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Abstract 

The scaled boundary finite element method (SBFEM) is a semi-analytical method in which only the 
boundary is discretized. The results on the boundary are scaled into the domain with respect to a 
scaling center which must be “visible” from the whole boundary. For beam-like problems the 
scaling center can be selected at infinity and only the cross-section is discretized. 

A new element for thin-walled beams has been developed on the basis of the Reissner-Mindlin plate 
theory. The beam sections are considered to be multilayered laminate plates with arbitrary layup. 
The cross-section is discretized with beam elements of Timoshenko type. This leads to a system of 
differential equations of a gyroscopic type, for which the solution is known. 

The element has been tested and compared with a finite element model and it gives good results. 

Keywords: SBFEM, thin-walled beams, semi-analytical, Reissner-Mindlin theory  

Introduction 

Beams and beam-like structures are widely used in mechanical and 
civil engineering. Due to lightweight reasons these beams are often 
made of thin-walled sections. And recently new materials like fiber-
reinforced plastics and other composites are used which are usually 
made of layers of differently oriented plies. With the number and the 
orientation of the plies and the order and the thickness of each ply 
there are many parameters, which can be adjusted during an 
optimization. Thus an effective and reliable computational method is 
needed. 
The scaled boundary finite element method (SBFEM) is such a 
method. It is a semi-analytical method for which only a discretization 
of the boundary is needed and an analytical solution is used within 
the body. It doesn't need a singular fundamental solution like the 
boundary element method (BEM) or a discretization of the whole 
body like the FEM. So it has the benefits of both the FEM and the 
BEM without adopting the detriments. 
 
Let us start with a beam of arbitrary cross-section. This means that the cross-section does not need 
to be thin-walled. Then the SBFEM uses a separation approach to solve the differential equations 
for the displacements u in the framework of linear elasticity. The function u1 scales the 
displacements of the boundary into the body. Or like in this work it scales the displacements of the 
cross-section along the beam. The boundary or the cross-section, respectively, is described by the 
function u2 for which a finite element approach is used. 

      zy,uxu=zy,x,u 21   (1) 

The coordinates y and z are on the cross-section (or the boundary) and x is directed along the beam 
axis (or into the body) which is depicted for a beam in figure 1.  
Inserting this ansatz and the virtual work principle gives a differential equation of Euler-type 
(scaling center within the body) or of gyroscopic type (beam-like problem). For both differential 
equations the solution is known. 
This method is a discrete Kantorovic method, which has been previously used also by other 
working groups, which is summarized below. 
 

Figure 1: SBFEM for a 
beam 
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For an arbitrary 3-dimensional case Dasgupta (1982) published the first work about SBFEM and 
Wolf and Song (1996) developed this method further. First it was used to calculate the dynamic 
stiffness of an unbounded domain but body loads, incompressible material and bounded domains 
can be included in this method. Originally this method was called “consistent infinitesimal finite-
element cell method” but using a different way to derive the equations the name “scaled boundary 
finite element method” (SBFEM) has been introduced (Wolf 2002). 
Due to the analytical part of the solution the SBFEM can be used to calculate stress singularities at 
cracks which is done in (Wolf 2002) and in (Mayland and Becker 2010). 
In Dieringer et al. (2011) thin plates are described by using 1D elements for the boundary. Here 
Kirchhoff's kinematics is used to reduce the dimension by one. 
For the case of slender cylindrical bodies like beams several groups developed similar or identical 
methods. The method developed at the University of Milan is equal to the SBFEM. In (Giavotto et 
al. 1983) the method is derived by introducing warping functions of the cross-section. These 
functions are only dependent on x. In (Morandini et al. 2010) the separation ansatz and a virtual 
work formulation are used. In contrast to this work, also 2D elements for the discretization of the 
cross-section are used. The aim is to calculate stiffnesses for the beam which are used in multi-body 
simulations. 
Under the name “semi analytical finite elements” (Dong et al. 2001, Kosmatka et al. 2001, Lin et al.  
2001) a method equal to the SBFEM is used to find de-Saint-Venant solutions. In (Alpdogan et al. 
2010) this method is employed to examine end effects and transitional effects in prismatic beams. 
For the discretization 2D elements are used. In (Taweel et al. 2000) this method is extended for the 
calculation of wave reflections on free ends of cylinders. And in (Gavric 1994) the same is done for 
thin-walled beams using Kirchhoff-theory. One simplification is, that within an element the 
membrane and bending components do not interact. 
Argyris and Kačianauskas (1996) use the same approach under the name SFE (Semi-analytical 
Finite Elements). Instead of the Dirichlet-Functional (virtual work principle) they employ the 
Hellinger-Reissner-Functional. 1D elements are used for the discretization of the cross-section of 
thin-walled beams. But only shear stresses and normal stresses in the direction of the beam axis are 
considered. Based on this theory they develop “semi-analytical based finite elements”. 
Schardt (1989) developed a “generalized beam theory” for thin-walled beams. 1D elements are used 
for the discretization of the cross-section. But the Kirchhoff-theory is taken as framework and for 
sake of simplicity some stresses are neglected. Silvestre and Camotim (2002) extend this method 
for orthotropic materials where again some stresses are neglected. 
In (Altenbach et al. 1994a) and (Altenbach et al. 1994b) a generalized Vlasov theory is developed. 
1D elements and Kirchhoff's plate theory are used. Neglecting stresses gives the theory of Schardt 
or Vlasov. 
Artel and Becker (2006) use the SBFEM to calculate free-edge effects in laminates. 2D elements 
are employed to describe the boundary. 

