship between error and
amplitude, phase, wavelength or frequency can be obtained. Figs of the results will be given. 
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Figure6. The relationships between motion parameters and error of Z coordinate of point 

P with sinusoidal motion on XOY plane. (a) Relationship between error and amplitude. (b). 
Relationship between error and frequency. (c) Relationship between error and phase.

Figure 4 (a) is the curve which reflects the relationship between frequency and error of Z 
coordinate. When the frequency of this sine wave is a constant which KHzf 1 , the relationships 
between the amplitude and error of Z coordinate are analyzed when to take special value of the non-
synchronization time t in the range of 0-1/4 T, 1/4 T -2/4T, 2/4T- 3/4T and 3/4T-4/4T. From the 
four curves in fig.4 (a), this error increases with the increasing amplitude. And every error curve
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does not pass through the origin point, because the error will be produced which results in a lateral 
displacement on X-axis because of velocity, through amplitude is zero. Comparing these four 
curves in figure 4(a), the greater the asynchronous time t , the larger the error of Z coordinate.
Figure 4 (b) reflects the relationship between this error and frequency. When velocity is certain and 
a value of frequency is determined, then the wavelength can be obtained. In this case, the error 
increases as the frequency increases. This error curve involved with frequency does not pass 
through the origin point either due to the vibration on longitudinal direction which produces the 
displacement on Y direction. The diagram (c) is a cycle curve with a period of  and this error
influence on the phase can not be neglected. 

Conclusions

In this paper, a dynamic error model based on binocular vision is mainly established .This model is 
not a standard system. Specific camera settings are reflected in the above fig1. The deviation of Z-
coordinate between the origin point P and the reconstructed point is analyzed when two cameras 
are not synchronized and the spatial point P respectively does uniform motion, harmonic motion on 
each axis or sinusoidal motion on a plane. When point P  does uniform motion on each axis, this
deviation can be calculated. When point P  does harmonic motion on each axis, that deviation of 
results that affected by the motion parameters are analyzed. Error equals to that deviation increases
with the greater amplitude or larger frequency. The relationship between phase and error is a cycle 
curve which has litter effect on accuracy. When point P  propagates forward as a form of sine wave
on XOY plane which velocity is a constant, firstly the greater frequency, then the smaller 
wavelength and greater error; secondly obviously error increases with the increasing amplitude; 
thirdly the curve involved with phase and error is also a periodic curve and the effect caused by 
phase can not be neglected. Thus, for the dynamic measurement systems, not only the structure of 
binocular vision system, but also the movement pattern and parameters of one target point will have 
impact on measurement accuracy. This proposed model can be helpful to set up cameras and can 
reduce measurement error caused by asynchronous cameras when it comes to dynamic vibration 
test based on binocular vision. 
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Abstract

An edge-based smoothed finite element method (ES-FEM) using 3-node triangular element was 
recently proposed to improve the accuracy and convergence rate of the standard finite element 
method (FEM) for 2D elastic solid mechanics problems. In this research, ES-FEM is extended to 
the large-deformation plasticity analysis, and a selective edge-based / node-based smoothed finite 
element (selective ES/NS-FEM) method using 3-node triangular element is adopted to address the 
volumetric locking problem. Validity of ES-FEM for large-deformation plasticity problem is proved 
by benchmarks, and numerical examples demonstrate that, the proposed ES-FEM and selective 
ES/NS-FEM method possess (1) superior accuracy and convergence properties for strain energy 
solutions comparing to the standard FEM using 3-node triangular element (FEM-T3), (2) better 
computational efficiency than FEM-T3 and similar computational efficiency as FEM using 4-node 
quadrilateral element and 6-node quadratic triangular element, (3) a selective ES/NS-FEM method 
can successfully simulating severe element distortion problem, and address volumetric locking 
problem in large-deformation plasticity analysis.
Keywords: Large-deformation plasticity, Finite element method (FEM), Edge-based smoothed 
finite element method (ES-FEM), Volumetric locking, Gradient smoothing. 

Introduction

Numerical simulation of finite-deformed material has attracted numerous research efforts. The finite 
element method (FEM) has been developed during last decades to deal with material and geometric 
nonlinear problem. Usually, lower order elements, especially 3-node linear triangular element (T3) 
for 2-D problem and 4-node linear tetrahedron element (T4) for 3-D problem, are attractive in 
practical engineering problems because of their intrinsic simplicity, easy preprocessing, and lower 
requirement on solution regularity. However, the use of T3 or T4 element is highly limited in the 
large deformation plasticity analysis, because of disadvantages such as convergence problem, 
element distortion and volumetric locking. Therefore, developing techniques to optimize the linear 
triangular element is a significant job, and lower order elements with superior accuracy and 
convergence properties are powerful tools for the simulations of contact-impact, crack 
propagations, material fracturing progressing, large scale multi-physics etc.

In order to overcome the limitations of FEM, various technologies have been proposed. The strain 
smoothing technique was used for stabilizing the nodal integrated meshfree method (Chen JS, Wu 
CT et al. 2001) and then applied in the natural element method (Yoo JW, Moran B et al. 2004). Liu 
et al. has generalized a gradient (strain) smoothing technique (Liu GR 2008) and applied it in 
general meshfree settings to accommodate discontinuous shape functions (Liu GR 2009). Applying 
the same technique to the finite element method, an edge-based smoothed finite element method 
(ES-FEM)(Liu GR, Nguyen-Thoi T et al. 2009) has been formulated based on the gradient (strain) 
smoothing technique for static, free and forced vibration analyses in 2D plane strain and plane stress 
problems. The system stiffness matrix of this method is computed using the gradient smoothing 
technique over the smoothing domains associated with the edges of the element, which endows its 
superior convergence properties, computational accuracy and efficiency, spatial and temporal 
stability. 
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In this paper, the edge-based smoothed finite element (ES-FEM) is extended to be applied for large 
strain plasticity analysis, and a selective ES/NS-FEM approach is used to address the volumetric 
locking problem. Compared to standard FEM, this smoothed technique could be able to use fewer 
elements to get more precise and stable results, and better convergence property; these properties 
can decrease the computational cost significantly.

2. Edge-based smoothed finite element method for finite strain plasticity

2.1 Basic ES-FEM theory and formulation 

In ES-FEM, the domain discretization is still based on T3 element in standard FEM, but the 
integration required in the virtual principle is performed based on the smoothing domains associated 
with the edges instead of on the triangular element in standard FEM. In this method, the closed 

problem domain   is divided into sN  smoothing domains with 1
s

sN
k k  U  and 0s s

i j  

when i j , where sN  is the number of smoothing domains equal to the total number of element 
edges located in the entire problem domain. For triangular elements, the smoothing domain s

k
associated with the element edge k can be created by connecting two endpoints of the edge to 
centroids of adjacent elements as shown in Fig.1. 

Fig.1 Triangular elements and the smoothing domains (shaded areas) associated with edges in ES-FEM(Liu GR, 
Nguyen-Thoi T et al. 2009) 

In edge-based smoothing domains, the smoothed gradient of displacement field iu can be obtained 
by

( ) ( )
s
k

i i ku u d


     x x (1) 

where ( )iu x  is the gradient of the displacement field iu , and  is defined as a smoothed gradient 

operator. s
k  is the smoothing domain associated with the edge k. ( )k x  is a given smoothing 

function that satisfies at least unity property
( ) 1

s
k

k d


   x (2) 

In ES-FEM, a simple local constant smoothing function can be used in the calculation (Liu GR, 
Nguyen-Thoi T et al. 2009) 

1/ ,
( )

0,

s s
k k

k s
k

A x
x

 
  


x (3) 
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where s
kA  is the area of the smoothing domain s

k , and is calculated by

1

1
3

sd

s
k

n
s e
k i

i

A d A


    (4) 

where sdn  is the number of elements around the edge k and s
kA is the area of the thj element around 

the edge k. Fig.1 shows that 1sdn  when edge k is a boundary edge,  and 2sdn   when edge k is an
inside edge. 
Using divergence theorem on Eq. (1), it can be obtained that 

1 ( )
s
k

i is
k

u u d
A 

   x n (5) 

where n is the outward normal vector of the smoothing domain boundary s
k .

In the ES-FEM-T3, the displacement field is interpolated by the linear FEM shape function, and can 
be written in the following form

L

i I Ii
I G

u N u


  (6) 

where IN  is the shape function of node I at reference configuration, Iiu is the displacement 
component of node I. LG is the set of the so-called supporting nodes of the smoothing domain s

k .
Therefore, the smoothed gradient of displacement filed can be formulated by substituting Eq. (6)
into (5)

1 1
s s
k k

L L L

i I Ii I Ii Ii Iis s
I G I G I Gk k

u N u d N d u b u
A A 

  

   
        

  
   n n (7) 

where Iib is the smoothed derivatives of shape function as 
1

s
k

Ii I is
k

b N n d
A 

  (8) 

Naturally, the smoothed strain  in the domain ( )k associated with edge k can now be obtained 
using Iib

0
0
Ix

Iy I I I

Iy Ix

b
b

b b

 
   
  

u B u (9) 

2.2 Formulating the large deformation plasticity model  

In continuum mechanics,  the deformation gradient has the form of 
  F u I (10)

where u is the displacement field tensor,   is the gradient operator, and I is the identity matrix. 
The smoothed deformation gradient associated with edge k based on the smoothed domain can be 
defined as:

( ) ( ) ( )( ) ( )

1 1( ) ( ) ( )
k k kk k kX X d X d d

A A  
         F F F u I (11) 

Applying divergence theorem to Eq. (11) in the current configuration yields
1

s
k

s
k

d
A 

     F u n I e I (12) 

782



4

where e represents the smoothed gradient field of displacement, i.e. iu  given in Eq. (5). n is the 
outward normal vector. Also, the smoothed rate of deformation tensor could be calculated as  

1L FF& (13)
The smoothed deformation rate and smoothed continuum spin can be additively decomposed as 

e p D D D (14) 
e p e  W W W W (15) 

The smoothed Jaumann stress rate could be obtained by

( ) 2e etr 


 T D I D (16) 

where   and  are conventional Lame elastic constants. The 2J associated flow theory has the 
form of

p F 


D
T

& (17) 

where & is the plasticity multiplier. The consistent tangent matrix can be solved by (Zienkiewicz 
OC and Taylor RL 2000)  

0
2 3 22 1

3
ep T T

tr tr
iH

     


             
        

C mm I nn
T T

(18) 

The meaning of parameters mentioned in Eq. (18) can be found in reference  (Zienkiewicz OC and 
Taylor RL 2000). 

2.3 A smoothing-domain-based selective ES/NS-FEM model for the volume locking problem 

In large plasticity deformation problem, the elastic strain could be negligible compared to the 
plastic strain which does not change the volume of material. Therefore, incompressible deformation 
may occur in plane strain, axisymmetric, or three dimension problem, and this could probably result 
in volumetric locking phenomenon in FEM analysis. Traditional ( /u p ) mixed formulations could 
solve the problem, with increasing of computational cost. Reduced integration is the most common 
method used in commercial FEM software, however, the developer should be careful about the zero 
energy modes and it may yield inaccurate result.

Based on these considerations, a combined ES/NS-FEM approach was proposed (Liu GR, Nguyen-
Thoi T et al. 2009), which was mainly used to solve the volumetric locking problem when Poisson's 
ratio approaches to 0.5. In this paper, this method will be extended to the incompressible large 
deformation plasticity analysis to overcome volumetric locking. For plasticity deformation, the 
consistent tangent matrix epC  in Eq. (18) can be decomposed into two portions - i.e. volumetric and 
deviatoric parts respectively, as

ep ep ep
vol dev C C C (19) 

where ep
volC is related to the material volume change, and ep

devC is corresponding to shape change.
These two matrix can be obtained by

0
2 3 22 1

3

ep T
vol

ep T
dev tr tr

i

K

H
    





            
        

C mm

C I nn
T T

(20) 

In large deformation plasticity, ep
volC is significant in FEM simulation. However, it contributes little 

for the displacement results, because the volume change only occurs in elasticity deformation; this 
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may result in volume locking. Since node-based smoothing domain used in NS-FEM is effective in 
overcoming volumetric locking (Liu GR, Nguyen-Thoi T et al. 2009), it is proper to use NS-FEM to 
calculate the volumetric portion of the stiffness matrix, and ES-FEM to calculate the deviatoric 
portion of the stiffness matrix. This approach is so-called selective ES/NS-FEM.

3. Numerical examples 

3.1 Plane strain beam bending 

A 0.02m0.2m beam is fixed on the left side and subjected to a constant downward velocity on the 
bottom point of the right side as shown in Fig.2. A total displacement of 0.05m is performed in this 
problem. The material properties are given as: Young's modulus E=120MPa, Poisson's ratio  =0.3, 
yield stress Y =1MPa. Isotropic hardening with the plasticity modulus iH =1MPa, and plane strain 
condition is assumed. 

Fig.2 The beam bending problem

Four different methods are used in this case for comparison, i.e. FEM-T3, FEM-Q4, FEM-T6 and 
ES-FEM. 200 time steps are used in all solutions. Reference solutions are calculated using Abaqus 
with very fine meshes.

The elastic strain energies are calculated using FEM-T3, FEM-Q4, FEM-T6 and ES-FEM 
respectively, with different mesh densities and time steps. And the comparison of strain energy 
convergence with the number of degrees of freedom (DOFs) is plotted in Fig.3. It shows that for the 
same number of DOFs, the ES-FEM can get result much closer to the reference solution than FEM-
T3, i.e. ES-FEM-T3 is much more accurate than FEM-T3. Furthermore, with the increasing of 
number of DOFs, ES-FEM converges to the reference result much faster than FEM-T3. The FEM-
T3 is hardly to converge because it is very stiff. Moreover, ES-FEM-T3 can get similar accurate 
result compared with FEM using 4-node quadrilateral element and 6-node quadratic triangular 
element; this is a big advantage for the ES-FEM-T3 technique. 

Fig.3 Convergence of the elastic strain energy versus the number of degrees of freedom

Fig.4 compares the computational cost and efficiency of the four different methods for different 
mesh densities. The CPU time shown in the figure represents the average computational cost for 
one iteration; this include the time of assembling stiffness matrix and solving linear equations, and 
it can be calculated by
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total

ite

t
t

N
 (21) 

where totalt is the total CPU time and iteN  is the number of iterations. Fig.4(a) shows that with the 
same mesh density, the computational cost of ES-FEM is larger than FEM-T3 and similar as FEM-
Q4 and FEM-T6. However, when the computational efficiency (computation time for the same 
accuracy) is considered, ES-FEM is much more effective than FEM-T3, and could get similar 
computational efficiency compared to FEM-Q4 and FEM-T6.

(a)                                                                                       (b)
Fig.4 Comparison of the computational cost and efficiency of three different methods

(a) Computational cost; (b) Computational efficiency
The deformation configurations with effective plastic strain contours for ES-FEM and FEM-Q4 
(Abaqus) are plotted in Fig.5, and similar contour profiles are obtained. Fig.5 illustrates that ES-
FEM is a valid and effective method in large deformation plasticity analysis. 

(a)                                                            (b) 
Fig.5 Effecitve plastic strain contour using 2222 DOFs (a) FEM-Q4 (Abaqus) and (b) ES-FEM

3.2 Downward forging of a billet 

A billet is subjected to a constant downward velocity on the top surface as shown in Fig.6(a). The 
material properties are given as: Young's modulus E=200GPa, Poisson's ratio  =0.49, yield stress 

Y =500MPa. Isotropic hardening with the plasticity modulus iH =1000MPa and plane strain 
condition is assumed. 

(a)                                                        (b) 
Fig.6 (a) Compression forging of a billet (b) A quarter symmetrical model for the forging of billet
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A quarter symmetrical model and boundary conditions imposed are shown in Fig.6(b). The dies 
were modeled as being rigid, and no sliding is assumed between the billet and die during contact.
Because the material is nearly incompressible ( 0.49v  ) and the deformation is very large, the 
volumetric locking must be considered. Hence the selective ES/NS-FEM technique is used in this 
simulation. The problem domain is discretized by ES-FEM-T3, ES/NS-FEM-T3, Q4 and T6 
elements, as illustrated in Tab.1. 

Tab. 1 Mesh discretization schemes for different methods
Number of elements Number of nodes

ES-FEM-T3/ES/NS-FEM-T3 332 192
Q4 150 176
T6 332 715

The solution of FEM-Q4 is given by Abaqus using   method, and FEM-T6 is solved using 
modified formulation provided in Abaqus (Abaqus 2009). At the end of this simulation, ES/NS-
FEM and FEM-Q4 are capable to achieve 50% compression, i.e. the displacement of lower edge 

u =0.0015m. However, FEM-T6 can only achieve 42% compression, i.e. the displacement of 
lower edge u =0.00126m before the element distorted. ES-FEM-T3 cannot get an accurate result 
because of volumetric locking. The contours of effective plastic strain for different schemes are 
plotted in Fig.7.  

(a)                                     (b)
Fig.7 Solution of forging of billet: deformation configurations u =1.5mm (50% Compression) solved by (a) Selective 

ES/NS-FEM-T3, (b) FEM-Q4

Fig.8 plotted the displacement of point C in x direction by different schemes. It illustrates that the 
result calculated by ES/NS-FEM-T3 using linear 3-node triangular element agrees very well with 
FEM-Q4 and FEM-T6, and could bear larger element distortion than FEM-T6. ES-FEM-T3 cannot 
get a correct result because of volumetric locking, and no locking problem is observed in ES/NS-
FEM-T3 approach.  

Fig.8 Displacement solutions of forging of billet at point C
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4. Conclusion 

In order to utilize 3-node linear triangular element for analyzing large strain plasticity problem, an 
edge-based gradient smoothing technique has been formulated in large deformation plasticity theory. 
A selective ES/NS-FEM method is also adopted to solve the volumetric locking problem. In this 
method, the deviatoric portion of tangent modulus is calculated by edge-based smoothed gradient 
method, and the volumetric portion is solved by node-based smoothed gradient method. Two
numerical examples are simulated to show the validity and advantages of ES-FEM compared to
standard FEM method. Conclusions could be drawn as follows: 

(1) With the same displacement control, the ES-FEM-T3 can get lower strain energy than the 
standard FEM with T3 element. This indicates that ES-FEM-T3 is softer than FEM-T3. This 
property can perfectly alleviate the “over-stiff behavior” of the linear triangular element, and 
greatly improve the performance of linear triangular element. 

(2) The edge-based smoothing gradient technique can get much more accurate results and faster 
convergence rate than standard FEM with T3 element. Furthermore, the convergence rate and 
computing efficiency of ES-FEM using just 3-node element is similar as the standard FEM 
using 4-node quadrilateral element and 6-node quadratic triangular element.

(3) Even though only linear triangular element is used, ES/NS-FEM possesses strong capability of 
handling element distortion. It can sustain larger plastic distortion than FEM-T6 in large strain 
plasticity analysis.

(4) No volumetric locking is observed when ES/NS-FEM technique is adopted.
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Abstract
In this paper, a hybrid of Local Domain Free Discretization and Immersed Boundary Method 
(termed as LDFD-IBM), is applied to simulate the incompressible flow over four circular cylinders 
in an in-line square configuration.  LDFD-IBM belongs to the family of "Cartesian mesh methods",
which means the complication of mesh generation is avoided for the problems with complex 
geometries. A Stencil Adaptive Mesh Refinement (SAMR) is also adopted to improve the 
computational efficiency. Instantaneous flow patterns and other quantitative information from the 
numerical simulation agree well with the available data from literatures.

Keywords: Flow over cylinders, Cartesian mesh method, LDFD-IBM, Local Domain-Free 
Discretization, Immersed Boundary Method, Stencil Adaptive Mesh Refinement

Introduction

Cross-flow of fluid around a group of cylinders has practical importance in engineering 
applications, such as offshore oil and gas pipelines. From the viewpoint of traditional numerical 
method (such as Finite Difference Method, FDM) in Computational Fluid Dynamics (CFD), the 
mesh generation in the flow domain for this kind of problem is obviously not a trivial task.

To solve this kind of problems involving with complex geometries, non-conforming mesh methods 
seem to be a good choice. Local Domain-Free Discretization (LDFD) (Shu and Wu, 2006) and 
Immersed Boundary Method (IBM) (Peskin,1977) are among of them. 

LDFD is inspired from the analytical method. Consider a partial differential equation (PDE) on an 
irregular domain. The PDE is discretized at all mesh points inside the solution domain (referred 
here as to interior points), but the spatial discretization at an interior mesh point may involve some 
points outside the solution domain (referred here as to exterior points). The functional values at 
those exterior points can be approximated using the values at the interior points nearby by a local 
extrapolation scheme. However, it is found that the extrapolation in LDFD can cause errors and 
bring in numerical instabilities.

The basic idea of IBM is that the enforcement of the boundary to the surrounding fluids is through a 
body force appeared in the governing equation. The major advantage of IBM is its simplicity and 
easy implementation in dealing with flows with complex geometries. However, it should be 
indicated that the conventional IBM suffers two major drawbacks: one is to allow for the
penetration of fluid flows into the immersed bodies; the other is the low order accuracy of 
presenting the immersed boundary.

Recently, Wu et al (2012) proposed LDFD-IBM, which is a delicate combination of LDFD method 
and IBM, and enjoys the merits of both methods. For example, the penetration of streamlines into 
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solid objects in the conventional IBM, due to inaccurate satisfaction of no-slip boundary conditions, 
can be avoided by using the LDFD method. On the other hand, the treatment of boundary condition 
for pressure at the solid boundary in the LDFD method, is no longer necessary after introducing 
IBM.

In general, LDFD-IBM can be applied to any kind of mesh configuration. When the LDFD-IBM is 
applied on the Cartesian mesh, it can also be considered as a kind of Cartesian mesh solver. It is 
well known that solving these flow problems on a uniform Cartesian mesh usually needs very 
expensive computation. Therefore, from the viewpoint of computational efficiency, adaptive mesh 
refinement (AMR) is a desirable technique for Cartesian mesh solvers. In this paper, the recently 
proposed stencil mesh refinement (Ding and Shu, 2006) technique is introduced into LDFD-IBM.

Solution of Incompressible N-S Equations by LDFD-IBM

In this work, LDFD-IBM is used to simulate incompressible N-S equations. The governing 
equations are solved at all the mesh nodes (referred as the Eulerian points in conventional IBM) in
the computational domain, regardless they are inside the solid bodies or inside the fluid field. The 
velocity boundary conditions are accurately enforced at the intersection points of the mesh lines and 
the boundary (referred as the Lagrangian points in the conventional IBM). The functional values at 
the intersection points are used to determine the solution at the interior dependent points via an 
interpolation scheme with second- or higher order of accuracy.

Figure 1 Classification of points in LDFD-IBM

For the application of LDFD-IBM to problems with complex geometry, let us consider a solid 
boundary immersed in a fixed Cartesian mesh as shown in Fig. 1. The mesh points take one of the 
following three statuses: 

1) interior dependent points (the mesh nodes which are inside the fluid domain just adjacent to 
the immersed boundary, represented by symbol “ ” in Figure 1);

2) exterior dependent points (the mesh nodes which are inside the solid domain just adjacent to 
the immersed boundary, represented by symbol “ ” in Figure 1);

3) all other mesh nodes (represented by symbol “ ” in Figure 1).
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Obviously, A1 and A2 are interior dependent points. In present LDFD-IBM method, the functional 
values at interior dependent points are approximated by interpolation. For example, the velocity at 
A1 can be evaluated by a second order polynomial along the x direction, which involves three 
points P, B1, C1 as shown in Fig. 1. Here, B1 and C1 are the interior mesh points, and point P is the 
intersection point of the horizontal mesh line with the immersed boundary (represented by symbol 
“ ” ) , where the velocity of immersed boundary is assigned. Point E is the exterior dependent node. 
In the original LDFD method, the functional values at exterior dependent points are obtained by 
extrapolation. However, in this work, since E is inside the solid body (outside flow domain), its 
velocity is simply assigned to the wall velocity

Clearly, the present approach combines the advantages of conventional IBM and LDFD method in 
the sense that: 
(1) Since the pressure on all the Eulerian nodes is obtained by solving the pressure Poisson equation, 

the treatment of Neumann boundary condition at the Lagrangian points for pressure is no longer 
needed;

(2) There is no need to calculate the restoration force F on the Lagrangian points, and thus no need 
to distribute the restoring force F to the Eulerian nodes. The boundary effect is considered by 
updating the velocity at interior and exterior dependent points. Velocity boundary conditions are 
enforced accurately; As a consequence, the flow penetration is avoided.

(3) An interpolation scheme rather than extrapolation scheme is adopted to obtain the approximate 
solution at the dependent points, which makes the computation more stable.

Application of LDFD-IBM to Simulate Flow over Four Circular Cylinders
Flow past cylinder arrays can be found in many engineering applications, such as offshore 
structures, heat exchangers. The complexity of flow separation and free shear layer interference 
generated by the cylinder arrays have been studied by many researchers (Farrant et al, 2000; Lam et 
al, 2010). Flows over four equally spaced cylinders of equal diameter are computed by LDFD-IBM 
in this section. The configuration is shown in Figure 2, in which G is denoted as the minimum 
distance between the centers of 4 cylinders.

1) Two-dimensional study
The computation was performed at Re=200, based on one cylinder diameter and the spacing of 
cylinders G/D=3.0.

The computational domain is taken as 50D 40D. Uniform Cartesian mesh of 201×161 is taken as 
the initial mesh. 8 levels of mesh refinement by stencil mesh refinement technique (Ding and Shu, 
2006) are performed around the cylinders, and the final mesh contains 97121 nodes. 

Figure 3 shows the instantaneous vorticity contours. According to Farrant et al (2000), the vortices 
formed in between the cylinders are weaker than those on the outside. This is confirmed by our 
results as shown in Figure 3.

Figure 4 shows the lift and drag coefficients history. From Fig. 4, it is found that the flow patterns 
around all cylinders are periodic with same frequencies, which suggests that the shedding is 
synchronized. It has been found that the present results have a good agreement with those of Farrant 
et al (2000).
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four equi-spaced cylinders

Figure 3. Instantaneous vorticity contours for 
2D flow at Re=200 and G/D=3.0
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Figure 4 Drag and lift coefficients CD and CL: the curves correspond to cylinders #1 to #4,

2) Three-dimensional study
The LDFD-IBM can be easily extended to three-dimensional simulation of flows with curved 
geometry. The numerical discretization and the treatment of boundary condition are very similar to 
the two-dimensional case, except that one additional coordinate Z needs to be considered. 

The computations were performed at Re=200, based on one cylinder diameter and the spacing of 
cylinders G/D=3.5, H/D=12. The two end wall is taken as the boundary condition along z direction.
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The computational domain is a rectangular box with 32D×20D×11D in x, y, z directions, 
respectively. The mesh strategy in 3D is to use the two-dimensional stencil AMR technique to 
refine the mesh in the X-Y plane, and use a uniform mesh in the Z-direction. The initial mesh on the 
x-y plane is 161×101, after refined around cylinder by 8 levels, final mesh on the x-y plane has 
46791 nodes. There are 41 nodes uniformly distributed along the z direction.

(a) z/H=0.0625 (b) z/H=0.25 (c) z/H=0.5

Figure 5 Instantaneous vorticity contours for 3D flow at Re=200 and G/D=3.5, H/D=12.

z at three different spanwise 
positions (z/H=0.0625 (near end wall), z/H=0.25,z/H=0.5 (mid-span of the cylinders)) for G/D=3.5 
with cylinder length H=12D. In general, due to the end wall effect, with additional stronger 
streamwise vorticity and transverse vorticity generated along the spanwise direction of the 
cylinders, the 3-D vortex structure distributions are complex. It is found that the change of flow 
pattern at different spanwise positions of the cylinders is successfully captured by LDFD-IBM. 

Conclusions
LDFD-IBM is the combination of LDFD and Immersed Boundary method (IBM), as well as their 
merits. In this paper, LDFD-IBM is applied to predict the 2D and 3D cross-flow over four 
cylinders in an in-line square configuration. Numerical results show that LDFD-IBM is a promising 
method to simulate flow problems with complex geometries accurately and easily.
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Abstract
This paper describes computational method with finite element method in fixed mesh for flexible 
solid-fluid interaction problems. Finite element method in fixed mesh can treat large deformation
without mesh failure and contact between different materials. This paper describes governing 
equation in strong form with mixture theory and capturing method of free-moving material
interfaces. In addition, after verification of the above computational method in simple example, we
apply the proposed procedure to practical solid-fluid interaction behavior such as functional design
of component. 

Keywords: Solid-Fluid Interaction, Fixed Mesh, Functional Design

Introduction
Recent years, high performance computing is developed dramatically. Various simulations can be 
performed by the high performance computing. A dynamics phenomenon has few phenomena to 
occur by the motion of single solid and fluid. There is more solid-fluid interaction phenomenon.  
Therefore, not only solid analysis and fluid analysis, but also solid-fluid interaction analysis is 
essential. Various studies have been performed about solid-fluid interaction analysis. The present 
approach establishes one governing equation for both solid and fluid models using mixture theory 
assuming incompressibility in the full Eulerian framework. Hyperelasticity for solid and Newtonian 
fluid are employed in the constitutive equations. A discretization of the proposed formulation for 
solid-fluid interaction dynamics is based on an explicit finite element method. The explicit finite 
element method reduces computational cost, except that the finite different method instead of the 
finite element method is used to solve Poisson and advective equations.  
In this study, we focus on solid-fluid interaction analysis for automotive rubber bush. In the 
analyses, the strain velocity affects the stiffness. It is one of a characteristic of rubber bush so-called 
the velocity dependence. Our final goal is to simulate the rubber bush considering the mechanical 
characteristic.

Mixture government equations
The present formulation treats interaction problem of shaft, 
rubber and viscous fluid for the rubber bush analysis. Fig. 1
is a representative volume with solid and fluid. In the 
Eulerian formulation, the one computational mesh contains 
different plural materials.  In this section, we formulate the 
Eulerian mixture governing equations using volume fraction
(Drew and Passman 1998).  

Figure 1.  Representative volume with solid and fluid
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For the following discussion, the subscripts 1, 2 and f indicate quantities of solid1, solid2 and fluid
respectively. The equations of motion for three materials are as follows,
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Where is density, is velocity and is Cauchy stress. We assume that body force is identical for 
volume. The equations of continuity for incompressibility are as follow,

0 1     (4) 

0 2     (5) 

0 f     (6) 

We make the equation of motion and continuity volume average. The mixture equation of motion 
and continuity are as follow, 
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The index mix is meant mixture, and mixture physical quantity is satisfied with follow equation.

332211  mix     (9) 

332211  mix     (10) 

332211  mix     (11) 

is volume rate function of materials. Total of volume rate function are always 1 shown in the 
following. 

1321       (12) 

By solving the mixture equation, it is possible to be analyzed a unified way without solving to 
discriminate equations for each material.

Computational flow 
The mixture stress mix in Eq. (7) is divided into deviatoric stress and pressure.  Where is the 
second order unit tensor. 

mixmix p 1     (13) 

The mixture deviatoric stress is evaluated with respective volume fractions.  On the other hand, 
the mixture pressure can be calculated with SMAC method.  The following subsections review
computational flow.  For details, see references (Okazawa, Terasawa, Kurumatani, Terada and 
Kashiyama, 2010; Okazawa, Kashiyama and  Kaneko, 2007; Benson and Okazawa, 2004). 

i
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Intermediate velocity
We discretize spatially the mixture governing Eq. (7) by finite element method without advection 
term (Chorin, 1980). The present study employs 8-node isoparametric element for 3-dimensional 
analysis.  For numerical integration, we use selective reduced integration to avoid volumetric
locking.  The explicit method with the central difference method is used to advance time.  The 
discretized equation is as follows 

 intextt   1     (14) 

is mass matrix, is velocity vector at current time and * is intermediate velocity vector. int is 
internal force and ext is external force. We adopt the lumped mass matrix. is time increment. 

Pressure and Modification of Velocity 
After calculating pressure with conventional SMAC method, the intermediate velocity is modified 
(A. Amsden and F. Harlow, 2007). The corrective pressure is calculated in center of all 
computational mesh.  By using the corrective pressure, we modify velocity to satisfy Eq. (8).

Advective calculation and interface capturing 
Because the above calculation for the intermediate velocity excludes advective term, we advect the 
physical quantities with the 1st order upwind difference method.  The advected quantities are 
velocity and left Cauchy-Green deformation tensor.  Also regarding accurate mass advection, we 
employ PLIC (Piecewise Linear Interface Calculation) method (D.L. Youngs, 1982; Rider, and 
Kothe 1998). The PLIC method linear approximate to the interface of the mesh from the volume rate 
as Fig. 2. We calculate a volume flux using the interfacial information like Fig. 3. By using the PLIC 
method, it is possible to capture of free-moving material interfaces.

Figure 2. Material interface in PLIC method       Figure 3.  Volume flux with PLIC method

Numerical simulation 
We apply the described Eulerian formulation using mixture theory to rubber bush analysis. Fig. 4,
Fig. 5 is computational models. We treat three materials, shaft, rubber and viscous fluid. As for 
computational model 2, the duct of fluid is narrow. Therefore, the influence of fluid becomes strong. 
We give a frequency 200Hz~400Hz and a displacement ±5mm to the shaft. The shaft is rigid body. 
We calculate the internal force of x-direction component of the rubber and fluid part.  
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Figure 4.  Computational model 1                         Figure 5.  Computational model 2

t=0.0 (model1)                                                             

t=0.0 (model1)                                                            t=0.0 (model2)

t=0.025 (model1)                                                        t=0.025 (model2)

t=0.05 (model1)                                                          t=0.025 (model2)

t=0.075 (model1)                                                        t=0.075 (model2)

Figure 6. Velocity line of each model
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                                  Table 1. Material Parameters  

                                                                                Shaft       Rubber      Fluid 

Young’s Modulus (MPa)      300          300              - 

Poisson Ration (-)                  0.5           0.5              - 

Density (10-6 kg/mm3)           5.0           1.0             0.5  

Viscosity (10-3 Pa s)             -               -              7.7

Fig.6 shows velocity line. We confirm that velocity line changes with solid movement. We compare 
the result of analysis computational model 1 and computational model 2. In computational model 2, 
the duct of fluid is narrow. Flow velocity of computational model 2 is faster than computational 
model 1. Therefore, it is thought that the influence of fluid is strong with computational model 2. 

Computational model 1                                         Computational model 2

Figure 7. Internal force of rubber and viscous fluid

Fig.7 shows the internal force of rubber and viscous fluid. We confirm that the gradient of graph is 
increasing both computational model 1 and computational model 2. In addition, the path of graph is 
different in the forward and return. The graph of computational model 2 is the large oval.  Therefore, 
we think that viscous fluid is affects the path of graph.  
Next, we perform a parameter identification of stiffness coefficient ‘K’ and damping coefficient ‘C’ 
using a least squares method. The equations of approximation are as follows,

CvKxF      (15) 

Where x is displacement of the shaft and v is applied velocity.  

Figure 8. Stiffness coefficient ’K’                  Figure 9. Damping coefficient ’C’
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We confirm that the stiffness coefficient ’K’ has increased by the vibration frequency. The 
computational model 2 indicates a large value. The stiffness coefficient ‘K’ depends on the gradient 
of graph of Fig.7. Fig.9 shows the damping coefficient ‘C’. The computational model 2 indicates a 
larger value than the computational model 1. The computational model 2 is strongly influenced by 
the viscous fluid. Therefore, we consider the damping coefficient ‘C’ is larger in the computational 
model 2. As a result, the stiffness coefficient is dependent on the gradient of graph of Fig.7. The 
damping coefficient is dependent on the area of graph of Fig.7. 

Conclusions

The present paper have described the mixture Eulerian formulation and the vibration simulation of 
the automotive rubber bush. We performed a parameter identification of stiffness coefficient ‘K’ 
and damping coefficient ‘C’ using a least squares method. The future study, we improve the 
computational model. We apply the digital data such as voxel data to the computational model. 
Therefore, it is possible to simulate the rubber bush analysis with high accuracy.  
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Table 1. Simulation conditions of the short 
screw feeder
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Figure 1.  Schematic diagram of short 
screw feeder
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Figure 2. Repose angle and porosity as a 
function of sample moisture

Figure 3. Relationships between and 
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Figure 4. Relationship between and 
Figure 5. Repose Angle as a function of 

moisture and adhesion force

Figure 6. Feed rate constant as a function of 
the moisture and the adhesion force
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Abstract 
In this study, a triple-scale elastic-viscoplastic analysis method for plain-woven laminates is newly 
developed based on a homogenization theory for time-dependent composites. For this, triple-scale 
modeling of plain-woven laminates is performed by considering a plain-woven laminate as a 
macrostructure, plain fabrics and a matrix in the laminate as a mesostructure, and fibers and a 
matrix in the plain fabrics as a microstructure. Then, the boundary value problems for macro/meso 
and meso/micro scales are derived based on the homogenization theory for time-dependent 
composites, and the relationship between these problems are discussed. Using the relationship, a 
triple-scale elastic-viscoplastic analysis method for plain-woven laminates and its computational 
procedure are developed. It is shown that the present method is successful in taking into account the 
effects of elastoviscoplasticity of an epoxy matrix in plain fabrics on the elastic-viscoplastic 
behavior of plain-woven GFRP laminates. 

Keywords: Plain-woven laminate, Triple-scale analysis, Homogenization, Viscoplasticity  

Introduction 

Plain-woven laminates made of plain fabrics and polymer materials are now regarded as some of 
the most important engineering materials, because of their high specific strength, high specific 
stiffness and good formability. Thus, they are used in major industrial fields such as aerospace, 
transportation and energy-related industries. It is therefore of great importance to clarify their 
mechanical properties.  
The mathematical homogenization theory (Sanchez-Palencia, 1980) is one of the most useful 
theories for inelastic analysis such as damage analysis and elastic-viscoplastic analysis of plain-
woven laminates. Thus, some researchers have already applied this theory to such analysis, and 
shown its usefulness. Takano et al. (1995) conducted a microscopic damage analysis of plain-
woven glass fiber-reinforced plastic (GFRP) laminates. The authors (Matsuda et al., 2007; Matsuda 
et al., 2011) have performed the elastic-viscoplastic analysis of plain-woven GFRP laminates using 

Figure 1. Triple-scale model of plain-woven laminates 

Macro-Scale Meso-Scale Micro-Scale 

Fiber 

Semi unit cell B Basic cell A  

Matrix 
Yarn 

1x  2x  
3x  

Matrix Plain-woven laminate 

1y  

2y  

3y  
Ay 
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the homogenization theory for nonlinear time-dependent composites (Wu and Ohno, 1991; Ohno et 
al., 2000). However, these studies regarded fiber bundles (yarns) in plain-woven laminates as 
homogeneous elastic materials, neglecting their microstructures consisting of fibers and matrix 
materials. In reality, yarns should exhibit not only elastic but also viscoplastic behavior due to the 
viscoplasticity of matrix materials. Therefore, to perform more advanced analysis of plain-woven 
laminates, it is necessary to develop a novel analysis method that is able to consider microstructures 
in yarns. 
In this study, a triple-scale analysis method for plain-woven laminates which can consider 
viscoplasticity in yarns is newly developed based on the homogenization theory for time-dependent 
composites (Wu and Ohno, 1991; Ohno et al., 2000). First, plain-woven laminates are modeled in 
three scales as illustrated in Figure 1.  Then, the homogenization theory for time-dependent 
composites is dually applied to the macro/meso and meso/micro problems, deriving an elastic-
viscoplastic constitutive equation of the plain-woven laminates incorporating the microscopic 
information in yarns. Using the present theory, the elastic-viscoplastic analysis of plain-woven glass 
fiber/epoxy laminates is performed. Moreover, the results of analysis are compared with 
experimental data (Matsuda et al., 2007) to validate the analysis method. 
 

Triple-Scale modeling of plain-woven laminates 

Let us consider a plain-woven laminate  with microscopic periodic structure subjected to a 
macroscopic uniform load as illustrated in Figure 1. Then, a basic cell A  consisting of yarns and a 
matrix is defined as a smallest unit in the meso-scale. Cartesian coordinates ( 1,2,3)ix i  are 
provided for the meso-scale. Next, in the micro-scale, a semiunit cell B  consisting of a fiber and a 
matrix is defined as a smallest unit for the yarn region yA  in the basic cell A . Cartesian coordinates 

( 1,2,3)iy i  are provided for the micro-scale. It is noted that the superscripts 0, 1 and 2 
respectively indicate macro, meso and micro variables hereafter. 
 

Micro/meso problem 

Microscopic stress rate and strain rate fields in the semiunit cell B  are denoted as 2 ( , )ij ty( , )ij y  and 
2 ( , )ij ty( , )ij y , respectively, where t  represents time and ( ) )  indicates differentiation with respect to t . 
Then, denoting partial differentiation with respect to iy  as ,( )

iy , the equilibrium of microscopic 
stress is expressed as 

 2
, 0

jij y 0
jij y, . (1) 

The microscopic constitutive equation of each constituent in yarns is defined as 

 2 2 2 2( )ij ijkl kl klc 2 )kl kl
2

kl
2

ij ijkl
2 (ij ijkl (ic (kl (c , (2) 

where 2
ijklc  and 2

kl  respectively represent the elastic stiffness and viscoplastic strain rate of fibers 
and a matrix, i.e.  

 
2

2

 or  
   ( : fiber,  : matrix)

 or 

f m
ijkl ijkl ijkl

f m
kl kl kl

c c c
f m . (3) 

The microscopic velocity field 2 ,iu ty,iu t,i y  in B  has the following expression: 

 2 1 2 #, , ,i ij j iu t F t y u ty x y1 2 #
i ij j i t2 # ,u 11
i

1 u2 #
it, F1

ij jij j,F t yij j,,, , (4) 
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where 1 ,ijF tx,ijF t,ij x  denotes the mesoscopic deformation gradient, and 2 # ,iu ty# ,iu t# ,i y  denotes the 
microscopic perturbed velocity.  
Now, let 2 ,i tyv  be an arbitrary variation of 2 #

iu#
iu  defined in B  at t . Then, integration by parts and 

the divergence theorem allow Eq. (1) to be transformed to 

 2 2 2 2
, 0

j
B

ij i y ij j i BB
dB n dv v2 2 0

B
ij j i Bd2 2
ij j idin d2 2 d2

jij i y, j

2
ij i y dB nij j ijnni y dB , (5) 

where  denotes the boundary of B , and jn  indicates the unit vector outward normal to . In 
the above equation, the second term of the left-hand side, i.e. the boundary integral term, vanishes 
by considering the Y -periodicity and point-symmetry (Ohno et al., 2001) of 2

ij

g
ij  and 2

iv  on B . 
Consequently, the second term of left-hand side in Eq. (5) vanishes, resulting in 

 2 2
, 0

jij i yB
dBv2

jij i y, dBvi . (6) 

By substituting Eq. (2) into Eq. (6), the following boundary value problems are derived:  

 2 2 2 2 2
, ,q j

kl
ijpq p y i y ijklB B

c dB c dB
ji,y

v v , (7) 

 2 2 2 2 2 2
, ,q jijpq p y i y ijkl klB B

c dB c dB
ji,y

v v , (8) 

where 2 kl
i  and 2

i  are characteristic functions obtained by solving the boundary value problems 
Eqs. (7) and (8). Then, the evolution equation of microscopic stress rate 2

ijij  is expressed as 

 2 2 2 1 2 2 2
, ,q l

kl
ij ijkl pk ql p y kl ijkl kl k yc cklkl

22
kl

2cijkliijkliijklciijij
222cijklijklijklcijklc , (9) 

where ij  indicates Kronecker’s delta. Then, the relation between mesoscopic stress rate and strain 
rate is derived as follow: 

 
1 1 1 1

2 2 1 2 2 2
, ,

( )

     
j l

ij ijkl kl kl

kl
ijkl ik jl i y kl ijkl kl k y

BB

c

c c

1 )kl kl
1

kl
1 1

ij ijkl
1 (1

ij ijkl (c (kl (c

kl ijklkl
222

ijklckl

, (10) 

where 
B

 designates the volume average in B  defined as 1# #
B B

B dB , in which B  
signifies the volume of B . 
 

Meso/macro problem 

Mesoscopic stress rate and strain rate fields in the basic cell A  are denoted as 1 ( , )ij tx( , )ij  and 
1 ( , )ij tx( , )ij , respectively. Then, denoting partial differentiation with respect to ix  as ,( )

ix , the 
equilibrium of mesoscopic stress is expressed as 

 1
, 0

jij x 0
jij x, j

. (11) 

The mesoscopic constitutive equation of each constituent in the plain-woven laminate is defined as 

 1 1 1 1 1 1 1 1( )ij ijkl kl kl ijkl kl ijkl klc c c1 1 1 1 1
kl kl ijkl kl ijkl kl

1 1 1 1)11
kl kl ijkl kl ijkl) c c) ijkl kl iijkl k) cc) kl kl)1 1

ij ijkl
1 (1

ij ijkl (ijkl (c (c (kl ( , (12) 

where 1
ijklc  and 1

kl  respectively represent the elastic stiffness and viscoplastic strain rate of yarns 
and a matrix in the plain-woven laminate, i.e. 

 
1

1

 or 
 ( : yarn,  : matrix) 

 or  

y m
ijkl ijkl ijkl

y m
kl kl kl

c c c
y m . (13) 
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Here, comparing Eq. (10) with Eq. (12), the following relationships can be obtained: 

 1 2 2
, j

y kl
ijkl ijkl ijkl ik jl i y

B
c c c , (14) 

 1 1 2 2 2
, l

y y
ijkl kl ijkl kl ijkl kl k y

B
c c c . (15) 

The mesoscopic velocity field 1 ,iu tx,iu t,i x  in A  has the following expression: 

 1 0 1 #, ,i ij j iu t F t x u tx x0 1 # ,i ij j i, t1 # ,u 00
i

0 u1 #
i,t, F0

ij j
111F t xij j , (16) 

where 0
ijF tijF tij  denotes the macroscopic deformation gradient, and 1 # ,iu tx# ,iu t# ,i x  denotes the mesoscopic 

perturbed velocity, respectively. 
Now, let 1 ,i txv  be an arbitrary variation of 1 #

iu#
iu  defined in A  at t . Then, considering Y -

periodicity and point-symmetry (Ohno et al., 2001) of 1
ijij  and 1

iv  on the boundary of basic cell A , 
A , the following equation is derived in the same manner as in the preceding section: 

 1 1
, 0

jij i xA
dAv1

jij i x, j
dAvi . (17) 

By substituting Eq. (12) into Eq. (17), the following boundary value problems are derived: 

 1 1 1 1 1
, ,q j

kl
ijpq p x i x ijklA A

c dA c dA
ji,x

v v , (18) 

 1 1 1 1 1 1
, ,q jijpq p x i x ijkl klA A

c dA c dA
ji,x

v v , (19) 

where 1 kl
i  and 1

i  are characteristic functions obtained by solving the boundary value problems 
Eqs. (18) and (19). Then, the evolution equation of mesoscopic stress rate 1

ijij  is expressed as 

 1 1 1 0 1 1 1
, ,q l

kl
ij ijkl pk ql p x kl ijkl kl k xc cklkl

11
kl

1c1
ijkliijkliijklciijij

111cijklijklijklcijklc . (20) 

Then, the relation between macroscopic stress rate and strain rate is derived as follows: 

 
0 0 0 0

1 1 0 1 1 1
, ,
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ij ijkl kl kl
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111
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, (21) 

where A  designates the volume average in A  defined as 1# #
A A

A dA , in which A  
signifies the volume of A .  
Using the Eqs. (20) and (21) accompanied by Eqs. (14) and (15), the elastic-viscoplastic behavior of 
plain-woven laminates can be analyzed through the triple scales. 
 

Analysis conditions 

In the present analysis, elastic-viscoplastic behavior of a plain-woven glass fiber/epoxy composite 
laminate manufactured by Nitto Shinko Corporation (10 plain fabrics stacked) was analyzed using 
the theory developed. A basic cell A  was defined as shown in Figure 2 in accordance with the 
microscope observation (Matsuda et al., 2007) of the plain-woven GFRP laminate, and was divided 
into eight-node isoparametric elements (1624 elements, 1995 nodes). On the other hand, a semiunit 
cell B  of yarns was defined as depicted in Figure 3, and was divided into four-node isoparametric 
elements assuming the generalized plain strain condition (81 elements, 97 nodes).  For B , the fiber 
volume fraction was set to be 75% (Matsuda et al., 2007).  
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The plain-woven laminate was subjected to macroscopic uniaxial tension at a constant strain rate 
0 5 110  [s ]

p
510  [555  at room temperature. The loading directions were 0 ,15 , 30  and 45 -directions 

rotated from the 3x -direction in the 1 3x x  plane. 
The material constants of fibers and an epoxy matrix are listed in Table 1. The glass fibers were 
regarded as isotropic elastic materials. The epoxy matrix, on the other hands, was regarded as an 
isotropic elastic-viscoplastic material which obeyed the following constitutive equation: 

 0
1 3

2

n

eq ijpm m
ij ij kk ij p

m m eq

s

E E g
1 3 ij

ij

s

E
1 m

ij
m eqm

ppg2E 0
3
2

p
ij kk ijEij

3 pm
ij kk ijij kk

m
ij kk ijij kk , (22) 

where mE , m , n  signify the material constants, pg  stands for a hardening function depending 
on equivalent viscoplastic strain p , 0

p
0
p  indicates reference strain rate, ijs  denotes the deviatoric 

part of ij , and 1/ 2[(3/ 2) ]eq ij ijs s . Incidentally, no failure was assumed to occur in the glass fibers 
and an epoxy. 
 

Results of analysis 

Figure 4 shows the macroscopic stress-strain relations of the plain-woven GFRP laminate subjected 
to the uniaxial tension in the 0 ,15 ,30  and 45 -directions. As seen from the experimental data, 

Figure 2. Basic cell A  of the plain-woven laminate in meso-scale and finite element mesh: 
(a) full view and (b) yarns in basic cell 

Figure 3. Semiunit cell B of the yeans in micro-scale and finite element mesh 
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Glass fiber                 80.0 0.30
5.0 0.35 1.0 10

Epoxy            
25 ( ) 105.0( ) 24.5

GPa(stress),mm/mm(strain),s(time)

f f

p
m m

p p

E

E

n g
0 1.0 10
p 1.00

Table 1. Material constants
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the macroscopic stress-strain relations markedly vary depending on the loading direction. Thus, it 
can be said that the plain-woven GFRP laminate has remarkable elastic-viscoplastic anisotropy.  
Comparing such experimental data with the results of the present analysis indicated by the lines in 
Figure 4, it is found that the present method is successful in predicting the macroscopic behavior of 
the plain-woven GFRP laminate. 
Figures 5-8 show the distributions of mesoscopic equivalent plastic strain in the basic cell A . As 
seen from Figure 5, very small plastic strain is observed in the yarns with the on-axis loading. In 
contrast, high plastic strain can be found with the off-axis loading as shown in Figures 6-8. It is 
emphasized that such plastic strain in yarns was not able to be considered in the previous studies. 
Finally, Figure 9 shows the microscopic equivalent plastic strain distribution at the points ( i ) and 
( ii ) in the yarn when 45 . As seen from the figure, considerably large plastic strain occurs at 
the interface of the fiber and epoxy matrix in the semiunit cell B . This also cannot be dealt with in 
the previous studies. 
 

Conclusions 

In the present study, a triple-scale analysis method for plain-woven laminates was developed based 
on the homogenization theory for nonlinear time-dependent composites. Then, the elastic-
viscoplastic behavior of a plain-woven glass fiber/epoxy laminate was analyzed using the present 
method. Moreover, the analysis results were compared with experimental data. The stress-strain 
curves in the macro-scale showed remarkable anisotropy, and the analysis results were in good 
agreement with the experimental data. From the equivalent plastic strain distribution in the meso-
scale, considerable plastic strain was observed in yarns when the plain-woven GFRP laminate was 
subjected to off-axis tensile loading. It was also observed that, in the micro-scale, large equivalent 
plastic strain was accumulated at the epoxy matrix in yarns. It should be noted that these results 
cannot be obtained using the previous methods which completely neglected the viscoplasticity of 
yarns. 
 

 Experimental  
 Analysis  

Figure 4. Macroscopic stress-strain relations 
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Figure 8. Mesoscopic equivalent plastic strain distribution ( 45 ): (a) full view and (b) yarns 

Figure 9. Microscopic equivalent plastic strain distribution at ( i ) and ( ii )  

(a) (b) 
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Figure 7. Mesoscopic equivalent plastic strain distribution ( 30 ): (a) full view and (b) yarns 

Figure 5. Mesoscopic equivalent plastic strain distribution ( o0 ): (a) full view and (b) yarns 

Figure 6. Mesoscopic equivalent plastic strain distribution ( 15 ): (a) full view and (b) yarns 
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Abstract
Particle behavior in a pan-type pelletizer was simulated by Discrete Element Method (DEM). In 

order to represent the effect of added water to adhesive force, liquid bridge model was also included 
in the simulation. In this study, to investigate detailed behavior of various sizes of particles in pan-
type pelletizer, agglomerated particles in five reprehensive particle sizes were simulated by DEM. 
Velocity and trajectory of several size of particles were compared with experimental results 
obtained from image processing using high speed camera and their results were consistent each 
other. In particular, simulation results showed that large particles tend to be located in bottom side 
of pan and upper side of particles layer, which coincided with the trend obtained from the 
experiment.

Keywords: DEM, Agglomeration, Liquid Bridge, Pan Type Pelletizer.

Introduction
A pan type pelletizer or a drum type mixer has been generally used for agglomeration of particle

mixture by adding binding liquid, because this agglomeration process is productive and low cost.
The formation of particle agglomeration is due to adhesion forces between particles, which are 
attributed to several kinds of inter-particle forces such as Van der Waals' force, electrostatic force or 
liquid bridge force.  

It is well-known that even a small amount of liquid has a significant effect on particulate flow. 
The adhesion force due to liquid bridges between particles is one of those factors which have long 
been attracting attention in the field of powder technology. Theories of the liquid bridge between 
two particles have been developed by several researchers [Fisher, 1926; Lian, Thornton and Adams 
1993]. However, since the agglomeration process is very complicated, agglomeration phenomenon
has not been revealed fully. Additionally, effective methods to observe particle flows in a pan type 
pelletizer have not been established. In order to control this agglomeration process properly in a pan 
type pelletizer, it is necessary and important to understand the motion of particle flows in a pan
more particularly and directly. 

Computer simulation is one of the effective tools for scientific research. The discrete element 
method (DEM) simulation can predict behavior of the particle flows from the motion of individual 
particles. Therefore DEM has been applied to particle simulation such as fluid bet, ball mill, slope 
failure, and so on. Several researchers have also been proposed DEM simulation taking into account 
the liquid bridge force.  

The objective of this study is to predict several particle sizes of particle flows in a pan type 
pelletizer by using DEM simulation. In this study, the motion of different sizes of particles was
calculated by DEM simulation taking into account a static model of liquid bridge. In order to 
compare with simulation results, agglomeration experiment using a laboratory scale pan type 
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pelletizer was also conducted. Trajectory and moving velocity of coarse particle in a pan were
measured by using a high speed camera and compared with DEM simulation results.

Materials and Methods

Agglomeration Experiment 
Agglomeration experiment was carried out in order to validate and compare the DEM simulation 

results. A pan type pelletizer (ASONE, Japan, PZ-01R) was used for the experiment. The inner 
diameter and length of the pelletizer were 280 and 730 mm respectively. Figure 1 shows the 
schematic diagram of a pan type pelletizer used in the experiment. The granulating time was set 5
minutes and the rotation speed was set at 39.0 rpm. Water was added to powder with a spray bottle.
Calcium carbonate particles were used in the agglomeration experiment. 

Figure 1. Snapshots of a pan type pelletizer

Discrete Element Method(DEM)
The DEM model used in this study is based on the original DEM concept proposed by Cundall

and Strack (1979). As shown in Figure 2, contact between particles and between a particle and a 
wall is modeled using a Voigt model consisting of a linear spring and dashpot in normal and 
tangential directions. A slip model defined by the friction coefficient is included in the tangential 
force. A linear contact model is adopted to reduce the computation load. In this study, the particles 
are considered to be spherical.

(a) Normal direction     (b) Tangential direction
Figure 2. Principle of Voigt model

Inter-particle forces
The liquid bridges cause various effects on the particles, such as the adhesion force exerted by 

the static forces, the dynamic forces exerted by the viscosity of the liquid and relative displacement 
of the particles. Static strength forces as surface tension and capillary forces are conservative forces 
in the sense that they always act to pull particles together in wetted systems. In this study, only 
static strength forces between the particles were considered. Both of the contact force and the 
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adhesion force of a liquid bridge were taken into account for contacting particles. In the case that a
liquid bridge was formed between separated particles, only the adhesion force was considered.

Modeling of liquid bridge 
The static strength of liquid bridge consists of two components. One is suction pressure caused 

by the curvature of the liquid interface. The other is force due to the interfacial surface tension 
acting around the perimeter of the bridge cross-section. In the case that gravitational effects arising 
from bridge distortion and buoyancy can be neglected, the total force F acting between two equal-
sized spherical particles, whose radius is r0, is given by the sum of two components; one is the axial 
component of the surface tension acting on the three-phase (solid / liquid / air) contact line and the 
other is the hydrostatic pressure acting on the projected area of the liquid contact to each particle. 
This leads to the following expression, 

       sinsin2sin 0
22

0 rrPF (1)

where  is the half-filling angle,  is the contact angle and  is the liquid surface tension.
Schematic representation of a liquid bridge between two equal-sized spherical particles, particle i
and particle j, with definition of these parameters is shown in Figure 3. In this figure, 2h is the 
surface distance between particles. 

P in equation (1) is the pressure difference across the curvature of the air-liquid interface.
Assuming that the liquid surface has constant mean curvature P is given by the Laplace-Young 
equation as follows. 











21

11
rr

P  (2)

where r1 and r2 are the radius of curvatures of the liquid bridge surface. 
There is a general lack of reliable theoretical formulas for the calculation of the liquid bridge 

force between two unequal-sized spheres. In this case, following approximation is generally used. 
That is, the radius term r0 in equation (1) is replaced by an effective particle radius reff according to 
the following equation. 

ji

ji
eff rr

rr
r




2
(3) 

where ri and rj are radius of particle i and j, respectively.

Figure 3. Schematic diagram of liquid bridge

844



Restriction on liquid bridge formation 
Liquid bridges are formed not only between contacting particles, but also between separating 

particles with a small gap. It is necessary to determine the limit length of the gap in which the liquid 
bridge is formed. 

The liquid bridge can be sustained when the capillary pressure is larger than zero. The limit 
length of gap Hmax can be derived by solving the Laplace’s equations under the condition of the 
capillary pressure equal to zero. Hmax of neighboring particles is given by the following formula. 

11
11

ln 2
2

2
2max 









 
 r

r

r
rH (4)

Determination of Parameters 
The DEM parameters used in this study are shown in Table 1. These simulation parameters were

determined from experimental results. In particular, the frictional coefficient was determined 
carefully since it strongly affects granules behavior. Dashpot coefficient was calculated from spring 
constant and coefficient of restitution. The particle diameter was determined from sieve mesh used 
in sieving of particles before/after agglomeration test. The number of particles was determined from 
weight balanced particle size distribution measurement.

Table 1. Calculation condition

Simulation

Time step (s)
Gradient angle (°) 
Spring constant (N/m)
Reflection coefficient (-) 
Friction coefficient  (-) 
Surface tension of liquid (J/m2) 
Water content (-) 

1.0 10-6

50.0
1000
0.1
0.484
0.0725
0.00, 0.08 

Particles
Particle diameter (mm)
Number of particle (-) 
Density of particles (g/cm3) 

16, 8, 4, 2, 1 
2, 43, 1466, 11868, 41823 
2.60
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Results and Discussion

Behavior of particles in pan type pelletizer 
Figure 4 shows the particle size distribution of the feed particles and the agglomerated particles; 

particle size is normalized by maximum particle size.
The particle size of the agglomerated particles was larger than that of the feed particles, which 

showed that effective agglomeration was achieved in the experiment.
In order to compare the behavior of particles in an experiment with the behavior calculated from

DEM simulation, the behavior of particles in the experiment was taken by a high speed camera. In 
this study, the behavior of coarse particles was especially focused on. Figure 5 shows the state of 
calcium carbonate particles after the agglomeration experiment. 

Figure 6 shows snapshots of particle motion calculated by DEM simulation. Coarse particles 
whose diameter were 8 mm, were painted pink color, and coarse particles whose diameter were 16 
mm, were painted green color. That is, the particles rose along the pan wall and then fell down on 
the surface layer of the granules toward the downside. At this time, the particles cascaded on the 
surface layer of other granules in the pan. This cascading motion of granules would be important for 
the agglomeration behavior. Additionally, some particles adhered to the bottom wall of the pan by 
the force of liquid bridge. 

Figure 4. Particle size distribution of feed and agglomerated particles

Figure 5. Snapshots of particle behavior (Experiment) 
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(1) t = 0.0 (2) t = 0.5 (3) t = 1.0

(4) t = 1.5 (5) t = 2.0 (6) t = 2.5
Figure 6. Snapshots of particle behavior (Simulation) 

Trajectory and Velocity of Coarse particles
In order to validate simulation results, we focused trajectory and velocity distribution of coarse 

particles, whose diameters were 8 mm or 16 mm. As shown in Table 1, two different situations in 
the simulation were compared with experimental results. One was wet condition which was 
calculated with the liquid bridge model. The other was dry condition which was calculated without 
the liquid bridge model.

Figure 7 shows the trajectory of coarse particles. Experimental results and simulation results with 
the liquid bridge model had similarities of the trajectory of coarse particles. In particular, when we 
focused the maximum height which coarse particle rose up on the surface of particulate bed,
simulation results considering the liquid bridge force had almost the same height with experimental 
results. On the other hand, the maximum height of particles obtained from calculation without the 
liquid bridge model was much lower than that of experimental results.

Figure 8 shows the velocity distribution of coarse particles; velocity is normalized by maximum 
velocity. In the experiment, coarse particles whose diameter were 8 mm, were painted pink color, 
and coarse particles whose diameter were 16 mm, were painted green color. The velocity of coarse 
particles was measured by the behavior of particles which was recorded on a high speed camera.

As shown in the figure 9, in the simulation, the x-y plane of the pan was split by square cells, 2 
cm on a side, and the velocity was calculated from the average of particle velocity in each cell. Both 
experimental results and simulation results with the liquid bridge model had similar trend and peak 
position. Especially velocity distribution of 8 mm coarse particles had unique trend, which could 
not be represented in the result calculated by the model of dry conditions. These results suggested 
that the effect of the liquid bridge force was strong for particulate flow in the pan type pelletizer.
Comparing between simulation results and experimental ones in Figures 7 and 8, liquid bridge 
model should be included to DEM simulation in order to represent experimental results exactly.
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(a) 8 mm    (b) 16 mm
Figure 7. Trajectory of coarse particles

(a) 8 mm     (b) 16 mm
Figure 8. Velocity distribution of vertical direction

(a) Coordinate axes        (b) Grid pattern   
Figure 9. Schematic diagram of particle velocity measurement
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Conclusion
The behavior of agglomerated particles in the pan type pelletizer with small amount of water was

simulated by using the DEM taking account of the adhesion force due to water. The adhesion force 
acting on two particles was formulated by using the theory of the liquid bridge. The simulation 
results indicated that the adhesion force due to liquid bridges largely affects particle flows.
Concerning the trajectory of coarse particles, both experimental and simulation results with the 
liquid bridge model had similar trends. Additionally, the velocity distribution also agreed well 
between both experimental and simulation results when the liquid bridge model was included.
These results suggested that the DEM simulation with the liquid bridge model could apply to the 
determination of appropriate operating condition, such as water content, gradient angle, number of
rotations, in the pan type pelletizer.
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1 function forward elimination(node) 
2 if new_schur_matrix already computed for the node then 
3 return schur_matrix 
4 if node is a leaf then 
5   generate local system assigned to node 
6   excluding boundary conditions 
7 else 
8   loop through son_nodes 
9     schur_matrix = forward_elimination(son_node) 
10     merge schur_matrix into new_system 
11   end loop 
12 end if 
13 find fully assembled nodes and eliminate them 
14 return new_schur_matrix 
15 end function 
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Combined Method for Rigid Bodies-Spring Model and Discrete Element Method 

* T.Yagi and N.Takeuchi 1, K.Yamamura2, E.Hamasaki3

Abstract 

Keywords:

1. Introduction 

2. Discretization of equation of motion by using principle of hybrid virtual work 
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Figure 1. Subdomain and its common boundary
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3. Method for combining RBSM and DEM 
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Figure 2. Rigid bodies-spring model 
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4. Numerical examples 

Figure 5. Case of elastic problem 
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Figure 6. Case of hopping movement 

Figure 7. Case of sliding movement 

5. Conclusions 
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Abstract 
In this study, effects of laminate misalignment on the thermoelastoviscoplastic properties of 
ultrafine plate-fin structures are investigated using a homogenization theory for 
thermoelastoviscoplasticity. For this, the homogenization theory for time-dependent materials is 
combined with the homogenization theory for thermoelasticity. Moreover, the substructure method 
is introduced into the theory to deal with the randomness of laminate misalignment in ultrafine 
plate-fin structures. The present method is then applied to the analysis of thermoelastoviscoplastic 
behavior of ultrafine plate-fin structures made of a Ni-based alloy with laminate misalignment 
subjected to a macroscopic temperature increment. The results reveal the effects of the laminate 
misalignment on the macroscopic and microscopic thermoelastoviscoplastic properties of ultrafine 
plate-fin structures. 

Keywords: Plate-fin structure, Laminate misalignment, Randomness, Thermal stress, 
Thermoelastoviscoplasticity, Homogenization 

Introduction 

Ultrafine plate-fin structures for heat exchangers, which are manufactured by stacking thin metallic 
plates and fins alternately, offer high heat exchanger efficiency, because their small structures 
provide large heat-transfer areas. Hence, they are expected to be used in the heat exchangers of high 
temperature gas-cooled reactor gas-turbine (HTGR-GT) systems. The HTGR-GT systems are 
regarded as some of the most promising power generating systems because of their excellent 
balance between power generation and economic efficiency. In the systems, helium is employed as 
a working fluid, which becomes extremely hot and can reach 950 °C . It is therefore important to 
analyze thermoelastoviscoplastic behavior of ultrafine plate-fin structures. 
In general, fins in an ultrafine plate-fin structure are not necessarily stacked in precise alignment as 
illustrated in Fig. 1(a), but can have misalignment as shown in Fig. 1(b). Hence, when analyzing the 

Figure 1.  Ultrafine plate-fin structures (a) without laminate misalignment, 
(b) with random laminate misalignment

(a) (b) 
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thermoelastoviscoplastic behavior of ultrafine plate-fin structures, such laminate misalignment 
should be taken into account. In the previous study (Yamamoto et al., 2011), the effects of laminate 
misalignment on the elastic-viscoplastic behavior of plate-fin structures have been revealed based 
on the homogenization theory for nonlinear time-dependent materials (Ohno et al., 2000). However, 
the effects of laminate misalignment on the thermoelastoviscoplastic behavior of plate-fin structures 
have not been revealed yet. 
In this study, therefore, the effects of laminate misalignment on the thermoelastoviscoplastic 
properties of ultrafine plate-fin structures are investigated based on a homogenization theory. For 
this, the homogenization theory for thermoelastoviscoplasticity combined with the substructure 
method (Zienkiewicz and Taylor, 2000) is proposed to analyze the thermoelastoviscoplastic 
properties of ultrafine plate-fin structures with random laminate misalignment. The present method 
is then applied to the analysis of thermoelastoviscoplastic behavior of ultrafine plate-fin structures 
made of Ni-based alloy with random laminate misalignment subjected to a macroscopic temperature 
increment. The results reveal the effects of laminate misalignment on the macroscopic and 
microscopic thermoelastoviscoplastic properties of ultrafine plate-fin structures.  

Homogenization theory for thermoelastoviscoplastic behavior of plate-fin structures with 
random laminate misalignment 

Let us consider an ultrafine plate-fin structure with random laminate misalignment, and its unit cell 
Y (Fig. 2). It is assumed that Y has N  fin layers with random laminate misalignment, and that Y  is 
periodically stacked with laminate misalignment in the 2y  -direction. For this Y , the Cartesian 
coordinates iy  are defined, and microscopic stress and strain are denoted as ( , , )ij t Tσ y  and 

( , , )ij t Tε y , respectively, Where t  is time and T  is current temperature. The equilibrium of ijσ  can 
be expressed in a rate form as  

    0ijσ = ,     (1) 

where ,( ) i  and (  )  indicate differentiation regarding iy  and t , respectively. The base material of 
the plate-fin structure is assumed to exhibit linear elasticity, nonlinear viscoplasticity and thermal
expansion as characterized by  

    ( )ij ijkl kl kl klc Tσ ε β Δ α= − − ,     (2) 

where ijklc  and klβ  indicate the elastic stiffness tensor and viscoplastic strain rate of the base 
material, respectively, and TΔ  and klα  indicate the temperature increment and coefficient of linear 
expansion of the base material, respectively. Then, the integration by parts and the divergence 
theorem allow Eq. (1) to be transformed to  

    , 0ij i j ij j iY
dY n d

Γ
σ σ Γ− = ,     (3) 

where Γ  indicate the boundary of Y , and i  and jn  indicate the arbitrary variation and the unit 
vector outward normal to Γ , respectively. Now, to examine boundary integral term in the above 
equation, let us divide Γ  into six parts, ,  ,  ,  ,  AB BC CD ED FEΓ Γ Γ Γ Γ  and AFΓ , as shown in Fig. 2(b), 
and consider three axes α , β  and γ . Then, the boundary integral term in Eq. (3) can be expressed 
as  

    
                   

AB BC CD

ED FE AF

ij j i ij j i AB ij j i BC ij j i CD

ij j i ED ij j i FE ij j i AF

n d n d n d n d

n d n d n d

Γ Γ Γ Γ

Γ Γ Γ

σ Γ σ Γ σ Γ σ Γ

σ Γ σ Γ σ Γ

= + +

+ + +
.     (4) 
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First, let us focus on AFΓ  and CDΓ . Figure 2 shows that the distribution of ijσ  and i  on AF and 
CD are identical, respectively, because the internal structure of the plate-fin structure has the 
periodicity in the α -direction. Whereas, jn  takes opposite directions on AF and CD. As a result, 
the following equation can be obtained:  

    0
AF CD

ij j i AF ij j i CDn d n d
Γ Γ

σ Γ σ Γ+ = .     (5) 

Second, let us focus on FEΓ  and BCΓ . Figure 2 shows that the same situation exists on FE and BC 
in the β -direction, resulting in the following equation: 

    0
FE BC

ij j i FE ij j i BCn d n d
Γ Γ

σ Γ σ Γ+ = .     (6) 

Finally, on ABΓ  and EDΓ , the usual Y -periodicity is satisfied in the γ -direction as seen from Fig. 2. 
Thus, we have 

    0
AB ED

ij j i AB ij j i EDn d n d
Γ Γ

σ Γ σ Γ+ = .     (7) 

Substituting Eq. (5), (6) and (7) into Eq. (4), Eq. (4) vanishes, and Eq. (3) results in  

    0ij j iY
n dYσ = .     (8) 

Using Eqs. (2) and (8), we obtain the following equation 

    #
, , , , ,ijkl p q i j kl ijkl i j ijkl kl i j ijkl kl i jY Y Y Y

c u dY E c dY c dY T c dYβ Δ α= − + + ,     (9) 

where # ( , , )iu t Ty  and ijE  indicate of the perturbed velocity field defined in Y and macroscopic 
strain rate, respectively. In this case, #

iu  can be expressed as 

    # ( , , ) ( , ) ( ) ( , , ) ( ) ( , )kl
i i kl i iu t T T E t t T T t Tχ ϕ Δ ψ= + +y y y y ,     (10) 

N fin layers 

1
2

i

N-1

N
Y

Figure 2.  Ultrafine plate-fin structures with random laminate misalignmet, 
(a) whole structure and its unit cell Y, (b) unit cell Y and substructures Ai
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where ,  kl
i iχ ϕ  and iψ  in the above equation denote the characteristic functions determined by 

solving the following boundary value problems in Y  using the finite element method (FEM): 

    kl
, , ,ijpq p q i j ijkl i jY Y

c dY c dYχ = − ,     (11) 

    , , ,ijpq p q i j ijkl i jY Y
c dY c dYϕ β= ,     (12) 

    , , ,ijpq p q i j ijkl i jY Y
c dY c dYψ α= .     (13) 

Then, the evolution equation of microscopic stress rate and the relation between macroscopic stress 
rate and strain rate are derived as follows: 

    , , ,( , , ) ( ) ( ) ( )kl
ij ijpq pk ql p q kl ijkl kl k l ijkl kl k lt T c E c Tcσ δ δ χ β ϕ Δ α ψ= + − − − −y ,     (14) 

    , , ,( , , ) ( ) ( ) ( )kl
ij ijpq pk ql p q kl ijkl kl k l ijkl kl k lt T c E c T cΣ δ δ χ β ϕ Δ α ψ= + − − − −y ,     (15) 

where ijδ  indicates Kronecker’s delta, and #  denote the volume average in Y defined as  

    1# #
Y

dY
Y

= .     (16) 

Here, Y  signifies the volume of Y . 

Substructure Method 

First, the unit cell Y  is divided into substructures iA ( 1, 2,..., )i N=  as shown in Fig. 2(b). In 
addition, the amount of laminate misalignment between the substructures is defined as id
( 1, 2,..., )i N=  illustrated in Fig. 2(b). Then, the boundary value problems for the individual 
substructure in a finite element discretized from are derived as follows: 

    ,  ( 1, 2,..., )kl kl i Ni = =k f ,     (17) 

    ,  ( 1,2,..., )i i i N= =k gϕϕϕϕ ,     (18) 

    ,  ( 1,2,..., )i i i N= =k hψψψψ .     (19) 

Next, the components of kl
iχχχχ , iϕϕϕϕ  and iψψψψ  are respectively divided into two parts, ( )kl

i
Ωχχχχ  and ( )kl

i
Γχχχχ , 

( )
i

Ωϕϕϕϕ  and ( )
i

Γϕϕϕϕ , and ( )
i

Ωψψψψ  and ( )
i

Γψψψψ , where ( )( )Ω  and ( )( )Γ  represent vectors or matrices for the 
internal and the boundary nodes of iA , respectively. Then, the boundary value problems for iA , Eqs. 
(17), (18) and (19), are rewritten into the following equations: 

    
( )( ) ( ) ( )

( )( ) ( ) ( )

kl kl
i
kl kl
i

ΩΩ ΩΓ Ω

ΓΓΩ Γ Γ=
k k f
k k f

χχχχ
χχχχ

,     (20) 

    
( ) ( )( ) ( )

( ) ( )( ) ( )
i i

i i

Ω ΩΩ ΩΓ

Γ ΓΓΩ Γ =
gk k
gk k

ϕϕϕϕ
ϕϕϕϕ

,     (21) 
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( ) ( )( ) ( )

( ) ( )( ) ( )
i i

i i

Ω ΩΩ ΩΓ

Γ ΓΓΩ Γ =
hk k
hk k

ψψψψ
ψψψψ

,     (22) 

where ( )kl
i

Ωχχχχ , ( )
i

Ωϕϕϕϕ  and ( )
i

Ωψψψψ  can be expressed as 

    ( ) ( ) 1 ( ) ( ) ( )( ) ( )kl kl kl
i i

Ω Ω Ω ΩΓ Γ−= −k f kχ χχ χχ χχ χ ,     (23) 

    ( ) ( ) 1 ( ) ( ) ( )( ) ( )i i i
Ω Ω Ω ΩΓ Γ−= −k g kϕ ϕϕ ϕϕ ϕϕ ϕ ,     (24) 

    ( ) ( ) 1 ( ) ( ) ( )( ) ( )i i i
Ω Ω Ω ΩΓ Γ−= −k h kψ ψψ ψψ ψψ ψ .     (25) 

The eliminations of ( )kl
i

Ωχχχχ , ( )
i

Ωϕϕϕϕ  and ( )
i

Ωψψψψ  from Eqs. (20), (21) and (22) using the above equations 
respectively yields 

    ( ) ( ) ( ) ,  ( 1,2,..., )kl kl
i i NΓ Γ Γ= =k fχχχχ ,     (26) 

    ( ) ( ) ( ) ,  ( 1,2,..., )i i i NΓ Γ Γ= =k gϕϕϕϕ ,     (27) 

    ( ) ( ) ( ) ,  ( 1, 2,..., )i i i NΓ Γ Γ= =k hψψψψ ,     (28) 

where ( )Γk , ( )kl Γf , ( )
i

Γg  and ( )
i

Γh  are expressed as follows: 

    ( ) ( ) ( ) ( ) 1 ( )( )Γ Γ ΓΩ Ω ΩΓ−= −k k k k k ,     (29) 

    ( ) ( ) ( ) ( ) 1 ( )( )kl kl klΓ Γ ΓΩ Ω ΩΓ−= −f f k k f ,     (30) 

    ( ) ( ) ( ) ( ) 1 ( )( )i i i
Γ Γ ΓΩ Ω Ω−= −g g k k g ,     (31) 

    ( ) ( ) ( ) ( ) 1 ( )( )i i i
Γ Γ ΓΩ Ω Ω−= −h h k k h .     (32) 

Finally, Eqs. (26), (27) and (28) are respectively assembled into the following equations, which are 
boundary value problems with respect to just the boundary nodes of all substructures: 

    ( ) ( ) ( )kl klΓ Γ Γ=K Fχχχχ ,     (33) 

    ( ) ( ) ( )Γ Γ Γ=K Gϕϕϕϕ ,     (34) 

    ( ) ( ) ( )Γ Γ Γ=K Hψψψψ ,     (35) 

where ( )ΓK  stands for the matrix consisting of ( )Γk , ( )kl ΓF , ( )ΓG  and ( )ΓH  indicates the vector 
consisting of ( )kl Γf , ( )

i
Γg  and ( )

i
Γh . Moreover, ( )kl Γχχχχ , ( )Γϕϕϕϕ  and ( )Γψψψψ  denote the nodal vectors of 

the characteristic functions at the boundary nodes of substructures. The characteristic functions 
( )kl Γχχχχ , ( )Γϕϕϕϕ  and ( )Γψψψψ  are determined by solving Eqs. (33), (34) and (35) with appropriate boundary 

conditions. Then, the characteristic functions at the internal nodes, ( )kl
i

Ωχχχχ , ( )
i

Ωϕϕϕϕ  and ( )
i

Ωψψψψ , are 
calculated using Eqs. (23), (24) and (25). 

Analysis conditions 

In the present analysis, thermoelastoviscoplastic properties of ultrafine plate-fin structures with 
random laminate misalignment under temperature change TΔ  were analyzed using the above 
method. A base metal for the plate-fin structures was Hastelloy X, which was a Ni-based alloy with 
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excellent heat resistance. The material constants used are listed in Table 1, which depend on 
temperature. The substructure iA  was defined and divided into four-node isoparametric elements as 
shown in Fig.3. This substructure iA  was two-dimensional rather than three-dimensional, and the 
generalized plane strain condition was assumed, because the plate-fin structures were assumed to 
have uniform and infinite material distribution in the 3y -direction.  
The number of layers of unit cell Y was five kinds that include N = 10, 20, 30, 40 and 50.  Twenty 
patterns of random laminate misalignment were given to N = 10, 20, 30, and ten patterns to  N = 40, 
50. In addition, five case of periodic laminate misalignment, i.e. 0d = , / 8d l= , / 4d l= , 3 /8d l=
and / 2d l=  where l  indicates the width of substructure iA , were also considered to compare with 
random laminate misalignment. Macroscopic temperature increment was from 20 °C  (room 
temperature) to 200 °C , and temperature rate 1T K sΔ =  was applied to the plate-fin structures. No 
macroscopic strain (Macroscopic strain rate) was assumed to occur ( 0ijE = ). 

Results of analysis 

First, Figs. 4(a) and (b) respectively show the macroscopic stress-temperature relations in the 1y -
direction in case of 10N =  and 50N =  with macroscopic temperature increment from 20 °C  to 
200°C . These figures show the results of all random laminate misalignment patterns when 10N =
and 50N = . In addition, the macroscopic stress-temperature relations of periodic laminate 
misalignment for / 8d l=  and 3 /8d l=  are also shown in the figure, which exhibited the maximum 
and minimum stress, respectively. It is seen from the figure that the results of all random laminate 
misalignment patterns exist between two results of periodic laminate misalignment. Furthermore, as 
the number of layers N  increases, the dispersion of macroscopic stress-temperature relations  
decreases, and they converges to an intermediate value of / 8d l=  and 3 /8d l= .  
Next, Figs. 5(a) and (b) respectively show the maximum microscopic compressive stresses in the 1y
and 2y -directions for all the random laminate misalignment patterns at N = 10, 20, 30, 40 and 50. 
Also, the maximum microscopic compressive stresses for the periodic laminate misalignment are 
shown in the figure as the results for 1N = . As seen from Figs. 5(a) and (b), the maximum 
microscopic compressive stresses of random laminate misalignment tend to be higher than those of 
periodic laminate misalignment. In addition, as the number of layers N  increases, the dispersion of 
microscopic stresses decreases,  which is similar tendency to the macroscopic stress-temperature 
relations. However, the maximum microscopic stresses converge to not an intermediate but higher 
value, meaning that elastic-viscoplastic properties of plate-fin structures have to be investigated 
both macroscopically and microscopically. 

Figure 3.  Substructures Ai and 
finite element mesh
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unit: mm 

-1
0

Poisson's ratio                                                                                                                      0.32
Reference strain rate                        [s ]          

v
ε -3                                                                    10  

Stress power index                                                                                         -0.0295T+33.075
Youn

n

-6

g's modulus                             [GPa]                                                     -0.0684T+212.22
Coefficient of thermal expansion   [10 /K]                                          

E

α
-7 3 2

0

        0.0031T+13.548
Yielding stress                                 [MPa]        -8 10 T 0.0013T 0.6826T 391.51

HASTELLOY X ALLOY, HAYNES International(1997)

σ × × + − +

Table 1. Material properties of Hastelloy X
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Conclusions 

In this study,  the homogenization theory for thermoelastoviscoplasticity combined with the 
substructure method was proposed to investigate the effects of laminate misalignment on 
thermoelastoviscoplastic behavior of ultrafine plate-fin structures. The present method was applied 
to the analysis of thermoelastoviscoplastic behavior and thermal stress of ultrafine plate-fin 
structures with laminate misalignment subjected to macroscopic temperature increment from 20 °C
to 200°C . It was shown that laminate misalignment affects the thermoelastoviscoplastic behavior 
and thermal stress of plate-fin structures both macroscopically and microscopically. 
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Figure 4. Macroscopic stress-temperature relations of ultrafine plate-fin structures 
with random laminate misalignment in y1-directions , (a) N=10, (b) N=50 
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Figure 1.  The diagram of Reynolds number effect on maximum (Lissaman, 1983). 

Computational Set-up

Flow Conditions and Model Description 

Figure 2.  The owl-like wing model.

Computational Methods  
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Computational Mesh and Boundary Conditions 

Figure 3.  Computational mesh. Grid 
resolution of 615×201×101.

Figure 4.  Grid-size distribution in the 
chord direction at =46,000 and =6.0°.

879



Results and discussion 

Effects of Reynolds Number on Aerodynamic Coefficients 

Figure 6. Lift-to-drag ratio as a 
function of the Reynolds number.

