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Abstract 

A coupled model based on finite element method (FEM) and scaled boundary finite element method 
(SBFEM) for transient dynamic response of large-scale SSI systems is presented. The well-
established FEM is used for modeling the near-field bounded domains. A local high-order 
transmitting boundary, which is based on SBFEM and the improved continued fraction solution for 
the dynamic stiffness matrix, is used for modeling the dynamic response of the far-field unbounded 
domains. The bounded and unbounded formulations are coupled via the interaction force vector at 
the interface. The standard equations of the coupled model in the time domain are obtained by 
combining the dynamic equations of bounded and unbounded domains, which can be solved by a 
direct time-domain integration method. The stability of the coupled system depends on the general 
eigenproblem of the coefficient matrices. Possible spurious modes can be eliminated using the 
spectral shifting technique. The validity of the coupled model is shown by means of two numerical 
examples. 

Keywords: Dynamic soil-structure interaction, Coupled FEM-SBFEM model, High-order 

transmitting boundary, Spectral shifting technique.  

1 Introduction 

Dynamic soil-structure interaction plays an important role in the design and safety assessment of 

structures, especially for large-scale structures, such as concrete dams, nuclear power plants, 

bridges etc. A rational and commonly used approach for modeling the whole system is to divide it 

into two parts. The first part is the near-field bounded domain, which contains the structure and a 

part of the adjacent soil and can be efficiently modeled by the finite element method. The second 

part is the far-field unbounded domain, which includes the rest of the infinite foundation. The major 

challenge is the accurate description of radiation damping at infinity. Here, the well-established 

finite element method cannot be used straightforwardly, since outgoing waves are reflected at the 

artificial boundaries of the finite element mesh. 
 
Over the past few decades, many numerical methods have been developed to model the wave 

propagation in unbounded domains. Generally, they can be classified into two groups, global and 

local procedures. The global procedures include the boundary element method (Beskos, 1987; 

Beskos, 1997), the thin layer method (Kausel, 1986; Kausel, 1994), exact non-reflecting boundaries 

(Keller and Givoli, 1989) and the scaled boundary finite element method (Wolf and Song, 1996). 

The local procedures include the viscous boundary (Lysmer and Kuhlemeyer, 1969), the viscous-

spring boundary (Deeks and Randolph, 1994; Liu et al., 2006), the artificial transmitting boundary 

(Liao et al., 1984), infinite elements (Zhao, 2009) and high-order absorbing boundary conditions 

(Engquist and Majda, 1977; Higdon, 1986; Bayliss and Turkel, 1980). The advantages, 

disadvantages and some progresses of these methods have been summarized in the review 

literatures (Tsynkov, 1998; Givoli, 2004; Lou et al., 2011) and are not repeated here. 
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The scaled boundary finite element method, developed by Wolf and Song in 1990s, is a semi-

analytical technique which excels in modelling wave propagation in unbounded and bounded 

domains. This method has the following distinguished features. First of all, the radiation condition 

for unbounded domain is satisfied rigorously without requiring a fundamental solution. Secondly, 

only the boundary of the domain is discretized as in the boundary element method, and the spatial 

dimension is reduced by one. Moreover, this method can be coupled seamlessly with the standard 

finite element method. Utilizing the advantages of the scaled boundary finite element method, many 

scholars have adopted it to study dynamic soil-structure interaction problems. 
 
Zhang et al. (1999) applied a piecewise linear approximation of the acceleration unit-impulse 

response matrix of the unbounded domain within one time step and simplified the solution of the 

time-consuming convolution integrals. Yan et al. (2004) coupled the finite element method and the 

scaled boundary finite element method for 3D dynamic analysis of soil-structure interaction in the 

time domain. Linear system theory was employed to improve the efficiency for solving the 

acceleration unit-impulse response matrix of the unbounded domain. Radmanovic and Katz (2012) 

made two improvements to the original method. Genes (2012) reported a coupled model for 

dynamic analysis of 2D large-scale SSI systems based on finite element method, boundary element 

method and scaled boundary finite element method, and presented a parallel computation algorithm 

for the coupled model. Schauer et al. (2011, 2012) introduced a parallel algorithm for a coupled 

finite element - scaled boundary finite element approach to study soil-structure-interaction problems. 

