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Abstract 

We present a multi-frontal direct solver for two dimensional isogeometric finite element method 
simulations with NVIDIA CUDA and perform numerical experiments for linear, quadratic and 
cubic B-splines. We compare the computational cost O(Np

2
) for 2D parallel shared memory 

implementation with the corresponding estimate O(N
1.5

p
3
) for a standard 2D sequential 

implementation. We conclude the presentation with observation  that computational cost of the 
shared memory direct solver scales like p

2
 when we increase the global continuity of the 

isogeometric solution, which is an adventage with respect to sequential isogeometric solver 
scalability of the order of p

3
.  

Keywords: Multi-frontal direct solver, isogeometric finite element method, computational cost, 

shared memory machine 

Introduction 

The isogeometric finite element method (Cottrel et al. 2009) is a higher order method providing 
global C

k
 continuity of the solution. It is based on the usage of B-spline basis functions delivering 

higher order global regularity of the solution. The classical higher order finite element method 
(Demkowicz 2006, Demkowicz et al. 2007)  provides C

0
 global continuity only. The isogeometric 

finite element method generates a sparse system of equations that can be solved by multi-frontal 
direct solver algorithm (Duff et al. 1984, Duff et al. 1983, Geng et al. 2006).  
In this paper we present how isogeometric C

k
 finite element method multi-frontal solver differs 

from C
0
 higher order finite element method solver by factor of p

3
.We also show how this p

3 
factor 

can be reduce down to p
2 

factor by using shared memory implementation. 

B-spline based isogeometric finite element method 

We focus on the 2D model problem, namely the Laplace equation over a square domain 

   0, 21  xxu  for    221 1,0, xx      (1) 

   0,tr 21 xxu  for  ,1,01x  02 x      (2) 

   1,tr 21 xxu  for  ,1,01x  12 x      (3) 

   0, 21
1





xx

x

u
 for  ,1,01 x   1,02 x      (4) 

where 

       1,0,1,0:, 2121  xxxxD      (5) 

       1,0,1,0:, 2121  xxxxN      (6) 
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This is a simple model problem, and the solution is   221, xxxu  . The problem is transformed into 

weak variational form. We seek   1
0

~ Huu  where      1
0

1
0 :~~ HvvuHu  and   2210 ,~ xxxu   

is the lift of the Dirichlet b.c. In other words         2212102121 ,,~,, xxxwxxuxxwxxu   and 

 
 

  0,
,

2121

2,1

21
2






 

dxdxxxv
x

xxu

i i

 for all   DvHvv  on0tr:1
V      (7) 

we integrate by parts 

 
     

 
 

  0,
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21
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2,1

21 

















 

 
DN

dSxxv
n

xxu
dSxxv

n

xxu
dxdx

x

xxv

x

xxu

ii i

     (8) 

Dv  on0tr  which implies 
 

  0,
,

21
21 





D

dSxxv
n

xxu
,   Nxx

x

u





on0, 21

1

 which implies 

 
  0,

,
21

21 




N

dSxxv
n

xxu
 (since N

x

u

n

u










on

1

 ) and we get 

 
   

0
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2,1

21 








 

dxdx
x

xxv

x

xxu

ii i

     (9) 

incorporating “shift” of the Dirichlet boundary condition         2212102121 ,,~,, xxxwxxuxxwxxu   
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 and since  
 

0
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1

210 




x

xxu
, 

 
1

,~

2

210 

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x

xxu
 

we get:  Find   1Hw  such that: 
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 for all   DvHvv  on0tr:1
V      (10) 

If we utilize B-splines for p=1 

 
Figure 1. Linear B-splines over 2D patch 

our week variational form 

     
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V   (11) 

has the following tensor product structure 

      21;11;211;, , xNxNxxB jiji       (12) 
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         

ji

jijiji

ji

ji axNxNaxxBxxw

,

,21;11;,

,

211;,21 ,,      (13) 

        21;11;211;,21 ,, xNxNxxBxxv jiji       (14) 

      21;11;211;, , xNxNxxB jiji       (15) 

    1;,1;,1;, , lklkji BlBBb       (16) 

where 
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     (17) 

using Gaussian quadrature the integration over the domain can be substituted by a weighted 

summation over Gaussian points 
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21;11;
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     (18) 

 

Multi-frontal solver algorithm for linear B-splines 

 

We partition the mesh into “elements”, compare Figure 2 

 
Figure 2. Left panel: Partitioning of the 2D patch into elements 

Right panel: Linear B-splines over a single element.  