Theory 

The theory is first presented for one element. The assembly of 
several elements is described later. 
New coordinates (ξ, η and ζ) are introduced for each element. ξ 
is along the beam axis (x-axis) and η and ζ are in the cross-
section (y,z plane). ξ and η are scaled so that they reach from 0 
to 1. 

Kinematics 

The kinematics of a Reissner-Mindlin plate is presumed (Yang 
et al. 1966). One reason is that the Reissner-Mindlin theory is 
of higher order than the Kirchhoff-theory and includes 
transversal shear. Another reason is that a finite-element with 
Reissner-Mindlin theory has less unknown functions than an 
element based on Kirchhoff's kinematic. The element with 
Kirchhoff's kinematic has 8 degrees of freedom (dof) but gives 
an equation of 4th order. After linearization it has 8*4=32 unknown functions. The Reissner-
Mindlin element (as used here) has 11 dof, but the equation is only of 2nd order. Thus it has 
11*2=22 unknown functions. 
 

Figure 2: SBFEM Element 
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The key idea is that the displacements are traced back to the displacements and rotations of the 
middle plane (index 0) 

 

     
     

   ηξ,w=ζη,ξ,w

ηξ,ψζ+ηξ,v=ζη,ξ,v

ηξ,ψζ+ηξ,u=ζη,ξ,u

η

ξ

0

0

0





 (2) 

where ξ and η denote the in-plane coordinates and ζ the coordinate in the thickness direction of the 
plate. The in-plane strains are given by 

      0, 0, 0
ξ η ξη ξ η ξη ξ η ξη, , = + z κ ,κ ,κ        (3) 

and the out-of-plane strains are 

 0 0 0 0 0ηζ ηζ ,η η ξζ ξζ ,ξ ξ ζγ = γ = w +ψ γ = γ = w +ψ =  (4) 

where 

 ξη,ηξ,ξηηη,ηξξ,ξξ,η,ξηη,ηξ,ξ
ψ+ψ=κψ=κψ=κv+u=γv=u= 0000000   (5) 

In total this can be written as a matrix equation 

  L u  (6) 

where ε comprises all strain components, u comprises the midplane displacements and rotations and 
L denotes a respective differential operator. 