Due to high computational cost resulting from the application of SBFEM to large-scale problems, 

parallel computing based on PC clusters was employed to improve the computational efficiency. 
 
The original solution procedure, which is based on the solution of the acceleration unit-impulse 

response matrix of the unbounded domain, was commonly used in the above references. It is global 

in time and space, and thus computationally expensive. Alternative procedures, which aim at 

avoiding the convolution integral altogether by developing the scaled boundary finite element 

method directly in the time domain, have been proposed recently. Song and Bazyar (2008) proposed 

a Padé approximation for the dynamic stiffness matrix of an unbounded medium in the frequency 

domain, which has a large range and high rate of convergence. Bazyar and Song (2008) then 

developed a high-order local transmitting boundary based on a continued-fraction solution of the 

dynamic stiffness matrix. But the method may fail for systems with a larger number of degrees of 

freedom and for approximations of higher order. Birk et al. (2012) presented an improved 

continued-fraction solution for the dynamic stiffness matrix of an unbounded domain, which is 

numerically more robust and suitable for large-scale systems and arbitrarily high orders of 

expansion.  
 
This paper aims to develop a new coupled method that combines the bounded and unbounded 

domains in the time domain. Here, the bounded domain is modeled by the well-established finite 

element method. The unbounded domain is represented by the high-order transmitting boundary, 

which is based on the improved continued fraction solution for the dynamic stiffness matrix. 
 
The rest of the paper is outlined as follows. Section 2 describes some basic equations about the 

scaled boundary finite element method. Section 3 presents a new coupled method of bounded and 

unbounded domains. Section 4 demonstrates the application of the proposed coupled method to two 

numerical examples. Section 5 summarizes some major conclusions from this contribution. 

2 Summary of the scaled boundary finite element method 

The scaled boundary finite element method is introduced in detail by Wolf and Song (1996). For 

completeness, only some main equations are summarized in this part. 
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The scaled boundary finite element method is described in a local coordinate system, η, ζ on the 

boundary and the radial coordinate ξ. SBFEM defines the whole domain by scaling a boundary S 

relative to a scaling center O. The normalized radial coordinate ξ is a scaling factor, defined as 1 at 

the boundary S and 0 at the scaling center O. For a bounded domain, 0 1  ; whereas, for an 

unbounded domain, 1    . 

 

The displacements at a point ( , , )    are interpolated as 

1 2{ ( , , )} [ ( , )]{ ( )} [ ( , )[ ],  ( , )[ ], ]{ ( )}u N u N I N I u                                 (1) 

where [ ( , )]N    are the shape functions in the circumferential directions. { ( )}u   are the 

displacements along the radial lines and are analytical with respect to ξ only. 

 

The strains are derived as 

  1 2

,

1
( , , ) [ ( , )]{ ( )} [ ( , )]{ ( )}B u B u         


                                   (2) 

where 1[ ( , )]B    and 2[ ( , )]B    represent the strain-nodal displacement relationship. 

 

The stresses and strains are related by the elastic matrix [D] 

   ( , , ) [ ] ( , , )D                                                            (3) 

After expressing the governing differential equations in the scaled boundary coordinates, Galerkin’s 

weighted residual method or the virtual work formulation (Deeks and Wolf, 2002) is applied in the 

circumferential directions. In the frequency domain, the scaled boundary finite element equation in 

displacement is expressed as 

   0 2 0 1 1 1 2 2 0 2

, ,[ ] { ( )} ( 1)[ ] [ ] [ ] { ( )} ( 2)[ ] [ ] { ( )} [ ] { ( )} 0T TE u s E E E u s E E u M u                  (4) 

where s (=2 or 3) denotes the spatial dimension of the domain, and ω is the excitation frequency. 

The coefficient matrices 0[ ]E , 1[ ]E , 2[ ]E , and 0[ ]M  are obtained by assembling the element 

coefficient matrices calculated on the boundary. The coefficient matrices are written for three-

dimensional elastodynamics as 
1 1

0 1 1

1 1
[ ] [ ( , )] [ ][ ( , )] ( , )TE B D B J d d       

 

 
                                     (5a) 

1 1
1 2 1

1 1
[ ] [ ( , )] [ ][ ( , )] ( , )TE B D B J d d       

 

 
                                     (5b) 

1 1
2 2 2

1 1
[ ] [ ( , )] [ ][ ( , )] ( , )TE B D B J d d       

 