Figure 5. Lift-to-drag ratio as a 
function of the angle of attack.
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Figure 7.  Lift and drag coefficients as a function of the angle of attack. 

Effects of Reynolds Number on Flow Characteristics at Fixed Angle of Attack 
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Effect of Reynolds Number on Separation and Reattachment Characteristics 

=10,000 =23,000

=46,000

Figure 8.  Instantaneous -criterion ( =5) colored by chordwise vorticity (-5 - 5) with
background contours indicating magnitude of chordwise velocity (0 - 1.25), and time 

history of lift coefficients.
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Figure 13. Location of the separation and reattachment points for upper and lower side. 
Upper surface Lower surface

Figure 9. Effects of Reynolds number on 
surface pressure coefficients for =6.0°.

Figure 10. Effects of Reynolds number on 
skin friction coefficients at =6.0°.

Figure 11.  Contours of time-averaged 
chordwise velocity at =6.0°.

Figure 12.  Contours of Reynolds stress
( ) at =6.0°.
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M-integral and configurational forces for Mode-I crack growth based on

Gurson-Tvergaard model in elastoplasticity materials

B.H. Zhanga,∗, Q. Lia, Y.H. Chena, H.L. Wangb

aState Key Laboratory for Mechanical Structural Strength and Vibration, School of Aerospace, Xian Jiaotong University, 710049, P.R. China
bNorthwest Nuclear Technology Institute, Xian, Shannxi, 710024, P.R. China

Abstract

A configurational force method is proposed for evaluating the crack driving force for material damage and fracture in

elastoplasticity materials. By using Helmholtz free energy characterized by internal variable and deformation gradient

decomposition, nodal configurational forces due to the material degradation and damage are derived based on G-T

model in finite stain setting. The G-T Plasticity theory developed by Gurson and Tvergaard and Needleman offers an

insight to analysis and solve the degradation and damage behavior of ductile porous metals at an applied overload.

This model allows you to incorporate microscopic material behaviors, such as void dilatancy, void nucleation, and

void coalescence into macroscopic plasticity models. Based on this model, M-integral concept is extended to study the

degradation of a microvoid dilation and nucleation for a plane strain ductile porous metal under Mode-I tensile loading.

Attention is focused on the change in the M-integral before, during, and after coalescence of many microvoids. Using

finite element analyses, the influences of different G-T model parameter on M-integral are discussed in detail.

Keywords: Configurational forces; M-integral; G-T model; Elastoplasticity

1. Introduction

The notion of force is central to all of continuum mechanics. There are two force systems in physics space and

in material space which are standard (Newtonian) forces and configurational forces respectively. Configurational

forces in material space have been playing a significant role in the description of material discontinuous and inhomo-

geneities (e.g., voids, cracks, inclusion, bimaterial interfaces) as they move relatively to the material. Gurtin (1995,

2000) elaborates this quantity based on the motion ideas of material and spatial observers within a classical context.

The framework of several fundamental issues such as bulk, inner interface, and coherent phase interface configu-

rational forces are established. Moreover, He believes that configurational forces should be viewed as basic objects

consistent with their own force balance. Eshelby tensor may be a natural result of those framework. So-called Eshelby

tensor (also referred to as the Maxwell tensor, or the energy momentum tensor, or the material momentum tensor) is

introduced and developed by Eshelby (1951, 1956, 1970, 1975) in studying forces on elastic singularities and defects

in his series of papers, making clear that the integrand of J-integral presented by Rice (1968) is just the Eshelby tensor

contracted with the unit outward-normal vector. Due to the seminal contributions of Eshelby, Maugin (1992, 1993,

1994, 2002) introduced even the concept of Eshelbian mechanics whose main ingredient is the Eshelby tensor. Kien-

zler and Herrmann (1997, 2000) have also performed a rather detailed discussion of the properties such as Invariants,

principal values, principal directions and extremal values associated with this tensor and give physics interpretation

of its components. As an application of local properties of the Eshelby tensor, fracture criteria is presented to plane

crack under mixed-mode loading conditions in Kienzler and Herrmann (2002). Epstein (2002) reaffirm the fact that

there exists a natural connection between Noll’s theory of inhomogeneities and Eshelby tensor by using of the local

form of the Clausius-Duhem inequality. Additionally the application of the concept of configurational forces in the

∗Corresponding author now at Northwest Nuclear Technology Institute, Xian, Shannxi, 710024, P.R. China

Email addresses: bai.hua.cool1@stu.xjtu.edu.cn (B.H. Zhang), liqun@mailst.xjtu.edu.cn (Q. Li), yhchen2@xjtu.edu.cn

(Y.H. Chen), Wanghongliang1984@163.com (H.L. Wang)

Preprint submitted to the 5th Asian Pacific Congress on Computational Mechanics and 4th International Symposium on Computational MechanicsApril 30, 2013
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context of Finite Element (FE) discretizations is a relatively new application which is discussed by Braun (1995). For

more details of configurational forces and Eshelby tensor reader is also referred to Gross (2003), Mueller and Mau-

gin (2002), Mueller, Kolling and Gross (2002), Steinmann (2000), Steinmann, Ackermann and Barth (2001), Naser

(2007). Thus a whole edifice of a mechanics in material space have been established.

Theory and method based on the configurational forces and Eshelby tensor afford a novel tool to characterize the

crack driving force and dissipation for crack growth in elastoplastic materials under finite deformation considering

general yielding and local hardening conditions. Due to Eshelby tensor related to J-integral, we briefly mention J-

integral and its property firstly. J-integral approach can evaluate the crack driving force on a contour around crack tip

in elastoplastic materials by Rice (1978), but this has to been limited to be an assumption that the material behavior

keeps to deformation plasticity, i.e. all loading paths should remain radial direction in stress space. Consequently, both

of the realistic behavior of cracks in elastoplastic finite deformation conditions are concealed: one is that stress state

of moving crack because of unloading behind the crack tip is not able to comply proportional loading assumption, the

other is that plastic work at applied stress should not be included in stored energy density but should be dissipated.

Path-independence utility of J-integral is satisfied in quasi-static problems for elastic materials, the property exits for

inelastic materials only under certain conditions, such as deformation materials and elastoplastic materials that can be

treated as non-linear elastic. However, in the more general elastoplastic materials J-integral becomes path-dependent,

e.g. in Carka (1995). In fact, This instance may be extended to the other conservative integrals such as M-integral in

N. Y. Yu (2007). Hence, some physical explanation difficulties what J-integral is up against may be suspicious of its

using as a crack driving force in general elastoplastic materials.

In contrast, configurational force methods for elastoplastic material fracture mechanics is proposed and developed

gradually recently. The theory of configurational forces is presented within the non-linear dynamic framework by

Gross (2003). The occurrence of configurational forces in the FE is illustrated, but only limited to a quasistatic

case and neglect other dissipative mechanism like for example hardening. Nguyen (2005) proposes a material force

method, i.e. configurational force, to solve viscoelastic and elastoplastic fracture problem at small deformations,

moreover, expressions for dissipation forces are obtained. But his derivatives about dissipation forces doesn’t appeal

to the second law of thermodynamics, so this effects its generality. Simha (2003) elaborates the relationship between

J-integral and configurational forces in elastic-plastic materials based on the second law of thermodynamics without

making any assumptions about the constitutive nature of the body, but the crack growth isn’t considered. Fiscer (2007)

extends the application of configurational forces to fracture of bimaterial materials as illustrative examples.

In this paper, we extend the configurational force method to analysis more complex material behaviors in fracture

mechanics. Several material behaviors such as crack growth, plastic flow and hardening phenomenon are discussed

in configurational force framework. Helmholtz free energy density as part of the Eshelby tensor is introduced as

a fundamental quantity associated with the field of configurational forces and material dissipation. The free energy

density is expressed in terms of the elastic, plastic and internal variable. Moreover, configurational forces and material

dissipation formulation is also related to material gradient of plastic strain and internal variable. Based on the relation-

ship, we show that the path-independence property of J-integral is not able to agreement with this case and has to be

modified due to bulk and crack tip dissipation. This yields a formulation about global configurational forces balance

associated with far field J-integral, near crack tip J-integral and configurational body forces. At a steady state crack

growth condition, configurational body forces are related to bulk dissipation due to the effect of plastic deformation.

Given these conditions, several quantities are evaluated such as the distribution of nodal configurational forces, bulk

dissipation against crack growth distance.

The goal of this paper is to determine how the theories based on the configurational forces and Eshelby tensor in

material space are applied in the context of incremental plasticity considering crack growth. The first section, nodal

configurational forces and total dissipation in the body including crack tip due to the crack tip moving are derived

based on the theories of Eshelbian mechanics in finite stain setting by using Helmholtz free energy characterized by

internal variable and deformation gradient decomposition. The base of theoretical derivations is configurational forces

method presented by Gurtin (1995, 2000). Specifically, Maugin (1992, 1993, 1994, 1995, 2002) and coworkers Cleja-

Tigolu (2000) elaborate the Eshebly stress tensors in the finite and small-strain setting and a series of formulations,

e.g., the standard variational energy and plastic dissipation are established. In section 2, for numerical evaluation,

an equivalent domain integral expression are obtained from the sum of weights nodal configurational force of per

element. Consideration is given to the central differential method, particularly to computing quantities involving

effective plastic strain gradients. Therefore, this paper is focused on issues of physics interpretation and numerical

2
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implementation that are unique to plasticity.

In the final section, the configurational force method is applied to evaluate crack driving force and dissipation

for steady state crack growth in a C(T)-specimen for elastoplasticity materials. Specializations to isotropic hardening

condition and homogeneous materials. Several quantities are obtained by a separate postprocessing step after a stan-

dard finite element simulation is performed. The variation of nodal configurational forces and total dissipation in the

body in the process of crack growth are discussed in a cracked body.

2. Configurational forces for elastoplasticity

There are two force systems in physics space and in material space which are standard (Newtonian) forces and

configurational forces respectively. Accordingly, in two spaces there are separate balance laws for the standard and

configurational forces. In configurational force framework, crack growth is treated formally as a change in the refer-

ence configuration. Configurational forces and Eshelby stress tensors have been derived in papers by Gurtin (1995,

2000); Simha (2003); Fiscer (2007); Maugin (1995). Hence detailed deductions are omitted here and a briefly review

are showed. For simplicity we ignore inertia and external body force.

2.1. Balance of configurational forces

We consider a cracked elastic plastic body in the two-dimensional setting identified with the region Ω as shown

in Fig. 1. Let (X1, X2) and (ξ1, ξ2) denote fixed and moving Cartesian coordinate with fixed origin and moving origin

with at crack tip respectively. A contour Γ f ar surrounding the volume Ω with outward unit normal N is defined in

outer boundary, likewise, a similarly directed contour Γδ(t) surrounding the infinitesimal volume Ωδ(t) containing the

crack tip is defined. Two line segments identified with Γ+ and Γ− on the crack plane join Γ f ar and Γδ respectively.

Then a closed path made of Γ f ar+Γ+-Γδ(t)+Γ− is obtained and the area surrounded by the closed path is referred to

Ω-Ωδ(t).

Figure 1: A crack in a two dimensional body Ω in its reference configuration

Firstly, we assume that the physical motion problem has been solved so that the yield of displacement and physics

stress are known. And then the material motion is described using configurational force method. The configurational

force system consists of two fields:

C Eshebly stress tensor defined in the whole region

g internal configurational body force in the bulk Ω0

3

887



As with standard forces, configurational tractions CN and body forces g are measured in the reference body.

C(X, t) is a linear transformation of material vectors into material vectors, while g(X, t) is material vectors. The net

working of the reference body is attributed to 1st Piola-Kirchhoff stress S and Eshelby stress C in (1).

W(Ωt) =

∫

∂Ωt

CN · qdl +
∫

∂Ωt

SN · ẏdl (1)

with q represents a velocity field for the boundary of undeformed body ∂Ω0. ẏ represents a velocity field for the

boundary of deformed body ∂Ωt.

Applying invariance of net working under changes in material observer, local configurational force balance for-

mulation (2) is obtained in bulk.

� · C + g = 0 (2)

Furthermore, by using mechanical version of the thermodynamical second law (3),

d
dt

{∫

Ωt

ψdA
}
≤ W(Ωt) (3)

with ψ the (Helmholtz) free energy potential. Eshebly stress tensor and internal configurational body force relation

are achieved in (4) and (5).

C = ψI − FTS (4)

g = − � ·C = − � (ψI − FTS) (5)

with F deformation gradient tensor.

If we restrict attention to stationary Ωt, by (1) and (3), the local dissipation inequality is obtained in (6).

S · Ḟ ≥ ψ̇ (6)

Secondly, we has to define another configurational force at the internal interface of a cracked body. The internal

interface is made of Γ+-Γδ(t)+Γ− and the internal interface is referred to Γ.

gΓ internal configurational force at the interface Γ

Here, gΓ is concentrated at the interface. gΓ is related to the rearrangement of material at the interface during its

evolution. Similarly in the above context, we summarize the working performed by standard force and configurational

force (due to movement of bulk and interface), and consider the change in material and spatial observers, then a series

of important formulations are obtained as follows:

[S]N = 0 (7)

[C]N + gΓ = 0 (8)

with formulation (7) saying that crack faces are traction free, while formulation (8) saying that internal configurational

force at interface is related to the Eshelby stress tensor at interface. Moreover, the local configurational force balance

formulation similar to eq. (2) is obtained. In fact, stress is free at crack plane Γ+ or Γ− and the free energy is not

considered at crack plane. As δ → 0, Γδ(t) converges the crack tip, consequently, gΓδ(t) implies it is a limit value of

gΓ at crack tip. Additionally, the second law requires that the rate of change of free energy isn’t more than the rate of

working, hence it yields the internal dissipation inequality for the bulk and the interface in (9).

D =
∫

Ω

(S · Ḟ − ψ̇)dA −
∫

Γδ

gΓδVdl ≥ 0 (9)

with V interface growth velocity.

The right second item of eq. (9), −gΓδV is the energy dissipation by the interface per unit length. In fact, shrinking

X to the interface yields the local interfacial dissipation inequality (10).

−gΓδV ≥ 0 (10)
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Eq. (9) states total dissipation of a cracked body is equal to bulk dissipation and crack dissipation due to crack growth

with a velocity V. Eq. (10) explicitly states gΓδ may be identified as the crack driving force because it is the force term

conjugate to the crack growth velocity. Substituting (4) and (8) into (9) yields total dissipation including bulk and

crack by (11).

D =
∫

Ω

(S · Ḟ − ψ̇)dA + V ·
∫

Γδ

(ψI − FTS)Ndl ≥ 0 (11)

Now we consider the region between a circle close to the tip Ωδ and another contour Γ f ar that encloses the tip

contour (Fig. 1): this region does not include the crack tip or the region inside Γδ. We referred to this region by

Ω−Ωδ. Clearly, only the configurational forces act on this region, hence the formulation (12) of configurational force

balance is obtained by integrating eq. (2) on the region Ω −Ωδ.∫

Ω0−Ωδ

gdA +
∫

Γ f ar

(ψI − FTS)Ndl −
∫

Γδ

(ψI − FTS)Ndl = 0 (12)

This derivation of the balance of configurational forces and dissipation in bulk and crack plane is accomplished

without using constitutive equations or a variational principle. The derivations are based on a mechanical version of the

thermodynamical second law appropriate to control volumes whose boundaries migrate with time. This observation

is fit for solving the plastic problem. In the following, we elucidate the application of configurational forces in

homogeneous isotropic plastic materials.

2.2. Material description
A deformation of the reference configuration Ω0 is a mapping of points X in Ω0 and time t into points x(X,t) of

space. It occupies in a current configurationΩt. Conventionally, the total deformation is expressed via an intermediate

configuration identified with the region Ω̃ by assuming that the elastic deformation follows plastic deformation. The

multiplicative decomposition of deformation gradient is given by

F = FeFp (13)

For finite elastoplasticity, the plastic deformations are often assumed to be volume conserving, i.e. Ji=detFp=1. The

deformation gradient F is a gradient of a vector field. Its rate of time is given by

F = ḞeFp + FeḞp (14)

Now let’s pay attention to the (Helmholtz) free energy potential ψ(Fe, α) for elastoplastic materials where α is an

internal variable introduced to account for isotropic hardening effects. Its rate of time is given by

ψ̇ =
∂ψ

∂Fe Ḟe +
∂ψ

∂Fp Ḟp (15)

Using (11), (14) and (15), the dissipation in the bulk and crack plane reduces to

D =
∫

Ω

((Fe)T S · Ḟp − ∂ψ
∂α
α̇)dA + V ·

∫

Γ f ar

[ψI − FTS]Ndl (16)

Next, according the relation of configurational body force, free energy potential and deformation gradient, we can

calculate the configurational body force (5) as follows.

g = (Fe)T S · ∂F
p

∂X
− ∂ψ
∂α

∂α

∂X
(17)

After substituting (17) into (12) and transforming, it yields global configurational force balance formulation.

∫

Ω0−Ωδ

((Fe)T S · ∂F
p

∂X
− ∂ψ
∂α

∂α

∂X
)dA +

∫

Γ f ar

(ψI − FTS)Ndl =
∫

Γδ

(ψI − FTS)Ndl (18)
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Eq. (18) indicates when we consider a homogeneous elastic materials, free energy density is only related to elastic

deformation gradient with ψ(Fe) and Fp = I, the configurational body force vanishes in (5) and results in the vanished

1st item of (18) too. This fact implies the path independence property of the J-integral. However, when we perform

an analysis involving plastic deformation gradient and internal hardening phenomenon, the 1st item of (18) does

not vanishes. This implies path independence property of the J-integral is not appropriate. For making designation

easy, we call two curve integral of (19) effective J-integral defined at Γ f ar and Γδ in order to distinguish convectional

J-integral and use the form given by

∫

Ω0−Ωδ

((Fe)T S · ∂F
p

∂X
− ∂ψ
∂α

∂α

∂X
)dA + Je f

Γ f ar
= Je f

Γδ
(19)

2.3. Small strain plasticity

3. Numerical examples

The configurational force method is applied to evaluate crack driving force and dissipation for steady state crack

growth in elastoplasticity materials. Crack growth is modeled using prefabricated crack method. We will examine the

influence of crack length on the distribution of configurational force and plastic dissipation in quasi-static condition,

meanwhile, effective J-integral and convectional J-integral are calculated at several different path surrounding crack

tip.

3.1. The finite element geometry

The finite element (FE) model performed for the elastoplastic fracture problem is shown in Fig. 2. It is a C(T)-

specimen with a prefabricated crack (thickness B=1000 mm, width W=50 mm, hight H=120 mm, crack length a=10

mm, 15 mm, 20 mm, 25 mm, 30 mm, 35 mm and 40 mm). The material is an annealed mild steel with 16MnR.

The material plastic deformation obeys Von-Mises yield principle and power law hardening constitute equation. The

material mechanical parameters are Young’s modulus E=210 GPa, Poisson’s ratio ν = 0.3, initial yield strength

σy = 420MPa, average strain hardening coefficient n=0.2. The internal hardening variable α is taken to be the

equivalent plastic strain ε̄. The quasi-static displacement boundary is applied in the outer normal direction at the top

and the bottom of the C(T)-specimen so that the specimen is in tension state. Hence Geometry model and loading

boundary determine the problem is I mode fracture problem and plane strain condition is assumed. This problem is

performed with ANSYS (Vers. 14) using a refined mesh near the crack tip and a coarse mesh near model boundary

and standard four node element is adopted.

3.2. Numerical implementation

Solving the configurational force on FE mesh is an important step to evaluating the effective J-integral, dissipation

in bulk and at crack and the distribution of configurational forces in the FE framework. According (17) key quantities

that needs to be noticed specially is the deformation gradient of plastic strain components and equivalent plastic strain

in nodal configurational force. As we know to differentiation procedure in numerical analysis method based on the FE

mesh nodes, these quantities are computed only at the integration points in the standard displacement formulation of

FE method. A simple method for obtaining the gradient involves first extrapolating the these quantities to the nodes.

This step has been performed by ANSYS, next, what we need to do is just that calculating the gradient from the

extrapolated nodal values by using standard FE interpolation method. Here, the modified central difference procedure

is used as follows: given two vectors Y and X with Y = Y(X), the derivative is found by averaging the slopes of two

adjacent intervals. The formulation is referred to (20).

d
dX

Yi+1 =

Yi+2−Yi+1

Xi+2−Xi+1
(Xi+1 − Xi) − Yi+1−Yi

Xi+1−Xi
(Xi+2 − Xi+1)

Xi+2 − Xi
, i = 1, 2, ..., n (20)

with n designating total node number in FE mesh.
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3.3. Results
The computations for the C(T)-specimen for deformation plasticity show that the configurational force vanishes

in almost all regions of the body. Fig. 2 gives a contour of the configurational force x-component near the crack tip

in a deformed body at a load line displacement DLL = 0.5mm. Fig. 3 indicates the magnitude of the configurational

force x-component in a deformed body. It implies that large value of configurational force x-component only lies

near the crack tip. Fig. 4 presents the distribution of the configurational force vector near the crack tip as the same

condition. It implies that configurational force is large directly at the crack tip node. Note that only the component

of the configurational force in crack growth direction, f1 = f · e, contributes to crack driving force. Fig. 5 indicates

dissipation in bulk and crack plane decreases as crack growth, in contrast, effective J-integral as driving force increases

by crack growth. When crack growth is of steady-state, both of them are the same values.

Figure 2: A contour of configurational force x-component in deformed body

4. Discussion and summary

A configurational force method is applied to evaluate crack driving force and dissipation for steady state crack

growth in elastoplasticity materials. By using Helmholtz free energy characterized by internal variable and deforma-

tion gradient decomposition, nodal configurational forces and total dissipation in the body including crack tip due to

the crack tip moving are derived based on Gurtin theories in finite stain setting. Specializations to isotropic hardening

condition and homogeneous materials. It is shown that in steady-state growth case, distribution of nodal configura-

tional forces is confined to local small area near crack plane. Furthermore, total dissipation in the body is related to

nodal configurational forces. Theory and numerical simulations are applied to a steady state crack propagation in a

C(T)-specimen. The variation of nodal configurational forces and total dissipation in the body in the process of crack

growth are discussed.
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Abstract
In this paper a mesh-free numerical model for simulating 2D free-surface potential flows is 
established. A Lagrangian time-marching scheme is chosen for the boundary conditions of the 
moving and deforming free surface while a local polynomial collocation method is applied for 
solving the Laplace equation at each time step. The collocation method is developed in a way that 
the governing equation is satisfied on boundaries as well as boundary conditions. At any free 
surface node, this gives accurate estimation of the derivatives of velocity potential, which represent 
components of the velocity vector at that specific node. Therefore, trajectories of the free surface 
nodes can be predicted precisely.  The numerical model is applied to the simulation of free surface
waves in the liquid sloshing of a swaying tank. Present model is verified by comparing the 
numerical results with experimental data. Fairly good agreements are observed.

Keywords: mesh-free, collocation, sloshing, free surface waves 

Introduction

For several decades, water wave problems are treated as potential flow problems governed by the 
Laplace equation subjected to two nonlinear free surface boundary conditions. Due to the 
deformation of the free surface, mesh re-generation is needed if one uses a grid-based method to 
solve this kind of problems. Mesh generation, which means construction of the connectivity among 
the nodes, is a tedious task. Because the governing equation is the Laplace equation, the Boundary 
Element Method (BEM, also denominated as Boundary Integral Equation Method, BIEM) is mostly 
employed to this kind of problems. (Longuet-Higgins and Cokelet, 1976; Grilli et al., 1989; 
Ohyama and Nadaoka, 1991; Grilli and Watts, 1999; Grilli et al., 2001, 2002) 
A mesh-free method, which is named as Method of Fundamental Solutions (MFS), was applied to 
solve the Laplace equation in the fully nonlinear water wave problems. (Wu et al., 2006, 2008; Wu 
and Tsay, 2009) When using MFS, one has to place source points outside the domain. Because the 
values of the fundamental solutions are just related to the distances from the source points, 
fundamental solutions could be regarded as a Radial Basis Functions (RBF). Collocation is only 
needed on the boundaries, so MFS is a boundary type RBF collocation method. Though MFS could 
be employed to fully nonlinear water wave problems, its applicability is still limited because 
numerical blow up might occur when the free surface approaches too close to the source points.  
Wu and Chang (2011) proposed a modified RBF Collocation Method that guarantees the accurate 
estimation of partial derivatives of the velocity potential on the free surface. By integrating with a 
Lagrangian time-marching scheme, the trajectories of the free surface nodes can be precisely 
predicted. However, the full matrix formed in that method limits its applicability to large-scale 
problems. 
Besides treating water wave flows as potential flows, one could also choose Navier-Stokes equation 
or Reynalds Averaged Navier-Stokes equation models, such as models using Arbitrary Lagrangian-
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Eulerian method (ALE) (Lo and Young, 2004), Volume of Fluid method (VOF) (Lin and Liu, 2008), 
Smoothed Particle Hydrodynamics (SPH) (Li and Liu, 2002), and Moving Particle Semi-implicit 
method (MPS) (Hori et al., 2011). Models using ALE or VOF are grid-based while models using 
SPH or MPS are meshless ones. Results of these models are more close to the real flow. However, 
these models are more time consuming and computer memory storage consuming.  
Wu and Tsay (2013) proposed a local polynomial collocation method for the purpose of solving 
general partial differential equations. This method originates from the Finite Point Method (FPM) 
of Oñate et at. (1996a, b). It is a localized meshless method thus matrix formed in the collocation 
process is very sparse. The collocation method was developed in a way that the governing equation 
as well as boundary conditions is satisfied on boundaries. This method is more robust than 
conventional collocation methods.  
Adopting the time-marching scheme for the free surface proposed by Wu and Chang (2011), and 
the local polynomial collocation method proposed by Wu and Tsay (2013), a numerical model for 
the fully nonlinear free surface potential flow is developed. In this paper, it is employed to simulate
motions of liquid sloshing in a swaying tank. 

Mathematical description for free-surface potential flow

For inviscid, incompressible fluids, the governing equation of free-surface potential flow is the
Laplace equation. 

2 0  (1)

where  is the velocity potential and the relation between velocity and velocity potential is v   .
On the free surface, kinematic and dynamic boundary conditions are to be satisfied. 

dx
dt

      (2) 

1
2z

d
gz

dt 

  


         (3) 

where  is the free surface displacement, g is the gravitational acceleration. Both of them have 
been transformed onto the Lagrangian aspect. The boundary condition at the water-structure
interface is the no-flux boundary condition, which can be expressed as 

bn n v       (4) 

where n is the unit normal vector outward from the domain, and bv is the velocity of the moving 
solid boundary. 

Time marching scheme in the numerical model

For solving this kind of time-dependent problems, the time domain firstly has to be discretized. At
each time step, the Laplace equation needs to be solved once to obtain the velocity potential for the 
entire domain thus to further determine the velocity. Boundary positions are updated by the given
motion of the solid boundaries and the prediction from the time marching process of the free-
surface boundary. Wu and Chang (2011) employed the second order central difference to Eq. 3. 

( 1)

( ) ( 2) 1( ) ( ) 2 g
2j j

j

n

n n
x x x x

x x

t z   



 



          
   

    (5) 
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where jx denotes the position of the thj node and this equation is only valid in case the node is on 
the free surface. In this formulation, the required data on the right-hand side for seeking the velocity 
potential in the entire domain at the thn time step, including the nonlinear terms, are already known.
What one needs to do first is just to determine the position of each traced ‘particle’, ( )n

jx . It was 
proposed to use the second-order finite difference scheme in the time domain.

( ) ( 2) ( 1)2 ( )
j

n n n
j j x x

x x t  


        (6) 

Here it should be noted that this equation is valid for all the nodes. When the velocity potential for 
the entire domain is obtained, the velocity at each of the nodes can be estimated accurately. The 
Crank-Nicolson formula is then applied for better numerical stability. 

( ) ( 1) ( ) ( 1)( ) ( )
2 j j

n n n n
j j x x x x

t
x x   

 

      
 

    (7) 

Note that there is no need to solve the Laplace equation again because there is barely difference 
between the free-surface velocity potential at ( )n

jx predicted by using Eq. 6 and that predicted by 
using Eq. 7. 

Method for solving the Laplace equation 

At each time step, the Laplace equation needs to be solved once. There are many methods for 
solving the Laplace equation numerically, either grid-based or mesh-free. In this study the local 
polynomial collocation method proposed by Wu and Tsay (2013) is chosen. It is a mesh-free 
method for solving general partial differential equations. It is so chosen to accommodate efficiently 
the deformation of the free surface boundary. Following gives a brief description of this meshless 
numerical method.  
When solving a general 2-D linear second order PDE as

 
2 2 2

1 2 3 4 5 62 2c c c c c c s
x y x y x y
          

      
     

L     (8) 

subjected to the boundary conditions 

  1 2 3q q q f
x y
    

   
 

B , 1x     (9) 

b  , 2x     (10) 

where 1c , 2c , …, 6c , 1q , 2q , 3q , f  and s are all functions of x  and y . The boundary 1 could be 
non-smooth and then at a corner there could be more than one Robin condition. Therefore, 1q , 2q ,

3q , and f could be multi-valued. Boundary condition can be expressed just as Eq. 9 for 
conciseness. It will be explained later on how boundary conditions will be treated at a point where 
more than one boundary condition exists. In seeking the numerical solutions, the entire domain is
distributed with N  nodes as needed. At each node,  is approximated as







m

i
ijijxx

Xpxx
j

1
)()(ˆ)(      (11) 
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in which jX x x  is the relative position vector, ( )ip X is the thi monomial of the polynomial, 
and ji are coefficients to be determined. The subscript j indicates that this approximation is valid
only in the vicinity of jx . Once a new jx is chosen, there will be a new set of ji . For a 2-D
problem, the monomials are  

   XYYXYXmiXpi
221~1),(      (12) 

in which X X i Y j  .  The value of m is related to the chosen degree of the polynomial. Here 
the error residual of the local approximation around jxx  is defined as

 2

1

ˆ ( ) ( )
N

j jl l j l
l

E W x x 


   
      (13) 

where jlW is a weighting factor determined by the distance between jx and lx . Usually, the 
normalized Gaussian function is selected for determining the weighting factor

2exp( ( / ) ) exp( )
,

1 exp( )
0 ,

jl j
jl j

jl

jl j

r
r

W

r

  





   
  

 

    (14) 

where jlr is the distance between jx  and lx  (i.e. jl l jr x x  ),  is the shape parameter, and j is 
the supporting range measured from the point of jx . Considering only the non-zero terms, Eq. 13
can be rewritten as

 2

1

ˆ ( ) ( )
n

j jk k j k
k

E W x x 


   
      (15) 

where k is the local index of lx in the thj  sub-domain and n is number of nodes inside the sub-
domain. The coefficients of the local polynomial corresponding to the minimal error residual at the 
node jx under the condition that 

        22 2
1 1 0

nd ndn ns f f        L B B     (16) 

where ndn is the number of non-Dirichlet boundary conditions at the node jxx  , can be expresses 
as

 j
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where k jkw W , ( )k kx  , ( )ki k i k ja w p x x  , and 'w W  . In case of ndn in Eq. 16 is 
greater than 1, it obviously indicates that the collocation point rests on an edge or at a corner. At an 
internal node, there is only one term in Eq. 16 (i.e. 0ndn ). The symbol W  represents a penalty 
weighting factor whose value is much greater than 1. Assembling the local approximations into a 
global matrix system, one gets

     1 1N N N N
b

  
      (23) 

In case that the value of   is known at jx , the entities in Eq. 23 are

1, if  
0, otherwisejl

j l
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       (28) 

It should be noted that the symbol k in Eqs. 19, 21, 26 and 28 is the local index of lx in the 
thj  sub-domain. The approximated partial derivatives of the solution, which are related to the 

coefficients of the local polynomial approximation, can then be determined by 
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The shape parameter  in the normalized Gaussian function has been shown to be insensitive by 
Wu and Tsay (2013). Analyses of the convergence rate of nodal resolution were also carried out by 
Wu and Tsay (2013) while related analysis of nodal arrangement has been done by Wu et al (2013).
The suggestions of Wu and Tsay (2013) for choosing the values of the shape parameter  , the sub-
domain size j , the penalty weighting factor W  are followed. Therefore, in this study, 22  , j

equal to 1.05 times of the distance from jx to its 25th nearest neighboring node, and 410W   are 
used in all numerical computations. 

Applications and Verifications 

Description of the test problem 

For testing their numerical model, Liu and Lin (2008) carried out a sloshing experiment. The layout 
of the experiment is shown in Figure 1. The non-breaking case with the strongest nonlinear effect in 
the experiment is chosen as the verification of present model. The period of the oscillation is 1.0372 
sec. The amplitude of the oscillation is 0.5 cm. 

Figure 1.  Layout of the sloshing experiment of Liu and Lin (2008) 

Model setup 

Discretizing a wave length with at least 20 segments, the initial nodal spacing on the free surface is 
chose as 5.18 cm. The collocation points are initially distributed as a hexagonal close packing array
so that the most compact nodal arrangement can be achieved. Therefore, the vertical nodal spacing
on the side walls is 3 cm. Totally, there are 127 collocation points. The time step chosen in the 
simulation is 1/80 of the swaying period.  The initial nodal distribution is shown in Figure 2. 
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Figure 2. Initial nodal distribution of the numerical model

Numerical results

Figure 3 shows the comparison of the numerical results with the experimental data. Very good 
agreement is found. It is also found that the higher the peak grows, the flatter the trough becomes.
This indicates an increase of nonlinear effect as the tank oscillation continues. In the simulation the 
side walls are set to be infinitely high but in the experiment the tops of the two side walls are just 15 
cm high from the still water level. It had not been mentioned in the paper of Liu and Lin (2008) 
what happened when the free surface elevation goes higher than the height of side walls. In present
simulation, free surface elevation goes over the top of the right side wall at 6.184 sect  . This 
might be the reason why the simulated   in the last wave period are slightly higher than observed. 
Figure 4 shows the positions of the traced fluid particles in the time interval of 6.0 ~ 6.5t T T .
This figure shows that at the end of simulation, the run-up becomes much higher than the initial 
water depth. It is an indication of very strong nonlinearity on the free surface. 

Figure 3. Comparison of the numerical results with the experimental data

Figure 4. Snapshots of traced fluid particles in the time interval of 6.0 ~ 6.5t T T
Only 9 seconds is needed to simulate this case by using just one processing unit of Intel(R) Core™ 
i7-3370 CPU. The nodal spacing of present model is an order larger than the grid size in the model 
of Liu and Lin (2008). Present model is much more efficient in this case. 
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Conclusions 

A numerical model is presented in this paper by treating water wave phenomenon as potential flow 
of fluid motion with a free surface. The problem is governed by the Laplace equation and subjected 
to nonlinear free surface boundary conditions. The free surface boundary conditions are discretized 
by using the Lagrangian time-marching scheme of Wu and Chang (2011) so that Laplace equation 
is only required to be solved numerically once at each time step. The method chosen for solving the 
Laplace equation is the local polynomial collocation method proposed by Wu and Tsay (2013). 
Present model is applied to the simulations of liquid sloshing in a swaying tank. It is much more 
efficient in a testing problem because CPU time of the simulation takes only seconds. Fairly good 
agreement is found in the comparison with experimental data.  
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Abstract
Recently, the equipments to separate and classify nano-size particles are required in various areas.
The target of the present study is a new solid-liquid separator, which enables us to separate and
classify  nano-size  particles,  to  cut  down  the  water  content  ratio  of  disposed  particles  and  to
accomplish  extremely  high  collection  efficiency.  In  the  present investigation,  we  develope  a
numerical method to simulate  a  gas-liquid-solid three-phase flow, based of the MPS approach to
clarify the flow field inside the separator and mechanism of particle separation. With using our
method, some interactions of three phases, which are difficult to be simulated with the conventional
grid methods, are successfully reproduced.

Keywords: Three-phase flow, Particle method, Particle separator, Nano-scale particle. 

Introduction

Nano-particle  is  expected  to  be very useful  and  promising as  an  advanced  material  in  a  great
number of industries such as automobile, aeronautics, chemistry, pharmacy, food, military and so
on. However, the production and collection of nano-particles are very difficult and cost consuming
with current technologies. For example, the conventional particle separator,  which is a so-called
cyclone, can separate only few-micron-size particles from liquid (Stairmand(1985), Krishna et al.
(2010)), and thus it cannot be applied to nano-particles separation. Therefore, we have to develop an
innovative particle separator, and especially we need a specially-designed nano-particle separator.
Conventionally,  high  performance  separators  adopt  centrifugal  force  generated  from  a  highly
swirling flow or a rotating chamber, to separate particles from liquid. The flow is essentially of
liquid-particle two-phase, highly swirling and turbulent. Moreover, the flow often has a liquid free
surface in the core and air bubbles which are generated during the separation process. Since these
complex flow natures prevent us from measuring and observing the flow and particle behaviours,
the  separation  phenomena  of  particles  from  liquid  have  not  been clarified yet.  Hence, a
numerical simulation is expected to be a useful analytical tool. However, the numerical procedure
itself has not been established due to the difficulties in modelling and computing the multi-phase
and multi-physics flow characteristics.  Therefore,  we   need  urgently  and  strongly  to   focus   on
the development of a new simulation technique that can sufficiently predict the complicated physics
in a nano-particle separation process.

In  the  present  study,  taking  into  account  the  above  backgrounds,  we  try  to  construct  a  new
numerical  modelling  to  reproduce  the  three-phase  (i.e.  liquid-particle-bubble)  flow  in  a  nano-
particle  separator.  A  specially-designed  rotating-type  particle  separator  is  adopted  as  our
computational target. It  consists of coaxial rotating circular pipes. Particle-laden liquid is ingested
from the top of the inner pipe. Since centrifugal force acting on particles in the liquid pushes the
particles radially outward, the particles accumulate on the outer pipe surface, and the liquid forms a
thick rotating film. It is noted that the centrifugal force can be about 3,000 times of the gravitational
force (i.e. 3,000G). In this separation process, air bubbles are often generated in the liquid film on
the outer pipe surface. The mechanism of the bubble generation has not been clarified. It is known
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that the bubble formation degrades the separation performance. Finally, the accumulated particles
are exhausted from the bottom of the outer pipe by the screw propeller mounted on the inner pipe.
Figure 1 shows the schematic view of this separator. For this three-phase flow, a particle method is
employed to model the motions of liquid, particle and air bubble by those of virtual particles. We
use a MPS method as the base numerical procedure because of the simplicity and the relatively
good  predictability  for  liquid  flow and  free  surface.  In  our  modelling,  different  particles  with
different densities are assigned to particles representing liquid, particle and bubble. In the present
study, as the first step of this research, we focus on the bubble formation region. Investigating the
numerical results, it is confirmed that the bubble generation process is naturally and satisfactorily
reproduced by the particle method proposed in the present study.

Figure1 Schematic view of  nano-particle separator

Numerical Procedures

The MPS method proposed by Koshizuka et  al.  (1995) is  adopted  as  the  basic  method of  our
computation because  of  the simplicity  and the feasibility for  liquid flow and  free  surface.  The
governing equations are incompressible Navier-Stokes equations. They can be expressed as

(1)

(2)

In the MPS method, Navier-Stokes equation is divided into pressure part and other part as follows.

(3)

(4)

Time derivation of Equation(1) can be expressed by

(5)

Then the continuity equation is given by

(6)

From Equations (3) to (6), the following equation

2
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(7)

can be obtained. In this equation, the relation that density  is equal to constant density
0

with
incompressible fluid is taken into account.

These  governing  equations  of  Navier-Stokes  and  continuity  equations  involve  gradient  and
Laplacian operaters. In the MPS method, gradient and Laplacian models are prepared to solve the
governing equations. The models can be given as follows

(8)

(9)

where   is  physical  quantity,  d is  number of dimension,  rij is  interparticle  distance  rij=xj-xi and
subscripts  I  and j are the numbers for particle identification.  ni is particle number density that is
calculated by

(10)
and the particle number density calculated with initial particle position is  n0, and initial particle
number density  is calculated with regular particle position of initial state as follow

(11)

wij is a weighting function and weights the interaction according to the interparticle distance rij. The
weighting function wij is generally given by

(12)

where  re is influence radius. The closer particles are, the more influences take place between the
particles  with  this  weighting  function.  And  particles  having  interparticle  distance  larger  than
influence radius re do not interact with each other.

Two-stage algorithm is employed in the MPS method and the time step is divided into two stages.
In  the first stage,  all terms of Equation(2) except pressure gradient  term are calculated and the
temporal  velocities  u* and positions x* of all particles are predicted. Then, the temporal values are
corrected by pressure term,  and the actual  velocities  uk+1 and positions  xk+1 are  obtained in the
second stage.

First, the value of Equation(4) is calculated with using Equation(9), and the temporal values are
expressed as follows

(13)

(14)

Then, the right-hand side of Equation(7) becomes

3
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(15)

where ni* is particle number density calculated from temporal values. Equation(15) is based on the
concept that density is proportional to particle number density. Furthermore, by discretizing the left-
hand  side of  Equation(7),  pressure  is  calculated.  At  this  time,  pressure  of  the  particles  on the
interface which satisfy

(16)
is fixed to zero. And, if there are particles having negative pressure, pressures of the particles are
corrected to zero. Then, Equation(3) is obtained with using Equation(8), and finally the velocities
uk+1  and positions xk+1 are calculated as follows

(17)

(18)

It should be noted that the above-described MPS method has been well validated in various flows.

In order to extend this MPS method to three-phase flows, firstly,  we consider a liquid-gas two-
phase  flow.  A two-phase  flow simulation with the  MPS method is  performed  by dividing the
pressure computation into two steps. This computational technique is employed to prevent gas-
phase particles from flying away (so-called explosion) by the continuous pressure gradient on the
gas-liquid interface,  and gas-phase and liquid-phase particles are calculated simultaneously with
Equations(13) and (14). 

That is, in the first step, only liquid-phase particles are computed ignoring the gas-phase particles.
At this time, pressures of the  liquid-phase particles on the gas-liquid interface are fixed to the
pressure of neighbouring gas-phase particle. In this way, the influences of gas-phase are transfer to
the neighbouring liquid-phase particles. In the second step, the liquid particles that are computed in
the first step are treated as wall particles, and only the gas-phase computation is carried out. By
separating the liquid-phase and gas-phase calculation like this technique, it is not necessary to treat
gas-phase and liquid-phase particles that have large density difference at the same time, and the
instability of computation caused from the large density difference, that is a severe problem for two-
phase flow simulation with a MPS method, is completely avoided.

Finally, a three-phase flow can be simulated by combining the two-phase flow simulation described
above and the trajectory computation of solid particles. The particle trajectories are calculated with
a Lagrangian approach. Solid particles are assumed to be spherical and irrotational. Gravity and
hydrodynamic drag are considered as the forces acting on the solid particles. The motion equation
of a solid particle is given as

(19)

where  FG is  gravitational  force  and  FD is  aerodynamic  (hydrodynamic)  drag  acting  on  a  solid
particle from gas-phase (liquid-phase). The drag can be expressed as follow

(20)

(21)
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(22)

where CD is drag coefficient, Dp is particle diameter, Rep is particle Reynolds number and subscripts
f and s represent fluid (gas or liquid) and solid, respectively.

Computational Conditions

In the present study, we conduct a numerical test for an air-bubble engulfment phenomenon with
the  gas-liquid-solid  three-phase  simulation  procedure  developed  in  the  previous  chapter.  The
computational conditions are listed in Table 1.

Table 1 Computational conditions

In the air-bubble engulfment phenomena, free-fallen solid particles from certain height impact on
the gas-liquid interface and the air-bubbles are engulfed into the water, as illustrated in Figure 2.
This situation mimics the phenomenon occurred in the advanced particle separator (see Figure 1).
The computational domain is  exhibited in Figure 2, and the depth of the water  L = 0.36[m] is
assumed. The materials are air as the gas-phase, water as the liquid-phase and diatom earth as the
solid-phase.

Figure 2 Schematic of air-bubble engulfment phenomenon

Numerical Results and Discussion

For the validation of the developed code, a dam break problem was simulated under the single-
phase  and  the  two-phase  conditions.  Figure  3  compare  the  numerical  results  for  the  temporal
position of water front with the experimental data measured by Koashizuka et al. (1995). From this
figure, the predicted behaviours of single-phase and two-phase simulation repreent the similar trend
of  the  experiment.  The  difference  between  the  single-phase  and  the  two-phase  simulations  is
derived from the maximum speed of interface. In the two-phase simulation, the maximum speed of
interface is slightly larger than that of the single-phase one. In the two-phase simulation, there are
gas-phase  particles  over  the  liquid-phase  particles  column  and  the  liquid-phase  particles  are
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accelerated more rapidly than the ones in the single-phase simulation at the earlier stage of dam
breaking. In the same way, there are gas-phase particles between the interface and the right side
wall, just before the liquid-phase particles reach the right side wall in the two-phase simulation.
Because of these gas-phase particles, high pressure area is formed between the interface and the
right side wall and liquid-phase particles decelerated more rapidly in the two-phase simulation than
in the single-phase simulation. However, the global agreement is very good, and thus we confirmed
that the developed code is sound.

Figure 3 Validation of two-phase simulation

Figure 4 Engulfment of the air bubbles(red) into the water(yellow) by solid particle(blue)
6
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The air-bubble engulfment phenomenon simulated with the gas-liquid-solid three-phase simulation
is discussed here. The computational results are shown in Figure 4. Yellow, red, blue dots represent
liquid-phase, gas-phase and solid-phase particles, respectively. In Figure 4, the engulfment of air
bubbles are apparently observed. Also, the velocity changes of solid particles in gas and liquid-
phase is satisfactorily reproduced (not shown here). The solid particles free-fall in gas-phase, then
reduce their velocities rapidly with impacting to the gas and liquid-phase interface and sink by the
density difference of solid and liquid in the liquid-phase. Furthermore, the interface is deformed by
the impacts of solid particles. The interface bursts at the moment of solid particle impact, then the
gas-phase particles go into the void space of liquid-phase particles. In this way,  air bubbles are
engulfed  into the liquid-phase.  These phenomena are difficult  to  be duplicated  with use of  the
traditional  grid  methods,  and thus  it  is  confirmed that  our  developed method has  the ability to
reproduce  the interferences  of  gas,  liquid and solid  phases.  However,  the response  of  the light
particles (i.e. air) to the faster heavy particles are not completely predicted, and some no-particle
spaces can be found behind the solid  particles  in  Figure  4. This defect should be improved in our
future works.

Summary

In  the present study,  we developed a numerical  method to simulate gas-liquid-solid three-phase
flow, based of the MPS approach. We conducted some numerical tests with liquid single-phase,
gas-liquid two-phase, gas-liquid-solid three-phase simulations. Those are the dam break problem
with  liquid  single-phase  and  gas-liquid  two-phase  simulations  and  the  air-bubble  engulfment
phenomenon with gas-liquid-solid three-phase simulation. In the dam break simulations, the code
validation was fairly conducted, and both of the two computational results  indicated reasonable
agreement with the experimental results. In  the air-bubble engulfment simulation, our numerical
method reproduced the mutual interactions of gas, liquid and solid phases that are difficult to be
predicted with the traditional grid methods. 

In our future works, we are planning to improve the present numerical method, especially for the
occurrence of blank region behind a heavy particle, and apply it to the actual particle separator, in
order to clarify the three-phase flow characteristics and improve the separator performance.
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Abstract
A new immersed boundary-lattice Boltzmann method (IB-LBM) is proposed and 
validated in this work by its application to simulate incompressible viscous flows. 
The conventional IB-LBM based on the lattice Boltzmann equation with external 
forcing term, which contains a boundary velocity to represent the effect that the 
moving boundary exerts on the bounce-back distribution functions, whereas the 
present method use the boundary velocity to compute the momentum exchange in 
terms of the momentum theorem. Moreover, the momentum exchange based IB-LBM 
meets the  Galilean invariance. Numerical examples show that the present method can 
provide very accurate numerical results. 

Keywords: momentum exchange, immersed boundary, lattice Boltzmann method,
fluid structure interaction.

Introduction

In computational fluid dynamics(CFD), a primary issue is the development of 
accurate, efficient treatments of complex and moving boundaries. Many researchers 
have developed various numerical methods to resolve this issue. Conventional
approaches such as finite difference, finite volume and finite element methods are 
generally used to accommodate complex geometries with tedious grid generation. 
However, the recently developed immersed boundary method (IBM) and lattice 
Boltzmann method (LBM) can handle complex geometry with the use of Cartesian 
mesh. 

The IBM was introduced by Peskin (1977), it can be defined as a non-body-
conformal grid method which adds a force density term either explicitly or implicitly 
to the flow governing equation to satisfy the no-slip condition on the boundary. The 
adoption of the structured non-body-conformal grid  relieves the burden of meshing 
and reduces the amount of memory and CPU time used compared with unstructured 
body-conformal grids, and the accurate evaluation of the force density term maintains 
a high accuracy.

The LBM in previous work by Qian et al (1992) has achieved a great success in 
simulating complex fluid flows in the past decades. LBM is a particle-based 
numerical technique, it has two processes: streaming and collision. The major 
advantage of LBM is its simplicity, easy for implementation, algebraic operation and 
intrinsic parallel nature. No differential equation and resultant algebraic equation 
system are involved in the LBM.
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In this paper, we couple the immersed boundary method and  lattice Boltzmann 
method, presenting a Galilean invariant momentum exchange equation by introducing 
the relative velocity into the interfacial momentum transfer to compute the boundary 
force. The present method is validated by its application to simulate the steady flows 
past a circular cylinder. The obtained results are compared well with those available 
in the literature.

Momentum Exchange-based Immersed Boundary-Lattice Boltzmann Method

Lattice Boltzmann model

The Lattice Boltzmann model with single-relaxation time without a forcing term can 
be written as

                                1( , ) ( , ) [ ( , ) ( , )]eqf t t t f t f t f t    
      x e x x x                 (1)

Where ( , )f t x is the density distribution function at position x and time t , eqf is 
its corresponding equilibrium state,  is the single relaxation parameter, e is the 
particle velocity. For the D2Q9 model as shown in the work by Qian et al (1992), the 
velocity set is given by
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Where /c x t  , x and t  are the lattice spacing and time step. For the case of 
x t  , c is taken as 1. The corresponding equilibrium distribution is 
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e u e u                                   (3) 

With 0 1 2 3 4 5 6 7 84 9,  1 9,  1 36w w w w w w w w w         , 3sc c is the 

sound speed of the model. The density and velocity can be directly evaluated by 
taking the zeroth and first moments of particle density distribution functions, 
respectively:

eqf f 
 

                                               (4) 

eqf f   
 

   u e e
     

                                     (5) 

and the kinematic viscosity  is determined by

21( )
2 sc t                                                    (6) 
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When external forces exist, such as gravity. In the lattice BGK model, it is known that 
the whole force could be added to the lattice Boltzmann equation as shown in the 
work by Guo et al (2002). In the present model, the boundary force can be evaluated 
by momentum exchange method.

Immersed boundary method

The interaction between the boundary grid-points and fluid nodes in the immersed 
boundary method can be expressed as

( , ) ( , ) ( )t t ds


 F x g X x X                                    (7) 

Where ( , )tF x is the force generated by the boundaries onto the fluid, ( ) x X is 
the Dirac delta function, ( , )X YX is the coordinate of Lagrangian boundary points, 

( , )tg X is the Lagrangian force density.

The discretized form of Eq. (7) using a regularized discrete delta function ijD are 
expressed as

( , ) ( , ) ( )ij l ij ij l l
l

t t D s  F x g X x X                               (8) 

where ls is the arc length of the boundary element.

The discrete delta function ijD appearing in Eq. (8) is a smoothed approximation to 
the Dirac delta function ( ) x X . The detailed derivation procedures and several 
forms were presented by Peskin (2002). We apply the common form as follows:

2

1( ) ( ) ( )ij l ij l
ij ij l h h

x X y Y
D x X

h h h
 

 
                               (9) 

with 

1 (1 cos( ))         2
( ) 4 2

0
h

a
a

a
otherwise




   


                          (10)

where xh  is the lattice spacing, the integral of function ( )h a is equal to one.

boundary force calculation

In the conventional immersed boundary-lattice Boltzmann method, the penalty 
method in previous work by Feng et al (2004) or the direct forcing method as shown 
in the work by Fadlun et al (2000) was proposed to calculate the boundary force 

( , )tF X . Recently, a simple method for computing the boundary force was proposed 
as shown in the work by Niu et al (2006), in which the momentum exchange at the 
boundary is used to compute the force, however, the computed forces at the boundary 
have some oscillations. We use a novel momentum exchange at the boundary to 
compute the boundary force in the previous work by Wen (2013). 

The force on the fluid-structure boundary can be written as
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( , ) ( ) ( , ) ( ) ( , )l t f t f t   


     F X e u x e u x
             

(11)

Here ( , )f t x indicates the mass component straming into the boundary and 
contributing a momentum increment ( ) ( , )f t e u x to the boundary, while ( , )f t x
streams out of the boundary and contributes a momentum decrement ( ) ( , )f t e u x . 

The total boundary force TF and the torque TT exerted on the boundary points are 
expressed as
                                                ( , ) ( , )T l l l

l

t t s F X F X
                                       

(12) 

                                               ( ) ( , )T l l l
l

t s   T X R F X
                                     

(13) 

where R is the mass center of the structure, and the summation runs over all the fluid
structure boundary.

Flows past a circular cylinder

In order to examine the accuracy and efficiency of the proposed immersed boundary-
Lattice Boltzmann method (IB-LBM), numerical simulations of the viscous flow past 
a circular cylinder are carried out. The computational domain is set by 22 22D D , D
is the diameter of circular cylinder, the free stream velocity u is taken as 0.05, and 
the free stream density  is set to be 1.0, The drag and lift coefficients are defined 
by

20.5
D

d

F
C

u D 

         ,     20.5
L

l

F
C

u D 


                     

(14) 

Where the drag force DF and the lift force LF on the immersed body are calculated as

1
1 1 1

1

d ( d ) ( ) ds
d

i
D R

i

uu
F u R u pn

t x x




              
  u n

            
(15) 

2
2 2 2

2

d ( d ) ( ) ds
d

i
L R

i

uu
F u R u pn

t x x




              
  u n

        
(16)

Where n is the normal vector to the boundary of control surface, the subscripts 1 and 
2 denote the x-direction and y-direction. Figure 1 shows the distribution of drag 
coefficients versus the Reynolds number in logarithmic scale. Obviously, the present 
results compare very well with the experimental data as shown in the work by Tritton 
(1959) and other numerical results by Niu et al (2006) and Wu et al (2009). Table 1 
displays the comparison of  non-dimensional length of recirculating  eddy /L D , here 
L is the length of the recirculating region. Comparing the present method and other 
research work at Re 20 and Re = 40 , we can see that our numerical results are in 
good agreement with previous ones.
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Figure 1.  Comparison of drag coefficients  

 TABLE 1. Comparison of recirculating length (L/D) with previous studies

Authors                                                Re=20                                          Re=40
Dennis and Chang (1959)                   0.94                                             2.345
Nieuwstadt and Keller (1973)             0.893                                             2.179
Coutanceau and Bouard (1977)         0.93                                              2.13
Fornberg (1980)                                 0.91                                               2.24
He and Doolen (1997)                          0.921                                             2.245
Tseng and Ferziger (2003)                      --                                                2.21
Shu and Liu (2007)                              0.90                                               2.20 
Present                                                  0.92                                              2.26

Conclusions

we couple the immersed boundary method and  lattice Boltzmann method, presenting 
a Galilean invariant momentum exchange equation by introducing the relative 
velocity into the interfacial momentum transfer to compute the boundary force. The 
present method preserves the merits of the LBM and the IBM by using two unrelated 
computational meshes, an Eulerian mesh for the flow domain and a Lagrangian mesh 
for the moving boundaries in the flow. The simplicity of the Eulerian mesh facilitates 
the numerical implementation of the LBM, and the generality of the Lagrangian mesh 
makes it easy to handle complex boundaries.  
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The present method is validated by its application to simulate the steady flows past a 
circular cylinder. The obtained results are in good agreement with available data in 
the literature.
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Abstract
The scaled boundary finite element method (SBFEM) is a semi-analytical method, 
whose versatility, accuracy and efficiency are not only equal to, but potentially better 
than the finite element method and the boundary element method for certain 
problems. This paper investigates the possibility of using Fourier shape functions in 
the SBFEM to form the approximation in the circumferential direction. The shape 
functions effectively form a Fourier series expansion in the circumferential direction,
and are augmented by additional linear shape functions. The proposed method is 
evaluated by solving elastostatic problems. The accuracy and convergence of the 
proposed method is demonstrated, and the performance is found to be better than 
using polynomial elements or using an element-free Galerkin approximation for the 
circumferential approximation.

Keywords: Scaled boundary method; Fourier shape functions; computational
accuracy; stress singularities; unbounded domains

Introduction
The scaled boundary method (SBM) is a semi-analytical method developed 

relatively recently by Wolf and Song (Wolf and Song, 1996). The method introduces 
a normalised radial coordinate system based on a scaling centre and a
(usually taken as the boundary). The governing differential equations are weakened in 
the circumferential direction and then solved analytically in the normalised radial 
direction. The SBM combines the advantages of the Finite Element Method (FEM) 
and the Boundary Element Method (BEM), and, unlike the BEM, no fundamental
solution is required. In addition, the SBM has been shown to be more efficient than 
the FEM for problems involving unbounded domains and for problems involving 
stress singularities or discontinuities (Deeks and Wolf, 2002). Effective applications 
of this method have been demonstrated in various problem domains, including
fracture problems and foundation problems. 

In the scaled boundary method, the discretisation approach used in the 
circumferential direction has significant influence on the accuracy of the resulting
solutions (Deeks and Augarde, 2005). The most commonly used method for 
performing this circumferential discretisation is the finite element approach, leading 
to the method called the scaled boundary finite element method (SBFEM). Vu and 
Deeks (Vu and Deeks, 2006, 2008a, 2008b) investigated the use of higher-order 
polynomial shape functions in the SBFEM, and demonstrated the SBFEM converged 
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significantly faster under p-refinement than under h-refinement. The development of 
meshless methods provided another approach to building circumferential
approximations for the scaled boundary method. Deeks and Augarde (Deeks and
Augarde, 2005) developed a Meshless Local Petrov-Galerkin method scaled 
boundary method (MLPG-SBM) and and He et al (He et al, 2012) developed an
Element-free Galerkin scaled boundary method (EFG-SBM). This work showed that 
these two meshless scaled boundary methods gave a higher level of accuracy and rate 
of convergence than the conventional SBFEM using linear or quadratic elements,
with the EFG-SBM performing slightly better than the MLPG-SBM.

In this paper, the possibility of using shape functions based on the terms of a
Fourier series for the circumferential approximation of the SBFEM is investigated.
Fourier interpolations containing trigonometric functions have been applied to both 
the finite element method (FEM) and the boundary element method (BEM). For 
example, Guan et al. (Guan et al, 2006) developed a Fourier series based FEM for the
analysis of tube hydroforming, and showed that this Fourier shape function reduced 
the number of degrees of freedom required. Javaran and Khaji (Javaran, 2011; Khaji 
and Javaran, 2013) applied Fourier radial basis functions into the BEM, and showed
that the resulting BEM is much more accurate than the BEM using classic Lagrange 
shape functions. Although the advantages of Fourier based FEM and BEM have been 
illustrated in previous work, to date there has been no work reported on the use of
Fourier shape functions in the SBFEM. 

A new Fourier-based scaled boundary method (F-SBM) is presented in this
paper. A set of shape functions based on Fourier series expansion is derived, and 
augmented with linear shape functions. The new shape functions provide good 
approximation to both trigonometric and polynomial functions in the circumferential 
direction of the scaled boundary system. In the numerical example, the F-SBM is 
used to solve a two-dimensional elastostatic problem. The accuracy and convergence 
of F-SBM is compared with the conventional SBFEM using both linear and quadratic 
elements and with the EFG-SBM. Superior performance in terms of both accuracy
and convergence is demonstrated.

A Fourier shape function
This paper employs shape functions obtained from the well-known Fourier series. 

Based on the theory of the Fourier series, any continuous function ( )f r maybe 
represented by a series of trigonometric functions as 

0
1 max max

( ) cos sinn n
n

n n
f r a a r b r

L L
 



    
           

 (1)

where  0a , na , nb and maxL represent the Fourier series parameters.
Thus on the boundary at 1  , the displacement can be approximated as 

0
1

( ) cos sin
m

h j j
j

j j
u s a a s b s

L L
 



              
 (2)

where s is the circumferential coordinate in scaled boundary element, L is the length 
of the boundary and m represents the order of Fourier series.

To preserve C0 continuity between the edges or elements, linear polynomial 
functions terms are added into the standard Fourier approximation as 

1 1
1

( ) cos sin
m

h j j
j

L s s j j
u s a s b s

L L L L
  



                
 (3)
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where 1 and 1 represent the values of the function at the end nodes of the element.
While it is possible to use the Fourier parameters as the unknown boundary 

parameters when solving the scaled boundary finite element equations, here the 
parameters in the Fourier expansion above are transferred to nodal values at equally 
spaced nodes along each element for ease of applying essential boundary conditions 
and enforcing C0 continuity between elements. If  2 2m  nodes are used, the nodal 

values vector  u can be related to the parameters in Equations (3) by

   ˆ[ ]u T u (4)

where     1 1 1 1ˆ T
m mu a a b b  , and [ ]T is a transfer matrix assembled

as
( ) , 1, 2 2 2ij j iT S i j m   (5)

where iS is the circumferential coordinate of the ith node, and the component 
functions of the Fourier expansion are

1

( 1)cos 2 1
( )

( 1 )sin 2 2 1

2 2

i

L s
i

L
i

s i m
L

s
i m

s m i m
L

s
i m

L






 


        
         


  


(6)

Inverting Equation (4), the parameters  û in Equation (3) can be related to the 
nodal values {uh} by

   1ˆ [ ]u T u (7)
Thus the approximation for displacement can be rewritten as 

   1( ) [ ]hu s T u  (8)
The shape functions relating to the nodal displacements are hence 

    1[ ]T   (9)
and the shape function matrix for the scaled boundary method then becomes

1 2 2

1 2 2

( ) 0 ... ( ) 0
[ ( )]

0 ( ) ... 0 ( )
m

m

s s
N s

s s
 

 




 
  
 

(10)

Figure 3 plots these Fourier shape functions for m = 2, where 6 nodes are 
required.         
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Figure 1 The Fourier shape functions for order 2m 

Performance of the method

An infinite plate with a through crack

The example refers to the problem of determining the mode I stress intensity 
factor (SIF) IK for a through crack in an infinite plate, as illustrated in Figure 9. The 
applied stress 0 1  . Due to the symmetry, one quarter of the problem is modelled,
as shown in Figure 3, with the model consisting of a bounded domain, with the 
scaling centre at the crack tip (point E), and an unbounded domain, with the scaling 
centre at the middle of crack (point A). The nodes are introduced on the edges AB, 
BC and CD with uniform spacing, ds . The problem has an exact solution, 

0 2IK a  .

Figure 2 Infinite plate with a through crack: geometry and loads

( )s

6
5432

1

s

919



5

Figure 3 Scaled boundary model of an infinite plate with a through crack.

In Table 1 the F-SBM solutions are compared with the SBFEM with linear 
elements and the EFG-SBM with linear basis. The results show that the F-SBM 
achieves high accuracy for SIF, for example, a relative error as low as 0.0000555% 
can be obtained using 53 nodes. In comparison with SBFEM and EFG-SBM, it can 
be seen that F-SBM has higher accuracy when the same number of nodes are used. 

Table 1 The results of SIF using F-SBM

Number 
of 

nodes
F-SBM Error% SBFEM

(Linear) Error% EFG-SBM
(Linear) Error% Exact

Solutions

13 1.773047828 3.35e-2 1.765973947 3.65e-1 1.770648223 1.02e-1

1.772453851

21 1.771909603 3.07e-2 1.770015354 1.37e-1 1.772806367 1.99e-2

28 1.772534634 4.56e-3 1.771193770 7.11e-2 1.772432519 1.20e-3

37 1.772441208 7.13e-4 1.771691632 4.30e-2 1.772372556 4.58e-3

45 1.772455534 9.49e-5 1.771443822 5.69e-2 1.772495119 2.33e-3

53 1.772452866 5.55e-5 1.771456952 5.62e-2 1.772400534 3.01e-3
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Conclusions
A new SBFEM using Fourier shape functions is presented in this paper. The 

shape functions are based on the Fourier series expansion and augmented with
additional linear shape functions terms. By using a transfer matrix, the nodal values 
are related with Fourier parameters, and in this way the essential boundary conditions 
can be conveniently handled. In the numerical example, the new approach has been
shown to yield higher accuracy and faster convergence in comparison with the 
SBFEM using linear or quadratic elements and the EFG-SBM using linear or 
quadratic basis. 
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Abstract

In Computational Fluid Dynamics, the physical representation of immersed objects within the com-
putational domains leads to the loss of validity of the employed Finite Difference Schemes due to
Jump Discontinuities. This paper analyses an Immersed Interface Method regarding its performance
in High Order Schemes applications in the presence of such conditions. The error decay order of one
1D problem is observed. It is related to the computation of the first two derivatives of the Sin function.
The results indicate eventual changes in the decay order of the original Finite Differences Schemes.
This behaviour is investigated by a fragmented analysis of the method, which indicates a limitation
of one of its numerical sub-steps. Finally, some remarks regarding restrictions to this method’s appli-
cability are presented.

Keywords: Immersed Interface Method, Immersed Boundary Method, Compact Schemes.

Introduction

This article is intended to provide outlines and to investigate limitation(s) of the Immersed Interface
Method, as proposed by (Linnick and Fasel, 2005) and (Wiegmann and Bube, 2000).

This method has been designed to provide for high-order (4th order and above) flow simulations
around complex shape bodies. It’s suited for problems such as the evolution of Tollmien-Schlichting
waves and other problems that require high near-wall accuracy. One of its key advantages is the
possibility of working with fixed, stationary grids, even if the immersed geometry moves within the
domain. It’s intended to significant reduce the overall computational cost.

This method has been extensively analysed by the authors and, though its mathematical formulation
does cope with the necessity of order maintenance, one of its inner steps seem to have restrictions
regarding grid refinement. This is investigated through its employment to accomplish a simple cal-
culation, that of the second derivative of a sine function over an uniform grid. The reason behind
the selection of the sine function falls beyond the existence of an analytical solution to be compared
with the numerical one. It lies on the fact that the sine function has an infinite number of derivatives.
This is of particular importance not only in order to compare the final solutions, but also in order to
perform individual tests throughout the IIM’s substeps. This will become clearer later on.

The Immersed Interface Method

In general, Compact Schemes employed are based upon Taylor Series expansions. If the function
is not continuous, these become not valid. Nevertheless, suitable corrections to them can still be
applied. The IIM method described below builds upon the variant proposed by (Linnick and Fasel,
2005), which, in its turn, is based upon the original work from (Wiegmann and Bube, 2000). It pro-
vides the guidelines to calculate the aforementioned corrections when a function is subjected to Jump
Discontinuities such as the one indicated at figure 1. The numerical discretization is performed here
through the use of a fourth-order accurate Compact Scheme, in conjunction with the Immersed Inter-
face Method, IIM.

The method is depicted here taking as an example the following approximation of a function’s first
derivative through the use of a Compact Scheme (second and higher order derivatives follow the same
guidelines). Assuming that it consists of a set of equations of the form:

L1,i−1f
′(x(i− 1)) + L1,if

′(x(i)) + Li+1f
′(x(i+ 1)) =

= R1,i−1f(x(i− 1)) +R1,if(x(i))+R1,i+1f(x(i+ 1))
(1)

Where the coefficients Ln,i+m e Rn,i+m represent Padé Schemes coefficients, with n refering to the
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f(x)

 

 

f⊕ branch

f� branch

xαxi xi+1xi−1xi−2 xi+2

Figure 1. Jump Discontinuity Introduced at the point xα

n-th order derivative (0 refers to the function value itself), and the letters L and R indicating left and
right coefficients, respectively.

These equations are based upon Taylor Series expansions over different grid points. As those expan-
sions presume function continuity, it becomes clear that the presence of Jump Discontinuities requires
some kind of correction to be employed in order to maintain their validity.

Two situations might take place according to where the Jumps are placed, relatively to the interface.

Assuming a scheme centered at the point i, the point at which the function needs to be corrected
can be either i + 1 or i − 1. These situations are respectively represented as fn, n = 0, 1, 2, 3, . . .
superscripts � and ⊕. The negative sign refers to the branch of function downstream the immersed
interface, whereas the positive sign refers to the upstream branch.

Jump Correction for the Downstream Branch Based Scheme

Further simplifying the following terms:

f�,⊕(x(i+ 1)) = f
�,⊕

i+1 (2)

f
′
�,⊕(x(i+ 1)) = f

′
�,⊕

i+1 (3)

The equation 1 then becomes:

L1,i−1f
′
�

i−1 + L1,if
′
�

i + L1,i+1f
′
�

i+1 = R1,i−1f
�

i−1 +R1,if
�

i +R1,i+1f
�

i+1 (4)

In this case, the Jump is introduced in the region x(i) < xα < x(i + 1). This is imposed when
boundary and interior conditions are applied to satisfy the presence of a physical object within the
domain. With that particular introduction, the scheme, that was entirely based on downstream values,
now computes two downstream (at points i − 1 and i) and one upstream value (at the i + 1-th grid
point). With that in mind, and withouth any correction applied, the equation becomes:

L1,i−1f
′
�

i−1 + L1,if
′
�

i + L1,i+1f
′
⊕

i+1 = R1,i−1f
�

i−1 +R1,if
�

i +R1,i+1f
⊕

i+1 (5)

At this stage there’s the need to introduce the Jump Correction Term, which intends to be a workaround
to that problem. Following the definition provided by (Linnick and Fasel, 2005), this term shall, here-
inafter, be represented as Jn

α,i+m. Its meaning shall be elucidated below.

The next challenge is to find expressions for those corrections. Expanding f(x(i+1)) through Taylor

Series both to the left and to the right side of the interface, and naming these expansions as f�i+1 and

f⊕i+1, one has:

f⊕i+1 = f⊕α + f 1⊕
α dx+

α +
f 2⊕
α (dx+

α )
2

2!
+ · · ·+

fn⊕
α (dx+

α )
n

n!
(6)

f�i+1 = f�α + f 1�
α dx+

α +
f 2�
α (dx+

α )
2

2!
+ · · ·+

fn�
α (dx+

α )
n

n!
(7)

With:

dx+
α = x(i+ 1)− xα (8)

fn⊕,�
α = lim

x→xα
+,−

fn(x) (9)
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If one relates f⊕i+1 to f�i+1 then it’s possible to equal this expression to a term called J0�
α,i+m, which

ultimately results in:

J0�
α,i+1 = f⊕i+1 − f�i+1 (10)

This becomes, upon manipulation:

J0�
α,i+1 = [f 0

α] + [f 1
α]dx

+
α + [f 2

α]
(dx+

α )
2

2!
+ · · ·+ [fn

α ]
(dx+

α )
n

n!
(11)

With:

[fn
α ] = lim

x→x
+
α

fn(x)− lim
x→x

−

α

fn(x)

After this procedure, it becomes obvious why the term J0�
α,i+1 is called Jump Correction Term, and

one could proceed similarly to obtain an expression for J1�
α,i+m:

J1�
α,i+1 = [f 1

α] + [f 2
α]dx

+
α + [f 3

α]
(dx+

α )
2

2!
+ · · ·+ [fn

α ]
(dx+

α )
n−1

n− 1!
(12)

These manipulations lead to the corrected equation of the form:

L1,i−1f
′
�

i−1 + L1,if
′
�

i + L1,i+1f
′
⊕

i+1 =

= R1,i−1f
�

i−1 +R1,if
�

i +R1,i+1f
⊕

i+1 − (R1,i+1J
0�
α,i+1 + L1,i+1J

1�
α,i+1)

(13)

Jump Correction for the Upstream Branch Based Scheme

The development for this case follows the same guidelines as those from the previous section. Con-
sidering an approximation to the first derivative:

L1,i−1f
′
⊕

i−1 + L1,if
′
⊕

i + L1,i+1f
′
⊕

i+1 = R1,i−1f
⊕

i−1 +R1,if
⊕

i +R1,i+1f
⊕

i+1 (14)

That becomes:

L1,i−1f
′
�

i−1 + L1,if
′
⊕

i + L1,i+1f
′
⊕

i+1 = R1,i−1f
�

i−1 +R1,if
⊕

i +R1,i+1f
⊕

i+1 (15)

Using the following Taylos Series expansions around xα:

f⊕i−1 = f⊕α − f 1⊕
α dx−α +

f 2⊕
α (dx−α )

2

2!
+ · · ·+ [−1(n)]

fn⊕
α (dx−α )

(n)

(n)!
(16)

f�i−1 = f�α − f 1�
α dx−α +

f 2�
α (dx−α )

2

2!
+ · · ·+ [−1(n)]

fn�
α (dx−α )

(n)

(n)!
(17)

f 1⊕
i−1 = f 1⊕

α − f 2⊕
α dx−α +

f 3⊕
α (dx−α )

2

2!
+ · · ·+ [−1(n−1)]

fn⊕
α (dx−α )

(n−1)

(n− 1)!
(18)

f 1�
i−1 = f 1�

α − f 2�
α dx−α +

f 3�
α (dx−α )

2

2!
+ · · ·+ [−1(n−1)]

fn�
α (dx−α )

(n−1)

(n− 1)!
(19)

Where:

dx−α = xα − x(i− 1) (20)

fn⊕,�
α = lim

x→xα
+,−

fn(x) (21)

And the following definitions:

J0⊕
α,i−1 = f�i−1 − f⊕i−1 (22)

J1⊕
α,i−1 = f ′�i−1 − f ′⊕i−1 (23)
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The Jump Correction Terms are then written as:

J0⊕
α,i−1 = −[f

0
α] + [f 1

α]dx
−

α − [f 2
α]
(dx−α )

2

2!
+ · · ·+ [−1(n+1)][fn

α ]
(dx−α )

n

n!
(24)

J1⊕
α,i−1 = −[f

1
α] + [f 2

α]dx
−

α − [f 3
α]
(dx−α )

2

2!
+ · · ·+ [−1(n)][fn

α ]
(dx−α )

(n−1)

(n− 1)!
(25)

Where:

[fn
α ] = lim

x→x
+
α

fn(x)− lim
x→x

−

α

fn(x)

Finally, the corrected first derivative equation:

L1,i−1f
′
�

i−1 + L1,if
′
⊕

i + L1,i+1f
′
⊕

i+1 =

= R1,i−1f
�

i−1 +R1,if
⊕

i +R1,i+1f
⊕

i+1 − (R1,i−1J
0⊕
α,i−1 + L1,i−1J

1⊕
α,i−1)

(26)

Nevertheless, it’s yet to be shown how to obtain approximations to those Jump Terms. The only val-
ues know at each iteration of the method are function values themselves. So the only option available
is to combine them in such a way that all derivatives at the immersed interface can be estimated ac-
cordingly. For the case depicted at this subsection, the desired system can be represented by:

f(xα) = cα,1f(xα) + ci+1,1f(xi+1) + ci+2,1f(xi+2) + . . .+ ci+n,1f(xi+n)
f 1(xα) = cα,2f(xα) + ci+1,2f(xi+1) + ci+2,2f(xi+2) + . . .+ ci+n,2f(xi+n)

... =
... +

... +
... +

... +
...

fn(xα) = cα,nf(xα) + ci+1,nf(xi+1) + ci+2,nf(xi+2) + . . .+ ci+n,nf(xi+n)

(27)

With fn(xα) = fn
α and f(xi+n) = f 0

i+n, its matrix representation is:⎛
⎜⎝

f 0
α

f ′α
...

fn−1
α

⎞
⎟⎠ =

⎛
⎝ 1 0 0 . . . 0

cα,2 ci+1,2 ci+2,2 . . . ci+n,2
...

...
...

...
...

cα,n ci+1,n ci+2,n . . . ci+n,n

⎞
⎠

×

⎛
⎜⎜⎝

f 0
α

f 0
i+1
...

f 0
i+n

⎞
⎟⎟⎠ (28)

The Weierstrass’s theorem states that if a function f(x) is continuous over a finite interval a ≤ x ≤ b
then it can be approximated as closely as wanted by a power polynomial, provided this polynomial’s
order is sufficiently large. So, one may want to represent the function values in successive points
close to the immersed interface through Taylor Series expansions (according to (Linnick and Fasel,
2005), the fist neighbor point shall be neglected):⎛

⎜⎜⎝
f 0
α

f 0
i+1
...

f 0
i+n

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 0 0 . . . 0

1 (dx+
α + dx)

(dx+
α+dx)2

2!
. . .

(dx+
α+dx)n

n!
...

...
...

...
...

1 (dx+
α + ndx)

(dx+
α+ndx)2

2!
. . .

(dx+
α+ndx)n

n!

⎞
⎟⎟⎟⎠ ×

⎛
⎜⎝

f 0
α

f ′α
...

fn−1
α

⎞
⎟⎠ (29)

Using:

[C] = Cn,n =

⎛
⎝ 1 0 0 . . . 0

cα,2 ci+1,2 ci+2,2 . . . ci+n,2
...

...
...

...
...

cα,n ci+1,n ci+2,n . . . ci+n,n

⎞
⎠ (30)

And:

[D] = Dn,n =

⎛
⎜⎜⎜⎝

1 0 0 . . . 0

1 (dx+
α + dx)

(dx+
α+dx)2

2!
. . .

(dx+
α+dx)n

n!
...

...
...

...
...

1 (dx+
α + ndx)

(dx+
α+ndx)2

2!
. . .

(dx+
α+ndx)n

n!

⎞
⎟⎟⎟⎠ (31)
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We can change between systems:

(f) = [D](fn
α ) (32)

[D]−1(f) = [D]−1[D](fn
α ) (33)

Upon close inspection, we conclude that [D] is always invertible. Finally:

[C] = [D]−1 (34)

A brief discussion regarding the order maintenance of these expansions is found in (Linnick and Fasel,
2005). As for the fourth-order Compact Scheme used:

⎛
⎜⎜⎜⎜⎜⎝

1 11 0 . . . . . . . . .
1 10 1 . . . . . . . . .
0 1 10 1 . . . . . .
...

...
...

...
...

...
. . . . . . 1 10 1 0
. . . . . . . . . 1 10 1
. . . . . . . . . 0 11 1

⎞
⎟⎟⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎜⎝

39a −81a 45a −3a . . . . . .
1b −2b 1b 0 . . . . . .
0 1b −2b 1b . . . . . .
...

...
...

...
...

...
. . . . . . 1b −2b 1b 0
. . . . . . 0 1b −2b 1b
. . . . . . −3a 45a −81a 39a

⎞
⎟⎟⎟⎟⎟⎠

With a = 1/3dx2 and b = 12/dx2.

Results

Initial implementations of this method by the authors in full fledged CFD codes showed that the decay
order of the solutions as the grid was progressively refined were not consistent with the order of the
scheme. Considering that the method is modular, the necessity to investigate it in detail has arisen.
The reader should observe that this paper does not compare distinct methods. This investigation re-
gards only the decay order test of the Finite Difference when coupled to a particular IIM. The testing
approach is only applicable in the following and similarly restrictive contexts. Therefore, it cannot
provide ways of improving the method as proposed by (Linnick and Fasel, 2005) for general applica-
tions. From this perspective, a computational cost test was not taken into account.

From the mathematical formulation of the method, as presented by (Wiegmann and Bube, 2000), to
the numerical application as proposed by (Linnick and Fasel, 2005), the main change regards the
Jump Correction Terms. The former presents the mathematical correction needed to maintain a re-
quired scheme order. This is accomplished if all function jumps are know at each time step. This
is true for functions with analytic solutions. If these jumps are not known, then there will be the
necessity to provide approximations to them.

What is presented by (Linnick and Fasel, 2005) is that all Jump Terms can be approximated by linear
combinations of the function value themselves. Taking all these considerations into account, a simple
test has been conducted to precise the impact of the Jump Correction Terms approximations as pre-
sented by (Linnick and Fasel, 2005).

This has been achieved by the the application of the method to the calculation of the first two deriva-
tives of the sin(x) function over a domain length of L = 10 (the selected profile is shown in figure
. As seen on the figure, the curve is subjected to jump discontinuities at two domain points, namely
xα1 = 1.97875 and xα2 = 8.02125. These points have been purposely selected not to coincide with
grid points even for the most refined grid.
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Figure 2. Jump Discontinuity Introduced at the points xα1 and xα2
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One of the key aspects of this approach is that all Jump Terms could be calculated not only by approx-
imation of the function values themselves, but also by the analytical values of any of their derivatives
(in fact, the Jump Correction Terms for the sin(x) function could be calculated based upon polyno-
mials as big as needed, once the function has infinity derivatives). The Jump Terms based upon exact
derivatives would lead to the maintenance of the original scheme’s order, according to the method
introduced by (Wiegmann and Bube, 2000). The results presented here concentrate mainly on the
analysis of the differences between these two applications. For the sake of this comparison, from now
on a Jump Term will be simply named ’Analytical Jump Term’ and the numerical one, ’Numerical
Jump Term’. The reader should recall that The Numerical Jump Term, as already seen, is an approx-
imation of the derivative by a linear combination of the function values themselves. One important
note about this application is that this procedure has been executed for both the forward and the back-
ward Taylor Series expansions, which are respectively representative of the two discontinuity points,
xα1 and xα2 .

The first results regard an extensive check up of all these derivative approximations obtained by the
matrix inversion process described. These were executed within the code and then compared to the
same procedures executed by the commercial software Wolfram Mathematica. Tables 1 and 2 present
results for given combinations of grid points and derivative order, at the point xα1 . In these tables, the
’Calculated value’ field refers to the approximation calculated by the authors’s code based upon the
matrix inversion suggested by (Linnick and Fasel, 2005). The plots show two results from Wolfram
Mathematica. The purple line indicates the analytical graphical values of the considered derivative,
whereas the blue one indicates a fitted polynomial which best represent the function at the disconti-
nuity point. The start of the x-axis is the point xα1 .

According to the precision order required (discussed in detail in (Linnick and Fasel, 2005)), each
higher order derivative approximation can be calculated with a progressively decreasing order. Be-
sides, this precision requirement implies the approximation of a number of derivatives for given
scheme and derivative orders. In this case, 4th-order schemes are employed to the calculation of
the first two derivatives of a function. Consequently, the Jump Correction Terms must include up to
the fifth derivative approximation. The whole set of results has not been shown for the sake of avail-
able space. Nevertheless, it’s important to note that this has been done for each derivative of each
of the tested grids, at both points. The reader should also recall that this procedure should be done
from the first to the fifth derivative, which are the required ones for the calculation of up to the second
derivative with 4-th order.