Constitutive relations 

The constitutive relations are the ones proposed by Yang et al. (1966) where the classical laminate 
theory (CLT) is extended and the shear strains γηζ und γξζ and the shear stresses τηζ and τξζ are 
included.  
The stresses are integrated over the thickness h of the plate 

        
   

ξ η ξη ξ η ξη ξ η ξη ξ η ξη

ξ η ξζ ηζ

N ,N ,N = σ ,σ ,τ d , M ,M ,M = σ ,σ ,τ ζdζ,

Q ,Q = τ ,τ dζ

 


 (7) 

which gives the normal and shear forces Nξ , Nη and Nξη, the bending and drilling moments Mξ, Mη 
and Mξη and the transversal forces Qξ and Qη. 
These cross-sectional forces are related to the strains and curvatures by a corresponding laminate 
stiffness Matrix C  
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  (8) 

where the stiffness coefficients for a laminate plate with n layers are defined by  

    21,m
ij ij ij ijA ,B ,D = Q ζ,ζ dζ  (9) 

Herein the quantities m
ijQ denote the reduced stiffnesses of a single orthotropic layer. See (Yang et 

al. 1966) for further information. 
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Scaled boundary finite element approach 

In the present SBFEM approach the degrees of 
freedom are the displacements u, v and w and the 
angles of rotations Ψξ and Ψη. A linear shape 
function for u, v, Ψξ and Ψη is chosen. For w a 
quadratic function is used to avoid shear locking of 
the plate. This corresponds to the “consistent 
interpolation Timoshenko beam element” described 
in (Reddy 1997). It gives an element which has 11 
degrees of freedom, as indicated in figure 3. 
 
The SBFEM approach can briefly be written as 

      eξ,η = η ξu N u  (10) 

where u are the displacements and rotations, N the matrix containing the shape functions and ue the 
vector with the degrees of freedom of the element. 

Virtual work principle 

The virtual work principle is given by 

 i aδΠ = δ dV = δ dV + δ dA= δΠ     σ u p u t  (11) 

where δ indicates virtual displacements and strains. p denotes the volume forces and t the forces at 
the boundary. Using the kinematics and the scaled boundary finite element approach for the 
displacements gives 

       2 1e e eξ,η = = η ξ = = +
ξ

 
  

Lu LN u Bu B B u  (12) 

The matrix B can be divided into two parts. The first one contains the derivatives with respect to η 
and the second one the derivatives with respect to ξ. 
Inserting these representations into the virtual work principle and using the constitutive equation 
gives 

  
       

0 1 1 2 0 1
0

0

1 1
...

... ,0

x=l
T T T T

i e e,ξξ e,ξ e e e,ξ e
x=

x=lT s s T
e e ax=

δΠ = δ + +l u dx+δ + =
l l

= δ l + x,b x dx+ δ ξ = δΠ

       
   

 




u E u E E u E u E u E u

u p f f u f

 (13) 

where the matrices Ei are  

 0 1 1 1 2 1 2 2 2
T T T= bdη, = bdη, = bdη  E B CB E B CB E B CB  (14) 

and the forces at the boundary and the volume forces are given by 

    

 
 
 
 
 

   

 
 
 
 
 

   

ξη ξ

η ξη
s T T T

η ξ

ξξη

ξηη

N ξ,η N ξ,η
N ξ,η N ξ,η
Q ξ,ηξ,η = η , ξ = η Q ξ,η bdη, = η ξ,η bdη

M ξ,ηM ξ,η
M ξ,ηM ξ,η

   
   
   
   
   

     

 f N f N p N p  (15) 

Here f s are the forces at the side-faces of the element (η=0 and η=1). f are the forces at the ends of 
the element (ξ=0 and ξ=1) and p̄  contains the volume forces. The load vector p (Yang et al. 1966) is 
defined by 

    TT

ξ η ζ ξ η ξ η ζ ξ η= p p p P P = f dζ f dζ f dζ f ζdζ f ζdζ    p  (16) 

Figure 3: Degrees of freedom of an element
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The virtual displacement δue is arbitrary and thus the equation 

       0 1 1 2

1
,0T s s

e,ξξ e,ξ e+ +l u = l + x,b x
l

  E u E E u E p f f  (17) 

and the boundary condition 

  0 1

1 T
e,ξ e+ = ξ

l
E u E u f  (18) 

have to be fulfilled. 
In the further work only the homogeneous differential equation (17) is 
considered. The volume forces p̄  and the forces at the side-faces (f s) 
are supposed to vanish.  