 
                                     (5c) 

1 1
0

1 1
[ ] [ ( , )] [ ( , )] ( , )TM N N J d d        

 

 
                                     (5d) 

3 Coupled method of bounded and unbounded domains 

3.1 Bounded domain  

The equation of motion of the bounded domain in the time domain can be expressed as 

[ ] [ ] { } [ ] [ ] { } { } {0}

[ ] [ ] { } [ ] [ ] { } { } { }

ss sb s ss sb s s

bs bb b bs bb b b b

M M u K K u P

M M u K K u P R

           
            

           
                          (6) 
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where [ ]M and [ ]K  are the mass and stiffness matrices of the bounded domain, { }u , { }u , { }u  are 

the acceleration, velocity and displacement vectors, { }P  is an external force vector acting directly 

on the bounded domain, while { }R  is an interaction force vector acting at the soil-structure interface. 

Subscript s  describes the nodes belonging only to the bounded domain, b  denotes the notes at the 

boundary belonging to both, the bounded and unbounded domains. Here, the stiffness matrix [ ]K  

and mass matrix [ ]M  are assembled by the finite element method (Zienkiewicz et al., 2005). 

3.2 Unbounded domain 

For an unbounded domain, the scaled boundary finite element equation in dynamic stiffness is 

expressed as 

   0 1 2 2 01 1
,[ ] ( 2)[ ( )] [ ( )] [ ] [ ] 0[ ( )] [ ] [ ( )] [ ]TE s S S E MS E S E     

               (6) 

The continued fraction solution for [ ( )]S   at the high-frequency limit () is expressed as 

(1) (1) 1 (1)[ ( )] [ ] [ ] [ ][ ( )] [ ]TS K i C X Y X   

                                          (7a) 
( ) ( ) ( ) ( 1) ( 1) 1 ( 1)

0 1[ ( )] [ ] [ ] [ ][ ( )] [ ]i i i i i i TY Y i Y X Y X          ( 1,2 , )cfi M   (7b) 

where [ ]K
, [ ]C

, ( )

0[ ]iY  and ( )

1[ ]iY  are coefficient matrices to be determined recursively in the 

solution procedure. cfM  is the order of the continued fraction expansion. The solution of these 

coefficient matrices is described in detail in the work by Birk et al. (2012) and not repeated here. 

The additional factor matrices (1)[ ]X  and ( 1)[ ]iX   are introduced to improve the numerical stability 

of the solution. In the original method (Bazyar and Song, 2008), the coefficient matrix (1)[ ]X  is 

taken as a unit matrix [ ]I . But it may cause numerical difficulty or even erroneous results, 

especially for the systems with many degrees of freedom and high orders of continued fraction 

expansion. So an improved continued fraction method (Birk et al., 2012) is developed to overcome 

the numerical problem. Compared to the original approach, it leads to numerically more robust 

formulations and is therefore suitable for large-scale systems and arbitrarily high orders of 

expansion. The LDL
T
 decomposition (Golub and Van Loan, 1996) is employed to obtain ( )[ ]iX . 

 

Using the improved continued fraction solution of the dynamic stiffness and introducing auxiliary 

variables, the force-displacement relationship with 1   on the boundary is expressed in the time 

domain as 

[ ]{ ( )} [ ]{ ( )} { ( )}u uK z t C z t f t                                                         (8) 

with 

(1)

(1) (1) (2)

0

(2) (2)

0

( 1)

( 1) ( 1) ( )

0

( ) ( )

0

[ ] [ ] 0 0 0

[ ] [ ] [ ] 0 0

0 [ ] [ ] 0 0
[ ]

[ ] 0

0 0 0 [ ] [ ] [ ]

0 0 0 0 [ ] [ ]

cf

cf cf cf

cf cf

T

T

Mu

M M MT

M MT

K X

X Y X

X Y
K

X

X Y X

X Y





 

 
 
  
 
 

 
 

  
 

 

             (9a) 
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(1)

1

(2)

1

( 1)

1

( )

1

[ ]

[ ]

[ ]
[ ]

[ ]

[ ]

cf

cf

u

M

M

C

Y

Y
C

Y

Y





 
 
 
 
 
 
 
 
 
 

                               (9b) 

   

(1)

(2)

( 1)

( )

{ } { }

{ } {0}

{ } {0}
( ) ,   ( )

{ } {0}

{0}{ }

cf

cf

b b

M

M

u R

u

u
z t f t

u

u



   
   
   
    

    
   
   
   

   

                                           (9c) 

where the vector { }z consists of the displacement vector { }bu  and the auxiliary variables ( ){ }iu  on 

the boundary. The vector { }f  contains the coupling forces { }bR  on the boundary. 