Table 1. First, fourth and fifth derivatives at xα1 = 1.989375 - 21 points grid

21 points grid

1st Derivative 4th Derivative 5th Derivative

Calculated value Calculated value Calculated value

−406.8457641830 10−3 1.0887651426 −943.4528052418 10−3

Analytical value Analytical value Analytical value

−406.4622438469 10−3 913.6675786778 10−3 −406.4622438469 10−3
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�800

�600

�400

�200

2.5 3.0 3.5 4.0 4.5

�1000

�500

500

1000

2.5 3.0 3.5 4.0 4.5

�800
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�400

�200

The information from these tables show that the fitted polynomial obtained by the Wolfram Math-
ematica software agrees with the results obtained by the matrix inversion process employed by the
authors’ code at the jump point xα1 = 1.989375, and for all presented derivatives. As the grid is
refined the numerical value approaches the analytical value. Of special attention is the behaviour
exhibited for the 4th and 5th derivative, depicted by the second and third plots from the left. It shows
that the polynomials fitted for all 4th derivatives are of 1st order, and the line for the the 5th derivatives
are constant value lines. That is also an indication that each higher derivative is indeed calculated by
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Table 2. First, fourth and fifth derivatives at xα1 = 1.989375 - 641 points grid

641 points grid

1st Derivative 4th Derivative 5th Derivative

Calculated value Calculated value Calculated value

−406.4622443593 10−3 914.6222546697 10−3 −449.7330188751 10−3

Analytical value Analytical value Analytical value

−406.4622438469 10−3 913.6675786778 10−3 −406.4622438469 10−3

2.02 2.04 2.06 2.08

�460

�440

�420

2.02 2.04 2.06 2.08

890

900

910

2.02 2.04 2.06 2.08

�460

�440

�420

this process with a progressively lower order. Finally, it’s also being demonstrated that this process
implies a lot different than expected values for the derivatives at that point.

After this discussion, figures 4 and 3 show the results from the grid refinement test. This has begun
with a 21 points grid and then has gotten progressively refined to the double of the previous points
number, up to a 641 points grid. The errors’ standards follow the definition found on (da Silva, 2008).
That uses the error norms according to equations 35 and 36. The two plots show the errors L∞ and
L1 for different solutions, with the index n representing the number of grid points.

L1 =

[
j∑

n=1

|fex(n)− fcalc(n)|

]
/j (35)

L∞ = max|fex(n)− fcalc(n)| ; n = 1, 2, . . . , j (36)
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Figure 3. Sin Function - Second Derivative Errors - Analytical Jump Terms (Grid Points Num-

ber vs.Error)
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Figure 4. Sin Function - Second Derivative Errors - Numerical Jump Terms (Grid Points Num-

ber vs. Error)

First, the plot from figure 3 shows the comparison between the results for the IIM with Analytical
Jump Terms and the solution if no Jump Discontinuities were imposed (which implies that the func-
tion would be continuous for any x from 0 to 10). Comparing the error norms from both solutions to
the green 4-th order sample curve it’s shown that the decay order of the scheme is indeed maintained
by the method. It is important to notice that the IIM based upon Analytical Jump Terms not only does
that, decaying to the same order than the original scheme, but also agrees with it when it comes to
absolute values. On the other hand, a direct comparison between the Analytical and the Numerical
IIM (showed in figure 4), shows that the error norms of the IIM based upon the Numerical Jump
Terms are not only considerably higher and inconsistent in terms of decay order, but they also start
to match the Analytical IIM values only for the most refined grid, with 641 points. This behaviour
rises the question of how effective is the approximation of those derivatives at points xαn

by the linear
combination of the function values.

Closer inspection of the equations applied to those approximations shows that the method (as pro-
posed by (Linnick and Fasel, 2005)) requires the same amount of neighbour points to be computed
for each more refined grid, but one can immediately point out that their positions along the coordinate
axis change as the grid becomes more refined. Compared to the domain length, this direct translates
into a collection of points progressively more collapsed as we change from one grid to the next. This
means that the portion of the curve that is actually being computed by this process, and therefore its
shape, also changes from one grid to another.

All these discussion and results show that the method proposed by (Linnick and Fasel, 2005) is not
capable of always maintaining the scheme’s order in the same manner as the original mathematical
formulation by (Wiegmann and Bube, 2000) does. This can have an ultimate effect on the grid
refinement, requiring a great amount of points to reach a desirable error magnitude and diminishing
the advantage of employing a High Order Scheme.
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Abstract 
Grammatical Evolution (GE) is one of the evolutionary computations, which determine function or 
program or program fragment satisfying the design objective, like Genetic Programming (GP). The 
interesting feature of GE is to define the translation rule from the genotype (bit-string) to the 
phenotype (function or program) in advance. The population of individuals (bit-strings) is evolved 
toward better individual by using the translation rule and Genetic Algorithm (GA) search process.  

The aim of this study is to discuss the effectiveness of parallel implementation for GE. The 
parallel implementation is based on simple island model. The whole population is substituted into 
sub-populations. The evolution process is performed individually in subpopulations and some 
individuals are exchanged between subpopulations in any interval. Exchange of individuals is called 
as migration. Better individual migration and randomly selected individual migration are compared.  

The symbolic regression problem is considered as a numerical example. The results show 
that, in random migration, longer migration interval is better for larger sub-population size and 
shorter migration interval is better for smaller sub-population size and that, in better individual 
migration, longer migration interval and larger sub-population size are better.  

Keywords: Grammatical Evolution, Parallel Implementation, Island Model, Symbolic Regression
Problem.

Introduction 

Evolutionary computations are algorithms based on the evolutionary process of living organism. 
Genetic Algorithm (GA) and Genetic Program (GP) are very popular algorithms in this field [1,2]. 
The aim of GA is to find the solution of the optimization problem. Potential solutions are 
represented by individuals as bit-strings. The population of individuals evolves to a better potential 
solution by genetic operators such as selection, crossover, mutation, and so on. Although GP comes 
from GA, their aims are different. GP is designed for finding the function, the program or the 
program fragment satisfying the design objective. The potential solutions, which are represented as 
the individuals in tree structure, evolve toward better solution by genetic operators.  

GP has two difficulties. Firstly, the genetic operators are very complicated and the effect for 
the search process is not obvious. Secondly, during the GP search process, genetic operators often 
generate individuals which lead to invalid function or invalid program or invalid program fragment. 
For overcoming these difficulties, Grammatical Evolution (GE) was presented [3,4]. The interesting 
feature of GE is to define the translation rule from genotype (bit-string) to phenotype (function or 
program) in advance. The translation rule is written in Backus Naur Form (BNF). Once the valid 
translation rule is given, GE can generate the genotypes which lead to valid phenotypes. The search 
process of GE is as follows. Initial population of individuals is defined by randomly generated bit-
strings. Genotypes are translated into the phonotype according to the translation rule and the fitness
is estimated. According to the fitness, the population of individuals is evolved toward better 
solutions by the genetic operators.  
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 Except for the use of the translation rule, the GE search process is very similar to simple GA. 
Therefore, the use of the improved GA algorithm can improve the search process of the original GE. 
The aim of this paper is to use parallel GA for GE. The parallel implementation of GA is studied 
widely [5]. The distributed Genetic Algorithm (DGA) based on Island model is employed in this 
study [6]. In DGA, the population is divided into sub-populations. GA is applied for each sub-
population and then, individuals migrate from one sub-population to the other one at regular 
interval. It is reported that DGA based on island model can find better solution than traditional GA 
using single population. The algorithm is applied for symbolic regression problem in order to 
discuss the search performance.  

Table 1: Example of translation rule 
(A) <expr> ::=

|
<expr><op><expr>
<var>

(A0)
(A1)

(B) <op> ::=
|
|
|

+
-
*
/

(B0)
(B1)
(B2)
(B3)

(C) <var> ::=
|
|

X
Y
Z

(C0)
(C1)
(C2)

Grammatical Evolution 

Algorithm 

The algorithm of the original GE is summarized as follows.  
1. Translation rule is defined in Backus Naur Form (BNF). 
2. Initial population is defined by randomly generated bit-strings. 
3. Genotypes (bit-strings) are translated into phenotypes (function or program) according to the 

translation rule.  
4. Phenotype fitness is estimated. 
5. Population is updated by genetic operators such as selection, crossover and mutation.  
6. If the convergence criterion is satisfied, the process is terminated. Otherwise, process goes to 

step 3.   

Translation from Genotype to Phenotype 

We would like to explain the translation from genotype from phenotype. The translation rule in 
BNF syntax is shown in Table 1. It is shown from this table that the symbol <expr> has two 
candidate symbols <expr><op><expr> and <var> and that the symbol <op> has four candidate 
symbols +, -, * and / and that the symbol <var> has three candidate symbols X, Y and Z. The 
symbols +, -, * and / denote the four arithmetic operators and the symbols X, Y and Z are variables. 
Since the symbol <expr><op><expr> and <var> should be replaced again, they are called as 
recursive symbols. The symbols +, -, *, /, X, Y and Z are called as terminal rules because they are 
not replaced any more.  
 When the start symbol is <expr> and the genotype is given as the binary 
010001111101101110, the genotype is translated according to Table 1 as follows (Table 2).  
1. The binary number  010001111101101110 is translated into the decimal number every 3bits as 

follows.
010001111101101110 2 1 7 5 5 6
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2. The symbol <expr> has two candidate rules and the first decimal number is 2. The remainder of 
the decimal number 2 with respect to the candidate symbol number 2 is 0. Then, the symbol 
<expr> is replaced with <expr><op><expr>.  

<expr> <expr><op><expr>. 
3. Next replaced symbol is the leftmost recursive symbol <expr>. 
4. The symbol <expr> has two candidate rules and the next decimal number is 1. The remainder of 

the decimal number 1 with respect to the candidate symbol number 2 is 1. Then, the symbol 
<expr> is replaced with <var>;  

<expr><op><expr> <var><op><expr>. 
5. According to the similar process, the function Y+X is obtained from the binary number  

010001111101101110.

Table 2:  Symbol replacement process 
Decimal Remainder Target symbol Selected symbol Symbol after replacement

Start <expr>
2 0 <expr> <expr><op><expr> <expr><op><expr>
1 1 <expr> <var> <var><op><expr>
7 1 <var> Y Y<op><expr>
5 4 <op> + Y+<expr>
5 1 <expr> <var> Y+<var>
6 0 <var> X Y+X

Parallel Grammatical Evolution 

Algorithm 

In the present algorithm, the parallel implementation of Grammatical Evolution is performed 
according to Genetic Algorithm based on the island model. The whole population of the individuals 
is divided into sub-populations and then, the original GE is performed at each sub-population. The 
present algorithm is summarized as follows.  
1. Translation rule is defined in Backus Naur Form (BNF). 
2. Initial sub-populations are defined by randomly generated bit-strings. 
3. Genotypes (bit-strings) are translated into phenotypes (function or program) according to the 

translation rule.  
4. Individual fitness is estimated. 
5. Sub-populations are updated by genetic operators such as selection, crossover and mutation.  
6. If the convergence criterion is satisfied, the process is terminated. Otherwise, the process goes 

to next step. 
7. Individuals are migrated from one sub-population to the other one at any interval.  
8. Process goes to step 3.    

Migration 

Migration operator exchanges the individuals between the sub-populations. In this study, two 
migration operators are compared.  
 The individuals to be migrated are selected as follows.  
1. Random migration. 

Immigrant individuals are selected randomly from the sub-populations.  
2. Better individual migration 

Immigrant individuals are selected from the sub-populations according to the descending order 
of the fitness value.  
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The migration frequency is given by the migration interval. The number of the migrated 
individuals is given as the product of the number of individuals and the migration rate. The 
migration topology is fixed.  

Table 3: Translation rule 
(A) <expr> ::=

|
<expr><op><expr>
<var>

(A0)
(A1)

(B) <op> ::=
|
|
|

+
-
*
/

(B0)
(B1)
(B2)
(B3)

(C) <var> ::=
|
|

X
Y
Z

(C0)
(C1)
(C2)

(D) <num>::=
|
|
|
|
|
|
|
|

1
2
3
4
5
6
7
8
9

(D1)
(D2)
(D3)
(D4)
(D5)
(D6)
(D7)
(D8)
(D9)

Table 4: Simulation parameters 
Length of individual 800
Radix conversion bit-size 8 bit
Tournament size 3
Elite size 1
Crossover rate 0.9
Mutation rate 0.03
Number of sub-populations 2, 5, 10
Migration rate 0.1, 0.2, 0.5
Migration interval 2, 4, 8, 16

Numerical Example 

Symbolic Regression Problem 

Symbolic regression problem is to find the function which can represent accurately the given data 
set; . The real function is given as follows.  

        (1)

The variable is given as .
 The fitness is estimated by the average least square error as follows.  

       (2) 
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The translation rule is shown in Table 3. The start symbol is <expr>. The tournament selection with 
tournament size 3, one-point crossover operators and elitist strategy are employed.  

Random Migration 

Simulation parameters are shown in Table 4. Total number of individuals is 200. Maximum 
generation is 100. Simulations are performed 100 times. Success rates are shown Tables 5, 6 and 7. 
The success rate denotes, among 100 simulations, the percentage of simulations at which the exact 
function can be found.  

In case of the migration rate , the fastest convergence is observed at the number of 
sub-populations and the migration interval . Second fastest convergence is at the 
number of sub-populations and the migration interval or at the number of sub-
populations and the migration interval . In case of the migration rate , the 
fastest convergence is observed at the number of sub-populations and the migration interval 

. Second fastest convergence is at the number of sub-populations and the migration 
interval . In case of the migration rate , the fastest convergence is observed at the 
number of sub-populations and the migration interval . Second fastest convergence 
is at the number of sub-populations and the migration interval . It is concluded that 
longer migration interval is better for larger sub-population size and shorter migration interval is 
better for smaller sub-population size.  

Table 5: Comparison of convergence speed (Random migration ; migration rate ) 

72 73 75 70
68 73 76 72
75 66 65 60

Table 6: Comparison of convergence speed (Random migration ; migration rate ) 

69 82 75 70
73 79 81 65
75 74 69 55

Table 7: Comparison of convergence speed (Random migration ; migration rate ) 

70 70 61 63
73 74 81 74
82 72 67 52

Better Individual Migration 

Simulation parameters are shown in Table 4. Total number of individuals is 200. Maximum 
generation at each simulation is 100. Simulations are performed 100 times. Success rates are shown 
Table 8, 9 and 10.  

At the migration rate , the fastest convergence is observed at the number of sub-
populations and the migration interval . Second fastest convergence is at the number 
of sub-populations and the migration interval . In case of the migration rate 

, the fastest convergence is observed at the number of sub-populations and the 
migration interval . Second fastest convergence is at the number of sub-populations 
and the migration interval or at the number of sub-populations and the migration 
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interval . In case of the migration rate , the fastest convergence is observed at the 
number of sub-populations and the migration interval . Second fastest convergence 
is at the number of sub-populations and the migration interval . It is concluded that 
longer migration interval and larger sub-population size are better.  

Table 8: Comparison of convergence speed (Random migration; migration rate ) 

63 72 65 70
62 60 62 61
37 49 42 50

Table 9: Comparison of convergence speed (Random migration; migration rate ) 

54 67 68 61
49 45 59 67
37 46 46 39

Table 10: Comparison of convergence speed (Random migration; migration rate ) 

56 65 60 73
44 57 58 55
26 35 44 38

Conclusion 

Parallel implementation of Grammatical Evolution based was presented in this study. The algorithm 
is based on island model. The present algorithm was applied for the symbolic regression problem. 
In random migration, it is concluded that longer migration interval is better for larger sub-
population size and shorter migration interval is better for smaller sub-population size. In better 
individual migration, longer migration interval and larger sub-population size are better. In the 
future, we would like to apply the present algorithm to industrial application problems.  
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2. SBFE equation for displacement unit-impulse response matrix 
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Figure 3. 

3. Integration of the soil-structure interaction force 
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4. Numerical example 

Figure 4. 
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Figure 5.  
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Figure 6. 

Figure 7. 
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Figure 8.

5. Conclusion 
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A quantitative method to determine the optimal stress field for 2D 8-node 
quadrilateral hybrid finite element 
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Abstract
A quantitative method is developed to determine the optimal stress field for 2D 8-node quadrilateral 
hybrid stress element (HQ8). It provides a straightforward way as to that how and why the resulting 
element can improve its displacement response. A new inner product with material weighting 
matrix is defined to reveal the relationship in quantity of exact similarity degrees between different 
stress modes. It is different from the conventional energy product which can only qualitatively 
determine the orthogonality of stress and strain modes because they are considered as mathematical 
vectors without physical meaning. The proposed strategy includes two steps. Firstly, the basic stress 
modes are divided into a set of sub-modes. Secondly, the sub-mode with largest similarity degree 
with the basic mode is selected as the optimal assumed stress mode for a hybrid element. The 
optimal stress modes for HQ8 are determined when Poison’s ratio is larger than 1/9 which is the 
case for most materials. 

Keywords: 8-node quadrilateral hybrid stress element; quantitative method; optimal assumed stress 
field; material weighting matrix based inner product; largest similarity degree 

Introduction 
Since the displacement elements exhibit over rigidity, the hybrid stress element was first formulated 
by Pian (1964) to resolve this issue where the stress field was assumed independently as 

1

M

i i
i

P  (1) 

in which i ’s are the assumed stress modes, i ’s the corresponding stress parameters, and 
1{ , , }MP  the stress matrix. Besides, the displacement field is assumed as u Na , where N

is the shape function matrix and a  the nodal displacement vector of the element. Then the element 
strain can be expressed as Du Ba  where B DN  is the geometry matrix in which D  is the 
matrix of differential operator. Thus the element stiffness matrix can be obtained via the Hellinger-
Reissner variational principle as follows 

1TK G H G  (2) 
where

,
e e

T T

V V
dV dVH P SP G P B  (3) 

Besides, the following relationships between the stress parameters and nodal displacements can also 
be obtained as 

1H Ga  (4) 

In the hybrid finite element analysis, a stress subspace including all the assumed stress modes was 
introduced by Zhang, Feng and Huang (2002) as 

2

1
( ( )) ,  ,  1, 2, ,d d

i
n ne

i k k k
k

L V i MS  (5) 
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where dn  is the dimension of S , i.e., 3dn  for 2D and 6dn  for 3D. To develop high 
performance hybrid stress elements, a number of approaches for obtaining the satisfactory stress 
modes have been presented such as Pian and Sumihara (1984), Han and Hoa (1993), Sze (1996), 
Wu and Cheung (1995). The concept of natural deformation modes for hybrid elements was 
introduced by Huang (1991). Unfortunately since these natural deformation modes are very 
complicated, an iterative numerical procedure has to be employed to find the relating natural stress 
modes. Pian and Chen (1983) presented the basic deformation modes to determine the necessary 
stress modes, but the shear components were ignored in their basic strains. Moreover, because the 
energy product is used, their method is limited to the qualitative analysis between the basic strain 
modes and the stress modes. Zhang and Wang (2006, 2010) proposed a selection method with basic 
deformation modes to improve the classification method by Feng et al. (1997). The complicated 
natural deformation modes are replaced by the simple basic deformation modes and the energy 
product was used to avoid the numerical modal analysis. Zhang et al. (2011) developed the basic 
deformation modes into the orthogonal basic deformation modes. Zhang et al. (2006) compared the 
performance of different elements with different assumed stress fields. For higher-order elements, 
Bilotta and Casciaro (2002) proposed a 2D 8-node hybrid element with 14 modes in his assumed 
stress field so the number of modes is larger than the least for the optimal requirement of 13 modes. 
Cen et al. (2011) proposed the stress functions to derive the assumed stress for hybrid-stress 
function plane element with high accuracy. 

However, one existing problem is that there is still lack of rational way to find the satisfactory stress 
modes and tell that whether or not they are optimal for hybrid stress elements, particularly for those 
of higher-order. It is our attempt to find a suitable method to reveal the quantitative relationship 
between the different stress modes and obtain the optimal assumed stress modes for 8-node 
quadrilateral hybrid element (HQ8). 

A quantitative method to determine the optimal stress field 

Basic deformation modes and their relating basic stress modes 

For the hybrid element with n  degrees of freedom including r  rigid body motions and m n r
deformations, following the procedures by Zhang and Wang (2006, 2010) the rigid body motions 
and pure deformations can be determined and separated. Thus the displacement field for pure 
deformation can be expressed as 

1

1
1

,  { , , },  
m

i i m
i

m

u u N N u u  (6) 

where i ’s are the independent coefficients and iu ’s the basic displacements. The nodal 
displacement vectors for pure deformation can be readily obtained by substitution of the nodal 
coordinates into Eq. (6) as 

1
1

,  { , , }
m

i i m
i

a a A A a a  (7) 

where ia ’s are the basic deformation modes. By the geometry equation Du Ba  with the basic 
displacements in Eq. (6), the hybrid element strain can be expressed as 

1
1

,  { , , },  
m

i i m i i
i

B B DN Ba  (8) 

where i ’s are the basic strain modes corresponding to the basic deformation modes. Because the 
basic deformation modes include all the m  possibilities of the element to deform, they indeed can 
be used to describe any deformation of the element within these possibilities. In addition, since they 
are unique because of their linear independence, the derived basic strain modes were used to 
determine the zero-energy deformation modes in the element by Pian and Chen (1983) as well as 
Zhang and Wang (2006, 2010). However, in this paper we use the basic stress modes derived from 
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the basic strain modes to find the optimal stress modes for hybrid stress element. From Eq. (8) the 
following stress field can be expressed as 

1
1

,  { , , }
m

i i m
i

C P CBA P  (9) 

where i i iC CBa  are the basic stress modes. In fact the stress field in Eq. (9) is that for the 
displacement element corresponding to the hybrid stress element. In other words, the stress field for 
the displacement counterpart can be expressed using the basic stress modes. That is because the 
basic deformation modes are derived directly from the displacement field (Zhang and Wang, 2006, 
2010). As we know, the number of assumed stress modes for hybrid element should satisfy 
M m n r . Because the number of the basic stress modes is equal to the degrees of freedom for 
element m n r , it is the least for the optimal requirement. However, inside the basic stress 
modes, some components are unnecessary. To verify this, we can take the basic stress modes as the 
assumed stress modes for hybrid element as ,  1, 2, ,i i i m , namely, the stress field for 
hybrid element is assumed as P . Noting that 1S C , by Eq. (9) one has 

,
e e e

T T T T T T

V V V
dV dV dVH P SP A K A G P B A B CB A K  (10) 

where K  is the stiffness matrix for the displacement counterpart as 

e

T

V
dVK B CB (11)

Equation (10) indicates that H  represents the energies of the displacement counterpart 
corresponding to the basic deformation modes. Substituting Eqs. (10) into Eq. (4), the stress 
parameters for hybrid element can be calculated as  

1 1( ) ( )T TH G a A K A A K A  (12) 

It is found that the stress parameters are exactly equal to the independent parameters for basic stress 
modes. So, consider Eq. (9), the stress field for hybrid element can be derived by Eq. (1) with Eq. 
(12) as 

P P  (13) 

It is exactly equal to its displacement counterpart. This implies that the resulting hybrid element 
cannot remove the over rigidity from its displacement counterpart. In other words, there are 
unnecessary components inside the basic stress modes even though the number of these modes is 
the least as required. 

Construction of optimal stress field for hybrid element 

On one hand, the shortcoming of over rigidity for displacement element implies that there are 
unnecessary factors coupled with the necessary factors inside its stress field, i.e., the basic stress 
field in Eq. (9). On the other hand, there is no denying that it has great success. Therefore, the 
necessary factors in the basic stress field are major while the unnecessary factors are minor. Since 
the basic stress field can be expressed by the basic stress modes, one can conclude that there are 
unnecessary components coupled with the necessary components in the basic stress modes, where 
the necessary components are major while the unnecessary components are minor. Our attempt is to 
obtain the necessary components and without the unnecessary components from the basic stress 
modes. For this purpose our procedure consists of two steps.

Step 1 (Breaking basic stress modes into sub-modes) 

We take every component of the basic stress mode to construct a sub-mode. Thus the basic stress 
mode is broken into several sub-modes and can be expressed by the sum of them as 

3

1
( )  ( 1,2, , )i i k

k

i m  (14) 
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where ( )i k ik j  are the sub-modes in which ik ’s are the constant coefficients dependent upon 
the material parameters and j ’s the stress modes of uni-axial stress or pure shear stress without 
any constan coefficient. Since all the sub-modes are uni-axial stress or pure shear stress, they can 
only be essential and not redundant. 

Step 2 (Comparing sub-modes with their basic stress mode) 

The sub-modes are compared with their original basic stress mode. The sub-mode with larger 
similarity degree implies that it is more similar to the original basic stress mode than others, so it 
represents the main feature of this basic stress mode. Since the main features for the basic stress 
modes are good, the most similar sub-mode which reflects the main features can be selected as the 
optimal mode.  

To investigate the quantitative relationship between the sub-modes with their basic stress modes, 
their similarity degree is needed which in general is defined as the cosine of the angle between 
vectors. According to the proposition by Zhang et al. (2007), the equivalent hybrid element can be 
resulted from the alternative assumed stress field in which an original mode is multiplied by a 
nonzero constant. It is easy to verify that the magnitude of this constant does not affect their angle 
while its sign does. In other words, the reverse direction of the sub-mode will change the cosine 
sign of its angle with original basic mode. For this sake, in this paper the similarity degree is 
defined as the absolute value of the cosine of the angle as 

 Similarity degree cos ik  (15) 

where ik  is the angle between ( )i k  and i . Thus, cos 1ik  when 0ik  or 180 , indicating j
is in the same direction as i  or in the reverse direction to i . However, no matter which case, j
plays the same role to result in the hybrid elements equivalent to each other. On the other hand, 
cos 0ik  when 90ik , indicating ( )i k  and i  are orthogonal to each other so j  cannot be 

used to suppress the zero-energy mode for the element. 

For the subsequent development, the following subspaces are defined as 

2
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C
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 (16) 

where nD  is the deformation subspace by the basic deformation modes ia ’s, dnE  the 
basic strain subspace, dnS  the basic stress subspace, and dnS  the stress subspace by the 
mode j ’s of uni-axial stress or pure shear stress, in which 3dn , 13m  and 18M  for 2D 8-
node element. As discussed earlier, to find the optimal stress modes for hybrid element, the sub-
modes have to be compared with their original basic modes using their similarity degrees. However, 
the similarity degree depends upon the inner product. It is well known for the energy product 

, ,  ,
e

T
i j i j i jV

dV E S  (17) 

This is a conventional inner product where both the strain modes and stress modes are considered as 
mathematical vectors. However, the strain and stress belong to different mechanical concepts, and 
their analysis should be in mechanics for our attempt. In addition, even though the inner product has 
the physical meaning of energy, there is not any physical meaning in the associated norms or 
generalized lengths of strains and stresses as 

1/2 1/2
,

e e

T T
i i i j j jV V

dV dV  (18) 

In other words, the strain and stress are only considered as mathematical vectors without any 
physical meanings. Clearly, without appropriate norm and the relating inter angle, the comparison 
between the stress modes and basic strain modes is impossible. So, the further discussion is difficult, 
particularly for some stress modes of which the energy products with their related basic strain 
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modes are equal to each other. Therefore, the inappropriate energy product is found to be the big 
barrier to determine the optimal stress modes inside the basic stress field. To overcome this problem, 
the inner product with material matrix as weighting matrix is introduced as 

, ( ) ( ) ,  , ( )
e

T
i i k i i k i i kV

dVS S S S  (19) 

The associated norms are expressed as 
1/2 1/2 1/2

,  ( ) ( ) ( )
e e e

T T T
i i i i i i k i k i kV V V

dV dV dV
S S

S C S   (20) 

These norms have the specific physical significance as the flexibility of stress (or stiffness of strain), 
which is the square root of complementary energy (or deformation energy, in the case of linear 
elasticity they are equal to each other). It shows the relationship between two stress modes. So this 
inner product is more reasonable. For this sense, the inner product in Eq. (20) can be used for the 
quantitative analysis to calculate the similarity degree of the sub-modes with their basic stress mode. 
It should be noted that our inner product in Eq. (19) is the development from Zhang et al. (2002) 
where our inner product is defined in the mixed subspace of basic stress subspace S  together with 
S  in Eq. (16) rather than the assumed subspace S  in Eq. (5). Based on our inner product in Eq. 
(19), the sub-modes can be compared with their basic stress modes to determine the optimal mode 
according to their similarity degrees. 

Optimal stress field for 2D 8-node hybrid element 
For the 2D 8-node quadrilateral hybrid element (HQ8) in 
Fig.1 where 5,6,7,8 are the mid nodes on the sides, there 
are 16n  degrees of freedom including 3r  rigid 
body motions and 13m n r  deformations. The 
element displacement field in Eq. (6) can be written as 

0 1 2 3
2 2 2 2

4 5 6 7

0 1 2 3
2 2 2 2

4 5 6 7

u A A x A y A xy

A x A y A x y A xy

v B B x B y B xy

B x B y B x y B xy

 (21) 

where , , 0,1, ,7i iA B i  are the coefficients dependent upon the nodal displacements. Thus the 
basic strains modes in Eq. (8) can be derived as 

2

2

2 2

1 0 0 2 2 0 0 0 0 0 0
0 1 0 0 0 0 0 2 2 0 0
0 0 2 0 2 0 2 2 2

y x xy y
x y xy x

x x xy y y xy y x

B  (22) 

In addition, the basic stress modes in Eq. (9) can be obtained as 
2 2

2 2

2 2

0 2 2 2 2 0 0
0 2 2 2 2 0 0

0 0 2 0 2 0 2 2 2

C C Cy Cx Cxy Cy Cx Cy Cxy Cx

C C Cy Cx Cxy Cy Cx Cy Cxy Cx

G Gx Gx Gxy Gy Gy Gxy Gy Gx
P  (23) 

in which 2(1 ) ,  (2(1 ))C E G E  for Young’s modulus E  and Poison’s ratio . To take 
away the unnecessary components inside the basic stress modes in Eq. (23), they are broken into 
sub-modes in Eq. (14) with j ’s expressed as 

2 2
1 2 18 3 3 3 3 3 3{ , , , } { , , , , , }x y xy x yP I I I I I I  (24) 

in which 3I  is the identity matrix of 3 3 . Then sub-modes are compared with their original basic 
stress modes to select the optimal stress modes. The details are provided as follows: 

Fig.1 2D 8-node quadrilateral element
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(1) For 1 , it can be broken into its sub-modes as 

0 1 0
0 0 1

0 0 0 0 0

C C

C C C C  (25) 

namely, 1 1 1 1 2 11 1 12 2( ) ( ) , where 11 C  and 12 C . Based on our inner product 
in Eq. (19) the following similarity degrees can be calculated as 

11 12
0

cos ,  cos 0E
d

 (26) 

where 0d C . Since 11 12cos cos , one can conclude that 1 1( )  is more similar than 1 2( )
with 1 . It indicates 1 1( )  represents more features than 1 2( )  inside 1 . Therefore, 1  is selected 
as the optimal stress mode for hybrid element with respect to 1a  as 1 1 . The cases for 2 , 5 ,
and 9  are similar to 1  so that 2 2 , 5 4 , and 9 8 .

(2) For 3 , since it is a pure shear stress mode as 

0 0
0 2 0

2 1
G

G

 (27) 

namely, 3 3 3 33 3( ) , where 33 2G , the optimal stress mode is selected as 3 3 . The 
cases for 12 , and 13 are similar to 3  so that 12 9  and 13 6 .

(3) For 4 , it can be broken into its sub-modes as 

0 0 0 0
0 0 0 2 0

2 0 0 2 0 0

Cy Cy y

Cy Cy C C y G

Gx Gx x
 (28) 

namely, 4 4 1 4 2 4 3 41 7 42 8 43 6( ) ( ) ( ) , where 41 42,C C , and 43 2G .
The following similarity degrees based on our inner product can be obtained as 

41 42 43
1 1

cos ,  cos 0,  cosE G
d d

 (29) 

where 1d C G . Due to the fact that the Poison’s ratio in general satisfies 0 0.5 , one has 
G E . Thus by Eq. (29) one can obtain 41 43 42cos cos cos . Then we find the expected 
optimal mode for 4a  as 4 7 . Obviously, by our systematic scheme, the parasitic shears 

xy Gx  in 4  are taken away automatically. The case for 8  is similar to 4  so that 8 5 .

(4) For 6 , it can be broken to its sub-modes as 

2 2 2

2 2 0 0 0 0
2 0 2 0 2 0 2 0

0 0 0 0

Cxy Cxy xy

Cxy Cxy C C xy G

Gx Gx x

 (30) 

namely, 6 6 1 6 2 6 3 61 10 62 11 63 15( ) ( ) ( ) , where 61 622 ,  2C C , and 63
G . The following similarity degrees based on our inner product can be obtained as 
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61 62 63
2 2

4 2 5cos ,  cos 0,  cos
3 5

E G
d d

 (31) 

where 2 4 5 16 9d G C . Since 0 0.5 , one has 61 63cos cos 2 10(1 ) 3 1 . Thus 
61 63 62cos cos cos . Then the expected optimal mode can be determined as 6 10 . The 

case for 10  is similar to 6  so that 10 11 .

(5) For 7 , it can be broken to its sub-modes as 
2 2 2

2 2 2

0 0 0 0
0 0 0 2 0

2 0 0 2 0 0

Cy Cy y

Cy Cy C C y G
Gxy Gxy xy

 (32) 

namely, 7 7 1 7 2 7 3 71 16 72 17 73 12( ) ( ) ( ) , where 71 72,C C , and 73
2G . The following similarity degrees can be obtained as 

71 72 73
2 2

2 5 4cos ,  cos 0,  cos
5 3

E G
d d

 (33) 

Since 71 73cos cos 9(1 ) 10 , one can conclude 71 73cos cos  when 1 9  which is the 
case for most materials. Then the expected optimal mode can be selected as 7 16 . The case for 

11  is similar to 7  so that 11 14 .

In summary, the final optimal stress modes are expressed as 

1 13 1 2 3 7 4 10 16 5 8 11 14 9 6

2

2

{ , , } { , , , , , , , , , , , , }

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0

y x xy y

x y xy x

y x

P

 (34) 

Using the method by Zhang and Wang (2006, 2010), it is easy to verify that the element HQ8 
constructed by the optimal stress modes in Eq. (34) is free of zero-energy mode. 

Numerical example 

Fig 2. Cantilever beam (a) Q4 (b) Q8 

Table 1  Tip deflections vA for cantilever beams 

0.25 0.49 0.499 0.4999
Q4 69.30 18.22 5.71157 2.713
Q8 93.34 73.79 65.3585 46.366

HQ4 93.23 75.20 74.2974 74.206
HQ8 93.72 75.49 74.5796 74.488
Exact 93.75 75.99 75.0999 75.010

A simple test for volume locking is given in Fig 2. This is an elastic plane-strain cantilever beam for 
1500E  and different Poison’s ratio . It is simply supported and subjected to pure bending. The 

results are provided in Table 1. It is shown that, when  tends to 0.5, the solution for improper 
elements show volumetric locking while HQ8 yields the most accurate solution for the tip 
deflection vA. So the present element can overcome the volumetric locking successfully. 
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Conclusions
A new inner product with the material matrix as the weighting matrix was introduced to study the 
relationship quantitatively between the different stress modes. Besides, the basic stress modes are 
considered instead of the basic strain modes in the conventional hybrid finite element formulation. 
They are broken into a set of sub-modes and these sub-modes are compared with their original basic 
stress modes to construct the optimal stress field for 2D 8-node quadrilateral hybrid element. The 
proposed method is straightforward to investigate the basic stress modes and determine the optimal 
stress modes, while the methods based on the conventional energy product as well as the modal 
technique can only be used to select the zero energy free stress modes. 
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Abstract
An analysis scheme for the dynamic responses of functionally graded (FG) rectangular plates under 
moving loads is developed by using the third-order shear deformation plate theory (TSDT). It is 
assumed that material properties of the plate vary continuously in the thickness direction according 
to the power-law. The equations of motion are derived by using Hamilton’s principle. Analytic 
solution of simply supported FG rectangular plates is presented by using state-space methods. The 
displacement and stresses are computed in the plates with various structural parameters, and the 
effects of these parameters, such as power-law exponent index, are discussed in detail. In addition, 
the effects of the moving load on the dynamic responses of the plates are investigated as well. 

Keywords: Analytical solution, Dynamic response, functionally graded plate, moving loads.  

1. Introduction
The study of dynamic response of plates subjected to moving loads is of interestand of importance
as well in the engineering field, as some of the results can be applicable to understand the dynamic 
behavior of bridge. Most of the previous studies on the plates subjected to moving loads have used 
the classical plate theory (CPT) or the first order shear deformation theory (FSDT). Hianget al.[5] 
used finite strip method to investigate the dynamic response of plate structure resting on an elastic 
foundation to moving loads. Lee et al.[7] investigated dynamic behaviors of single and two-span 
continuous composite plate structures subjected to multi-moving loads using finite element  
method. Vosoughi et al.[12] studies dynamic response of laminated rectangular plates on elastic 
foundation based on the higher order shear deformation theory and differential quadrature method.
E.Ghafoori and M.Asghari[3] studied the dynamic response of laminated composite plates traversed 
by a moving mass or a moving force based on the first-order shear deformation theory using a finite 
element method. P.Malekzadeh et al.[8] used three-dimensional elasticity theory to investigate the 
dynamic response of cross-ply laminated thick plates subjected to moving load. Hao et al.[4]studied 
on nonlinear dynamic behavior of a simply supported functionally graded materials (FGMs) 
rectangular plate subjected to thermalmechanical loads. Qian et al.[9] studied a static and dynamic 
of rectangular functionally graded plate based on a higher-order shear and normal deformable plate 
theory by using a meshless local Petrov–Galerkin method. Akbarzadehet et al.[1] studies the 
dynamic response of a simply supported functionally graded rectangular plate subjected to 
thermomechanical loading by using the hybrid Fourier-Laplace transform method based on both the 
first-order and third-order shear deformation theories. Sun et al.[11] investigated the wave 
propagation and dynamic response of the rectangular FGM plates with completed clamped supports
to consider the effects of transverse shear deformation and rotary inertia. However, the research 
works concerning the dynamic response of FG plates subjected to moving loads are still limited.

In  the  this  paper,  exact  solutions  for  the  transient  response  of FG  rectangular  plate  are  
developed using the  third-order  shear  deformation plate  theory (TSDT) proposed  by  R.P. 
Shimpi[10].  The FG rectangular plate, with simply supported boundary conditions, is subjected to a 
concentrated moving load at the upper surface of the plate. Equations of motion are solved by using 
state-space methods and the effects of different parameters on the response of the plate are studied.
The results are compared with finite element solutions for validation.  
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2. Equations of motion 

Let us consider a functionally graded plate in Figure.1: 

Figure 1.Model of FG Plate
We assume that the gradation of material properties along the plate thickness is represented by the 
profile for volume fraction variation:  
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where ,E  denote generic properties of elastic modulus and mass density, ,c cE    and ,m mE   denote 
the properties on the top and bottom surfaces, respectively, and is a parameter that dictates the 
material variation profile through the thickness. Poisson’s ratios are assumed to be uniform. 
The  third-order shear  deformation  theory  used  in  the  present study  is  based  on  the  following  
representation  of  the  displacement  field across  the  plate  thickness as in Shimpi [10]: 
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where (U,V,W) are the displacement components of a point (x,y,z) in the plate,  , , ,b su v w w are the 
displacements of a point on the mid-plane at time t, respectively.
The strains are computed from displacement fields in Eq. (2), and can be used in constructing the 
strain energy and kinetic energy expressions. Hamilton’s principle is used herein to derive the 
equations of motion; the equations of motion of plate are obtained as: 
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where P is  the moving load and  ,, , b s
i i iN Q M are the  stress  resultants and the inertias  ˆ, ,i iI J J

are  defined  by: 
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The moving loadis given as
       mov movP P t x x t y y t    

where  P t is the magnitude of the moving load;  movx t  and  movy t are the coordinates of the 
location of the load. In this paper, it is assumed that  0 0movP P , x t V t   and   2movy t b / .

3 Solution procedures 
The state-space approach has been used generally in the area of control theory to determine the 
responses of given systems. The state-space representations [6] of the dynamic systems will be  
used to analyze the transient response of simply supported FG rectangular plates with side 
dimensions  a and b. The Navier approach is used to derive the closed-form solutions of equations 
of motion. The sinusoidal function is chosen to satisfy all the boundary conditions as follows:  
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where : ,m n
a b
   

.
Using (4), the expression in (3) can be written as follows:
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where,

 0
0

4 sin sin
2mn

P b
F V t

ab
   
 


For solving (5) by using the state space methods, (5) is needed to be rewritten as:  
 Z AZ b (6) 

where
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The solution of (6) is obtained as 

         0

0

0

t
t t t

t

t e t e d      A AZ Z b (7) 

where 0t is  the  initial time,  0tZ is  the  initial  response, and the exponential matrix  0t te A can be  
expressed  in  terms  of  the  matrix  of  eigenvectors and eigenvalues i    associated  with  the  
matrix  A. 

4 Numerical examples
In order to investigate the legitimacy of the proposed method, an Al/Al2O3 plate composed of 
aluminum (as metal) and alumina (as ceramic) is considered. The elastic moduli are chosen to be 
the same as given in [2]: 0mE   7  GPa , 302 /m=27 kg m , 0cE 38 GPa , 00 3

c=38 kg/m . The 
Poisson’s ratio of the plate is assumed to be constant through the thickness and is equal to 0.3. 
Consider a simply supported square FG plate with a side-length 0 3a . m and magnitude of load 

3
0P = 2 10 N .

To validate the presented approach, the results are compared with those of finite element solution
by using ABAQUS software. The time histories of central deflection and normal stress at top(z=-
h/2) as functions of time for simply supported square FG plate with 2  0 05p , h / a .  and 

15v m / s , are plotted and compared in Figures 2 and 3. The results of this study are in good 
agreement with the finite element solutions. 
Figure4 contains plots of center transverse deflection as functions of time with parameter 

0 05h / a . and 40v m / s for the four cases with different power law index p=0,1,2,3, 
respectively. Figure4 shows that the oscillation of the plate deflection increases if power law index 
p increases, which makes the flexural rigidity high.
In order to investigate the effect of velocity of moving loads on the plate responses, we consider 
square FG plate with parameter 0 3  0 05a . m, h / a .  and 3p  for three cases of different 
velocities v=1,25,50m/s, respectively. The effect of velocity of moving loads can be seen from 
Figure 5; the effect of velocity of moving loads is not so huge for the case of displacement.
However, the effect of moving load velocity is significant from the viewpoint of vibration of the 
plate.
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Figure 2. The time variations of the deflection
at central plate
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Figure 3. The time variations of the normal 
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Figure 4. The time variations of the deflection 
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Figure 5. The time variations of the deflection 
at central plate with various  velocity v

Conclusions
In this article, analytical solutions of dynamic responses are obtained for FG plates employing a
third-order plate theory base on state-space approach. The dynamic responses are considered for 
both forced vibration and free vibration. Comparison with finite element solution shows that the 
results of present approach are acceptable. The volume fraction power law along the plate thickness 
has great influence on the dynamic behavior of FG plate, and the deflections of plate can be 
controlled by choosing proper values of p.The results also confirm that the effect of velocity of 
moving loads is negligible. 
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Abstract
We propose an automatic algorithm for the reconstruction of a set of patient-specific dynamic 
cardiac mesh model with 1-to-1 mesh correspondence over the whole cardiac cycle. This work 
focus on both the reconstruction technique of the initial 3D model of the heart and also the
consistent mapping of the vertex positions throughout all the 3D meshes. This process is technically
more challenging due to the wide interval spacing between MRI images as compared to CT images,
making overlapping blood vessels much harder to discern. We propose a tree-based connectivity 
data structure to perform a filtering process to eliminate weak connections between contours on 
adjacent slices. The reconstructed 3D model from the first time step is used as a base template
model, and deformed to fit the segmented contours in the next time step. Our algorithm has been 
tested on an actual acquisition of cardiac MRI images over one cardiac cycle.

Keywords: Mesh Reconstruction, Cardiac, Patient-Specific, MRI, 4D 

Introduction

The cardiovascular diseases are becoming more commonplace in modern societies. One of the ways 
which physicians use to view the internal cross-sectional images patient’s heart with cardiovascular 
diseases is by Magnetic Resonance Imaging (MRI). Inclusion of computational methods in cardiac 
analysis can allow us to further understand and visualize what we are unable to obtain from static 
2D images, such as blood flow behavior (hemodynamics) in the chambers. To achieve this, the 
reconstruction of the 4D (spatial temporal) mesh model of the heart is an important and critical 
requirement. In this paper, we propose a framework to directly reconstruct a 4D right heart model 
from segmented contours drawn on MRI images.

Related Work

Cardiac reconstruction, either static (3D) or dynamic (4D), has traditionally focused on the 
ventricular regions due to their simpler morphology and the relative ease of border delineation on 
CT and MRI scans, as compared to the atrial regions. This differentiation is further compounded for 
MRI-based methods due to its relatively large spatial intervals between slices. A comprehensive 
review of the different modeling techniques from cardiac images prior to 2001 was presented by 
Frangi et al. [1].

One of the first studies to directly construct a 3D model of the heart is by McQueen and Peskin [2],
which employed idealized cones and ellipsoids for modeling the left and right ventricles for 
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simulating cardiac hemodynamics [3]. Using 3D echocardiography, Corsi et al. [4] employed the 
level set method and marching cubes algorithm to reconstruct a 3D model of the LV. Zhukov et al. 
[5] proposed to deform a sphere model using dynamic remeshing and curvature estimation methods 
to produce high quality meshes of the heart. Montagnat and Delingette [6] extended the deformable 
surface framework by introducing time-dependent constraints such as temporal smoothing and 
trajectory constraints. Sermesant et al. [7] fitted various image modality together using a non-rigid 
registration approach to create a mesh model of both the LV and RV (right ventricle) using the 
GHS3D commercial software. A noteworthy attempt to reconstruct a hugely detailed static animal 
heart model is presented by Plank et al. [8], which uses a 9.4T MR system that is able to generate 
MR datasets with isotropic resolution of up to 20 .

One of the biggest obstacles in 4D heart modeling has been the modeling of the passageways 
between the ventricles and the atriums and the complex vessels that connects them to the rest of the 
body. During cardiac contraction, these vessels deform, possibly in directions perpendicular to the 
imaging planes. This can cause difficulties during the 4D reconstruction process, as the vessels 
themselves moves in and out of the imaging planes, and thus their boundaries on these planes are 
manifested in a constant series of merging and splitting processes. In our work, we propose a 
methodology that aims to mitigate this issue by utilizing a tree structure to link and track the 
contours throughout the cardiac cycle, in order to reconstruct a 4D cardiac mesh model with 1-to-1
vertex correspondence.

Overview of Method 

The raw data input to this algorithm are the segmented contour lines, which are drawn on a set of
short-axis MRI images over one cardiac cycle. We proceed to establish connectivity relationships 
between the segmented contours lines in two ways, inter-frame and intra-frame. Connectivities
within the same time step (intra-frame) relates to the morphological structure of the heart in that 
particular time step; connectivities across adjacent time steps (inter-frame) provide information 
related to the motion of the heart across that time step.

The main challenge occurs during 2D contour topological changes, when there are no 1-to-1 inter-
frame connections between contours. To handle this, we first collect the characteristics features of 
the 2D contour topological change, such as its vertical motion and the location of the ridge feature. 
Thereafter, we apply a 2D sine-based deformation function using the ridge feature as its center to 
induce the vertical motion, and therefore ensuring that the contours can be associated in a 1-to-1
manner across that time step.

Constructing a 3D model of the First Cardiac Frame

In this section we describe how we perform filtering to remove unwanted connections between 
segmented contours from adjacent slices, and then detail the reconstruction process of the 3D heart
model, based on the MR images from the first time step.

Tree-Based Connectivity

The set of connectivity relationship between contours from adjacent slices and across time steps are
termed as a tree-based connectivity. The 3D reconstruction makes use of the connectivities between 
adjacent slices (intra-frame connectivities), while the deformation stage makes use of the 
connectivities between adjacent frames (inter-frame connectivities). Each contour can have four 
different types of connections, above and below, which are intra-frame connections; and prev and 
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next, which are inter-frame connections. The tree-based connectivity is established by comparing 
contours between adjacent slices (both inter- and intra-frame) based on a similarity index function. 
The similarity index is computed based on the proportion of the perimeter of the contour that lies 
within the interior of the other contour when both contours are superimposed on the same plane. 
The higher of the two proportion values is then taken as the similarity index (see Figure 1).

Figure 1. Determining connectivity between contours. The similarity index based on the 
higher of the two proportions is 23.08% (3 out of 13 points from contour 2). 

In cases where there is only one pairing with non-zero similarity index, the assignment is 
straightforward. Otherwise, two situations could happen, either branching (intra-frame)/topological 
change (inter-frame) has occurred, or one of the similarity index is a very weak one. To decide 
between both potential situations, weak connections are filtered away by setting a minimum 
similarity index threshold of 30%.

Reconstruction from Segmented Contour Lines

For reconstruction of the 3D initial cardiac mesh model from the first frame, we extended the works 
of Barequet and Sharir [22] by incorporating the concept of contour connectivity into it such that 
only those contours that are connected will have a surface formed between them. One potential 
issue that might arise using their approach is that some of the reconstructed surface triangles might 
have all their three vertices belonging to the same contour, thereby making it flat when the contours 
are projected back. If another flat triangle exists on the other side of the contour, the resulting 
surface will contain a collapsed triangle-pair, thereby forming a disconnected internal volume. In 
order to prevent such problematic configuration, we inject new vertices into the triangulation before 
lifting by using the chordal axis transform (CAT) approach [23]. This CAT approach introduces 
new vertices which essentially act as a set of lifting points to break up the flat triangles to 
prevent a collapsed configuration. This also helps to create a relatively smoother volume.

4D Morphing of the Heart Model

The goal of the deformation process is to modify the heart model of a particular frame to fit the 
contours of the next frame without changing the mesh connectivity. To implement the deformation 
process, we split the heart model into logical sub-meshes using the MRI planes as the partitioning 
planes. As each sub-mesh (except the topmost and bottommost) is sandwiched between two 
partitioning planes (see Figure 2), we can compute the deformation for each sub-mesh 
independently. Using an example for illustration (see Figure 3), consider two adjacent contours X
and X’ that has a surface between them; we wish to find a mapping of the points on X (source 
points) onto the contour X’ (target points). To achieve a good mapping, we project X and X’ onto a 
common plane. Next, the intersection points between X and X’ are then used as breaking points to 
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split both X and X’ into segments. Each individual segment in X is then matched against its 
corresponding segment in X’, and the points in each segment are then mapped from X and X’
proportionally. Using both sets of source points and target points, we generate a radial basis 
function (RBF) interpolant [32] of the form( ) = ( ),
where the kernel function  : is univariate and radially symmetric, and is a set of 3-
dimensional weights. Our choice of the kernel function is the Hardy Multiquadric, (r) = + , where c is a constant defined individually for each source point, based on the 
distance to its closest neighbor. By determining the weights of the RBF, we are able use it to 
interpolate where the new surface lies on.

Figure 2. A Sub-mesh is a subset of the 
3D mesh that is bounded by a pair of 

contour lines.

Figure 3. Contour matching for 
generating a source-target point set. 

Handling 2D Contour Topological Changes

A 2D contour topological change occurs when there is no 1-to-1 inter-frame matching of contours 
during the contour matching process. This contour slice is then referred to as the incident slice. For 
such situations, we first determine the direction of the vertical motion that is occurring at the 
contour, then locate the ridge feature, and finally apply a 2D sine-based deformation function 
centralized at the ridge feature. The goal is to make sure that there is a 1-to-1 inter-frame matching 
of all the contours.

In order to determine the direction of the vertical motion, we first need to detect the location of the 
ridge in both frames where the 2D contour topological change is deemed to have occurred. The 
location of the ridge can be easily determined by noting where a many-to-one (or one-to-many) 
intra-frame connectivity exists. By comparing the location of the ridge between the two adjacent 
frames, we can then determine the direction of the vertical motion, i.e., moving upwards or 
downwards. For the case of upward vertical motion, the slice below the incident slice is referred to 
as the complement slice. For the case of a downward vertical motion, the complement slice is the 
slice above the incident slice.

A ridge feature is a path described by a sequence of edges that are roughly equidistant from the two 
contours. The desired effect is to apply a stronger vertical deformation at the source of the 
branching, while gradually reducing the strength as we move further away from it. We use a 2D 
sine-based function, with its center localized along the ridge feature, as the vertical deformation 
function. To extract the ridge, we have to first locate the two end points of the ridge. Assuming that 
the incident slice contains contour A and the complement slice contains two contours, B and C, we 
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proceed to project all the three contours onto a common plane. For each vertex point on A, we 
compute its nearest distance to both B and C. For vertex points where its nearest distance to both B
and C do not differ by more than 10%, we term it as the middle band (see Figure 4). Typically, two 
contiguous and disjointed middle bands will be formed. However, in the unlikely case where 
multiple contiguous middle bands are formed, we select the two largest bands and discard the rest. 
A point in each band is identified such that the difference between its distance to both B and C is 
the smallest. These two points are then selected as the end points of the ridge. The ridge is 
represented by the geodesic path computed between these two end points. A simple greedy 
algorithm that always select the next edge that result in closer distance to the end location is 
sufficient to extract the ridge. Figure 4 shows an idealized image of the ridge feature that is formed 
between two adjacent slices.

Figure 4. Ridge Detection.

To induce smooth vertical deformation, we have to expand the affected regions to include other 
sub-meshes around the incident slice. This allows the deformation to gradually spread its effect 
across several slices, thereby creating a smoother transition to the next frame. Hence, we considered 
two layers of adjacent sub-meshes above and below the incident sub-mesh. In total, six different 
slices are affected, labeled from 1 (topmost) to 6 (bottom). The deformation employs a 2D sine 
function, with its center located along the ridge feature. This allows us to apply the largest 
deformation at the ridge feature, while gradually reducing its effects, as we move away from the 
ridge. We proceed to project all the affected contours located on the six slices onto a common 
perpendicular plane, together with the ridge feature. On this perpendicular projection, the parameter 

. We then 
use a 2D sine function to compute the amount of vertical displacement of each point p on the 
contour as a function of its 2D distance to the ridge .

= 2 sin 2 +2 + 1  <  0                                                             
The value R acts as a control variable to adjust the amount of deformation experienced by each 
individual contour. The parameter refers to the inter-slice distance. An R value of 1 shifts a vertex 

R value of -1 does the opposite. By setting R independently, as illustrated in 
Table 1, we can then adjust and smooth the effect of the deformation across the slices. After 
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inducing the vertical motion, a 1-to-1 inter-frame correspondence can be established for each slice. 
We can then proceed using the standard deformation process to deform the mesh into the next time 
step.

Table 1: Listing of applied R values.
Slice 

Position
R Value

Upward Downward
1 0.2 -0.2
2 0.4 -0.5
3 0.7 (Incident) -1.2 (Complementary)
4 1.2 (Complementary) -0.7 (Incident)
5 0.5 -0.4
6 0.2 -0.2

Results and Discussion

We implemented the 4D heart deformation algorithm in C++ (with no multi-threading optimization)
on an i7 core 3.07 GHz machine and tested it on a set of MRI scan of the right heart of a healthy
patient. The MRI data was acquired using the steady state free precession sequence with 
retrospective electrocardiographic gating, and consists of 25 contiguous image slices 5 mm apart 
covering the mid of the right atrium to the apex of the right ventricle, with 25 frames per slice per 
heartbeat. The contours of the endocardial surface are segmented manually by a cardiologist using 
the CMRTools software developed by Cardiovascular Imaging Solutions Ltd.

Reconstructing a 4D Heart Model

Using the MRI data from the first frame, we reconstruct a 3D mesh model of the right heart (17012 
vertices with 34020 triangles). Using this 3D mesh model, we generate a 4D right heart model 
based on the deformation algorithm. Each of the 25 3D mesh model conforms to the corresponding 
input segmented contours lines and maintains vertex correspondence throughout. In Figure 5, a
snapshot of the sequence of the 4D right heart model taken at different time steps is shown. We 
track the quality of the mesh model based on the conformity to the input contours and the quality of 
the surface triangles over the 25 time steps. 

Figure 5. 4D Right Heart Model Reconstruction.

For tracking conformity, we sampled points along the input segmented contours at every 0.2mm 
interval and recorded its nearest distance (geometrical deviation) to the 3D mesh model. For each 
frame, we record the average geometrical deviation over all the input contours. Finally, we tabulate 
the mean and standard deviation of the averaged geometrical deviation over all the frames. The 
mean and standard deviation are 0.044mm and 0.003mm respectively. Taken as a percentage of 
(5mm) for this dataset, this equate to around a mean deviation of around 0.89%, which is a very low 
percentage value and is unnoticeable visually. 

974



7

In terms of mesh quality, we can see from Table 2 that the majority of the triangles are within an
acceptable quality range of between 40-80 degrees. Even as the 3D mesh deforms over the cardiac 
cycle and undergoing 2D contour topological changes with significant deformation, the percentage 
of acceptable quality triangles remains stable throughout (85% to 89%). On the other end of the 
spectrum, the number of bad quality triangle (< 20 degrees) occurs at a very low rate of 0.88 per 
frame, or 0.002% of the total triangle count. 

Table 2: Distribution of Triangle Angle Quality.
Dataset No % of angles (in degrees) between

40-50 50-60 60-70 70-80 Total
1 First Frame 15.42% 30.67% 28.56% 15.01% 89.67%

Mid Frame 17.07% 28.52% 26.76% 14.67% 87.02%
Last Frame 18.16% 27.24% 25.84% 14.37% 85.61%

2D Contour Topological Changes

From the dataset, 2D contour topological changes are found to occur at 4 different time steps. We 
illustrate how our algorithm is able to resolve it in a series of screen shots in Figure 6. In the figure, 
a red plane depicting the image scanning plane of the MRI, is shown to intersect with the 3D model. 
We observed the phenomenon of two distinct contours merging and splitting on the red plane, 
which is consistent with the drawn segmented contours in the dataset.

Figure 6. Resolving 2D Contour Topological Changes.

Computation Timing

Generally, the average computational time is around 6.4 milliseconds per vertex for normal frames, 
and 7.8 milliseconds per vertex for frames with 2D contour topological changes. There is little 
timing variability among frames, with a standard deviation of 0.3 milliseconds and 0.17
milliseconds respectively. Typically, for a 3D mesh model with a vertex count of 20000, it would 
take approximately 2 minutes to complete a frame. To generate a 4D right heart model consisting of 
20 frames would take around 40 minutes to complete, which is considered to be adequate for 
practical usage. 
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Conclusion

In this paper, we presented a methodology for the automatic 4D reconstruction of a patient specific
cardiac mesh model using segmented contour lines from MRI images. Our methodology is able to 
handle the inter-frame 2D contour topological changes that occur during the cardiac cycle and 
produces a sequence of good quality 3D mesh models with 1-to-1 vertex correspondence that 
conforms to the input contours. Such a model is useful for downstream computational simulation 
purposes.
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Fig.1 Viscous-spring boundary of dam-foundation system
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Fig.2 Time histories of the top and bottom displacements

Engineering Application 
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Fig.3 The retaining water  section Fig.4 FE Mesh of the dam

Fig.5 The input accelerations and response spectrum

Table 1 Comparisons of displacements and stresses at key points 
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Fig.6 Comparisons of the displacements for the different seismic input models

Fig.7 Comparison of the stresses for the different seismic input models
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Bone cells are well-known to be regulated biochemically and biomechanically. The notion that the 
microscopic availability of bone surface affects bone remodelling is, however, less established. 
Bone-resorbing and bone-forming cells require a bone surface to attach to and initiate the matrix 
renewal. In this paper, we will extend a previous computational model of bone remodelling. This 
model includes several stages in the differentiation of bone cells, biochemical regulations and 
geometrical regulations. In particular a new calibration algorithm for uncommitted bone cells and 
activator/repressor functions is presented. This study is a necessary prerequisite to study 
endocortical bone loss due to aging in a spatio-temporal context.  
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Fig.1 Shock reflection over two
perpendicularly intersecting wedges

Fig.2 Regular-Mach reflection interaction

2 Governing equations and numerical methods
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3 Validation of numerical algorithms 

Fig. 3 Shock wave reflection over two intersecting wedges for  = ,  = and :
a) experimental result; and b) numerical result

4 Results and discussion

4.1 MR–MR interaction
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Fig.4 Shock wave reflection over two intersecting wedges for and 

4.2 MR–RR interaction

Fig.5 Shock wave reflection over two intersecting wedges for and 

4.3 RR–RR interaction
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4.4 The region of 3D Mach reflection

Fig.7 The region of three-dimensional Mach stem: a) ; and b) 
( ) 

Fig. 6 Shock wave reflection over two intersecting 
wedges for  =  = and 
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Subdivision into sub-triangles 

Subdivision for case (i) 
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Fig. 4 Subdivision into sub-triangles for triangular elements when the nearly singular point is 
located (a) inside the element; (b) on one side; (c) on one vertex
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Fig. 5 Subdivision into sub-triangles for quadrangular elements when the nearly singular
point is located (a) inside the element; (b) on one side; (c) on one vertex
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Fig. 7 Curved triangular element
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Example for curved quadrilateral element  

Fig.8 Curved quadrangular element
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Abstract
The 3D discrete element method (DEM) and finite element method (FEM) were combined together 
to investigate the running behavior of rigid wheel on sand terrain. Firstly, an efficient method for 
the initial generation of discrete elements (DEs) which is suitable for the simulation of sand terrain 
was introduced. Then, the DEs were consolidated to a steady state to model the real condition of 
sand terrain. Afterwards, a 3D numerical model was established based on the soil bin experiment to 
model the running behaviour of the rigid wheel travelling from hard terrain to sand terrain, where 
the wheel, the hard terrain and the soil bin were solved by using FEM. Finally, a constant angular 
velocity and corresponding translational velocity were loaded to the rigid wheel to investigate its 
running behavior under different slip ratios. Corresponding running behavior parameters like net 
draw bar pull and sinkage were obtained. The overall trend of net draw bar pull versus slip ratio is 
qualitatively in agreement with current experimental results.

Keywords: DEM; FEM; running behavior; sand terrain; rigid wheel

1 Introduction 
Off-road vehicles, which have been widely used in agricultural production, planetary exploration, 
and military field, usually work on discontinuous granular road such as sand terrain. The 
deformation and destruction of the soft road have large effects on the traction performance of 
vehicles. Thus, the research of the wheel-road system interactions is significant to the parameter
match and design of off-road vehicles. Many researchers (Robert, Winnie and Tim 2005; Yang, Xu, 
Liang, Zhang, et al, 2011; Maciejewski and Jarzebowski, 2004; Hisanori, Nakashima, Takatsu, et al,
2010) had been working on this filed via experimental methods, but these methods have 
shortcomings like long development time and expensive cost. Recently, with the rapid development 
of computer technology, simulation methods had been widely used in the research of this filed.

Finite element method (FEM) as a traditional simulation method has been used by many researchers. 
And many achievements have been reported in various literatures. For example, in order to simulate 
the deformation behavior of soft terrain under a rolling wheel, Hiroma, Wanjii, Kataoka, et al (1998) 
regarded the soft soil as viscoelastic material; LIU and Wong (1996) implemented a modified 
critical state model in conjunction with a new nonlinear elastic law into the general purpose finite
element program MARC; Xia (2011), Xia and Yang, (2012) took the soil as elastoplastic material 
and implemented the Drucker-Prager/Cap model into ABQUS as a user subroutine. Moreover, 
Hambleton and Drescher (2008 and 2009) analyzed the running behavior of the rigid wheel travels 
from hard terrain to soft terrain, where the two kinds of road were modeled by elastoplastic material 
with different material parameters. Although these studies used different materials to model the soft 
terrain, the traditional FEM technology is unable to describe the discontinuous features of granular 
materials such as sand terrain with sufficient accuracy. Moreover, the effect of the tread pattern on 
traction performance is also unable to be described clearly by FEM.

On the contrary, the discrete element method (DEM) shows a clear advantage to handle such 
problems. For example, Lav, Vilas, Salokhe, et al (2007) applied DEM to the investigation of the 
running performance of smooth rigid wheel rolling on coarse sand and medium sand under different 
vertical load conditions, Nakashima, Fujii, Oida, et al (2007 and 2010) and Li, Huang, Cui, et al 
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(2010) investigated the running behavior between lugged wheel and lunar regolith via 2D DEM.
For further research, Zhang, Liu, Zeng, et al (2012), Knuth, Johnson, Hopkins, et al (2012) used 3D 
DEM to analyze the interaction between planet rover wheels and martain terrain. However, in these 
studies, the wheels, wheel lugs and granular terrain were all modeled by DEM, therefore, the 
deformation and the complex tread pattern structure of the tire could not be simulated reasonably. 

Nakashima and Oida (2004), Nakashima, Takatsu, Shinone (2009) and Nakashima, Takatsu (2008) 
used the 2D finite element and discrete element method (FE-DEM) to investigate the wheel traction 
performance on sand terrain, where the rigid wheel was discretized by FEs and the sand terrain was 
modeled via DEs. This method compensated for the demerits of the two methods. However, it is 
obvious that the complex behaviors such as lateral force and steering performance of a rolling 
wheel are unable to be described by the current 2D method.  

The purpose of this study is to apply 3D FE-DEM to the investigation of the wheel traction 
performance on sand terrain. Related program code is developed based on FORTRAN95 language.
The numerical model of rigid wheel rolling from hard terrain to soft sand terrain is established 
based on the soil bin experiment, where the wheel, hard terrain and soil bin are all discretized by 
FEM, the sand terrain is modeled by DEM. The running behaviors of the rigid wheel under different 
slip ratios are analyzed.

This paper is organized as follows: in the next section, the basic equations of FE-DEM, including 
the motion equations of elements and the interaction forces among elements are introduced. The 
concept of analysis for the wheel-sand interaction in FE-DEM is also illustrated. Sect.3 illustrates
an efficient way for the initial generation of the DEs which is suitable for sand simulation and the 
consolidation process of the DEs under self-weight is also shown. Sect. 4 presents the numerical 
model of the wheel-sand interaction system. The traveling process of the wheel under different slip 
ratios is modeled. And corresponding results are also illustrated and analyzed in this section. 

2. The FE-DEM algorithm introduced
2.1 Equations of motion 

For the 3D FE-DEM algorithm, the motions of the DEs and FEs are governed by the second 
Newton’s law. For arbitrary element i , the equations are expressed by Eq. (1) (used for both DEs 
and FEs) and Eq. (2) (only used for DEs). 

2 2( / )i i im d dt u F (1)
2 2( / )i i iI d dt  M (2)

Where im  and iI are the mass and inertia moment of element i , respectively; iu  and i are the 
displacement and the rotation angle of element i , respectively; iF  and iM are the total external force 
and centroidal moment of element i , respectively.

2.2 Interactions among elements and the wheel-sand system 

Contact detection is the prerequisite for the calculation of interaction forces among elements. In this 
study, the C-grid detection method proposed by Williams, Perkins and Cook (2004) is used for DEs, 
and contact algorithm between 3D DEs and FEs has been previously developed by the authors
(Zang, Gao, Lei, 2011). The contact models for elements are shown in Fig. 1. Where ijh is the 
overlap of contacting elements; iv , jv , i , j are the velocity and angular velocity of element i

and j , respectively; i
nF is the normal force, and i

sF , taken Coulomb friction law into account, is the 
tangential force of element i , which can be obtained from Eq. (3) and Eq. (4). 

, , ,
i i i

n n ij n ij vis F F F (3)
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Where ,
i

n ijF , , ,
i

n ij visF , ,
i

s ijF , and , ,
i

s ij visF are the normal spring force, the normal damping force, the 
tangential spring force and the tangential damping force of element i , respectively; These forces 
can be calculated via Hertz theory and Mindlin theory (Robertas, Algis, Rimantas, 2004);  is the 
friction coefficient. It should be noted that the FE was regarded as sphere with infinite radius (Han
and Owen, 2000) when calculate the interaction force between FE and DE as illustrated in Fig. 1(b).

(a) Contact between DE and DE   (b) Contact between FE and DE (c) Force between elements
Fig. 1 Contact models among elements

Based on the theory mentioned above, the concept of analysis for the wheel-sand interaction by FE-
DEM is illustrated in Fig. 2.The interactions among sand particles are solved via interactions of 
DEs (Fig. 1(a)), while the forces between tire and sand particles are calculated by interactions
between FE and DE (Fig. 1(b)). 

Fig. 2 Description of wheel-sand system by FE-DEM
The net draw bar pull N , normal reaction force P  and slip ratio s are defined as follows: 

 N G R (5)

zP F (6)
(1 / ( ))s r  v  (7)
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Where F is the contact force between FE wheel and DE terrain; x
G F  and x

R F are the 
gross traction force and the resistance force, respectively; v and  are the translational speed and 
the angular velocity of the wheel; r is the free rolling radius of wheel. 

2.3 Program flow 

The simulation of the wheel running process is composed of following three steps: Step1, granular 
DEs compact to a steady state under self-weight; Step2, the FE wheel sink onto the FE road surface 
under vertical load including self-weight and external load until it reaches an equilibrium state;
Step3, a constant angular velocity and corresponding translational velocities are loaded to the wheel 
center to analyze its traction performance under various slip ratios. And the wheel travels from FE 
hard road to DE soft terrain. The program flow chart is shown in Fig. 3. 

Fig. 3 Program flow chart

1019



5

3 DE modeling of soft sand terrain 
3.1 Initial generation

The discontinuous characteristics of loose gravel terrain can be modeled effectively by DEM (Fujii,
et al, 2010; Li, et al, 2010; Zhang, et al, 2012; Knuth, et al, 2012; Nakashima, et al, 2004 and 
Nakashima, et al 2009). Thus, we use the 3D DEM to model the sand terrain in this paper. The 
initial generation of the DEs is one of the main research topics. For this problem, Han, Feng, Owen
(2005) proposed a method for the generation of spheres which randomly distributed in a given 
geometric domain with different sizes. The details are as follows:

1. Various sizes of spheres which are randomly distributed in a given geometric domain are 
generated, and there are gaps among spheres. 

2. Find out the neighbor spheres of each sphere. Calculate the distance between the target sphere 
and its neighbor spheres in a given direction (in this study is the vertical direction), and move 
the target sphere to the nearest neighbor sphere along the special direction, the moving 
distance is equal to the minimum distance.

3. Further compression is executed similar to step2 to improve the volume density of the spheres,
where the compression direction l g n  V V V , as illustrated in Fig. 4, changes in a given 
range.

Fig. 4 Compression directions 
After the above steps are completed, a void will be produced on the upper part of the domain. In
order to fill the void, a strategy of sphere insertion was adopted by Han, et al (2005): spheres were 
generated at the top of the domain and then dropped along the compression direction until they 
contact with the nearest existing sphere. During this procedure, it needs to loop over all the current 
spheres for the contact detection, which wastes a lot of computing time. With the increasing of the 
sphere number, the consumption of the computing resource is increased dramatically. For the sand 
terrain simulation problem, large amount of spheres need to be generated. What’s more, considering 
that the spheres should be consolidated under self-weight to a steady state to model the real sand 
condition after the initial generation, we prefer the improving of efficiency to the increasing of 
volume density at the initial generate stage.

Hierarchical generative method is applied to enhance the efficiency of the initial generation in this 
study. A 2D schematic diagram is shown in Fig. 5. Firstly, various sizes of spheres are generated in 
a given geometric domain as illustrated in Fig. 5(a). Then, the spheres are compressed by using the 
method of Han, et al (2005), a new terrain A is created as shown in Fig. 5(b). Afterward, new 
spheres are generated and compressed in the new terrain A , as shown in Fig. 5(c), Fig. 5(d).
Another new terrain A is produced as illustrate in Fig. 5(d). Repeat the above procedure until no 
sphere of given radius range can be generated. In this procedure, the contact detection only needs to 
be executed among spheres in the new domain A for every layer of generation. 
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(a)                        (b)                           (c)                       (d)
Fig. 5 Hierarchical generate method

In order to validate the superiority of the new method, a given number of spheres were generated in 
special geometric domains via hierarchical method and the method of Han, et al (2005), the results
are shown in Fig. 6. It can be seen that the former method is more efficient than the latter one when
generate same amount of spheres in a given geometric domain. With the increase of the computing 
scale, the efficiency is improved more significantly. For the geometric domain of 2000 640
380mm and sphere number of 17000, the calculation efficiency can be improved by 60%.  

Fig. 6 Comparing of the computation time  

The initial configuration of the sphere DEs in the geometric domain of 1500 480 280mm with 
sphere number of 93024 is shown in Fig. 7. 

Fig. 7 Initial configuration of the DEs in geometric domain of 1500 480 280mm
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3.2 DEs consolidation under self-weight
It should be noticed that there might be contact but no contact force among DEs after initial 
generation. This is different with the real state of the sand particles. Therefore, the DEs shown in 
Fig. 7 were placed into the soil bin with corresponding geometric size. Then, gravitational force was 
loaded to the DEs, and they were compacted to a stable state under self-weight. The displacement 
nephogram of the vertical direction during the compaction procedure is shown in Fig. 8. It can be 
seen that the displacements of the elements in the bottom of the soil bin are small, while the 
elements in the upper part of the soil bin show larger displacements. 

T=0s 

T=0.3s 

T=0.6s 

T=1s 

Fig. 8 Displacement nephogram of vertical direction of DEs during consolidation process

Fig. 9 Time history of total potential energy of DEs 
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Total gravitational potential energy is used to estimate the consolidation state, and the time history 
of the total gravitational potential energy is illustrated in Fig. 9. It is obvious that the total potential 
energy decreases with the increasing of the computing time, and the trend tends to be flat. After 1s
of consolidation, it tends to be stable, and the consolidation process is completed.

4 Numerical simulation of running behavior
4.1 Model introduced 

Based on the soil bin experiment by Hisanori, et al (2010), considering that the wheel usually 
travels from hard terrain into soft terrain in practice, refer to papers of Hambleton, et al (2008 and 
2009), the numerical model is established including hard terrain and soft terrain, as illustrated in Fig. 
10, where the hard terrain, wheel and soil bin are discretized by FEs. The soft sand terrain is
modeled by DEs with the geometric terrain of 1500 480 280mm as illustrated in Fig7, and 
corresponding self-weight consolidation process is shown in Fig. 8, Fig. 9. 

(a) Front view                                                (b) left view
Fig. 10 3D numerical model

It should be noticed that we are focusing on the development 3D FE-DEM program in this paper,
thus, the destruction of the tire, hard terrain and soil bin is neglected. The hard terrain and soil bin 
are modeled via elastic material. The radius range of the DEs is 5mm to 7mm. Time step for explicit
calculation is 10-5s. Other parameters of the model are shown in Table1 and Table 2. 

Table 1 Material parameters 

Wheel Soil Bin Hard Terrain Sand Terrain
Number of Elements 1344 800 168 93024

Yong’s Modulus (MPa) 2 7.5 104 7.5 104 7.5 104

Poisson’s Ratio 0.49 0.30 0.30 0.30
Density (kg/m3) 1.8 103 2.4 103 2.4 103 2.4 103

Table 2 Contact parameters
Wheel-Sand Wheel-Hard terrain Soil-Bin

Normal Damping Coefficient (1/s) 40 50 50
Tangential Damping Coefficient (1/s) 35 45 45

Friction Coefficient 0.4 0.3 0.3

4.2 The wheel traveling process

Firstly, according to the relevant experiment of Kyoto University (Hisanori, et al, 2010), vertical 
load of 1295N including self-weight and external load is loaded to the center of the wheel, and the 
wheel is sinking until reaches equilibrium state. Then, a constant angular velocity of 5rad/s and 
corresponding translational velocity are enforced to the center of the wheel to simulate its running 
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behavior under slip ratio of 30%. It should be noticed that the constant angular velocity value is set 
to 5rad/s, which is larger than that in Hisanori’s experiment, to reduce the running time of the wheel
for a certain traveling distance because of the low computational efficiency of the program. And the 
improvement of the computational efficiency is our future work. The displacement nephogram of Z 
direction of the DEs is shown in Fig. 11. For better observation, the soil bin and the hard terrain is 
not shown. The figure shows that for the elements under the wheel track, with light color, the 
displacement values are negative, while on both sides of the trace, with dark color, the displacement 
values are positive. This phenomenon is consistent with the real condition. 

Fig. 11 Displacement nephogram of Z direction of sand particles
The flow of the sand particles has a great influence on running behavior of the wheel. Fig. 12 shows 
the flow trend of the particles at 0.74s, where the flow directions are described via velocity vectors.
From the figure we can see that the flow trend of the particles can be divided into two areas, the 
forward flow in clockwise and the rear flow in anticlockwise. This phenomenon is consistent with 
the conclusions by Hambleton, et al (2009) and Zhuang (2002). 

Fig. 12 Configuration of sand flow trend
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Fig. 13 shows the time history of the vertical reaction force during the traveling process. It can be 
seen that the vertical reaction force fluctuates around the average value of 1300N, which is close to 
the given load value. The vertical reaction force on the soft sand terrain shows larger fluctuation
than that on the hard terrain. The wheel starts to travel into the sand terrain at about 0.33s, and the 
vertical reaction force shows an abrupt fluctuation. The possible reason for this phenomenon is 
because of the sudden change of the support capacity of the road, the wheel sinks suddenly and the 
impact force leads to the fluctuation of the vertical reaction force.

Fig. 13 Time history of the vertical reaction force
The time history of the net drawbar pull is shown in Fig. 14. It can be seen that the net draw bar pull 
on the hard terrain is larger than that on the soft sand terrain. As the wheel travels into the sand 
terrain after 0.33s, the average value of the net draw bar pull decreases dramatically from 380N to 
110N. Analogous to the vertical reaction force shown in Fig. 13, the net draw bar pull of the soft 
sand terrain shows a larger fluctuation than that on the hard terrain. Similar mutation at the 
conjunction of two kinds of roads is also illustrated in the figure.

Fig. 14 Time history of net draw bar pull
Fig. 15 shows the time history of the wheel sinkage. It can be seen that the wheel sinkage fluctuate 
in a small range on the hard road. As the wheel travels into the soft sand terrain after 0.33s, the 
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sinkage value increases dramatically because of the destruction of the terrain. Afterward, the trend 
tends to be flat and the value fluctuates in 24mm to 28mm.

Fig. 15 Time history of wheel sinkage 
In order to further analyze the effect of slip ratio on the running behavior of the wheel on sand 
terrain (net draw bar pull of hard terrain is not included), constant angular velocity of 5rad/s and 
corresponding translational velocity for different slip ratios according to Eq.(7) are enforced to the 
center of it. The average value of the net draw bar pull on the soft sand terrain is regarded as the 
equivalent value. The relation between the equivalent value of net draw bar pull and slip ratio is 
shown in Fig. 16. It is clearly that the value of the net draw bar pull rises with the increase of the 
slip ratio. And the trend is steeper when the slip ratio is less than 25%, then it shows a flat trend 
with the slip ratio larger than 25%,  

Fig. 16 Relation between net draw bar pull and slip ratio
Fig. 17 shows the sinkage of the wheel with the traveling distance of 0.4m on sand terrain (sinkage 
on hard terrain is not included) under different slip ratio values. It can be seen that the value of the 
sinkage rises with the increase of the traveling distance. The sinkage value also rises with the 
increase of the slip ratio, for slip ratio value of 0% and 60%, the maximum values of the sinkage are
17.8mm and 37.9mm, respectively.
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Fig. 17 Relation between wheel sinkage and slip ratio
4.3 Simulation results discussion 

From the above simulation, we can obtain the following results: 
Hard terrain shows better traction performance than that of soft sand terrain, and the driving process 
is stable. During the process of running on sand terrain, the road is destructed, the net draw bar pull 
shows larger fluctuation, and the rut is clear. The main reason is because of the rolling and flow 
characters of the sand particles. Although we consider the frictions among DEs, the sphere shape of 
the elements is still inconsistent with the actual situation of sand particles. Various shape elements
(Li, et al (2010), Chen, Zhao, Cui, et al (2012), Zhou, Hua, Ma, et al (2012)) and rolling resistance 
among elements (Iwashita, Oda (2000), Jiang, Yu, Harris (2006) ) will be considered in the future to 
improve current program.

As the wheel travels into soft sand terrain, the sinkage value increases dramatically. Meanwhile, the 
normal reaction force and the net draw bar pull show large fluctuations. The reason is because of 
the different support capacity between hard and sand terrain, this causes an unbalance force of the 
wheel in the vertical direction. Thus, the wheel sinks into the sand terrain and produces large impact 
force which leads to the fluctuation of vertical reaction force. Moreover, the average value of the 
traction force decreases gradually because of the rolling and flow of the sand particles. 

On the soft sand terrain, the net draw bar pull shows a steeper trend when the slip ratio is less than 
25%, and the trend is flat when the slip ratio is larger. With the same traveling distance, the sinkage
value rises with the increase of the slip ratio. These conclusions agree qualitatively with the results 
proposed by Hisanori, et al (2010) and Li, et al (2010). In the mean time, there are still problems 
that the value of the net draw bar pull is larger than that in Hisanori’s experimental results. The 
possible reason is because of the larger particle size and the larger angular velocity of the wheel. 
And this problem will be overcome after we develop the parallel computing program which can 
improve the computing efficiency.

5 Conclusions
1. In this study, a 3D FE-DEM has been applied to model the interaction between wheel and sand, 

and corresponding procedure code was developed based on FORTRAN95 language. 

2. An initial generation method named hierarchical generate method which was appropriate for 
the sand terrain simulation was developed. Corresponding numerical model was established to 
model the running behavior of the wheel travels from hard terrain to soft sand terrain. The time 
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history of normal reaction force, net draw bar pull and sinkage of the wheel were obtained. The 
damage of the sand terrain was also presented.

3.  The overall trend of the net drawbar pull versus slip ratio is agreed qualitatively with the 
results of previous experiments, this indicates the effectiveness of the 3D FE-DEM in analysis 
the traction performance of rigid wheel travels on sand terrain.

Plans for the future work are to improve the accuracy and the efficiency of the method. The tread 
pattern will also be considered to simulate the real tire behavior.
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Abstract
Impellers of large centrifugal compressors are loaded by fluctuating aerodynamic pressure in 
operations. Excessive vibration of the impeller can be induced by unsteady airflows which may 
cause fatigue failures. Traditional vibration analyses require multiple load-step computations with 
input of pneumatic force in the time domain which are usually very time consuming. Hence, it is 
necessary to develop random vibration models and solve them in the frequency domain. In this 
paper, the finite element model is generated based on the result of unsteady CFD analysis for an
unshrouded impeller. The pseudo-excitation method is used to obtain the power spectra density of 
the three-dimensional, dynamic displacement and stress of the impeller. Compared with the direct 
transient vibration analyses in time domain, the pseudo-excitation method provides accurate and 
fast estimation of dynamic response of the impeller, making it an applicable and efficient method 
for random vibration computation of impellers. 

Keywords: Impeller, Random vibration, Aerodynamic load, Pseudo-excitation method

Introduction

Impellers of centrifugal compressors play an important role in generating pressured air and gases 
for production lines in petroleum and chemical engineering. The impellers are designed to 
undertake loadings of mass imbalance, centrifugal forces as well as aerodynamic loads. The 
aerodynamic force provides distributed air pressure on the surface of blades, shroud and hub of the 
impeller, and is time variant since the condition of the flow of air inside the impeller is generally 
unsteady or even turbulent. A scheme of transient analysis based on the fluid-solid interaction is 
required to assess the stress of the impeller to ensure its structural integrity. Two kinds of multiple 
load-step analyses for the stress of solid and the pressure of fluid are incorporated in the scheme 
separately, and are combined with numerous rounds of real-time data exchange on the interacting 
boundary of the solid and the fluid domains (e.g. Bludszuweit 1995, Beckert and Wendland 2001, 
de Boer et al. 2007, Khelladi et al 2010). The full execution of this scheme is usually very time 
consuming due to the transient analyses for the impeller. Other options of dynamical stress analysis 
can be adopted from the standpoint of the frequency domain. Unsteady or turbulent forces can be 
treated as random loadings with statistic characteristics observed based on temporal records of the 
force (Tootkaboni and Graham-Brady 2010). In this way, the stress response arisen from the 
dynamic pressure can be formulated as a problem of random vibration and solved in the frequency 
domain.   