Assembling several elements 

Above the equations for one element are given. For each element j the 
matrices Eij are calculated in the local coordinate system. After that 
these elements have to be assembled. 
Using elements which are oriented differently gives a problem. There 
are 5 degrees of freedom in the element, but 6 degrees of freedom are 
needed when joining elements with different normal directions. In 
figure 4 this problem is depicted. From the point of view of plate 2 the 
rotation Ψζ about the plate normal is missing. 
For nodes in edges this additional degree of freedom Ψζi is introduced. 
The vector ue for elements containing this node becomes 

  1 1 1 1 1 1 2 2 2 2 2 2

T

e ξ η ζ ξ η ζ m= u v w ψ ψ ψ u v w ψ ψ ψ wu  (19) 

The matrices Eij for these elements get additional columns and rows with zero entries. Nodes in the 
middle of an element and nodes where the elements are in one plane don't need this additional 
degree of freedom. So for further calculations they are left in local coordinates.  
The degrees of freedom for these edge-nodes are transformed into a global coordinate system which 
is done by a rotation about the ξ-axis (using the rotation matrix T). 
These transformed matrices Eij

g can be given by  

 g l T
ij ij=E TE T  (20) 

and they are assembled by adding up the matrices for each element. This gives an SBFEM equation 
which has the same form like the one for a single element. But the unknowns are u, which contains 
the degrees of freedom of all nodes and the matrices Ei

g, which are the assembly of the Eij
g.  

 
The resulting SBFEM equation is of a gyroscopic type (see Tisseur and Meerbergen 2001). E0 is 
symmetric and positive definite and E2 is positive semidefinite with 4 zero-eigenvalues and E1-E1

T 
is antisymmetric. Thus the eigenvalues are symmetric to the real and the imaginary axis. 
As explained in (Morandini et al. 2010) this problem has 12 zero-eigenvalues and only 4 
corresponding eigenvectors. These eigenvectors describe the rigid-body displacements and the 
rotation around the ξ-axis. There are two Jordan-Blocks of size 2 which also describe the torsion 
and the strain of a de-Saint-Venant problem. The two other blocks are of size 4 and describe the 
rotation about the η- and ζ-axis and the bending of a de-Saint-Venant beam due to forces and 
moments. 
The solutions with non-zero eigenvalues describe end-effects which decrease exponentially. 

Solution process 

The SBFEM equation (17) is solved via a matrix exponential as it has been proposed by Song 
(2004). So first of all it has to be transformed into a linear matrix differential equation. For this 
purpose new variables ũ  are introduced which are defined by  

 ,ξ= l u u  (21) 

Figure 4: Rotational dof 
at 2 different elements 
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Now the SBFEM equation can be written as a matrix differential equation of first order: 

  
,ξ

1 1 T
,ξ 0 2 0 1 1

= l  

    
          

 
u u

u E E E E E u

0 1
 (22)  

or simply 

 ,ξ = φ H φ  (23) 

The matrix exponential function 

  
2 2

...
1 2

ξ ξ ξ
ξ = e = + + +

! !

 
  

 
H H H

φ c c1  (24) 

solves the differential equation and the vector c contains the integration constants, which are 
determined by the boundary conditions.  
For positive eigenvalues and ξ ≫	0 some entries in eHξ become very large which is obvious for an 
eigenvalue-solution φi=eλξvi (where φi is the solution made of the i-th eigenvalue λi and the i-th 
eigenvector vi). These solutions are of a significantly larger order of magnitude than the solutions 
with negative eigenvalues. Due to numerical problems like rounding errors the Jacobian matrix and 
thus eλξ then become almost singular. 
To avoid this problem a shift is introduced. First positive eigenvalues are separated from zero and 
negative eigenvalues. Like in (Song 2004) a block-diagonal Schur decomposition 

 1
s s= S T HT  (25) 

is used to obtain the block-diagonal Matrix S.  