The maxim values of B-splines ale located at mesh nodes,  

thus we identify B-splines with mesh nodes 
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We have (p+1)(p+1) functions of order p assigned to element    11, ,,   LLKKlkE   

        
lplnkpkmnmlplnkpkmnm xNxNxxB

,...,;,...,21;11;,...,;,...,211;, ,


      (19) 

We need to perform the integration over a single element 
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     (20) 

For p=1 there are 2x2=4 two dimensional B-splains (compare Figure 2) so we need to compute 4x4 

matrix with all four functions talking to each other (see Table 1) so we need to compute 2x2=4 two 

dimensional B-splines (see Table 2) so we need to compute 2+2=4 one dimensional B-splines (see 

Table 3).  

 
 1;1,11;1,1 ,  lklk BBb   1;1,11;1, ,  lklk BBb   1;1,11;,1 ,  lklk BBb   1;1,11;, ,  lklk BBb  

 1;1,1;1,1 ,  lklk BBb   1;1,1;1, ,  lklk BBb   1;1,1;,1 ,  lklk BBb   1;1,1;, , lklk BBb  

 1;,11;1,1 , lklk BBb    1;,11;1, , lklk BBb    1;,11;,1 , lklk BBb    1;,11;, , lklk BBb   

 1;,1;1,1 , lklk BBb    1;,1;1, , lklk BBb    1;,1;,1 , lklk BBb    1;,1;, , lklk BBb  

Table 1. Element matrix for linear B-splines 
 

     21;11;211;, , xNxNxxB lklk        21;111;211;1, , xNxNxxB lklk    

     21;11;1211;,1 , xNxNxxB lklk         21;111;1211;1,1 , xNxNxxB lklk    

Table 2. Contribution to a single entry of linear B-splines based element matrix 
 

 11; xNk   11;1 xNk  

 21; xNl   21;1 xNl  

Table 3. One dimensional B-splines contributing to  linear B-splines based element matrix 
 

In the second step we merge 2x2 elements (actually we merge four 4x4 matrices into a single 9x9 

matrix) as it is presented on left panel in Figure 3. We order the matrices in such a way so the fully 

assembled B-spline (denoted by dark green color on left panel) is the first row in the matrix so we 

can eliminate the first row (we can eliminate the single fully assembled B-spline). 

In the third step we merge four patches of 2x2 element with internal B-splines already eliminated 

(actually we merge four 8x8 matrices into a single 21x21 matrix), compare middle panel in Figure 

3. We order the matrix in such a way so the 5 fully assembled B-splines (denoted by dark green 

color on the middle panel) are the first rows in the matrix so we can eliminate the first rows (we can 

eliminate the internal fully assembled B-splines). 

In the last step we eliminate the boundary nodes, see right panel in Figure 3 (we have a single 

16x16 matrix). We just perform fully forward elimination over the matrix. This is the most 

expensive step and its computational complexity is O(N
3/2

)  since the boundary has O(N
1/2

)  

B-splines. 
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Figure 3. Left panel: Second step of the linear B-splines based solver algorithm  

Middle panel: Third step of the linear B-splines based solver algorithm  

(dark yellow dots denote B-splines to be eliminated) 

Right panel: We use linear B-splines so the top problem has one layer of B-splines  

identified with mesh nodes 

 

Multi-frontal solver algorithm for quadratic B-splines 

 

In the first step we generate “elements”, with quadratic B-splines as it is presented in in Figure 4. 

For p=2 there are 3x3=9 two dimensional B-splines so we need to compute 9x9 matrix with all nine 

functions talking to each other  (order in the matrix corresponds to the row by row location of 2D 

B-splines) (compare Table 4) so we need to compute 3x3=9 two dimensional  

B-splines (compare Table 5) so we need to compute 3+3=6 one dimensional B-splines (compare 

Table 6). We already know how to compute them effectively. Thus, the parallel shared memory 

implementation of the integration algorithm requires only p+1 steps. 

 
 1;2,21;2,2 ,  lklk BBb  …  1;2,21;, ,  lklk BBb  

… … … 
 1;,1;2,2 , lklk BBb   …  1;,1;, , lklk BBb  

Table 4. Element matrix for quadratic B-splines 
 

     21;11;211;, , xNxNxxB lklk        21;111;211;1, , xNxNxxB lklk         21;211;211;2, , xNxNxxB lklk    

     21;11;1211;,1 , xNxNxxB lklk         21;111;1211;1,1 , xNxNxxB lklk         21;2111;1211;2,1 , xNxNxxB lklk    

     21;11;2211;,2 , xNxNxxB lklk         21;111;2211;1,2 , xNxNxxB lklk         21;2111;2211;2,2 , xNxNxxB lklk    

Table 5. Contribution to a single entry of quadratic B-splines based element matrix 
 

 11; xNk   11;1 xNk   11;2 xNk  

 21; xNl   21;1 xNl   21;2 xNl  

Table 6. One dimensional B-splines contributing to  quadratic B-splines based element matrix 
 

In the second step we merge 3x3 elements (actually we merge nine 4x4 matrices into a single 16x16 

matrix), compare left panel in Figure 5. We order the matrices in such a way so the one fully 

assembled B-spline (denoted by yellow color on figure) is the first row in the matrix so we can 

eliminate the first row (we can eliminate the single fully assembled B-spline).  