In this paper, the transient stress analysis is performed as a random vibration problem through the 
Pseudo-Excitation Method (PEM, c.f. Lin and Zhang 2004). Based on an unsteady computational 
fluid dynamical analysis, the auto power spectral density of the air pressure is obtained. A solid, 
three dimensional finite element model is created using ANSYS. The random vibration analysis for 
the impeller is carried out through the PEM using a series of harmonic vibration solutions. A user-
defined module incorporated with ANSYS is developed to apply the random loading of multiple 
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dimension and multiple points on the impeller structure. Based on the random vibration analysis, 
the spectral information of the stress response is obtained. Finally, the structural integrity of the 
impeller in terms of reliability index is computed. It is shown that the solution efficiency of the 
PEM-based random vibration is much higher than the conventional multiple step transient stress 
analysis, and thus is suitable for practical engineering.

Mathematical formulation 

The governing equation of motion of the impeller structure excited by unsteady, time variant force 
based on the finite element method can be written as: 

( ) ( ) ( ) ( )t t t t   (1) 
where ,  and are matrices of mass, damping and stiffness of the impeller. is the vector of 
random nodal force applied at each degree of freedom of the model. t is the temporal variable. 
Herein, it is assumed that the time-invariant loads that contribute only to steady stress have been 
excluded from the load vector, and P is stationary whose probabilistic function does not change 
with time.
Based on the PEM, the power spectral density  can be expressed as

2 (2)
where ( ) is the power spectral density of a harmonic excitation denoted by (t) whose 
frequency is  () is the matrix of frequency-response function. Substituting a pseudo harmonic 
excitation vector ( ) i t(t) e  into Eq. (1) leads to a pseudo displacement vector denoted by 

( ).t It was proved that the auto power spectral density of the displacement (t) is related to ( )t
such that  

2 2  (3)
Following Eq. (3), the power spectral densities of strain and stress of each single element can be 
obtained as well using the conventional finite element method. 

In the case of multiple dimensional, multiple pointed, totally coherent excitations, the matrix of auto
power spectral density can be written as 

 
 
 
 
 
 

                                                (4) 

where m is the number of excitations. The non-diagonal terms in the above matrix are sub-matrices 
of cross power spectral density that can be expanded along the three coordinate directions. Using 
the PEM again, the auto power spectral density matrix of displacement response can be obtained as  

* T

1

m

j j
j

                                                                   (5) 

where j is the j-th pseudo displacement vector generated by pseudo load vector * i t
j j j e

 . The 
subscripts * and T represent complex conjugate and transposition of matrix, respectively. j and 

*
j are the j-th eigenvalue and eigenvector of the auto power spectral density of  x.

Assuming that the mean value of the loading is zero, the variance of the displacement response can 
be derived as
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2 dy 



                                                                 (6) 

Further, let the probabilistic densities of the structural resistance and loading be both normal 
(Gaussian) distributed, then the reliability index of structural integrity can be expressed as 

2 2( )R S R S                                                         (7) 
where R  and S are mean values of the resistance and loading, and R and S are their standard 

deviations, respectively. Notice all non-zero, time-invariant stresses resulted from mass imbalance 
and centrifugal force should be considered when S  is computed.  

Scheme of PEM-based simulation incorporated with ANSYS 

The random vibration analysis is carried out using finite element software ANSYS. A specialized 
user-defined module is developed to repeatedly run harmonic analysis for solution of auto power 
spectral densities with every single excitation frequency. The scheme of the numerical simulation 
can be summarized as follows. 

1. Create the finite element model of the impeller and assign basic solution conditions. 
2. Compute the matrix of power spectral density based on the given records of the air pressure in 

the time domain.
3. Specify appropriate range of frequency [min,max] and step size .  
4. Let frequency min+i. Generate the pseudo excitation and compute the pseudo 

displacement vector j using the harmonic analysis module provided by ANSYS, i.e. 
(ANTYPE HARMIC). 

5. Superpose for each pseudo displacement to obtain the power spectral density matrix related to 
frequency  according to Eq. (5). Compute the power spectral density matrix of the stress field. 

6. Repeat steps 4 and 5 until is equal to or greater than max.
7. Compute the variances of displacement based on Eq. (6) and of stress at each element through 

conventional finite element method. 
8. Compute the reliability index  according to Eq. (7). 

Example 

Figure 1 shows the solid model of an unshrouded impeller of a centrifugal compressor. There are 
nineteen blades evenly distributed in the circumferential direction on the impeller. The whole 
impeller is meshed with the type solid186 by ANSYS as shown in Figure 2. Considering the axial 
symmetry of the structure, only a sector of one nineteenth of the model needs to be analyzed. The 
numbers of node and element for the sector are 7823 and 6283, respectively. 

Figure 1. Solid model of the impeller               Figure 2. Meshed finite elements

1032



4

Further, a highlighted area colored in red is illustrated in Figure 3 to show the high stress zone of 
the impeller based on previous stress analysis using deterministic centrifugal loading. This area is 
believed the most vulnerable part of the whole impeller to structural failure of fatigue.  

Figure 3. High stress area 

The pulsating, unsteady air pressure on the surface of the impeller is obtained through 
computational fluid dynamics software NUMECA. The time history of the pressure contains 6,000 
records and is converted into a three dimensional nodal force of the solid model using the method of 
radial basis function (Wu, Wang and Sun 2012). Then, the previously presented scheme of PEM-
based simulation is carried out to obtain the auto power spectral densities of each nodal point of the 
impeller. The power spectral characteristics of von Mises stress can be computed as well. 
Based on the steady-state stress analysis, the highly stressed area is composed of 200 nodes. Figures 
4 and 5 show the auto power spectral densities (PSDs) of x-displacement and von Mises stress of 
these 200 nodes.  

Figure 4. auto PSDs of x-displacement Figure 5. auto PSDs of von Mises stress

Next, the reliability index of the impeller structure is computed following the above analysis for 
random vibration. Let the rotational speed of the impeller be =5373 r/min, the mean value of 
stress s can be obtained for each node. The deviance of the nodal stress can be solved using Eq. (6). 
Assume R=1050MPa, R=0.07, the reliability index of structural integrity can be determined 
through Eq. (7). The reliability indices of the 200 observed area is presented in Figure 6. The lowest 
value of the index is 4.79, which means the integrity of these highly stressed positions is guaranteed. 
By contrast, the indices drop drastically when the rotational speed is increased to 8594 r/min. The 
lowest value of the reliability index becomes 0.507 in this case, which suggests there will be a 
structural failure initiating from this position.
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It is worth reporting that the solution efficiency of the presented random analysis is satisfactory. In 
this analysis 6000 records in the time domain and 4096 points of frequency sampling are used. The 
total computational lasts approximately 8 hours on a four-core workstation. Comparatively, the 
transient stress analysis in the time domain with 6000 load steps costs about 120 hours. This clearly 
shows the advantage of dynamical stress computation through the pseudo-excitation method.

   
Figure 6. Reliability indices. =5373r/min.    Figure 7. Reliability indices =8594r/min.

Conclusions

It has been demonstrated in this paper that dynamical stress analysis of impellers excited by 
unsteady aerodynamic force can be dealt with efficiently through random vibration analysis. A
PEM based scheme incorporated with ANSYS is developed and executed to obtain the power 
spectral densities and deviances of stress and displacement. The reliability index of integrity is 
computed in the case of Gaussian distributions of structural resistance and air pressure. The 
advantage of the presented scheme in computational efficiency is demonstrated compared with 
transient stress analysis in the time domain.
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Abstract
This paper presents a regularization scheme for the nearly singular integrals used for 3D elastostatic 
boundary element analysis. For the regularization process, the local projection coordinates of the 
source point are first located via an iteration procedure. For planar elements, the boundary integrals 
are analytically integrated by parts to smooth the drastic fluctuations of their integrands so that the 
regularized forms can be numerically integrated by any conventional schemes in an usual manner.  
The validity of the formulations is numerically tested using the Gauss Quadrature scheme. The test 
shows the accuracy is satisfactory for the distance ratio (distance : element characteristic length) 
falling below micro-scale. 

Keywords: Boundary integral regularization, 3D elastostatic BEM analysis 

Introduction 
In these years, the boundary element method, usually abbreviated as BEM, has been widely applied 
to various engineering problems due to its distinctive feature that only the boundary needs 
discretisation. In particular, this is most advantageous in modeling three-dimensional problems with 
complicated geometry that demands heavy modeling efforts for the domain solution techniques, 
such as the finite element method (FEM) and the finite difference method.  In engineering 
applications, ultra-thin structures are quite often applied that are characterized by their thickness 
dimensioned with several orders below their characteristic length. For yielding reliable results by 
the FEM analysis, the elements employed must have proper aspect ratios that are normally greater 
than 1:20. Due to this aspect-ratio constraint, the FEM-modeling of ultra-thin structures shall take 
tremendous amounts of elements, leading to overloading computations. Although no such issue is 
involved for the BEM, another difficulty of “near singularity” will arise. As has been well 
understood in the BEM community, approaching of the source point to the element under 
integration will lead to drastic fluctuation of the integrands near its projection place and cause 
difficulty of proper numerical integration.  

Over the years, this topic of nearly singular integrals has attracted significant researches in the BEM 
community. The most known approaches for dealing with this issue can be referred to (e.g. Zozulya, 
2010; Chen and Hong, 1999; Guz and Zozulya, 2001; Tanaka et al., 1994). For the BEM analysis, 
ultra-thin structures with flat or less-curved surfaces can be modeled by assemblage of planar 
elements. In this subcategory of planar elements, the main goal of the present work targets 
regularizing the boundary integrals for the BEM elastostatic analysis by an approach of “integration 
by parts”, abbreviated as IBP in this paper. There are too many articles to review as a complete for 
the topic of integral regularizations; only a few among them are mentioned herein as examples. 
Granados and Gallego (2001) proposed a kernels' complex regularization procedure, leading to a 
decomposition of the quasi-singular and quasi-hypersingular integrals in a series of simpler terms. 
Recently, Tomioka and Nishiyama (2010) presented a gradient field representation using an 
analytical regularization of a hypersingular boundary integral equation for the Helmholtz equation. 
For axisymmetric linear elasticity, de Lacerda and Wrobel (2001) presented a hypersingular 
boundary integral equation, which are regularized by employing the singularity subtraction 
technique. On applying the IBP, Shiah and Shi (2006) regularized the boundary integrals for the 2D 
anisotropic heat conduction problems. Furthermore, Shiah et al. (2007) applied this IBP technique 
to study the 2D interlaminar thermal stresses in thin layers of composites. To the authors' best 
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knowledge, no implementation of the IBP in 3D elasostatic BEM analysis has been reported in the 
open literature yet. The present work is to extend the IBP work (2006) for 2D cases to treat the 
boundary integrals of the 3D elastostatics for ultra-thin bodies with planar surfaces. For numerical 
tests, the regularized integrals of a typical case were evaluated using the conventional 14-point 
Gauss quadrature scheme and compared with the numerical results obtained by mathematical 
software. Before presenting the regularization scheme, a brief review of the boundary integral 
equation for 3D elasostatic analysis will be given next

Boundary integral equation of 3D Elastostatics 

In the direct formulation of BEM, the displacements ui and the tractions ti at the source point P and 
the field point Q on the surface S of an elastic body are related by the following integral equation, 

( ) ( ) ( ) ( ) ( ) ( )* *
ij i i iij ijS S

P  P  = Q  U P , Q  dS Q  T P , Q   dSC u t u  ,                         (1) 

where ijC  are geometrically dependent coefficients at P, q is an arbitrary field point inside the 
domain V; *

ijU and *
ijT are respectively the fundamental solutions of the displacements and tractions, 

given for 2D isotropic elastic bodies by 

 1( ) = 3 4
16 (1- )

*
ij ij ,i , jU P , Q r r ,

G r
 

 
                                               (2a) 

  2

-1( ) = (1-2 ) 3 -(1-2 )
8 (1- )

*
ij ,k k ij ,i , j ,i j , j iT P , Q r n r r r n r n ,

r
  

 
        (2b) 

where   stands for the Poisson’s ratio, G is the shear modulus, ij  stands for the Kronecker delta 
defined as usual, in  are the components of the outward normal vector, and r represents the radial 
distance between the source point at 1 2 3( , , )x x x and the field point at 1 2 3( , , )xp xp xp  and ,ir
represents taking partial differentiation of r with respect to xi. They are calculated by 

3 2

1
= ( )l l

l
r x - xp


 ,

3 2

1

( - )

( )

i i
,i

l l
l

x xp
r

x - xp





.                                     (3) 

Apparently, when the source point approaches the field point i.e. r0, Eq.(2a) and (2b) reveal 
singularities with orders O(1/r) and O(1/r2), respectively. As the usual BEM process for solving 
Eq.(1), the boundary is discretized into a number of elements, say M elements, with k nodes on each 
one. As a result of interpolating the nodal values of ( )c

iu , ( )c
it  by the shape functions ( ) ( , )cN   , the 

displacements/tractions at Q can be written as 
( ) ( ) ( ) ( )

1 1

( ) ( , ) ( ) ( , )
k k

c c c c
i ii i

c c

Q  N u , Q  N tu t   
 

   ,                           (4) 

where ( , )   are the intrinsic local coordinates on each integration element. For an assemblage of 
M-elements, substitution of Eq.(4) into Eq.(1) yields a discretized integral equation as follows, 

1 1( ) ( )
( ) 1 1

1 1

1 1( ) ( )
( ) 1 1

1 1

( ) ( ) ( , ) ( , )  

( , ) ( , )  

M k
c c *

ij i i m ij
m c

M k
c c *

i m ij
m c

P  P  = t N  U J d d  C u

u N  T J d d

     

     

 
 

 
 



  

  
,                   (5) 

where the subscript (m) is used to denote the m-th discretized element, and ( , )J    is the Jacobian 
transformation, defined by 

2 2 2
1 2 3( , )J J J J ,                                                                         (6a) 
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     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 3 2

1 1 1 1

k k k k
c c c c c c c c

, , , ,
c c c c

J N x N x N x N x   
   

     ,                        (6b) 

      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 , 3 , 1 , 1 , 3

1 1 1 1

k k k k
c c c c c c c c

c c c c
J N x N x N x N x   

   
     ,                       (6c) 

      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 , 1 , 2 , 2 , 1

1 1 1 1

k k k k
c c c c c c c c

c c c c
J N x N x N x N x   

   
     .                       (6d) 

In Eqs.(6b)-(6d), the superscript “(c)” denotes the c-th node on the m-th element; ( )c
,N  ,

( )
,

cN  represent the derivatives of the shape functions taken with respect to  and , respectively. For
simplification, the integrals in Eq.(5) are symbolized by 

1 1( ) ( )

1 1
( , ) ( , )  c c *

ij ijE N  U J d d     
 

   ,                                  (7a) 
1 1( ) ( )

1 1
( , ) ( , )  c c *

ij ijF N  T J d d     
 

   .                                  (7b) 

Since quadratic elements are usually employed for BEM analysis, the following derivations will be 
presented only for this particular case using 8 nodes for a quadrilateral element, i.e. k=8. Also, it 
should be noted that the presented formulations may be applied to a triangular element treated as a 
degenerate quadratic element, where three nodes of a quadrilateral side are placed at the same 
vertex of the triangular element. For the 8-node quadrilateral element, the shape functions take the 
following forms, 

        

         

        

         

(1) (2) 2

(3) (4) 2

(5) (6) 2

(7) (8) 2

1 11 1 1 , 1 1 ,
4 2
1 11 1 1 , 1 1 ,
4 2
1 11 1 1 , 1 1 ,
4 2
1 11 1 1 , 1 1 .
4 2

N N

N N

N N

N N

     

     

     

     


       

       

       

        

                    (8) 

Next, the processes for regularizing these integrals with different singularity orders will be 
elaborated separately 

Integral regularization for ( )c
ijE

By substituting the fundamental displacements into the integrand and interpolating the coordinates 
using the 8-node shape functions, the integral can be expressed as 

 ( )
1 1 , ,( )

1 1

3 41
16 (1- ) ( , )

c
ij i jc

ij

N J r r
E d d

G D

 
 

    

      ,                (9) 

where ( , )D   , abbreviated simply as D, is defined by 
3 8 ( ) ( ) 2

1 1
( )m m

l l
l m

D N x xp
 

   .                                                (10) 

By substituting Eq.(3) into the integrand in Eq.(9), the integral can be rewritten as 
( )( )( ) 1

16 (1- )

ccc
ij ijijE E E

G 
   
 

,                                            (11) 

where

 
( )

1 1( )

1 1
3 4  

( , )

c
c

ij ij

N J
E d d

D
   

  
                                            (12a) 
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8 8( ) ( ) ( ) ( ) ( )
( ) 1 1 1 1

1 1

( )( )

( , )

c m m m m
c i i j j

m m
ij

N J N x xp N x xp
E d d

D
 

 
 

 

  
  .

           (12b) 
For a quadrilateral planar element depicted in Fig.1, the mid-poin
t coordinates must satisfy 

   
   

(2) (1) (3) (4) (3) (5)

(6) (5) (7) (8) (1) (7)

/ 2 , / 2 ,

/ 2 , / 2 .

i i i i i i

i i i i i i

x x x x x x

x x x x x x

   

   
          (13) 

As a direct consequence of substituting Eqs.(13) and the shape  
functions into Eq.(10), one obtains 

3 3 32

1 1 1
( ) ( ) ( )i i i

i i i
D A B C    

  
     ,                (14) 

where

    2
(1,3) (5,7) (1,3) (5,7)( ) /16i i i i iA x x x x       ,                                                 (15a) 

     
   

(3,5) 2 (1,7) 2 2 (1,3) (2) (5,7) (6)

(1,3) (5,7) (2) (6)

( ) ( ) ( ) /8 / 2

2 / 4

i i i i i i i i i

i i i i i

B x x x x xp x x xp

x x x x xp

         

   
, (15b) 

    2(2) (6) (2) (6)( ) 2 / 4i i i i i iC x x x x xp        .                                            (15c) 

and the ( , )m n
ix  is defined by 

( , ) ( ) ( )m n m n
i i ix x x  .                                                         (16) 

In brief, Eq.(10) is rewritten as 
2( ) ( ) ( )D A B C       ,                                                (17) 

where

.)()(,)()(,)()(
3

1

3

1

3

1




i

i
i

i
i

i CCBBAA                           (18) 

Recall the scheme of IBP, giving 

 
b

a

b

a

b

a
dUVVUdVU .                                                  (19) 

For applying the IBP to Eq.(12a) with respect to , one may let 
( )

2
,

( ) ( ) ( )
c d

U N J dV
A B C



    
 

 
,                                 (20) 

and the followings are obtained, 

( ) 1 2 ( ) ( ), ln 2 ( , ) ,
( ) ( )

c A B
dU NJ d V D

A A

    
 

    
 
 

                     (21) 

where
 ( ) ( ) / .c cNJ N J                                                             (22) 

Thus, operation of the IBP by Eq.(19) yields 
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1
( )

1 1 1

1 1 1

1

1 1

1 1

2 ( ) ( ) ( , ) ln 2 ( , )
( , ) ( )

2 ( ) ( )( , ) ln 2 ( , )  
( )

cN J A B
d d G D d

D A

A B
F D d d

A





        
  

       




  



 

   
 
 

   
 
 

  

 

,    (23) 

where
( ) ( )

( , ) , ( , ) .
( ) ( )

c cN J NJ
G F

A A
   

 


                                               (24) 

Still, both integrals on the right hand side of Eq.(23) reveal weak singularity that needs further 
regularization. For this, the single integral is expressed as 

 

1

1

1

1

1

1 1 1

2 ( ) ( )( , ) ln 2 ( , )
( )

( , ) ( , )

A B
G D d

A

G G d





 

      


    







   

  
 
 

 





,                           (25) 

where ( , )G    is defined by 

2 ( ) ( )( , ) ( , ) ln 2 ( , )
( )

A B
G G D

A

       


      
 
 

.                          (26) 

Firstly, the integral is rewritten as 

 1 1

01 1
0

1( , ) ( , )G d G d       
  

  
  ,                            (27) 

where 0  is the -coordinate of the source projection on the integration element. Numerical 
determination of 0  will be elaborated later. For performing the IBP using Eq.(19), one may take 

0
0

( , ) , dU G dV    
 

  


                                     (28) 

As a result of carrying out the IBP followed by some algebraic arrangements, one obtains 

   
11 1

0 01 11
( , ) ( , ) ( , )G d G G d




           



 

       ,                    (29) 

where
( , )( , ) G

G
  

  


.                                                       (30) 

Obviously, due to the presence of  0  , no more drastic fluctuation of the integrand will be 
present when the source point approaches the element at its projection coordinates (0, 0) and thus, 
the single integral on the right hand side of Eq.(29) turns out to be regular. 

Next, the effort is turned to regularize the double integral in Eq.(23). For using Eq.(19), the 
following substitutions are made, 

2 ( ) ( )( , ), ln 2 ( , )
( )

A B
U F dV D d

A

      


    
 
 

.                    (31) 

Thus, it follows 
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2 ( ) ( ) 2 ( ) ( ) ( , )( , ) , ln 2 ( , )
2 ( ) ( )( )

A B A B D
dU F d V D

A AA


           
 

      
 
 

,     (32) 

where ( , ) ( , ) /F F         . Consequentially, the use of IBP by Eq.(19) yields 

1 1

1 1

1

1

1

1

2 ( ) ( )( , ) ln 2 ( , )  
( )

2 ( ) ( ) 2 ( ) ( ) ( , )( , ) ln 2 ( , )
2 ( ) ( )( )

2 ( ) ( ) 2 ( ) ( )( , ) ln 2 ( , )
2 ( ) ( )

A B
F D d d

A

A B A B D
F D d

A AA

A B A B D
F D

A A







       


           
 

        
 

 







  
 
 

       
    

     
 
 

 



1 1

1 1

( , )
( )

d d
A
   
 

 
 
  

 

. (33) 

Taking partial differentiation of ( , )D    defined in Eq.(17) yields 
( , ) / 2 ( ) ( )D A B         .                                              (34)

Under the circumstance when the source point approaches the element near its projection point  
(0, 0), one will have the following conditions: 

0 0 0 0 0( , ) 0, 2 ( ) ( ) 0D A B       .                                        (35) 
From the above conditions, it can be seen that the double integral on the right hand side of Eq.(33) 
are truly regular.  

For the regularization of the integral in Eq.(12b) using Eq.(19), one may take 
8 8( ) ( ) ( ) ( ) ( )

1 1
( )( ),c m m m m

i i j j
m m

U N J N x xp N x xp
 

                                  (36a) 

 32( ) ( ) ( )

d
dV

A B C



    


 
.                                            (36b) 

Following the similar IBP process as before, one may obtain 
1

( )
( ) 1

21

1

( )
1 1

21 1

2 ( ) ( )
2

4 ( ) ( ) ( ) ( , )

2 ( ) ( )
2

4 ( ) ( ) ( ) ( , )

c
c

ij

c

A B H
E d

A C B D

A B H
d d

A C B D







  


    

  
 

    







 

   
   

   
  



 

,                         (37) 

where
( )8 8( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
( )( ),

c
c c m m m m c

i i j j
m m

H
H N J N x xp N x xp H  

    


.                (38) 

It is noted that when the source point approaches the projection point (0, 0), one will have the 
following conditions, 

( )
0 0 00, 2 ( ) ( ) 0cH A B      .                                         (39) 

Thus, there is no spike-shape variation of the integrand of the double integral in Eq.(37).  However, 
there is still relatively large variation of the integrands due to the presence of the term 

24 ( ) ( ) ( )A C B    in the denominator. This can be resolved by simply sub-dividing the integral 
range at the projection point without resorting to further regularization processes. Up to this point, 
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the ( )c
ijE may be numerically integrated using the regularized formulations presented above. Next, 

the task remains to treat the other integral by the similar IBP processes as before. 

Integral regularization for ( )c
ijF

As aforementioned, since hyper-singularity is present for the integral ( )c
ijF . numerical integrations 

by any conventional means shall fail to yield proper values. By substituting the fundamental 
solution in Eq.(2b) into the integrand, the integral is written as 

 
( )1 1 , , ,( )

21 1
, ,

(1-2 ) 3( , ) ( , )-1
8 (1- ) -(1-2 )

c
k k ij i jc

ij

i j j i

r n r rN  J
F d d

r r n r n

    
 

   

      
  

  ,           (40) 

where in , the components of the unit outward normal vector, are given by 

( , )
i

i

J
n

J  
 ,                                                             (41) 

and for 8-node quadrilateral planar element, iJ  are calculated by 

1 2 3i i i iJ        ,                                                     (42) 
where

 (5,7) (1,3) (5,7) (1,3)
1 1 2 2 1

1 ,
8i i i i ix x x x                                                 (43a) 

 (3,5) (1,7) (3,5) (1,7)
2 1 2 2 1

1 ,
8i i i i ix x x x                                                (43b) 

 (1,5) (3,7) (1,5) (3,7)
3 1 2 2 1

1
8i i i i ix x x x      .                                           (43c) 

In Eqs.(43a)-(43c), the subscript “i” follows the cyclic rule i=(i-3) for i>3. By substituting Eq.(41) 
and Eq.(42) into Eq.(40), one may sort out terms to rewrite the expression as 

( )( )( ) -1 (1-2 ) 3
8 (1- )

ccc
ij ijijF F F

 
    

,                                       (44) 

where
( )

1 1( )

31 1

( , )c
c ij

ijF d d
D

 
 

 


   ,                                                 (45a) 

( )( ) 1 1

51 1

( , )cc
ij

ijF d d
D

 
 

 


   ,                                                 (45b) 

and ( ) ( , )c
ij   , ( ) ( , )c

ij    are given by 

 ( ) ( )( , )c c
ij ij k k i j j iN X J X J X J      ,                               (45c) 

 ( ) ( )( , )c c
ij k k i jN X J X X     .                                               (45d) 

In Eqs.(45a)-(45d), iX  is defined by 
-i i iX x xp .                                                              (46) 

For analytically integrating the both integrals, they are re-expressed as 
3 ( )

1 1( ) 0
31 1

( )
,

c m
ijmc m

ijF d d
D

 
 

 


                                      (47a) 
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5 ( )
( ) 1 1

0
51 1

( )c m
c ijm

m
ijF d d

D

 
 

 


   ,                                      (47b) 

where ( )c
ijm , ( )c

ijm  can be numerically determined by 
( )

0( )
( , ) /

( ) ,
!

m c m
ij

c
ijm m


  

 

    
                                      (48a) 

( )

0( )

( , ) /
( )

!

m c m
ij

c
ijm m


  

 

     
  .                                   (48b) 

In Eqs.(48a) and (48b), the partial differentiations can be performed using Eqs.(45c)-(45d) in a 
straightforward manner and thus, their explicit expressions are not presented here. As a result, 
analytical integration of Eq.(47a) with respect to  yields 

1
( )

( ) 2
32

1( )

( ) ( )1
2 3

5

1

( , )1
(4 )

,
(2 3 ) 2ln 2

2

c
ij c

ij
c

ij
c c

ij ij

A D A AC B
F d

A B A B
D

AA





 











  
   

     
         

  

           (49) 

where
3 2( ) ( ) ( )

0 1 2( )
3 ( ) ( ) ( )

3 2 3

2 2( ) ( ) ( )
0 1 3

( ) ( )
2 3

4 2 ( 2 )
( , )

3 2 ( 5 )

2 ( 2 ) 3

2 ( 4 )

c c c
ij ij ijc

ij
c c c

ij ij ij

c c c
ij ij ij

c c
ij ij

A A B C

B AB B C

A B C B C

AC B C

  
     
   
       
     
 
     

.                        (50) 

It should be noted that near-singularity still appears in the integral in Eq.(49) due to 
2

0 0 04 ( ) ( ) ( ) 0A C B    ,                                                (51) 
and its associated integral is written as 

1
( )

1( )

2 21
1

( , )

(4 )

c
c ij

ijf d
A D AC B





 







 
  

  
 .                                  (52) 

From the definitions of ( )A  ~ ( )C   given in Eqs.(15a)-(15c) and (18), it is clear that one may 
rewrite 24 ( ) ( ) ( )A C B   , being represented by ( )K  , into a quartic function of , namely 

4
2

0
( ) 4 ( ) ( ) ( ) m

m
m

K A C B     


    .                               (53) 

Instead of explicitly sorting out all coefficients one by one, one may calculate the coefficients m
via the fundamental calculus processes as follows: 

0
( ) /

!

m m

m

K

m


 
 

   
  .                                            (54) 
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For using Eq.(54), taking partial differentiation of ( )A  ~ ( )C   will be involved, which can be done 
in a straightforward manner. From the Ferrari's method, ( )K   can be factored into a product of two 
quadratic polynomials, expressed as 

4 1 2( ) ( ) ( )K H H    ,                                             (55) 
where

   2 2
1 1 0 2 1 0( ) , ( )H H               .                       (56) 

In Eqs.(57), the very explicit expressions for all coefficients, given in terms of m , can be referred 
to (Wikipedia online). It is worth mentioning that only one of the two functions, either 1( )H   or 

2 ( )H   but not both at the same time, shall approach null for the case of near singularity. Take it as 
an example when  

1 0 2 0( ) , ( )H H     ,                                         (57) 
where   is a very small value. For regularization treatment, the integral in Eq.(53) is rewritten as 

( ) ( )
1 1

2 2 21 1
4 12

( , ) ( , )1 1 ,
( )(4 ) ( )

c c
ij ijd  d

HA D AC B A D H

   
 

  

   
  

   
                   (58) 

For the IBP process using Eq.(19), one may take 
( )

2
12

( , )
,

( )( )

c
ij d

U dV
HA D H

  


 
  
  

.                                   (59) 

As a result of performing the IBP by Eq.(19), one obtains 
1

( ) 1 1
2

( ) 1 0 1
2

4 1 0 1 ( ) 1 1
21

1 0

2( ) tanh
42

4 2( ) tanh
4

c
ij

c

ij

c
ij

f

d





 
 

     
 











    
       

      
    



,                (60) 

where
1

( ) ( )
( ) ( )

2

2 1

( , ) ( )
( ) , ( )

( ) ( ) ( , )

c c
ij ijc c

ij ij
A H D





  
 

   





 
   


.                (61) 

Eventually, the integral 
( )c
ijF  is thus given by 

1
( ) 2 ( ) ( )

1( ) ( ) 3 2 3

51
1

(2 3 ) 2ln 2
2

c c c
c c ij ij ij

ij ij

A B A B
F f D d

A D AA





  






               
 .      (62) 

Next, the similar regularization treatment can be carried out for 
( )c

ijF , given in Eq.(47b).  Analytical 
integration of the integral with respect to  leads to 

1
( ) 4 ( ) ( )( ) ( ) 1 5 4 5

3 71
1

(2 5 ) 2ln ( , )
22

c c cc c
ij ij ij

ij ij

 A B A B
F f D d

A D AA





    







             
   

 ,      (63) 

where
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1

1

3
( ) 3

( ) 1 0
3 2 21

/

3 (4 )

c k
ijk

c k
ij

D

f d
A AC B




















 ,                                               (64) 

and the ( )c
ijk  is defined as follows:

 
 
   

4 2 2 2 5( ) ( ) ( )
3 5 1

2 2 2 4 2 6( ) ( )
4 0

3 2 4 2( ) ( )
3 2

4 5 64 37 16

8 8 7 32

2 12 4 4

c c c
ij ij ij

c c
ij ij

c c
ij ij

AB B A C ACB A B

A A C B ACB A

A B AC B A AC B

      

     

     

,                       (65a) 

 
   

 

2 2 2 3 3 4 6( ) ( )
2 5

3 3 2( ) ( )
2 3

3 2 4 2 5( ) ( ) ( )
4 1 0

3 16 64 30 5

6 12 4

6 6 24 48

c c
ij ij

c c
ij ij

c c c
ij ij ij

A B C A C B AC B

A B C A AC B

AB AC B A B A B

     

    

      

,                     (65b) 

 
 

   

4 2 2 2 3 2( ) ( ) ( )
1 5 3

2 2 2 4 3 2( ) ( )
4 2

4 3 2( ) ( )
0 1

6 5 35 52 48

12 7 4 24

12 6 4

c c c
ij ij ij

c c
ij ij

c c
ij ij

BC B ACB A C A BC

AC ACB A C B A B C

A A B AC B

      

     

    

,                 (65c) 

 
 

   

2 4 2 2 2 3 2( ) ( ) ( )
0 5 2

2 2 3 3( ) ( )
4 3

3 2 3 2( ) ( )
1 0

15 100 128 16

2 20 3 32

4 4 2 12

c c c
ij ij ij

c c
ij ij

c c
ij ij

C B ACB A C A C B

ABC AC B A C

A C AC B A B AC B

      

    

     

.              (65d) 

Likewise, the integral in Eq.(64) still reveals near singularity under the condition as described in 
Eq.(51).  For this, the integral is rewritten as 

( ) 1

2 2 21
4 2 1

( )1 1
3 ( ) ( )

c

ijf d
H H

 
  


  ,                                     (66) 

where ( )  is defined by 
1

1

3
( ) 3

0
3( )

/c k
ijk

k

D

A









 


.                                          (67) 

For applying the IBP onto Eq.(66), one may let  

2 2
2 1

( ) ,
( ) ( )

d
U dV

H H
 
 


  ,                                       (68) 

and thus, the use of Eq.(19) yields 
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1

1 1 1
( ) 2 22 3 2

2 1 0 10 1 0 12 1
4

1

1

( ) 2 24 tan1 ( ) ( )(4 )(4 ) 4
3

( )

c

ij
H Hf

d





    
      


 










                   
 
   

,      (69) 

where ( )  is defined by 

 2
2 1 1 1

22 3 2
1 0 10 1 0 1

( ) / ( ) 2 24( ) tan
( )(4 )(4 ) 4

H

H

     
      


                

.    (70) 

Due to the following condition 
1 02 0   ,                                                       (71) 

the integrand defined in Eq.(70) is indeed regular when the source point approaches the element 
under integration.  In the sequel, the resulting regularized integral can be calculated by Eq.(63) and 
Eq.(69).  However, it should be noted that although the regularized forms may now be integrated by 
any conventional numerical schemes, relative higher integration order is still needed for yielding 
satisfactorily accurate results.  This is mainly because the certain fluctuations of the integrands still 
remain, although not so drastic like the un-regularized forms.  Nevertheless, the cost of greater 
integration order is minor since the integrations are performed only for single-integrals.  Also, a 
good practice for improving the accuracy is to subdivide the integration element into 4 quadrants at 
the project point (0, 0).  At this point, discussion about how to numerically determine the 
projection coordinates is elaborated next. 

Determination of the projection point 
As explained earlier, under the nearly singular condition when the source point approaches the 
integration element, the integrand will become drastically large at its projection coordinates (0, 0).
It is clear that when the source point approaches the element near (0, 0), the denominator of the 
integrand will be verging to null. Evidently, the numerical value of ),( 00 D  should be the 
minimum, leading to the following conditions: 

0),(),(,0),(),(
0
0

0
0

0000 























 



 D

D
D

D .             (72) 

For performing the partial differentiations described above, Eq.(17) is reformulated into the 
following form: 

)(ˆ)(ˆ)(ˆ),( 2  CBAD  ,                                       (73) 
where

    
23

1

)5,3()7,1()5,3()7,1( ˆˆˆˆ
16
1)(ˆ 




i

iiii xxxxA  ,                            (74a) 

    
  




















 

3

1

)6()2()5,3()7,1(

3

1

)4()5,3()8()7,1(

23

1

2
)3,1(

2
)7,5(

ˆ2ˆˆˆˆ
4
1

2
ˆˆˆˆˆˆ

8
ˆˆ)(ˆ

i
iiiii

i
iiiiii

i
ii

pxxxxx

pxxxpxxx

xxB





,                        (74b) 
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23

1

)4()8()4()8( ˆ2ˆˆˆˆ
4
1)(ˆ 




i

iiiii pxxxxxC  .                       (74c) 

Obviously, analytically solving the two simultaneous equations in Eqs.(72) is absolutely not an easy 
task. Alternatively, they can be numerically solved in an iterative manner. Firstly, one may adopt 
1=0 as the initial shooting point and then, by use of Eqs.(72), perform the following repetitive 
iterations to yield a convergent solution: 

)(2
)(,

)(ˆ2
)(ˆ

1
i

i
i

i

i
i A

B
A
B





 




  ,                                     (75) 

where the subscript “i” is used to denote the i-th iteration time. From the iterative process, fast 
convergence is assured to give the projection coordinates (0, 0).  

Although the fully regularized integrals presented above are ideal substitutes for the original, their 
numerical evaluations shall cost more CPU-runtime as a tradeoff. For this reason, the computer 
code should be programmed in such a way that it can discriminate the special condition when the 
regularized integrals are supposed to be invoked. This can be easily achieved by use of the 
following criteria: 

 aveDD /),( 00 ,                                            (76) 
where   is a small value chosen by the user and aveD  is the average value of ),( D  for all 
element nodes. That is, under the regular condition, the integrals are evaluated in a conventional 
manner as usual; the regularized ones are used as the substitutes only when the criteria, Eq.(76), is 
met.  In what follows, numerical examples will be studied for testing the accuracy of the regularized 
integrals.   

Numerical examples 
For verifying the validity of the proposed formulations, consider a typical case assuming =0.3, 
Young’s modulus=1000 (units) and an element with the following arbitrarily chosen nodal 
coordinates:

(1) (1) (1)
1 2 3
(3) (3) (3)
1 2 3
(5) (5) (5)
1 2 3
(7) (7) (7)
1 2 3

1 2 3

30, 50, 1,

50, 60, 1,

70, 30, 1,

40, 40, 1,
2, 1, 1 ,

x x x

x x x

x x x

x x x

xp xp xp 

    

   

  

   
   

                                 (77) 

where  is a small distance away from the element. For this test case, the average dimensional 
length of all four edges, denoted by L, is about 93.456371. By the iteration process as described 
earlier, a convergent solution (0  -0.2248131, 0  0.219465) was obtained for the projection 
coordinates.

Displayed in Table 1 are the computed values of ( )
11

cE , serving to be a typical example of ( )c
ijE .

Since all other components of ( )c
ijE  have similar computation accuracy, they are not presented here.  

For providing a comparison base, the software MathCAD, employing the scheme of adaptive 
integration, was used to perform the numerical integrations. For the conventional numerical 
integrations, 14-point Gauss integrations of the both original and the regularized forms were carried 
out.  Since the MathCAD has convergence difficulty for  10-3, the distance  ranging from 100 to
10-2 was used for the test, resulting the /L as low as 10-4 that is sufficiently small for most practical 
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applications.  Also, as a typical example of ( )c
ijF , the numerical results of the computed ( )

11
cF  are 

tabulated in Table 2.  As can be observed from these tables, with the decreasing  , Gauss 
integrations of the original forms will be getting off accuracy as compared with the MathCAD 
results, while the accuracies of the regularized integrations are satisfactory.

Table 1: Computed ( )
11

cE  for decreasing                       Table 2: Computed ( )
11

cF  for decreasing 


(/L)
100

(1.7E-2)
10-1

(1.7E-3) 
10-2

(1.7E-4)
c 0 0( , ) aveD D  2.8614E-4 2.8623E-6 2.8623E-8

1

MathCAD -7.4115E-3 -7.6819E-3 -7.7095E-3
Original  
(% Diff.) 

-7.0456E-3
(4.94%) 

-7.0861E-3 
(7.76%) 

-7.0865E-3
(8.08%)

Regularized  
(% Diff.) 

-7.4109E-3
(0.01%) 

-7.6924E-3 
(0.14%) 

-7.7036E-3
(0.08%)

2

MathCAD 1.6877E-2 1.7302E-2 1.7345E-2
Original  
(% Diff.) 

1.6311E-2
(3.36%) 

1.6377E-2 
(5.35%) 

1.6377E-2
(5.58%)

Regularized  
(% Diff.) 

1.6877E-2
(0.00%) 

1.7312E-2 
(0.06%) 

1.7326E-2
(0.11%)

3

MathCAD -7.3512E-3 -7.6003E-3 -7.6257E-3
Original  
(% Diff.) 

-7.0161E-3
(4.56%) 

-7.0540E-3 
(7.19%) 

-7.0544E-3
(7.49%)

Regularized  
(%Diff.) 

-7.3509E-3
(0.00%) 

-7.6061E-3 
(0.08%) 

-7.6147E-3
(0.14%)

4

MathCAD 1.8390E-2 1.8814E-2 1.8857E-2
Original  
(% Diff.) 

1.7823E-2
(3.08%) 

1.7890E-2 
(4.91%) 

1.7891E-2
(5.12%)

Regularized  
(% Diff.) 

1.8390E-2
(0.00%) 

1.8824E-2 
(0.05%) 

1.8839E-2
(0.10%)

5

MathCAD -6.9679E-3 -7.2379E-3 -7.2655E-3
Original  
(% Diff.) 

-6.6035E-3
(5.23%) 

-6.6438E-3 
(8.21%) 

-6.6442E-3
(8.55%)

Regularized  
(% Diff.) 

-6.9676E-3
(0.00%) 

-7.2442E-3 
(0.09%) 

-7.2535E-3
(0.17%)

6

MathCAD 2.3228E-2 2.3891E-2 2.3958E-2
Original  
(% Diff.) 

2.2348E-2
(3.79%) 

2.2452E-2 
(6.02%) 

2.2453E-2
(6.28%)

Regularized  
(% Diff.) 

2.3227E-2
(0.00%) 

2.3906E-2 
(0.06%) 

2.3929E-2
(0.12%)

7

MathCAD -6.2830E-3 -6.5184E-3 -6.5425E-3
Original  
(% Diff.) 

-5.9644E-3
(5.07%) 

-5.9992E-3 
(7.96%) 

-5.9996E-3
(8.30%)

Regularized  
(% Diff.) 

-6.2832E-3
(0.00%) 

-6.5173E-3 
(0.02%) 

-6.5225E-3
(0.31%)

8

MathCAD 2.2970E-2 2.3639E-2 2.3707E-2
Original  
(% Diff.) 

2.2074E-2
(3.90%) 

2.2179E-2 
(6.17%) 

2.2180E-2
(6.44%)

Regularized  
(% Diff.) 

2.2967E-2
(0.02%) 

2.3701E-2 
(0.26%) 

2.3744E-2
(0.16%)


(/L)

100

(1.7E-2) 
10-1

(1.7E-3) 
10-2

(1.7E-4)
c 0 0( , ) aveD D  2.8614E-4 2.8623E-6 2.8623E-8

1

MathCAD 1.1214E-1 1.1818E-1 1.1879E-1
Original  
(% Diff.) 

3.6264E-2 
(67.66%) 

3.7705E-3 
(96.81%) 

3.7720E-4
(99.68%)

Regularized 
(% Diff.) 

1.1214E-1 
(0.00%) 

1.1810E-1 
(0.07%) 

1.2255E-1
(3.16%)

2

MathCAD -1.7664E-1 -1.8440E-1 -1.8518E-1
Original  
(% Diff.) 

-5.8502E-2 
(66.88%) 

-6.0774E-3 
(96.70%) 

-6.0798E-4
(99.67%)

Regularized 
(% Diff.) 

-1.7664E-1 
(0.00%) 

-1.8426E-1 
(0.08%) 

-1.9103E-1
(3.16%)

3

MathCAD 1.0353E-1 1.0865E-1 1.0918E-1
Original  
(% Diff.) 

3.3860E-2 
(67.29%) 

3.5192E-3 
(96.76%) 

3.5206E-4
(99.68%)

Regularized 
(%Diff.) 

1.0353E-1 
(0.00%) 

1.0858E-1 
(0.07%) 

1.1263E-1
(3.16%)

4

MathCAD -1.7810E-1 -1.8382E-1 -1.8440E-1
Original  
(% Diff.) 

-6.0295E-2 
(66.14%) 

-6.2557E-3 
(96.60%) 

-6.2580E-4
(99.66%)

Regularized 
(% Diff.) 

-1.7810E-1 
(0.00%) 

-1.8370E-1 
(0.06%) 

-1.9022E-1
(3.16%)

5

MathCAD 1.1154E-1 1.1806E-1 1.1870E-1
Original  
(% Diff.) 

3.5812E-2 
(67.89%) 

3.7251E-3 
(96.84%) 

3.7266E-4
(99.69%)

Regularized 
(% Diff.) 

1.1154E-1 
(0.00%) 

1.1798E-1 
(0.07%) 

1.2247E-1
(3.18%)

6

MathCAD -2.7619E-1 -2.8812E-1 -2.8932E-1
Original  
(% Diff.) 

-9.2103E-2 
(66.65%) 

-9.5682E-3 
(96.68%) 

-9.5719E-4
(99.67%)

Regularized 
(% Diff.) 

-2.7619E-1 
(0.00%) 

-2.8795E-1 
(0.06%) 

-2.9847E-1
(3.16%)

7

MathCAD 9.7323E-2 1.0309E-1 1.0369E-1
Original  
(% Diff.) 

3.1168E-2 
(67.98%) 

3.2417E-3 
(96.86%) 

3.2429E-4
(99.69%)

Regularized 
(% Diff.) 

9.7323E-2 
(0.00%) 

1.0302E-1 
(0.07%) 

1.0696E-1
(3.16%)

8

MathCAD -2.7985E-1 -2.9028E-1 -2.9134E-1
Original  
(% Diff.) 

9.3671E-2 
(66.53%) 

-9.7299E-3 
(96.65%) 

-9.7337E-4
(99.67%)

Regularized 
(% Diff.) 

-2.7985E-1 
(0.02%) 

-2.9009E-1 
(0.07%) 

-3.0054E-1
(3.16%)

1054



14

For demonstrating the successful implementation in an 
existing BEM code, the second example considers a 
clamped-clamped thin plate subjected to uniform pressure 
as depicted in Fig.2. Also shown in this figure is the BEM 
discretization that employs 28 quadratic elements. Simply 
for the purpose of verification, the problem is fully 
modeled to check the symmetry of data output. For the 
material properties, E=1000 (units) and =0.3 are used. 
The thickness ratio D/L is chosen to be 0.1 and 0.01 as 
two typical cases, testing the accuracy of our BEM 
analysis. Providing a comparison base, finite element 
analyses by ANSYS were also carried out.  Figures 3(a) 
and 3(b) show the plots of the calculated transverse 
displacement (u3/P) along the centerline x1=0 for D/L=0.1 
and 0.01, respectively. As can be seen from these plots, 
for D/L=0.1, the both BEM approaches- the conventional and the regularization scheme provide 
consistent results as compared with the ANSYS analysis. However, for the D/L falling to 0.01, the 
conventional BEM approach fails to yield consistent results, while the present approach still gives 
ideal results in agreement with the ANSYS analysis. 

(a)                                                                            (b) 

Fig.3: Normalized transverse displacement along the centerline of the thin plate for
(a) D/L=0.1 and (b) D/L=0.01

Conclusive remarks 

For analyzing the elastic field of thin bodies or at interior points near the boundary, integrations of 
the boundary integrals will have the numerical difficulty of so called "near singularity".  This paper 
presents a regularization scheme, applying the approach of integration by parts, to regularize the 
strongly singular and hyper singular integrals for the elastostatic BEM analysis. In the past, this 
scheme has only been used for 2D problems; the present work is to demonstrate its extension to 
treat 3D elastostatic analysis.  In this paper, only planar elements are treated, for which the 
associated integrals are integrated by parts to formulate regularized forms. As a typical example for 
the demonstration, derivations for quadrilateral elements are presented; nevertheless, the similar 
processes can be applied to a triangular element, treated as a degenerated quadrilateral element with 
three nodes of one side coincided at the same vertex.  For verifying the validity of the regularized 
integrals, numerical tests were experimented for a typical example. The results show that the 

P

L

L/2
D

Clamped

Clamped

Fig.2: A clamped-clamped thin plate 
subjected to uniform pressure on top 

x1

x2
x3

BEM  I: conventional  
BEM II: regularized 

x2/L

D/L=0.01

    ANSYS 
  BEM I 
BEM II 

3 /u P

D/L=0.1

    ANSYS 
  BEM I 
BEM II 

3 /u P

x2/L
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regularized integral can be numerically integrated by the Gauss Quadrature scheme, although 
slightly more Gauss points are needed to guarantee satisfactory accuracy. The proposed 
regularization treatments have not been implemented to 3D BEM code yet. Further research is 
required for studying the accuracy of the BEM implementation and its computational efficiency.
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SPH methodology  

Basic concepts of SPH
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Euations of state and constitutive modeling  

Equations of state
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Applications  

Detonation of a 1D ANFO bar
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Figure 1: Pressure profiles along the 1D ANFO slab during the detonation process. 

Linear shaped charge

Figure 2: Shaped charge jet formation and penetration of a target plate. 
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Explosive welding

Figure 3: SPH modeling of the explosive welding process. 

Figure 4: A full scale view of the wave-like welding pattern. 

Conclusions 
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Abstract 

In the present study, a contact problem between a spherical indenter and a half-anisotropic elastic 
region with a micropattern is solved under normal and tangential forces considering friction. 
Surface Green's function, the discrete convolution and the fast Fourier transform (DC-FFT) method 
are used to calculate displacements on a contact area, and the conjugate gradient (CG) method is 
employed for calculating a contact pressure, the contact area, shear tractions, and a stick-slip region, 
respectively. The influences of the shape and density (the ratio of the pattern area per a unit area) of 
the micropattern and of material anisotropy in the substrate on the friction property for the substrate 
are investigated. In this study, the substrate with circle- and square-micropatterns are used for the 
analysis. As the result, it is found that the shear traction concentrates at the edges and corners of 
circle- and square-patterns, respectively. The apparent friction coefficient varies with the direction 
of the anisotropic principal axis. 

Keywords: Contact problem, Anisotropic material, Friction, Micropattern.  

Introduction 
By machining a micropattern on the surface of material, the friction property on the surface is 
desired to control as we design. Then, the functional enhancement in various manufacturing 
processes can be promoted. For example, there are needs to control an inflow and a transformation 
to the die of the work piece partially by machining a micropattern for a surface of the press die and 
blank holder. However, we do not yet understand enough the effect of pattern shapes on friction 
properties or the advantage that give a micropattern. Therefore, the present study investigates the 
friction property through a contact analysis between a spherical indenter and a half-anisotropic 
elastic region with the micropattern. In particular, the normal and tangential forces are applied to 
the surface of the anisotropic and isotropic elastic body, and investigated the relationship between 
the frictional force and the micropattern. Vlassak et al. (2003) analyzed a contact problem, which 
the indenter in an arbitrary shape is penetrated in the normal direction for the surface of the 
anisotropic material. In addition, Lin et al. (2008) analyzed a contact problem of a three-
dimensional rough surface, and He et al. (2004) performed a three-dimensional contact analysis of 
the rough surface with an arbitrary geometry. Cattaneo (1938) and Mindlin (1949) first established 
mathematical models for analyzing a partial slip problem in an elastic contact. They assumed that 
the magnitude of shear traction in a contact area could not exceed a static friction limit. Recently, 
Ciavarella (1998) extended Cattaneo-Mindlin's partial slip model to plane contact problems. 
However, the contact of dissimilar materials does not obey the classic theory of the Cattaneo-
Mindlin model, in which the effects of shear tractions on the normal displacement were not 
considered. It is difficult to derive an analytical solution for the contact problems with coupled 
normal and tangential loads. Therefore, Kalker (1977) proposed the method for analysis using the 
variational principle, instead of solving a contact problem analytically. Moreover, Chen and Wang 
(2008) proposed a method for analysis in the case considering a partial slip on a three-dimensional 
contact problem. Dini et al. (2010) conducted a contact analysis to the surface with many 
hemispherical projections. 
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In the present paper, a partial slip contact problem on half-anisotropic elastic bodies with a 
micropattern is analyzed. The conjugate gradient (CG) method, the discrete convolution and the fast 
Fourier transform (DC-FFT) are used for the contact analysis. Distributions of contact area and 
contact pressure are calculated using the CG method. The surface displacement for a contact 
pressure is calculated using the DC-FFT method. Furthermore, the influence coefficient is obtained 
using a surface Green function in a three-dimensional anisotropic elastic body. As a result, a ratio of 
the apparent stick-slip area and the friction coefficient of the surface with a micropattern are 
obtained for various directions of horizontal external force. In addition, the apparent friction 
coefficient for the surface with patterns is analyzed. 

Theory and Descriptions 
A model for contact problem between a rigid spherical ball and a surface with a micropattern is 
shown in Fig. 1. The x- and y-axes are set on the surface, while the z-axis directs inwards the 
substrate. The ball indenter is pressed onto the substrate by a normal load, P0, in the z-direction. 
Tangential loads, Fx and Fy, are applied to the ball in parallel directions to the x- and y- axes. The 
contact interaction results in a balance between normal pressure p, shear tractions qx and qy at the 
interface. The contact analysis of the semi-infinite isotropic elastic body considering friction was 
conducted by Mindlin (1949), and the validity of the result was checked in experiment, too. More 
general contact model is summarized as follows,  

                                           

ux x, y( )
uy x, y( )
uz x, y( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

−
δ x

δ y

δ z

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

=

sx x, y( )
sy x, y( )

g x, y( )− h0 x, y( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

,              (1) 

 
where ux, uy, and uz are the surface displacement under external forces in the direction of three 
axes, δx, δy, and δz are the rigid body displacements, respectively, sx and sy the relative slip distance 
parallel to the x- and y-axes, h0 is the initial surface gap, and g the surface gap between the indenter 
and the substrate after loading. The meanings of variables are shown in Fig. 2. Furthermore, the 
rigid body displacements δx, δy, and δz for isotropic materials are derived from the equations below, 

δ x = δ0 1− 1− Fx μ f P0( )2 3{ } , δ y = δ0 1− 1− Fy μ f P0( )2 3{ } ,                              (2)

                                                        δ z = 9P0
2 1−ν 2( ) 16RE 2 ,               (3) 

 
where  
                                                   δ0 = 3μ f P0 2 −ν( ) 1+ν( ) 8aE ,               (4) 
 
a is a radius of the contact area, 

       

P0

Fx

x

z

Rigid ball

Substrate

y

Normal load

Tangential force

Micropattern

Fy

              

P0

Fx

x

z

δz

δx

g
uxuz

sx

h0

Stick region Slip region

Rigid ball

Substrate

 
           Figure 1. Model of contact analysis            Figure 2. Description of contact situation 

1065



3 
 

 
                                                       a = 3RP0 1−ν

2( ) 4E{ }1 3 ,                              (5) 
 
R is a radius of rigid ball, E is Young's modulus of elastic body, and ν is a Poisson’s ratio of elastic 
body. 
 
In contact analysis, we determined the contact area, pressure and shear traction so as to satisfy the 
conditions of the following formula using Eq. (1). 
 
Let   
                                                     g x, y( ) = h0 x, y( )−δ z + uz x, y( ) .                   (6) 
  
The contact pressure p is thought as follows,   

                                             

g x, y( ) = 0 : p x, y( ) ≥ 0 In contact( )
g x, y( ) > 0 : p x, y( ) = 0 In separation( )

⎧
⎨
⎪

⎩⎪ ,              
(7) 

  

                                                                
p x, y( )dS

Ω∫ = P0 ,                (8) 
  
where Ω  is the contact area, and P0 is the normal load. 
The shear tractions in the stick and slip regions are assumed to obey the following conditions: 
 
In the stick region: qx

2 x, y( )+ qy2 x, y( ) ≤ μ f p  , and sx
2 x, y( )+ sy2 x, y( ) = 0               (9) 

In the slip region: qx
2 x, y( )+ qy2 x, y( ) = μ f p , and sx

2 x, y( )+ sy2 x, y( ) ≠ 0             (10)  
 
                                                         qi x, y( )dS

Ω∫ = Fi , i =x, y,             (11) 
 
where the shear tractions qi is the product of the friction coefficient μf and the contact pressure p. 
Furthermore, the elastic displacement in the contact region is calculated in order to perform contact 
analysis. If the force q = (qx, qy, p) is applied to a contact surface, the surface displacement u is 
calculated from the following equation,  
                                        u x, y( ) = K x − xs, y − ys( )q xs, ys( )dxs dysΩ∫∫             (12) 
 
where (x, y) is an observation point, (xs, ys) is a source point of force, K is the displacement of the 
observation point when unit concentration load acts to a source point. Generally, K is expressed in a 
matrix form. The response function for displacement will be described later. Applying the two-
dimensional Fourier transform to Eq.(12) yields û = K̂ ⋅ q̂ , where the two-dimensional Fourier 
transform is defined by  
                                           f̂ η1,η2( ) = f x, y( )ei η1x+η2y( ) dxdy

−∞

∞

∫−∞

∞

∫                 (13) 
 
Calculation is carried out iteratively so that the normal load P0 and tangential forces Fx and Fy 
which are given as a prior condition may satisfy Eqs. (8)-(12). Moreover, the distributions of 
contact pressure p and shear tractions qx and qy in a contact region are calculated. In order to solve 
the basic equation for a contact problem, the field containing a contact surface is divided by a grid. 
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Grid intervals of the x- and y- directions are set to Δx and Δy. When the coordinates of an arbitrary 
grid point on the field are (iΔx, jΔy), the coordinates of the point are represented as (i, j). The 
algorithm for resolving the shear tractions proposed by Wang et al. (2010) is used in this study. This 
method is used for the repetitive calculation considering the coupling effect of contact pressure and 
shear traction. Furthermore, the stick-slip region and shear traction of the contact region are 
determined simultaneously. 
 
In this study, the displacement in the contact area is calculated using the DC-FFT method. The 
displacement under the shear tractions qx (i, j) and qy (i, j) is obtained by the inverse Fourier 
transform of Eq. (13). Thus,  

                        

ux i, j( )
uy i, j( )
uz i, j( )

⎧
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⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

,               (14)  

where IFFT denotes the inverse Fourier transform, and ^ expresses the Fourier transform of each 
function. Equating Eq. (14) to the x- and y- component of Eq.(1) yields  

                 

IFFT
K̂qx
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⎨
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⎪
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sy i, j( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,         (15)

 
 
where pressure distribution p(i, j) is provided from the contact problem of only normal load. Then,
shear tractions qx and qy can be determined from Eq.(15) by using the CG method coupling with 
constraint conditions (Eqs.(9) and (10)).  
 
Once the shear tractions qx and qy are obtained from the above procedure, the displacements uz for qx 
and qy, respectively, can be determined in terms of the influence coefficients by using the DC-FFT 
method. Then, the surface vertical gap g is updated by adding the displacements due to the shear 
tractions. Furthermore, the CG method is also employed to renew the contact pressure, and the new 
pressure is used for further update of the shear tractions. 
 
Now, we need to derive the influence function for a semi-infinite anisotropic region. We consider 
that a force f=(fx, fy, fz) is applied to the coordinate origin. The equilibrium equation for anisotropic 
materials can be expressed using the displacement, ui: 
 

       Cijkluk,lj = 0 .              (16) 

y

Semi-infinite  
anisotropic elastic region

x

z
f = ( fx, fy, fz)

( 0, 0, 0)

 
Figure 3. The coordinate system for an influence function 
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The two-dimensional spatial (x1-x2) Fourier transform is applied to Eq.(16). Then, an ordinary 
differential equation of displacement is derived. The general solution of the differential equation is 
assumed to be û = ae−ipρx3 . Where p and a satisfy the following eigenrelation:  

    Q + p R +RT( )+ p2T{ }a = 0              (17) 
 
where Qik=Cijksnjns, Rik=Cijksnjms, and Tik=Cijksmjms with n=[n1, n2, 0]=[cosθ, sinθ, 0]T , m=[0,0,1]T. 
The angle θ is used in the variables (η1, η2) = (ρn1, ρn2) of the Fourier transform and taken from the 
η1 axis. Finally, the displacement obtained from the inverse Fourier transform is expressed as 
follows:  

  u(x1, x2, x3) =
i

4π 2

1

ρ
A e−ip*ρx3 B−1

−∞

∞

∫−∞

∞

∫ fe−i(η1x1+η2x2 )dη1dη2             (18) 
 
where A=[a1, a2, a3], B=[b1, b2, b3], 3* xipe ρ− = diag[ 31 xipe ρ− , 32 xipe ρ− , 33 xipe ρ− ], and  

b j = RT + pjT( )a j . 

Results and Discussions 

Result of isotropic material 
For a verification of the validity of the result of analysis, the same problem as Wang et al. (2010) is 
analyzed. The condition for analysis is shown in Table 1(a). The Boussinesq's solution for an 
isotropic elastic body is used for calculating the response coefficient of traction and pressure. 
Distributions of the contact pressure and shear tractions are shown in Figs. 4(a) ~ (c). In addition, 
the contact pressure and shear tractions are normalized by the maximum pressure of Hertz contact 
theory, pH = 860MPa, and coordinates are normalized by the contact radius of Hertz contact theory, 
a= 0.105 mm. In this analysis, the displacement in a normal direction to the surface induced by the 
tangential force that acts on the surface of a half-infinite domain is also taken into consideration. 
Therefore, the maximum contact pressure causes at the position where the maximum shear traction 
qx shown in Fig.4(b) occurs. The distributions of contact pressure and shear traction are agreed with 
the results of Wang et al. (2010). 

Results of anisotropic material 

Distributions of the contact pressure and shear tractions on the plane of Fe(111) are shown in Figs. 
5(a)~(c). Moreover, pressure and shear tractions were normalized by the maximum pressure of 
Hertz contact theory pH = 931.62MPa, and coordinates were normalized by the contact radius of   
Hertz contact theory a = 0.10124mm. As compared with the result of isotropic material, the 
maximum and minimum values of the contact pressure and shear tractions in the anisotropic 
material are similar to those in the isotropic Fe. However, the shapes of the distribution are different, 

                 
 (a)Normalized contact            (b) Normalized shear             (c) Normalized shear 
     pressure p/pH                             traction qx/pH                          traction qy/pH 

Figure 4. Contour plots of normalized contact pressure and shear tractions by 
pH=860.03MPa and a=0.10537mm 
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but the difference of absolute values of the shear tractions is small. Here, Young's moduli and 
Poisson’s ratio for anisotropic materials Fe(111), Cu(111) and Ni(111) are calculated using E(111) = 
4/(2s11 + 2s12 + s4) and ν(111) = -(s11 + 5s12 - s44/2) (3s11 + 3s12 + 3s44/2), respectively, where s11, s12 
and s44 are elastic compliance of materials. 
 
At first, a contact analyze for the surface of Cu (isotropy, anisotropy) and Ni (isotropy, anisotropy) 
which have four kinds of micropatterns shown in Fig.6 under the condition (c) shown in Table 1 is 

Table 1. Condition for analysis 
(a) (b)

Fe(Isotropy) Fe(111) Cu(Isotropy) Ni(Isotropy) Cu (111) Ni (111)
210 GPa 220.41 GPa 128.73 GPa 220.64 GPa 128.53 GPa 227.34 GPa

0.3 0.391 0.345 0.302 0.503 0.423

Shape

Pitch - -

Height - -

0.3

(c)

Young's modulus E

Poisson’s ratio ν

Coefficient of friction μ f

Material

Number of grid points 256 × 256

20.0 μm

Circle(φ400 μm) Square( 340 μm)

1280 μm 640 μm

30.0 μm

Distance of grid points 

Pattern

Radius of indenter R 200 mm

Normal load P0 20 N 6.00 kN
Tangent force Fx (= 0.6μf P0) 3.43 N 1.08 kN

512 × 512
0.5μm

Plane

18.0 mm

0.28571

 
 

Table 2. Material properties used in the analysis (GPa) 
C11 C12 C13 C15 C22 C23 C25 C33 C44 C46 C55 C66

Fe(111) 300.1 111.6 97.26 20.26 300.1 97.26 -20.26 314.4 79.93 -20.26 79.93 94.25

Cu(111) 218.6 103.7 86.51 24.32 218.6 86.51 -24.32 235.8 40.25 -24.32 40.25 57.44
Ni(111) 325.7 129.0 103.2 36.58 325.7 103.20 -36.58 351.6 72.47 -36.58 72.47 98.33  

 

                 
(a)Normalized contact            (b) Normalized shear             (c) Normalized shear 
     pressure p/pH                             traction qx/pH                          traction qy/pH 

Figure 5. Contour plots of normalized contact pressure and shear tractions by 
pH=931.62MPa and a=0.10124mm 
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              (a) Circle A              (b) Circle B                (c) Square A             (d) Square B 

Figure 6. Geometry and size of micropatterns 

1069



7 
 

carried out, and the friction property for different micropatterns is investigated. Elastic constants for 
the anisotropic material are shown in Table 2. Figure 7 demonstrates the distributions of shear 
traction, qx, and the contact pressure p on the surface of Cu(111). In case of Circle A, the shear 
traction qx concentrates at the edge of each circle, and a positive shear traction occurs at the right 
side of the circle like Fig.4(b), since the external force which is applied to the rigid indenter directs 
in the positive direction of the x-axis. Large shear traction occurs near the center in the whole 
contact area. In case of Circle B, the shear traction qx is less than that in Circle A (Fig.7(b)), and the 
concentration of qx at the edge reduces moderately. This is attributed to the increase of pattern 
density. This is caused by the increase of contact area and the decrease of average contact pressure. 
There is no space to show the results for Squares A and B. Similar results are deduced for square 
patterns, furthermore, for Ni(111). 

Slip distance and stick region 
The maps of slip distance, sxy, for each surface pattern are shown in Fig.8. The stick region indicates 
the region of sxy=0. For Circle A, it is found that the slip distance increases in the direction of the 
applied force within the region of a lower contact pressure, and the stick region exits at the opposite 
side of the slip region. Comparing the stick region with the distribution of shear tractions, qx and qy, 
it is found that the shear tractions vary significantly within the stick region. Figure 8(b) shows the 
map of slip distance for Circle B. It is found that the width of stick region in Circle B is less than 
that in Circle A. Next, comparing Fig.8(c) with Figs.8(a), (b) and (d), it is found that the stick 
region for square patterns is similar to that for circular patterns, and the width of stick region 
decreases with the increase of pattern density. Although the maximum slip distance does not so 
much vary for all patterns. 

Apparent friction coefficient 
It is very hard to determine a friction property for each pattern due to the different tendency of the 
ratio of stick region against the pattern density. Then, a friction coefficient is investigated for the 
apparent contact area. An analytical solution for contact problem with anisotropic substrate 
considering friction cannot be available until now. So, the friction coefficient is estimated using the 
expression for isotropic materials in the study. When material is isotropic, the friction coefficient is 
obtained from  
          μa = δ xa

3KE P0 a
2 − c2( ){ }              (19) 

 
(a) Contact pressure   (b) Shear traction      (c) Contact pressure      (d) Shear traction 
  p (GPa) : Circle A     qx (GPa) : Circle A     p (GPa) : Circle B          qx (GPa) : Circle B 

Figure 7. Contour maps of contact pressure and shear tractions : Cu(111) 
 

 
(a) Circle A               (b) Circle B                 (c) Square A                (d) Square B 

Figure 8. Contour maps of slip distance : Cu(111) 
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where KE=8E{3(1+ν)(2- ν)}, ν is Poisson’s ratio, E is Young’s modulus for the isotropic substrate. 
When the substrate is an isotropic flat surface, the friction coefficient calculated using Eq.(19) is 0.3. 
When material is anisotropic, KE is composed of anisotropic elastic moduli. We do not know the 
form until now. The value of KE is determined from the data of the flat anisotropic substrate for 
different directions of applied force. The obtained values of KE are shown in Fig.9(a). In the present 
analysis, the arrangement and direction of the patterns are fixed, and the direction of applied 
horizontal force is rotated 15º by 15º until 180º with respect to the z-axis. Then, the influence of 
pattern on the apparent friction coefficient, μa, is investigated. The results are shown in Fig.9(b). It 
is found that the apparent friction coefficient for the surfaces with patterns is larger than that for the 
isotropic substrate with the flat surface. It is found that the value of friction coefficient for the 
surface with high pattern density is less than that with low pattern density. This is due to the 
increase of contact pressure in low pattern density. The influence of pattern shape on the friction 
coefficient can be a little observed. 

Conclusion 
In the present study, a contact problem between a rigid spherical indenter and a half-anisotropic 
elastic region with the micropattern was analyzed under normal and tangential forces considering 
friction. Furthermore, the apparent friction property for the surface with a micropattern was 
investigated. From the results, the following conclusions can be drawn: 
(1) The difference of absolute values of the shear tractions between isotropic material and 
anisotropic material were not so much large. However, the shapes of the map for shear tractions 
were different. 
(2) For the surface with the micropattern, the contact pressure concentrated at the edge of each 
pattern, and the shear tractions also concentrated at the sites corresponding to the contact pressure. 
(3) The apparent friction coefficient for a high density of micropattern was less than that for a low 
density. 

References 
Vlassak, J.J., Ciavarella, M., Barber, J.R., Wang, X., (2003), The indentation modulus of elastically anisotropic 

materials for indenters of arbitrary shape, J. Mech. Phys. Solids, 51, pp.1701–1721. 
Lin Y. and Ovaert T.C., (2008), Three–dimensional rough surface contact model for anisotropic materials, J. Tribol., 

130, 021402. 
He L. and Ovaert T.C., (2004), A rough surface contact model for general anisotropic materials, J. Tribol., 126, pp.41–

49. 
Cattaneo, C., (1938), SulContatto Di Due CorpiElastici: Distribuzione Locale DegliSforzi, Rend. Accad. Naz. Lincei, 27, 

pp. 342–348, 474–478, 434–436. 
Mindlin, R. D., (1949), Compliance of Elastic Bodies in Contact, J. Appl. Mech., 16, pp. 259–268. 
Ciavarella, M., (1998), The Generalized Cattaneo Partial Slip Plane Contact Problem. I—Theory, Int. J. Solids Struct., 

35(18), pp. 2349–2362. 
Kalker, J. J., (1977), Variational Principles in Contact Elastostatics, J. Inst. Math. Appl., 20, pp. 199–219. 
Chen, W. W., and Wang, Q., (2008), A Numerical Model for the Point Contact of Dissimilar Materials Considering 

Tangential Tractions, Mech. Mater., 40(11), pp. 936–948. 
Dini, D. Hill, D. A.,2009, Frictional Energy Dissipation in a Rough Hertzian Contact, J. Tribol.,131(2), 021401. 
Wang, Z. J., Wang, W. Z., Wang, H., Zhu, D., and Hu, Y. Z., (2010), Partial Slip Contact Analysis on Three-

Dimensional Elastic Layered Half Space, J. Tribol., 132(2), 021403. 

 
                                 (a) KE                                              (b) Apparent friction coefficient 

Figure 9. Variation of KE and apparent friction coefficient 

1071



Transition Phenomena in Turbulent Natural Convective Flow  
Using Subgrid Modeling 

*G.H. Yeoh1,2, G.E. Lau 1, V. Timchenko 1 and J.A. Reizes 1

Abstract 

Keywords:

Introduction 

1072



Mathematical Formulation 

1073



1074



1075



Numerical Model 
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Table 1. Mesh Specification of Cases Simulated in Present Study 
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Figure 6.  Relaminarization flow structures  Figure 7.  Relaminarization flow structures  
 near the top wall.  near the bottom wall.
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(a) Frequency spectrum                             (b) Time history of sound pressure 
Figure 3. Sound at point A

(a) f=100 Hz                                    (b)  f=200 Hz                             (c) f=800 Hz 
Figure 4. Distributions of sound pressure in the section plane

Figure 5. Sound pressure level vs.  radial distance  
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Abstract
A crystal plasticity based finite element model (i.e., FE model) is used in this paper to simulate the 
cyclic deformation of polycrystalline aluminum alloy plates. The Armstrong-Frederick nonlinear 
kinematic hardening rule is employed in the single crystal constitutive model to capture the 
Bauschinger effect and ratcheting of aluminum single crystal presented under the cyclic loading 
conditions. A simple model of latent hardening is used to consider the interaction of dislocations
between different slipping systems. The proposed single crystal constitutive model is implemented 
numerically into a finite element code, i.e., ABAQUS. Then, the proposed model is verified by 
comparing the simulated results of cyclic deformation with the corresponding experimental ones of 
a face-centered cubic polycrystalline metal, i.e., rolled 5083 aluminum alloy. In the meantime, it is 
shown that the model is capable of predicting local heterogeneous deformation in single crystal 
scale, which plays an important role in the macroscopic deformation of polycrystalline aggregates. 
Under the cyclic loading conditions, the effect of applied strain amplitude on the responded stress 
amplitude and the dependence of ratcheting strain on the applied stress level are reproduced 
reasonably.

Keywords: Crystal plasticity; Cyclic deformation; Finite element; Face-centered cubic metal

Introduction

It is significant to study the cyclic deformation of metals for their extensive uses as engineering 
components subjected to cyclic loadings. In the last decades, many researches have been 
accomplished to observe the cyclic deformation of metals both experimentally and theoretically. 
However, many existing constitutive models are phenomenological versions, such as Chaboche and 
Dang Van (1979), Chaboche and Nouailhas (1989), and Abdel-Karim and Ohno (2000). These 
models do not give direct insight into the physical mechanism of cyclic plastic deformation. 
Recently, Cailletaud and Sai (2008) and Kang et al. (2010) proposed crystal plasticity based 
constitutive models to investigate the ratchetting of polycrystalline alloys by adopting explicit scale 
transition rules. However, the employed explicit scale transition rules are formulated with some 
simple assumptions, which cannot capture the real physical nature of elastic and plastic 
accommodations occurred between single crystal grains. To consider such accommodations 
reasonably, a crystal plasticity finite element method is a good candidate.

Therefore, in this work, based on the previous work done by Armstrong and Frederick (1966), 
Peirce et al. (1983) and Huang (1991), a micro-mechanically based cyclic single crystal visco-
plastic constitutive model is implemented numerically into the finite element (FE) code ABAQUS, 
to predict the responses of polycrystalline metals under cyclic strain-controlled and stress-controlled 
loading. The model is verified by comparing the FE simulations with corresponding experimental 
results of face-centered cubic (FCC) polycrystalline aggregates, i.e., rolled 5083 aluminum alloy 
plate, carried out in the previous work by Lu et al. (2013).  
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Single crystal constitutive model

In the framework of small perturbation, the total strain   is divided additively into an elastic part e

and visco-plastic part vp, i.e.,
vpe  (1)

The relation between the elastic strain e and the stress is given by the Hooke’s law 
C :1e (2)

where C is the fourth-rank tensor of elastic moduli. Since the dislocation slip is the main source of 
plastic deformation for the aluminum alloy at low temperatures, the visco-plastic strain rate can be 
obtained via the following expression,





N

vp

1

P (3)

  mnnmP 
2
1

(4)

where P represents the orientation of the slip system ; m and n are the slip direction vector 
and the slip plane normal vector of the slip system respectively. In the case of FCC materials, the 
number of active slip system N, is no more than the total slip system number, 12. The resolved shear 
stress  acting on a particular slip system , i.e., the Schmid stress, is given by the relation

 P: (5)
The shear rate of each slip system  can be related to the corresponding resolved shear stress 

 via a power law expression,

)(sign 


 


 x
K

Qx
n




 (6)

where x and Q are the kinematic and isotropic hardening variables of the slip system , and are 
called as back resolved shear stress and isotropic deformation resistance, respectively. K and n are 
the material parameters that control the viscosity of the material. 

The isotropic hardening rule involves an interaction matrix H which represents the interaction 
between the systems and The evolution rule of the isotropic hardening variable is determined 
by the following formulation,





N

HQ
1

  (7)

The initial value of Q means the initial shear yielding stress of each slip system, which is simply 
assumed as the same for all the slip systems in the model. The interaction hardening matrix H is 
obtained from a simplified rule as shown in the work by Asaro (1983), i.e., 


 HqqHH )1(  (8)

Whereas the nonlinear evolution rule of kinematic hardening is set to be similar to that proposed by 
Armstrong and Frederick (1966), 

  dxcx  (9)
where c and d are the material parameters assumed to be the same for all slip systems. The fading 
memory term  dx makes it possible to describe the ratchetting behavior of materials. 

The proposed single crystal constitutive model is implemented numerically into the FE code 
ABAQUS via a user-defined material subroutine (UMAT), where the implicit integration is adopted. 
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Finite element model

Polycrystalline 5083 Al alloy may be viewed as an aggregation of single crystal grains with random 
crystallographic orientations, thus a 2D aggregation model is generated by using the Voronoi 
tessellation technique (Okabe et al. 1993), as shown in Fig. 1, where different colors indicate the 
grains with different orientations. To be consistent with corresponding experiments, the FE model is 
constructed as a rectangle plate with a size of 10 mm×6 mm. The FE mesh consists of 7040 first-
order plane-stress elements.

Fig. 1. FE polycrystalline model (meshed) Fig. 2. Effect of number of grains on the 
stress-strain response

To eliminate the effect of random orientations as much as possible, sufficient number of grains is
needed. A series of FE analyses containing 20, 80, 100, 200 grains are performed under monotonic 
tensile loading to assess the appropriate number of grains. It is seen in Fig. 2 that the further 
increase in the number of grains hardly influences the obtained stress-strain curves when the 
number of grains is larger than 100. Considering the computational efficiency, the following 
simulations are all based on the model containing 100 grains.

All material parameters used in the constitutive model for 5083 Al alloy are calibrated by trial-and-
error method from the experimental results obtained under the monotonic tension, one of cyclic 
strain tests, and one of cyclic stress tests. The obtained material parameters are given in Table 1. 
Since there is no accurate anisotropic stiffness constant of 5083 Al alloy single crystal, and the 
main concern is focused on the macro responses of the polycrystalline alloy, the elastic parameters 
here are set to be isotropic. All the experimental results are carried out by Lu et al. (2013), and 
more details about experiments are referred to their work.

Table 1. Material parameters 

Elasticity Flow rule Isotropic 
hardening Interaction hardening Kinematic hardening

E (MPa)
70,000

v

0.3
n
50

K (MPa)
20

Q0 (MPa)
34

H (MPa)
100

q
0

c (MPa)
880

d
15

Simulation and discussion

To verify the validation of the model, the simulated results by the FE technique are compared with 
experimental ones of 5083 Al alloy plates obtained in the monotonic tension, uniaxial strain- and 
stress-controlled cyclic tests, respectively.

0.0 0.3 0.6 0.9 1.2 1.5
0

50

100

150

200

St
re

ss
 

, M
Pa

strain 

20grains
80grains
100grains
200grains

1106



The simulated and experimental monotonic tensile stress-strain responses of polycrystalline 5083 Al 
alloy are shown in Fig. 3a at a strain rate of 0.015%/s. Clearly, the model simulation agrees quite well 
with the test data of monotonic tension. Fig. 3b shows the distribution of stress in the tensile direction 
when the macro monotonic tensile strain is 5%. Due to the different orientations of grains, the 
deformation is heterogeneous at both the inter-granular and intra-granular scales. From Fig. 3b it is 
seen that although the macroscopic state is in a tensile stress state, the heterogeneity still leads to a
local microscopic compressive stress state. The load direction is denoted in Fig. 3b by a small arrow
in the lower corner of right sideline.
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Fig. 3. Monotonic tensile responses: (a) comparison of simulated and experimental stress-strain 
curves; (b) simulated stress contour in the tensile direction.

The cyclic hardening behavior of 5083 Al alloy under uniaxial strain-controlled cyclic loading is then 
simulated and presented in Fig. 4 by plotting the stress-strain curves and variation of stress amplitude 
with the number of cycles. The strain rates in the load cases shown in Fig. 4 are fixed at 0.15%/s, the 
same as that used in the corresponding experiments. 
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Fig. 4. Simulated and experimental responses under the strain-controlled cyclic loading: (a) 
cyclic stress-strain curves with a strain amplitude of 0.3%; (b) responded stress amplitude vs. 

number of cycles with different strain amplitudes.

Form Fig. 4a it can be found that the simulated hysteresis loops are a little wider than the 
experimental ones. This is caused by the delayed response of test machine and the practical peak 
strain cannot reach the prescribed value, especially in the first cycle. Fig. 4b shows the evolution 
curves of responded stress amplitude vs. number of cycles with three various applied strain
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amplitudes. It is seen from Fig. 4b that the model provides a reasonable simulation to the cyclic 
hardening feature of the alloy, that is, the responded stress amplitude increases with the number of 
cycles, and the value of responded stress amplitude increases with the applied strain amplitude. 

Finally, the ratchetting of 5083 Al alloy plates under the uniaxial stress-controlled cyclic loading with 
non-zero mean stress is predicted in the load cases with various mean stresses and stress amplitudes
and compared with corresponding experiments. The results are shown in Fig. 5, and the stress rates in 
all the load cases are fixed at 80MPa/s, same as that used in the corresponding experiments. The 
comparison between simulated and experimental stress-strain hysteresis loops in the load case with a 
mean stress of 20MPa and stress amplitude of 160MPa is shown in Fig. 5a. It is seen from Fig. 5a that 
although the simulated loops are fatter than the experimental ones, the evolutionary process, that is 
the loops become narrower and narrower with the increasing number of cycles, is well simulated. The 
ratchetting strain obtained with various mean stresses and stress amplitudes are shown in Fig. 5b. It 
should be noted that the ratchetting strain r is defined as r=( max+ min)/2, where max and min are the 
maximum and minimum strains of each cycle, respectively. From Fig. 5b, it is concluded that the
model can provide a reasonable simulation to the evolution of the uniaxial ratchetting and its 
dependence on the applied mean stress and stress amplitude. Or, specifically, the features include: (1) 
the ratchetting strain increases with the number of cycles, while its rate decreases as the number of
cycles increases; (2) the ratchetting strain increases with the mean stress when the stress amplitude is 
fixed, and it also increases as the stress amplitude increases with a fixed mean stress; (3) after a 
certain number of cycles, the value of ratchetting strain hardly changes and the evolution of ratcheting 
falls into a stable state. 
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Fig. 5. Simulated and experimental ratchetting under cyclic stressing: (a) cyclic stress-strain 
curves; (b) curves of ratchetting strain vs. number of cycles.

Conclusion

In this paper, a crystal plasticity based cyclic visco-plastic constitutive model is implemented 
numerically into the finite element code, to predict the mechanical responses of polycrystalline metals 
under cyclic loading. A two-dimensional finite element aggregation consisting of 100 randomly 
orientated grains constructed by the Voronoi tessellation method is used to represent the 
polycrystalline metal. By comparing the FE simulated results with corresponding experimental ones, 
it is demonstrated that the model provides fairly good simulations to the macroscopic stress-strain 
responses of 5083 Al alloy plates under monotonic tension, the cyclic hardening feature presented 
under the strain-controlled cyclic loading, and the ratchetting occurred under the stress-controlled 
cyclic loading. Additionally, a local heterogeneous deformation is observed due to the orientation 
mismatch between the neighboring grains. 
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Abstract
The power loss and efficiency model of a planetary gear transmission system was built with a 
system modeling method. The method takes many transmission elements such as gear, planetary 
gear sets, hydraulic torque converter, friction disk, lubrication, sealing, bump and motor etc. into 
consideration and calculates non-load and load power loss for each element. The overall calculated
power loss and efficiency is more accurate than the meshing power method. To make simulation 
more reliable it is compared with the test data. In the paper A planetary gearbox is selected and its 
power loss and efficiency were measured from the experiment. The power loss and efficiency of 
each gear of the planetary gearbox are compared and verified and corresponds well with the test 
data.  The power loss error drop from 10% to 5% with the system method compared with meshing
power method. It shows that the system method for power loss and efficiency analysis is more 
reliable. It provides important basis for engineers to improve design and reduces the power losses. It
provides solutions to increase the planetary gear transmission efficiency and finally makes the 
whole vehicle lighter and the power density higher than before. 

Keywords: power loss,  efficiency, planetary gearbox, non load experiment, load experiment.

