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Abstract 

We present a hybrid algorithm for solving inverse 3D resistivity logging measurement 

simulation problem with DC and AC tools in deviated wells. The term “simulation of 

measurements” is widely used by the geophysical community. A quantity of interest, voltage, is 

measured at a receiver electrode located in the logging instrument. Computer simulations are used 

to explain obtained measurements. We solve the inverse problem with goal-oriented hp adaptive 

finite element method interfaced with Hierarchic Genetic Strategy (HGS) algorithm during a global 

phase and Conjugated Gradient (CG) algorithm in a local phase. The global search HGS algorithm 

generates starting points for local search CG algorithm. We conclude the presentation with 

numerical experiments for DC/AC problems.  

Keywords:  inverse algorithms, resistivity logging measurement simulations, goal-oriented hp 

adaptive finite element method, hierarchic genetic search 

Introduction 

In this paper, we solve a forward and inverse problem of 3D direct and alternate current 

(DC/AC) borehole resistivity measurement simulations in a deviated well. 

The expression “simulation of measurements” is widely used within the geophysical 

community. A quantity of interest, voltage in this case, is measured at a receiver electrode located 

in the logging instrument. Actual logging instruments are equipped with several transmitter and 

receiver electrodes. These instruments move along the axis of the borehole, and measure the voltage 

induced at the receiver electrodes at different positions. The voltage measured at the receivers is 

expected to be related to the electrical conductivity of the nearby formation. Thus, logging 

instruments are used to estimate the properties (in this case, the electrical conductivity) of the sub-

surface material, with the ultimate objective of describing hydrocarbon (oil and gas) bearing 

formations. 

In the forward problem, the behavior of a resistivity logging instrument is simulated by 

performing computer-based simulations of resistivity logging instruments in a borehole 

environment. The resulting simulator is utilized as a core part of an inverse problem infrastructure. 

The inverse infrastructure allows to determine unknown conductivities of formation layers, based 

on actual measurements recorded by logging instruments. 

The resistivity logging tool with receiver and transmitter electrodes is moving along the 

trajectory of the well. The electromagnetic waves generated by the transmitter electrode are 

reflected from formation layers and recorded by the receiver electrodes. Of particular interest to the 

oil industry are 3D simulations of resistivity measurements in deviated wells, where the angle 

between the borehole and the formation layers is not equal to 90 degrees ( °900  ).  
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Formulation of 3D DC/AC problem in deviated well with Fourier series expansions 

A forward DC problem is formulated in the following way, by the conductive media equation: 

Find   RxuxRu 3:  the electrostatic scalar potential such that  
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where J  is the load (divergence of the impressed current, Pardo et al. 2006) and 

 represents the conductivity of the media.  

To solve the above 3D problem (1), a new quasi-cylindrical non-orthogonal system of 

coordinates shown in Figure 1 is introduced. This chapter presents a summary of the derivation 

presented in details in (Pardo et al. 2008a and Pardo et al. 2008b). The notation from the papers is 

utilized here. The variational formulation, with respect to the electric potential u in this new system 

of coordinates, can be expressed in the following way: 

Find Vu  such that: 

 VvdJvd
vu

n nn









 
 

ζζ ˆˆ
3

1







     (2) 

where  

    








 


DvdxvvLvV on0tr::
222      (3) 

The electric conductivity of media in the new system of coordinates is equal to 

JacJacJac
T11:ˆ   , and JacJJ   :ˆ  with Jac  being the Jacobian matrix of the change of 

coordinates with respect to the Cartesian reference system of coordinates  321 ,, xxx , namely,  
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Then, we take a Fourier series expansion of the solution, material and 2  direction 
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unit. We introduce symbol lF  such that applied to a scalar function u it produces the l
th

 Fourier 

modal coefficient lu , and when applied to a vector or matrix, it produces a vector or matrix of the 

components being l
th

 Fourier modal coefficients of the original vector or matrix components.  