In the third step presented on right panel in Figure 5 we merge four patches of 3x3 elements each 

with one B-spline already eliminated. We get a matrix with 8x8-4 = 60 rows / columns. We can 

eliminate 12 fully assembled B-splines.  
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Figure 4. Left panel: Partitioning of the 2D patch into elements 

Right panel: Quadratic B-splines over a single element. The maximum values of B-splines are 

located at element centers, thus we identify element centers with B-splines. Additionally, on 

the boundary elements we have one B-spline with maximum located outside the domain. 

 
Figure 5. Left panel: First step of the elimination for quadratic B-splines  

Right panel: Second step of the elimination for quadratic B-splines 

(dark dots denote B-splines to be eliminated, light dots denote already eliminated B-splines) 

 
Figure 6. The top problem for quadratic B-splines finite elements has two layers, since we 

have one B-spline at each element center, as well as we have boundary B-splines outside the 

domain, one additional layer of B-splines 

 

In the last step we end up with the boundary problem, presented in Figure 6. We have a single dense 

48x48 matrix here, resulting from one layer of  B-splines located at element interiors plus one 

additional layer of elements located outside the domain. 
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Observation 1. The top problem for the B-splines based direct solver for C
k
 isogeometric finite 

element method has size O(N
1/2

 p). The resulting computational cost of the top problem solution is 

O(N
3/2

p
3
). This is the computationally most expensive part of the solution. 

Observation 2. The top problem for the direct solver for classical C
0
 finite element method has size 

O(N
1/2

). The computational cost of the top problem solution is O(N
3/2

).  

 

 
Figure 7. Comparison between theoretical and experimental computational costs 

Graph grammar based multi-frontal solver 

The shared memory implementation of the isogeometric direct solver algorithm has been already 

described in (Kuźnik et. al. 2012). The solver algorithm presented there is based on graph grammar 

concept and implemented in NVIDIA CUDA environment.  

The theoretical estimates presented in (Kuźnik et al. 2013, Collier et al. 2012) imply the following 

computational complexities of the isogeometric as well as classical C
0
 higher order FEM (Table 7). 

 

Observation 3. In the parallel shared memory implementation of the full Gaussian elimination for 

the top dense problem it is possible to perform row subtractions at the same time. There are  

O(N
1/2

p) rows to be subtracted at the same time, the size of each row is O(N
1/2

p), and these row 

subtractions must be performed O(N
1/2

p) times. This implies O(Np
2
) computational complexity of 

the isogeometric C
k
 finite element method shared memory direct solver. 

 

The experiments were performed on NVidia Tesla C2070 device, which has 14 multiprocessors 

with 32 CUDA cores per multiprocessor, which gives us 448 CUDA cores. The total amount of 

global memory is 5375 megabytes. We used CUDA 4.0 version.  
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 1D 2D 3D 

parallel shared memory IGA O(p
2
log(N/p)) O(Np

2
) O(N

1.33
 p

2
) 

sequential single core IGA O(p
3
(N/p)) O(N

1.5
p

3
) O(N

2
p

3
) 

parallel shared memory hp-FEM O(log(N/p)) O(N) O(N
1.33

) 

sequential single core hp-FEM O(N/p) O(N
1.5

) O(N
2
) 

Figure 7. Comparison between sequential and shared memory computational costs 
 

The comparison of the theoretical and experimental computational costs are presented in Figure 7. 

We can observe here how the computational cost of the shared memory solver varies from ideal 

theoretical cost to sequential cost, when the problem size grows. There are the following reasons for 

such the behavior. For 2D solver, frontal matrices grow up the elimination tree.  

 For the frontal matrices close to the root of the tree, even single row of a matrix cannot fit a 

shared memory of a single multiprocessor (only one core per multiprocessor is running) 

 For the frontal matrices below the root, only a few rows fit into a shared memory  

  of a single multiprocessor (several cores may be idle) 

 For the frontal matrices close to leaves several rows fit  into a shared memory of a single 

multiprocessor (all cores over all multiprocessors are running) 

 For frontal matrices at the leaves entire frontal matrix fit into a shared memory of a single 

multiprocessor (all cores over all multiprocessors are running) 

Conclusions 

In this paper we presented how the isogeometric finite element method increases the computational 

cost of the multi-frontal solver by factor p
3
. We also showed how shared memory version of the 

multi-frontal solver can reduce this factor down to p
2
. The numerical experiments performed on 

NVIDIA CUDA GPU confirmed the theoretical estimates.  
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