Introduction

The gear transmission efficiency is one of most important factors in planetary gearbox design. It is 
related with additional heat generation within the gearbox. The more efficient gear transmission, the 
less heat generated, the less demands on the capacity and the size of the lubrication system. The 
amount and quality of the gearbox lubricant can easily meet the heat dissipation requirement with 
the improved efficiency. The problem now is how to calculate the gear transmission efficiency with 
much more accuracy? Up to now some formulas for efficiency ignored planetary gearbox structure 
details, gear relative speed, lubricant, temperature and friction disk slot type etc. These factors 
sometimes severely affect the power loss and efficiency of planetary gear transmission system. 
Taking these factors into consideration in efficiency calculation is important for engineers to 
improve their design shortcomings. 

The factors affecting power loss in the planetary gear transmission system

All the power losses in the gear transmission can be classified into non-load and load power loss. 
Non-load power losses occur when the output shaft is running free without power output and all the 
input power only maintains the transmission elements at a constant speed. Load-power losses 
depend on transmitted load, coefficient of friction and sliding velocity in the contact areas of the 
components. For nominal power transmission the load power losses of the gear mesh are typically 
dominant. For part load and high speed, non-load power losses dominate total losses. The gear, 
bearing, seals and auxiliaries generate non-load power losses. Gear and bearing also generate load 
power losses. In the planetary gearbox efficiency model building, these factors are included in the 
transmission element model.
The planetary transmission system, which is drawn out in the Fig.1, is made of hydraulic torque 
converter, planetary gearbox, hydraulic bump and motor, final drive and lubrication system.  Its 
power losses include the planetary gear, friction disk, bearing, bump and lubrication etc. The 
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planetary gear power loss mainly consist of planetary gear non-load power losses, gear meshing 
power loss and churning power loss and bearing power loss. It is related with planetary gearbox
structure, planetary gear number, gear angular speed, gear tooth width, lubrication type and oil etc.  
The friction disk power loss consists of non-load and load power loss.  Its friction power losses are 
mainly associated with sliding velocity and load. It is related with friction disk numbers, its 
diameter, lubrication oil viscosity and transmitted torque. Bearing non power losses depend on 
bearing type and size, bearing arrangement, lubricant viscosity and supply. Bearing load dependent 
bearing losses depend also on bearing type and size, load and sliding conditions in the bearing and 
on lubricant type. Bump and motor power loss mainly includes the leakage power loss, overflow 
power loss, throttling power loss and friction power loss. 

The efficiency model building for the planetary gear transmission 

The whole transmission system of the vehicle comprises engine, front drive, hydraulic torque-
converter, planetary gear box, electrical and hydraulic control system, hydraulic system, steering 
and final drive. All these sub systems in Fig. 1 contribute non-load and load power losses.   

Figure 1. The vehicle transmission system scheme 
In the efficiency model these sub systems are separated  into three parts.  The whole transmission 
system is separated into three sub-models in the efficiency model building. The kinematical scheme 
layout of planetary gearbox consists of three sub models S1, S2 and S3 showed in the Fig. 2.  S1
stands for front drive, hydraulic torque converter and hydraulic system. S2 stands for gearbox and 
S3 stands for steering and final drive. X1 and X2 stand for power output to sprocket. 

Figure 2. The planetary gearbox efficiency model Figure 3. The S1 efficiency model
S1 sub efficiency model in Fig. 3 has 12 gear pairs G1 to G12, one planetary gear set P, lock-up 
clutch C, hydraulic torque converter HC and bump-motor system B-M.  S2 sub efficiency model in 
Fig. 4 has four planetary gear sets D1 to  D4, two clutches C1/C2 and four brakes B1 to B4. S3 
efficiency model in Fig. 5 has four planetary gear sets P1 to P4, five gear pairs G1 to G5 and two 
power outputs to sprockets. 
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Figure 4. The S2 efficiency model  Figure 5. The S3 efficiency model

Calculation and results analysis 

The each gear of the transmission is applied with four different loads, which are full load and three 
partial loads, 75%, 50% and 25%.  When partial load is applied, it simply means the engine power 
outputs at the stated percentage of its full load output.  This allows a more realistic validation of 
efficiency simulation results. In general the less load is exerted on, the less efficient the gear 
transmission system will be. In all these load cases, the 50% partial load is selected in this paper to 
test the power loss and efficiency at speed points 1500,2000,2500,3000,3500 and 4000 rpm. 
Through these tests, the simulation results can be verified and somehow become a reliable reference 
for design engineers. 

Non load power loss  of the planetary gearbox and test validation

Planetary gearbox power loss is the difference between its input power and output power. Non load 
power is the difference when output power equals zero. The non load power losses of five forward 
gear of the gearbox are tested and the results are recorded in Table 1 below. The theory calculation 
results and test results are drawn in the Fig. 6 to Fig. 10.  

Table 1. Non load power loss of  the gearbox (kW)

                                                                                                                 Figure 6. 1st gear non load power loss

Figure 7.   2nd gear non load power loss               Figure 8. 3rd gear non load power loss 
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Figure  9. 4th gear non load power loss          Figure 10. 5th gear non load power loss
From the above table and figure, the predicted power losses with the system theory correlated well 
the test results from speed 2000 rpm to 3500 rpm in 1st and 3rd gear.  In the relatively  lower and
higher input speed the power losses of the 1st gear to the 4th gear have large errors with their 
theory predicted values.  Whereas the 5th gear has not this phenomenon for the whole planetary 
gearbox rotates with the same speed.

The efficiency of  planetary gearbox with load power  and  test validation 

For the load power loss of the planetary gearbox , it is through each gear efficiency to evaluate. The  
efficiency is the ratio of  input power to output power . The five gear efficiency of  test and theory 
prediction are recorded in the Table 2  . The each gear transmission efficiency obtained with 
different methods are drawn in the Fig.11 to Fig.15.  

Table 2. Load power loss of the gearbox (kW)

Figure 11. 1st gear efficiency

Figure 12. 2nd gear efficiency Figure 13. 3rd gear efficiency 
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Figure 14. 4th gear efficiency Figure 15. 5th gear efficiency 
The error of 1st gear efficiency obtained with system theory method is 5.72% at speed 2000rpm and 
7.33% at speed 3500rpm  compared with the test data. It is 2.5% less and 3.7% less accordingly 
than the efficiency obtained with the meshing power method. It obvious more accurate than the 
meshing power method with reference to test data. The other gear efficiency has similar  situation. 
The predicted efficiency with system method has an error from 3% to 8%. It is larger  than test data 
and less than meshing power method. From the above comparison with the test and meshing power 
method, the system theory method in the paper is verified  and can be a more reliable method  to
predict power loss and transmission efficiency. 

Conclusion 

The efficiency model of  an integrated transmission including planetary gearbox with system theory 
method was built in the paper. It calculated the speed, torque, power loss of every rotating element 
for each gear at different speed and engine throttle. Because of content requirement many 
calculation results are omitted. The 50% engine throttle load case is selected to test. The power 
loss and efficiency are verified from  the test data. After  the verification and validation of previous 
chapter, the system theory method in the paper  takes many influence factors into consideration in 
the efficiency calculation and is much more accurate than the meshing power method. Finally  the 
conclusion can be made that the system theory method  with much more accurate formula for 
different kinds of power loss is more reliable and practical in transmission efficiency prediction . It 
provides a good solution  for engineers to decrease the power loss and  increase the efficiency of 
integrated transmission.
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Methods 

A. Volume grid deformation (VGD) 

X

Y

Z
macro element node point
fluid mesh lines

Figure 1.  Constitution of a macro-element 

B. Generation and deformation of macro-finite element  

C. Grid deformation by transfinite interpolation 
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Figure 2. Modules and data flow when VGD interfaces with KFLOW. 

Results 

A. Performance measures of grid quality  
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B. Performance of grid quality 

Figure 3 Volume change .vs. the number of time steps 
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Figure 4 Orthogonality and volume change 

Cp

Figure 5 Force and moment coefficients versus time 
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Figure 1. Simulation models of different GNHSs. (a) A rectangular allocation of 
10 CNTs between two separate graphene layers; (b) A triangular allocation of 12 

CNTs; (c) A triangular allocation of 17 CNTs. Inset shows the bonds between 
graphene layer and CNT.

 

Results and discussion 
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Figure 2. Numerical results from a bilayer GS: (a) Stress-strain curve; (b) 
Atomic configuration at 1996 ps; (c) Atomic configuration at 3870 ps. Inset 

shows the monatomic chain at the front of the failure region.
 

Figure 3. Stress-strain curves obtained from five different graphene and 
nanotube hybrid structures (GNHSs).
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Table 1. Tensile properties of different GNHSs.
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Figure 4. Atomic configurations of HGNSs at different simulation time. 
R10-GNHS at: (a) 2562 ps, inset shows the broken C-C bonds around the 
connecting CNT, (b) 2568 ps, (c) 2586 ps, inset shows the formation of a 

monatomic chain, (d) 2616 ps; T12-GNHS at: (e) 2052 ps, (f) 2508 ps, inset shows 
the formation of a monatomic chain circle, (g) 2532 ps, (h) 2556 ps.

Figure 5. Atomic configurations of the T17-GNHS at different simulation time: 
(a) 2216 ps, (b) 2692 ps, (c) 2706 ps, inset shows the formation of four monatomic 

chains, (d) 2724 ps. 
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2. NPLS application in supersonic flows

2.1 Supersonic mixing layer 

1132



2.2 Flow around a spheric conic model 
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A study on the cloud effect on debris trajectory 

C.K. Lee, *J. Xu, and S.C. Fan 
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Abstract
In this paper, the cloud effect on debris trajectory is investigated. The cloud effect 
discussed here refers to the reduction of the drag coefficients of debris at the initial 
stage of their trajectory after an internal explosion of an ammunition magazine, when 
the concrete magazine is just disintegrated into a cloud of closely packed concrete 
debris. The numerical results obtained with and without considering the cloud effect 
from the trajectory tracing tool DeThrow are used to study the influence on the debris 
initial landing position and kinetic energy. In addition, several different ways to 
simulate the influence of cloud effect are also discussed. 

Keywords: debris trajectory, cloud effect, drag coefficient, DeThrow

Introduction 

Inhabited Building Distance (IBD) from an unexpected explosion of an earth-covered 
magazine traditionally attracts lots of interest from researchers and defense staff. The 
IBD depends on the trajectory of the debris generated from the explosion. Besides 
gravity, the flying motion of debris is influenced by air drag, lift force and moment of 
the debris, while the air drag depends on many factors such as debris size, shape, 
surface area, maximum section area perpendicular to the motion direction, and 
velocity (Baker 2007, Richards et al. 2008, Song and Ou 2010, Richards 2012). In the 
initial stage of explosion, the reinforced concrete (RC) structural members break into 
pieces as a debris cloud. The aerodynamic coefficients of the debris fragments are 
affected by the presence of other debris in their vicinities. This is especially the case, 
if one fragment is in the slipstream of another. As the fragments progress outward, 
such cloud interference effect on the aerodynamic coefficients is reduced 
significantly. In order to calculate the trajectories of debris more accurately, such 
cloud effect should be taken into account. 

Van der Voort et al. (2010) proposed an approach in which a debris cloud is treated as 
an entire wall as the air passing through the cloud is very minor. The drag coefficient 
thus increases as the virtual large block has worse aerodynamic properties compared 
with each small piece of debris. Helland et al. (2007) found that the drag decreases in 
diluted cluster and increases when the cluster density is high. Schlüter et al. (2013) 
studied the interaction between two pieces of debris. In their study, the cloud effect is 
categorized into two types: side-by-side effect and trailing-leading effect. The side-
by-side effect increases the air drag acting on debris, while the trailing-leading effect 
decreases the air drag. 

In this study, a simplified approach is adopted to investigate the cloud effect on the 
debris flight trajectory. In the simplified approach, a reduction function is multiplied 
with the air drag coefficient to simulate the cloud effect. The simplified approach is 
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used in the Kasun test which is presented in (Fan et al. 2010) to study the cloud 
effect.

Flight equation 

As shown in Figure 1, the flight equation can be written as (Tachikawa 1983, 
Tachihawa 1988, Chakraverty et al. 2001, Baker 2007): 

  (1) 

  (2) 

  (3) 

where  is the air density, A is the projected area facing the flow, CD, CL, CLA, CM and 
CMA are the coefficients of drag due to translational motion, lift due to translational 
motion, lift due to auto-rotation (magnus force), moment due to translational motion 
and moment due to auto-rotation (magnus moment), respectively.  

Figure 1. The flight state of debris 

In the present study, the effect from CM and CMA are excluded. The coefficients CD,
CL and CLA are expressed as (Schlüter et al. 2013): 

  (4) 

  (5) 

  (6) 

In Eqs. (4) and (5), Sp = (Vdebris-Vcube) / (Vellipsoid-Vcube) is the debris sphericity, CD,sphere
and CD,cube are the drag coefficients for spherical and cubic debris, respectively, and 
CL,cube is the lift coefficient for cubic debris. It should be noted that the lift coefficient 
for spherical debris is zero. In Eq. (6), R is the debris average radius, = 2R/Lp is the 
aspect ratio and Lp is the longest size of the debris along the rotation axis. The 
detailed expressions of CD,cube and CL,cube are referred to (Schlüter et al. 2013). 
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Cloud effect 

In a simulation, it is very hard to conduct a precise calculation on the air drag with 
cloud effect applying on each piece of debris. It is mainly due to the presence of a 
huge number (>100k) of debris which makes it extremely costly to trace the distances 
between each two pieces of debris at every time step during trajectory calculation. 
Thus, a simplified approach is employed to consider the cloud effect in the present 
study.

In the present study, a correction parameter  is introduced into the algorithm. The 
coefficients of the air drag and lift with cloud effect can be written as 

 ,  and  (7) 

where the subscript ‘free’ refers to the coefficient for individual debris without cloud 
effect.

As shown in Figure 2, in the debris cloud, most of the debris hides behind the front 
debris and the drag on the back debris is very minor. Hence, when considering cloud 
effect, the drag coefficient and the lift coefficients for most of the debris should have 
a smaller value.  

Figure 2. The debris cloud 

In the present study, two kinds of reduction functions, namely a ramp function and a 
step function, are adopted to express the correction parameter  as: 

The ramp function:  (8) 

and

D D,freeC C L L,freeC C LA LA,freeC C

an explosion

a wall debris cloud

cr cr

cr

/
1.0

t t t t
t t
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The step function:  (9) 

where tcr is the critical time after which cloud effect is negligible. This parameter 
reflects the influence from the cloud effect on the air drag. The plots corresponding to 
Eqs. (8) and (9) are shown in Figure 3(a) and (b), respectively. 

   
(a) The ramp function                (b) The step function 

Figure 3 The reduction function 

Numerical results 

In this section, the numerical simulation results are presented. The Kasun test 
presented in Fan et al. (2010) is employed in this study. The detonation is 2.5kg of 
TNT in the test. The numerical simulation for the disintegration of the magazine was 
conducted by the commercial package LS-DYNA. The numerical modelling was run 
for 0.008 second and the debris initial conditions at launching were collected for the 
present study.

Three cases are tested in the present study, including the case without cloud effect, 
the cases with the ramp function and the step function. For the two cases considering 
cloud effect, two critical time, tcr = 0.1 second and 1.0 second, are used. It is noted 
that in the case without cloud effect, the average time for the debris first impact on 
the ground is around 3.2 second from the numerical simulation. Hence, tcr = 1.0 
second should be much greater than actual tcr in the real test. However, as a numerical 
study on the influence from the parameter tcr, the value of 1.0 can be regarded as an 
upper bound for the value of tcr.

The two profiles of  (the ramp function and the step function) and the values of tcr (tcr
= 0.1s and 1s) are studied. The average horizontal distances of debris flight for the 
different numerical cases are listed in Table 1. In Table 1, two distances are listed for 
each case, where dc is the average distance with cloud effect and dnc is the average 
distance without cloud effect. The first impact refers to the distance that debris first 
impact on the ground, while the final location includes the ricochet of debris 
impacting on the ground. In Table 1, the values in the bracket are the relative 
differences in percent which are calculated by  = (dc- dnc)/dnc×100%.

It can be found from Table 1 that the cloud effect has minor influence on the average 
horizontal distance of debris flight. The increase on the average distance is no more 

cr

cr

0.0
1.0

t t
t t

0
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than 8%, even when the upper bound of tcr (1s) is employed. On the other hand, the 
profile of  does not influence on the average debris flight distance. 

Table 1. The average horizontal distance of debris 

tcr (s) dnc (m) 
dc (m) 

the ramp function the step function 

the first impact 
0.1

94.88
95.83 (1.00%) 96.42 (1.62%) 

1 101.98 (7.48%) 101.04 (6.49%) 

the final location 
0.1

100.94
101.84 (0.89%) 102.00 (1.05%) 

1 108.18 (7.17%) 107.46 (6.46%) 

The distributions of the location of debris first impact on the ground for cases without 
cloud effect, with cloud effect for tcr = 0.1s and 1s are shown in Figs. 4, 5 and 6, 
respectively. 

Figure 4. The location of the debris first hit without cloud effect 

       
(a) The ramp function                                       (b) The step function 

Figure 5. The location of the debris first hit with tcr=0.1s
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(a) The ramp function                                          (b) The step function 

Figure 6. The location of the debris first hit with tcr=1s

By comparing Figs. 5 and 6 with Fig. 4, it can also be found that the distribution of 
the debris first impact locations has shown a very minor change if the cloud effect is 
taken into account in the numerical analysis. 

Conclusions

In this study, the cloud effect on the debris trajectory after an explosion is presented. 
As it is very costly to simulate the cloud effect at every time step, a simplified 
approach is employed. In the simplified approach, a reduction function is used to 
consider the reduction of air drag on debris. It is found that the cloud effect has only 
limited influence on the distribution of the debris flight trajectory.
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Figure 1.  A plate 

Figure 2.  A plate
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Abstract
Obstructive Sleep Apnea (OSA) influence daytime sleepiness and is linked with
hypertension and cardiac problems. Diagnosis of obstructive sleep apnea involving 
sleep tests are expensive, cumbersome and not practical for large scale diagnosis.
Therefore, this article presents a computational investigation of snoring as potential 
markers for identifying patients with obstructive sleep apnea. To that end, a coupling 
between the fluid and structural physics of a cantilevered plate inside an obstructed
channel flow is undertaken, to idealize soft palate instability within an obstructed
oropharynx. Unlike previous approach, a pressure-specified inlet and velocity-
specified outlet boundary conditions in the channel are applied to closer replicate 
actual conditions. A parametric study on the effect of channel obstruction to 
cantilever plate instability suggest onset and variability in onset of snoring as 
potential markers to detect obstructive sleep apnea. This may be exploited for 
development of mass diagnosis of obstructive sleep apnea in the general population.

Keywords:  Obstructive sleep apnea, Fluid-structure interaction, Snoring, CFD, FEM

Introduction

Recurrence of complete or partial obstruction of the upper airway during sleep is 
associated with a condition called obstructive sleep apnea (OSA). This condition has 
the adverse affect of compromising sleep quality and reduction of oxygen saturation.
Thus, leading to daytime sleepiness and has been linked to more serious disorders 
including hypertension and heart problems (Bertram, 2008).

Standard diagnosis of OSA through sleep tests are expensive, cumbersome and not 
practical for mass diagnosis in the general population. Therefore, this paper aims to 
explore a potential for cheaper and more practical detection of OSA by analyzing 
onset of soft palate snoring. Snoring is associated with flutter of the soft tissues in the 
upper airway (Huang et al., 1995). In order to investigate this soft palate flutter,
following an approach by Balint and Lucey (2005), a simulation was undertaken
where the upper airway was idealized as a 2-D channel and the soft palate was
idealized as a cantilever plate. A multiphysics modeling was adopted by coupling the 
flow physics in the channel with the transient dynamic of the cantilever plate.

In this article, the governing fluid-structural physics and coupling approach are first 
presented in the following section. Next, simulation results for some obstructed cases 
are presented. Finally, the results are discussed in regards to difference in onset of 
snoring with severity of obstruction.
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Computational Method

Fluid and Structural Equations

The fluid physics was modeled using standard laminar, incompressible, unsteady
Navier-Stokes and continuity equations, described in the Arbitrary Lagrangian-
Eulerian frame of reference:
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where density and dynamic viscosity for air is respectively, ρ = 1.185 kg/m3 and μ = 
1.831 x 10-5 kg/ms, and jû represents the mesh velocity in an Arbitrary Lagrangian-
Eulerian framework.

In addition, the transient dynamic of the cantilever plate was modeled using Cauchy’s 
equation:

2

2

.
t
di

sij ∂
∂

=+∇ ρσ f (3)

where σij is the stress tensor, di denote displacement of the cantilever plate and f
represents the aerodynamics forces applied on the cantilever plate, as calculated from 
the fluid computations. Density and Young’s modulus of the cantilever plate is set to
ρs = 2272.2 kg/m3 and E = 880 MPa respectively, giving a second mode frequency of 
100 Hz (Balint and Lucey, 2005).

Coupling and Numerical Approach

Soft palate flutter was investigated by introducing an initial perturbation in the form
of initial deformation, corresponding to the second mode shape of the cantilever plate. 
Onset of flutter was predicted by examining growth (indicating instability) or 
reduction (indicating stability) of this cantilever plate deformation. The interaction
between fluid and structure was implemented by successively transferring the 
aerodynamic forces calculated in the channel flow computation to the structural 
computation and then transferring the cantilever deformation to redefine the fluid 
domain in the fluid computation (ANSYS, 2010).

Model and Boundary Conditions

Figure 1. Close-up of channel model (with mesh) and boundary conditions.
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An obstruction was introduced in the 2-D channel to replicate partial obstruction of 
the upper airway. Two different obstruction depths (i.e. 2.0 mm and 4.5 mm) 
corresponding to respectively 20% and 45% obstruction of the channel, was 
simulated. The inlet of the channel was prescribed with atmospheric pressure, while 
the outlet of the channel was prescribed with velocities corresponding to typical 
inhalation flow rates. The remaining boundaries of the channel was set to no-slip 
walls. Fig. 1 shows geometry and boundary conditions of this model.

Results

In the following, several plots of cantilever tip deformation over time, corresponding 
to different outlet velocities, are presented for each obstruction case. Fig. 2a and 2b
shows the tip deformation history for channel with obstruction of 2.0 mm and 4.5 mm 
depth, respectively.
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Figure 2. Tip oscillation history for cantilever plate inside a channel with          

(a) 20% obstruction (b) 45% obstruction.
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For case with 20% obstruction, Fig. 2a shows that for outlet velocity = 0.7 m/s, the 
cantilever tip deformation decays over time, suggesting stable oscillation of the 
cantilever plate. While for outlet velocity = 1.1 m/s, the cantilever tip deformation
grows with time, indicating instability in the cantilever plate oscillation. Therefore, 
we may conclude that the critical velocity for onset of flutter in this case, falls 
between 0.7 and 1.1 m/s of the outlet velocity.

Similarly, for case with 45% channel obstruction, Fig. 2b shows that cantilever tip 
deformation decays and grows for outlet velocities of respectively, 0.5 m/s and 0.7 
m/s. As a result, in this case, critical velocity for onset of flutter is between 0.5 and 
0.7 m/s of the outlet velocity.

Discussion

Table 1 summarizes all our simulation results for each of the 20% and 45% channel 
obstruction cases.

Table 1: Simulation results for each case 
(‘x’ indicates instability, ‘ ’ indicates stability and ‘o’ indicates not performed) 

Outlet velocities 
(m/s)

20% 
obstruction

45% 
obstruction

0.5 o
0.7 x
0.9 o o
1.1 x o

The critical outlet velocity for onset of flutter is different for each obstruction case. A 
lower critical velocity is predicted for case with more severe channel obstruction.
This indicates that onset of flutter occurs at lower flow rates in obstructed channels.

As inhalation flow rates cycle somewhat sinusoidally over time during sleep (see for 
example, (Fenn and Rahn, 1964)), lower critical velocity means that flutter occurs 
earlier in the inhalation cycle. This may suggest that for more obstructed airways, the 
onset for soft palate snoring occurs earlier during the inhalation. As a result, the time 
lapse before start of soft palate snoring, may indicate the severity of obstruction in the 
vicinity of the soft palate region in the upper airway. It is proposed that this measured 
time to onset of snoring, may be exploited to detect localized obstruction during 
apnea.

Furthermore, OSA patients may experience varying degrees of airway collapse or 
occlusion during sleep. With varying severity of obstruction, onset of snoring is also 
expected to vary from inhalation to inhalation. As a result, the time lapse between
snoring episodes may also be highly variable in OSA patients, which is consistent 
with previous clinical studies (see for example, (Cavusoglu et al., 2008)).

Conclusions

In the present work, we investigated the onset of cantilever plate flutter in a partially
obstructed channel. This was intended to idealize soft palate snoring in an obstructed
upper airway, for a preliminary study on onset of snoring with respect to partial 
obstruction inside an upper airway. A multiphysics approach, coupling fluid and 
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structural computations, suggest lowering of critical velocity for onset of flutter with
respect to increasing degree of channel obstruction. This may be linked to varying 
onset of snoring with respect to severity of OSA in patients, which may be further 
exploited as non-invasive markers of OSA.

Currently, the critical velocity for onset of flutter was determined by graphically 
identifying upper and lower bounds of plate stability. An improved method to 
accurately estimate this critical velocity is recommended for future work. It is 
recognized that current 2-D model is a very crude representation of the upper airway. 
Investigations using anatomically-accurate upper airway models should be 
undertaken in the future. Finally, clinical experiments to evaluate and validate this 
approach as markers for OSA would also need to be performed.
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Governing Equation and Discretization Scheme 

Description of the sensor and the nonlinear filter 
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Abstract

Developing an explicit time stepping scheme to accurately capture the dynamics in elastic

materials is still a challenging problem. In the current study we investigate the accuracy and

the stability of a family of explicit Runge-Kutta methods for the smoothed particle hydrodynam-

ics (SPH) solution of equations in elastodynamics. The SPH method employs a purely mesh-

less Lagrangian numerical technique for spatial discretization of the domain and it avoids many

numerical difficulties related to re-meshing in mesh-based methods such as the finite element

methods. The examined integration methods include the explicit Euler, explicit Runge-Kutta and

explicit Runge-Kutta Chebyshev (RKC) schemes. Numerical results are presented for two test

examples: shock-wave propagation in a one-dimensional problem and the velocity loading on

a two-dimensional elastic plate. It is found that the proposed RKC scheme offers a robust and

accurate approach for solving elastodynamics using SPH techniques.

Keywords: Elastodynamics, SPH method, explicit Runge-Kutta schemes, Numerical simulations

Introduction
The Smoothed Particle Hydrodynamics (SPH) method was first developed by Lucy [6], Gingold and

Monaghan [4]. In this method, the continuum domain is discretized into particles carrying the field

variables. These variables are calculated from the contribution of the neighboring particles by means

of a kernel function. The SPH is a truly meshless method based on the transformation of differential

equations into integral ones which are then discretized using a distribution of moving particles. The

SPH method has been traditionally applied to modeling fluid flows. In recent years, there has been

a growing interest in applying SPH method to a wide variety of solid mechanics problems [5]. The

main feature of SPH method is that it is a particle based technique and does not require any under-

lying grid structure to represent the problem geometry. This avoids the difficulties associated with

traditional mesh-based methods (FEM, FVM and BEM), e.g. maintaining the integrity and quality

of the mesh under large deformation. The mesh-free nature of the SPH method makes this method

ideally suited to modeling processes that involve large deformations and discontinuities, such as frac-

ture and fragmentation, metal forming, etc. It has given relatively good results in many applications

in both fluid and solid dynamics.

The emphasis in this work is on the time integration of the resultant system of ordinary differential

equations generated from the SPH space discretization of the transient elastodynamic problem. The
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examined integration methods include the explicit Euler, explicit Runge-Kutta and explicit Runge-

Kutta Chebyshev (RKC) schemes. In this paper, the SPH method is first explained, in relation to

the discretization of the governing equations. Thereafter, time stepping techniques are employed to

integrate the semi-discrete problem. After experiments with the different time integration schemes for

a transient problem with known analytical solution, accuracy and efficiency of the different schemes

are discussed. Numerical results are presented for two test examples: shock-wave propagation in a

one-dimensional problem and velocity loading on a two-dimensional elastic plane. It is found that

the proposed RKC scheme offers a robust and accurate approach for solving elastodynamics using

SPH techniques.

SPH Method in Elastodynamics
The governing equation in elastodynamics expresses of the conservation of momentum as follows

Dv

Dt
=

1

ρ
∇σ, (1a)

where ∇ = ( ∂
∂x
, ∂
∂y
, ∂
∂z
)T is the gradient operator, ρ the density, v the velocity, σ the stress tensor and

( D
Dt

= ∂
∂t
+ v · ∇) is the total derivative. In our case the density is constant in time and therefore no

need to consider the energy equation. The mathematical model for small strains and displacements

will be employed in this study. Thus,

ε̇ =
1

2

(
∇ · v + (∇ · v)T

)
, σ̇ = Deε̇, (1b)

where the elastic constitutive matrix is given by

De =
E

(1 + ν)(1− 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

and E is Young’s modulus, ν is Poisson’s ratio. Then we can reformulate the (1a) into another form,

1

ρ
∇σ = ∇(σ

ρ

)
+

σ

ρ2
∇ρ, (3)

In the SPH method, the continuum domain Ω is discretized into a set of N particles. The field

variables and its spacial gradient can be determined from the contributions from the neighbouring

particles

fi =
N∑
j=1

mj

ρj
fjWij, ∇fi =

N∑
j=1

mj

ρj
fj∇Wij. (4)
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where Wij is the smoothing (kernel) function. In the present work, we use the following B-spline

function [7],

W(R, h) =
15

7πh2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2

3
− 4R2 +

1

2
(2R)3, if R <

1

2
,

6(2− 2R)3, if 1 ≤ R < 1,

0, if R > 1,

(5)

with h is the smoothing length and R =
|Xi−Xj |

h
.

It is clear that for the particle near boundary, the support domain will lack neighbouring particles.

To overcome this drawback we correct the approximation function using the procedure proposed in

[1]. The correction forms are based on the principle that the smoothing function is normalised in the

support domain
∑N

j=1
mj

ρj
Wij = 1. Hence,

fi =

∑N
j=1

mj

ρj
fjWij∑N

j=1
mj

ρj
Wij

=
N∑
j=1

mj

ρj
fjW̃ij. (6)

Since ∇Xi =
∑N

j=1
mj

ρj
Xj∇Wij = 1 and Xi

∑N
j=1

mj

ρj
∇Wij =

∑N
j=1

mj

ρj
Xi∇Wij = 0,the equation

(6) can be represented into two following forms,

∇fi =

∑N
j=1

mj

ρj
fj∇Wij∑N

j=1
mj

ρj
(Xj − Xi)∇Wij

=
N∑
j=1

mj

ρj
fj∇̃Wij, (7a)

∇fi =
N∑
j=1

mj

ρj
(fj − fi)∇̃Wij. (7b)

Note that the second derivative of the kernel (5) is continuous, and the leading truncation error term

is O(h2). The finiteness of the kernel support means that only a limited number of neighbouring par-

ticles play a role in all the sums of conservation equations. This is used to reduce the computational

time by building a link list between particles at each time step.

The artificial viscosity is always applied to reduce the unphysical oscillations and improve the

numerical stability, which can be written as Πij . In this study we choose to apply the most popular

expression of artificial viscosity which is developed by Monaghan [7],

Πij =

⎧⎨
⎩
−αΠcijφij + βΠφ

2
ij

ρij
, vij · rij < 0,

0, vij · rij ≥ 0

(8)

where we have φij =
hijvij ·rij

|rij |2+0.01h2
ij

, cij =
ci+cj

2
, ρij =

ρi+ρj
2

, hij = 0.5(hi + hj), rij = ri − rj and

vij = vi − vj .
Apply the SPH discretization into the elastodynamics system, the semi-dicsretized equations can

be reformulated in a compact SPH form

D

Dt

⎡
⎣vx

i

v
y
i

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

N∑
j=1

mj

(
σxx
j

ρ2j
+

σxx
i

ρ2i
− Πij

)
∂W̃ij

∂x
+

N∑
j=1

mj

(
σxy
j

ρ2j
+

σxy
i

ρ2i

)
∂W̃ij

∂y

N∑
j=1

mj

(
σyx
j

ρ2j
+

σyx
i

ρ2i

)
∂W̃ij

∂x
+

N∑
j=1

mj

(
σyy
j

ρ2j
+

σyy
i

ρ2i
− Πij

)
∂W̃ij

∂y

⎤
⎥⎥⎥⎥⎦ . (9a)
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In practice, involving the difference of velocity between two interactive partices brings more accurate

results than using single neighbouring particle’s velocity. Then we can apply equation (7b) on the

equation (1b),

D

Dt

⎡
⎢⎢⎢⎣
σxx
i

σyy
i

σxy
i

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
j=1

mj

ρj

(
D11v

x
j −D11vx

i

)
∂W̃ij

∂x
+

N∑
j=1

mj

ρj

(
D12v

y
j −D12v

y
i

)
∂W̃ij

∂y

N∑
j=1

mj

ρj

(
D21v

x
j −D21vx

i

)
∂W̃ij

∂x
+

N∑
j=1

mj

ρj

(
D22v

y
j −D22v

y
i

)
∂W̃ij

∂y

N∑
j=1

mj

ρj

(
D33v

y
j −D33v

y
i

)
∂W̃ij

∂x
+

N∑
j=1

mj

ρj

(
D33vx

j −D33v
x
i

)
∂W̃ij

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9b)

where Dij are the entries of the elastic matrix D for plane stress i.e., D = E
(1−ν2)

⎡
⎣1 ν 0
ν 1 0
0 0 1−ν

2

⎤
⎦.

Strong-stability-preserving explicit Runge-Kutta methods
The solution procedure for equations (9) is completed when a time integration of the semi-discrete

SPH equations is selected. This stage can be handled by any implicit ordinary differential equation

(ODE) solver, since they are computationally without risk by virtue of their accuracy and linear

unconditionally stability. This allows for larger time steps in the integration process. However,

due to the large set of linear system of algebraic equations at each time step, these methods may

be computationally inefficient. As an alternative, we use a class of explicit Runge-Kutta methods.

Applied to the system (9), the SPH discretization can be reformulated in a compact system of ODE

of this form
dU

dt
= F (U) , t ∈ (0, T ], (10)

where U =
[
σxx σyy σxy vx vy

]T
and the right-hand side F (U) is defined accordingly to (9).

It should be stressed that, because explicit time stepping schemes evaluate explicitly the right-hand

side of the equation (10), then it has to satisfy a stability condition. This stability criterion can be

reached based on the Courant-Friedrichs-Levy (CFL) condition

c
Δt

Δx
≤ 1, (11)

where c =
√

E
ρ

is the wave speed and Δx is the initial spacing between two particles. Difficulties

often appear when the spectral radius of the Jacobian of F, ∂F/∂U, has large eigenvalues. This

may give rise to numerical stiffness. Thus, time integration schemes for (10) depend strongly on

the spectral radius ρ (∂F/∂U) and grid refinements, and for these reasons it is preferable that these

schemes have to be either implicit or explicit with large stability regions. In the current work, we

consider the RKC method studied for example in [2, 8, 3]. The RKC method has been designed for

explicit time integration of systems of parabolic equations. To solve (10) the RKC scheme takes the
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form

U(0) = Un ,

U(1) = U(0) + μ̃1F
(0)

(12)

U(j) = μjU
(j−1) + νjU

(j−2) + (1− μj − νj)U
(0) + μ̃jF

(j−1) + γ̃jF
(0), 2 ≤ j ≤ s ,

Un+1 = U(s) ,

where Un is the solution computed at time step tn, F(j) denotes the term F
(
tn + cjΔt,U(j)

)
and

U(j) are internal vectors for RKC stages. The coefficients in (12) are available in analytical form

for arbitrary s ≥ 0 from [2, 8]. For convenience of the reader we include the formulae for these

coefficients. Consider the Chebyshev polynomial of the first kind of degree j

Tj(z) = cos(jarccosz), −1 ≤ z ≤ 1 .

Then

ε =
2

13
, q0 = 1 +

ε

s2
, q1 =

T ′s(q0)
T ′′s (q0)

,

bj =
T ′′j (q0)

(T ′j(q0))2
, (2 ≤ j ≤ s), b0 = b2, b1 = b2 ,

and

μ̃1 = b1q1, μj = 2q0
bj
bj−1

, νj = − bj
bj−2

, μ̃j = 2q1
bj
bj−1

,

γ̃j = (1− bj−1Tj−1(q0))μ̃j, (2 ≤ j ≤ s) .

The coefficients cj are

cj =
T ′s(q0)
T ′′s (q0)

T ′′j (q0)

T ′j(q0)
≈ j2 − 1

s2 − 1
(2 ≤ j ≤ s), c1 =

c2
T ′2(q0)

≈ c2
4
, cs = 1 .

It should be pointed out that two criteria have been taken into consideration for the calculation of the

above coefficients namely, (i) the real stability boundary, β(s), has to be as large as possible to obtain

good stability properties for parabolic equations, and (ii) the application of the method with arbitrary

number of stages should not damage the convergence properties, that is, the accumulation of local

errors does not grow without bound. Observe that the number of stages s in our SPH method and the

conventional RKC scheme varies with Δt such that, see [8],

s = 1 +

[[√
1 +

cΔt

0.653Δx

]]
, (13)

where [[ x ]] denotes the integer part of x and c =
√

E
ρ

is the wave speed.

Numerical results
We then examine the performance of the proposed time stepping schemes for SPH method for a

class of elastic problems in one and two dimensions. In the first example we solve the problem of

propagation of a shock wave on a one dimensional elastic magnesium bar and the second example

solve a large deformation problem in two dimensional elastic magnesium plate.
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One-dimensional shock-wave propagation
In this example we solve the problem of propagation of a shock wave on one-dimensional magnesium

bar. The length of the bar L = 1m with material properties of ρ = 1738 kg/m3 and the Young’s

modulus E = 45 × 109 Pa. Initial the bar is at rest with v = 0 and σ = 0. The velocity at

the right end of the bar is fixed (v = 0) and we apply a compression stress on the left boundary

σ0 = 8.8436 × 106 Pa. The analytical velocity of the shock wave in this problem could be easily

calculated by v0 = σ0/
√
Eρ = 1 m/s. The wave will propagate through the bar with the wave

speed c =
√
E/ρ = 5.0884 × 103 m/s. When the wave arrives the fixed right end of the bar, the

stress at this point will double to become 17.6872 × 106 Pa. In Figure 1(a), 1(b), 1(c) and 1(d), we

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Numerical results for the shock-wave propagation problem.

present the velocity and the stress along the bar at time t = 1.2 × 10−3 s and the time evolution

of velocity and stress at the mid point of the bar (x = L/2), obtained using the considered time

stepping schemes and 251 particles. It is evident from these results that the RKC scheme with 3

stages produces more stable and accurate results that the other considered schemes. As we known,

the stability will decrease while increasing the value of CFL in normal time stepping schemes, like

RK4 scheme shown on Figure 1(e). However Figure 1(f) shows that the RKC scheme can still

present stable results with larger value of CFL in condition with increasing number of stages. To

further examine the convergency of RKC scheme applied in SPH method, we then apply the RKC

scheme in more number of particles, as shown on Figure 1(g) and 1(h). The error rates of using the

SPH method for solving Example 1 with different time schemes are shown on the Table 1, the error

rate is obtained from the equation,

error1 =

∑ |uSPH − uexact|∑ |uexact| .

Two-dimensional elastic plane
As a second example we consider a two-dimensional version of the previous example solved in the

computational domain shown in Figure 2. The material properties of plane are ρ = 2000 kg/m3,
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Table 1: Error rate of using the SPH method for solving Example 1 with different time schemes.

CFL = 0.8 CFL=1.0 CFL=2.5

# nodes Euler RK4 RKC Euler RK4 RKC Euler RK4 RKC

251 0.2417 0.1866 0.1661 - 0.2313 0.1655 - - 0.1655

501 0.1676 0.1306 0.1165 - 0.1616 0.1165 - - 0.116

1001 0.1157 0.092 0.082 - 0.1135 0.0821 - - 0.0815

2001 0.0747 0.0651 0.0579 - 0.0802 0.0579 - - 0.0574

the Youngs modulus E = 80 × 106 Pa and the Poisson ratio ν = 1/3. Fixed boundary conditions

are applied on the upper and right sides of the plane, whereas, the velocity on the lowest left circular

boundary is given as

v(t) =

⎧⎨
⎩
5 m/s, if t ≤ 1.8× 10−3 s,

0 m/s, otherwise.

Based on the observations drawn from the previous example, we present numerical results obtained

using the RKC scheme. We also examine the performance of our SPH method for three different node

distributions exhibited in Figure 2. The corresponding node statistics along with the time steps used

for each nodal distribution are summarized in Table 2. In this table we also include the minimum

and maximum values of the principal stress obtained for the considered nodal distributions and a

reference solution obtained on a very fine SHP nodal distribution.

Figure 2: Computational domain and node collocations for Example 2.

Table 2: Nodal statistics and results for the principal stresses obtained using the SPH method for

solving Example 2.

t = 0.0018 s t = 0.003 s t = 0.0048 s

# nodes Δt max σp min σp max σp min σp max σp min σp

Reference 24170 1.25e-5 3.01e+6 0 1.87e+6 -1.26e+5 2.86e+6 -1.50e+6

Equal radial 2446 1.20e-4 2.95e+6 0 1.96e+6 -2.60e+5 2.96e+6 -1.96e+6

Uniform 2423 1.20e-4 3.23e+6 0 1.93e+6 -2.83e+5 2.64e+6 -3.83e+5

Radial 2376 1.19e-4 2.99e+6 0 1.64e+6 -1.21e+5 2.72e+6 -3.14e+5
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t = 0.0018 s t = 0.003 s t = 0.0048 s

Figure 3: Stress distributions and velocity fields obtained for different node collocations and at three

different simulation times. Unifrom distribution (first row), radial distribution (second row) and

equally radial distribution (third row).

In Figure 3 we present the stress distributions and velocity fields obtained for different node col-

locations and at three different simulation times namely t = 0.0018 s, t = 0.003 s and t = 0.0048 s.

At early simulation times, a shock wave is generated and propagates along the main diagonal in the

computational domain. Reflections from fixed boundaries in the domain are also captured by the SPH

method for all the considered nodal distributions. The reflection features are more visible in the veloc-

ity fields than the stress distributions at t = 0.0048 s. From the presented results it is evident that the

nodal distribution in the considered SPH method affects quantitatively and qualitatively the simulated

results. The artificial viscosity has been considered in all the analysis of example 2. It seems that, for

the considered material properties and the boundary conditions,at the early stage t = 0.0018 s, the

SPH method using the radial and equally radial nodal distributions produces more accurate results

in term of both stress and velocity fields, because the distances between two nearest neighbouring

particles near the curve boundary are similar in these two distributions, which bring more reasonable

results. When the wave propagates to the fixed boundary and reflects (t = 0.0048 s), the uniform

distribution brings smoother results than others in terms of both stress and velocity, because the the

distances between two nearest neighbouring particles near the fixed boundary are similar in uniform

distribution, which can brings more accurate results.
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Abstract
Many methods for reliability analysis and reliability-based design optimization have 
been developed since the last decades. However, for most of these methods predicting 
the reliability, stochastic information of the variables has to be assumed as parameters 
like the mean (location parameter) and variance (scale parameter). This assumption 
cannot guarantee the accuracy of the reliability when information is limited. In this 
paper, we propose a nonparametric RBDO using sign test that does not consider the 
parameter but requires limited discrete information, like only sample data. We define 
the uncertainty of the reliability as the decision error of nonparametric hypothesis test 
due to limited information. We examine the tendency of the solution with respect to 
the reliability of a system and the uncertainty of the reliability through an example. 

Keywords: Reliability analysis, Reliability-based design optimization, Uncertainty of 
reliability, Reliability error, Sign test, Limited discrete information  

Introduction 

In deterministic design optimization, since uncertainty of input variables does not 
considered, the reliability of a system cannot be evaluated. Thus, a safety factor has 
been employed to guarantee the reliability. To consider the reliability of a system, 
stochastic design optimization such as reliability-based design optimization (RBDO) 
has been developed. RBDO can provide an optimum point satisfying target the 
reliability of a system by using stochastic information of input variables. 

There are many methods for reliability analysis such as the first and second order 
reliability method (Cornell, 1969; Breitung, 1984), moment-based method (Lee and 
Kwak, 2006; Rahman and Xu, 2004) and its implementation to RBDO (Shetty et al., 
1998; Shan and Wang, 2007). Generally, in reliability analysis, uncertainty of a 
system is caused by uncertainty of input variables. In these methods, to treat the 
uncertainty, distribution of input variables has to be assumed as parameter such as 
statistical moments. However, in practical problems, information of input variables is 
often limited and discrete. Thus, the reliability of a system also has uncertainty 
because of the lack of information. Therefore, to treat the limited discrete information, 
we should consider the reliability of a system as well as the uncertainty of the 
reliability.

Recently, RBDO with confidence level under input model uncertainty is suggested 
(Noh et al., 2011). They assume that the uncertainty of the reliability is due to 
uncertainty of parameters of input variables and considered as a confidence level of 
the parameters. However, the method cannot quantify the uncertainty of the reliability 
but provides qualitative trends of the uncertainty of the reliability. 
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In this paper, we propose a new approach for nonparametric RBDO (NRBDO) using 
sign test. We assume that the uncertainty of the reliability is caused by the limited 
discrete information. A reliability analysis method, for instance, Akaike information 
criterion (AIC)-based reliability analysis method (Lim and Lee, 2012) is adopted to 
estimate the reliability of a system for discrete information. With the estimated 
reliability, we estimate the uncertainty of the reliability by using nonparametric sign 
test for limited discrete information. The proposed method can quantify the reliability 
of a system as well as the uncertainty of the reliability. For convenience, we name the 
reliability of a system and the uncertainty of the reliability as the first and second 
reliabilities, respectively. Using an example of RBDO with limited and discrete 
information of input variables, we evaluate the first and second target reliabilities.

We introduce AIC and sign test, then we formulate NRBDO in the second section. In 
the third section, we illustrate and compare deterministic design optimization (DDO), 
RBDO and NRBDO for a mathematical example. In the last section conclusions are 
summarized. When information of input variables is limited and discrete, the 
proposed method can obtain optimum point considering the reliability of a system as 
well as the uncertainty of the reliability. 

Nonparametric Reliability-based Design Optimization 

In this section, we introduce AIC and sign test. AIC is adopted to estimate the 
reliability using discrete information. Then, considering limited discrete information, 
sign test is used to decide whether the second reliability namely the uncertainty of the 
reliability is acceptable or not. Combining these two concepts, we achieve an 
optimum result satisfying the first as well as the second reliabilities for limited 
discrete information. 

Reliability Analysis Using Akaike Information Criterion 

Akaike information criterion was introduced in 1973 by Akaike (Akaike, 1973) and 
has been developed and implemented on various fields of science such as statistics, 
ecology, engineering and reliability analysis (Lim and Lee, 2012; Hurvich et al., 1998; 
Pan, 2001; Spendelow et al., 1995; Al-Rubaie et al., 2007; Go et al., 2011).

AIC is a method that selects the best estimated distribution from candidate 
distributions provided by a user. The AIC is defined as follows (Sakamoto et al., 
1986):

         (1) 

where  is maximum log likelihood of a candidate distribution, and  stands for 
the number of parameters of a candidate distribution. 

In this paper, we use six types of distribution: normal distribution, log-normal 
distribution, Gamma distribution, Weibull distribution, exponential distribution and 
generalized extreme value distribution. When the likelihood of a candidate 
distribution is approaching maximum, the probability of estimation becomes the 
highest. Hence, we choose the best estimated distribution with the smallest . Then 
we estimate the first reliability by integrating its probability density function. 

1189



3

Second Reliability Analysis Using a Sign Test 

The sign test is one of the oldest nonparametric hypothesis tests. In order to make a 
decision, whether to reject the null hypothesis or not, a binomial distribution is used 
to calculate the rejection or critical region (Conover, 1980). 

Let  be the ratio of success and failure, respectively. Then the null 
and alternative hypothesis of sign test is given as follows: 

         (2) 

As the number of successes increases, i.e.,  increases, decreasing the chances of 
rejection of the null hypothesis. When we undertake a hypothesis test, a decision error 
always exists. In this case, there is a type II error since we do not reject null 
hypothesis. We decide a hypothesis using critical region calculated by integrating the 
binomial distribution. The probability mass function of binomial distribution is of 
form as follows: 

        (3) 

where  is the number of trials,  stands for success probability, and  is the number 
of successes which is a non-negative integer. 
The critical region can be calculated by a summation of Eq. (3). The summation is of 
form as follows: 

     for non-negative integer       (4) 

where  is the number of success and  stands for the second reliability. Also we 
can treat Eq. (3) on non-negative real number by using Gamma function. Then Eqs. 
(3) and (4) can be rewritten as follows: 

        (5) 

     for non-negative real number       (6) 

We can estimate the first reliability using Akaike information criterion, and then 
estimate the number of success by Eq. (7). 

        (7) 

where  is the first reliability, the reliability of a system. Then, the second reliability 
using Eq. (6) can be estimated and a decision not to reject the null hypothesis if the 
second reliability is greater than the second target reliability can then be made. 

Mathematical Example 

We choose an example for optimization (Noh et al., 2011; Youn and Choi, 2004; 
Youn and Wang, 2008; Lee et al., 2013) consisting of two design variables and three 
constraint functions. The optimization formulation of the example is of form in Eq. (8) 

Firstly, we find the optimum point using DDO. Secondly, we find the optimum point 
using RBDO with respect to target reliability. Finally, we find the optimum point 
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using NRBDO with respect to the reliability of a system and the uncertainty of the 
reliability. In this section, each of the results is illustrated.  

    (8) 

    

Deterministic Design Optimization 

DDO problem is formulated in Eq. (8). It is easy to obtain the optimum point. We use 
‘fmincon’ in MATLAB to solve the optimization problem. We can obtain minimum 
value of -5.9955 at . The active constraint functions are 

 at the optimum point. However, DDO cannot consider the 
uncertainty of the input variables. Therefore, the optimum point can exist in infeasible
region if any uncertainty of the input variables occurs.

Reliability-based Design Optimization 

RBDO formulation is of form as follows: 

    (9) 

Generally, in deterministic design optimization, the uncertainty of the input variables 
ot be considered. Therefore, to treat the uncertainty, we assume distribution of 

the input variables as the normal distribution, and then obtain 106 random samples 
from the distribution. The assumed distribution is as follows: 

      (10) 

We use Monte Carlo simulation to estimate the reliability of a system using 106

samples. A genetic algorithm is used as the optimization algorithm.  

When the first target reliability is 0.5, the result is similar to that of DDO. Because we 
assume the distribution of the input variables as the normal distribution, the 
probability of success is almost 1/2. However, if the first target reliability changes, 
the optimum point obviously changes. The results of optimum point and its objective 
value with respect to the first target reliability are shown in Table 1. If the design 
requires higher reliability, then the objective function should have a higher value. 
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Nonparametric Reliability-based Design Optimization 

Using hypothesis test, NRBDO formulation can be written as follows: 

    (11) 

   

   

In NRBDO, we obtain 50 random samples from Eq. (10). As explained above, if the 
number of samples is small, we cannot assure that the reliability of a system is 
accurate. Therefore, the uncertainty of the reliability must be considered due to 
limited information.  

Results of NRBDO are summarized and illustrated in Table 2 and Figure 1, 
respectively. For cases 1, 2 and 3, from the point of view of DDO, these optimum 
points are in infeasible region since the first target reliability is 0.1. For cases 2, 5 and 
8, the second target reliability is 0.5, so results of these cases are similar to those of 
RBDO. For cases 4, 5 and 6, the first target reliability is 0.5 and the second target 
reliabilities are different. For case 4, optimum point is in infeasible region because the 
second reliability guarantees probability of 0.1. However, for case 6, optimum point 
is in feasible region because the second reliability guarantees probability of 0.9. From 
the result of optimum point, we can show the trend with respect to the first and 
second target reliabilities. Note that as the target reliability increases, objective value 
also increases. 

Results of DDO, RBDO and NRBDO are shown in Table 3 with the first and second 
reliabilities of 0.5. When distribution of input variables is symmetric and the first 
target reliability is 0.5, RBDO result is similar to DDO result. However, in RBDO, 
since we do not consider the number of samples to estimate the distribution of input 
variables, we cannot quantify the uncertainty of the reliability. In NRBDO, since we 
consider the number of samples and the second target reliability as 0.5, NRBDO 
result is similar to RBDO result. So these result shows that the proposed method is 
slightly more feasible than other methods. 

Table 1. Comparison of RBDO results with respect to 

0.1 0.5 0.9 
8.7014 7.7907 6.9316
0.8139 1.7866 2.5821
-7.8874 -6.0041 -4.3495
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reliability as well as the reliability of a system should be considered. In order to 
consider the uncertainty of the reliability, we proposed a new method of NRBDO. 

We consider the reliability of a system and the uncertainty of the reliability as the first 
and second reliabilities, respectively. To estimate the first reliability, we adopt AIC. 
In AIC, we use six types of candidate distributions, and then we select the best 
estimated distribution by maximizing the likelihood function of each candidate 
distribution. Using the best estimated distribution, we estimate the first reliability. To 
treat the uncertainty of the reliability, we perform nonparametric hypothesis test using 
sign test. In the sign test, the rejection region is calculated from binomial probability 
mass function.  

To verify the proposed method, we use a mathematical example. Firstly, deterministic 
design optimization is performed without stochastic information of input variables. 
Secondly, RBDO is performed with respect to the first target reliability of 0.1, 0.5 and 
0.9, respectively. The optimum point of RBDO with the first target reliability of 0.5 
converges to DDO result. Finally, NRBDO is performed with respect to the first and 
second target reliabilities of 0.1, 0.5 and 0.9. The NRBDO result converges to RBDO 
and DDO results if the first and second target reliabilities are 0.5. The result shows 
that the optimum point tends to exist in infeasible region if the first target reliability is 
less than half. Also, the result shows that if the second target reliability is less than 
half and the first target reliability is 0.5, the optimum point tends to exist in infeasible 
region. The proposed method finds the optimum point by considering the reliability 
of a system as well as the uncertainty of the reliability when the information of the 
input variables is given in a limited discrete form. 
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Abstract 
In order to study the thermal behaviour of a two-speed dual clutch transmission (DCT), mathematic calculation 
and simulation will be conducted. This paper presents a theoretical analysis of power losses and heat transfer in 
DCT. The power losses components include wet clutches, concentric shaft, power losses caused by gear 
meshing, gear windage, churning, and bearings. In order to demonstrate the effectiveness of the model, 
simulations are conducted based on the presented theoretical analysis and developed powertrain model using 
different vehicle test driving cycles. Thermal behaviour study can contribute to the optimization design of future 
transmissions and calculating its reliability. 

Keywords: Thermal Capacity, heat dissipation, dual clutch transmission, DCT, Simulation.

Introduction 

Pure EVs being currently widely used in the market are mainly equipped with single speed transmission, with 
tradeoffs between dynamic (such as climbing ability, top speed, and acceleration) and economic performance 
(driving range). Nowadays, more and more EV researchers and designers are paying attention to application of 
multiple speed transmissions instead of traditional single speed transmissions, expecting to improve the EV 
performance. The usage of multi-speed transmissions for electric vehicles is likely to improve average motor 
efficiency and range capacity, or even can reduce the required motor size. There are a number of multi-speed 
transmissions available for pure EVs, as shown by the author (Rudolph, 2007), indicating that DCTs have 
higher fuel efficiency than other automatic drives, making them extremely suitable.  

It is necessary to point out that the vehicle performance improvement by using multi-gear transmissions for an 
electric vehicle is not as much as for an engine driven vehicle, as a result of significantly different 
characteristics of these two systems. In an engine driven system, the available output speed range of engine is 
narrower than that of electric motor. The inertia of motor is smaller than that of engine as well, usually smaller 
than a quarter of engine. And the motor speed is also more controllable than that of engine. Therefore, the 
number of gear ratios for a pure EV is not the more the better, as it will increase the transmission manufacture 
cost and the overall vehicle mass without contributing significantly to the overall performance of the vehicle. 
Consequently, the detailed performance difference between one-speed and two-speed EV can refer from our 
research work by the author (Zhou, 2012).

A general two-speed wet DCT is suggested to be equipped into a pure EV, as shown in Figure 1. It is made up 
of two clutches, C1 and C2. The two clutches have a common drum attached to the same input shaft from the 
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motor, and the friction plates are independently connected to 1st or second gear. C1 connects the inner input 
shaft engaged with 2nd gear, and C2 connects the outer input shaft, engaged with 1st gear. And there are no 
synchronisers in this two-speed DCT. Thus, the transmission can be looked at as two half manual transmission, 
and, in this sense, shifting is realised through the simultaneous shifting between these two half transmissions. 
For this special layout, it is the reason why that the author (Goetz, 2005) points out that vehicle equipped with 
DCT can change speed smoothly with nearly no power. 

Figure 1. EV powertrain system equipped with two-speed wet DCT schematic

Computer calculations and simulations are now part of design new types of transmissions process, as prototype 
tests have become more and more expensive and time consuming as shown in the work by the author (Play, 
1978). Thermal behaviour is not often considered in the preliminary design step as pointed by the author 
(Lechner, 1999). In fact, a thermal expansion of transmission cases, for example, can change gear axes 
geometry positions, gears clearances, lubricant types and film conditions, and consequently, dissipated heat 
during work. Furthermore, it is of great importance to know the temperature of oil lubricated transmission 
systems, and the quantity of demand cooling oil. The prediction of thermal behaviour of a transmission might 
be beneficial to evaluate cooling and lubricating conditions. Therefore, it appears necessary to develop 
numerical models to predict the transmissions thermal behaviours. 

Some works (Changenet et al., 1996, Coe, 1989; Joule et al., 1988; Phillips, 1996) have been done considering 
the whole transmission system for thermal analysis. However, these approaches are mainly focus on manual or 
automatic transmission. There are limited, if any, publicised works and reports on dual clutch transmission 
thermal behaviours. 

This paper performs a research of dual clutch transmission power losses and heat dissipation. Due to the 
particular structure of DCT, the power losses components include wet clutches, concentric shaft, power losses 
caused by gear meshing, gear windage, churning, and bearings. In order to demonstrate the effectiveness of the 
model, simulations are conducted based on the presented theoretical analysis and developed heat dissipation 
model using different assumed temperature and power losses. Thermal capacity study can contribute to the 
design of future transmissions and calculating its reliability. 

1 Theoretical Analysis of Heat Dissipation of Dual Clutch Transmission 

Differential

C1

Electric Machine

2nd gear

1st gear

Wheel

C2
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Given the rigorous development required for standards, the BS/ISO (2001) model is adopted to analysis the 
transmission heat dissipation. 
The quantity of heat, , dissipated through the dual clutch transmission case by convection can be calculated 
by: 

                                                                 (1) 
where,   represents the heat transmission coefficient, which includes the internal heat transfer between oil and 
case, and the heat conduction through the case wall and the external heat transfer to the environment, usually 
surrounding air.  and  mean the oil temperature and environment temperature respectively with unit of 
Kelvin. 

                                                               (2) 

The heat dissipation via the DCT case is determined by the larger value air-side, i.e. external side, thermal 
resistance at the case surface. The front two terms in the above equation can then be neglected. For high air 
velocities and thus good external heat transfer, it will probably be necessary to also consider of the oil-side heat 
transfer. As a reference value, oil-side heat transfer coefficient , can be assumed. But it 
requires for investigation and revision for different oil types. The heat conduction through the transmission case 
should only be considered in special cases, such as in the case of double-walled cases, cases with sound 
insulation and non-metallic cases. And the appropriate coefficient of thermal conduction, , has to be 
expressed for the case material in question. 

The air-side heat conduction, , includes a convection part, , and a radiation part, ,which can 
performs as 

                                                                    (3) 

                                                         (4) 

where the emission ratio, , is assumed as 0.15. 

The convection part can be divided into two parts, free and forced convection. According to the investigations 
by the author (Funck, 1985), the following can be presented: 

                                                (5) 

Where 

                                                                          (6) 

As this DCT case without thermal finning, the free and forced convection can be followed as: 

For free convection ( ):

                                                            (7) 

For forced convection ( ):

                                                                      (8) 

1198



4

Where 

                                                                         (9) 

                                                                                (10) 

                                                                   (11) 

2 Simulation Results and Discussion 

The simulations present the relationship between DCT power losses and predicated temperature.

Figure 2. Relationship between DCT power losses and predicated temperature 

Figure 3. Relationship between input power and power losses 
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Figure 4. Individual DCT power losses verse input power 

Figure 2 shows that the predicated temperature linearly increases with the DCT power losses. Figure 3 indicates 
that the maximum power loss for DCT is approximate 2.4KW. Consider Figure 3 and Figure 4 together, the 
power loss decreased sharply is caused by the wet clutch. It is because that the effective wet clutch radius will 
decrease which is caused by increased centrifugal force during high speed. Figure 4 also shows that wet clutch 
drag torque loss domain the main power losses in the two-speed DCT. From Figure 2 and Figure 4, as the power 
losses is domain caused by wet clutch drag torque, it is not only necessary to consider the DCT thermal capacity 
but carefully to calculate the wet clutch pack thermal capacity as well.  

Conclusions 

Thermal behaviour study can contribute to the design of future transmission prototypes and calculating its 
reliability avoiding unnecessary failures. It could help accelerating products development speed and save funds. 
Future research includes comparing power losses under different gears and operations, and using experiment to 
investigation the proposed model. 
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This paper proposes an alternative topology optimization method for the optimal design of 
continuum structures, which involves a multilevel nodal density-based approximant based on the 
concept of conventional SIMP (solid isotropic material with penalization) model. First, to construct 
a material density field with global smoothness over the design domain, a family of Shepard
interpolation scheme is applied as a non-local nodal density interpolation. The new nodal density 
field possesses non-negative and range-bounded properties to ensure a physically meaningful 
approximation of topology optimization design. Second, the density variables at the nodes of finite 
elements are used to interpolate elemental densities, as well as corresponding element material 
properties. In this way, the nodal density field by using the non-local Shepard function method is 
transformed to a practical elemental density field via a local interpolation with the elemental shape 
function. The low-order finite elements are utilized to evaluate the displacement and strain fields, 
due to their numerical efficiency and implementation easiness. So, the proposed topology 
optimization method is expected to be efficient in finite element implementation, and effective in 
the elimination of numerical instabilities, e.g. checkerboards and mesh-dependency. A benchmark 
numerical example in topology optimization is employed to demonstrate the effectiveness of the 
proposed method. 

Keywords: Topology optimization method, SIMP, nodal density-based approximant, Shepard 

function 

Introduction

In the area of structural optimization, topology optimization has experienced considerable 
development over the past two decades with a wide range of engineering applications (Bendsøe and 
Sigmund 1999). Topology optimization is essentially a systematic design methodology, which 
involves a numerical process to iteratively re-distribute a given amount of material inside the design 
domain subject to loads and boundary conditions, until a prescribed design objective is optimized 
under specified design constraints. Topology optimization has been recognised as the most 
promising but the most challenging approach in the conceptual stage of structural optimization. 
Many different methods have been developed for topology optimization of structures, including the 
homogenization method (Bendsøe and Kikuchi 1988), SIMP method (Zhou and Rozvany 1991; 
Mlejnek 1992; Bendsøe and Sigmund 1999), and level set-based methods (Sethian and Wiegman 
2000; Wang et al. 2003; Allaire et al. 2004; Luo et al. 2008).

Topology optimization of continuum structures essentially belongs to a set of integer programming
problems with a large number of discrete(0, 1) design variables. More efficient gradient-based 
optimization algorithms cannot be directly applied to solve such large-scale optimization problems 
due to the well-known combinational problem. To this end, the homogenization and SIMP methods 
have been widely employed to relax the discrete topology optimization problem, allowing the 
design variables taking intermediate densities from 0 and 1. In doing so, the original optimization 
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problem is changed to a regularized optimization problem with range-bounded continuous design 
variables. In particular, the SIMP, as an extension of the homogenization method, has won great 
popularity in topology optimization of solid mechanics problem, due to its conceptual simplicity 
and implementation easiness. In SIMP-based topology optimization methods, a ‘power-law’ 
criterion (Bendsøe and Sigmund 1999) is usually applied to penalize the intermediate densities of 
elements, to ensure the solution of the regularized 0-1 design close to the original binary (0,1) 
design as much as possible. In addition, numerical schemes such as filtering schemes (Sigmund 
2001; Bourdin 2001; Luo et al. 2005) are required to be incorporated to eliminate numerical 
instabilities, e.g. the checkerboards and mesh-dependence (Sigmund 2001), in order to make a
physically meaningful solution for topology optimization of continuum structures. 

It can be found that most of the current SIMP approaches are based on element-wise design 
variables (Bendsøe and Sigmund 2003), which means that both the topological geometry of material 
distribution and the physical fields would be evaluated via elemental density variables which are 
piecewise constant. In topology optimization of continuum structures, the element-wise variables 
may be one of the reasons for the occurrence of numerical instabilities (Sigmund 2001), including 
checkerboards, local minima, and mesh-dependency. Moreover, the element-based topology 
optimization method may lead to zigzag non-smooth boundary. As a result, to overcome the 
shortcomings of conventional element-wise SIMP methods, several alternative methods have been 
proposed. More recently, there have been several approaches based on point-wise design variables 
(Rahmatalla and Swan 2004; Matsui and Terada 2004; Guest et al. 2004; Paulino and Le 2009; 
Kang and Wang 2011; Wang et al. 2012). According to these approaches, nodal densities of the 
finite elements are normally considered as the design variables, and subsequent element material 
properties are obtained in terms of nodal densities via interpolation schemes. For instance, 
Rahmatalla and Swan (2004) proposed several options to implement the point-wise interpolation for 
material density fields, although “layering” or “islanding” type numerical instabilities occurred in 
the design. Matsui and Terada (2004) studied a so-called CAMD (continuous approximation of 
material distribution) method based on the homogenization method, in which element material 
densities were interpolated via the nodal density values (design variables). Guest and et al. (2004) 
introduced nodal design variables and projection schemes into topology optimization to achieve 
minimum length-scale control and checkerboard-free characteristics. Nodal material densities are 
regarded as the design variables to calculate the element material densities and element stiffness 
matrices. Paulino and Le (2009) proposed a kind of hybrid low-order finite elements, in which the 
nodes for design variable vector are inconsistent with the nodes for displacement vector. Kang and 
Wang (2011) proposed a nodal density based topology optimization method, in which a non-local 
Shepard interpolation scheme and higher-order elements are applied to eliminate the numerical 
instabilities such as checkerboards. 

This paper will propose a multilevel nodal density-based approximation scheme for topology 
optimization of continuum structures, based on the concept of SIMP method. In this study, regular 
Q4 (quadrilateral four-node) finite elements are applied to evaluate the displacement field vector, 
and the nodal densities of each Q4 element are considered as design variables. A family of Shepard 
functions is employed to implement a non-local density approximant with enhanced smoothness 
over the entire design domain. At the same time, nodal design variables are used to evaluate
practical material properties of the finite elements.

Non-local Nodal Density Approximant 

The regular Q4 (4-node quadrilateral) element is considered for all implementations in this paper. A 
family of Shepard interpolation scheme is employed in this study in a form where performed as a 
non-local nodal density interpolation to construct a material density field with global smoothness 
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over the entire design space. Via this interpolation scheme, the density field includes both the 
contribution of the design variables of nodes with one element and the nodes related to the 
neighbouring nodes within an influential support. The Shepard interpolation method is introduced, 
firstly. Let H( 1,2,  n )i i denote a set of  non-negative data values at the associated sampling 
points    ( , )i i ix X Y within the support radius of an arbitrary point. ( , )i iX Y defines the th point 
location in the given Cartesian coordinate system. The approximation of the Shepard function
method is stated as

Hn

1
i

i

x x       (1)

Where Hn is the number of the nodes that is within the support radius r of the i th point. The 
Shepard function i x is expressed as a normalized formulation

Hn

j 1

i i
i

j j

x x
x

x x
     (2)

is the weight function, in the study which is a radially linear ‘hat’ function defined by 
[Bourdin (2001)], where ix x is the radial distance from point x to ix .

Given 2 2
i i i iD x x x X X Y Y , the weight function can be expressed as 

2

3 i
i i

D x
x x

r r
     (3)

The weight function is zero outside the domain of influential support, and decays linearly with the 
distance from the interest point x . It means that only nearby points are considered in computing any 
approximated value. In this way, the cost of computation is greatly saved by eliminating 
calculations with distant data points. The Shepard function i x possesses the properties: 

(1)
Hn

1

1i
i

x

(2) 0i x

It is apparent that the Shepard function has a mechanism similar to the smoothing effect of the 
density filtering schemes (Bourdin 2001; Luo et al. 2005). Meanwhile, the approximated values via 
the Shepard function are bounded between lower and upper values of the sampling points, which is
essential property for a physically meaningful density field approximant in topology optimization.

Local Nodal Density Interpolation Scheme 

Here, a local nodal density-based interpolation will be presented to convert the nodal design 
variables into the elemental densities. In this study, the standard Lagrangian shape function in the 
finite element method is used to interpolate elemental material properties. The local nodal density-
based interpolant is stated as

Hn

1 1 1

e en n

e n n n i n i
n n i

N N x      (4) 

where e is the elemental density, en is the number of the nodes of each element(4 in Q4 element), 
and nN is the standard Lagrangian shape function. For simplicity, 2×2 Gaussian points are utilized
to compute the practical material properties and determine the displacement field.
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Furthermore, elemental material properties, such as Young’s modules and elasticity constant, can 
then be expressed according to the proposed the multi-level approximation scheme, respectively, as

Hn

0
1 1 1

E
e e

p

e n n n i n i

n n

n n i

N E N x E     (5) 

Hn

0
1 1 1

e e
p

e n n n i n i
n n

n n

i

N N xD D D     (6) 

From the above discussion, it can be found that the proposed multi-level interpolation scheme can 
be easily implemented and is numerically effective, due to the application of the standard low-order 
rather than the higher-order finite elements. The obtained nodal variables via the interpolant are 
bounded between [0, 1], which is crucial for generating a physically meaningful density field. 

Topology optimization problem

According to the well-established theory proposed by Bendsoe and Sigmund (2003), the following 
structural mean compliance design is used for design sensitivity analysis. In the study, the topology 
optimization problem is stated as

    (7)

Where the objective function J is to be minimized, U is the displacement vector and K is the 
global stiffness matrix, F is the external vector. eN is the number of total elements, eu is the 
elemental displacement vector, and ek is the elemental stiffness matrix. p is the penalty factor 
( p =3in this study). V is the actual material volume and vf is the specified volume fraction ratio, 
and 0V is the volume of the design domain. min 0.0   001 is the lower bound of elemental densities 
to avoid singularity in numerical implementation. The derivative of the objective function with 
respect to the nodal design variables is expressed as

T T e
e e

e

J( )

i

i

ni i i

kKU U u u     (8) 

Where in is an index set containing indices of all the elements connected to the th point (Kang 
2011).  

Numerical ExampleS and Discussions

To have an equitable assessment of the performance of the new interpolation scheme, the well-
established minimum compliance problem is chosen (Bendsøe and Sigmund 2003). Fig.1 is the 
design domain of the cantilever beam with an aspect ratio of 2:1 corresponding to length over 
height. The left side of the domain is fixed as the Dirichlet boundary while the right side is treated 
as a non-homogenous Neumann boundary with a concentrated force F=1 vertically applied at the 
centre point. The objective function is to minimize the mean compliance, and mesh level (100 ×50) 
is adopted.  As shown in Fig.1, the design domain is discretized with 100×50 Q4 elements and 
design variables are located at the corners of each element.
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Figure 1. Design domain of the cantilever beam (Left)
Figure 2. FE nodes in the design domain(Right)

The topology optimization is converged after 319 iterations, and the overall structural mean 
compliance is minimized from 319.136 to 66.519. Fig.3 shows the discrete plots of the nodal 
densities at different design stages, in which the first figure is the initial design, the last figure is the 
optimal design, and the rest are the intermediate designs. The corresponding contours of the design 
variables are displayed in Fig.4 that shows the design gradually moves towards the lower limit 
0.0001 (weak material) and upper limit 1 (solid material) during the optimization. So it can be seen 
that the topology optimization in this study can actually be regarded as a numerically iterative 
process to re-distribute a number of material density points in the design space until the 
convergencecriterion is satisfied.

   (a)    (b)    (c) 

   (d)    (e)    (f)

(g)

Figure 3. Topology plots: (a) initial design, (b)-(e) intermediate designs, and (f) final solution,
the size of the node denoting the magnitude of nodal density values. (g) Local zoom-out plots
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   (a)    (b)    (c) 

   (d)    (e)    (f)

Figure 4. Contour plots of nodal design variables
(a) initial design, (b)-(e) intermediate designs, and (f) final solution

Fig.5 displays the topology plots of the element stiffness at different design stages of the 
optimization. The optimization using the proposed nodal density-based method can result in 
checkerboard-free design, and the so-called “layering” or “islanding” numerical phenomenon 
(Rahmatalla and Swan 2004) can also be eliminated by using the present Shepard function 
approximant. Fig. 6 shows curves of the objective function and the volume constraint over the 
iterations. It is noted that the first 75 iterations are mainly employed to implement topological 
optimization, and the rest iterations are used to adjust local structural shapes until a uniform 
distribution of the strain energy in the structure is achieved. Since the proposed method has been
proved to be mesh-independent, it is possible to use a coarser finite element mesh to improve 
computational efficiency. According to the curve of constraint, the proposed method is well mass 
conservative. 

   (a)    (b)    (c) 

   (d)    (e)    (f)

Figure 5. Topology plots of nodal design variables: 
(a) initial design, (b)-(e) intermediate designs, and (f) final solution
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Figure 6. Iteration histories of objective function and volume constraint

Conclusions

In this paper, an alternative SIMP scheme is proposed for topological optimization of structures 
based on a multi-level Shepard function approximant. In this method, the nodal variables are 
considered as the design variables, to implement structural topology changes. A nodal density field 
with enhanced smoothness is constructed by using the original set of design variables via a non-
local Shepard function method. The new set of nodal variables is applied to evaluate the practical 
material properties of finite elements, via a local interpolation scheme of the standard Lagrangian 
shape function. Therefore, instead of using the time-consuming higher-order elements, the lower-
order finite elements can be easily employed to improve computational efficiency. The proposed 
topology optimization methodology is able to eliminate the typical numerical instabilities in the 
topology optimization of continuum structures. It is straightforward to extend the proposed multi-
level topology optimization method to more advanced mechanics problems. 
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Abstract 
The contribution deals with stability of existing stadium roof. The roof has elliptical shape in the 
plan view. The height of the roof is variable and is optimally designed according to minimum 
potential energy. The objective of the paper is the ultimate bearing capacity of the roof loaded with 
combination of dead loads, snow loads and wind loads. The investigation of the problem was 
carried out as a static analysis with large deformations. Only the amount of wind load was increased 
during the analysis. As an iteration procedure capable to handle bending and stability phenomena, 
the arc-length method was chosen. The solution procedure was stopped by snap-through.

Keywords: Stability, Snap-through, Arc-length method, Large deformation.  

Introduction 
Big projects in civil engineering give opportunity for development of the theory and application 
methods. Study of stadium roof bearing capacity, additionally to solution of responsible tasks, 
brought new experiences, new knowledge in the field of non-linear numerical analysis. From the 
comprehensive static and dynamic analysis only part concerning stability of the structure is being 
published in this paper. For that reason, the numerical analysis is presented in application to the 
structure of the roof. Therefore, the structuring of this paper starts with construction description and 
continues with stability analysis illustrated with results.  

Structure 
The contribution deals with stability of existing stadium roof. The bearing structure of the stadium 
roof is constructed from the steel beams connected with steel-concrete composite joins.  

Figure 1.  Sectional view of the structure    Figure 2.  Section of stadium roof FE model
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The roof has elliptical shape in the plan view. The height of the roof is variable and it is optimally 
designed according to minimum potential energy. 

Figure 3.  Plan view of the stadium roof

Figure 4.  Side view of the stadium roof

Analysis 
The main task discussed in this paper is the proof of the ultimate bearing capacity of the stadium 
roof loaded with combination of dead loads, snow loads and wind loads on the base of Eurocode 1.  

Eigenvalue Analysis 

The first estimation of the critical loading was solved on the base of eigenvalue problem. The 
bifurcation point of linear (eigenvalue) buckling curve lies above the limit load obtained from 
nonlinear snap-through. First natural modes shown in Fig. 5 are useful for the comparison with the 
results of the nonlinear analysis.
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Figure 5.  Shapes of 6 first natural modes 

Nolinear Buckling Analysis 

The investigation of the snap-through problem was carried out. 

Arc-length Method 

The arc-length method for structural analysis was originally developed by Riks (1972, 1979) and 
later modified by several authors. In arc-length method in comparison to traditional Newton-
Raphson method the constraint curve has the arc geometry. That enables to follow buckling curves 
in force-displacement diagrams consisting of parts with increasing and decreasing displacement. 
Using the arc-length method, the equilibrium iterations convergence along an arc and thereby 
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preventing divergence, even when the slope of the load vs. deflection curve becomes zero or 
negative. The quasi-Newton BFGS method (Broyden (1970), Fletcher (1970), Goldfarb (1970) and 
Shanno (1970)) uses approximate Jacobian instead of exact Jacobian for each iteration. Chang 
(1991) proposed periodically restarted quasi-Newton updates in constant arc-length method. 
Hellweg and Crisfield (1998) introduced the arc-length method for handling sharp snap-backs. Our 
analysis used the arc-length method with listed modifications. 

Application of the Arc-length Method 

The load was applied gradually. At each substep the equilibrium iterations were performed to obtain 
a converged solution. The arc-length method was activated by sets of the minimum and maximum 
multipliers for the reference arc-length radius. The reference arc-length radius was calculated from 
the load increment of the first iteration. This increment was determined by total load divided by 
number of substeps. Lower and upper limit was calculated with help of factors multiplying the 
difference between reference arc and arc length radius. In each subsequent substep, a new arc-
length radius was first calculated based on the arc-length radius of the previous substep and the 
solution behavior. Next, the newly calculated arc-length radius was further modified so that it falls 
between the range of the upper limit and lower limit. When the solution did not converge even 
when using the lower limit of the arc-length radius, the solution terminated. 

Loading of the Structure 

The reference model for the snap-through analysis the roof structure in static equilibrium was 
chosen. The loading was applied on the base of Eurocode 1: Actions on structures. Two critical load 
combinations were chosen: Combination 1: dead loads and wind loads and Combination 2: dead 
loads, snow loads and wind loads. The wind loads were stepwise added. 

       
Figure 5.  Snow loading      Figure 6.  Wind loads 
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Results 

Figure 7.  Shape of snap-through: combination 1 of dead loads and wind loads 

Figure 8.  Shape of snap-through: combination 2 of dead loads, snow loads and wind loads 
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Figure 9.  Force-displacement curve: load case 3 and load case 4 in most displaced nodes 

  Table 1. Identified results   

  Combination   Multiplicator       Max Vertical  
   Value              for Wind     Displacement [m] 

  1              2,3                0.85     

  2              3,0                0.82    

         

Conclusions 
Successful application of the arc-length method for the proof of the ultimate bearing capacity of real 
stadium roof loaded with combination of dead loads, snow loads and wind loads was presented. The 
arc-length method was adjusted for the stiffness of the structure defined on the base of the geometry 
and structural elements to achieve solution effectively. The ultimate bearing capacity was achieved 
by snap-through.  
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Building of the meso-scale models 

Image processing 

Figure 1. The segmented concrete cube

100 24010 mm
40

Cross-section 1
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Figure 2. The image of cross-section 1 Figure 3. After image processing

Initial mesh generation 

(a) Image (b) Grid mesh (c) Smoothed mesh
Figure 4. Transformation from pixel to mesh grid

Cohesive interface elements insertion 
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Figure 5. The FE mesh based on the XCT image in Figure 2

Numerical simulations of uniaxial tension test 

Model parameters 

Table 1. Material properties 

1218



Typical Results  

Figure 6. Average stress-displacement curves under uniaxial tension

D

E
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(a) Point A (d=0.0029mm) (b) Point B (d=0.0044mm)

(c) Point C (d=0.0064mm) (d) Point D (d=0.0087mm)
Figure 7. The pre-peak microcracking process 

(a) Point D (d=0.0087mm) (b) Point E (d=0.0229mm)
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(c) Point F (d=0.0382mm) (d) Point G (d=0.0778mm)
Figure 8. The macrocrack propagation process 

Effects of loading direction 

Figure 9. Average stress-displacement 
curves under different tension directions

Figure 10. Crack pattern under 
vertical tension (d=0.0778mm)

Effects of image location 
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Figure 11. Average stress-displacement 
curves from different images

Figure 12. Crack pattern of cross-
section 40 (d=0.0778mm)

Figure 13. Crack pattern of cross-section
100 (d=0.0779mm)

Figure 14. Crack pattern of cross-
section 240 (d=0.0775mm)

Conclusions 

Acknowledgement 
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Figure 1. Flexible Wing MAV Model: (Left) 7-batten flexible wing MAV developed by the 
University of Florida (Ifju et. al, 2002); (Right) Schematic of one-batten (a), two-batten (b), and 

six-batten (c) flexible wing MAV designs (Ifju et. al, 2002) 

Figure 2. Lift Coefficient vs. Angle of Attack for various MAV configurations (Ifju, et al)
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Models, Methods, and Governing Differential Equations

Model Problem 

Figure 3. Subdomains of the wing structure for 1-batten MAV (top), schematic of airflow and 1-
batten MAV wing placement (Nong et al., 2010) (bottom)

Governing PDE System 
w

=   (in )
w
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PDE Boundary Conditions 
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Parameter Values 

Table 1. Parameter Values

Variable Value10 kg m100 kg m1.293 kg mE 1 N mE 10 N mE 1000 N m) 10  m) 9.8 m s0.1 m s50 s m
Computational Results

Solution Methodology 

Results

t
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Table 2. Numerical Results

90 degrees 80 degrees 15 degrees

1-
batten

2-
batten

6-
batten

Maximum deflection: 0.0213 Maximum deflection: 0.0217 Maximum deflection: 0.0161

Maximum deflection: 0.0218 Maximum deflection: 0.0138 Maximum deflection: 0.0164

Maximum deflection: 0.0165 Maximum deflection: 0.0161 Maximum deflection: 0.0096
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Figure 4. The effect of varying the number of battens on the deformation of the MAV wing for 
angle of attack 90° (a), 80° (b), 15° (c) 

Conclusion and Future Directions

(a) (b)

(c)
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Abstract
A method coupling the scaled boundary finite element method (SBFEM) and the finite element 
method (FEM) is developed for linear elastic fracture modelling. A very simple but effective 
remeshing procedure based on the finite element mesh only is used to accommodate crack 
propagation. The crack-tip region is modelled by one SBFE subdomain whose semi-analytical 
displacement solutions are used to extract accurate stress intensity factors. The SBFE subdomain 
boundary is coupled with the surrounding FE mesh boundary through virtual interfaces so that the 
nodal discretisations of the two boundaries can be different. Two plane problems are modelled to 
validate the new method. 

Keywords: scaled boundary finite element method, non-matching mesh, stress intensity factors, 
crack propagation, remeshing procedure, linear elastic fracture mechanics.