Using the Fourier series expansions we get the following variational formulation:  

Find   VuFl   such that: 
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The summation is applied with respect to  ml, . We select a mono-modal test function 

2kj
k evv  .  
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Fig. 1. Three non-orthogonal systems of coordinates in the borehole and formation layers 

 

Thanks to the orthogonality of the Fourier modes in  2L  the problem (8) reduces to: 

Find   VuFl   such that: 
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since five Fourier modes are enough to represent exactly the new material coefficients. We refer 

to Pardo et al. 2008a for more details. 

In the similar (however more algebraically complicated) manner, the variational formulation for 

the AC problem can be derived, which is presented in Pardo et al. 2008b. The forward problem is 

solved with self-adaptive, goal-oriented hp finite element method (hp-FEM) (Demkowicz 2006). 

The algorithm starts with an initial mesh, called the coarse mesh and solves the weak problem. The 

mesh is then globally hp-refined, each element is broken into four elements and the polynomial 

order of approximation is increased by one. The resulting mesh is called the fine mesh. The weak 

problem is solved again over the fine mesh. The algorithm considers different refinement strategies 

for each finite element from the coarse mesh. 

 

Fig. 2. The summary of the formulation of the forward problem 
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Forward and inverse problems 

In the forward problem the behavior of resistivity logging instrument is analyzed by performing 

computer-based simulations for borehole environment. In particular, given the resistivities of the 

formation layers, the voltage at certain positions of transmitter and receiver electrodes is sought 

according to (9). A series of forward problems for these positions forms a logging curve (Figure 2). 

In the inverse problem (Figure 3), we are given a reference logging curve and aim to find the best 

approximation of the unknown resistivities that result in a curve closest to the reference one. 

 

Fig. 3. The summary of the formulation of the inverse problem 

Hierarchic genetic strategy interfaced with self-adaptive hp-FEM  

The hp-HGS strategy is based on HGS (see e.g. Schaefer and Kołodziej 2004), which is dedicated 

to solving multimodal, global optimization problems. It creates a tree of demes, in which the 

encoding accuracy grows with the distance from the root. We start with most coarse, chaotic 

solutions (which, as a result, can be computed quickly) and as we progress down the tree, we obtain 

more accurate solutions, with the final ones reached in the tree leaves. In the left part of Figure 4, 

the individuals of the root-node deme are marked by red points. In the left and central parts, green 

points denote second-level (branch) individuals. For evaluation of individuals from particular levels 

of the tree of populations the self-adaptive hp-FEM code is used. The accuracy of the hp-FEM 

solver grows with the depth of the tree of populations. In other words, close to the root we evaluate 

individuals by using cheap low accuracy solver, while at the leaves of the tree of populations we 

utilize high accuracy expensive estimates. 

 
Fig. 4: Red color – root individuals, green – branch individuals, violet – leaf individuals. 



5 

 

 

The following pseudocode shows main ideas of hp-HGS (including scaling errors):  

 
1 Inverse analysis loop  

2    do  

3      Solve the problem on the current coarse and fine FE mesh  

4      Compute FE error  

5      Compute goal function error on the coarse mesh  

6      if goal function error on the coarse mesh <  

7         < rate * relative FE error then  

8        Execute one step of (parallel) hp adaptivity  

9      else break endif  

10   enddo  

11   Compute goal function error on the fine mesh  

12   if goal function error on the fine mesh <  

13      < required accuracy then  

14     stop  

15   endif  

16   Propose new values for inverse problem parameters  

17 endloop 

Numerical results for pure hp-HGS algorithm 

The hp-HGS algorithm has been executed for DC and AC cases. For the DC case, the algorithm 

has been looking for the resistivities (1,5,20) (compare Figures 2 and 3) of the three formation 

layers. The algorithm has found 1o (correct result) and 51  (correct result), however 2  had 

different values varying from 10 up to 100. The results are summarized in Figure 5; they suggest the 

insensitivity of the measurements to the third parameter. 

 

Fig. 5. The DC results of the hp-HGS algorithm 
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Fig. 6. The AC forward problem and inverse results of the hp-HGS algorithm  

For the AC case, we solved a much more computationally difficult problem where the borehole 

is equipped with steel casing with high contrast resistivity (compare left panel in Figure 6). The 

inverse algorithm has been looking for the two central resistivities (1,10000). The algorithm has 

found 1o (correct result), however 1  had different values varying from 40 up to 40000. The 

results are summarized on the right panel in Figure 6; they suggest the insensitivity of the 

measurements to the second parameter. 