 
0

0 0
0 0
0 0

p

n

 
 
 
 

S
S S

S
 (26) 

Each block is an upper triangular matrix and the elements on the diagonal are the eigenvalues of H. 
They are sorted in a way that Sp contains the positive eigenvalues, S0 the zero eigenvalues and Sn 
the negative eigenvalues. 
Then the matrix exponential with the shift  1 ξξ is applied, which leads to the solution 

  

 
0

1
0 0

0 0

0 0

p

s

n

ξ
e

ξ
ξ = e =

ξ
e

 
 
 
 
 
 
 

S

S

S

φ T c Wc  (27) 

The integration constants c are determined by the boundary conditions. For given displacements the 
corresponding lines of W (for ξ =0 and/or ξ=1) are written into a matrix K. For given loads the lines 
of (E0 E1

T)W are written into K. And the corresponding displacements and loads are written into a 
vector f.  
Solving the equation 

 =Kc f  (28) 

gives the integration constants c and the SBFEM equation is 
solved. 

Results 

First one single element has been tested. As depicted in figure 5 
one end of the element is clamped and at the free end unit-forces 
and unit-moments are applied. Three different sections are tested. 
An isotropic section made of steel, a section made of a symmetric Figure 5: Cantilever beam 
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laminate [0,90,±45]s and an asymmetric laminate [0,90,±45]. The comparison of the displacements 
at the free edges with FE simulations gives good results. The element is only a bit too stiff, which is 
a characteristic of the displacement method used in this work and thus expected. 
Then models of thin-walled beams are built up using these new elements. The calculated 
displacements are compared with those of a FEM-calculation. Three different cross-sections are 
considered: a plate, an L-profile and a rectangular box. The same three sections as above are tested. 
The test-case is again the cantilever beam, which is loaded with forces and moments on its free end 
(see figure 5). The displacements of nodes at the free end are compared with the FEM solution. 
In the FE model the thin-walled beam is modeled with rectangular shell elements in ABAQUS. For 
both FEM and SBFEM the displacements and rotations at the clamped end are suppressed and the 
load is distributed over the cross-section.  

In figure 6 and figure 7 the errors of the SBFEM compared to the FEM solution are displayed for 
the plate with the asymmetric layup. In figure 6 the SBFEM results are seen to converge towards 
the FEM solution. For the strain of the plate the solution for u is already very good for one element, 
because the solution doesn't depend on y. For the bending about the z-axis the solution depends on 
y. Thus the result for v is not very good for one element, but converges rapidly. This rapid 
convergence is the case for all other loads but the torsion. In figure 7 the convergence for the 
displacement w of one edge and the rotation angle ψ about the x-axis is shown. The case depicted 
here is the worst case, but also for the other materials (symmetric laminate or steel) the convergence 
for torsion is not very good. This may result from missing shear correction factors and is still under 
investigation. 
The results for other cross-sections are quite similar. The results converge quickly as long the 
elements aren't twisted. When a torsion is applied to a closed cross-section like the rectangular box 
the elements aren't twisted but only sheared. Thus the convergence is good. But for open cross-
sections like a L- or a I-profile the elements are twisted and the convergence gets poor. 
Another remarkable result is that the agreement between the FEM and the SBFEM is good for the 
displacements of leading order. Displacements of a smaller order of magnitude don't match very 
well. It has to be checked whether this is due to numerical results in the SBFEM or due to a FEM 
solution which isn't fully converged. 

Conclusions and Outlook 

In this work a new element for the scaled boundary finite element method has been developed. Its 
area of application are thin-walled composite beams. Thin-walled sections of a cross-section are 
modeled with 1 dimensional Timoshenko-like elements which include shear normal to the element. 
First tests show a quite good convergence.  
In further work distributed loads and loads at the side-faces will be included to the method. 
An analysis of the strength of the beam is also possible. For that the stresses within each layer have 
to be calculated, which can be done using the kinematics and the material laws. 
Additionally a Hellinger-Reissner functional can be used instead of the Dirichlet functional. Thus 
shear locking can be avoided and the additional degree of freedom wm in the middle of the element 
is no longer required. 

Figure 6: Concergence of SBFEM 
solution (plate made of asymmetric 

laminate), u is the displacement into x-
direction due to a unit-force in x-

direction, v is the displacement into y-
direction due to a unit force in y-direction

Figure 7: Concergence of SBFEM 
solution (plate made of asymmetric 

laminate), w is the displacement into z-
direction due to a unit-moment about the 
x-axix, ψ is the rotation around  the x-axis 

due to a unit moment around the x-axis 
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