1. Introduction

The FEM is the most popular numerical method in simulating crack propagation because of the 
high generality and flexibility of finite elements in modelling structures with complex geometries, 
various boundaries and loading conditions, and complicated cracking patterns. The scaled boundary
finite element method (SBFEM) (Song and Wolf 1997) is a semi-analytical method that is very 
efficient in modelling problems with discontinuities and singularities. This study proposes a non-
matching SBFEM-FEM coupled method to simulate crack propagation problems based on the linear 
elastic fracture mechanics (LEFM). In this method, the SBFE subdomain boundary is coupled with 
the surrounding FE mesh boundary through virtual interfaces so that the nodal discretisations of the 
two boundaries can be different and only one SBFE subdomain is needed at a crack tip.

2. The Non-matching SBFEM-FEM Coupled method

2.1. The Scaled Boundary Finite Element Method

Fig. 1 illustrates a two-dimensional (2D) SBFEM subdomain. The normalised radial coordinate 
and circumferential coordinate s form a local coordinate system used in the subdomain. They are 
related to the Cartesian coordinates (x, y) by the transformation Eqs. (Song and Wolf 1997)

0 0( ) ( )s sx x x s y y y s    (1)

The displacement vector at any point ( ) in a subdomain can be calculated as
( , ) ( , )b bs s u N u (2)

where ub is the nodal displacement vector of the subdomain, and the shape function matrix Nb is 
(Deeks and Wolf 2002)

1( , ) ( )b bs s      N N (3)

where Nb(s) is the one-dimensional shape function matrix as in FEM, [ ] = diag( 1, 2, ...,  n) and 
= {1, 2, …, n} are the subset of positive eigenvalues and modal displacements obtained from 

1
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Scaling centre
( =0)

s

s=s0

s=s1

Defining curve
S ( =1)

Side faces

Radial lines

Similar curve 
to S ( =0.5)

2-noded elements
x

y

O

solving an eigenvalue problem (Deeks and Wolf 2002), and n is the degrees of freedom (DOFs) of 
the subdomain.

The stress field (, s) in a subdomain is
( 1) ( 1)

1 1
( , ) ( ) ( )i i

n n

i i i i i
i i

s s c s c    

 

          
 1 2DB DB (4)

where ci are constants dependent on boundary conditions, D is the elastic matrix, and B1(s) and 
B2(s) are strain-displacement matrices (Deeks and Wolf 2002).

The stiffness matrix of the subdomain with respect to the boundary DOFs is 
T10

b EEK  1][ (5)
where E0 and E1 are matrices dependent on the geometry and material properties of the subdomain 
only.

Fig. 1. A subdomain in SBFEM
2.2. Coupling SBFEM and FEM with non-matching meshes 

Fig. 2a shows a domain a FE FE away from the crack tip and an 
SBFE subdomain SB surrounding the crack tip. Fig. 2b shows the virtual interface of zero in-plane 
thickness (the dashed line), which coincides with the defining curve S (with =1) of the SBFE 

SB.

For any point with circumferential coordinate s on the virtual interface S, there is a point 1 on the 
FE boundary and a point 2 on the SBFE boundary, possessing the same coordinates (plotted as 
white triangles in Fig. 2b). The displacement vector d1(s) of point 1 in the global coordinate system 
can be calculated by

1( ) ( )f fs sd N u (6)
where uf is the nodal displacement vector of the finite element f in which the point 1 is located, and 
Nf(s) is the shape function matrix at point 1 in the finite element f, whose members are functions of 
the two local parametric coordinates of point 1 in the finite element f. The displacement vector d2(s)
of point 2 can be calculated by Eq. (2) as

2 ( ) ( )b bs sd N u (7)
where Nb(s) are functions of circumferential coordinate s only as =1 on the defining curve S.

To simplify derivation, Eqs. (6) and (7) can be rewritten by expanding uf, ub, Nf(s) and Nb(s) to the 
global DOFs as

1 1( ) ( )s sd N u (8)

2 2( ) ( )s sd N u (9)
2

1234



where u is the nodal displacement vector of the whole model with N number of DOFs, and N1(s)
and N2(s) are now both 2×N matrices. 

The relative displacements of points 1 and 2, with one component along the virtual interface and 
another normal to it, are 

1 2( ) ( )( ( ) ( ))s s s s d L d d (10)
where

( ) ( )
( )

( ) ( )
cos s -sin s

s
sin s cos s

 
 

 
  
 

L (11)

is the coordinate transformation matrix and (s) is the inclination angle of the virtual interface at the 
point and measured clockwise from s direction to the positive x axis (see Fig. 2b). 

Assuming that the relative displacements are sustained by two virtual springs with stiffness 
coefficients ks along the virtual interface and kn normal to it, the force vector on unit length 
transferred by the springs is 

( ) ( )cs sP D d (12)
with 

s
c

n

k

k
 

  
 

D (13)

The introduction of the virtual interface and the virtual springs leads to artificial gaps or 
penetrations along the shared boundary, and spurious potential energy which should be minimised. 
The potential energy on the whole virtual interface is

1 ( ) ( )
2S

s s ds   P d (14)

Substituting Eqs. (10) to (12) into Eq. (14) and using Eqs. (8) and (9) results in
T T T T T

1 2 1 2
1 1( ) ( ) ( ( ) ( )) ( ) ( )( ( ) ( ))
2 2c cS S

s s ds s s s s s s ds     d D d u N N L D L N N u (15)

Calculating variation of Eq. (15) with respect to u leads to

T T T T T
1 1 2 2 1 2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )c c c cS

s s s s s s s s s s s s ds         u N D N N D N N D N N D N u (16)

where  
T( ) ( ) ( )c cs s sD L D L (17)

Thus the contribution of the virtual interface to the system stiffness matrix is (Zienkiewicz et al.
2005)

T T T T
1 1 2 2 1 2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )c c c cS

s s s s s s s s s s s ds     cK N D N N D N N D N N D N (18)

The system stiffness matrix is then obtained by assembling Eq. (5), Eq. (18) and the stiffness 
matrices of all the finite elements. 

The spring stiffness coefficients ks and kn play a vital role in the accuracy of this coupling procedure. 
Too high values may lead to ill-posedness of the system equations and too low values cannot ensure 
displacement continuity across the virtual interface. The following is proposed in (Qiang et al. 2000)
as a guideline

(1 )
(1 )(1 2 )s n

c v
k k k E

b v v


  
 

(19)

where E and v are the Young’s modulus and Poisson’s ratio, b is the characteristic size of elements, 
and c is taken as 10~100 from the experience in (Qiang et al. 2000) .

3
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(a) The global mesh (b) The local mesh
Fig. 2. Coupling SBFE and FE meshes

3. Numerical examples

When a crack is judged to propagate, a very simple, local remeshing procedure similar to the one in 
(Xie and Gerstle 1995) is used to accommodate its propagation. The crack propagation direction is 
calculated by the maximum circumferential stress theory in this study (Erdogan and Sih 1963). The 
SIFs are extracted directly from the displacement solutions (Chidgzey and Deeks 2005). Two 
problems are modelled to validate the developed method and demonstrate its capability.

3.1. An edge-cracked plate under mode-I fracture 

The first example is an edge-cracked plate subjected to a far field unit stress ( 1) applied on the 
top and bottom. The geometry, boundary and loading conditions are shown in Fig. 3a. The exact 
solution of the mode-I SIF in this example is KIe= 9.37 (Ingraffea et al. 1984).

To investigate the effects of the coupling parameter k in Eq. (19), structured FE meshes are 
modelled. Fig. 3b shows a mesh with 20×40 4-noded quadrilateral elements. The FE-SBFE coupled 
mesh is shown in Fig. 3c, with the detailed region at the crack tip highlighted in Fig. 3d.

(a) Geometry and 
loading conditions (b) FE mesh (c) FE-SBFE 

coupled mesh
(d) detailed mesh at the 

crack-tip
Fig. 3. Example 1: a plate with an edge crack
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=1

W=7

a=3.5

E=200×109

v=0.3
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x
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x
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Fig. 4 plots the errors of KI from three meshes as the virtual spring stiffness coefficient k varies. 
It is reconfirmed that too high or too low values of k lead to unsatisfactory accuracy. For this 
example, it is found that k=102E~1010E results in lower than 1% error in KI. From the vertical 
displacement contours shown in Fig. 5 (20×40 mesh), the use of virtual interface between the FE 
and SBFE meshes does not affect the displacement continuity. k=100E is used in all the following
examples, corresponding to c=26 in Eq. (19).

 

-2 0 2 4 6 8 10 12 14
-5

0

5

10

15

20

25

30

35

40

45

16 × 32 Elements
  20 × 40 Elements
  32 × 64 Elements

Er
ro

r (
%

)

Log10(k/E) -16
-14

-12
-10

-8 -6

-4

-2

-2

2

4
6

8

10

12
14

(a) Global 

-5

-4
.5

-4

-4
-3.5

-3.5

-3

-2.5

-2

-1

-1

-0.5

-0.5

0.5

1

2

2.
5

2.
5

3.5

3.
5

4.
5

5

(b) Local at crack tip
Fig. 4. Effects of virtual spring stiffness 

coefficient k on KI
Fig. 5. Vertical displacement contours from 

structured 20×40 mesh (×10-11)

Table 1 compares the relative error of KI for five structured meshes using the FEM, the XFEM,
the hybrid FE-SBFE method (Ooi and Yang 2010) and the present method. The results are also 
shown in Fig. 6, which indicate the much higher accuracy of the present method and the previous 
FE-SBFE hybrid method (Ooi and Yang 2010) over FEM and XFEM. 

Table 1. Errors of KI for the edge-cracked plate under mode-I loading

FEM XFEM
(Ooi and Yang 2010)

Hybrid method
(Ooi and Yang 2010) Present method

No. 
Elements

No. 
DOF

Error 
(KI)

No. 
Elements

No. 
DOF

Error 
(KI)

No. 
Elements

No. 
DOF

Error 
(KI)

No. 
Elements

No. 
DOF

Error 
(KI)

4 × 8 94 25.0% 5 × 7 136 18.5% 4 × 8 222 7.4% 4 × 8 222 7.2%
8 × 16 314 14.3% 9 × 15 368 8.4% 8 × 16 442 3.5% 8 × 16 442 3.6%

16 × 32 1138 7.6% 17 × 31 1216 3.7% 16 × 32 1266 1.4% 16 × 32 1266 1.7%
20 × 40 1742 4.2% 21 × 39 1832 2.9% 20 × 40 1870 1.0% 20 × 40 1870 1.3%
32 × 64 4322 4.0% 33 × 63 4448 1.7% 32 × 64 4450 0.5% 32 × 64 4450 0.8%

The influence of the number of DOFs used to model the SBFE subdomain is shown in Fig. 7. It 
can be seen that using 30 nodes can achieve less than 1% error (32×64 elements).
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3.2. A double-edge notched plate with two holes 

The second example is a plate with two holes and two edge cracks subjected to a uniform tensile 

test, shown in Fig. 8. Fig. 9 and Fig. 10 show two final FE-SBFE coupled meshes, with 1722 and 

6208 DOFs, respectively. The predicted crack paths using the two meshes are very close. Fig. 11

compares the crack paths predicted by the present method with those obtained by the FEM in 

(Bouchard et al. 2003) and the polygon SBFEM in (Ooi et al. 2012).

Fig. 8. A plate with two holes and two edge 
cracks (unit: mm)

Fig. 9. Mesh 1, 772 finite elements, 861 
nodes (displacement scale=50)

Fig. 10. Mesh 1, 772 finite elements, 861 
nodes (displacement scale=50)

 Non-matching method(Mesh 1)
 Non-matching method(Mesh 2)
 Ooi et al. (2012)
 Bouchard et al. (2003)

Fig. 11. Comparison of crack paths

4. Conclusions

A non-matching SBFEM-FEM coupled method has been developed for modelling LEFM-based 
crack propagation. The stress singularities are accurately captured by crack-tip SBFE subdomains, 
making the FE-based remeshing procedure as simple as possible. The use of non-matching FE and 
SBFE meshes, whose displacement continuity is ensured by assigning sufficiently high stiffness on 
the virtual interface, makes remeshing even more flexible than other methods. The accuracy and 
effectiveness of the developed method has been demonstrated by modelling two fracture problems.
It also paves the way for further development, such as the overlapping methods (Massing et al. 2012;
Okada et al. 2005) in which the cracked subdomain floats on the global FE mesh, namely, the two 
meshes are completely independent. This will offer the highest flexibility in remeshing. 
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Figure 3.Parameter samples. 
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Abstract
The selection of the appropriate dimension in numerical analyses of geo-engineering structures is 
always important issue. The first author realized the importance of this issue when he was doing 
some numerical analyses of an advancing tunnel in 1986, during which the data-preparation and 
visualization were extremely cumbersome. Although the memory size and processing speed of 
computers increased and pre-post processing of computational results become more convenient and 
less laboring since then, it is still a major issue how to select the appropriate dimension in numerical 
analyses of structures. In this article, the authors address this issue and compare several hypothetical 
and actual case history examples involving tunnel face advance, man-made and natural 
geoengineering structures

Keywords: Geoengineering, structures, dimension, numerical analysis, analytical.  

Introduction
How to select the appropriate dimension in numerical analyses of geo-engineering structures is 
always important issue. Every structure is three-dimensional in physical space. If time is considered, 
the problem becomes four-dimensional. When the first author did numerical analysis of an 
advancing tunnel in 1986, the data-preparation and visualization were extremely difficult at that 
time (Aydan et al. 1988). Furthermore, the memory size and computation speed were also severe 
problems. In 1986, the memory capacity of the super computer of Nagoya University was only 10 
GB. The first author vividly remembers that he was asked by the computation center to have 
hardcopy outputs of the result of computation with a memory size of 2.5 GB and delete the 
computed output data files, immediately.  

The present tiny notebook computers have now storage capacity of several TBs. Although the 
memory size and computation speed of computers increased and pre-post processing of 
computational results has become much more convenient and less laboring, it is still a major issue 
how to select the appropriate dimension in numerical analyses of structures. It is also fact that 
decisions in engineering design are still based on the rule of thumbs and/or one-dimensional 
analytical or numerical analysis of structures. In this article, the authors address this issue and 
compare several hypothetical and actual case histories involving tunnel face advance, man-made 
and natural geoengineering structures. The specific examples involve hypothetical tunnels, 
abandoned lignite mines, a karstic cave beneath Himeyuri Monument in Okinawa islands and steep 
cliffs and foundations.

Underground Structures 
Tunnels
Advancing tunnels utilizing support systems consisting of rockbolts, shotcrete, steel ribs and 
concrete lining are three-dimensional complex structures and it is a dynamic process. However, 
tunnels are often modeled as a one-dimensional axisymmetric structure subjected to hydrostatic 
initial stress state as a static problem. The effect of tunnel face advance on the response and design 
of support systems is often replaced through an excavation stress release factor determined from 
pseudo three dimensional (axisymmetric) or pure three-dimensional analyses as given below 
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where x is distance from tunnel face and the values for coefficients B and b suggested by Aydan 
(2011) are 2.33 and 1.7, respectively. 

Figure 1a illustrates an unsupported circular tunnel subjected to an axisymmetric initial stress state. 
The variation of displacement and stresses along the tunnel axis were computed using the elastic 
finite element method. The radial displacement at tunnel wall is normalized by the largest 
displacement and is shown in Figure 1b. As seen from the figure, the radial displacement takes 
place in front of the tunnel face. The displacement is about 28-30% of the final displacement. Its 
variation terminates when the face advance is about +2D. Almost 80% of the total displacement 
takes place when the tunnel face is about +1D. The effect of the initial axial stress on the radial 
displacement is almost negligible. 

Figure 1c shows the variation of radial, tangential and axial stress around the tunnel at a depth of 
0.125R. As noted from the figure, the tangential stress gradually increases as the distance increases 
from the tunnel face. The effect of the initial axial stress on the tangential stress is almost negligible. 
The radial stress rapidly decreases in the close vicinity of the tunnel face and the effect of the initial 
axial stress on the radial stress is also negligible. The most interesting variation is associated with 
the axial stress distribution. The axial stress increase as the face approaches, and then it gradually 
decreases to its initial value as the face effect disappears. This variation is limited to a length of 
1R(0.5D) from the tunnel face. It is also interesting to note that if the initial axial stress is nil, even 
some tensile axial stresses may occur in the vicinity of tunnel face. 

Figure 1. (a) Computational model for elastic finite element analysis; (b) Normalized radial 
displacement of the tunnel surface; (c) Normalized stress components along tunnel axis at a 
distance of 0.125R; (d): The variation of stresses along r-direction at various distances from 
tunnel face 
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Figure 1d shows the stress distributions along r-axis of the tunnel at various distances from the face 
when the initial axial stress is equal to initial radial and tangential stresses. As noted from the figure 
the maximum tangential stress is 1.5 times the initial hydrostatic stress and it becomes twice as the 
distance from the tunnel face is +5R, which is almost equal to theoretical estimations for tunnels 
subjected to hydrostatic initial stress state. The stress state near the tunnel face is also close to that 
of spherical opening subjected to hydrostatic stress state. The stress state seems to change from 
spherical state to the cylindrical state (Aydan 2011). It should be noted that it would be almost 
impossible to simulate exactly the same displacement and stress changes of 3D analyses in the 
vicinity of tunnels by 2D simulations using the stress-release approach irrespective of constitutive 
law of surrounding rock as a function of distance from tunnel (Aydan et al. 1988; Aydan and Geni ,
2010).

The effect of impulsive application of excavation force is evaluated for an axisymmetric cylindrical 
tunnel under initial hydrostatic stress by a dynamic visco-elastic finite element method. The 
responses of displacement, velocity and acceleration of the tunnel surface with a radius of 5m are 
plotted in Figure 2a. As noted from the figure, the sudden application of the excavation force, in 
other words, sudden release of ground pressure results 1.6 times the static ground displacement at 
the tunnel perimetry and shaking disappears almost at 2 seconds. As time progress, it becomes 
asymtoptic to the static value and velocity and acceleration disappear. 

The resulting tangential and radial stress components nearby the tunnel perimetry (25cm from the 
opening surface) are plotted in Figure 2b as a function of time. It is of great interest that the 
tangential stress is greater than that under static condition. Furthermore, very high radial stress of 
tensile character occur nearby the tunnel perimetry. This implies that the tunnel may be subjected to 
transient stress state, which is quite different than that under static conditions. However, if the 
surrounding rock behaves visco-elasticallly, they will become asymptotic to their static equivalents. 
In other words, the surrounding rock may become plastic even though the static condition may 
imply otherwise. 

Figure 2. (a) Responses of displacement, velocity and acceleration of the tunnel surface; 
(b) Responses of radial and tangential stress components nearby the tunnel surface 

Abandoned Lignite Mines 
When abandoned lignite mines and quarries are of room and pillar type, their stability in short-term 
and long-term may be evaluated using some simple analytical techniques. Roof stability is generally 
evaluated using beam theory and/or arching theory under gravitational, earthquake and point 
loading (i.e. Coates, 1965; Obert and Duvall, 1967; Aydan 1989, 1994; Aydan and Tokashiki 2011). 
The tributary area method is quite widely used in mining engineering for assessing the pillar 
stability. Aydan and his co-workers (Aydan et al. 2008; Aydan and Geni , 2008; Aydan and 
Tokashiki, 2011; Geni  and Aydan, 2008) extended to cover the effects of earthquake and point 
loading in addition to gravitational loading, creep and degradation of geomaterials to evaluate the 
stability of roof and pillars (Figure 3).   
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As shown by Aydan and Tokashiki (2011), simple analytical models and computations from two 
dimensional elastic finite element method yield very similar results. Nevertheless, stresses 
computed from the FEM in roof are less than those computed from the beam theory with built 
conditions. On the other hand, stresses computed from the FEM in pillars are slightly higher than 
those computed from the tributary area method. However, the stress state in the roof would be quite 
different if the opening depth increases. In such cases, the effects of gravitational load in the stress 
state of roof should be also taken into account. Nevertheless, the stability of pillars become more 
important than roof itself under such conditions and the tributary area method would yield quite 
reasonable values for the stress state in pillars for stability assessment.  

(a) Roof model                                                            (b) Pillar model 
Figure 3. Models for roof and pillars (from Aydan and Geni , 2008). 

Figure 4 shows the distribution of minimum principal stress (tenison is positive) for an abandoned 
room and pillar mine beneath Kyowa Secondary School in Mitake Town of Gifu Prefecture, Japan. 
Although the maximum pillar stresses are slightly higher than those computed from the tributary 
area method, the quick stability assessment using the tributary area method should be quite 
acceptable.

Figure 4. Contours of minimum principal stress beneath the Kyowa Secondary School. 

This area would be subjected to the anticipated Nankai-Tonankai-Tokai earthquake in future and 
there is a great concern about it. Tha authors have been involved with the stability assessment of the 
abandoned lignite mine beneath Kyowa Secondary School during the anticipated Nankai-Tonankai-
Tokai earthquake (Aydan et al. 2012; Geni  and Aydan, 2013). The authors carried out 1D, 2D and 
3D dynamic simulations for an estimated base ground motion data at Mitake Town obtained from 
the method of Sugito et al. (2001). Figure 5 illustrates the numerical model of the ground and 
abandoned lignite mine beneath the Kyowa Secondary School. Figure 6 shows the computed 
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responses from 1D and 3D numerical analyses. It is interesting to note that responses from 1D and 
3D analyses are quite similar to each other.  

Figure 5. Illustration of models used in numerical analyses and selected section. 

(a) 1D Analysis                                                           (b) 3D Analysis 
Figure 6. Acceleration responses at selected section from 1D and 3D numerical analyses. 

(a) View of the monument                                 (b) Beam modeling of overhanging part 
Figure 7. View and beam modeling of overhanging part. 

Karstic Caves 

Karstic caves are quite common worldwide whenever limestone and evaporates deposits exist. In 
the coral limestone formation in Ryukyu Islands of Japan, there are many karstic caves, which 
present many geo-engineering problems. The authors are involved with the stability assessment of 
some karstic caves in relation to some engineering projects or preservation of some monumental 
structures (i.e. Tokashiki, 2011; Aydan and Tokashiki, 2011; Geni  et al. 2009). There is a huge 
karstic cave beneath the Himeyuri monument in Okinawa Island. The enlargement of the monument 
was considered and the authors were consulted if the karstic cave would be stable upon the 
enlargement. Figure 7 shows a view of the monument and the beam modelling of overhanging part. 
Table 1 and Figure 8 compares the maximum tensile and compressive stresses computed from beam 
theory and FEM. Despite some slight differences, the results are quite similar.  
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Table 1. Comparison of maximum compressive and tensile stresses from FEM and bending theory. 
Max. Tensile Stress (MPa) Max. Compressive Stress (MPa) Loading

Condition
FEM THEORY FEM THEORY

Natural 0.557 0.677 1.363 -0.677
Present 0.631 0.713 1.402 -0.713
Planned-2 0.770 0.991 1.478 -0.991

(a) Bending stress distribution from bending theory (b) Maximum principal stress from FEM 
Figure 8. Comparison of stresses obtained from the bending theory and FEM. 

A 3D analysis of the vicinity of Himeyuri monument and the cave beneath was carried out with the 
consideration of surface loading due to the dead weight of the monument structure (Aydan et al. 
2011). The cave was considered to be circular in plan view. The maximum tensile stress was much 
smaller than that computed from the bending theory and 2D FEM analysis. Additional 
axisymmetric FEM analysis was also performed and it yielded similar results. However, the cave 
has an ovaloid shape in plan and the actual stress state is expected to be closer to that of 2D 
analyses. Furthermore, there are some cross-joints in rock mass so that the actual stress state should 
be quite close to that of 2D-FEM analyses.

(a) Surface stresses                          (b) Maximum principal stress contours along A-A’ 
Figure 9. Computed maximum principal stress distributions from 3D numerical analysis. 

Surface Structures 
Cliffs
Very steep cliffs are observed along the shorelines of Ryukyu Islands. The toe of the cliffs is often 
eroded by sea waves and they result in overhanging configurations. When the erosion depth reaches 
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to a certain distance, overhanging cliffs topple. Figure 10a shows the mesh used in FEM analyses 
for simulating erosion process while Figure 10b shows the distribution of tensile stress at top 
surface of the cliff for different erosion depths. The bending theory yields higher tensile stresses 
compared to those from the FEM analyses for different erosion depths (Tokashiki and Aydan, 2010). 
The maximum value of tensile stress obtained from the FEM analysis is about 75% of that 
computed from bending theory for the same erosion depth. Despite this slight difference, it may be 
quite acceptable to utilize the bending theory for quick assessment of the stability of cliffs.  

(a) 2D FEM mesh and simulation of toe erosion         (b) Computed tensile stress at cliff surface 
Figure 10. Mesh used in simulation of the toe erosion of steep cliffs and computed stresses at 

the upper surface of the model.

Foundations
Final example is concerned with settlement and stress state beneath foundations subjected to 
surcharge loads through relatively rigid foundation with a diameter of 3m, and it is modeled as an 
axisymmetric problem. Figure 11 shows the computed settlement and pressure contours beneath the 
foundation. The estimated settlement and pressure contours are generally in agreement with 
theoretical solutions by Timoshenko and Goodier (1951).  

 (a) Deformed configuration                 (b) Minimum principal stress contours 
Figure 11. Settlement and pressure contours beneath a circular foundation. 

Conclusions

The authors discussed how to select the appropriate dimension in numerical analyses of geo-
engineering structures by considering some typical geo-engineering examples. There is no doubt 
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that 3D simulation of geo-engineering structures is desirable. Although the pre-post processing of 
3D mesh generation and visualization of computed results for geo-engineering structures have 
become much easier with the advance of computer technology and computational techniques, it is 
still useful to utilize 1D or 2D simulations for quick assessments and decision making. Therefore, 
researchers and engineers should explore the power of 1D and 2D simulations as much as possible. 
If such simulations yield some uneconomical results, then 3D simulations should be implemented. 
Furthermore, if numerical simulations involve time dependent problems, particularly, hyperbolic 
type solution schemes, it may be imperative to utilize first 1D and later 2D numerical simulations 
before exploring the power of 3D simulations.  

References

Aydan, Ö.  (1989), The stabilisation of rock engineering structures by rockbolts. PhD Thesis, Nagoya University, 240 p. 
Aydan, Ö., (1994), Chapter 7: Rock Reinforcement and support in Introduction to Rock Mechanics, Industrial Pub. & 

Consul. Inc., Editors: V. Vutukuri, K. Katsuyama, pp. 193-247. 
Aydan, Ö, (2011), Some issues in tunnelling through rock mass and their possible solutions. Proc. First Asian 

Tunnelling Conference, ATS-15, pp. 33-44. 
Aydan, Ö., Geni , M. (2008), Assessment of dynamic stability of an abandoned room and pillar underground lignite 

mine, Turkish Journal of Rock Mechanics, No.16, pp.23-44. 
Aydan, Ö., Geni , M. (2010), A unified analytical solution for stress and stress fields about radially symmetric openings 

in elasto-plastic rock with the consideration of support system and long-term properties of surrounding rock. 
International Journal of Mining and Mineral Processing, Vol. 1, No.1, pp. 1-32. 

Aydan, Ö., Tokashiki, N. (2011), A comparative study on the applicability of analytical stability assessment methods 
with numerical methods for shallow natural underground openings. The 13

th
International Conference of the 

International Association for Computer Methods and Advances in Geomechanics, Melbourne, Australia, pp.964-
969.

Aydan, Ö., T. Kyoya, Y. Ichikawa, T. Kawamoto, T. Ito, Shimizu, Y.  (1988), Three-dimensional simulation of an 
advancing tunnel supported with forepoles, shotcrete, steel ribs and rockbolts. The 6th Int. Conf. on Num. Meths. in 
Geomechanics, Innsbruck, Vol. 2,  pp.1481-1486. 

Aydan, Ö., Tano, H., Geni , M. (2008), Assessment of long-term stability of an abandoned room and pillar underground 
lignite mine. Turkish Journal of Rock Mechanics, No.16, pp.1-21. 

Aydan, Ö., Tokashiki, N., Geni , M. (2011), Stability assessment of Himeyuri Monument and adjacent Karstic cave. 
The 10th Regional Rock Mechancis Symposium, ROCKMEC’2011, Ankara, pp. 39-46.  

Aydan, Ö., Geni , M., Sugiura, K., Sakamoto, A. (2012), Characteristics of ground motions and amplifications above 
abandoned mines. International Symposium on earthquake Engineering, Vol.1, Tokyo. 

Coates, D.F.  (1965), Rock Mechanics Principles, Mines Branch Monograph 874. Canadian Department of Energy, 
Mines and Resources, Ottawa,,  

Geni , M., Aydan, Ö. (2008), Assessment of dynamic response and stability of an abandoned room and pillar 
underground lignite mine. The 12th International Conference of International Association for Computer Methods 
and Advances in Geomechanics (IACMAG), Goa, India, pp. 3899-3906. 

Geni , M., Aydan, Ö. (2013), A numerical study on ground amplifications above abandoned room and pillar mines and 
old longwal mines. EUROCK2013, Wroclaw, Taylor and Francis, pp. 733-737. 

Geni , M., Tokashiki, N., Aydan, Ö. (2009), The stability assessment of karstic caves beneath Gushikawa Castle 
Remains (Japan). EUROCK 2010, pp. 449-454.  

 Obert , L., Duwall, W. (1967), Rock Mechanics and Design of Structures in Rocks. Wiley, New York. 
Sugito,M.,Furumoto, Y., Sugiyama,T. (2001), Strong Motion Prediction on Rock Surface by Superposed Evolutionary 

Spectra. 12th World Conference on Earthquake Engineering, 2111/4/A, CD-ROM. 
Timoshenko, S., Goodier, N. (1951), Theory of Elasticity. McGraw-Hill, 567p.
Tokashiki, N. (2011), A Study on the Engineering  properties of Ryukyu limestone and the evaluation of the stability of 

its rock mass and masonary structures. Doctorate, Thesis (in Japanese), Waseda University, .232 p..  
Tokashiki, N. Aydan, Ö.  (2010), The stability assessment of overhanging Ryukyu limestone cliffs with an emphasis on 

the evaluation of tensile strength of Rock Mass. Journal of Geotechnical Engineering, JSCE, Vol. 66, No. 2, 
pp.397-406.

1253



Wind Tunnel Tests of the Counter-Rotating Propeller of 

Stratospheric Airship

Peiqing Liu1, a, Jingwei Sun2,b and Zhihao Tang3,c

School of Aeronautic Science and Engineering, Beijing University of Aeronautics and 
Astronautics, Beijing 100191, China

acharmingwei0703@gmail.com, blpq@buaa.com, csunjingwei59@sina.com

Keywords: stratospheric airship; counter rotating propeller; wind tunnel tests; advanced ratio

1254



 

Abstract In this paper, a design of counter-rotating propeller (CRP) for stratospheric airship in low 
Reynolds number is tested in experiment for the first time. In consideration of stratosphere 
environment, a two-bladed counter-rotating propeller is designed for stratospheric airship. With 
the similarity theory of Reynolds number and advanced ratio, the experiment is conducted in low 
Reynolds number wind tunnel at Beihang University. The results indicate that counter-rotating 
propeller were 4%-7% percent more efficient than single-rotating propeller (SRP). This shows that 
for the counter-rotating propeller: 1) with the same diameter and power, the thrust coefficient is 
higher; 2) with the same thrust coefficient and power coefficient, the diameter could be reduced; 3) 
with the same thrust coefficient and diameter, the power coefficient could be reduced. 

Introduction

Stratospheric airship is now received more and more attention. Stratospheric airship need to meet 
the requirements of long-endurance. So there are many methods are adopted: 1) improve the 
ability of energy storage; 2) use the lighter materials; 3) improve the airship aerodynamic 
configuration [1] [2]. As a fact, the propeller for stratospheric airship has low efficiency than the 
propeller for high speed aircraft. Due to the stratosphere atmospheric density is small, Reynolds 
number of stratosphere is an order of magnitude smaller than the ground. The propeller 
propulsion for the stratosphere airship has low efficiency[3] [4]. Some existing methods to raise the 
capacity of the propeller propulsion: At first, can by changing propeller diameter, but due to the 
stratosphere critical Mach number is small, blade tip is easy to produces shock resistance, bigger 
blades bring great difficulty to install; Secondly, increase the number of the propeller can 
effectively improve the overall thrust, but too much consider the layout and balance the propeller 
torque, installation also has a lot of difficulties; At last, the counter-rotating propeller (CRP) offers 
the potential of a higher efficiency, smaller diameter along with a reduction of reaction torque 
when compared with a single rotation propeller (SRP) for equal input horsepower. This is due to 
the recovery of swirl energy by the rear rotor and the partial cancellation of moments since they 
are in opposite directions on the front and the rear rotors although not equal in magnitude[5].  

Biermann and Gray took a wind tunnel experiment for counter-rotating propeller with high 
Reynolds number, verified that counter-rotating propeller can significantly improve efficiency[6] 
[7]. Biermann and Hartman took an experiments prove that counter-rotating propeller propulsion 
system for the overall efficiency significantly increase applies to lower advance ratio[8] [9]. Airship 
propeller propulsion works at a low advance ratio. As the energy increasingly nervous today, 
counter-rotating propeller propulsion applied to stratosphere airship has a good prospect. 

 
Similarity Theory

Stratospheric air density is much smaller than the ground. How to simulation the low Re 
number environment on the ground must be studied first before taking the wind tunnel test. In this 
experiment, in order to ensure the movement similar and dynamic similar the advance ratio and 
Reynolds number similar conditions must be satisfied[10].

Advance ratio similarity determines the propeller working state movement is similar. The ratio 
of wind speed and the blade tip rotation speed is called advanced ratio.


(2.1)

Dynamic similarity requires that various forces acting on the fluid particle is proportional to the size 
and in the same direction. In general, the fluid particle by forces include: unsteady inertia force, 
viscous force, gravity, elastic force. Ma number is the ratio of elastic force and inertial force, and it 
is also the ratio of air velocity and speed of sound. The Ma number similar conditions are the same 
to the advanced ratio similarity. For air, the gravity can be neglected. As a result, the Re number 
similarity become the most important condition. Re number is the ratio of inertia force and viscous 
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force.

      


         (2.2)                       

W is the resultant velocity of the propeller blade element, is the dynamic viscosity
coefficient(20 km altitude: =16.1 10-5m2/s, on the ground: =1.46 10-5m2/s). As the 
resultant velocity W is related to the blade tip speed, the formula (2.2) can be written as:

      (2.3) 
Wind tunnel device

In this simulation, the propeller model is similar geometrical properties as those in reference [11]
because of the lack of the appropriate data for low Re number CRP. The geometrical properties of 
this propeller were basically to achieve the highest single rotating propeller (SRP) efficiency and 
therefore it is not optimal for CRP[5]. Propeller diameter is 0.75m, SRP is two blade, CRP is 2 2.
Low Reynolds number and high lift S1223 airfoils was chosen as the blade element.CRP 2
2propeller is shown in figure 1

 

Figure. 1 counter-rotating propeller
This experiment was taken in low Reynolds number wind tunnel of buaa, as it is shown in 

figure 3.1. Experimental section diameter is 1.0m, the wind speed V0=020m/s, turbulence: k=1%, 
contraction ratio =1.44. 

 

Figure. 2 low Reynolds number wind tunnel
The motor speed and data collection were controlled by the “CRP experiment system” 

operated under the LabView. Servo motor is used to control the revolving speed of the propeller. 
Strain gauge balance is installed on the propeller shaft to measure the force and moment. The 
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result of a measurement is the averaging of 20 real-time signal value collected in the 4 seconds 
sampling period. 

Experimental condition is shown on the chart1:space between two rotor is 150mm, setting 
angle of blade is 28.3 ,two rotors used the same speed. 

Chart. 1 experimental condition
Wind speed

m/s
Rotate speed rpm Time interval

rpm

0 400~1500 50
5 400~1500 25
7.5 400~1500 25
10 700~1500 25

12.5 700~1500 25
15 1000~1500 25
17.5 1000~1500 25

Error analysis
In this experiment, the force and torque was seven times repeated collection. As for 

multi-point measurement, each measuring point has the same repetitions and has the same 
accuracy. The formula for the uncertainly of multipoint measuring is shown in formula 4.1[12] [13]: 

)1(
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4.1  

The random uncertainty of the measurement is shown in formula 4.2: 

  t
            4.2  

{i} is the number of measuring points; 
{n} is number of measurement of each measuring point; 
{k} is total number of points; 
{ }is confidence interval, determined by measuring frequency and confidence probability.  
The repetitions is 7, 
k=1, 
n=7, 
confidence probability is 0.95. = 2.447. 
The uncertainty of each u M and u T can be calculated. 
Error transfer formula is shown in 4.3: = ( )( ) + ( )( ) + ( )( ) + ( )( )   4.3  

In this experiment, the flow velocity error and rotate speed error is under 0.5%. The efficiency 
error distribution of each measuring point is shown in figure 3: 

Field Code Changed
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Figure. 3 propeller efficiency error distribution
Because the measurement of the force and torque has a fixed deviation, when the wind speed 

and rotate speed are low, the measurement precision is low. So the speed of measurement point is 
improved to improve the measurement accuracy. The higher rotate speed means better measurement 
accuracy. The maximum error is under 5%, and when it related to the low advance ratio region the 
maximum error is under 3%. The experiment is in a credible range error.

Results analysis
Reynolds number can be determined by control the rotating speed of propeller and the speed of 

wind tunnel. After measured the aerodynamic force of SRP, front propeller and rear propeller, the 

dimensionless aerodynamic parameters could be determined. By definition, these parameter is as 

follows:

1 thrust coefficient of the propeller 

2 4t
s

t
C

n D
             1  

The t is the pull.

2 power of the propeller

3 5p
s

P
C

n D
              2  

Power coefficient is power coefficient, p is the power.

3 efficiency of the propeller

0 t

P

tV C
P C

              3  

With the advanced ratio is determined from 0.6-1.0, the thrust coefficient could be raised by 

improve the wind speed of wind tunnel as it shown in figure 4.
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Figure. 4 Thrust coefficient with different wind speed

In general, as the Reynolds number increases, the thrust coefficient is improving. As the 

installation angle of propeller is fixed, the attack angle of the blade is determined by installation 

angle and advanced ratio. With the same advanced ratio, improve the wind speed, screw speed 

increase too.  As it shown in figure 5, the efficiency could be increased by improving the Reynolds 

number. When Reynolds number is large, the efficiency curve is very near. The propeller’s    

maximum efficiency is 72% when the advanced ratio is 0.8-1.0 and wind speed is 15m/s.

Chart. 2 the propeller efficiency

Wind speed/Re   0.8         0.88        0.91

5 32000 40.6%          42.4%        31.3%

7.5 48000 61.8%            63.0%        55.7%

10 64000 61.8% 64.3%        61.6%

12.5 80000 71.3%            64.6%       62.7%

15 96000 72.4%             72.6% 70.0%
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F different wind speed
The efficiency of the rear propeller is significantly higher than SRP. At the same condition, the 

efficiency of the front propeller is lower than SRP. As the advanced ratio is 0.5-1.1, the CRP could 

improve the efficiency by 4%-6% in contrast with the SRP as it shown in figure 6. 

F different wind speed
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Figure. 7 Ct with different wind speed
  In spite of the front propeller have the lowest thrust coefficient, the CRP has a higher thrust 

coefficient than SRP. The results indicate that the rear propeller have the highest thrust coefficient 
as it shown in figure 7. 

 
Summary

In contrast with SRP, the wind test show that CRP for stratospheric ship could improve the 

efficiency by 4%-7%. This result could be used to guide the design of stratospheric airship 

propulsion system.
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Relevancy of Peak Parameter Plots in Estimating Effects of Ground 
Shock

J.H. Chew, and E.C. Leong* 

School of Civil & Environmental Engineering, Nanyang Technological University, Singapore. 

*Corresponding author: cecleong@ntu.edu.sg 

Abstract

Studies on correlations of ground shock parameters from explosions began since 
1870. Many field tests of various scales have been conducted to obtain the correlation 
of these parameters. One example is the U.S. Army Corp of Engineer’s TM 5-855-1 
(1986). The objective of this paper is to evaluate the relevancy of the plots in TM 5-
855-1 (1986) given that many advances have been made in computational modeling. 
In the paper, ground shock parameters such as pressure, velocity, acceleration, 
impulse and scaled distance are firstly expressed as dimensionless parameters to 
develop dimensionless counterpart plots of the TM5-855-1 (1986) plots. Next, data 
from ground shock studies in the literature are examined using the dimensionless 
plots. It is found that the dimensionless plots provide good indicative values of the 
parameters and it is also possible to know how the parameters will change as degree 
of saturation of the soil and soil type changes.

Keywords:  Ground Shock, pressure, velocity, acceleration, impulse. 

Introduction 

Ground shock parameters like pressure, velocity and density which are related to 
explosive detonation were investigated as early as 1870. The U.S. Army Corp of 
Engineers developed the TM 5-588-1 (1986) which provides correlations of peak 
parameters (pressure, velocity, acceleration, displacement and impulse) with variables 
like weight of explosive charge, distance and soil condition. However, the equations 
given by TM 5-855-1 (1986) are empirical based on field test data and do not take 
into consideration of consistency of units.

The objective of this paper is to evaluate the relevancy of the plots of ground shock 
parameters in TM5-855-1 (1986) given the current advances made in computational 
modeling. To achieve a sound basis, dimensionless ground shock parameters were 
firstly obtained using Buckingham’s pi theorem. Using dimensionless ground shock 
parameters of TM5-855-1 (1986), data of ground shock studies from the literature are 
plotted. Through examination of these plots, a better understanding on how the peak 
ground shock parameters change with soil properties and soil type can be obtained. 

Background

The equations in TM5-855-1 (1986) for peak pressure Po, peak velocity V0, peak 
acceleration a0, peak displacement d0 and impulse Io are as follows: 
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Peak pressure: (1.1)

Peak acceleration: (1.2)

         Peak velocity: (1.3)

Peak displacement: (1.4)

Impulse: (1.5)

R is the distance away from the explosion and W is the weight of the charge. It is 
noted that the weight of the charge is based on TNT equivalent. It is also noted that 
these equations are in imperial units and are not dimensionally consistent. Westine et 
al. (1983) suggested using dimensionless scaled pressure P0/ c2 and dimensionless 
scaled distance R( c2/W)1/3. Leong et al. (2006) also noted that W is in lb for imperial 
units and in newton for SI units and introduced a term k of 1m or 3.28ft in the 
dimensionless scaled distance R( c2/kW)1/3 so that there will be a seamless 
conversion from imperial units to SI units. Henceforth, the scaled distance shall be 
R( c2/kW)1/3. If the coupling factor (f) is taken to be unity, it implies that the 
explosive energy is fully contained within the soil.  

Figure 1. Relationship of peak pressures with scaled distance using 
dimensionless parameters (modified from Leong et al. 2006) 
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The TM5-855-1 (1986) plot for peak pressure is re-plotted with dimensionless 
parameters P0/ c2 and R( c2/kW)1/3 as shown in Figure 1. The circled numbers 
represent the soil types as given by TM5-855-1 (1986) indicated in the legend of the 
plot. Leong et al. (2006) also suggested that the air blast and underwater explosion 
peak pressure curve be plotted in the dimensionless plot. The air blast peak pressure 
curves and underwater explosion peak pressure curve were obtained from Kinney’s 
equation (Kinney and Graham, 1985) and Cole (1965), respectively. The air blast 
peak pressure curve merges with the underwater explosion curve and forms an upper 
boundary of the TM5-855-1 (1986) curves. Leong et al. (2006) observed that the peak 
pressure curves from TM 5-855-1 (1986) converged and merged into the air blast 
curve and fanned out with the increase in dimensionless scaled distance R( c2/kW)1/3 

as shown in Fig. 1.

Development of dimensionless plots 

Buckingham’s pi theorem was used to find dimensionless parameters for ground 
shock parameters of peak velocity, peak acceleration, peak displacement and impulse. 
Table 1 summarizes the dimensionless parameters of peak velocity, peak acceleration, 
peak displacement and impulse formed using Buckingham’s pi theorem. The 
dimensionless parameters of peak pressure and scaled distance are also included in 
Table 1 for completeness. It is noted that both SI and imperial units can be used as 
long as the units are kept consistent. The dimensionless plots of peak acceleration, 
peak velocity, peak displacement and impulse with scaled distance for TM 5-85501 
are shown in Fig. 2 to Fig. 5, respectively. 

Table 1: Correlation of peak pressure, velocity, acceleration, displacement and 
impulse with dimensionless parameters 

Parameter Function Dimensionless parameter 

Peak pressure P0 = f( ,c)

Peak acceleration a0W1/3= f( ,c,g)

Peak velocity V0 = f(c) 

Peak displacement d0/W1/3= f( ,g)

Impulse 
I0/W1/3= f( ,c,g)

Scaled distance R/W1/3 = f(k, , c) 
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Figure 2. Dimensionless of peak 
acceleration with scaled distance  

Figure 3. Dimensionless plot of peak 
velocity with scaled distance 

Figure 4. Dimensionless plot of peak 
displacement with scaled distance 

Figure 5. Dimensionless plot of impulse 
with scaled distance 

Observations and Discussions 

Ground shock data of peak pressure, peak velocity, peak acceleration and impulse 
were collated from the literature and plotted in the dimensionless plots. Peak 
displacement is not included as such data are not available in the literature. However, 
the data that are plotted into the plots are dependent on factors such as the placement 
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of the instruments, depth of burial of explosives and type of explosives used. For the 
purpose of measuring free-field ground shock parameters, the instruments should not 
be placed at the ground surface or poorly coupled to the ground as this will not 
accurately measure the ground shock waves. The depth of burial of the explosives 
determines the energy dissipated in the ground. Shallowly buried explosive does not 
have a coupling factor of one which is assumed in the dimensionless plot of the 
equations from TM5-855-1 (1986).  

Peak pressure versus scaled distance plots 

Leong et al. (2006) performed small scale tests using PETN in both wet and partially 
saturated soils with various charge weights (1, 4 and 10 kg) at various depths. The 
pressure gauges were located at the same level as the burial depth of the PETN 
charge. The burial depths of the PETN charge were 1kg at 2m depth, 4kg at 2.5m and 
10kg at 2.5m. The test results are plotted in Fig. 6. The wet soil has a density of 1900 
kg/m3 and wave velocity of 1380 m/s. The partially saturated soil has a density of 
1650 kg/m3 and a wave velocity of 225 m/s.  It is observed that the peak pressure for 
wet soil which was fully saturated is nearer to the underwater explosion curve by 
Cole (1948) compare to the peak pressure for partially saturated soil (85% saturated). 
The data from wet soil, composed of 93% clay and 7% sand, fall on the very wet 
sandy clay curve of TM5-855-1 (1986) whereas the data from the partially saturated 
soil, composed of 95% sand and 3% clay, fall on the sandy loam/dry sand curve. Both 
sets of data are observed to agree with the TM5-855-1 (1986) soil descriptions. 

Peak acceleration versus scaled distance plots

Wu et al. (2003) performed a small scale test involving detonations of 2.5kg to 50kg 
of TNT with a depth of 14m in rock. The rock has a density of 2610 kg/m3 and wave 
speed of 5790 m/s. The accelerometers were placed on the surface and inside the rock 
mass at horizontal distances of 2.5m, 5m, 10m, 25m and 50m from the charge. The 
data in term of acceleration inside the rock mass are plotted in Fig. 7. It is observed 
from Fig. 7 that the peak acceleration data fall above the soil curves with a much 
lower attenuation. The explosive was detonated in a charged hole and the coupling 
factor may not be unity.  

Peak velocity versus scaled distance plots 

Charlie et al. (2007) performed a small scale test in a centrifuge and a field prototype 
test. The tests were carried out on Poudre valley sand which has a density of 1635 
kg/m3, wave speed of 170 m/s and degree of saturation ranging from 0 to 40%. The 
explosive used was 7 kg of TNT buried at a depth of 1.4 m. The experimental set-up 
and placement of accelerometers were not mentioned. The data are plotted in Fig. 8 
and Fig. 9 for centrifuge test and prototype test, respectively. From Fig. 8 and Fig. 9, 
it is observed that as degree of saturation increases, the peak velocity data points 
move towards the saturated clay line of TM5-855-1 (1986). The data for both the 
centrifuge test and field prototype test are between the curves of dense sand and 
saturated clay from TM 5-855-1 (1986). 
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Peak impulse versus scaled distance plots 

Grujicic et al. (2005) performed a numerical simulation using Autodyn (ANSYS 
INC). Buried C-4 explosives were assumed in the simulation. The modeled soil is 
assumed to have a density of 2000 kg/m3 and a wave velocity of 700 m/s with 
different degrees of saturation ranging from 62.5 % to 100 %. It is observed from the 
impulse data in Fig. 10 that with the increase of degree of saturation, the data have a 
tendency to shift upwards towards the saturated clay curve of TM 5-855-1 (1986). 

Figure 6. Peak pressure versus scaled 
distance plot for Leong et al. (2006) 

data

Figure 7. Peak acceleration versus 
scaled distance plot for Wu et al. (2003) 

data

Figure 8. Peak velocity versus scaled 
distance plot for Charlie et al. (2007) 

centrifuge test data. 

Figure 9. Peak velocity versus scaled 
distance plot for Charlie et al. (2007) 

prototype test data 
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Figure 10. Impulse versus scaled distance plot for Grujicic et al. (2005) data 

Conclusion

Peak velocity, peak acceleration, peak displacement and impulse were converted into 
dimensionless parameters using Buckingham’s pi theorem. Dimensionless plots of 
these parameters with scaled distance of TM5-855-1 (1986) equations were 
presented. Data from field tests and numerical simulations were collated from the 
literature and plotted into the dimensionless plots. For peak pressure and peak 
velocity versus scaled distance, the soil description showed general agreement with 
TM5-855-1 (1986) soil description. However, for peak acceleration and impulse 
versus scaled distance, the data collated from the literature do not fall on any of the 
TM5-855-1 (1986) curves and they showed lower attenuation than the soil curves. It 
is observed in the peak pressure and peak velocity versus scaled distance 
dimensionless plots that the data have a tendency to shift towards the saturated clay 
curve with the increase in degree of saturation. The dimensionless plots of ground 
shock parameters versus scaled distance of equations from TM 5-855-1 (1986) can be 
used as benchmarks for numerical simulations.  
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A rescaling method for generating inflow conditions in simulations of supersonic 

boundary layers 
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Abstract
A method for generating turbulent inflow data for simulations of spatially developing boundary 
layers has been presented. The approach is based on solving for the turbulent mean 
velocity/temporature profile at the inlet station and mapping the fluctuations from a reference 
station to the inlet. The mean velocity profile is solved from the Favre-averaged mean momentum 
equation with the Reynolds stress calculated from a turbulent model proposed by Zhang et al.
(2012). The mean temperature profile is obtained by applying a generalized Walz’s law. LES of 
adiabatic zero pressure gradient flat plate boundary layer flows at Mach = 2.25 is carried out using 
fully spatial method with transition region from laminar to turbulent, and also using the inflow 
condition proposed herein. The boundary layer development and turbulent statistics obtained with 
the proposed method agree well with the fully spatial approach, with negligible transient section 
length.

Keywords: boundary layer, supersonic, turbulence, inflow condition  

Introduction 
The simulation of turbulent boundary layers requires quite detailed inflow information since the 
resolved flow is unsteady and three-dimensional. Rather than simulating laminar and transitional 
regions arising near a leading edge, it is often more computationally efficient to formulate a fully 
turbulent inflow condition. To date, three types of methods for creating appropriate inflow 
conditions have been suggested: the random fluctuation method (Rai and Moin, 1993), the matching 
database method (Schl ter et al. 2003), and the recycling and rescaling method (Spalart, 1988; 
Lund et al., 1998). Among those methods, the recycling method appears to establish a turbulent 
shear flow with a fairly short inlet buffer zone and provides accurate downstream profiles. 

If the rescaling starts by using downstream data that are far from a correct turbulent state, the skin 
friction may decrease with time and make the achievement of the desired inflow turbulent state very 
difficult. To overcome the problem arising from unsuitable initial conditions, Lund et al. (1998) 
suggested making a correction to the resolved velocities during the early part of simulation. Spille-
Kohoff and Kaltenbach (2001) suggested adding a source term to the resolved equation based on 
the desired Reynolds stress. The present paper proposes a new method for recycling and rescaling. 
In the present method, the position for mapping the reference turbulent field is determined from the 
value of the order function, instead of using the similarity laws. Without assumption of simple 
geometrical similarity, the method is easy to be extended to more general flows, with external 
effects such as pressure gradient or geometrical change, etc.

Rescaling methods 

Rescaling order function 

The rescaling method is based on the similarity of turbulent boundary layers. The turbulent field at 
a downstream position can be used as the inlet condition since they have similar turbulent 
fluctuation ensembles. Usually the rescaling is categorized into the inner scaling

    /U u y
     (1) 
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and the outer scaling: 

    wake( ) / ( ), /U U u f y           (2) 

In the presence of pressure gradient, wall heating/cooling or other external forces, the two-layer 
description no longer holds, and it is difficult to find the correct corresponding position having the 
similar statistical properties. In this case more universal arguments are needed. According to the 
SED theory, the statistical properties of a turbulent ensemble can be described by the value of order 
functions. With a choice of proper order function, the corresponding vertical coordinates between 
the downstream reference position and the inlet position can still be found. Particularly, in the 
compressible turbulent boundary layers an order function, which is called Mach-invariant mixing 
length, can be defined (Zhang et al., 2012): 
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This function has the length dimension, and describes the turbulent intensity of a vertical position. It 
is directly defined from Prandtl’s mixing length theory but with a profile invariant with Mach 
number. This Mach-invariance is an important basis for van Driest transformation. According to the 
SED theory, an order function has multi-layer structure with scaling laws between each two layers, 
and can be formulated by the multiple of so-called SED base functions: 
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For  + 
M,MI, Zhang et al. (2012) give the functional form as 
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where vw is a boundary layer thickness defined as the vertical position where v 2  = w 2 , y1 = 12 
and y2 = 85 are the thicknesses of the sublayer and buffer layer, respectively. Zhang et al. (2012) 
point out that this definition of BL thickness best eliminates out the Mach number dependence.  

Velocity rescaling 

Denote by subscript in the inflow condition and ref the condition at the reference x- position, the 
rescaling should guarantee same mean streamwise velocity at y- position with the same  + 

MI,f:

    , , , ,
, ,

( ) ( )refin
MI in in MI ref in

in ref

UU
U U

U U
 
 

 

       (6) 

where  + 
MI,ref is calculated from statistics through the spanwise direction, and  + 

MI,in  is given by the 
theoretical profile (5). The above formulation calls for a knowledge to the wall friction velocity and 
boundary layer thickness vw at the inlet position. When a RANS simulation is used as the inlet 
boundary, the wall friction velocity is easy to obtain. Here for convenience we just use the empirical 
law of White et al. (1974) instead. Further, since there is no turbulent fluctuation information from 
the upstream of inlet position, we simply take  

    vw 99     (7) 

which is reasonably accurate according to DNS data. 
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Temperature rescaling 

When the mean velocity is properly rescaled, relationship between velocity and temperature 
rescaling can be used to rescale the temperature. For the mean temperature in a zero-pressure-
gradient boundary layer, this relationship can be given by the Walz’s equation:  

    
2

21
2
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r M
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     (8) 

where Tr is the recovery temperature, subscript e indicates a freestream quantity, Me is the 
freestream Mach number,  is the ratio of specific heats, and r is the recovery factor. To determine 
the wall temperature Tw we assume that the ratio between Tw and Te varies with x in a linear way, 
which is well supported by the DNS data. Hence, the temperature ratio Tw/Te can be obtained 
through the following relation: 

    ,,

laminar laminar

w refw in w w

e in e e ref e

TT T T
T x T T x T

   
     
   

     (9) 

This relationship decouples the mean streamwise velocity and the mean temperature. When 
fluctuations are small, to a first-order approximation, the mean temperature T and the mean density 
r  are related by the state equation T = p/Rr  for perfect gas, where R is the gas constant. Thus, the 
rescaling of r  follows that of the mean temperature T is known. 

Implementation

The calculation of the mixing length profile requires mean quantities, wherefore a time average is 
needed to exclude the starting transient if the flow is initialized with a crude guess. In that case, the 
following formula is used: 

    ( 1) ( ) ( 1)
1 2

m m m

z
U wU w U       (10) 

where U (m+1) and U (m) are the time-averaged mean at time step m + 1 and m, respectively, u(m+1)
z

is the average of u in the spanwise direction at time step m+1, w1 and w2 are two weights satisfying 
w1 > 0, w2 > 0, w1 >> w2 , and w1 + w2 = 1. Lund et al. (1998) let w1 be 1  ( t/ ) and w2 be t/ ,
where t is the computational time step and  the characteristic time scale of the averaging interval. 
From formula (10), we know  

    ( 1) 1 (0) (1) 1 (2) ( 1)
1 2 1 1( ).m m m m m

z z z
U w U w w u w u u            (11) 

At the beginning of the simulation, because m is small and w1>>w2, U (0) takes a very large fraction 
of U (m+1), as seen from Eq. (11). Thus, we provide a smooth mean profile from TDNS as U (0)

instead of using u(0)
z . We choose w1 so that when the mean information has propagated from the 

inlet to the recycling station, m is large enough for U (0) to take almost no effect in U (m+1). After the 
transient, we increase w1 to run for N steps in order to stabilize the statistics and then switch to a 
usual running average, i.e., w1 = 1 – [1/(N + m m0)] and w2 = 1 / (N + m m0), where m0 is the step 
at which the running average begins. If U (0) is very crude and w1 is not well attuned, the temporal 
starting transient can be very long before the right spatial behavior builds up over the boundary 
layer. If w1 is too small, a good mean profile U (m+1) cannot be achieved due to insufficiency of 
effective samples for averaging, which leads to wrong scaling and thus wrong boundary layer mean 
behavior. A linear interpolation is used to evaluate the right-hand side of Eq. (6) at the mapped 
coordinates.
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Results and discussion 

In order to evaluate this inflow method, a turbulent boundary layer with the conditions same with 
the DNS of Rai et al. (1995) is calculated. The freestream Mach number is 2.25. The Reynolds 
number based on freestream conditions is 6.35 105/in. The adiabatic wall temperature is 580ºR, 
and the temperature at the freestream is 305ºR.  

Both fully spatial simulation and simulation using the proposed inflow condition are carried out. 
The size of the computational domain for both cases is 0.175 in spanwise, and 3 in wall-normal 
direction. For the fully spatial case, the computational domain consists of a transitional zone, a 
focus zone and a buffer zone. The transitional zone covers 4 < x < 7 in the streamwise direction, 
where x is the distance from the imagined flat plate leading edge. In this region the flow transitions 
from laminar inflow to turbulence, with blow/suction disturbance at the wall applied within 4.5 < x
< 5. The flow is considered as fully developed turbulence within the focus zone 7 < x < 9 where 
statistics are taken, and is followed by a buffer zone 9 < x < 23. For the case with proposed inflow 
condition, there is no transitional zone, i.e., the computational domain begins at x = 7, and the other 
zones are the same with the fully spatial case. The reference plane is selected as x = 9, where the 
flow field is rescaled to form the inflow condition at x = 7. 

Table 1. Parameters of the numerical simulations. 

Case M Lx Ly Lz Nx Ny Nz x+ y+ z+

A
2.25

(3+2+14) 3 0.175in (586+1264+70) 55 256 14.50 1.05 6.56
B (2+14) 3 0.175in (1264+70) 55 256 14.50 1.05 6.56

The streamwise grid spacing x in the transition zone is no larger than 6.9 10-3 and gradually 
refined to smoothly link the focus zone, 
where x = 1.58 10-3. The buffer zone 
includes 70 grid points and is 
progressively coarsened in the streamwise 
direction. In the wall-normal direction the 
grid extends up to Ly = 3.0, with a 
minimum spacing yw = 1.056 10-4. The 
grid is equally spaced in the spanwise 
direction, and the width of the domain is 
Lz = 0.175.  In wall units (based on the 
boundary layer properties taken at x = 8.8) 
the mesh spacings in the well-resolved 
region in the streamwise, wall normal, 
and spanwise directions are x+ = 14.50, 

yw
+ = 1.05, and z+ = 6.56, respectively. 

Figure 3: spatial evolution of the friction coefficient Cf /Cf,in

The rescaling method results in a spatial boundary layer. Figure 3 shows the spatial evolution of the 
friction coefficient Cf. The rescaling method builds up the spatial boundary layer from the initial 
periodic flow field after the temporal transient is passed. The skin friction Cf is compared with the 
result of fully spatial DNS. The development of Cf deviates slightly from the fully spatial DNS. 
However, the variation of Cf seems to be faster after x = 8.0 than before x = 8.0 for the fully spatial 
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DNS, although they are using the same fine 
grid. This implies that there may be an “early 
phase” of the turbulent state in the fully spatial 
DNS where the transition process still has an 
effect on the flow. After x = 8.0 Cf decays 
exponentially with the coefficient 0.1. For the 
simulation using the proposed inflow condition, 
the exponential decay is valid throughout the 
whole focus region. Therefore we may 
consider the development after x = 8.0 in the 
fully spatial DNS as fully developed, and the 
proposed method yields fully developed result 
for the whole field.

Figure 5: van Driest transformed mean streamwise velocity profiles at three stations: lines: 
DNS with the proposed inflow condition; symbols: fully spatial DNS. 

Figure 5 shows the van Driest transformed mean streamwise velocity profiles at three stations. The 
wall-normal coordinate is also nondimensionalized using wall units. The profiles collapse very well 
using the transformation and scaling in the logarithmic region and they satisfy the theoretical 
logarithmic law. Near the inlet boundary, the mean streamwise velocity profiles from both inflow 
condition and fully spatial DNS deviate slightly from the log-law. However, the deviation of the 
result from the inflow condition is smaller. 
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Figure 6: profiles of turbulent intensities compared with DNS. Left: fully spatial; right: 
proposed inlet condition. 

Figure 6 shows the profiles of turbulent intensities at the inlet boundary and at a station within the 
fully developed region, x = 8.3. The profiles in the fully developed region agree well, but at the inlet 
boundary the two approaches differ. The profiles obtained with the inflow condition, especially the 
u  profile, are more similar to the fully developed ones. 

The highly intermittent boundary layer edge with turbulent bursting events can be appreciated from 
density distributions in a longitudinal cross-section, Fig. 7. For the inflow condition case and x > 8 
of the fully spatial case, the virtual boundary thickness does not change much. The structures of the 
inflow condition case throughout the simulation region have similar shapes. We can say that the 
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6

proposed method provides good inflow condition for spatial simulation of the turbulent boundary 
layer. 

Figure 7: density distributions in a longitudinal cross-section. Left: fully spatial; right: 
proposed inlet condition. 

Conclusions

A method for generating turbulent inflow data for simulations of spatially developing boundary 
layers has been presented. The approach is based on mapping the time-dependent velocity data from 
a reference station to the position with the same value of an order function at the inflow station. The 
selected order function,  + 

M,MI, is Mach number dependent as proposed by Zhang et al. (2012). This 
function has a multi-layer structure with scaling behaviors which describes the structure ensemble 
properties in each layer. Therefore the position for mapping the reference turbulent field is 
determined from the value of the order function, instead of using the similarity laws. Direct 
numerical simulations of a supersonic adiabatic zero pressure gradient flat plate boundary layer 
flow at Mach = 2.25 are carried out using fully spatial method with transition region from laminar 
to turbulent, and also using the inflow condition proposed in this paper. The boundary layer 
development and turbulent statistics obtained with the proposed method agree well with the results 
of the fully spatial approach, with negligible transient section length. Without assumption of simple 
geometrical similarity, the method is easy to be extended to more general flows. When subjected to 
external effects such as pressure gradient or geometrical change, the lengths of scaling regions and 
the scaling exponents will change, but the turbulent structural ensembles are still characterized by 
the same order function. 
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Abstract
This paper investigates the solution of space problem for transversely isotropic 
foundation based on damage theory. Firstly, the modified Galerkin’s displacement 
function is introduced into the basic equations of the transversely isotropic elastomer 
space problem. Secondly, employing Hankel integration transform and Bessel 
function theory, we obtain a general three-dimensional solution in the image field by 
the displacement function method. Finally, by means of the Hankel integration 
inversion shift theory, the fundamental expressions of strain and stress in the 
transversely isotropic foundation are presented for different cases that the 
characteristic roots were equal or not. The solution could be used to solve some 
specific axisymmetric and asymmetrical problems in semi-infinite space under 
different boundary conditions.

Keywords: transversely isotropic foundation, damage, displacement function method, 
Hankel integral transform stress.

1 Introduction 

The research achievements of many researchers at home and abroad and a large 
number of engineering practice show that it is feasible and more representative that 
the cohesive soil foundation is simplified transversely isotropical elastic half-space 
model in many circs. Since the transversely isotropic foundation model was put 
forward, many domestic and foreign researchers have carried out in-depth research on 
the model. In 1940, a general solution of axisymmetric problem about the 
transversely isotropical body of revolution was firstly solved by Soviet scholar 
Lekhnitskii. And then, Elliott derived a particular solution about a three-dimensional 
problem that can be degenerated to Leknitskii solution in the axisymmetric condition 
by means of two harmonic functions in 1948. Based on the equilibrium equation of 
displacement expression. Eubanks and Sternberg obtained the Leknitskii solution 
systematically in 1954, and proved the completeness of Elliott solution. The detailed 
analytic solution expression of the surface and interior of the transversely isotropic 
half-space under point loads or circular loads was given by C.M.Gerrard(1980). And 
by referencing the three displacement functions, Pan and Chou(1979) made use of the 
Green’s function method to obtain the whole expressions of fundamental solution of 
transversely isotropic semi-infinite body.  

Interiorly, it is Hu haichang who studied that problem first. In 1953, he obtained 
the general solution of space problem of transversely isotropic elastic body by means 
of two potential functions, specifically discusses the problems of transversely 
isotropic semi-infinite elastic body, and got the fundamental solution when s1  s2.
Ding Haojiang, through the Hu Haichang’s solution, used integral method to obtain 
the fundamental solution of axisymmetric problems of transversely isotropic 
materials, which can be directly degenerated to the fundamental solution of 

1300



2

axisymmetric problems of isotropic materials. Dun zhiling and his graduates, by 
modifying Love displacement function in isotropic elastic mechanics, made use of 
displacement method and Hankel integral-transform theory to get the general solution 
of transversely isotropic foundation in image field. And by using the inversion of 
Hankel integral, the analytical solutions of displacement and stress of semi-infinite 
foundation under several common loads were obtained and the results of numerical 
calculation were given. Based on the basic equations of transversely isotropic elastic 
body and Hankel transform, the generation solutions of displacement and stress of 
space problem of layered transversely isotropy under non-axisymmetric loads were 
solved by using transfer matrix method(Chen guangjing and Zhao xihong, 1998). The 
Biot s wave equations of transversely isotropic saturated poroelastic media excited 
by non-axisymmetrical harmonic source were solved by means of Fourier expansion 
and Hankel transform. Then the components of total stress in porous media are 
expressed with the solutions of Biot’s wave equations.( Zhang Yinke and Huang Yi, 
2001).

Based on the theory of damage mechanics, the elastic damage of transversely 
isotropic foundation was considered and a general three-dimensional solution for 
transversely isotropic foundation in the image field was strictly obtained by the 
displacement function method. The Galerkin’s displacement function for isotropic 
elasticity was modified, and Hankel integration transform and Bessel function theory 
were employed in the solution. With the Hankel integration inversion shift theory, the 
analytical expressions of stress and displacement in the transversely isotropic 
foundation were presented. 

2 Damage theory 

Shen Zhujiang put forward that the damage characteristics of the material are 
described by the cementitious bar element. The linear elastic damage model is 
adopted to simulate the transverse isotropic soil. This model is a single-spring model, 
which is composed of cementitious bar and spring and includes a lot of cementitious 
node. The soil of the mechanical process is analyzed as a synthetic material including 
undisturbed and damage soil. With the increase of deformation, cementitious nodes 
will be gradually destroyed and mechanical properties of soil gradually deteriorate. 

The effective stress in damage mechanics is called the equivalent stress in this 
article to distinguish the concept of effective stress in soil mechanics. According to 
Lemaitre equivalent strain principle, the stress-strain relationship of one-dimensional 
damaged soil is as follows: (1 )E E E D 1
Where  is equivalent  stress, E  is the elastic modulus of non-destructive materials, 
E  is effective elastic modulus, and D  is damage variable. 

For the three-dimensional anisotropic damage, equivalent stress can be expressed 
as: ( ) :M D 2
In the formula, ( )M D  is the damage effective tensor. considering the matrix is 
symmetric and can be reduced to an matrix of isotropic damage problem, so damage 

tensor ( )M D  is elected: 
1

1 1
1

1 1
1

1 2
1

1 11 2
1

1 11 2
1

1 1

( )

D

D

D

D D

D D

D

M D

3
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3

where D1,D2 respectively respect the damage variable of the horizontal plane and the 
vertical plane. The damage variables can be determined according to the literature[15]. 

3 The general solution of space problem for transversely isotropic foundation 
based on damage theory 

3.1 The equivalent stress of transversely isotropic space problem in cylindrical 
coordinate
In cylindrical coordinate , ,r z , it is assumed that the z-axis is perpendicular to the 

isotropic plane of physical properties, so elasticity is isotropic in the plane ,r . Let 
u v w  be the displacement of points along the three directions r z .The
geometric equation of transversely isotropic space problem in cylindrical coordinate 
is as follows: 

1 1 1, , , , , , , , , ,
T

T
r z z rz r

u u v w v w u w u v v
r r r z z r z r r r r

4
Therefore the relationship of stress components and displacement components of 

undamaged foundation can be expressed by the displacement in cylindrical 
coordinates:

1 1 1, , , , , , , , , ,
T

T
r z z rz r

u u v w v w u w u v v
C C

r r r z z r z r r r r

5

Where 
11 12 13

12 11 13

13 13 33

44

44

66

c c c

c c c

c c c
C

c

c

c

, 2
2 1 1 21 1 2E n , 2

11 21c n n ,

2
12 1 2c n n , 13 2 11c n , 2

33 11c , 44 2c G , 66 1 12 1c E ,

1 2n E E , 1E  and 2E  is the modulus of elasticity in a horizontal plane and a vertical 
plane respectively; 1  and 2  is the Poisson ratio in a horizontal plane and a vertical 
plane respectively; 2G  is the shear modulus in a vertical plane. 

From Eq.(2), the stress of transversely isotropic foundation with damage can be 
obtained by the stress of undamaged foundation in the follow form as 

11 12 13

12 11 13

13 13 33

44

44

66

1 1 1, , , , ,
T

c c c
c c c
c c c u u v w v w u w u v v

c r r r z z r z r r r r
c

c

6

Where   2
11 2 11 1c n n D , 2

33 1 21 1c D ,

44 2 1 21 1c G D D , 66 1 1 11 2 1c E D

3.2 The Displacement Function Method of transversely isotropic space problem 
in cylindrical coordinate
When analyzing elastic semi-infinite body and non-axisymmetric problem of the 
thick plate in 1960, Ruki R introduced two displacement functions and :
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2 1
u

r z r

21
v

r z r

2
2

22(1 )w
z

7

These are the general expression of the isotropic spatial problems. And they can be 
used to solve the isotropic spatial problem in a variety of different boundary 
conditions specifically. 

Based on damage theory, the relation between the displacement components and 
the displacement function for transversely isotropic spatial problem can be obtained 
through complex calculations (specific process can be seen in reference [6], [16] and 
[17]). And it is the revised Galerkin’s displacement function. 

2 1F
u

r z r

21 F
v

r z r

2
2

2w a b F
z

8

where, 11

13 44

c
a

c c
, 44

13 44

c
b

c c
,

2 2
2

2 2 2r r r r
 is Laplace Operator. F

and is two displacement function for transversely isotropic body. Hu Haichang 
proved that the displacement function, F and , represents a complete solution of the 
space problem. 

What’s more, F and  should go for the following compatible equation. 
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 3

0, 0F
r r r r s z r r r r s z r r r r s z

9
Where 1 13 13 13 13 44 33 44 13 13 13 13 44 33 442 4 2 4s c c c c c c c c c c c c c c

2 13 13 13 13 44 33 44 13 13 13 13 44 33 442 4 2 4s c c c c c c c c c c c c c c

2 66
3

44

c
s

c 13 11 33c c c 10

In order to obtain the expression of stress and displacement components, the 
derivative of the Eq. (8) for r  and z are substituted into Eq. (6).Then we can 
obtain the expression of the stress components in cylindrical coordinates.  

2 3 2 3 3
12 11 12 11 13 12 13 12

13 11 132 2 2 2 3r

c c c c ac c ac cF F F F
ac c bc

r r r z r r r z r z z
2 3 2 3 3

11 12 11 12 13 11 13 11
13 12 132 2 2 2 3

c c c c ac c ac cF F F F
ac c bc

r r r z r r r z r z z
3 2 3 3

33 13 33 13 33 13 332 2 2 3

1 1
z

F F F F
ac c ac c ac c bc

r z r r z r z z
3 2 3 2 3

44 44
442 2 2 3

1 11z

c cF
b c a F

r z r z r r r r r
3 2 3 2 3 2

44
44 442 3 2 2 2 2 3 2

1 1 1 21zr

cF
c b ac F

r z r z r r r r r r r r
3 2 2 2

66 2 2 2 2

2 1 2 1
r

F F
c

r r z r r z r r r
11

Eq. (8) and Eq. (11) are the general solution of transversely isotropic space problem 
and they are represented by F and .As can be seen from the expression, if 
displacement function, F and , is determined appropriately, we can determine the 
corresponding displacement components and stress components. Therefore, Hankel 
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integration transform is introduced and displacement functions, F and , are 
expressed in the form of series as the following. 

0 0

, , , cos , , , , sink k
k k

F F r z F r z k r z r z k 12

After Eq. (12) put into Eq. (9), we obtain: 
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2
1 2 3

0, 0k k

k k k
F

r r r r s z r r r r s z r r r r s z

13

Let
0 0

, , , , ,k k k k k kF z rF r z J r dr z r r z J r dr 14

Then using the Hankel transform and the nature of Bessel functions 
2 2

2
2 20 n

n
f r J r dr f

r r r r
15

After k-order Hankel transform is applied to, the Eq. (13) can be transformed into as 
follows: 

2 2 2
2 2 2

2 2 2 2 2 2
1 2 3

0 , 0k kF
s z s z s z

16

The inversion formula of Hankel transform is : 

0 0
, , , , ,k k k k k kF r z F z J r d r z z J r d 17

After the Eq. (17) put into Eq. (11), the displacement function can be expressed as: 

0 00 0

, , , cos , , , , sink k k k k k
k k

F r z F z J r k d r z z J r k d

18
According to the nature of Bessel functions, we can obtain its derivative express 

2
2

1 1 12

1 1,
2 2k k k k k k k

d k d k k
J r J r J r J r J r J r J r

dr r dr r r

19
Using Eq. (19), we can calculate the derivative of the displacement Eq. (18) for r

and z . And after putting them into the Eq. (8) and Eq. (11) respectively, the general 
solution of transversely isotropic spatial problems within quadrants is obtained (only 
u and z was listed). 

2
10 00 0

cos cosk k
k k k

k k

dF dFk
u J r k d J r k d

dz r dz
2

2 244 44 44
44 120 00 0

1 sin sink k k
z k k k

k k

d F d dc c c
b k k ak F J r k d c J r k d

r dz r dz r dz

20
3.3 The displacement components and the stress components of space problems 
for transversely isotropic foundation 
The Eq. (20) shows that, if the functions kF  and k can be obtained, we can get the 
analytical expressions of displacement components and stress components of the 
elastic space problem that is transversely isotropic. According to the material 
characteristic roots of transversely isotropic body, s1 and s2, the situation can be 
divided into s1=s2 and s1 s2 when solving kF  and k  and getting their derivatives for z.
Because the anisotropy of most foundation rock materials can be reflected by s1 s2,

the solution of 1 2s s  is only solved as follow. 
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When 1 2s s , the solution of ordinary differential equation of Eq. (16) is 
3 31 2 1 2, , , s z s zs z s z s z s z

k kF z A e B e C e D e z E e F e 21
Put the Eq. (21) and its derivative for z into Eq. (20). when 1 2s s , the general 
expression of displacement components and stress components can be obtained (only 
u and z were listed). 

3 31 2 1 2

3 31 2 1 2

1 2 1 2 100

1 2 1 2 100

1 cos
2

1 cos
2

s z s zs z s z s z s z
k

k

s z s zs z s z s z s z
k

k

u s Ae s Be s Ce s De E e F e J r k d

k
s Ae s Be s Ce s De E e F e J r k d

r

1 2 1 2

3 3 1 2 1 2

1 2

2 2 2 244
1 2 1 200

3 1

2 2 244
1 2 1

1
2

sin

1
2

s z s z s z s z
z

k

s z s z s z s z s z s z
k

s z s z

c
b s Ae s Be s Ce s De

s E e F e a Ae Be Ce De J r k d

c
b s Ae s Be s C 1 2

3 3 1 2 1 2

2
200

3 1 sin

s z s z

k

s z s z s z s z s z s z
k

e s De

s E e F e a Ae Be Ce De J r k d

22

The analytic expressions of displacement components and stress components 
expressed in the Eq. (22) apply to space issues for transversely isotropic foundation 
with injury under a variety of non-axisymmetric loads. For the specific space problem 
of transversely isotropic foundation, when it is known that the specific boundary 
conditions of transversely isotropic foundation and five independent engineering 
elastic constants , 1E 2E 1 2 2G ,and damage variable 1D 2D ,
displacement and stress field distribution in the corresponding boundary conditions 
can be obtained through using the result. 

4 The example analysis 

In order to verify the validity of these theoretical approaches and indicate the impact 
on transversely isotropic foundation when damage considered, the engineering elastic 
constants of transversely isotropic foundation in the reference[9] was 
selected: 1 35.6MPaE , 2 20.8MPaE 2 9.09MPaG 1 0.299

2 0.146 The foundation bears the circular uniform unidirectional horizontal load. 
Its load collection degree, p, is 10kPa. And the load radius r is 1m. Because of space 
limitations and time constraints, this numerical example just makes the comparative 
analysis of the shear stress component in the z-axis, 

0z r
, for transversely isotropic 

foundation without injury. The mathematical software used is Matlab. 
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Fig. 1, Fig. 2 and Fig. 3 show that the spatial distribution curves of the shear stress 
component in the z-axis,

0z r
, for transversely isotropic foundation with damage or 

not , are almost identical with the changing of the depth z and the polar angle . Then 
we can make an qualitative analysis of the difference of foundation shear stress 

0z r
 in two different situations when choosing two kinds of the plane state. 

0 2 4 6 8
-2

0

2

4

6

8

10

Z/m

r| r=
0/k

Pa

 Figure 4 The comparison of shear stress 
as = 2  for two kind of foundation 

0     /2 3 /2 2
-0.1

-0.05

0

0.05

0.1

r| r=
0/k

Pa

D1=0.2
D1=D2=0

D2=0.2

z=2m

z=5.0m

Figure 5 The comparison of shear stress 
as z=2m and z=5m for two kind of 
foundation

 (Note: The dotted line represents damage foundation and solid line represents the foundation without 
damage in figures)

Fig. 4 and Fig. 5 show that: When fixed, with the z value increases, the 
foundation’s shear stress 

0z r
 in three cases is continuously attenuated . And when 

the depth z is smaller than 4m (equivalently 4 times of circular load’s radius), the 
attenuation is in a fast rate. When z is greater than 4m, the attenuation speed becomes 
slower. And with the increasing of the depth, three shear stress values are close to 
equal ultimately;  When z  is constant, the foundation’s shear stress 

0z r
 in three 

cases, conforms with the sinusoidal line as  changing. In view of D1, The shear 
stress

0z r
 of transversely isotropic foundation is greater than that without damage, 

while it is smaller than that in view of D2. And when the depth is to 4m(equivalently 
4 times of circular load’s radius), the shear stress is almost equal in three cases. Thus 
the damage has an impact on the transversely isotropic foundation’s shear stress 
within the scope of 4 times of load’s radius, but the impact can be negligible beyond 
the scope. This conclusion is identical to the results of practical engineering test, 
which can describe that the displacement function method here is reasonable and 
effective.

5 Conclusions 

In this paper, it is a important work that the Galerkin displacement potential 
function has been revised. Base on this, a general solution of the transversely 
isotropic elastic space’s problem is obtained in the image field, which is based on the 
elastic damage theory. Moreover, The analytic solution expression of displacement 
and stress components for the space problem of transversely isotropic foundation is 
derived. The solution doesn’t only apply to solve both axisymmetric and non-
axisymmetric problem of the transversely isotropic elastic space no matter whether or 
not the damage is considered., but also plays a important role in studying 
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displacement and stress field of transversely isotropic foundation under specific 
boundary conditions. 
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Abstract

Structures are often subject to vehicle collision which can be accidental or intentional as in the case 
of a terrorist attack. This study investigates the performance of a 2D and a 3D steel moment frame 
subjected to vehicle collision at a first story column using LS-DYNA. The finite element models of 
vehicles provided by the National Crash Analysis Center (NCAC) are used for numerical analysis. 
Nonlinear dynamic time history analysis of the 2D model structure is carried out based on the 
arbitrary column removal scenario and the vertical displacement of the damaged structure is 
compared with that obtained from collision analysis. The analysis results show that the model 
structure remain stable when the speed of the car is 40km/h. However at the speed of 80 and 120 
km/h both the 2D and 3D structures collapse by progressive collapse. The vertical displacement of 
the damaged joint obtained from collision analysis is significantly larger than the displacement 
computed based on the arbitrary column removal scenario. 

Keywords: Vehicle Collision, Progressive Collapse, FEM Explicit Analysis, LS-DYNA .  

1. Introduction
Recently the collision of vehicles with structures has increased due either to accidents or to

terrorist attack. It has been reported that there has been a shift in terrorist modus operandi from a 
parked vehicle-borne improvised explosion to a penetrative attack (Cormie et al. 2009). In this 
regard it is necessary to investigate the damage and collapse behavior of structures subjected to 
vehicle collision. Borovinsek et al. (2007) presented the results of computational simulations of 
road safety barrier behavior under vehicle crash conditions mandated by the European standard EN 
1317. Itoh et al. (2007) simulated the progressive impact of a heavy truck on a concrete barrier 
using LS-DYNA, and compared the accuracy of the FEM models with full scale on-site testing 
results. Liu (2011) investigated the dynamic crushing behaviors of steel box beams focusing on the 
effect of strain hardening and strain rate effects. Sharma et al. (2012) developed a framework for 
estimation of the dynamic shear force capacity of an RC column subject to vehicle impact. Tay et al. 
(2012) carried out vehicular crash test of a security bollard, and compared the results with those of 
numerical simulations using two different loading approaches in LS-DYNA.

The damage caused by vehicle collision may result in progressive collapse in structures. U.S. 
Department of Defense has issued guidelines for evaluating the progressive collapse potential (UFC, 
2013). Many researchers such as Kim and Choi (2013) evaluated the progressive collapse resisting 
capacity of structures based on the arbitrary column removal scenario specified in the UFC 
guidelines.  

