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Polymer matrix filled with ferromagnetic particles is a class of smart materials  whose 
mechanical properties can be changed under different magnetic field. They are usually referred to 
as magnetorheological elastomers (MREs). A finite element simulation was presented to describe 
the mechanical behavior of MREs with the nonlinearity of the particle magnetization being 
incorporated. By introducing the Maxwell stress tensor, a representative volume element (RVE) 
was proposed to calculate the Young’s modulus and shear modulus of MREs due to the applied 
magnetic field. The influences of the applied magnetic field and the particle volume fractions in 
the shear modulus and Young's modulus were studied. Results show that the shear modulus 
increases with the magnitude of the applied magnetic field, while the Young's modulus decreases.  
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Introduction 

Magnetorheological elastomers (MREs) are a new material, whose structure is that micro-sized 
ferrous particles disperse in a polymer matrix. The materials have rheological properties that can 
be changed by an applied magnetic field continuously, rapidly and reversibly. The increasing 
interest in MREs has heightened the need for potential applications in vales, dumpers,brakes and 
sensor constructions. Some theoretical models were established to simulate MREs. The widely 
used one now is the dipole model (Davis,1999; Jolly,1996; Shiga and Okada,1995). However, it 
puts the dipole as the center of the sphere thus being limited to the case of larger particle spacing. 
The dipole theory indicates that the ferromagnetic particles are linear magnetization. In fact, the 
particles are nonlinear. The distribution of magnetic field in MREs can be calculated by the 
magnetic finite element method. The shear modulus, the particle volume fraction and the 
relationship between the size of the magnetic field were obtained by considering the nonlinear 
magnetization of particles. This work can provide guidance for the optimized material and device 
design. 

Modeling procedure 

Representative volume element 

As shown in Fig. 1, a representative volume element was used to simulate MREs. 
Two dimension square RVE was regarded as the rubber matrix, which includes 
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several circles representing carbony1 iron particles CIPs. 

 
Fig. 1 RVE model 

Governing equations 

Cauchy's equation of continuum mechanics reads  

 
2

2 ext
d
dt

   
r T f   (1) 

where   is the density, r is the coordinates of a material point, T is the stress tensor, 

and extf  is an external volume force such as gravity ( =ext f g ). It is an equation 

solved in the structural mechanics physics interfaces in the special case of a linear 
elastic material, which neglects the electromagnetic contributions. In the stationary 
case, there is no acceleration, and the equation representing the force balance is 

 ext   0 T f   (2) 

In certain cases, the stress tensor T can be divided into two parts. One depends on the 
electromagnetic field quantities and another is the mechanical stress tensor, 

 EM M T T    (3) 

It is sometimes convenient to use a volume force instead of the stress tensor. This 
force is obtained from the relation 

 em EM f T   (4) 

as stated in the structural mechanics physics interfaces 

 M em ext   0 σ f f   (5) 

Magnetic equations 

In a current free region, where  0. H It is possible to define the scalar magnetic 

potential, mV  from  the relation  .mV H Using the constitutive relation between 

the magnetic flux density and magnetic field 

 0 ( ) B H M   (6) 

together with the equation 
 0 B   (7) 



3 
 
 

 then Vm  can be obtained from the equation 

 0 0 0( ) 0mV    M   (8) 

 
 
 

Fig. 2 HB curve 
The nonlinear magnetic behavior of the steel particles is molded by using a HB curve 
to specify the magnetic constitutive relation.（Fig. 2） 

Mechanical equations 

The expressions for the stress tensor in a general electromagnetic context stem from a 
fusion of material theory, thermodynamics, continuum mechanics, and 
electromagnetic field theory. With the introduction of thermodynamic potentials of 
mechanical, thermal, and electromagnetic effects, explicit expressions for the stress 
tensor can be derived in a convenient way by forming the formal derivatives with 
respect to the different physical fields (Kovertz,1990;Wilson,1988). Alternative 
derivations can be made for a vacuum (Wangsness,1986) but it is difficult to polarize 
and magnetize materials. In general, an elastic solid material of that is dielectric and 
magnetic (nonzero M), the stress tensor is given by the expression 

  
0 0

1 1( )
2

T T

 
        IT B B B MB B B M B   (9) 

where in ( )B ,  the dependence of B has not been separated out. Thus  is not a 

purely mechanical stress tensor in this case. Different material models give different 

appearances of ( )B . The electromagnetic contributions to ( )B , which represent 

piezoelectric, dielectric, and magnetization effects. The expression for the stress 

B(T) 

H
(A

/m
) 
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tensor in vacuum, air, and pure conductors can be derived from this general 
expression by setting =0M  . The Maxwell stress on CIPs causes the deformation of 
the RVE. 

Simulations procedures 

A test of the MREs was simulated to investigate the changes of shear modulus and 
Young's modulus with different magnetic field and radius of CIPs. The values of 
magnetic field are 0.5e-5wb/m, 1e-5wb/m, 1.5e-5wb/m, and 2e-5wb/m (Fig.3 and 

Fig.4 ), respectively. The radius of CIPs is 1.5 m ，2 m ，2.5 m ，3 m ，3.5 m ，

4 m ，4.5 m (Fig.5), respectively. 

Results and discussions 

 
Fig. 3 different magnetic fields for tension deformation 
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Fig. 4 different magnetic fields for shear deformation 

When no shear deformation occurs, 0  , the magnetic field contribution to the 

normal stress and shear strain is equal to the magnetic energy density function of the 
first derivative of strain,  
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Young's modulus is: 
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r
 

    (11) 

As stated in the above equation, the magnetic field will cause magnetic force and the 
load will result in compression of the matrix (rubber), which is actually magnetic 
pre-stressed. This is because that the CIPs attract each other, which increases the 
reliability of material in some ways. But in the contact force between the particles and 
the rubber, the rubber is easy to be torn. The MREs working in the compressed state 
are unreasonable (the compressed state becomes the extrusion of the two rigid iron 
balls). Young's modulus induced by the magnetic field is negative. Its physical 
meaning is the magnetic energy and a matrix strain energy conversion. With 
increasing the magnetic field (Fig.3). MREs will become softer. The results of the 
simulation show that the shear modulus increases with the magnitude of the applied 
magnetic field, while the Young's modulus decreases (Fig.4).  
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Fig. 5 different radius of CIPs 

Conclusions 

The study focuses on the mechanical behavior of MREs. A two-dimension RVE was 
introduced with CIPs and pure rubber. Mechanical behavior of the RVE was 
simulated under magnetic field. It is demonstrated that the shear modulus increases 
with the magnitude of the applied magnetic field, while the Young's modulus 
decreases. Additional research should focus not only upon the applied magnetic field, 
but also considering the magnetostriction of MREs.  
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