The pure hp-HGS algorithm is suitable for recognizing the landscape of the solved problems, in 

particular for finding the basins of attraction of global and local minimizers in case of multimodal 

problems (see Schaefer and Telega 2007 and references therein). It is also capable of finding the 

solutions (its asymptotic properties has been formally proven), but has to be synchronized at the end 

of each metaepoch to determine, in which regions new branches and leaves should be sprouted. One 

should also notice that with increasing depth in the HGS tree, the accuracy and computation time of 

each candidate solution also increases, which makes the leaves the most heavy parts of the 

computations, even if leaf populations are very small. Summing the above facts with the stochastic 

nature of HGS opens the area for improvement by limiting the depth of the HGS tree and by 

applying local methods in the interesting regions found by hp-HGS. 

Numerical results for the hybrid computations 

In order to reduce the computational cost of the inverse algorithm we have interfaced the hp-

HGS algorithm with conjugated gradient (CG) type of iterative method. Once the inverse algorithm 

finds areas with local minima, we to switch to local gradient search methods with higher accuracy. 

In the DC case, we stopped the first phase hp-HGS genetic search after 6 metaepochs, when we 

could select six starting points for the second gradient phase from the leaves of the tree of 

populations. We have executed the CG algorithm from these points, with the following results: 

 The CG algorithm starting from the first point and the fourth point converges to the border 

of the domain and gets stuck there. 

 The CG algorithm starting from the second, third and the fifth point converged to local 

minima 

 The computations started from the sixth starting point require much more iterations, and has 

been stopped. 

The convergence history for the second, third and fifth points is presented in Figure 7.  
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We obtained similar results to those obtained from the global genetic search, namely 

1o (correct result) and 51  (correct result), however 2  had different values varying from 30 

up to 60. This confirmed our thesis that these measurements are insensitive to the third layer. 

In the AC case, we stopped the first phase hp-HGS genetic search after eight metaepochs and 

selected 10 starting points to the second phase of gradient search. All the points converged to local 

minima (summarized in Figure 8). We obtained similar results as those of the global genetic search, 

namely the algorithm has found 1o (correct result), however 1  had different values varying 

from 6 up to 52000. This confirmed our thesis that these measurements are insensitive to the second 

layer. 

 

 

 

Fig. 7. The local gradient search for the DC problem 

 

Fig. 8. The local gradient search for the AC problem 

Computational cost 

In the DC case, the HGS algorithm finds six starting points for gradient algorithm with 5-11 

genetic steps, and the gradient algorithm converges to local minima between 12-14 iterations 

(compare Figure 7). Thus, the local minima can be found with 17-25 direct problem evaluations. 
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In the AC case, the HGS algorithm finds ten starting points for gradient algorithm with 8 

genetic steps, and the gradient algorithm converges to local minima with 4-28 solver calls (compare 

Figure 8, with the assumption that we skip the expensive second point). Thus, the local minima can 

be found with 12-36 direct problem evaluations.  

The hybrid algorithm can be parallelized on the level of these meta-steps. Thus, the sequential 

execution time is equal to 17-25 or 12-36 consecutive direct solver calls, for DC or AC case, 

respectively.  

Conclusions 

In this paper we presented hp-HGS hierarchic genetic strategy using the self-adaptive hp  finite 

element as direct solver. The hp-HGS was interfaced with local gradient search, which is more 

efficient once the genetic algorithm reaches the local minima. The strategy was utilized for solution 

of the inverse problem related to the identification of the formation layers based on the borehole 

resistivity logging measurement for direct current as well as alternate current (DC/AC) cases. In 

both cases the numerical results converged to a local valley, where one of the formation layers had 

different values. These results imply that, in some cases, the resistivity measurements are 

insensitive to some formation layers, and for better results they might be combined with other 

methods of measurements, using e.g. sonic or nuclear tools. 
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