This study investigates the performance of steel moment frames subjected to vehicle collision at a 
first story column through numerical simulation using LS-DYNA®. The finite element models of 
vehicles provided by the National Crash Analysis Center (NCAC) are used for numerical analysis. 
Nonlinear dynamic time history analyses are carried out with three bay 2D and 3D steel structures 
subjected to a car impact in a first story column. The vertical displacements of the damaged 
structure obtained from the collision and the arbitrary column removal method recommended in the 
UFC guidelines are compared.  
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2. Analysis modeling
Materials can behave very differently at the higher strain rates typical of moderate to high-speed 
dynamic events such as impact. In this study high strain rate effect is accounted for using the 
Cowper-Symonds model which scales the yield stress by the strain rate dependent factor as follows: 

(1)
where,  is the strain rate during dynamic crushing, C and p are the Cowper-Symonds strain rate 
parameters. In the impact analysis the original yield strength 0 is replaced by the dynamic flow 
stress y  considering the strain rate effects.  

The automobile used in the impact analysis is the eight-ton single unit truck shown in Fig. 1 
provided by the NCAC (National Crash Analysis Center), and the detailed finite element modeling 
information is shown in Table 1. The vehicle is built on a main longitudinal rail structure that acts 
as its backbone. The material of the rails is specified in the Service Manual as the High Strength 
Low Alloy (HSLA) steel of yield point 350 MPa. The yield stress of the steel forming the surface of 
the truck is 155MPa, and that of the other components is 270 MPa. The mass density and elastic 
modulus of steel used in the model are 7.85 kN/m2/g and 205,000MPa, respectively. It was assumed 
that 2.8ton of mass is loaded on the truck, which leads to total mass of 8.035 ton. The material data 
available from the Auto/Steel Partnership [4] and American Iron and Steel Institute [5] was used to 
enhance the existing material model.  

3. Analysis of single steel column
Impact analysis is carried out on a single steel column with fixed boundary conditions at both 

ends. The analysis results of columns with a hollow circular (C-column), a square (S-column), and a
H section shown in Fig. 2 are compared. The columns have the same length and are designed for the 
same loading condition. The steel columns are modeled with solid elements, and the contact 
condition between the column and the automobile is defined by 
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE function in LS-Dyna. The friction 
coefficient between the ground and the wheels is assumed to be 0.01. The *CONTACT_INTERIOR 
condition is used to prevent the occurrence of negative volume due to large deformation of the 
automobile. Fig. 3 shows the stress-strain relationship of the A572 steel of which the columns are 
made.

Table 1. Information of truck FEM model
Number of 

element
Shell 19,479
Solid 1,248
Beam 124

Weight of vehicle [kg] 8035
Elastic modulus [MPa] 205,000
Impact velocity [km/h] 40, 80, 120

Vehicle geometry 
[B x H x L, mm] 2,400 x 3,200 x 8,500 

Figure 1. F800 FEM truck model

 




































1309



3

Figure 2. Cross-section of steel column Figure 3. Steel stress-strain curve

(a) 40km/h (b)80km/h (c) 120km/h
Figure 4. Variation of kinetic energy

The impact simulation is carried out with three different car speeds: 40, 80, and 120 km/h. Fig. 4 
depicts the variation of kinetic energy generated during the collision. The analysis results show that
in every case the rate of decrease in kinetic energy (i.e. the rate of decrease in car speed after 
impact) is smallest in the circular colum. The kinetic energy decreases most rapidly in the H-shaped 
column which has the largest cross sectional area. When the speed is 40km/h the kinetic energy 
associated with the collision to the H-shaped column becomes zero at 1.0 second after the impact, 
which implies that the car stopped completely due to the collision. On the other hand the existence
of kinetic energy at 1.0 second in other columns implies that the columns are completely destroyed
by the car crash and the car is still moving.

(a) 40km (b) 80km (c) 120km
Figure 5. Variation of impact force for different car speeds
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Figure 5 shows the variation of impact force for three different car speeds and the maximum 
values are summarized in Table 2. The impact force is smallest in the circular column when the car 
speed is lowest. However in the highest speed the impact force of the circular column turns out to 
be highest. The opposite is observed in the H-shaped column.  

Table 2. Maximum force generated during the collision

Velocity [km/h] FEM analysis result [kN]
Circular column H column Square column

40 493.14 883.68 820.05
80 1105.60 1189.98 1475.38
120 3377.45 1798.69 3263.19

Rate of increase 680.9% 203.5% 397.9%

4. Analysis of a moment frame structure subjected to car impact

4.1 Model structure

The analysis model structure is a three-story three-bay moment resisting frame with 5m span length 
and 4m story height as shown in Fig. 6. The beams and columns are designed with steel H-shaped 
members with A36 and A572 steel, respectively. The cross-sectional information is shown in Fig. 7.
The structure is designed with dead and live loads of 5 and 3 kN/m2, respectively. The structure is 
modeled in the LS_Dyna with 416,224 solid elements. The columns are modeled to be continuous 
throughout the stories and the beams are welded to columns. Two horizontal continuity plates are 
located between column flanges across the connections at the level of beam flanges. The limit strain 
or the elongation at break is assumed to be 0.2, 0.18, and 0.1 for beams, columns, and connections, 
respectively, in the analysis. Table 3 shows the material properties of the model structure, and the 
stress-strain curves for beams and columns are depicted in Fig. 3. Fig. 8 depicts the finite element 
mesh of a typical beam-column joint. 

(a) Beams (b) Columns

Figure 6. 3D model structure Figure 7. Cross-section of elements

Table 3. Modeling information of frame
Yield 
Stress 

Beams 250 (MPa)
Columns 345 (MPa)

Elongation 
at break

Beams 0.2
Columns 0.18

Weld 0.1
Elastic modulus 205,000 (MPa)
Poisson’s ratio 0.3

Figure 8. FE mesh generation of a connection

4.2 Analysis results of 2D frame structure 

Collision analysis is carried out with one of the internal frame separated from the 3D model 
structure shown in Fig. 6. Fig. 9 shows the deformed shapes of the structure 1.0 second after 
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collision. It is observed that when the speed of the truck is 40km/h only the exterior column is 
severely damaged due to the collision with the truck but is not separated from the joint. When the 
car speed is increased to 80km/h the bottom of the collided column is completely separated from the 
joint and the left-hand-side bay collapses due to progressive collapse. At the speed of 120km/h the 
truck goes through the exterior column and collides with the adjacent interior column. The other 
first story columns are also severely damaged due to large lateral displacement.

(a) 40km/h (b) 80km/h (c) 120km/h
Figure 9. 2D frame impact simulation results (t=1 sec.)

(a) (a) Collision analysis (b) Arbitrary column removal
Figure 10. Vertical displacement obtained from collision analysis and 

arbitrary column removal method

Figure 10(a) shows the vertical displacement of the first story exterior beam-column joint obtained 
from the collision analysis with three different car speed. It can be observed that at the speeds of 40 
and 80km/h the collision results in significant vertical displacements but the vertical displacements 
remain stable. However at the speed of 120km/h the vertical displacement decreases almost 
unbounded, which implies collapse of the structure. Fig. 10(b) depicts the vertical displacement at 
the same point obtained by arbitrary sudden removal of the first story column. Compared with the 
results of the collision analysis, the vertical displacement obtained by the arbitrary removal of the 
column is significantly smaller. This is due to the fact that after collision the catenary force caused 
by the large bending deformation of the column pulls the joint down, which cannot be considered in 
the arbitrary column removal scenario.
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4.3 Analysis result of 3D framed structure 

a) Frame impact simulation (b) Exterior column (c) Corner column
Figure 11. Steel frame impact simulation and impact direction on plane condition

Figure 11 shows the collision of the truck to the exterior and corner column of the 3D analysis 
model, and the analysis results for car speed of 120km/h are shown in Fig. 12. It is observed that the 
bottom of the exterior column is completely separated from the joint at 0.03 second after the impact. 
After passing through the exterior column the car continues to move until colliding with the 
adjacent interior column at t-0.19 second. As in the 2D model, the car collision results in 
progressive collapse. The vertical displacement of the upper joint of the impacted column is shown 
in Fig. 12(a), where it can be observed that the vertical deflection oscillate after the first impact to 
the exterior column and keeps decreasing after the second impact to the interior column. Fig. 12(b) 
depicts the deformed second story floor plan with respect to the original configuration. It can be 
observed that due to the series of collisions the second story is displaced laterally in significant
amount and many floor beams suffers moderate to severe damage based on the failure criteria of 
ASCE (1000) shown in Table 4. The deformed configuration of the structure at the final stage of 
analysis is shown in Fig. 12(c), where it can be observed that the first story columns of the two 
right-hand-side frames are severely damaged and the structure is significantly tilted. Fig. 13 depicts 
the collision analysis results of the structure subjected to the car impact to the corner column. The 
vertical deflections at the joints increase monotonically after the first impact as shown in Fig. 13(a), 
which implies that the structure collapses progressively due to the collision to the corner column.  
This can be confirmed by the deformed configuration of the structure depicted in Fig. 13(b), which 
shows that all the first story exterior columns in the right-hand-side frame are severely damaged and 
the exterior frame is collapsed. Compared with the results of collision to the exterior column shown 
in Fig. 12, the car collision to the corner column results in more severe damage to the impacted part 
of the structure.   

(a) Vertical displacement of 
damaged joint

(b) Deformed structural 
plan (t=1.42sec)

(c) Damaged configuration
(t=1.42sec)

Figure 12. Analysis results for exterior column collision
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Table 4. Failure criteria for Steel members (ASCE, 1999)
Element Material

Properties
Failure
Type Criteria Damage

Light Moderate Severe

Beam Steel

Bending/
Membrane
Response

 5% 12% 25% 

Shear  2% 4% 8%
Column Compression  2% 4% 8%

-  : Ratio of center line deflection to span
-  : Average shear strain across section
-  : Ratio of shortening to height

(a) Vertical displacement of damaged joint (b) Deformed configuration of the structure
Figure 13. Analysis results for corner column collision

5. Summary
This study investigated the performance of a steel moment frame subjected to vehicle collision at a 
first story column using LS-DYNA. Nonlinear dynamic time history analyses were carried out with 
three bay 2D and 3D steel structures subjected to a car impact in a first story column with three 
different impact speeds. 

The analysis results of the 2D frame and the 3D frame with collision to the exterior column 
showed that the model structure remain stable when the speed of the car is 40km/h. It was observed 
that only the exterior column was damaged before the car finally stopped. However at the speed of 
80 and 120 km/h both the 2D and 3D structures were severely damaged by progressive collapse
after the car pass through the exterior or the corner column and collided with the adjacent column in 
its path. The damage caused by the collision to the corner column was far greater than the damage 
due to collision to the exterior column. It was also observed that the vertical displacement of the 
model structure caused by the automobile collision is significantly larger than that obtained by the 
arbitrary column removal method specified in the UFC (2013) provisions. Therefore the arbitrary 
column removal method applied to investigate the progressive collapse potential of a structure may 
underestimate the actual structural response for automobile collision.  
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Abstract
The paper presents the formulation and recent development of the cell-based smoothed 
discrete shear gap plate element (CS-FEM-DSG3) using three-node triangles. In the CS-
FEM-DSG3, each triangular element will be divided into three sub-triangles, and in each 
sub-triangle, the original plate element DSG3 is used to compute the strains and to avoid 
the transverse shear locking. Then the cell-based strain smoothing technique (CS-FEM) 
is used to smooth the strains on these three sub-triangles. Due to its superior and simple 
properties, the CS-FEM-DSG3 has been now developed for some different analyses such 
as: flat shells, stiffened plates, FGM plates, and piezoelectricity composite plates, etc.

Keywords: Reissner-Mindlin plate, smoothed finite element methods (S-FEM), cell-
based smoothed finite element method (CS-FEM), cell-based smoothed discrete shear 
gap method (CS-FEM-DSG3), strain smoothing technique.

Introduction

In the past 50 years, many of plate bending elements based on the Mindlin–Reissner 
theory and the first-order shear deformation theory (FSDT) have been proposed. Such a
large amount of elements can be found in literatures [Reddy (2006)]. In formulations of a 
Mindlin–Reissner plate element using the FSDT, the deflection w and rotations x , y
are independent functions and required at least to be C0-continuous. In practical 
applications, lower-order displacement-based Reissner-Mindlin plate elements are 
preferred due to their simplicity and efficiency. These elements usually possess high 
accuracy and fast convergence speed for displacement solutions [Ayad et al. (2002)]. In 
addition, the main difficulty encountered of these elements is the phenomenon of shear 
locking which induces over-stiffness as the plate becomes progressively thinner.

In order to avoid shear locking, many new numerical techniques and effective 
modifications have been proposed and tested. Recently, the Discrete-Shear-Gap (DSG) 
method [Bletzinger et al. (2000)] which avoids shear locking was proposed. The DSG 
method works for elements of different orders and shapes and has several superior 
properties [Bletzinger et al. (2000)]. However, the element stiffness matrix in the DSG 
still depends on the sequence of node numbers, and hence the solution of DSG is 
influenced when the sequence of node numbers changes, especially for the coarse and 
distorted meshes. 

In the front of the development of numerical methods, Liu et al. have recently 
integrated the strain smoothing technique [Chen et al. 2001] into the point interpolation 
method (PIM) [Liu et al. (2003, 2004a, 2004b)] to create a series of smoothed PIM (S-
PIM) [Liu et al. (2006a, 2006b, 2013), Zhang et al. (2007)], as well as into the FEM to 
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create a series of smoothed FEM (S-FEM) [Liu et al. (2010a)] such as the cell/element-
based smoothed FEM (CS-FEM) [Liu et al. (2007a, 2007b), Dai et al. (2007a, 2007b)],
the node-based smoothed FEM (NS-FEM) [Liu et al. (2009a)], the edge-based smoothed 
FEM (ES-FEM) [Liu et al. (2009b)] and the face-based smoothed FEM (FS-FEM)
[Nguyen-Thoi et al. (2009a)]. Each of these smoothed FEM has different properties and 
has been used to produce desired solutions for a wide class of benchmark and practical 
mechanics problems. Several theoretical aspects of the S-FEM models have been 
provided in Refs [Liu et al. (2007a, 2010b)]. The S-FEM models have also been further 
investigated and applied to various problems such as plates and shells [Nguyen-Xuan et 
al. (2009a,b), Nguyen-Thoi et al. (2013a)], piezoelectricity [Nguyen-Xuan et al.
(2009c)], visco-elastoplasticity [Nguyen-Thoi et al. (2009b)], limit and shakedown 
analysis for solids [Nguyen-Xuan et al. (2012)], fracture mechanics [Liu et al. (2010c)],
and some other applications [Nguyen-Thoi et al. (2013b,c)], etc.  

Among these S-FEM models, the CS-FEM [Liu et al. (2007a, 2007b), Dai et al.
(2007a, 2007b)] shows some interesting properties in the solid mechanics problems. 
Extending the idea of the CS-FEM to plate structures, Nguyen-Thoi et al. (2012) have 
recently formulated a cell-based smoothed discrete shear gap method (CS-FEM-DSG3).
In the CS-FEM-DSG3, each triangular element will be divided into three sub-triangles,
and in each sub-triangle, the original plate element DSG3 [Bletzinger et al. (2000] is
used to compute the strains and to avoid the transverse shear locking. Then the cell-based 
strain smoothing technique (CS-FEM) is used to smooth the strains on these three sub-
triangles. The numerical results showed that the CS-FEM-DSG3 is free of shear locking 
and achieves the high accuracy compared to the exact solutions and others existing 
elements. 

This paper hence aims to present a brief outline of the CS-FEM-DSG3 and its recent 
developments in some different analyses such as: flat shells [Nguyen-Thoi et al.
(2013d)], stiffened plates [Nguyen-Thoi et al. (2013e)], FGM plates [Phung-Van et al.
(2013a)] and piezoelectricity plates [Phung-Van et al. (2013b)], etc.

Weakform for the Reissner-Mindlin plate 

Consider a plate under bending deformation. The middle surface of plate is chosen as the 
reference plane that occupies a domain 2R as shown in Figure 1.
Let w be the transverse displacement (deflection), and T

x y     be the vector of 

rotations, in which x , y are the rotations of the middle plane around y-axis and x–axis, 
respectively, with the positive directions defined as shown in Figure 1.
The unknown vector of three independent field variables at any point in the problem 
domain of the Reissner-Mindlin plates can be written as T

x yw     u . The 
curvature of the deflected plate  and the shear strains  are defined, respectively, as

d L  ; w   (1)

where  / / T
x y      , and dL is a differential operator matrix. 

The standard Galerkin weakform of the static equilibrium equations for the Reissner-
Mindlin plate can now be written as: 
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d d dT b T s T  
  

      (2)

where b is the distributed load applied on the plate. The matrices bD and sD are the 
material matrices related to the bending and shear deformation. 

Figure 1. Mindlin plate and positive directions of deflection w and rotations x , y

Formulation of  the CS-FEM- DSG3 

A brief outline on the formulation of DSG3 

Using a mesh of eN triangular elements such that 
1

eN

e
e

   and i j   , i j ,

the approximation 
Th

x yw     u for a three-node triangular element e shown in 
Figure 2 for the Reissner-Mindlin plate can be written, at the element level, as

3 3

1 1

( )

( ) 0 0
0 ( ) 0 ( )
0 0 ( )

I

I
h
e I eI I eI

I I
I

N
N

N 

 
   
  

 

N x

x
u x d N x d

x
(3)

where [   ]T
eI I xI yIw  d are the nodal degrees of freedom of h

eu associated to node I and
( )IN x is linear shape functions in a natural coordinate defined by

1 2 31 , ,N N N        (4)

Figure 2. Three-node triangular element and local coordinates in the DSG3.
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The bending and shear strains can be then expressed in the matrix forms as:
e Bd , e Sd (5)

where  1 2 3
T

e e e ed d d d is the nodal displacement vector of element, B and S
contain the derivatives of the shape functions that are constants such as

21 3

1 2 3

0 0 0 0 0 0
1 10 0 0 0 0 0

2 2
0 0 0e e

b c c b
d a d a

A A
d a b c d c a b

  
         
     

BB B

B B B B (6)

 

21 3

1 2 3

0 / 2 / 2 / 2 / 21 1
0 / 2 / 2 / 2 / 22 2

e

ee e

b c A c ac bc b bd bc
Ad a d ad bd c ad acA A

    
      

SS S

S S S S
(7)

with a, b, c, d are geometric distances as shown in Figure 2 and eA is the area of the 
element e .

Substituting Eqs. (3) and (5) into Eq.(2), the global stiffness matrix now becomes

1

eN

e
e

K K (8)

where eK is the element stiffness matrix and is computed by

d d
e e

T b T s T b T s
e e eA A

 
     K B D B S D S B D B S D S (9)

Basing on the formulation, it is seen that the element stiffness matrix in the DSG3 
depends on the sequence of node numbers of elements, and hence the solution of DSG3 
is influenced when the sequence of node numbers of elements changes, especially for the 
coarse and distorted meshes. The CS-FEM-DSG3 is hence proposed to overcome this 
drawback and also to improve the accuracy as well as the stability of the DSG3.

Formulation of CS-FEM-DSG3

In the CS-FEM-DSG3 [Nguyen-Thoi et al. (2012)], the domain discretization is the same 
as that of the DSG3 [Bletzinger et al. (2000)] using Nn nodes and Ne triangular elements. 
However in the formulation of the CS-FEM-DSG3, each triangular element is divided 
into three sub-triangles by connecting the central point O of the element to three field 
nodes as shown in Figure 3. Using the DSG3 [Bletzinger et al. (2000)] formulation for 
each sub-triangle, the bending and shear strains in 3 sub-triangles are then obtained, 
respectively, by

, 1,2,3j j

e e j  = B d (10)

, 1, 2,3j j

e e j  = S d (11)

where ed is the vector containing the nodal degrees of freedom of the element; jB , jS
, j = 1,2,3, are bending and shearing gradient matrices by the DSG3 [Bletzinger et al.
(2000)] of jth sub-triangle, respectively.
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Figure 3. Three sub-triangles ( 1 , 2 and 3 ) created from the triangle 1-2-3
in the CS-FEM-DSG3 by connecting the central point O with three field nodes 1, 2 

and 3.

Now, applying the cell-based strain smoothing operation in the CS-FEM [Liu et al.
(2010a)], the bending and shear strains j

e
 , j

e
 , 1, 2, 3j  are, respectively, used to 

create element smoothed strains e and e on the triangular element e , such as:

;e e e e d  (12)

where  and S are the smoothed strain gradient matrices, respectively, given by
3 3

1 1

1 1;j j

j j
j je e

A A
A A

 
 

 

  S S  (13)

Therefore the global stiffness matrix of the CS-FEM-DSG3 is computed by
d dT b T s T b T s

e eA A
 

     K B D B S D S B D B S D S (14)

Advantages of CS-FEM-DSG3 
Through the formulation of CS-FEM-DSG3 [Nguyen-Thoi et al. (2012)], it is seen that 
the method is simple and only based on three-node triangular elements without adding 
any additional DOFs. The CS-FEM-DSG3 is free of shear locking and pass the patch 
test. The method can be seen as an effective tool for analyses of Mindlin plates. Through 
the numerical examples of CS-FEM-DSG3 [Nguyen-Thoi et al. (2012)], the method
shows four superior properties such as: (1) be a strong competitor to many existing three-
node triangular plate elements in the static analysis; (2) can give high accurate solutions 
for problems with skew geometries in the static analysis; (3) can give high accurate 
solutions in free vibration analysis; (4) can provide accurately the values of high 
frequencies of plates by using only coarse meshes. 

Extension of the CS-FEM-DSG3 to some others applications
Due to its superior and simple properties, the CS-FEM-DSG3 has been extended quickly 
to some different analyses.

First, by adding three degrees of freedom of the membrane and rotation 
displacements, together using the coordinate transformation matrix, the CS-FEM-DSG3 
is easy to extend to the flat shell element [Nguyen-Thoi et al. (2013d)]. This extention 
hence highlights the advantage of the method which uses only tringular elements, 

sub-triangle



1

2
3

central point

O
1 3

2
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because the geometry of shell structures is often much more complicated than that of the 
plate structures.

Next, by combining with a membrane element and stiffened by a thick beam element
Timoshenko, the CS-FEM-DSG3 is extended to the stiffened plates [Nguyen-Thoi et al.
(2013e)]. In this element, the eccentricity between the plate and the beam is included in 
the formulation of the beam. The compatibility of deflection and rotations of stiffeners 
and plate is assumed at the contact positions. 

Next by using 7 degrees of freedom, the CS-FEM-DSG3 is extended to the C0-type 
high-order shear deformation plate theory for the static and free vibration analyses of 
functionally graded plates (FGPs) [Phung-Van et al. (2013a)]. In the FGPs, the material 
properties are assumed to vary through the thickness by a simple power rule of the 
volume fractions of the constituents. In the static analysis, both thermal and mechanical 
loads are considered and a two-step procedure is performed including a step of analyzing 
the temperature field along the thickness of the plate and a step of analyzing the behavior 
of the plate subjected to both thermal and mechanical loads. 

And recently, by combining the degrees of membrane displacement and electric
potential, the CS-FEM-DSG3 is further extended for the static, free vibration analyses 
and dynamic control of composite plates integrated with piezoelectric sensors and 
actuators [Phung-Van et al. (2013b)]. In the piezoelectric composite plates, the electric 
potential is assumed to be a linear function through the thickness of each piezoelectric 
sublayer. A displacement and velocity feedback control algorithm is used for the active 
control of the static deflection and the dynamic response of plates through the closed 
loop control with bonded or embedded distributed piezoelectric sensors and actuators. 

Conclusions

The paper presents a brief outline and recent developments of the CS-FEM-DSG3 using 
three-node triangles. In the original plate element, each triangular element will be divided 
into three sub-triangles, and in each sub-triangle, the original plate element DSG3 is used 
to compute the strains and to avoid the transverse shear locking. Then the cell-based 
strain smoothing technique (CS-FEM) is used to smooth the strains on these three sub-
triangles. Through the formulation and numerical examples, it is seen that the CS-FEM-
DSG3 is an effective tool for analyses of Mindlin plates. And due to its superior and 
simple properties, the CS-FEM-DSG3 has been extended quickly to some different 
analyses such as flat shells, stiffened plates, FGM plates, and piezoelectricity composite 
plates, etc.  
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Figure 1. Model geometry 

Figure 2. Weld geometry parameters 
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Figure 3. Finite element mesh 
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Figure 4. Residual stress produced by applying the strain of 0.00164 at elements 
near the weld toe 

Figure 5. Residual stress, pure loading stress and combination of residual stress 
and loading distribution along X direction 
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Figure 6. Comparison between stresses in the critical point when RS exists and 
does not exist for loadings of 2, 4, 6 and 8 kN 

Table 1. Comparison between stresses and strains and number of cycles in the 
critical point when RS exists and does not exist for loadings of 2, 4, 6 and 8 kN
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Figure 7. Distribution of four RS along X-direction generated by applying initial 
strains 

Table 2. Number of fatigue life cycles predicted by S-W-T equation 
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Abstract
Design optimization for engineering problems often requires severe computer 
simulations. Thus, to perform a design optimization efficiently, surrogate models 
replacing the time-consuming simulator by using the adequate number of computer 
experiments, i.e., design and analysis of computer experiments (DACE) have been 
developed. Our goal in this paper is to propose a sequential design of experiments to 
construct a global surrogate model. The proposed method employs the priority of 
variables defined from non-linearity, contribution ratio or global sensitivity. The 
priority gives a chance to have better projective property to more important variable, 
because relatively more important variable significantly influences on the accuracy of 
surrogate model. Consequently this causes a decrease in the error of surrogate model 
and a reduction of the total number of sample points. The proposed method is 
compared with sequential maximin distance design and optimal Latin hypercube 
design with two examples. 

Keywords: Design of experiment (DOE), Sequential design, Maximin distance 
design, Space filling design, Projective property, Surrogate model  

Introduction 

In engineering problems, design often requires computer simulations to evaluate 
design objectives and constraints. If a single simulation is severe time-consuming, 
design optimization becomes impossible because it often requires the considerable 
number of simulations. One way of alleviating this burden is to employ surrogate 
models, for instance, response surface model (RSM), radial basis function (RBF) and 
kriging model. The basic concept of surrogate model is to approximate relation 
between input and output for predicting responses at untried input within the adequate 
number of computer experiments. This can reduce the computational cost by 
replacing the high-fidelity simulator. However, since inaccurate surrogate model can 
give incorrect responses, appropriate design of experiment is necessary to generate 
accurate surrogate model. Thus, many studies have been performed to suggest criteria 
of superior design of experiment and to implement the algorithm to enhance the 
efficiency. Among many criteria, we focus on two criteria such as space filling and 
projective property. And as a method for enhancing efficiency, sequential design 
method is adopted. In the following paragraphs, we briefly review earlier researches 
for two criteria and sequential design methods. 

One of representative criteria for computational experiment is the space filling that 
sampling points fill design space uniformly. The space filling criterion has been 
developed to obtain information effectively on the overall design domain because 
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computational experiment is deterministic. Many researchers have proposed different 
criteria to define the space filling design. Thus, the criteria provide optimal sample set 
accompanied with optimization algorithm and a sample set can be different according 
to the criteria in spite of the same number of sample points. One of these criteria is 
maximin distance that tries to maximize the smallest Euclidean distance between any 
two sets of points over design domain (Johnson, 1990). It is simple and easy to 
implement, so it is widely used in practice. Maximum entropy design was introduced 
(Shewry and Wynn, 1987). Entropy is defined as the matrix that consists of entropy 
function value of each sample point such as Gaussian form. By maximizing 
determinant of entropy, evenly distributed sample set can be achieved. As a further 
study, to reduce its computation cost and resolve singularity problem, maximim 
eigenvalue design was suggested (Lee and Jung, 2004). In general, however, above 
space filling criteria cannot simultaneously consider projective property that is a 
space filling in terms of each axis. Fig. 1-(a) shows the best space filling, but 
projective property is not considered at all, i.e., collapsing arose. In addition, the 
criteria cannot reflect the behavior of output but consider only relations of input. Thus, 
to obtain more information of an important variable, the scaled maximin distance 
design was proposed (Jin  Chen, 2002) that gives dimensional weighting to more 
important variable but it still could not solve the problem of overlapping of sample 
points as shown in Fig. 1-(b). 

Another criterion is projective property. It is also called non-collapsing or non-
overlapping property. It is important to consider distances that are projected to axis of 
each variable. If a certain variable ‘xi’ has no influence on the output, two design 
points that are only different a coordinate of the variable ‘xi’ are considered as the 
same point. Therefore, two design points should not share any coordinate values. In 
the early days, design method considering projective property were used in the field 
of safety diagnosis, reliability analysis or uncertainty propagation. Latin hypercube 
design (LHD) is representative method (Mckay, 1979). Even now, various design 
method based on LHD have been steadily proposed. However, there are some 
problems in LHD whose sample points are biased, distorted or clustered as shown in 
Fig. 1-(c). In order to resolve this problem, optimal Latin hypercube design (OLHD) 
was developed by employing optimization concept in previous work (Morris and 
Mitchell, 1995; Park, 1994). OLHD compromises between optimal criterion such as 
entropy and Latin hypercube with the good projection properties. However, 
depending on increase of the number of sample points and variables, it takes too 
much time to optimize and optimal sample set can be unstable. And design based on 
LHD is difficult to employ sequential design since area of one sample point is 
determined in advance according to the number of sample points and variables.  

Meanwhile, most of the authors are concerned these criteria as one shot approach that  
sample points are selected over the design space in advance. However, since a 
simulator is nonlinear and complex, a designer is hard to predict how many sample 
points are necessary to achieve the sufficient accuracy of surrogate model. Thus, in 
order to solve this problem, sequential design methods have been proposed. It allows 
the sampling process to be stopped as soon as there is sufficient information as data 
accumulate. Also, it takes information such as predicted response, contribution, 
nonlinearity of variables and mean squared error (MSE) gathered from existing 
surrogate model updated sequentially with new sample points and the associated 
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response evaluations. These are significantly advantageous compared to one shot 
approach.

Sequential design can be used for both global surrogate model and surrogate model-
based design optimization. Sequential design for global surrogate model focuses on 
sequentially improving the accuracy of a surrogate model over the entire design space, 
but sequential design for surrogate model-based design optimization finds promising 
area where optimum point can be exist. The latter is also called infilling sampling 
method that gives up space filling. As one of the latter method, mean squared error 
gathered from kriging model based design of experiment (Sacks and Welch, 1989). 
And expected improvement (EI) was suggested in work by Mockus, Tiesis, and 
Zilinskas (1978), and has been popularized in work by Jones, Schonlau, and Welch 
(1998) as an efficient global optimization (EGO) algorithm. EI is the function 
whereby points that have either low objective function value or high uncertainty are 
preferred.

This paper focuses on a global surrogate model by using sequential design method. 
To enhance the efficiency, the priority of variables is defined, that derived from 
output information, i.e., nonlinearity of variable, contribution of variable, global 
sensitivity or even intuition of a designer. In addition, both space filling and 
projective property is simultaneously considered to improve the accuracy quickly. At 
last, the proposed method, sequential projection maximin distance design, overcome 
drawbacks of earlier space filling design and projective property based design. The 
proposed method is compared with sequential maximin distance design and optimal 
Latin hypercube design with two examples. 

(a) space filling design, (b) scaled space filling design, (c) LHD, (d) OLHD 
Figure  1. Examples of existing design methods: sample points on 2-D (blue) and 

those projected to axis (red) 

Sequential projection maximin distance design 

Formulation of the proposed method 

Sequential projection maximin distance design is proposed based on maximin 
distance design. Original maximin distance design doesn’t use output information 
gathered from existing surrogate model but use only input information, i.e., distance 
between pre-sampled points. Thus, to select a new sample point(s), we introduce 
sequential projection maximin distance design. The proposed method employs 
priority of variables. If one variable is more important than the other variables, 
priority should be assigned to that variable. The priority gives chance to have better 
projective property to more important variable. In other word, relatively less 
important variable’s projective property does not significantly influences on accuracy 
of surrogate model. Thus, according to priority, each variable is sequentially 
optimized in iteration. And in order to satisfy space filling criterion, first optimized 
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variables continually influence on an objective function, i.e. modified distance. The 
steps of new method are: 

Step 1 Define priority measure and gather information of priority from existing 
surrogate model. 
Step 2 Maximize the proposed criterion made up of Min. l1 norm of 1st priority 
variable
Step 3 Maximize the proposed criterion made up of Min. l2 norm and Min. l1 norm of 
2nd priority variable with optimized 1st priority variable. 
Step 4 Repeat step 3 until the last variable. 

Above steps can be formulated as Eq. (1) 
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where xE are existing sample points and nd is the number of variables.  
In this method, it is important to define the priority since it decisively determines 
accuracy of surrogate model. The priority of variable can be defined from 
nonlinearity of variable, contribution of variable, global sensitivity or even intuition 
of designers. Among them, we employ the nonlinearity of variable that can be 
alternated by correlation parameters, k, in kriging model. The correlation parameters 
indicate smoothness of xk coordinate. The smaller k linear effect on the response of 
the variable, impact on the response is non-linear as the k increases.

Proposed method comparison with sequential maximin distance design and OLHD 

The proposed method is compared with sequential maximin distance design and 
OLHD in order to show or not it meets above criteria, space filling and projective 
property. Experiments are carried out sequentially one by one on 2-dimensional 
domain from initial 6 sample points, 4 on vertex and 2 on center. And since OLHD 
cannot provide sequential design, we perform experiments at the same number of 
sample points in order to compare the surface of distribution of sample points. We 
use genetic algorithm as an optimizer provided by matlab R2011 to select a new point, 
and OLHD is also designed by matlab toolbox. 

Fig. 2-(a) show results of sequential maximin distance design. We can check a first 
optimized sample point is located in bottom line. It is the best position as an aspect of 
space filling, but it can be the worst position in terms of vertical axis. A second 
optimized sample point also similar. Also after adding 18 points, the trend of result is 
same.  
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The results of OLHD in Fig. 2-(b) are the opposite of the results of sequential 
maximin distance design. While projective property is sufficiently conscious, space 
filling is poor.  

Even if one sample point is selected, the results of the proposed method in Fig 2-(c) 
show its characteristic well. The first optimized point satisfies projective property 
both horizontal and vertical axis. And after adding 18 points likewise above method, 
while not lose space filling, projective property is maintained very well. 

(a) Sequential maximin distance design (sequentially sampled from 6 to 24) 

(b)OLHD (one shot approach) 

(c) Sequential projection maximin distance design (sequentially sampled) 
Figure  2. Surface of distribution of samples using three methods: pre-sampled 

points (blue), projected points (black) and  a new point (red) 

Examples

The two examples are utilized in order to show the performance of proposed method. 
Since we focus on build up accurate global surrogate modeling, the accuracy, i.e. 
error is used as a performance measure. 

Mathematical example 

The first example is a mathematical example in 2-D that can easily obtain responses 
and know real response. The equation of example is as following; 

1,0,12)xcos(25.0)2cos(8)( 2121  xxxf x  (2) 

The experiment is carried out in the following procedure. 
Step 1 Select initial sample points. 
Step 2 Build up surrogate model, i.e. kriging model with initial sample points. 
Step 3 Predict responses at validation points, and measure the error. 
Step 4 Select a new sample point according to each method. 
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Step 5 Repeat steps 2~4 until pre-defined maximum iteration and skip step 4 in last 
iteration.
Validation points are 92 from full factorial design (FFD) and we employ a mean 
relative error (MRE) as follows; 

  100
ˆ

% 










 


Y
YY

EMRE  (3) 

Figure  3. History of error for mathematical example as adding sample points; 
21, 29 and 30 mean the first number of sample point satisfying 1% error 

Errors of kriging model made by the three methods are decrease as adding sample 
points. It means that kriging model becomes more accurate as added pre-sampled 
points. However, error using the proposed method (SP-maximin) considering 
projective property according to priority of variables decreases faster than two other 
methods. Thus, the proposed method can reduce 8 or 9 experiments. Errors of OLHD 
as the one shot approach fluctuate since its distribution of sample points is change. 

Engineering example 

The second example is an engineering example with 10 design variables that takes 
more time and cost. Target model is a front cradle in a passenger vehicle released by 
GM Korea. 10 thickness values are considered as design variables. Analysis purpose 
is to make plastic deformation of front cradle under target value. Abaqus is used as 
analyzer. The experiment is carried out in the following procedure. 

Step 1 Select initial sample points. 
Step 2 Build up surrogate model, i.e. kriging model with initial sample points. 
Step 3 Predict responses at validation points. 
Step 4 Measure the error. 
Step 5 Stop if error is under 1% five times in a row.  
Step 6 Select a new sample point according to each method. And go step. 2 
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Figure  4. Finite element model of a front cradle 

Cross validation (one-leave-out) is employed since adding points is also time-
consuming. Initial sample points are obtained from OLHD and they are used for 
validation points. Lastly OLHD is not considered in this example. 

Figure  5. . History of error for an engineering example as adding sample points: 
53 and 89 mean the last number of sample point satisfying 1% error 5 times in a 

row

Likewise a mathematical example, the error of the propose method decreases faster 
while the proposed method reduce the total number of sample points. It means the 
proposed method save about 6 hours since 1 simulation takes about 10 minute. 

Conclusions

The sequential design method to create global surrogate model accurately is proposed 
in this paper. The proposed method employs the priority of variables defined from 
non-linearity, contribution ratio or global sensitivity. The priority gives a chance to 
have better projective property to more important variable. Consequently more 
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information of variables in the priority can be obtained by using the proposed method. 
This decreases the error of surrogate model and reduces the total number of sample 
points. In order to show the performance of the proposed method, kriging model is 
introduced and correlation coefficients of kriging model are considered as a criterion 
defining the priority. And sequential maximin distance design and optimal Latin 
hypercube design are used for comparison. The mathematical example that consists of 
a highly nonlinear variable and a moderately linear variable shows an advantage of 
the proposed method well. And there is a remarkable difference between the 
convergence histories. This is because a curve of the highly nonlinear variable is well 
fitted when projective property of it is fully represented. Even if the response is 
unpredictable, this merit still exists. In engineering example, the finite element model 
of front cradle in the vehicle, a sampling with the proposed method is stopped after 
53th iteration under defined stop criterion. In other word, the proposed method uses 
119 sample points to create a sufficiently accurate surrogate model and it uses less 36 
sample points than using sequential maximin distance design. In terms of time, an 
engineer can save 6 hours since 1 simulation takes about 10 minute. As a result, the 
sequential projection maximin distance design helps engineers to solve the problems 
in that only a part of variables are important.
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Computational Fluid Dynamics (CFD) Simulations of Dispersed Flow of 
Viscous Oil in Water in a Horizontal Pipe

Abstract
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2. Computational domain and methodology 
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Figure 1. A plot of the computational mesh on the surface of the pipe showing polyhedral cell 
types. The pipe was discretized using 470 thousand polyhedral cells. Pipe length = 5.0 m and
diameter = 26.0 mm.

3. Results and Discussions
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Figure 2. Plot of volume fraction of oil at different L for dispersed flow of oil drop diameter = 
1.0 mm. Positive L resembles more closely with experiment as compared with negative L. 

Figure 3. Plots of volume fraction of oil at different oil drop diameter, and L for dispersed 
flow. L = 0.01 and = 4.0mm or 8.0mm resemble more closely with the experiment as oil core is 
displaced vertically upwards.
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Figure 4. Plot of pressure drop reduction factor versus oil drop diameter at o = 0.64m/s and w
= 2.20m/s for dispersed flow. For all L, when oil drop diameter, increases from 4.0mm to 8.0
mm, pressure drop reduction factor, also increases. The increase in is more significant for 
higher L.    

1352



 

Figure 5. Plots of oil volume fraction for different water superficial velocities w. Oil drop 
diameters = 4.0mm and 8.0mm. Constant parameters are lift coefficient L = 0.01 and oil 
superficial velocity o = 0.64m/s. When w increases from 2.20m/s to 2.60m/s, oil concentration 
decreases. There is a tendency the oil droplets to congregate at the centre of the pipe forming a 
core-annular-like flow.
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Figure 6. Plot of pressure drop reduction factor versus water input ratio for dispersed flow. Oil 
superficial velocity, o, is kept constant at 0.64m/s and water superficial velocity, w, varies from 
2.2m/s to 2.6m/s. 

4. Conclusions
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Grid Generation for Screw Compressors with Variable Geometry Rotors 
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Abstract 

Keywords:

Introduction 

Figure 1.Sectioned view of a 
Twin Screw Compressor Figure 2. Variable Pitch Screw Rotors
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Figure 3. Numerical grid in a cross section Figure 4. Cross sectional spacing for uniform 
and variable pitch rotors

Grid Generation 
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Figure 5. Variable Pitch and Variable Profile Grid Generation
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Figure 6. Numerical grid for 
variable pitch screw rotors

Figure 7. Numerical grid for uniform pitch, 
variable profile rotors

CFD Analysis 

Case 1.
Case 2.

Case 3.

Table 1. Size of refined grids, number of nodes 

Case Uniform Variable Pitch Variable Profile

Coarse

Medium

Fine

DischargeEnd

Suction End
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Figure 8. Compressor model with variable profile rotors  

Results and Discussion 

Pressure field 
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Figure 9. Pressure variations in the variable pitch rotors  with discharge pressure 2.0 bar

Figure 10. Indicator diagram

Influence of Grid Refinement 
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Figure 11. Effect of grid refinement on integral parameters  

Influence of Turbulence Model 

Sealing Line Length 

Table 2. Comparison of Interlobe Sealing Line Length [mm] 
Interlobe

No Uniform Variable 
Pitch Difference Var.

Prof Difference

1
2

3 (part)
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Figure 12. Comparison of interlobe sealing line lengths  

Blow-hole area 

Table 3. Comparison of Blow-hole area [mm2]

Position Uniform Var.
Pitch Diff % Var.

Profile Diff %

Suction

Mid

Discharge
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Figure 13. Comparison of Blow-hole area 

Overall performance 

Figure 14. Influence of discharge pressure on overall compressor performance
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Abstract
In achieving accurate results, current nonlinear elastic recovery applications of finite 
element (FE) analysis have become more complicated for sheet metal springback 
prediction.  In this paper, an artificial neural network (ANN) was used to mimic the 
nonlinear elastic recovery and provides a generalized solution in the FE analysis. The
nonlinear elastic recovery was processed through back-propagation networks. This 
approach is able to perform pattern recognition and create direct mapping of the 
elastically-driven change after plastic deformation. The FE program for nonlinear 
elastic recovery experiment was carried out with the integration of ANN. The results 
obtained at the end of the FE analyses were closed to the measured data. 
Keywords: Finite element, neural network, non-linear recovery, springback prediction  

Introduction

One of the problems in the sheet metal forming process is the springback 
phenomenon. This phenomenon occurs due to the elastic recovery, which is 
influenced by the elastic properties and the plastic flow of the sheet metal material. 
Although the elastic recovery contributes only small strain if compared to the plastic 
strain, the final shape of a sheet metal forming product is significantly affected due to 
the accumulative small strain in corner radii and sidewall of curved surface (Kim et 
al. 2013). Most of the current finite element (FE) method practices still utilize the 
classic elastoplasticity theory, which assumes that the unloading modulus after plastic 
deformation is parallel to the initial Young’s modulus. However, several 
investigations have shown that the unloading modulus is influenced by accumulated 
plastic strain (Cleveland and Ghosh 2002; Li et al. 2002; Yoshida et al. 2002; Andar 
et al. 2010). Furthermore, several investigations have found that the unloading stress-
strain curve actually shows nonlinear elastic recovery (Cleveland and Ghosh 2002;
Cáceres et al. 2003; Andar et al. 2010; Chatti and Hermi 2011; Sun and Wagoner 
2011). The  development of an additional surface in the yield surface (Eggertsen and 
Mattiasson 2010) and the transition of the elastic to the plastic model (Quasi-Plastic-
Elastic model) (Sun and Wagoner 2011) have been proposed for the description of 
nonlinear elastic recovery in constitutive modeling. However, due to the complexity 
of developing the nonlinear recovery model, the variable elastic modulus achieves a 
relatively wider range of application in springback predictions (Chatti and Hermi 
2011; Zhu et al. 2012).   

The applications of an artificial neural network (ANN) as the parameters 
identification tool for the FE springback analysis provide solution without solving the 
nonlinearity problems(Aguir et al. 2008; Kazan et al. 2009; Veera Babu et al. 2010;
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Aguir et al. 2011). Thus in this paper, ANN was used to mimic the nonlinear elastic 
recovery and provides a generalized solution in the FE analysis. The implementation 
of ANN in the constitutive model of the FE software requires an additional technique 
to achieve better generalization. This is to ensure that the developed ANN model is 
utilizable in a wide range of the FE springback analysis.    

Methodology 

The application of ANN is split into the curve regeneration and interpolation 
coefficient parts.  A new curve is generated from the raw experimental data and the 
output is used as an input to the interpolation coefficient part. This procedure is 
discussed further in the next subsection.    

3.1   The Database and its Regeneration 
This study utilized the experimental data that have been published by (Sun and 
Wagoner 2011). The published data were chosen based on their comprehensiveness in 
providing information from the identification of material parameters until the 
measurement of springback. Figure 1 shows the tensile test result for a DP 980 steel 
sheet with intermediate unloading cycles. The hysteresis loops are noticeable 
significantly as the flow stresses increase prior to unloading. Figure 2a shows the 
magnified view of the fourth cycle from Figure 1. A chord modulus ( ) of 145GPa 
and an initial Young’s modulus ( ) of 208GPa are shown for comparison. It is 
shown that the current elastic modulus ( ) varied at different normalized stress 
points . Figure 2b shows the regeneration of the unloading curve by the first 
ANN, whose architecture was investigated in two cases, as shown in Table 1. The 
true strain and true stress are the input and the output of the network.  

Figure 1. Tensile test result for DP 980 steel with intermediate unloading cycles

3.2   Determination of Interpolation Coefficient 
In the second ANN, the input and output data of the network are formed based on the 
regenerated curve in Figure 2b. An interpolation model is applied to interpolate the 
range between  and at every normalized stress point as shown in 
Eq.(1). 

                                   (1) 
where  and  are the input and output of the network training.  
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Table 1. Neural network training parameters

Parameters Case 1 Case 2
Training function Trainlm (LM) Trainlm (LM)
Hidden layer 3 3
Neuron per layer 20, 20, 20 2, 2, 2

Figure 2. (a) Magnified view of the fourth unloading-reloading with and 
(Sun and Wagoner 2011) (b) new unloading curve regenerated by first ANN

3.3   ANN to FE analysis link establishments 

The second ANN is completely trained and the neuron weights and biases are
extracted in the form of matrices. A feedforward network from the matrices is 
implemented into the user defined material subroutine. In the FE analysis, need to 
be updated at every increment of the unloading/reloading process. The function of the 
feedforward-network-based constitutive model in the FE model at every increment is 
as follows: 

(i) For (i +1)th strain increment, the input of the network is the value of the 
normalized stress point, , where  and are given by the current 
stress and current yield stress. To distinguish the input between unloading 
and reloading processes, the input is expressed as  and 
.    

(ii) is then calculated by reversing Eq. (1) as:

(2) 

Results and Discussion

The variation of the unloading elastic modulus is a function of plastic pre-strain and it 
contributes to the size of hysteresis loops, as shown in Figure 1. Therefore, ANN 
prediction of the unloading curve cannot be utilized in the constitutive model if it is 
only based on the true strain and true stress as the input and output of the network. 
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This is due to the stresses along the unloading curve that need to be updated at every 
iteration as a product of and true strain. By determining the relation of with 
and at the fourth loop, the product of Eq.(1) is able to represent all other loops 
based on the provided  and .

Figure 2b shows the result of the curve regeneration which consists of a closely fitted 
curve and a highly fitted curve by the first ANN. This fitting accuracy has a 
significant effect on the architecture of the second ANN. In the first case, the first 
ANN regenerates the unloading curve with high accuracy. A fluctuating step curve is 
produced when the slope determination is based on the highly fitted unloading curve, 
as shown in Figure 3a. In the second ANN part, high accuracy is essential as the 
result was utilized directly into the FE analysis. Therefore, a network training with a 
highly fitted training set requires 20 neurons in its first, second, and third hidden 
layer. This network consumes a very high computational cost and time. Furthermore, 
the prediction of experiencing distortions at every step curves, as shown in Figure 
3b. The distortions are the source of error when the predictions were transferred into 
FE analysis.

In the second case, the first ANN regenerates the unloading curve with a closely
fitting accuracy and it results in quite a smooth curve, as shown in Figure 4a. In order 
to obtain such a smooth curve, the selection of network architecture with low number 
of neurons is essential, which determines the accuracy of the model with regard to the 
particular set of data. In the second ANN part, a network training with a closely fitted 
training set only requires eight neurons in its first, second, and third hidden layer,
which results in low computational consumption. In addition, the prediction of 
experiencing a smooth mapping, as shown in Figure 4b. 

Figure 5 shows a comparison of the overall fit by the FE analysis using the current 
model with the experimental data. Although the network training was based on the 
fourth cycle, the overall prediction fit obtained was adequate. The result also shows
that a closely fitting ANN prediction was adequate to achieve closeness to the 
experimental data in the FE analysis.

Figure 3. Case 1:(a) Elastic modulus determination;(b)interpolation coefficient 
prediction
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Figure 4. Case 2:(a) Elastic modulus determination;(b)interpolation coefficient 
prediction

Figure 5. Comparison of overall fit by the FE analysis by using ANN prediction 
model

Conclusions

The above work demonstrates the ability of ANN to predict the relation between the 
nonlinear elastic modulus, the initial Young’s modulus, and the chord modulus. It is 
shown that the model is well implemented in the finite element analysis to achieve 
closeness to the experimental data. With its generalization, this approach is suitable to 
be used in other finite element model of sheet metal forming to predict springback. 
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Abstract 

This research work was focused on probabilistic finite-element analysis of a surface crack growth 
distribution and its sustainabality. Implementation of S-version Finite Element Model (s-FEM) 
performs an improvement in the finite-element analysis. The application of s-FEM was by 
superposed the local dense finite-element mesh on the global coarse finite-element mesh. An 
adaptive mesh refinement method implemented to provide local mesh refinement without 
introducing a transition region. The Monte Carlo method embeds with s-FEM for reliability analysis 
of the structural system with a combination of random parameters. The generated random 
parameters by Monte-Carlo method activate as an input in the s-FEM sampling process. In order to 
improve the sampling process, Latin hypercube was implemented and validated with Monte Carlo. 
Probabilistic research was conducted based on s-FEM results and presented the uncertainty in the 
model. Numerical example was showed that probabilistic analysis based on s-FEM simulation 
provides accurate estimation of crack growth distribution. The comparison shows that the 
association between s-FEM analysis and probabilistic analysis provide an effortless and faithful of 
quantify the failure probability.  

Keywords: Surface crack, S-version Finite Element, Probabilistic, Monte Carlo, Reliability. 

Introduction 

A crack shape development was first discovered by (Newman Jr and Raju 1981). An assumption 
was made for an initial semi-elliptical surface crack. It will maintain their shape until a fracture 
occurs with an increment of crack was based on Paris law (Hou 2011). Numerous studies have 
investigated the evolution of crack shape through the alternative current field measurement 
technique, various aspect ratios and the stress intensity factor of corner cracks and round bars. The 
growth rate of the crack shape has a tendency to slow down at the free surface, and hence the usage 
of a semi-elliptical crack shape in the simulation process allowed it to evolve in a way that was 
close to reality. Then the crack shape evolution was independent of the semi-elliptical shape. 
 
Predictions of crack shape and failure of a structure were a challenging problem in fatigue analysis. 
This was due to the uncertainty in parameter, complicated meshing technique and expensive 
computation process. Traditionally, the randomness of parameters was considered in safety factor 
approach and re-meshing process was constructed for the whole domain. It leads to time consuming 
computing process when the whole structure was involved in a re-meshing process for each crack 
growth. Therefore, analysis that considers any variation in parameter with feasible meshing 
technique is needed. 
 
The development of the two-dimensional finite-element analysis has been established for the last 
few decades (Hou 2004). Nonetheless, modelling intricate geometries is one of the major 
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challenges, due to the high gradient solution in a complex geometry. In order to enhance the finite 
element solution, adaptive h- and p-methods are introduced. The h-method keeps the order of the 
elements’ approximation and subdivides them into smaller sizes. Meanwhile, the p-method 
increases the order of the approximation while maintaining element size. The efficiency of these 
methods still needs to be improved by subdividing the finite element mesh using the h-method and 
increasing the degree of the polynomial using the p-method. Therefore, (Fish 1992) introduced hp 
procedures, in order to integrate the improvement of polynomial order and mesh refinement. The 
hp-method, the so-called S-version of Finite Element Model (S-FEM) consists of superimposing 
elements between a local and a global finite element mesh. 
 
The S-FEM has been applied to a diverse range of applications such as heat-affected zone material 
(Kikuchi et al. 2010; Kikuchi et al. 2012), corrosion cracking (Kikuchi et al. 2011), the crack 
closure effect (Kikuchi et al. 2010) and composite material (Angioni et al. 2012). Various types of 
load behaviours (Kikuchi et al. 2010; Kikuchi et al. 2010; Kikuchi et al. 2010; Kikuchi et al. 2011) 
have become an issue in numerical implementation. The most remarkable is fatigue loading since it 
represents actual loading cases in practice. Fatigue loading is a leading cause of fracture in 
structures due to long-term cyclic loading. The integrity of the structure can be questioned when a 
crack is discovered in a structure. The sustainability of the structure needs to be evaluated in order 
to avoid a disaster, especially when a crack is detected. Surface cracks are frequently found in 
aeronautical panels, extrusion press cylinders, riveted aeronautic reinforcements and pressure 
vessels due to random loading, material, the environment, and so on. 
 
In this paper, probabilistic S-FEM (ProS-FEM) was developed together with fatigue analysis of 
surface cracking. The main objective of this paper was to evaluate the growth of surface cracks 
under bending cyclic loads while considering uncertainty in the parameters. A fatigue load was 
applied throughout the three-dimensional simulation model. The calculation of the stress intensity 
factor was based on the virtual crack closure technique. The prediction of the crack growth rate was 
based on Paris’s law. In order to predict the range of crack shape development, a new approach is 
presented in this paper. Experimental works were carried out to validate the simulation data. A 
comparison between crack growth obtained by the above technique and experimentally is presented 
and discussed. 

Probabilistic s-FEM Finite Element Model 

A model as shown in Figure 1 was used in the simulation process. The model was selected based on 
the actual problem of an aircraft wing (Iyyer et al. 2007). A surface crack was introduced at the 
centre of the model. Span of loading points was 70 mm length with surface crack at the centre. Two 
constraints were applied at the bottom end of the model.  
 

 
Figure 1. Geometry of the model in mm and axis identification. 

 

Load 

Constraint 
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Figure 2 shows the concept of S-FEM implementation in crack surface analysis. A coarser mesh 
was generated for the global mesh while a denser mesh was used in the vicinity of the crack tip 
area. During the implementation of the global mesh,  implementation, the crack tip area was 
neglected temporarily to allow mesh generation for the whole domain. Subsequently, the mesh 
around the crack tip area was taken into account during the implementation of the local mesh. Then, 
the local mesh, ,was overlaid on the global mesh. Finally, the complete structure was ready for 
analysis. Deciding on the size of the local mesh area was crucial since the propagation of the crack 
was affected by the calculation of the displacement function. The displacement in the overlaid area 
was calculated from the global and local meshes as shown below: 
 

  (1) 

 
On the other hand, the strain of the superimposed area was calculated as below: 
 

  (2) 
 
The final matrix form for S-FEM was: 
 

  (3) 

 
Figure 2. Concept of S-FEM 

 
The  matrix represents the stiffness matrix of the superimposed area. By computing the final 
form of the S-FEM matrix, the displacement can be obtained for each node. The displacement was 
calculated simultaneously for the global and local meshes for each node. The global mesh was not 
affected by the changing of the local mesh size. A re-meshing process can be generated for the local 
area alone since the region of interest is in the area of the crack tip. During the crack growth 
simulation, the local mesh’s size was expanded and the stress intensity factor (SIF) was calculated.  
 
Since the structure is subject to a fatigue load, the crack growth rate is expressed by Paris’s law 
equation: 

  (4) 

 
where a and N are crack length and number of cycles, respectively. The C and n coefficients are 
material constants. The value of  is the parameter associated with the fatigue crack growth 
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rate under mixed-mode conditions. Numerous parameters have been proposed for this purpose, but 
the equivalent stress intensity factor,  was used in this research work. The equivalent stress 
intensity factor,  based on Richard’s criterion is expressed by: 
 

  (5) 

 
Furthermore, the crack growth angle was calculated according to the criterion proposed by (Richard 
et al. 2005): 
 

  (6) 

 
where  for  and  for  and . 
 
The probabilistic analysis was performed using the Monte-Carlo method (Beer and Liebscher 
2008). The material parameters and the initial crack size were deemed to be the random variables. 
The parameters' distribution was varied for each variable as shown in Table 1. The fatigue analysis 
was performed in ProS-FEM utilizing the crack closure effect and the appropriate four-point 
bending model. The embedded probabilistic and fatigue analyses in S-FEM produced a new 
contribution entitled ProS-FEM. 
 
The parameters for the input-induced closure model for the aluminium alloy 7075-T6 were based on 
the work by (Liu and Mahadevan 2009). The distributions of the input parameters were developed 
from available literature data for aluminium alloy 7075-T6. In the probabilistic analysis, the Paris 
coefficient, C of Al 7075-T6 was represented by a mean of 6.54x10-13 m/cycle with a standard 
deviation of 4.01×10-11 m/cycle. The distribution was assumed to be lognormal based on the 
assumptions made in the literature (Liu and Mahadevan 2009). There was no standard deviation for 
the fatigue power parameter n since it was set as deterministic. The reason for this was to control 
the acceleration of the crack growth in the numerical calculation.  
 

Table 1. Input distribution for the model. 
Variable Distribution Mean Standard 

deviation 

Tensile Strength, Ultimate Deterministic 572 MPa 0 

Fatigue power parameter, n Deterministic 3.8863 0 

Tensile Strength, Yield Deterministic 691 MPa 0 

Young’s modulus, E Normal 71.7 GPa 10.34 

Paris coefficient, C  Lognormal 6.54x10-13 m/cycle 4.01x10-13 

Threshold value, Kth Lognormal 5.66 MPa.m0.5 0.268 

Initial crack length, da Lognormal 0.23 mm 0.05 

 
Once the random variable had been generated, based on its distribution, ProS-FEM started to 
process the SIF calculation. A random variable of each parameter was generated for one sample. 
Each sample maintained the same value of the generated variable until the end of crack growth. 
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Consequently, the calculation of the cycle proceeded with a random maximum crack length . 
Therefore, based on Paris's law, the mean of the cycle can be obtained as 
 

  (7) 

 
The equivalent stress  treated as deterministic since a deterministic load was applied in the 
analysis. The deterministic load produces constant values of ,  and  and reflected 
to the equivalent stress . 
 
Since  and  are independent variables, the variance of  can be calculated as 
 

 

  (8) 

 
The random crack length of the crack front was calculated based on the cycle and variance from the 
random . Crack shape development took place after the crack length calculation of each node 
at the crack front. The process continued with looping of the generation of the random variable for 
the next sample. The uncertainty quantification analysis can be produced after a number of samples 
have been simulated. From the results of the quantification of uncertainty, the reliability analysis 
was conducted. 
 
In order to improve the sampling process, Latin hypercube was develop. The generation of Monte 
Carlo samples focused around the mean value, and the distribution was scattered within the range of 
two standard deviations. Meanwhile, the sampling process for the Latin hypercube was scattered 
within a number of portions. A sample was taken from each portion to generate the input parameter. 
In this way, all samples covered every part of the distribution. Otherwise, the Monte Carlo 
technique covers part of the distribution and most of the outliers are neglected. The effect of the 
sampling technique affected the results, as described in the following section. 

Results and Discussion 

The simulation results for growth of the surface crack are compared with the experimental work 
was shown in Figure 3. A notch introduced in the early stage of the experimental process for the 
initiation of crack growth is shown clearly. After a cyclic load was applied to the specimen, the pre-
cracking was generated as shown in the plot. The pre-cracking area was drawn approximately on 
the graph. Crack growth in the experimental work started to be observed after the pre-cracking took 
place. The same initial boundary conditions were introduced for the numerical model. The size of 
the pre-cracking area was modelled in a local mesh. The variations in crack growth as a result of the 
randomness of uncertain parameters are shown in this figure. It shows all possibilities of crack 
growth. The trends of crack depth and crack length distribution are presented in this graph. The 
trends of crack depth and length show the highest frequency in the middle of the distribution. This 
is due to the effect of randomness in input distribution. As the input distribution was scattered over 
a range with the highest frequency at the mean, it reflected the crack to growth in the middle of the 
distribution. 
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Figure 3. Crack growth on surface crack with length and depth distribution. 
 
Figure 4 shows the reliability result of a four-point bending structure. The failure probability of this 
structure was 0.18. In general, the number of failed samples increased in proportion to the total 
number of samples, with a failure rate of 18%. In this case, the load’s magnitude plays a major role. 
The strength of the model could sustain a minimum load but the minimum load fluctuated 
according to the uncertainty in a parameter. Thus, the failed or safe samples in a model varied 
probabilistically.  
 
Both the Monte Carlo and the Latin hypercube method need more samples at the beginning of the 
simulation before they converge to a level of failure probability. After more than 500 samples were 
generated by the system, the failure probability of the Monte Carlo simulation converged at 0.18, 

B B’ 

A 
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while the Latin hypercube converged after the generation of just 300 samples. As the Latin 
hypercube could reduce the sample number, the simulation time could be shortened. 
 

  
Figure 4. Probability of failure and simulation time for the Monte Carlo and Latin hypercube. 

Conclusions 

The ProS-FEM simulation technique was developed with auto-mesh generation and a fully 
automatic fatigue crack growth system. A probabilistic model was developed for four-point bending 
geometry. The probabilistic scenario of fatigue loading was simulated by treating the Young's 
modulus, Paris coefficient, threshold value, and initial crack length as variables with distributions. 
The probabilistic prediction shows good agreement with the experimental results. Furthermore, 
ProS-FEM provides the distribution of crack length and depth, highlighting the CDF of crack 
growth. In order to determine the minimum and maximum extent of growth, the mean and bounds 
of crack growth were generated by ProS-FEM. This shows that the randomness of parameters was 
modelled successfully in the simulation process. ProS-FEM performed robustly, providing valuable 
information for analysing high-risk component. 
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Fig.1 Segmentation results of the FCM and CS-FCM on two synthetic images.  

Fig.2 Segmentation results of the FCM and CS-FCM on real CMR images (Frames #100 to 
#119). Five frames are shown here.
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Fig.3 Segmentation results of the FCM and CS-FCM on real CMR images (Frames #140 to 
#159). Five frames are shown here. 
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Working principle of two different cutter-head drive systems 
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Figure 1. Two type hydraulic drive modes of the cutter system in shield machine 
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Hydraulic test rig for the cutter-head system 

Figure 2. The hydraulic principle diagram of simulation test rig for cutter-head drive system 
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Table 1. The main parameters of the simulation test rig for cutter-head drive system 

Results and analysis 
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Figure 3. Power contrast of two control 
system in 0MPa load condition

Figure 4. Power contrast of two control 
system in 5MPa load condition

Figure 5. Power contrast of two control 
system in 10MPa load condition

Figure 6. Power contrast of two control 
system in 15MPa load condition
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Hydraulic motor speed(r/min)

Figure 7. Efficiency contrast of two 
control system in 0MPa load condition

Figure 8. Efficiency contrast of two 
control system in 5MPa load condition

Figure 9. Efficiency contrast of two 
control system in 10MPa load condition

Figure 10. Efficiency contrast of two 
control system in 15MPa load condition
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Abstract
Bubbly flow is widely encountered in many engineering applications, such as those in chemical and 
nuclear systems, bubble column reactors and oil transportation pipes. Therefore, understanding of 
bubbly flow in a bubble-liquid flow system is extremely important. In this paper, bubbly flow 
involved with thousands of bubbles in a vertical pipe is numerically simulated. The motions of the 
bubbles are tracked using a Discrete Phase Model (DPM) and bubble-bubble interactions are 
simulated through the model of discrete element method (DEM). The effects of bubble diameter on 
the bubble flow trajectories are studied. Comparisons are made on the flow field with and without 
considering bubble-bubble collision. 

Keywords: Bubbly flow, Discrete phase model, Bubble trajectory, DEM collision.

1. Introduction
Bubbly flow is widely encountered in many engineering applications, such as oil and gas pipes, 
chemical and nuclear systems (Oolman and Blanch, 1986; Chen et al., 1994) and bubble column
reactors (Jakobsen, 2001). In these systems, millions of bubbles are dispersed into a continuous 
phase which is the carrier fluid. The movements of these bubbles have significant effects on the 
flow fields as well as the pressure drops in the systems. Therefore, understanding the dynamics of 
the bubbles is essentially important to know bubbly flow.

Experimental investigation of bubbly flow has been performed extensively (Liu and Bankoff, 1993a, 
1993b; Gnotke et al., 2003; Daeseong et al., 2010). For experimental study, it generally requires
large length scale test rig and high resolution measuring instruments to provide convincing data.
These would lead to an extremely high cost. Meanwhile, it is rather difficult to capture the physical 
phenomenon occurred for each individual bubble in the experiments. In view of this, theoretical 
studies, in particular numerical simulations, play an essential complementary role in understanding
the bubble dynamics in bubbly flow.

Bubbly flow generally involves two phases which are the carrier fluid and the bubbles. The carrier 
fluid is usually treated as the continuous phase in the numerical simulation. Bubbles can be treated 
either as a continuous phase or a discrete phase based on the methods bubbles are handled. These 
methods include Eulerian-Eulerian (EE) two fluid method, Lagrangian-Eulerian (LE) method and 
Direct Numerical Simulation (DNS) (Hirt and Nichols, 1981; Unverdi and Tryggvason, 1992; Shan, 
1997; Osher and Sethian, 1988; Quan and Schmidt, 2007). EE (Drew, 1983; Enwald, 1996) two 
fluid model assumes bubble as another continuous phase which the average size and average 
velocity are chosen to represent the information for all the ranges of bubbles. Although EE model 
can be applied in the large scale system with both spatial and time, it is not able to represent two 
streams of bubbles with different velocities at the same location. The interactions among bubbles 
are usually not considered either. This results in the unrealistic simulations of the physical
phenomena observed in the bubbly flow. Unlike EE model, LE model and DNS treat the bubbles as 
a discrete phase. DNS can reveal the useful detailed insights of bubble behavior and bubble 
interactions. Generally, it can only be applied in a system where a small number of bubbles are 
considered. For bubbly flow which involves thousands of bubbles, LE could be the most 
appropriate choice. In LE model, bubbles are represented in a Lagrangian reference frame while the 
carrier phase is represented in an Eulerian frame. Under such a treatment, the movement for each 
individual bubble in bubbly flow could be traced. The interactions among bubbles such as bubble 
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collision can also be included. The advantage of this method has been well documented in the paper 
of Subramaniam (2013). 
In LE model, the trajectories of bubbles are predicted by integrating the force balance on the 
bubbles. The interactions between bubble and the continuous phase are achieved by the additional 
forces such as drag force, virtual mass force and lift force. This method has been used by Laín et al. 
(2002), Buwa et al. (2006), Pang et al. (2010) and Ashraf Ali and Pushpavanam (2011), to name a 
few, for simulation of the system with two phase flow. Zhang et al. (2005) and Xu et al. (2013) also 
adopted this method to investigate the dynamics of three phases including gas, liquid and particle in 
a multiphase system. Laín et al. (2002) evaluated the fluctuating energy existing in a bubble column 
system. They found that the source term in the turbulent - equations is the main issue which 
governs the hydrodynamic behavior of the bubbles. Buwa et al. (2006) studied the effects of 
geometric parameters and gas velocity on the bubble volume fraction. It is found that the 
recirculation flow which is observed in the experiment in the bubble columns is breakdown due to 
the numerical diffusion as well as the unrealistic lift force added in the simulation. Pang et al. 
(2010) investigated the air-water flow in a vertical channel using LE model. Their results show that 
most bubbles accumulated near the wall while water velocity increases at the center of the channel.
Ashraf Ali and Pushpavanam (2011) compared both EE and LE model for two-phase flow in a 
rectangular tank. The two models agree well with each other when the gas volume fraction is low.

Bubbly flow is one of the most important flow patterns in the two phase flow in both horizontal and 
vertical pipes. The other flow patterns can be transited through bubbly flow by varying factors such 
as the bubble velocity, the bubble diameters, bubble distributions as well as the physical properties 
of two phases. Therefore, the effects of these parameters are extremely important for achieving a
stable bubbly flow. Interesting and surprisingly, to the best knowledge of the authors, the effect of 
bubble diameter as well as the collision among bubbles on the flow field in the bubbly flow has not 
been investigated based on LE. The present work intends to fill in this gap. This paper studies air-
water bubbly flow in a vertical pipe using discrete phase model which is based on LE. The flow 
field and bubble dynamics under different bubble diameters are investigated. In addition to this, the 
effect of bubble collision on the bubbly flow system is also studied.

2. Problem Description

The schematic diagram of the simulation domain is show in Fig.1(a). The radius of the cylinder R is 
0.1m and the height is 10m. 25 air bubbles are injected into the domain at the bottom of the cylinder 
with a constant interval of 0.0005s. The distribution of the injected air bubble is shown in Fig. 1(b). 
12 bubbles are distributed uniformly at radius of 0.07m and 0.03m, respectively. There is also 
another bubble located in the center of the domain. Initially, water flows into the domain with a 
constant speed of 1m/s. Once steady state solution of water flow is achieved, air bubbles are then 
injected. The injection velocity of air bubble is 0.1m/s. Driven by the buoyancy force, these air 
bubbles move upwardly and drive water adjacent flowing faster.

out
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(a)                                                                       (b)
Fig. 1(a) Schematic diagram of simulation domain (b) distribution of 25 injected air bubbles

3. Numerical Model

3.1 Mathematical Formulation
The trajectory of the air bubble was predicted through the integration of the force balance on the 
bubble based on the Lagrangian reference frame (Cundall and Strack, 1979). The mathematical 
formulation for bubble movement is:

   i bib
D ib i i

b

gdu
F u u F

dt
 



    (1)

The subscript i represents the components of the axis. ub and u are the bubble and water velocity, 
respectively. FD is the drag force exerted on water by the air bubble. Fi is the other forces involved 
such as virtual force and pressure gradient force. As suggested by Sokolichin et al. (2004), we do 
not include lift force in the current work since we have no clear experimental evidence on the 
information of the lift force. The mathematical expression of FD is:  

2

Re18
24
D

D
b b

C
F

d



  (2)

Where CD is the drag force coefficient and Re is the Reynolds number. db is the bubble diameter. 
The expression for CD and Re are, respectively:

R

r1

r2
in
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32
1 2Re ReD

aa
C a   (3)

Re b ibd u u



 (4)

a1, a2 and a3 are constants which can be applied for spherical bubbles for all ranges of Re (Morsi 
and Alexander, 1972). The expressions of these constants are:

1 2 3

0, 24,0 0 Re 0.1
3.69,22.73,0.0903 0.1 Re 1

1.222,29.1667, 3.8889 1 Re 10
0.6167,46.50, 116.67 10 Re 100

, ,
0.3644,98.33, 2778 100 Re 1000
0.357,148.62, 47500 1000 Re 5000

0.46, 490.546,578700 5000 Re 10000
0.

a a a

 
 

  
  


  
  

  
5191, 1662.5,5416700 Re 10000












  

(5)
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i ib

b b i

d u u u
F u

dt x
 
 

 
 


(6)

The bubbles are carried by a flowing fluid. To model the continuous phase flow, the incompressible 
forms of the continuity and the Navier-Stokes with considering turbulent flow equations are 
employed for the simulation domain.  

 i
i

u
t x
  


 
(7)
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(8)                   

The turbulent flow is simulated through - model which is embedded in FLUENT. 

3.2 Geometry Mesh
The geometry of the simulation domain is meshed using GAMBIT 2.4. A uniform mesh size of 5 
mm and a total of 2.8 million cells are used for the whole domain. Such mesh is chosen based on 
the grid independency study among the mesh cells of 1.8 million, 2.8 million and 4.2 million.   

3.3 Boundary conditions 
The current simulation is performed using ANSYS FLUENT 14. Initially, water single-phase flow 
under steady state simulation is carried out. Once the steady state solution of water flow is achieved, 
air bubbles are then injected into the domain. Bubbles are tracked in a transient basis with a time 
step size of 0.0005s. The inlet velocity of water is 1m/s and the inlet velocity of bubble is 0.1m/s.
An atmosphere pressure is set at the outlet boundary. No slip boundaries are applied on the walls for 
water. For air bubbles on the walls, reflection with no energy loss is assumed.

4. Results and Discussion

4.1 Validation
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The current numerical simulation is validated with the experimental work done by Ohnuki and 
Akimoto (2000). Figure 2 shows the comparison of pressure drop under different air inlet velocity. 
The inlet water velocity is fixed at 1.06m/s. Generally, the increase of air velocity increases its
volume fraction. This leads to a low pressure drop in a vertical pipe. Good agreement was achieved 
between the experimental data and simulation results.

0.0 0.5 1.0 1.5 2.0

4

6

8

10

P 
(k

Pa
/m

)

Ug (m/s)

 Experimental data
 Present simulation

Fig. 2 Comparison of pressure drop under different air velocity
4.2 Air bubble and water velocity without considering bubble collision 
Figure 3(a) and 3(b) show the bubble and water velocity at different locations, respectively. As the 
bubbles are tracked in a transient basis, bubble velocity is shown at different times. Figure 3(a) 
shows the bubble velocity at t = 2s at r = 0, 0.03m and 0.07m. r = 0 is the center of the pipe. The 
diameter of bubbles introduced into the pipe is 300m. A significant increase of bubble velocity is 
observed as seen from Fig. 3(a) in a short time once bubbles are injected into the domain. This is 
due to the dominance of buoyancy force at the initial stage in the bubble rising process. Such 
velocity increases to its maximum value of 3.2m/s at around t = 0.05s and after that, bubble velocity 
decreases. The increase of bubble velocity increases the drag force between bubble and water. 
When the drag force becomes dominated, bubble velocity starts to decrease. Similar trends have 
been found for the bubble velocity at different locations before t = 0.1s. This is not what observed 
thereafter. After t = 0.1s, a slightly increase of bubble velocity is found for the bubbles at the center 
of the domain while a further decrease of bubble velocity is seen at r = 0.03 and 0.07m. Water 
velocity at t = 2s is shown in Fig. 3(b). Compared with water single phase flow at different 
locations, water velocity with air bubble inside shows significantly difference from its 
corresponding partner before 4.5 m along the height of the pipe. The length of 4.5m actually is the 
travel distance for the air bubbles in the duration of 2s. With air bubbles injected into the domain, 
these bubbles rise quickly given the buoyancy force. They exert high drag force to water and drive 
water surrounding moving faster. Therefore, water velocity increases. However, the injection of air 
bubbles in water enhances the instability of the flow field. As a consequence, water velocity 
exemplifies fluctuated styles which reveal the random and chaotic flow behavior once bubbles are 
introduced. Water velocity is higher than its counterpart at r = 0 while at the other two locations, 
water velocity is lower than its counterpart after the length of 1m. Unlike velocity in the length of 
4.5m, water velocity is less affected by air bubble in the pipe length where air bubble has not 
reached. Those lines are overlapped together with its counterpart at different locations upon 
achieving to the end of the pipe.
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(a)                                                                          (b)
Fig. 3 Variations of (a) particle velocity under different times, (b) water velocity along the pipe at t
= 2s
Figure 4(a) and 4(b) show air bubble and water velocity at different radial locations at t = 4.5s,
respectively. Fluctuations of the air bubble velocity is seen after t = 3.0s. Bubble flow in water 
actually increases the intensity of turbulent flow which leads to the fluctuation of both water and air 
bubble velocity. Such fluctuation is generally irregular and chaotic. A dramatic fluctuation in water 
velocity is initially observed at the center of the pipe and then it propagates to other locations. The 
travel distance for bubbles at t = 4.5s is around 9m which is indicated by the variation of water 
velocity in Fig. 4(b).
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(a)                                                                             (b)
Fig. 4 Variations of (a) particle velocity under different times, (b) water velocity along the pipe at t
= 4.5s
Figure 5(a) and 5(b) show air bubble and water velocity at t = 10s at different locations, respectively. 
At this time, the number of bubbles entering and escaping from the pipe is almost equivalent. The 
number of bubble reside in the pipe is around 36 thousand. The flow field become much more chaos 
as can be seen from the fluctuation of both water and air bubble velocity. Generally, air bubble and 
water velocity at the center of the pipe is larger than those at other radial locations. This is not the 
situation when fluctuations occur. The existence of bubble changes the flow dynamic significantly.
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Fig. 5 Variations of (a) particle velocity under different times, (b) water velocity along the pipe at t
= 10s

The effect of bubble diameter on water flow velocity at r = 0 is shown in Fig. 6. Such water 
velocity is chosen when the number of bubble entering and escaping from the pipe is the same. It is 
surprised to find water velocity with considering bubbles is the same as that without considering 
bubbles when the bubble diameter is 3m. This implicates there is a critical bubble diameter under 
which the flow filed acts as no bubbles involved. For the case where the bubble diameter is above 
the critical value, there is no much difference on the water velocity along the length of 2.5m of the 
pipe under different bubble diameters. Thereafter, water velocity fluctuates. Generally, the larger 
the bubble diameter, the higher the fluctuation is.
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 single phase

Fig. 6 Effect of bubble diameter on water velocity at r = 0

4.3 The effect of bubble collision on the air bubble and water velocity

Bubble collision is simulated based on the spring collision law where no energy loss is considered. 
Bubble and water velocity at r = 0.07m with and without considering collision model under 
different bubble diameters is shown in Fig. 7(a) and 7(b), respectively. For bubble diameter of 3m, 
the inclusion of the bubble collision has no effects on both the bubble and water velocity. This is 
not the case for bubble diameter of 300m. For bubble diameter of 300m, bubble collision is not 
significant at initial time as both bubble and water velocity are overlapped together first. Since then, 
large differences are found. The inclusion of bubble collision enhances the chaotic of the bubble 
dynamics. Therefore, a large fluctuation of bubble velocity is expected as seen from Fig. 7(a) after t
= 3s. The large fluctuation of bubble increases the fluctuations of the water velocity simultaneously. 
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Fig. 7 Comparison of (a) bubble, and (b) water velocity with and without bubble collision at r =
0.07m  

Drag force is another important force in the bubbly flow. The comparison of drag force coefficient 
along the pipe with and without considering bubble collision is shown in Fig. 8. Given the 
fluctuation of the bubble and water velocity, the drag coefficient also shows a fluctuated mode. A 
higher fluctuation is observed with considering bubble collision compared with that without 
considering bubble collision.     
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Fig. 8 Comparison of drag coefficient for d = 300m

5. Conclusions

In this paper, bubbly flow is simulated through DPM based on LE model. The effect of bubble 
diameter as well as bubble collision on the flow field is investigated. It is found that the 
involvement of the bubbles forces the flow field fluctuated. A high fluctuation is observed under 
large bubble diameter. However, when the bubble diameter is sufficiently small, the dynamic of 
bubble in the flow filed has no effect on the fluid flow even bubble collision is considered. The 
inclusion of the bubble collision enhances the fluctuation of the flow filed as well.
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Abstract: The gas-liquid-fueled two-phase detonation has very complex phenomena and 
characters. Until now they are studied mainly by experiments, because complex interactions 
between the two phases and chemical reactions models make numerical simulations very difficult. 
In the paper, numerical simulations of gas-liquid-fueled two-phase detonation have been 
performed by using an improved Space-Time Conservation Element and Solution Element (CE/SE) 
method. The Eulerian Two-Fluid Model and Eulerian-Lagrangian Particle-Trace Model were 
adopted already. Numerical results were compared with some experiments and characters of 
gas-liquid-fueled two-phase detonation were analyzed. All of them show that the complex 
phenomena of gas-liquid-fueled two-phase detonation can be simulated. The improved CE/SE 
scheme has the features of high resolution, simple form and robustness. 
Keywords: gas-liquid-fueled two-phase flow; detonation; chemical reactions; CE/SE method; 

 

1 Introduction 
The formation and propagation of detonation is a very complicated phenomenon [1] [2]. For 

a long time the detonation phenomena are studied mainly by experiments. However, in the last 25 
years the numerical simulations have improved immensely as a result of major progress in both 
computational methods and available computer. Especially in last recent decades of development, 
the mechanism recognition of detonations in gaseous fuel-oxidizer mixtures has made large 
progresses and its numerical simulation can be basically achieved [3]. But our understanding of 
the initiation, formation, structure and stability of detonations in gas-liquid-fueled two-phase 
mixtures are still more primitive than for detonations in gaseous fuel-oxidizer mixtures [4]. 

The lack of knowledge of the features of gas-liquid-fueled detonations can be partly ascribed 
to the fact that the governing parameters of gas-liquid-fueled mixtures are far more than that of 
gaseous mixtures. Indeed, apart from the chemical composition and initial pressure and 
temperature of the mixture, one should take into account atomization, droplet breakup and 
vaporization, droplet size and shape as well as droplet distribution, etc. The latter effects may play 
a major role in gas-liquid-fueled two-phase detonations [5]. They will induce that the detonation 
processes are very complex and detonation zone thickness is at least a few times larger than that in 
gaseous fuel-oxidizer mixtures. All these features result in mathematical and physical difficulties. 

The difficulties of numerical simulation of gas-liquid-fueled detonation are mainly due to its 
complex physical and chemical phenomena as well as determination for governing parameters of 
gas-liquid-fueled mixtures. In the simulations of gas-liquid-fueled detonation there are two 
primary factors: One is the strong discontinuity surface in detonation waves; another is the process 
of energy release in the flow field. These factors depend on numerical schemes and chemical 
reaction models respectively [6] [7]. 

In this paper an efficient and accurate Eulerian-Lagrangian Particle-Trace Model for 
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gas-liquid-fueled two-phase detonations was constructed and compared with the normal Eulerian 
Two-Fluid Model. A new two-dimensional CE/SE scheme with two-order accuracy with a 
hexahedral mesh was deduced. The simplified chemical reaction models were adopted. The 
gas-liquid-fueled two-phase detonation in liquid-fueled C6H14-air system and liquid-fueled 
C10H22-O2/air systems were simulated. The numerical results were discussed and compared with 
corresponding results by C-J theory and experiments. All of these show that Eulerian Two-Fluid 
Model, Eulerian-Lagrangian Particle-Trace Model and the improved CE/SE schemes with 
two-order accuracy are reasonable and feasible. The main features and characters of complex 
gas-liquid-fueled two-phase detonation can been successfully simulated. 

2 Governing Equations and Chemical Reaction Model 
2.1 Governing Equations 

In this paper, an Eulerian-Lagrangian Particle-Trace Model is introduced for treating the 
gas-liquid-fueled two-phase detonations. The droplet phase is considered as continuous and 
homogeneous medium and all droplets can be are traced by Lagrangian method.  

Following assumptions are made about present model: the gas phase behaves as an ideal gas; 
the temperature of all gaseous species is the same; there are no process of collision, coalescence 
and fragmentation in droplet phase; the shape of droplets always keeps to be spherical; the 
temperature distribution in droplet phase is uniform; the volume occupied by droplets is negligible 
when it compares with the volume of gas; chemical reactions occur only in the gas phase; if 
chemical reaction occurs, the chemical energy is absorbed only by gas. 