 

3.3 Coupled method of bounded and unbounded domains 

The bounded and unbounded domain formulations are coupled via the interaction force vector { }bR . 

For a linear system, the coupled equations of the bounded and unbounded domain in the time 

domain are obtained by combining Equation (6) and (8). It yields 

[ ]{ }+[ ]{ }+[ ]{ }={ }c c c c c c cK d C d M d f                                              (10) 

with  

(1)

(1) (1) (2)

0

(2) (2)

0

( 1)

( 1) ( 1) ( )

0

( ) ( )

0

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ][ ]

[ ]

[ ] [ ] [ ]

[ ] [ ]

cf

cf cf cf

cf cf

ss sb

bs bb

T

T

c
M

M M MT

M MT

K K

K K K X

X Y X

X YK

X

X Y X

X Y





 

 
 

 
 
  
 

  
 
 
  
 
  

  (11a) 

(1)

1

(2)

1

( 1)

1

( )

1

[0] [0]

[0] [ ]

[ ]

[ ][ ]

[ ]

[ ]

cf

cf

c

M

M

C

Y

YC

Y

Y





 
 
 
 
 

  
 
 
 
 
  

                         (11b) 
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[ ] [ ]

[ ] [ ]

[0]

[ ] [0]

[0]

[0]

ss sb

bs bb

c

M M

M M

M

 
 
 
 
 

  
 
 
 
 
 

                                  (11c) 

 ( 1) ( )(1) (2){ } { } { } { } { } { } { }cf cf
T

M M

c s bd u u u u u u


                         (11d) 

 { } { ( )} { ( )} {0} {0} {0} {0}
T

c s bf P t P t                                 (11e) 

Equation (10) is a standard equation of motion with sparse symmetric matrices in the time domain. 

It can be converted to be a system of first-order ordinary differential equations with high-order 

stiffness and damping matrices. 

[ ]{ } [ ]{ } { }global global global global globalK z C z P                                          (12) 

Equation (12) can be easily solved by a direct time-domain integration method (Adhikari and 

Wagner, 2004). It should be noted that the stability of Equation (12) depends on the general 

eigenproblem for the coefficient matrices [ ]globalK  and [ ]globalC . If some positive real parts of the 

general eigenvalues are observed, the system will be instable. Therefore, it is very important to 

eliminate these spurious modes using the spectral shifting technique (Trinks, 2004). 

 

4 Numerical examples 

4.1 Example 1: Dynamic response of an elastic block on a homogeneous half-space soil 

The dynamic response of an elastic block on a homogenous half-space soil as shown in Figure 1 is 

studied. The soil’s properties are: shear modulus G1=G, Poisson’s ratio ν1=0.25, mass density ρ1=ρ. 

The properties of the elastic block are: shear modulus G2=G, Poisson’s ratio ν2=0.25, mass density 

ρ2=ρ. Plain strain state is considered. A uniformly distributed pressure P(t) with an amplitude P and 

a duration 3b/cs as shown in Figure 2 is applied on the top surface of the elastic block. This series of 

two triangular force pulses of different duration represents a combination of high and low frequency 

loading. The fixed time step t=0.02b/cs is selected. 

 

In the coupled method, the block and soil are discretized with 288 four-node finite elements and 

325 nodes as shown in Figure 3. The unbounded domain is modelled using the high-order 

transmitting boundary. It is discretized with 24 two-node line elements and 25 nodes. The scaling 

center of the unbounded domain is chosen at point O as shown in Figure 1. The dynamic analysis is 

performed using authors’ Matlab code. 

 

To evaluate the accuracy of the proposed coupled method, an extended mesh with a rectangle area 

21b×20b to the right of plain of symmetry is analysed using the finite element method. Only half of 

the symmetric system is discretized with 6768 eight-node elements of size 0.25b×0.25b, yielding 

20657 nodes. A fixed boundary condition is adopted in the reference finite element model. The 

implicit analysis is carried out using the commercial finite element software ABAQUS/Standard 

(ABAQUS, 2010). 