Under the above assumptions, the gas-phase is governed by Eulerian equations: 

                          
t x y
Q E F S .                               (1) 

In Eq. (1), Q is the vector of conserved variables, E and F are the conservation flux vectors in x- 
and y-directions, S is the source term vector. Combined with chemical reaction and phase 
transition, the expressions of Q, E, F, S are as follows 
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The Lagrangian governing equations for the k-th droplet are as follows: 
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Here ρi (i from 1 to Ns) is the mass density of the i-th species (especially, ρ1 is defined as the 
density of fuel gas), Ns is the number of considered species, ωi is the production rate of the i-th 
species. ρ, u, v, p and e are the total density, the velocity components of x-direction and y-direction, 
the pressure, and the total energy per unit volume of gas phase, respectively. Accordingly, mpk, xpk, 
ypk, upk, vpk, Tpk, epk and Ipk denote the mass, the position coordinates components and the velocity 
components, temperature, the internal energy per unit mass and atomization rate of the k-th (k 
from 1 to Np) droplet, respectively. Np is the number of initial droplets, which is determined by 
the equivalence ratio of gas-liquid-fueled mixture. fxk and fyk are the force components acting on 
the k-th droplet. qdk is the convection heat transfer between gas mixtures and the k-th droplet. Cv is 
the capacity of liquid fuel. dVk is the volume of gas phase influenced by the k-th droplet, which is 
related to the Euler grid. When i=1, δ=1, otherwise, δ=0. 

The dynamic interaction of droplets with the gaseous flow could bring to instability of the 
interface and atomization of droplets. According to boundary layer theory, the atomization rate of 
droplets and the force components acting on the k-th droplet as well as convection heat transfer 
between gas mixtures and the k-th droplet were derived by references [8] [9]. 
2.2 Chemical Reaction Models 

CO, CO2 and H2O are the main product of the chemical reaction between hydrocarbon and 
oxygen. In present study, to avoid complicate the problem and save computing resources, the 
following three main global reaction involving five species are considered: 

Reaction 1 2 2( )
2 4 2n m

n m m
C H O nCO H O             (4) 

Reaction 2 2 22 2CO O CO                              (5) 

Reaction 3 2 22CO CO O                               (6) 

The expression of each chemical reaction rate RPk is available in Ref. [10-11]. Then, production 
rate of each chemical species ωi is expressed as: 

                          
1
( )

Nr

i i ki ki k
k

W v v RP ,                               (7) 

where Wi is the molecular weight of the i-th species, Nr is the number of chemical reactions, kiv  
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and kiv  are the stoichiometric coefficients of the i-th species in the k-th chemical reaction. 

3 Improved CE/SE Scheme 
The CE/SE method was originally proposed by Chang and co-workers [12-13], which is a 

completely new numerical framework for solving hyperbolic conservation equations. According 
to principle of Chang designed two grid types, we design more general structures of 
two-dimensional CEs and SEs (Fig.1) [14]. New two-dimensional CE/SE schemes can be 
constructed sententiously and three-dimensional scheme can be extend easily.  

 

 
(a)                          (b)                              (c) 
Fig.1 (a) Mesh points projection on xy plane   ( b)SE   (c)CEs (in this work) 

3.1 Improved CE/SE Scheme with the second order accuracy 
Consider the two-dimensional conservation equations: 

 0
t x y
Q E F , (8) 

Then because Eq. (8) can be expressed as 0H  with ( )H Q, E, F . The Gauss’ divergence 
theorem in the space-time E3 implies that Eq. (8) is the differential form of the integral 

conservation law                    
( )

d 0m
S V

H s                         (9) 

where S(V) is the boundary of an arbitrary space-time region V in 3E ; ds=dσ·n with dσ and n, 
respectively, being the area and the unit outward normal vector of a surface element on S(V). 

For an arbitrary grid point P', we define a solution element SE (P') that constituted by the 
three vertical planes intersecting at P' as demonstrating in Fig. 1 (b). Assuming that E, F and Q at 
point (x, y, t) in SE (P') are approximated by the second-order Taylor’s expansions at P'(j, k, n): 

 2 2 2
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1 1 1( ) ( ) ( ) ( ) ( ) ( )
2 2 2
( ) ( ) ( )

P P x P y P t P

xx P yy P tt P

xy P xt P yt P

x y t x y t

x y t
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Q Q Q Q Q
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Q Q Q

,     (10) 

 2 2 2
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1 1 1( ) ( ) ( ) ( ) ( ) ( )
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, (11) 

 2 2 2

( , , ) ( ) ( ) ( ) ( )

1 1 1( ) ( ) ( ) ( ) ( ) ( )
2 2 2
( ) ( ) ( )

P P x P y P t P

xx P yy P tt P

xy P xt P yt P

x y t x y t

x y t

x y x t y t

F F F F F

F F F

F F F

, (12) 
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Where δx=x-xP', δy=y-yP', δt=t-tP', xP', yP' and tP' are the position coordinates of point P', but 
(V)P',(Vx)P', (Vy)P', (Vt)P', (Vxx)P', (Vyy)P', (Vtt)P', (Vxy)P', (Vxt)P' and (Vyt)P' are the constant values of V, 
its first-order and second-order derivative on x, y and t directions at point P', respectively, in which 
V denotes Q, E and F. Substituting Eq. (10), (11) and (12) into Eq. (8), it can obtain: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

t P x P y P

xt P xx P xy P

yt P xy P yy P

tt P xt P yt P

Q E F
Q E F
Q E F
Q E F

. (13) 

The above equations imply that the variables required in computation are ( )PQ and its first and 

second order space derivates ( )x PQ  ( )y PQ  ( )xx PQ  ( )xy PQ  and ( )yy PQ . 

Assuming flux vectors in every CE satisfy the integral conservation law, and the integrating 
Eq. (9) on the surfaces of CE (P') with the aid of Eq. (10), (11) and (12), we can obtained:  

 
2 2 1( ) ( ) ( )

24 24 4P xx P yy P

x y t t
x y

Q Q Q Q E F  (14) 

Define the following functions as: 
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So the Q , E and F  in Eq. (14) can be expressed as: 
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From Eq. (14) the current space second-order derivates ( )xx PQ and ( )yy PQ at P  must be known 

firstly for solving ( )PQ . With the estimated value in SE (P ) approximated from the last half time 
step, the current second-order can be expressed as: 
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The cross derivates ( )xy PQ and ( )yx PQ are: 
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Using the continuous condition at point A , C , E and G , the left and the right derivatives of 
( )PQ in x and y direction can be gained as 
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To avoid numerical instability in the case of discontinuity, the derivates are written in form of 

weighted average:             
( ) [( ) , ( ) , ]

( ) [( ) , ( ) , ]
x P x P x P

y P y P y P

W

W

Q Q Q
Q Q Q

                         (22) 

where  is an adjustable constant and usually equals 1~2 and the weighted equation W is expressed 

as                         | | | |[ , , ]
| | | |

x x x x
W x x

x x
.                    (23) 

3.1 Treatments of Stiff Source 
The S is the source term vector of governing equations (1), which are consisted of the 

production rates of each species. In a reacting flow, the characteristic time of chemistry and flow 
have a scale gap. The magnitude of stiffness problem can be weighted by the Damkohler number 
which is defined as the ratio of the maximum characteristic time scale and the minimum’s in a 

system. For detonation problems:       flow

chem

Da                               (24) 

where τflow and τchem are the characteristic time scale of flow and chemistry reaction, respectively. 
Decoupling method was applied to treat the stiff source in this study [15], namely we 

decoupled the chemistry reaction from governing equations (1),So in one time step, we frozen the 
reaction and solved the flow field first, then solved the variation of the each species by source 
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items. And Da=30 in this sduty. 

4 Verification of our Improved CE/SE Scheme 
In order to verify our improved CE/SE scheme with the second-order accuracy deduced by 

new structure of CEs and SEs, a detonation propagating in a stoichiometric H2-O2 gas was 
computed. In this case the initial pressure and temperature were 1 atm and 298 K, respectively. 
Detonation wave was generated by igniting in the left with high initial pressure and temperature 
28 atm and 3874 K, respectively. The detailed chemically reacting model was adopted. An 
mechanism with the eight-species (H2, O2, H, O, HO, HO2, H2O, H2O2) and twenty chemical 
reactions for hydrogen-oxygen combustion was used [16].  

Fig. 2 is the developing process of pressure and temperature simulated. From Fig.2 it can 
show that deflagration-to-detonation transition (DDT) process completes in very short time and 
can be ignored. Fig. 3 gives out the numerical results compared with experimental and theoretical 
results for detonation velocity and CJ pressure. The compared results indicate that they are limited 
in 3% and the results are very agreement.  

 
Fig.2 Developing process of pressure and temperature 

          

(a) Velocity                                 (c) C-J pressure 

Fig.3. Numerical results compared with experimental and theoretical results 

(c)Numerical cellular patternby                      (d) Experimental cellular pattern  

Fig. 4 Cellular pattern of a detonation wave on a 19.3° wedge 

Fig.4 shows the cellular patterns produced by the reflection of H2-O2 detonation wave over a 
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19.3° wedge by experiment [17]. The numerical results can agree well with the experiment and 
numerical results can draw up the basic feature of detonation wave reflection over wedge clearly. 

5 Numerical Results 
We have completed the numerical simulation of gas-droplet-fueled two-phase detonation by 

using the Eulerian Two-Fluid Model and Eulerian-Lagrangian Particle-Trace Model and the 
CE/SE method with the second order accuracy. Their numerical results were compared and 
analyzed briefly. 
5.1 Gas-Droplet-Fueled Detonations with Eulerian-Lagrangian Particle-Trace 
Model 

In the Eulerian-Lagrangian Particle-Trace model it assumed that both droplet phase and gas 
phase are the continuous and homogeneous medium. The gas phase is governed by Eulerian Eq. 
(1). However, droplet phase is consisted of particles system and all droplets are traced by using 
Lagrangian method. Each particle in droplet phase is governed by Lagrangian Eq. (3). 

The detonations in liquid C10H22-O2/air systems with different fuel droplet radii and 
equivalence ratios (Φ) have been simulated. Initial pressure and temperature of the mixtures are 1 
atm and 298 K, respectively. Detonation wave is generated by igniting in the left with a high 
initial pressure and temperature as 10 atm and 2980 K, respectively. The other computing 
parameters are given as below: λ=0.1 W·K-1·m-1, ρf=730 kg/m3, μ=2.07×10-5 Pa·s, μf=3.5×10-4 
Pa·s, Cv=2.1×103 J·kg-1·K-1, Pr=0.74. In the present simulations, the velocity and temperature of 
the droplets are set to 0 if the radii of the droplets are decreased to 0. 

Tang and Nicholls et al. [18] has systematically studied the detonations in a C10H22 spray 
with 200 μm radius droplets in air and oxygen using a vertical shock tube. In order to verify the 
accuracy of the present model, the detonations in a C10H22 spray with 200 μm radius droplets in air 
and oxygen have been simulated by using Eulerian-Lagrangian Particle-Trace model. The 
numerical results are compared with theoretical prediction values and experimental data 
mentioned above. Fig. 6 (a) and (b) show that calculated detonation velocities in our simulation is 
consistent with the experimental data in trends. Just the calculated results are higher than 
experimental data.  

Meanwhile, we can also find that all theoretical prediction values are agree well with 
experiment data for mixtures with lean fuel. However, it is worth noting that, for mixtures with 
rich fuel, all the theoretical prediction values are contrary with experimental value in trends.  

     
 (a) detonation velocity in fuel-oxygen systems       (b) detonation velocity in fuel-air systems 

Fig. 6. Comparison of detonation velocity in fuel-oxygen/air systems derived by different methods 
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Fig. 7 shows the comparison of calculated detonation velocities with C-J theory for all 
gaseous mixtures. It can be seen that the detonation velocities in O2 has a similar trend as that in 
air. Just the detonation velocities in O2 is higher than that in air. 

 

Fig. 7. Comparison of calculated detonation velocity with C-J theory for all gaseous mixtures 
5.2 Gas-Droplet-Fueled Detonations with the Eulerian Two-Fluid Model 

In order to compare the numerical results obtained with using the Eulerian-Lagrangian 
Particle-Trace model, we simulated  numerically also the Gas-Droplet-Fueled Detonations with 
the Eulerian Two-Fluid Model. 

In the Eulerian Two-Fluid Model it assumed that both droplet phase and gas phase are the 
continuous and homogeneous medium. The governing equations of gas phase and droplet phase 
are both Eq. (1): for the gas phase: Q=(ρ, ρu, ρv, E)T, E=(ρu, ρu2+p, ρuv, (E+p)u)T, F=(ρv, ρuv, 
ρv2+p, (E+p)v)T,S=(Id, -Fx+udId, -Fy+vdId,-(udFx+vdFy)+((ud

2+vd
2)/2+qr)Id)T, for droplet phase: 

Q=(ρd, ρdud, ρdvd, N)T, E=(ρdud, ρdud
2, ρdudvd, Nu)T, F=(ρdvd, ρdudvd, ρdvd

2, N)T, S=-(Id, -Fx+udId, 
-Fy+vdId,0)T, where ρd is the density of droplet phase, ud and vd are the velocity components of 
droplet phase, N is the droplet numbers per unit volume, Id is the density variation by the phase 
change, Fx and Fy are the forces components acting on droplets, the total energy density 
E=p/(γ-1)+ρu2/2. The detail of the reduced reaction mechanism can be found in Ref. [19]. 

The detonations in liquid C6H14 fuel-air system with different equivalence ratios (Φ) have 
been simulated. Figure 5 show the detonation velocities of C6H14 fuel at different equivalence 
ratios by experiments, C-J theory [20, 21] and simulations, respectively. The numerical results are 
more accurate than the C-J theoretical values and can agree well with the experimental data. 
However, the C-J theoretical values are higher than that of the experimental data.  

From the results mentioned above we can find that the general trend of the detonations 
velocities obtained with the Eulerian Two-Fluid Model is consistent with that of the 
Eulerian-Lagrangian Particle-Trace model. 

 
Fig.5 Detonation velocities of C6H14 fuel at different equivalence ratios 
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6 Conclusions 
The gas-liquid-fueled two-phase detonation is very complex phenomenon, until now we are 

still the lack of knowledge of the features for gas-liquid-fueled two-phase detonation. In this paper, 
The Eulerian Two-Fluid Model and Eulerian-Lagrangian Particle-Trace model have been 
developed and a new framework of the two-dimensional CE/SE method was proposed and 
deduced. Numerical simulations of detonations in liquid C6H14 fuel-air and C10H22 fuel-O2/air 
systems have been achieved. Comparison of numerical simulation with theoretical values and  
experimental data was completed. Compared results indicate that our simulating results agree well 
with experimental data in trends. Numerical results obtained by using Eulerian-Lagrangian 
Particle-Trace model are more accurate than that obtained with Eulerian Two-Fluid Model. 
However the general trend of the detonations velocities obtained with the Eulerian Two-Fluid 
Model is consistent with that of the Eulerian-Lagrangian Particle-Trace model. 

 It is proved that the two models and an improved CE/SE method we proposed above can be 
successful to simulate gas-liquid-fueled two-phase detonation. Our improved CE/SE scheme has 
the features of high resolution, simple form and robustness. 
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Abstract 
A dual-reciprocity boundary element method is outlined for solving a class of initial-boundary 
value problems concerning axisymmetric thermoelastodynamic deformations in functionally graded 
materials. The time derivatives of the temperature and the displacement, which appear in the 
governing partial differential equations, are suppressed by using the Laplace transformation 
technique. In the Laplace transform domain, the problem under consideration is formulated in terms 
of integral equations which contain both boundary integrals and domain integrals. The dual-
reciprocity method is used together with suitably constructed interpolating functions to reduce the 
domain integrals approximately into boundary integrals. The problem under consideration is 
eventually reduced to linear algebraic equations which may be solved for the numerical values of 
the Laplace transforms of the temperature and the displacements at selected points in space. The 
temperature and the displacement in the physical time domain are approximately recovered by 
using a numerical method for inverting Laplace transforms. To check that the numerical procedure 
presented is valid, it is applied to solve a specific test problem which has a closed-form analytic 
solution. 

Keywords: Boundary element method, Dual-reciprocity method, Interpolating functions, Laplace 
transformation, Axisymmetric thermoelasticity, Functionally graded materials.  

Introduction 

In recent years, there has been considerable interest in the analysis of axisymmetric materials 
possessing material properties that are graded continuously along the axial and radial directions. For 
example, Clements and Kusuma (2011) studied the axisymmetric deformation of an elastic half 
space having elastic moduli that vary as a quadratic function of the axial coordinate; Matysiak, 
Kulchytsky-Zhyhailo and Perkowski (2011)  considered the Reissner-Sagoci problem for a 
homogeneous layer bonded to an elastic half space with a shear modulus that varies axially in 
accordance with a simple power law; and Keles and Tutuncu (2011) calculated the dynamic 
displacement and stress fields in hollow cylinders and spheres with material properties that are 
functionally graded along the axial direction by a simple power law.  

In the present paper, the dual-reciprocity boundary element approach and the interpolating functions 
proposed in Yun and Ang (2012) for solving an axisymmetric thermoelastostatic problem involving 
functionally graded materials is extended to thermoelastodynamic deformations. The material 
properties vary with the axial and radial coordinates following sufficiently smooth functions in 
general forms. 

It may be of interest to note that a boundary element solution of the corresponding two-dimensional 
thermoelastodynamic problem for functionally graded solids may be found in a very recent paper by 
Ekhlakov. Khay, Zhang, Sladek and Sladek (2012). 
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Basic equations of axisymmetric thermoelastodynamics 

With reference to the cylindrical polar coordinates ,r  and ,z  the temperature T  and the 
displacement u  in an isotropic solid that is symmetrical about the z axis is independent of  and 
the only non-zero components of the displacement u  are given by ru  and zu . If the material 
properties of the solid are radially and axially graded using sufficiently smooth functions of r and

,z  the governing partial differential equations of axisymmetric thermoelastodynamics are given by 
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T Q T c

t r r z t                          (1) 
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where
2 2

2
axis 2 2

1
r r r z

, t  is the time coordinate, 0T   is a constant reference temperature at 

which the body does not experience any thermally induced stress, the coefficients , , , ,c
and  are respectively the thermal conductivity, stress-temperature coefficient, density, specific 
heat capacity, Poisson's ratio and shear modulus of the isotropic body,  rF   and zF   are respectively 
the r and the z components of the body force, and Q  is the internal heat generation term. Note that 

, , , c  and  are, in general, functions of r and z  and the Poisson’s ratio  is assumed to be 
constant.  The body force components rF  and zF  and the internal heat generator Q  are, in general, 
functions of the axisymmetric coordinates r and z  and the time coordinate t .

Details on the basic equations of thermoelasticity may be found in Nowacki (1986). 
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Boundary-domain integral equations 

The governing partial differential equations in (1), (2) and (3) in terms of the boundary-domain 
integral equations 

0 0 0 0 0 0
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where  is the solution domain on the Orz plane,  is the boundary of  (excluding the part that 
lies on the z  axis), rn and zn  are respectively the r and z components of the unit normal outward 
vector to curve at the point ( , ),r z 0 0 0( , ; , )G r z r z is the fundamental solution of axisymmetric 
Laplace’s equation, 1 0 0( , ; , ; , )r zG r z r z n n is the normal derivative of 0 0 0( , ; , )G r z r z along the direction 
of the vector [ , ]r zn n , the uppercase Latin subscripts (such as K ) are assigned values r and z and
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summation over those values are implied for repeated subscripts, 0 0( , ; , )JK r z r z  is the fundamental 
solution of the partial differential equations for axisymmetric elastostatics, 0 0( , ; , ; , )JK r zr z r z n n is 
the traction function corresponding to 0 0( , ; , ),JK r z r z  and ( , , ; , ),J r zp r z t n n  ( , )JNX r z  and 

( , )JNY r z  are defined by 
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The functions ),;,,( zrJ nntzrp  are related to the axisymmetric tractions  ),;,,( zrJ nntzrt  through 

0

( , , ; , ) ( , ) ( , , ; , )
( , )[ ( , , ) ] ( , ),

J r z J r z

JL L

t r z t n n r z p r z t n n

r z T r z t T n r z
               

(8) 

where JN   is the Kronecker-delta. 

The boundary-domain integral equations in (4) and (5) for the corresponding case of axisymmetric 
thermoelastostatic deformations are given in Yun and Ang (2012) where the details of the functions 

0 0 0( , ; , ),G r z r z 1 0 0( , ; , ; , ),r zG r z r z n n 0 0( , ; , )JK r z r z  and 0 0( , ; , ; , )JK r zr z r z n n  are explicitly written 
out.

Dual-reciprocity boundary element method 

The dual-reciprocity method in Partridge, Brebbia and Wrobel (1992) may be employed to 
approximate the domain integrals over  in the integral equations (4) and (5) in terms of boundary 
integrals over the curve  by using interpolating functions centered about selected collocation 
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points in .  As in Yun and Ang (2012), the collocating functions centered about the n-th 
collocation point,  denoted by ( ) ( , ),n r z ( ) ( , ),n r z ( ) ( , )n

KJ r z and ( ) ( , ),n
KJ r z are assumed to be 

sufficiently smooth and are required to satisfy the partial differential equations 
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In Agnantiaris, Polyzos and Beskos (2001) and Wang, Mattheij and ter Morsche (2003), the 
interpolating functions ( ) ( , ),n r z ( ) ( , ),n r z ( ) ( , )n

KJ r z and ( ) ( , )n
KJ r z  are constructed by integrating 

axially selected radial basis functions in three-dimensional space. The interpolating functions thus 
constructed are well defined at 0,r but they are in highly complicated forms and are expressed in 
terms of special functions given by the elliptic integrals. 

To construct interpolating functions expressed in terms of relatively simple elementary functions, 
one may choose ( ) ( , )n r z and ( ) ( , )n

KJ r z to be sufficiently smooth functions of 
( ) 2 ( ) 2

0 0( ) ( )n nr r z z , where ( ) ( )
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KJ r z using (9). Nevertheless, the interpolating functions ( ) ( , )n r z and ( ) ( , )n

KJ r z constructed in 
this manner are not well defined at 0r . This poses a problem if the z axis is part of the solution 
domain .  In Yun and Ang (2012),  the singular behaviors of  ( ) ( , )n r z and ( ) ( , )n

KJ r z  at 0r are 
removed by modifying ( ) ( , )n r z and ( ) ( , )n
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where 2 2
0 0 0 0( , , , ) ( ) ( ) .r z r z r r z z

For a numerical procedure for solving initial-boundary value problems governed by (1), (2) and (3), 
we apply the Laplace transformation on the boundary-domain integral equations (4) and (5) to 
suppress the time derivatives of ,T ru  and ,zu  use the dual-reciprocity method together with the 
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interpolating functions constructed using (10) to approximate the domain integrals in the resulting 
boundary-domain integral equations in terms of boundary integrals, and discretize the boundary 
into elements to develop a boundary element procedure for finding the temperature and the 
displacement in the Laplace transform domain. The temperature and the displacement in the 
physical domain may be recovered by using a numerical method for inverting Laplace transforms.  

Test problem 

The coefficients of the partial differential equations in (1), (2) and (3) are chosen to be given by 
2 2 ,r z 2,c 2 2 ,r z ,r z 2 2 2( ) ,r z 3 /10,  and 
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It is easy to check that a solution of the partial differential equations is given by 
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                                                   (11) 

For a specific initial-boundary value problem as a test problem, take the solution domain  to be 
,21 r 0 1,z   which is a rectangular region on the Orz  plane, and use the solution in (11) to 

generate the following initial and boundary data  (a) initial values of ,T  ,ru ,zu ru
t

and zu
t

 at 

time  0t  at points ( , )r z in ,  (b) boundary values of  the displacement ( , )r zu u on the entire 
boundary of   for time 0,t  (c) boundary values of T on the sides of the rectangular region 

where 0z  and 1z  for time 0,t  and (d) boundary values of  T
r

 on the sides of the 

rectangular region where 1r  and 2r  for time 0.t
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For the boundary element procedure, the sides of the rectangular region are discretized into 80 
straight line elements. The Laplace transforms of the temperature, heat flux, displacement and 
traction on the boundary elements are approximated using discontinuous linear functions. As many 
as 121 well distributed collocation points in (including those on the boundary elements) are 
used in the dual-reciprocity method for converting approximately the domain integrals in the 
integral formulation of the initial-boundary value problem into boundary integrals. We use the 
numerical method in Stehfest (1970) to invert the Laplace transforms in order to recover the 
temperature and the displacement in the physical domain.  

Numerical values of  T  , ru   and zu  obtained using the dual-reciprocity boundary element method 
(DRBEM) are plotted against t  ( 0 6t ) at )5.0,5.1(),( zr  in Figures 1, 2 and 3 respectively. 
The numerical values agree well with the analytical solution in (11), showing that the interpolating 
functions given in (9) and (10) are employed successfully to treat the domain integrals in the 
boundary-domain integral equations in (4) and (5).  

Figure 1. A comparison of the numerical and exact T  at )5.0,5.1(),( zr  for 60 t .

1431



8

Figure 2. A comparison of the numerical and exact ru  at )5.0,5.1(),( zr  for 60 t .

Figure 3. A comparison of the numerical and exact zu  at )5.0,5.1(),( zr  for 60 t .
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The Gas Electron Multiplier (GEM) technology has been proven to tolerate rate larger than 50 
MHz/cm2 without noticeable aging and to provide sub millimeter resolution on working chambers up to 
45x45 cm2 [1]. A new GEM-based tracker is under development for the Hall A upgrade at Jefferson 
Lab. The chambers of the tracker have been designed in a modular way: each chamber consists of 3 
adjacent GEM modules, with an active area of 40x50 cm2 each [2]. We optimized the gas flow inside 
the GEM module volume, using the COMSOL physics simulator framework; the COMSOL-based 
analysis includes the design of the inlet and outlet pipes and the maximization of the uniformity of the 
gas flow.
We have defined the procedures for the assembling of the GEM modules and designed a mechanical 
system (TENDIGEM) that will be used to stretch the GEM foils at the proper tension (few kg/cm); the 
TENDIGEM is based on the original design developed at LNF [3].

Keywords: GEM foil, TENDIGEM, Fluid dynamic, Simulation, SBS Tracker

1. Introduction

In late 2014 the CEBAF electron beam at 
Jefferson Lab is expected to complete the energy 
upgrade to 12 GeV. JLab will become one of the 
most important experimental facilities for the 
study of the nucleon structure, in terms of form 
factors, transverse momentum distributions of 
the constituent partons and generalized parton 
distributions. New experimental equipment is 
under development for an optimal exploitation of 
the full potentiality of the new beam; a new 
hybrid tracker able to operate with luminosity as 
large as 1039 s-1cm-2 is part of this development. 
The tracker will provide an average single hit 
resolution better than 80 m and an event 
readout rate of about 20 kHz. 

The tracker is made of two types of 
detectors: 40x50 cm2 GEM modules and 10x20 

cm2 silicon microstrips. The former will be used 
as basic building blocks of large (~0.60 m2)
chambers that will seat behind a momentum 
analyzing spectrometer, while the latter will be 
positioned close to the scattering chamber, thus 
extending considerably the useful tracking arm.
The hybrid design is aiming at a balance between 
cost and performance. The modular design of the 
GEM chambers (up to 6) intends to maximize 
reconfiguration on the existing or planned 
spectrometers of Hall A; each 40x50 cm2 GEM 
module has its own high voltage supply and gas 
inlet/outlet as well as front-end electronics. 
Mechanics and gas flow have been investigated 
and optimized by Finite Element Analysis. The 
single module is made of 3 GEM foils and 
double layer x/y strip readout with 400 m strip 
pitch. The modules are connected in a way to 
minimize the dead area and are supported by an 
external service frame.
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Figure 1: The triple GEM

2. Gas Input design

The role played by the gas mixture in the 
GEM detector is important. The avalanche 
process creates ions that pollute the gas 
degrading the performance of the detector. Thus 
the gas has to be constantly and relatively 
quickly replaced. The GEM structure being very 
thin, gas inlet and outlet pipes are limited in 
diameter. Hereafter we present a calculation of 
the minimal diameter of the pipes as a function 
of the rate of renewing. The characteristic 
number that measures the ratio between inertial 
and viscous forces is the Reynolds number:          (1)
where is the density (expressed in kg/m3), V is 
the gas velocity (expressed in m/s), D is the
diameter of the pipe (in m) and the dynamic 
velocity of the gas (in Pa/s). If we denote by  =
D2V/4 the flux of the gas (expressed in m3/s), 
we obtain that, at fixed Reynolds number, the 
diameter of the pipe is given by:=  4            (2)
To insure a laminar flow, the Reynolds number 
must not be greater than about 2300. With a 
mixture of Ar/CO2 (70/30), and a renewing of 
the gas of 10 times per hour, we find for the 10 
cm x 10 cm test detector (using = 1.7 kg/m3

and = 2 Pa/s and a thickness of 9 mm) a
minimum diameter of 310-4 mm. 
The diameter will vary linearly with the 
dimensions of the detector and with the rate of 
refreshing of the gas, and in inverse proportion 
to the viscosity of the gas. It will also depend on 
the temperature as the density decreases as T-1,
while to first approximation the dependence of 
the viscosity on the temperature is given by the 
Sutherland empirical law:=  ++  ( / ) /    (3)

Here C is the Sutherland’s constant, which
depends on the nature of the gas and is of the 
order of 200 (CAr=144; CCO2=240). To first 
approximation the computed diameter will 
behave like (T0/T)5/2 as a function of the 
temperature, and thus will vari by a factor of the 
order of 0.9 between 15 °C and 25 °C. Another 
parameter that must be taken into account is the 
dependence of the flux on the diameter of the 
pipe,   D in laminar regime, but this effect 
can be compensated by adjusting the pressure 
gradient. This dependence of the flux on the 
diameter of the pipes justifies its optimization.

2. Simulation

P
to provide the expected gain and signal timing, 
to evacuate gas that contaminates the mixture 
and to prevent fast aging of the detector due to 
radiation-induced chemical reactions in the gas. 

patially uniform in order 
to guarantee a homogeneous and stable detector 
response. Therefore, the goal of our study was to 
optimize the design of the frame separating two 
GEM foils in order to obtain the optimal gas 

ow uniformity over the active area of the 
module.

3. Use of Finite Element Method

The Finite Element Method (FEM) approximates 
a Partial Differential Equations problem with a 
discretization of the original problem based on a 
mesh, which is a partition of the geometry into 
small units of simple shape called mesh 
elements. The FEM method looks for a solution 
in the form of a piecewise polynomial function, 
each mesh element de ning the domain for one 
“piece” of it. Such a piecewise polynomial 
function will be expressed as a linear 
combination of a nite set of prede ned basis 
functions. Let us consider for example a 2-
dimensional problem with a single dependent 
variable p(x,y). We would like to solve this 
problem based on a mesh with quadratic 
triangular elements. The expression “quadratic 
elements” refers to the fact that on each mesh 
element the sought piecewise polynomial 
function p (x,y) is at most a quadratic 
polynomial. In this case, the solution is 
expressed as:
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 ( , ) ( ) = ( , )         (4) 

where i refers to a node of the mesh, pi are the 
degrees of freedom, i(x,y) are the basis 
functions and n is the total number of nodes, 
under the assumption that each triangle of the 
mesh possesses six nodes: three corner nodes 
and three mid-side nodes [4]. A basis function 

i(x,y) has here the restriction to be a polynomial 
of degree at most 2 such that its value is 1 at 
node i and 0 at all other nodes [5]. The degree of 
freedom pi is thus the value of p (x,y) at node i. 
The de nition of the basis function associated to 
each node of the mesh can be derived using for 
example a general method introduced by 
Silvester in 1969 [6].

3.1. Simulations development

All the details on the selection of the physical 
parameters in the design of the GEM are taken
from ref. [5].
The geometry of the frame separating two GEM 
foils has been constructed in 2 dimensions, 
whereas the third dimension, which corresponds 
to the gas lm thickness, has been inserted as a 
parameter of the physical model. Actually, two 
separate Thin-Film Flow models have been 
de ned in order to account for the two different 

lm thicknesses in the problem: 2 mm in 
between two GEM foils and 1 mm inside the 
openings of the frame’s spacers and inside the 
inlets and the outlets.
As far as the inlets and outlets are concerned, it 
has not been possible to de ne their exact 
con guration, because this requires to use a 
physical model that can be applied to a geometry 
constructed in 3 dimensions. Therefore, we have 
de ned inlets and outlets as 8x5 mm rectangular 
zones with a uniform lm thickness of 1 mm. 
Typical ow in gas detectors corresponds
volume renewals per hour. If the 3 GEM 
modules of one chamber are connected to each 
other in series with respect to the gas ow, the 
total gas volume for a 2 mm thick “ oor” of the 
chamber is approximately 3 · 0.4 · 0.5 · 0.002 = 
0.0012 m3

correspond in our case to a gas ow between 20 
cm3/min and 60 cm3/min. Nearly all our 
simulations have therefore been made with a 
total ow of 60 cm3/min imposed at the inlets. In 
a frame with 2 inlets, each having a cross-section 

of 8 mm2, the mean entrance velocity is then Ue
= 0.0625 m/s. If one wants to evaluate whether 
such a stationary gas ow is incompressible or 
not, the mean velocity should be compared to the 
speed of sound in the same medium [4]. For an 
ideal gas, the speed of sound is given by the 
following formula:=           (5)
where is the adiabatic constant of the gas, R = 
8.314 J/(mol·K) is the universal gas constant, T
is the temperature and M is the molecular mass 
of the gas. In our case, we consider that 
since argon is the main component of the gas 

0.30·0.04401 = 0.04117 kg/mol. For the speed of 
sound, we thus obtain Us e =
0.0625 m/s. Therefore, it has been assumed that 
the gas ow is incompressible and a constant 
value for the density has been used. Somehow, 
it is useful to get rid of the density’s dependence 
on the pressure. The ambient pressure pa has 
been set to 1 atm. However, the solution for the 
velocity field does not depend on this value. The 
obtained velocity field does not depend either on 

Ar-CO2 (70/30) mixture at 20 °C and 1 atm, can 
be computed using the densities at 20 °C and 1 
atm of respectively argon and carbon dioxide

Ar = 1.7837 kg/m3 and CO2 = 1.9770 kg/m3), 
with the following formula:= 0,30 +  0,70 =  1,8417  (6)
To compute the dynamic viscosity at 20 °C and 1 
atm of the gas mixture, we have used the 
Reichenberg’s formula [7] with parameters from 
literature and we have obtained:

μ = 1.9696·10-5 Pa·s              (7)
-Film Flow Models, 

instead of considering two moving solid 
structures, we have forced the normal 
displacements, hm and hb, and the tangential 
velocities, um and ub, of these structures to zero, 

constant at its initial value h0. We have also 

treated as a continuum. Actually, the Knudsen 
number obtained with our no-slip models was 
around 5·10-5, which is indeed negligible with 
respect to 0.1.In our case, the ambient pressure 
pa has been set to 1 atm. As boundary conditions:

1436



 We have imposed a uniform perpendicular 
velocity (e.g. 0.0625 m/s) on the external 8 
mm side of the inlets.

 On the external 8 mm side of the outlets, we 
have forced the additional pressure pf to 
zero.

 “Walls” have been inserted on the sectors of 
the geometry that represent surfaces of the 
frame. This imposes the standard wall 
boundary condition  = 0 on these sectors.

When simulating a system that is quite complex, 
it’s advisable to start with a strongly simpli ed 
geometry and increase progressively the 
complexity of the model, as one’s understanding
of the simulation improves [4]. We have started 
by simulating a frame with only two sectors, 
separated by a spacer containing just one 
opening of length 15 mm. One inlet (with 
velocity 0.0625 m/s) and one outlet have been 
de ned. The problem has been treated as 
stationary and a prede ned mesh type of 
COMSOL (“Normal”) has been used, which in 
our case is made up of 24182 unstructured 
quadratic triangular elements. The obtained 
velocity eld is shown in Figure 2.

Figure 2: Velocity magnitude on a linear scale and 
streamlines of the velocity field obtained in the case 
of a frame with 2 sectors, 1 inlet at the left and 1 
outlet at the right. The two sectors communicate 
through a central opening of 15 mm.

In a next step, we have simulated six adjacent 
sectors of the frame and included two 15 mm 
openings in each spacer. It has been useful to 
de ne a time-dependent model in which the inlet 
velocity increases smoothly from 0 to 0.0625 
m/s. We are however not mainly interested in 
this evolution and we focus on the results 
obtained for the nal state (Figure 3). In this 
simulation, we have also tried out a more 
complex mesh, consisting of a prede ned “Fine” 

unstructured quadratic triangular mesh in the 
central regions (133276 elements) and a 
“Boundary Layer”, made up of parallel 
rectangular quadratic elements along the borders 
of the geometry (39252 elements). Note that on 
Figure 3, the scale has been cut at a tenth of the 
maximum velocity.
Based on these results, we have tried to modify 
some aspects of the frame’s design in order to 
reduce, in number and/or in size, the zones with 
particularly high or low velocities. The 
optimization of the frame design has been 
realized by gradually modifying the simulated 
geometry and comparing each time the new 
results with those from previous simulations.
In all our simulations of full-sized frame 
versions, we have used the time-dependent 
model but without working with the same type of 
mesh as in the six-sectors simulation, because of 
the too large number of elements (over 500000). 

Figure 3: Velocity magnitude on a linear scale and 
streamlines of the velocity field obtained in the case
of a frame with 6 sectors, 1 inlet (left) and 1 outlet 
(right).

We have de ned another type of customized 
mesh consisting of three prede ned unstructured 
quadratic triangular mesh types:
 in the inlets and outlets, as well as in a 16 x 

10 mm2 rectangular zone in front of each of 
them, we have de ned a “Finer” 
(“Extremely ne”) mesh, in the rst two
(last four) simulations.

 in the central openings we have de ned a 
“Fine” (“Extra ne”) mesh, in the rst two
(last four) simulations.

 in the rectangles left over in the center of the 
several frame sectors, we have de ned a 
“Normal” (“Finer”) mesh, in the rst two 
(last four) simulations.

Furthermore we have perfomed all six 
simulations using either 15 mm or 20 mm 
thicknesses for the central openings.
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In this way, we have tried to re ne our meshes 
without exceeding 250000 elements. Since the
geometry is different in each simulation, in order 
to assess in some way the precision of our 
different simulations we have compared for each 
simulation the inlet and the outlet total uxes 
based on the computed velocity eld. Since the 

ow is supposed to be conserved, these uxes
should in theory be equal and, of course, 
correspond to the initially imposed value (e.g. 60 
cm3/min).

3.1.1 Analysis and results

3.1.1.1 Simulation 1: Full frame in its first 
prototype version

In its first prototype version, the frame 
separating two GEM foils possesses 18 sectors, 2 
inlets and 2 outlets. Two adjacent sectors along 
the longest side of the module communicate 
through 2 openings of 15 mm, while two 
adjacent sectors along the other direction 
communicate through a single 15 mm opening. 
In our simulation, the uniform velocity imposed 
on both inlets is 0.0625 m/s, which corresponds 
to a total flow of 60 cm3/min. Note that the scale 
has been cut at a tenth of the maximum velocity. 
A contour plot with logarithmic scale of the 
velocity magnitude is also given in Figure 4.
As expected, the zones with lower velocities are 
found mainly in corners where spacers cross 
each other or reach the border of the frame, and 
in the four corners of the outer structure of the

Figure 4: Simul. 1 – Contour plot with logarithmic 
scale of the velocity magnitude obtained in the case 
of the full frame in its first prototype version.

frame. However, our attention has also been 
drawn towards two large low-flux zones at the 

extremities of the central 6-sectors row, which 
contains no inlets and outlets. For this reason, in 
our next simulation we included an extra inlet 
and outlet, placed at the level of this central row.
Zones with higher velocities correspond to inlets, 
outlets and openings in the spacers, especially in 
the spacers parallel to the shortest side of the 
module. Figure 5 shows a close-up on one of the 
inlets. Although our simulation isn’t the most
appropriate to estimate the actual velocity field
in the region of  inlets  and  outlets,

Figure 5: Simul. 
1 – Velocity 
magnitude on a 
linear scale and 
streamlines of the 
velocity field 
obtained for one 
of the two inlets 
in the first 
prototype 
version.

we can realize from it that the 90 degree angles
between an inlet (or outlet) and the borders of 
sectors are responsible for particularly high 
velocities, which are in fact also much higher 
than in the openings of spacers (Figure 6). The 
maximum velocity computed by the simulation 
(0.0689 m/s) is indeed found on these edges at 
the inlets and outlets. Thereupon, we decided 
also to replace in our next simulation these 90 
degrees edges by circular joints of radius 1.5 
mm.

Figure 6: Simul. 1 –
Velocity magnitude on a 
linear scale and 
streamlines of the 
velocity field obtained 
for an opening in a 
spacer of the full frame 
in its first prototype 
version.

3.1.1.2 Simulation 2: Modifications to the 
inlet and outlet configuration

In this second simulation, one inlet and one 
outlet have been added with the aim to improve 
the uniformity of the gas flow in the central 6-
sectors row of the frame. The exact positions of 
these inlet and outlet have been selected based 
on the available space in the detector. For all 
inlets and outlets, the aforementioned circular 
joints of radius 1.5 mm have also been 
introduced. The 60 cm3/min flow has been 
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maintained, resulting in an inlet velocity of 
0.04167 m/s. In Figure 6, the obtained velocity
magnitude is shown on a linear scale (cut to a 
tenth of the maximum velocity), together with
the streamlines. Figure 8 is a contour plot of the 
velocity magnitude with a logarithmic scale. On 
a qualitative basis, the overall uniformity of the
velocity magnitudes looks improved by the 
added inlet and outlet. It seems that in this 
configuration we obtain in the six-sectors rows 
three relatively independent and similar flows. In 
order to show the effect of the circular joints at 
inlets and outlets (cf. Figure 8), we have also run 
the same simulation using the initial geometry of 
the inlets and outlets.

Figure 7: Simul. 2 – Contour plot with logarithmic 
scale of the velocity magnitude obtained for an 18-
sectors frame with 3 inlets (left) and 3 outlets 
(right).

Figures 9 and 8 share the same color scale, so 
that the slight reduction of the high velocities 
inside the sector is visible in the design with 
circular joints. It will help avoiding their 
separation from the walls and thus avoiding 
possible small turbulence areas near the inlets 
and outlets.

Figure 8: Simul. 2 bis –
Inlet without circular 
joints

Figure 9: Simul. 2  –
Inlet with 1.5 mm 
radius circular joints

3.1.1.3 Simulation 3: Reduction of the 
number of sectors from 18 to 12

Since low velocity zones are found where 
spacers intersect each other or reach the border 
of the frame, reducing for example the number of 
spacers would be a way to reduce these 
“stagnation” zones, which might thus improve
the overall uniformity of the gas flow. A sector 
of a GEM-foil glued to its frame can be modeled
as a built-in rectangular thin plate of area S, 
being isotropically stretched by a uniform force 
per unit length T at its circumference, and 
undergoing a normal pressure P. The maximum 
deformation umax of such a plate is given by the 
following expression:=  ( ) =         (8)
where the geometrical factor ( ) is an increasing 
function of the ratio ]0, 1] of the rectangle 
sides. For a square plate, reaches a maximum 
value of nearly 0.074. In our case, we want the 
maximum deformation umax to remain lower than 
1% of the 2 mm thick gap between two GEM-
foils, at a pressure P up to 10 N/m2, when a 
tension of 1 kg/cm (T = 9.81 N/cm) is applied to 
the GEM-foil. If we consider in first 
approximation a geometrical factor of 0.074, 
the maximum allowable area S of a sector should 
thus be:= =  2 · 10 9.81 100.074 10= 2.65 10    (9)
Based on these assumptions, it would have been 
feasible to reduce the number of sectors to only 9 
(using 2 spacers along both directions), since the 
area of each sector would have been equal to .  = 2.22 · 10  . However, a more 
conservative choice of 12 sectors (2 spacers 
along the long side and 3 spacers along the short 
one) has been made, which results in sectors of 
about 0.125 x 0.133 m2 = 1.66 · 10 2 m2. In the 
simulation results for a frame with 12 sectors, 
the overall uniformity of the gas flow seems 
indeed improved by the reduction of the number 
of spacers along the shortest side of the module.

3.1.1.4  Simulation 4: Enlargement of 
some openings in the spacers

With the hope to further improve the flow 
uniformity, especially in the sectors possessing 
an inlet or an outlet, we have made a simulation 
in which the openings in the spacers that delimit 
these particular sectors are enlarged from 15 to 
20 mm. The results have however not been so 
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convincing. For this reason, the idea of 
modifying the width of the openings in spacers 
has been abandoned.
.

3.1.1.5 Simulation 5: Nine openings in the 
spacers along the short side of the module

Figure 10: Simulation 5 – Velocity magnitude on a 
linear scale and streamlines of the velocity field 
obtained for a 12-sectors frame with 3 inlets (left) 
and 3 outlets (right), having nine 10 mm openings 
in the spacers along the short side of the module.

Good results have been obtained with nine 
openings of 10 mm instead of six openings of 15 
mm for the spacers along the short side of the 
module. When comparing Figure 10, with the 
figures from previous simulations, we notice a 
reduction in size of the low velocity zones where 
spacers cross each other and where the short 
spacers reach the longest border of the frame.

3.1.1.6 Simulation 6: Doubling the 
openings in the spacers along the long side 
of the module

After the results of Simulation 5, we have tried 
to find out whether doubling the number of 15 
mm openings in the spacers along the longest 
side would decrease the size of the large low 
velocity zones near the shortest borders of the 
frame. However, these long spacers are parallel 
to the main direction of the gas flow, instead of
being perpendicular to it like the short spacers. 
For this reason, increasing the number of 
openings in the long spacers does not produce 
the same positive effect on the flow uniformity.
We have therefore decided to stick with the 
frame design of Simulation 5, since in 
Simulation 6 we have not found a sufficient 
improvement of the flow uniformity to justify 

adding openings in the long spacers and thus 
weakening the mechanical support they provide. 
Figure 11: All frames of the module assembled

The finally chosen new frame designs is the one 
yielding the simulations results shown in figure 
10.

4. TENDIGEM TENSION CONTROL 
SYSTEM

TENDIGEM is a tool designed to stretch a 
GEM-foil before gluing it to the frame that will 
hold the foil. This tool is a sensor-based device 
which uses load cells to measure the tension. The 
load cells of the TENDIGEM monitor the 
tension on the different sides of the foil. It is 
important to stretch the foils properly because if 
a GEM foil shrivels, it can touch another foil. So 
when the foils are not stretched properly, there is 
a big chance that an electrical short will occur in 
the foil, which would make the detector useless.
The GEM-foil will be placed in the TENDIGEM
by using the clips that are provided. There are 14 
clips in total as shown in fig. 11. Only half of the 
clips are connected with the load-cells. After a
foil is correctly stretched, the frame will be glued
on it. Fiducial metal pins located on the sides of 
the TENDIGEM and corresponding holes in the 
frames are arranged asymmetrically in order to 
easly match the appropriate sides of either one.
The frame is then glued with polymeric glue to 
the GEM-foil and allowed to dry for 24 houres.
Once the glue has dried they are removed from 
the TENDIGEM. At this point the frame and foil 
are ready to use in a GEM-chamber.
To improve the GEM detector assembly method 
an electronic control system is used. In the 
TENDIGEM the goal is to create the correct 
tension on a GEM-foil before it is glued to the
frame. 
There are different ways to put tension in a 
controlled way on a system, like Sensor Based 
Tension Control or Open Loop Tension Control. 
The Sensor Based Tension Control uses load 
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cells that measure the tension in a point and 
compare it with the desired tension level. If it is 
necessary the load cells will induce the controller 
to do some adjustments. This is an example of a 
closed loop control system and has an accuracy 
of 1-2%. In an Open Loop Tension Control 
System there is no feedback. The system only 
estimates what the value at the output will be. 
The accuracy for an Open Loop Tension Control 
System is 8-10%. In the TENDIGEM the system 
used is Sensor Based Tension Control (Fig.12)
that uses load cells. 

5. CONCLUSION

Our goal has been to obtain a better spatial 
uniformity (over the active area of the module) 
of the continuous Ar-CO2 (70/30) gas flow in the 
2 mm gap between two GEM foils, since this gas 
flow should be spatially uniform in order to 
guarantee a homogeneous and stable detector 
response. With a frame geometry defined in two 
dimensions, we have used the built-in Thin-Film 
Flow Model, which treats the laminar and 
isothermal flow of a thin fluid film between two 
large solid structures and solves the corre-
sponding Reynolds equation. We have defined a 
typical total gas flow of about 3 chamber-volume 
renewals per hour (60 cm3/min) and this gas flow 
has been considered incompressible. The 
optimization of the frame design has been 
presented through six main simulations, showing 
incremental modifications of the simulated 
geometry. The initially defined geometry 
corresponds to the first prototype version of the 
frame, possessing eighteen sectors, two inlets 
and two outlets. A second simulation has shown 
that adding a third inlet and a third outlet 
improves the overall flow uniformity, as the 
flows in the three six-sector rows become rather 
independent and similar. High velocity zones 
near inlets and outlets have also been reduced by 
replacing 90 degrees edges with 1.5 mm radius
circular joints. In a third simulation, the number 
of stagnation zones has been decreased by 
reducing the number of short spacers from five 
to three, leading to a frame with twelve sectors 
which still meets the mechanical requirements
related to the planarity of the GEM foils. The 
fourth simulation, in which openings in the 
spacers near the inlets and outlets have been 
enlarged from 15 mm to 20 mm, has not yielded 
a significant improvement of the gas flow

uniformity. However, the fifth simulation has 
shown that introducing in the short spacers nine 
openings of 10 mm, instead of six openings of 15 
mm, decreases the size of various stagnation 
zones. Finally, we have concluded from a sixth 
simulation that doubling the number of 15 mm 
openings in the long spacers does not 
significantly improve the flow uniformity and 
thus the geometry of the fifth simulation has 
been selected as the basis for a new frame 
design. 

Figure 12: The TENDIGEM Tension Control 
System
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Abstract
In this paper, analysis is conducted in both theoretical and numerical aspects on the heat transfer in 
a pipeline system via three steps: (1) Development of a theoretical model based on the heat transfer 
theory and existing work from literature; (2) Development of a corresponding MATLAB-based 
software for the evaluation of heat loss within the pipeline system; (3) Validation of the software 
via three-dimensional computational fluid dynamics (CFD) simulations using ANSYS FLUENT. It 
is concluded that the software can provide in-depth understanding of the heat transfer phenomena in 
pipelines and can be used for fast assessment of the heat loss in pipeline systems.

Keywords: Pipeline system; Software; Heat transfer.  

Nomenclature

m Mass flow rate (kg/s) 

q      Heat transfer rate (W) 

h      Convection heat transfer coefficient (W/m2·K) 
'H    Specific enthalpy (kJ/kg) 

Re    Reynolds number 
Pr    Prandtl number 
Nu   Nusselt number 
k      Thermal conductivity of solid (W/m·K) 

     Thermal conductivity of liquid or gas (W/m·K) 
t       Temperature (K) 
r       Radius (m) 
x       Steam dryness 
      Density (kg/m3)

fR     Fouling factor (W/m2·K) 
L       Length (m) 
       Viscosity (kg/s·m) 

Subscripts 

in        Inlet 
out      Outlet 
eq        Equivalent 

i           Inside 
o         Outside 
S         Sub-pipe 

Introduction 

Overhead pipelines were used extensively in both industrial and civic heat supply engineering  
(Zhang and Lu, 1998). Since pipeline systems are complex and the ambient environment is highly 
variable, how to quickly determine the heat loss of a pipeline system is a difficult problem for 
engineers and pipe network designers. Firstly, the pipeline structure and the mass flow distribution 
influence significantly on the convection heat transfer inside the pipeline (Yang, 2009). Secondly, 
the pipe material, the cladding material and the insulation have great effects on the heat conduction 
inside the pipe wall. Thirdly, the variable environmental parameters are challenges to the analysis of 
convection heat transfer outside the pipeline. Therefore, the heat transfer through the pipeline 
system is an interesting but challenging research topic. 

In the present paper, based on the heat transfer theory, a theoretical model is established, and then 
the corresponding software is developed in MATLAB. In order to validate the software, several 
numerical case studies are carried out via a CFD code in ANSYS FLUENT. In addition, an example 
of application is presented to demonstrate the capability of the software. It is shown that the 
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software can assess the heat loss with acceptable accuracy and improve the computing efficiency 
significantly. It is thus a useful tool for engineers and pipe network designers 

Theoretical model 

As shown in Figure 1, the pipeline system in the present work consists of a main pipeline and 
several sub-pipelines, which is a common structure in industrial and civic heat supply engineering. 

Figure 1. Structure of the pipeline system. 

The mass flow rate in the main pipeline is a variable, which varies along the flow direction because 
of bypass flows. In order to solve this problem, the main pipeline is divided into several sections. 
Within each section the mass flow rate remains constant. Equation (1) shows the mass flow rate of 
each section, in which 1m represents the mass flow rate of Section 1, 2m  the mass flow rate of 
Section 2, nm the mass flow rate of Section n, and so on. 

2 1 1Sm m m

3 2 2Sm m m

         (1)

1 2 2n n Snm m m  

1 1n n Snm m m 

Heat transfer process 

Figure 2 shows a part of the pipeline, where the inner and outer surfaces are exposed to hot fluid 
and cold air respectively. The heat transfer process includes the convection inside the pipe, the 
conduction through the pipe, and the convection outside the pipe. The heat transfer process is 
presented in Figure 2 (a) and the distribution of temperature in Figure 2 (b). 

(a) (b) 
Figure 2. Heat transfer process and temperature distribution through pipe wall.
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According to the thermal resistance theory, the heat transfer rate through the pipe wall is presented 
as (Bergman, Incropera et al., 2011) 

1 6

42 3

31 2

1 1 2 3 4

lnln ln
1 1
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i o
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(2)

where t  stands for the temperature, r  the radius, k  the thermal conductivity, h the convection heat 
transfer coefficient, and L  the length respectively. In practical analysis, although the outside air 
temperature 6t  is usually considered as a constant, the inside fluid temperature 1t  is a variable since 
it varies along the flow direction. By analysis and calculation, it is concluded that the temperature 
difference  1 6t t  may be assumed to be the log mean temperature difference. As a result, 
Equation (2) is modified to 
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 (3) 

In Equation (3), there are three unknowns, i.e. the inside heat transfer coefficient ih , the outside 
heat transfer coefficient oh , and the outlet temperature outt , which will be figured out by analyses of 
convection heat transfer inside and outside the pipeline.  

Heat transfer inside the pipeline 

In industrial and civic heat supply engineering, the most common fluid inside includes hot water 
and steam. Although the heat transfers of these two fluids are all forced convection, the phase 
change of steam gives more challenge to the analysis in steam pipeline systems. In addition, the 
heat transfer inside the pipeline is an internal convection, such that another important characteristic 
is that the fluid is confined by the surface wall of the pipeline. As a result, the heat transfer 
phenomena inside pipeline are thus closely associated with the characteristic of the hot fluid and the 
dimension of the pipeline. 

For hot water, the Dittus-Boelter equation as a classical expression for computing the Nusselt 
number of fully developed turbulent flow in a circular tube is given as  (Tao, 2001), 

0.80.023water
nNu Re Pr  (4) 

where n = 0.4 for heating and n = 0.3 for cooling.

By Equation (4) and the definition of the Nusselt number (Tao, 2001), the inside convection heat 
transfer coefficient for water i waterh   is thus expressed as 
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0.8 0.30.023i water
in

h Re Pr
d


   (5) 

while Re stands for the Reynolds number, and Pr  the Prandtl number respectively. 

For steam, the condensation of steam has to be considered in the heat transfer process. 
Condensation is a phase change process from vapor to liquid. It occurs when the steam strikes the 
pipe well whose surface is at a temperature below the steam saturation temperature and the steam 
releases latent heat and converts to a liquid phase immediately (Tandon, Varma et al., 1995). 
Several empirical and semi-empirical correlations were suggested and one of the most widely used 
correlations is the Ackers Equation as follows (Yang and Webb, 1996).  

1
3n

steam eq liquidNu CRe Pr (6)

where C = 0.0265, n = 0.8 for eqRe  5×104, and C = 5.03, n = 1/3 for eqRe  5×104.

In Equation (6), the equivalent Reynolds number eqRe  is given by (Yang and Webb, 1996) 

eq in
eq

liquid

m d
Re


  (7) 

where eqm stands for the equivalent mass flow rate,  ind the inside diameter, liquid the viscosity of 

the liquid. Equation (8) gives the expression of eqm , in which x  means the steam dryness and  the 

density.
1
2

(1 ) liquid
eq

vapor

x xm m



 
        
   

 (8) 

The inside convection heat transfer coefficient for steam i steamh   is thus obtained as 

1
3liquid n

eq liquidi steam
in

Re Prh C
d


   (9) 

Heat transfer outside the pipeline 

The heat transfer from pipe wall to outside air is an external heat convection between solid 
boundary and moving fluid. In general, pipeline systems are exposed to the surrounding, such that 
the meteorological conditions have a great influence on the heat loss of the pipeline systems. A 
well-known empirical correlation contributed by Hilpert is presented as  (Rathore and Kapuno, 
2011)

1
3nNu CRe Pr  (10) 
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while Re stands for the Reynolds number, and Pr  the Prandtl number respectively. C and n are 
constants and tabulated in Table 1 at various Reynolds numbers. This empirical correlation is 
widely used for Pr  0.7.

Table 1.The values of C and n  (Rathore and Kapuno, 2011) 

Re C n 

0.4~4 0.989 0.330
4~40 0.911 0.385

40~4000 0.683 0.466
4000~40000 0.193 0.618

40000~400000 0.0266 0.805

According to Equation (10) and the definition of the Nusselt number (Tao, 2001), the outside 

convection heat transfer coefficient oh  is thus presented as 

1
3n

oh C Re Pr
d
 (11)

Energy equation 

Considering the pipeline and the inside fluid as a whole system, when using the first law of 
thermodynamics, the energy equation for water pipelines is obtained as 

 ' '
water in outq H Hm  (12)

For steam pipelines, the condensation has to be considered and the energy equation becomes 

     ' ' ' '1steam steam in steam out water in water outq H H x H Hmx m       (13)

while q stands for the energy, 'H  the specific enthalpy, m  the mass flow rate, and x  the steam 
dryness.

Equations (1) ~ (13) represent the entire heat transfer process through the pipeline such that the 
theoretical model for assessing heat loss of the present pipeline system is established.  

Development of the software 

Based on the theoretical model of the present pipeline system, a software is written and debugged 
using MATLAB R2012b, under Windows operating system. MATLAB is a high-level technical 
computing language and interactive platform for algorithm development, data visualization, data 
analysis, and numeric computation (Özgü Arısoy and Dikmen, 2011).

All the equations in the theoretical model as mentioned above are formulated first with MATLAB 
source code, in which an iterative computational technique is used to solve the problem. After that, 
Graphical User Interface (GUI) is adopted to create the user-friendly interface. Furthermore, the 
testing and debugging of the module are conducted backstage as MATLAB is internally packaged 
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with an editing and debugging functionality (Sen and Shaykhian, 2009). Finally, the software is 
published as an executable file that can be used in normal computers, even without MATLAB 
installed. 

Figure 3 shows the main user interface of the software, which includes Parameter Input, Control 
Function, Output Display, and Database. Parameter Input is used to input basic parameters, 
including hot fluid parameters, pipeline structures, environmental parameters, and so on. Control 
Function is used for start or stop of the calculation, modification of the input data, and quit from the 
software. Output Display is designed for exporting the computational results. The clear and concise 
user interface enable user to operate the software easily and thus significantly improve the 
efficiency. 

Figure 3. Main user interface of the software. 

Validation of the software 

As well known, ANSYS FLUENT as a CFD tool has a long history for simulation of the pipeline 
heat transfer process and for optimization of the pipeline structure (Li, Zhao et al., 2012). Therefore, 
it is adopted to simulate the fluid flow and temperature field in the present pipeline system for 
validation of the software developed. In the present work, a model containing a main pipeline and 
two sub-pipelines is created and analyzed numerically. The fluid is hot water with the inlet 
temperature 85  and the inlet pressure 0.5 MPa. The ambient air temperature is set to be 0 , and 
the outside convection heat transfer coefficient oh  is set as 10, 20, 30, 40, 50 W/m2·K, respectively.

In the simulation, SOLIDWORKS is used to create the 3-D geometry model of this pipeline system. 
The gird selected has achieved its convergence through a sensitivity study. The Pressured-Based 
solver in steady heat transfer approach is used for simulation. The Standard k-  model is adopted to 
model the turbulence in the pipe flow. Through simulation, the temperature distribution of the 
pipeline is obtained, and the heat loss of the pipeline system is then calculated according to the 
enthalpy difference of the fluid at the inlet and the outlet, by (Moran, Shapiro et al., 2010). 

' '( )in outq m H H   (17) 

where q stands for the heat loss, 'H  the specific enthalpy, and m  the mass flow rate. 
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The results from ANSYS FLUENT and the software are compared. As shown in Figure 4, the 
diffenernce is generally less than 15%,  and less than 10% when the outside heat transfer cofficient 
ranges from 10 to 30 W/m2·K, which are usual values in practical applications. It is thus concluded 
that the software can achieve results with acceptable accuracy and can be used in practical 
applications. 
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Figure 4. Comparison of the results between FLUENT and the software. 

Case study 

In this section, a steam pipeline in a cargo heating system is employed to demonstrate the function 
and capability of the software. In the cargo heating system, the pipeline plays a role of conveying 
steam from boiler to cargo tanks continuously. The fluid in this case study is saturated steam with 
the inlet temperature of 181  and the pressure of 0.9 MPa. The structure of the present pipeline 
system includes a main pipeline and 12 sub-pipelines. By inputting the basic information into the 
software, the heat loss of the pipeline system with various outside parameters is obtained. 

Figure 5 shows the effects of the wind speed on the heat loss of the pipeline system subject to 
different air temperatures. The heat loss of the pipeline system increases sharply with the increase 
of wind speed. The reason is that the wind speed enhances the convection heat transfer outside the 
pipe and thus more heat transfers to the cold environment  (Rohsenow, Hartnett et al., 1998).
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Figure 5. Effects of wind speed on the heat loss of the pipeline system. 
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As shown in Figure 6, the heat loss of the pipeline system decreases sharply with the increase of 
insulation thickness, even with just several millimeters. This is because the additional insulation 
increases the conduction resistance significantly, resulting in less heat transfers to the ambient air 
(Lin, Guo et al., 2005). Such that it is strongly recommended that the present pipeline system needs 
to be insulated for about 20 mm for energy saving. It is also observed that there is only a marginal 
effect when the insulation thickness is more than 30 mm. This study indicates that this software can 
be used for the optimization of the pipeline insulation. 
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Figure 6. Effects of insulation on the heat loss of the pipeline system. 

Conclusions

Based on the heat transfer theory, a theoretical model is established, and its corresponding 
MATLAB-based software is developed for assessment of the heat loss of pipeline systems. The 
software can obtain results with acceptable accuracy as the comparison between the software and 
ANSYS FLUENT shows a reasonable agreement. The software can save analysis time significantly 
when compared with the ANSYS FLUET based models. It also has a user-friendly interface, which 
ensures the easy use for engineers and other customers without thermodynamics background. In 
summary, the software not only provides an easy way for fast assessment of the heat loss, but also 
offers a useful tool for the optimal design and energy saving analysis of pipeline systems. 
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Abstract
In computational fluid dynamics, traditional methods show low rate of convergence 
on low speed flow, while lattice Boltzmann method performed well on it. In this 
report, we use lattice Boltzmann method to simulate cylinder flow, which cylinders 
are in many shapes. These results will be important to further study on control of 
cylinder flow.

Keywords: cylinder flow, separation flow, lattice Boltzmann method 

Introduction

Lattice Boltzmann method (LBM) has been widely used in computational fluid 
dynamics (CFD), different from other traditional methods, which need to solve 
Jacobian matrix, LBM solves Boltzmann method with single variable particle 
distribution function  tf ,,x instead of Navier-Stokes equations. When simulating 
low speed flow, traditional methods show low rate of convergence. LBM is explicit 
scheme, which can solve equations fast. Normally, LBM uses Cartesian coordinate. 
When treating with curved boundaries, lattice will be broken into different parts. It is 
hard to describe the curved boundaries. At very first, A.J.C.Ladd (1994) suggests to 
use Link Bounce-Back scheme to treat the curved boundaries, but this treatment will 
change the curved boundaries into “coarse lattice boundary”. Later, O.Flilppova and 
D.Hänel (1998) propose a new boundary treatment for curved boundaries. But the 
stability is not so good. Then R.Mei et al. (1999) improved its stability, but when 
treating with low Reynolds flow, the stability is still not enough. In 2002, Z.L.Guo et 
al. (2002) proposed an extrapolation method for curved boundaries. Lately, Z.D. 
Wang et al. (2013) proposed a new extrapolation treatment, which improve the 
accuracy and stability in low Reynolds flow. 

Governing Equation

Lattice Boltzmann method solves the following discretization equation: 

        txftxftxftttcxf i
eq

iiii ,,,,    1

where f is the density distribution function of particles, ic is the discretized 
velocities and  represents Cartesian coordinate. We simulate the low speed flow 
using D2Q9 model, which is on of the DdQb models proposed by Y.H. Qian et al. 
(1992). The equilibrium equation is chosen as follows: 
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To simulate the Newtonian fluid,  is related to the shear viscosity, which can be 
driven by Chapman-Enskog expansion as 

2
11

2 
tcs




. 4

Boundary Condition

On the boundary, we use the boundary treatment proposed by WANG et al. This 
boundary treatment divide the fictitious particle distribution into the equilibrium part 
and nonequilibrium part as follows: 

       tftftf bibibi ,,, neqeq xxx  5

where   tf bi ,eq x is set as
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For the nonequilibrium part, we define   tf bi ,neq x as follows: 

        tftftf ffifibi ,,2, neqneqneq xxx  . 7

Simulations

In this report, polygonal cylinders and oval cylinders with different eccentricities are 
simulated. Because of the resolution, the critical flow when it separated cannot be 
simulated. To find the critical Reynolds number, higher Reynolds number flows are 
simulated and extrapolated to critical Reynolds number. 
The Reynolds number is define as: 


UL

Re 8
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In flows around polygonal cylinders, L is the diameter of their circumcircles. In 
flows around oval cylinders, L  is the length of major axis. 

As experiment assembled by Milton Van Dyke (1988) reported, the length of 
standing eddies increases linearly with Reynolds number. The results of simulations 
are shown below: 

Figure 1.  Eddies’ lengths of ovals 

Figure 2.  Eddies’ lengths of polygons. The black solid line represents circle 
cylinder

The two figures above show the exact linear relationship between the length and 
Reynolds number, which agrees with the experiment results. The slopes of these 
straight lines in the figures above are different. It shows how separating vortex 
changes after separated. We consider it is relative to aspect ratio of each cylinder. The 
slope increases as the aspect ratio increases.
The critical Reynolds number is shown in the table below: 
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Table 1. Critical Reynolds number and streaming pattern

Sharp head 

forward

Blunt head 

forward

Streamlines pattern 

(sharp head forward)

Streamlines pattern 

(blunt head forward) 

Circle 6.1758 6.1758

Triangle 0 13.9904

Square 6.9117 2.7690

Pentagon 6.9461 6.1410

Oval

(e=0.25) 
6.2908 5.6197

Oval

(e=0.5) 
8.2046 4.9342

Oval

(e=0.75) 
13.7695 3.4372

The variation tendency of oval cylinders is shown below: 

(a)                                                                      (b)

Figure 3.  Tendency of critical Reynolds numbers

When sharp head point forward, the tendency of critical Reynolds number of oval 
cylinders monotone increases as the eccentricity increases. When blunt head point 
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forward, critical Reynolds number monotone decrease as the eccentricity decreases. 
As the number of angles increasing, the critical Reynolds number of polygonal 
cylinders is approaching that of circle cylinder (the black line in Figure 3(b)). 

Conclusions

We successfully simulated the flows around various cylinders and get some 
preliminary result. We find the separation flow has two important characteristics: 
critical Reynolds number and the slopes.
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Abstract
The efficiency and accuracy are usually regarded as two general indices to check
capability of a numerical method with respect to the time integration. The traditional 
numerical manifold method (NMM) employs implicit scheme to obtain high
computational accuracy, but the efficiency is relatively low, especially when the 
iterations of contacts are involved. In this paper, the temporal coupled explicit-
implicit (E-I) algorithm is proposed, in which the time integration schemes, transfer 
algorithm and contact algorithm are studied, respectively. A few numerical examples 
are simulated using the proposed coupled algorithms, in which one calibration 
example is studied with respect to the coupled temporal based on the cover system.
The simulated results are well agreement with the implicit and explicit algorithms 
simulations, but the efficiency is improved evidently. It is predicted that the proposed 
couple E-I algorithm can be applied for larger scale engineering systems to combine 
the merits of both the implicit and the explicit algorithms of the NMM.

Keywords: Computational efficiency; Computational accuracy; Explicit algorithm; 
Implicit algorithm; Numerical manifold method.

Introduction
The efficiency and accuracy are usually regarded as two indices to check capability of 
a numerical method in terms of time integration for dynamic problems. In general, 
there are two classes of time integration algorithms for dynamic problems: implicit 
and explicit (Gelin et al, 1995). Implicit algorithms possess such as the continuum-
based finite element method (FEM) and discontinuum-based discontinuous 
deformation analysis (DDA), explicit algorithms such as finite difference method 
(FDM) and discrete element method (DEM). It is noted when more contact problems 
are involved in the discontinuum-based methods such as DDA and DEM, the 
efficiency is significantly declined. Thus, how to treat the contact problems balancing 
the efficiency and accuracy, an appropriate time integration algorithm is required.

In the present study, the numerical manifold method (NMM) is considered to 
combine the both time integration algorithms. The traditional NMM is originally 
proposed by Shi (1991, 1992). It employs the implicit time integration and open-close 
contact iteration for the simulations of complicated dynamic problems. Since the 
implicit scheme requires the assembling of the coupled global stiffness matrix for the 
governing equations, which may involve many thousand DOFs, especially when such 
more contact problems and nonlinear problems are encountered, the computational 
cost can be increased dramatically. Thus, the choice of an appropriate algorithm is 
essential to ensure efficiency and robustness of the numerical simulations, but the 
difficulty resides in being able to combine robustness, accuracy, stability and
efficiency of the algorithms. The distinction between explicit and implicit where we 
have considered is that the explicit uses a diagonal mass matrix and the implicit 
applies a consistent inertia matrix (Liu and Belytschko, 1982). Then, a temporal

1471



2

coupled E-I algorithm for the NMM based on the dual cover system is proposed, in 
which different time steps, time integration schemes are applied in temporal 
discretization. Then, some calibration examples and numerical simulations are 
studied to validate the coupled E-I algorithms.

Basic Concept of the NMM and Its Dual Cover System
In the traditional NMM, one manifold element is generated through a set of 
overlapping covers, which is the distinct characteristic differs from other numerical 
methods. As shown in Figure 1(a), the mathematical cover system, which is united by
six rectangle patches denoted by , , , ,  and  respectively. The 
overlapping patches cover the whole material domain without considering any 
physical properties, so any arbitrary shape of mathematical cover can be chosen. And 
then, physical covers can be obtained from these mathematical covers intersect with 
the physical domain , a manifold element can be produced as the common area of 
physical covers. Each small rectangle patch is termed as a mathematical cover (MC), 
denoted by 

iM (i= 1, 2, 3, …, 6). External boundary and internal joints or cracks may 
intersect one MC into several separate sub-patches, then each one within the material 
domain is termed as a physical cover (PC), denoted by j

iP ( Nj ). As can be seen in 
Figure 1(b), material domain is intersected by patch  to generate one PC within 
its material domain, denoted by 1

1P . When the internal discontinuities (i.e. cracks or 
joints) are taken into accounted in the NMM, each discontinuous boundary is 
considered as one special material domain to form a new PC. If the crack passes 
through the whole patch within the material domain, two isolated PCs form by the 
crack surface just as 4M and 6M , two separated PCs, denoted by 1

4P , 2
4P based on 4M

and 1
6P , 2

6P based on 6M , respectively. On the other case, when the crack cuts MC 
partially, only one PC forms within the material domain, which can be seen by 2M ,

3M and 5M , only one PC generates denoted by 1
2P , 1

3P and 1
5P respectively. 

Furthermore, the common area of several overlapping PCs is termed as a manifold 
element (ME).

           (a) General cover system in the NMM; (b) Generation of physical covers for the NMM

Figure 1. Cover system of the NMM.
For convenience, a regularly structured mesh is employed in the NMM which is 
similar as that in the FEM. A regularly-patterned triangular mesh is employed, in 
which each MC is defined through six triangular elements sharing a common node 
(i.e. nodal star). Each cover has two degree of freedom is similar as node property in 
the FEM, each element formed by the overlapping of three neighboring hexagonal 
covers has six degree of freedom for the second order time integration. The 
mathematical mesh covers the whole physical domains form PC system. The common 
areas are formed by the neighboring three hexagonal MCs combined with the material 
domains. When the linear triangular element weight function is applied based on 
cover system, the global displacement function over a ME can be expressed as 
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the cover system makes the solution for both continuous and discontinuous problems 
practicability without any re-meshing technique used in the FEM.

Temporary Coupled Explicit-Implicit Algorithm in the NMM
The Coupled Explicit-Implicit Algorithm

For the different problems, there are two types of coupled approaches can be 
considered: implicit-explicit (E-I) algorithm and explicit-implicit (I-E) algorithm. 
When different approaches are employed, the different step time scale can be applied 
into the corresponding time integration scheme. To investigate the temporal couples 
algorithm, the E-I algorithm is taken into account in the present study. Furthermore, 
the Newmark-  methods (Newmark, 1959) with two characteristic parameters 
and  for all sub-domains are assumed here. As is shown in Figure 2, initial diagonal 
mass matrix and force vector are constructed for the explicit algorithm (Ma and Qu, 
2013), then the explicit central difference method, i.e. the Newmark method with the 
parameters 01  and 2/11  , is employed from the initial step time 0t to nt at the 
step number n to simulate the high frequency part of the dynamic problems. And 
then, the explicit integration algorithm switches to the implicit, in which the transfer 
algorithm is proposed in order to achieve the conservation of the kinematic energy 
from the explicit to implicit integration, and 

IE DD  , IE vv  and IE   are satisfied 
for the coupled E-I integration without the element and node partition. Thus, it is 
convenient to achieve in the programming. In the part of the implicit integration from 
step time 

1nt to rnt 
, the constant acceleration method with the parameters 2/12  and

12  is used in the implicit integration by the end of step )( rn  for the low 
frequency and quasi-static problems. Continuing the explicit procedure, the initial 
inertial, stiffness matrix and force vector for the implicit integration are require to 
construct again as the difference items in the equations of motion. It is noted that 
different step time sizes are adopted before and after the transition in the couples E-I
algorithm in terms of the numerical stability and accuracy, respectively. Normally, 
the step time size 

It in the implicit algorithm is larger than Et in the explicit 
algorithm, which denotes

EI tt   , 1 is the coefficient to describe the scale 
between the implicit and explicit integrations. Sequentially, the transfer algorithm of 
the coupled E-I integration is exposed and discussed in the following section.

Figure 2. Transfer algorithm from the explicit to implicit scheme.
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Transfer Algorithm for the E-I Algorithm

In the coupled E-I method, we employ the explicit algorithm to model motion of the 
system at the early stage, followed by the implicit algorithm to simulate the 
subsequent motions of the system.  Thus, an explicit physical model in the NMM will 
be transferred to the implicit one at a certain time so that the coupled method is more 
efficient. In the transition, the geometric configurations, physical and mechanical 
parameters, and status, including stress state and velocities, are consistent and 
continue. Therefore, the transfer algorithm is required to satisfy the kinetic energy 
and potential energy conservation from the explicit integration to the implicit one, 
which can be represented as
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where E
iM and I

iM are the i-th explicit and implicit element mass, respectively; E
xv , E

yv
and I

xv , I
yv are the velocity components of an explicit element and implicit element in 

the x and y directions, respectively; E
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components of the explicit and implicit elements respectively. Furthermore, equations 
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xy
E
xy   are satisfied in the transfer algorithm 

to ensure the parameters of the terms are consistent and the computation is 
continuous. 

Contact Algorithm for the Coupled Scheme
Contact Force Calculation

As previously mentioned, contact detection and contact force calculations are done by 
the NMM. Once contacts have been detected, a contact interaction algorithm is 
employed to evaluate contact forces between the contact elements. A thorough 
discussion and formulations of these approaches can be found in (Munjiza, 2004).

For a discrete block system involving m elements, there are N contact pairs have been 
detected to an element i ( mi ,2,1 ). Here, we assume one element denoted by j
( Nj ,2,1 ) and i are detected in contact state, ][ cK between i and j can be expressed 
as 
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in which ][ c
ijK is defined by the contact spring between the contact elements i and j,

and the value is zero if the elements i and j have no contact. Since each element is 
consisted by three associated PCs, thus the matrix ][ c

ijK is a 6×6 sub-matrix and the 
derivation of the matrix ][ c

ijK will be discussed in detail at the following section. It is 
noted that the displacement }{ 1nD on the three associated PCs can be predicted using 
the Verlet algorithm by the previous step n. Then, contact forces associated with ][ c

ijK

on the contact element i are assembled as
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The total internal forces on the element i can be represented as 
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in which }~{ iI is the element internal force vectors and ][ e
iiK is the stiffness matrix of 

element. Since each element is formed by the three associated PCs, thus }~{ iI can be 
rewritten as
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in which }~{ )1(iI maps the first PC associated the element, the subsequent }~{ )2(iI and }~{ )3(iI

map the second and third PCs, respectively. Then, }~{I at each PC can be assembled 
by the associated }~{ iI on the cover system.

Damping Algorithm

It is noted that the explicit scheme employs dynamics method to solve the uncoupled 
equations, in which the generated kinetic energy can not be neglected. To the static or 
quasi-static problems, it requires the physical damping to adsorb the kinetic energy of
the systems so that the systems achieve stable condition. As in reference (Cundall, 
1982), we suggest an alternative scheme to simulate the damping, in which the 
damping force with the unbalance force or inertial force is in direction proportion, 
and the damping item of each MC in the NMM can be expressed as

}|]{[}{
0teed DMF  (7)

where }{ dF is the damping force matrix, }|{
0teD is the element initial acceleration vector 

at the start of the time step. The total potential energy from the damping item is 
summered by each element, which can be written as 

 d
e

tee
T

e DMD }|]{[}{
0

 (8)

Substituting Equation (8) using the variational principle, the equivalent damping 
force matrix can be described as

}|]{[
}{

][
0te

e

d
d DM

D
F 




 (9)

which is a 16 matrix to produce external force item.

Numerical Examples
Calibration of the Coupled Algorithm

In order to calibrate the proposed coupled E-I algorithm for the temporal problems, 
one Newmark sliding modelling of block sliding under input horizontal acceleration

Ha is studied here. A block rests on an inclined plane is taken into account as a first 
approximation of the Newmark sliding model. The angle of the plane is 31.470. And a 
sinusoidal seismic acceleration Ha is employed to impose the fixed point as expressed 
in Equation (10), where g is the gravity acceleration, t is the simulation duration for 
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the simulation. In this study, we assume the frictional angle 030 , the total 
displacement of analytical solutions can be referred in (Newmark, 1959; An et al, 
2011), then the simulated results of the proposed E-I NMM can be obtained as shown 
in Figure 3. It is noted that when the E-I algorithm is considered, the proposed 
transfer algorithm is employed from the explicit to implicit algorithm at the time of 

st 1 , and the final results of the simulations are well agreement with the analytical 
solution.









st
sttg

aH 10
14sin1.0  (10)

Figure 3. Block displacement under horizontal ground acceleration.

Open-pit Mining Stability Analysis

In this simulation, one open-pit mine slope modeling is assumed to study the stability 
using the proposed E-I algorithm. As shown in Figure 4, there are 9 layers denoted by 
1# to 9# separate the whole modeling, in which we assume the layer 4# is the fracture 
zone constituted by many discontinuous joints. The inclined angle of the slope is 42°
and drop is 120 m. In order to investigate the effect of the fracture zone to stability of 
the slope, two models of layer 4# are represented in Figure 5. Integrated Model 
considers the whole layer as one domain, on the other hand, Refined Model adds 
more joints into the layer to approach the realistic condition, in which a set of joints 
with orientation of 32.470 are constructed as seen Figure 5 to simulate the fractured 
zone of the open-pit slope.

Figure 4. Geology section of the open-pit mining.

Figure 5 Study model of the layer 4#. Figure 6 Input seism acceleration.

Layer 2#

Layer 8#Layer 7#
Layer 6#

Layer 5#

Layer 3#
Layer 4#

Layer 9#

Layer 1#
Altitude (m)

160

80

10 10
4040

120

Measured point 1
Measured point 2
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Traditional methods apply to the slope stability analysis is to determine the factor of 
stability (FoS) of the slope using the limit equilibrium method (LEM) without 
considering the effect of the dynamic loading with time history (i.e. seismic loading, 
blasting loading, etc). Here, the FoS is computed using the LEM to the integrated
model, FoS can be determined as 1.436 and 2.182 by cases of 100 and 150 of joint 
frictional angle. To further investigate the stability of the slope under the earthquake, 
a stochastic horizontal seismic acceleration with maximum value of 0.2g is applied as 
shown in Figure 6.The detailed of physical parameters such as unit weight is 26.0 kN/
m3, Young’s modulus is 1.0 GPa, Possion’s ratio is 0.2, Joint normal stiffness is 1.0 
GPa and Joint shear stiffness is 0.5 GPa, respectively.

To investigate the instability of the fracture zone under earthquake loading, the
measure points selected in the fracture zone and the displacements of them at both
cases of =100 and =150 are presented in Figure 7 and 8, respectively. It is verified 
that the proposed E-INMM satisfies the computational accuracy comparing with the 
original NMM. We can find that the slope is instable at the case of =100 whether 
static or dynamic states, but the slope approaches to be stable after the seismic 
loading at the case of =150. Thus, the fractured zone should be taken into account to 
the design of the open-pit slope to improve the stability of slope.

Figure 7. Simulations for Refined Model (Total time: 20s).

(a) =100;              (b) =150.
Figure 8. Measured point 1 in the Refined Model.

With respect to the efficiency of the proposed algorithms, CPU time is taken into 
consideration to check the computational cost of the algorithms. All three algorithms 
are run on the same computer with the system configuration: processor speed = 4.0
GHz and RAM = 4.0 GB. As represented in Table 1, the proposed E-I algorithm is 
more efficient comparing the explicit and implicit algorithms in the refined model 
with both cases of =100 and =150. In particular, E-I algorithm can be considered as 
one computational criteria for the large scale engineering as it combines the merits of 
both the explicit and implicit algorithms in terms of accuracy and efficiency of the 
computations dramatically.

=100 =150
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Table 1. CPU cost for the different cases (hr.).

Conclusions
The temporal coupled explicit and implicit algorithm for the numerical manifold 
method (NMM) is proposed in this paper. The time integration schemes, transfer 
algorithm, contact algorithm and damping algorithm are studied in the temporal 
coupled E-I algorithm to combine both merits of the explicit and implicit algorithms 
in terms of efficiency and accuracy. Then, some numerical examples are simulated
using the proposed coupled algorithms, in which one calibration example is studied 
with respect to the coupled temporal based on the dual cover system. One numerical 
example of open-pit slope seismic stability analysis using the coupled E-I algorithm is 
investigated as well. The simulated results are well agreement with the implicit and 
explicit algorithms simulations, but the efficiency is improved evidently. It is 
predicted that the couple E-I algorithm proposed in the present paper can be applied 
into larger scales engineering systems to combine the merits of both the implicit and 
explicit algorithms in the NMM.
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