 

The vertical displacement responses at points A, O (see Figure 1) are plotted in Figure 4. The 
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results are non-dimensionalised with P/G. In case of the order Mcf=9, the results agree very well 

with the reference solution for time up to 10t  . After that, slight deviations can be observed. By 

increasing the order to Mcf=15, the agreement between the results of the coupled method and those 

of the extended mesh is excellent.  

 

  
Figure 1.  Elastic block and half-space under 

strip loading 
Figure 3.  FE mesh of the coupled system 
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Figure 2.  Series of two triangular force pulses 
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Figure 4.  Dimensionless vertical displacements 
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4.2 Example 2: Seismic response of a gravity dam-foundation system 

As an application example, the seismic response of a concrete gravity dam as shown in Figure 5 is 

investigated. The concrete gravity dam of 89 m high is constructed on a homogenous semi-infinite 

rock foundation, which is extended to infinity. The dam’s properties are: modulus of elasticity 

Ec=25.44 GPa, Poisson’s ratio c=0.20 and unit weight c=26.0 kN/m
3
. The properties of the semi-

infinite rock foundation are exactly the same as those of the concrete. Plain strain state is considered. 

The design peak ground accelerations are 0.399g in the horizontal direction and 0.266g in the 

vertical direction, where g is the gravitational acceleration. The horizontal and vertical (2/3 

horizontal) components of the 1967 KOYNA earthquake records (see Figure 6) are applied to the 

nodes of the dam body. The performance of the dam for only empty reservoir condition is studied.  

 

In the coupled method, the system is discretized with 288 four-node finite elements and 325 nodes 

as shown in Figure 7. The semi-infinite foundation is discretized with 24 two-node line elements 

and 25 nodes. The scaling center of the semi-infinite foundation is located at the center of the dam-

foundation interface. The fixed time step t=0.02s is selected. 

 

In order to obtain another reference solution that can be compared with the proposed solution, the 

range of the dam foundation is extended to 2×10
4
 m toward the upstream, downstream directions 

and 2×10
4 

m in the vertical direction. The dam and foundation are discretized with 186520 four-

node elements and 187467 nodes. 

 

Time histories of the horizontal and vertical displacements at dam crest are plotted in Figure 8. 

Clearly, the numerical results obtained from the coupled method (Mcf=12) agree well with those 

obtained from the extended mesh. For the solutions of the extended mesh and the coupled method, 

the maximum horizontal displacements at dam crest are 3.44 cm and 3.33 cm, respectively. The 

maximum vertical displacements at dam crest are 1.09 cm and 1.05 cm, respectively. The relative 

errors of the horizontal and vertical displacements are 3.39% and 3.73%, respectively, which are 

both less than 5% and acceptable from an engineering point of view. 

 

To evaluate the efficiency of the coupled method, the computer times spent on the above analyses 

are recorded on a computer with Intel(R) Pentium(R) CPU G840 @ 2.80GHz and 4GB RAM. The 

extended meh and present approach in Example 1 take 37min41s and 7min57s, respectively. The 

computer times for the extended mesh and present approach of Example 2 are 2h13min46s and 

7min2s, respectively. Obviously, the present approach is more efficient. 
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Figure 5.  The gravity dam in section Figure 6.  The input earthquake acceleration 



9 

 

 

 C1

 

(a) FE mesh of the system (b) SBFE mesh of the unbounded domain 

Figure 7.  Mesh of the gravity dam-foundation system 
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(a) Horizontal (b) Vertical 

Figure 8.  Time histories of displacements at dam crest 

5 Conclusions 

A novel coupled method of bounded and unbounded domains is presented. The near-field bounded 

domain is modeled by the well-established finite elements. The far-field unbounded domain is 

represented by the high-order transmitting boundary, which is based on the improved continued 

fraction solution for the dynamic stiffness matrix of the unbounded domain. The coupled standard 

equation of motion of a linear system in the time domain is obtained by combining the dynamic 

equations of bounded and unbounded domains, which can be solved by a direct time-domain 

integration method. The results of two numerical examples demonstrate that the coupled method is 

more accurate and efficient in the time domain. The approach presented in this paper can easily be 

extended to three-dimensional problems, further study is ongoing. 
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