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Abstract

Free vibration of two-dimensional functionally graded plates with an exponential
material gradation is analyzed in this paper by a meshfree boundary-domain integral
equation method. Based on two-dimensional elasticity theory, boundary-domain
integral equations are derived by using elastostatic fundamental solutions. Due to the
material inhomogeneity and the inertial effect, two domain integrals emerge in the
boundary-domain integral equation formulation. Radial integration method is
employed to convert the domain integrals into boundary integrals. A meshfree
scheme is achieved through approximating the normalized displacements in the
domain integrals by a combination of the radial basis functions and polynomials.
Thus, the free vibration problem is reduced to a generalized eigenvalue problem,
which involves system matrices with boundary integrals only. By using the present
meshfree boundary-domain integral equation method, free vibration of two-
dimensional exponentially graded plates with various material gradients, boundary
conditions and aspect ratios are investigated, which demonstrates the high
convergence, efficiency and accuracy of the present method.

Keywords: free vibration, functionally graded plates, exponential material gradation,
boundary element method, meshfree method, boundary-domain integral equations.

Introduction

Functionally graded materials (FGMs) are heterogeneous advanced composite
materials, in which the volume fractions of the constituents vary gradually and
functionally. It has drawn the attentions of the engineering and scientific communities
of various disciplines since the concept was first introduced in 1984. Meanwhile,
FGMs bring extraordinary merits of high resistance of temperature gradients, high
wear resistance and an increase in strength to weight ratio, which make FGMs having
motivated the word-wide research activities.

The determination of the natural frequencies and the mode shapes of a functionally
graded (FG) structure is an important and necessary process during the engineering
design and development. Thus dynamic analysis of the FG plates plays an
indispensable role in the engineering practice. Due to the mathematical complexity,
most practical problems of FG plates can be solved only with numerical scheme.
Among many numerical methods, the boundary element method (BEM) with its
superior efficiency and accuracy has been well established as a powerful method. The
dual reciprocity method (DRM) proposed by Nardini and Brebbia (1983) is
recognized as one efficient method to treat the dynamic analyses of structures
(Wilson et al. 1990) and FGMs (Masataka et al. 2000) in BEM. However, the
application of DRM to deal with the domain integrals in the boundary-domain
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integral equations requires particular solutions, whose construction is restricted to the
approximation functions chosen. Another efficient alternative technique to handle the
domain integrals in BEM is the radial integration method (RIM) proposed by Gao
(2002). The RIM is based on pure mathematical treatments, and the main advantage
of the RIM over the DRM s that the radial basis functions (RBF) can be freely
chosen. The RIM has been successfully implemented and applied to elastodynamic
problems in anisotropic materials by Albuquerque et al (2003, 2007). A meshless
boundary-domain integral equation method for transient thermoelastic analysis has
been developed and applied by Ekhlakov et al (2010, 2012), where the Laplace-
transform technique is used and the domain integrals are handled by the RIM. In
contrast to the above mentioned investigations, few works can be found in literature
on the vibration problems of FG plates by using these methods.

In this paper a meshfree boundary-domain integral equation method is presented to
analyze the free vibration behaviours of two-dimensional (2D) FG plates. The
material properties are assumed to vary continuously according to the exponential law
either in longitudinal or in transverse directions. The boundary-domain integral
equations are derived based on 2D elastodynamic theory, while the elastostatic
fundamental solutions for homogeneous materials are applied. The RIM is applied to
transform the domain integrals into boundary integrals. A meshfree scheme is
achieved by approximating the normalized displacements in the domain integrals by a
combination of the radial basis functions and polynomials in term of the global
coordinates. Internal nodes are necessary to increase the accuracy of the solution due
to the fact that the correct function approximation requires a rather uniform
distribution of nodal points. Then the eigenvalues and eigenvectors can be obtained
by solving the generalized eigensystem with only boundary discretization. Numerical
examples demonstrate that the present method has high efficiency and accuracy. The
main advantages of the present method can be summarized as:

(1) The present method is based on a boundary-domain integral equation formulation.
It requires the discretization of the global boundary of the problem domain and
some internal nodes, but no domain-like elements.

(2) The present method uses elastostatic fundamental solutions and avoids the
complicated complex frequency-domain dynamic fundamental solutions.

(3) The present method for computing the eigensolutions is quite robust. No
instability and spurious eigenvalues are observed by using the method, which is a
critical issue in real valued BEM to analyze eigenvalue problems.

(4) Numerical examples for free vibration analyses of 2D FG plates with various
material gradation directions, gradient parameters, aspect ratios, and boundary
conditions show the fast convergence, high efficiency and accuracy of the present
method. In addition, the present method is easy to implement and very flexible for
free vibration analyses of 2D FG structures.

Exponential Material Properties

A two-phase steel/aluminum FG plate is considered in this paper. The corresponding
material parameters are: Es=210GPa, ps=7806 kg/m® Ea=70GPa, pa=2707kg/m?,
and v=0.3. The schematic sketch of the plate and its dimensions are illustrated in Fig.
1. The material properties of the FG plates are assumed to vary continuously along
spatial coordinates in longitudinal or transverse directions according to an exponential
law. In particular, the Poisson’s ratio v is taken as constant, while the Young’s



modulus E and the mass density p are assumed to vary according to the following
exponential functions
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where Eg and pg denote the Young’s modulus and the mass density for the starting
face constituent, E; and p; are for the ending face constituent, # and y represent the
material gradient parameters for the Young’s modulus and the mass density
respectively, Xy (d=1,2) stands for the Cartesian coordinates, and Lg is the length
parameter of the considered plate.
vy
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Figure 1. Coordinates and geometry of FG plates: (a) material gradation in in X3-
direction; (b) material gradation in x,-direction

Problem Formulation and Numerical Solution Method

Based on the 2D elasticity theory, the governing partial differential equations of the
steady-state elastodynamics without damping are given by

oy (X)+ o’ pu;(x) =0, (2)
where w is the natural frequency, p is the mass density, u; is the amplitude of the
displacement vector, and oj; is the stress tensor. A comma after a quantity represents
spatial derivatives and repeated indices denote summation.

Since the Young’s modulus varies with the Cartesian coordinates while the Poisson’s
ratio is constant, the elasticity tensor can be described by the shear modulus u(x)

varying with the coordinates and the elasticity tensor cfj’kl for the reference

homogeneous material in the form of

0 E(x) 0 2v
Cija (X) = 1(X)Cyj (X) = 20+v)’ Cijn = 1_ov
in which ¢; is the Kronecker delta. By taking the elasostatic displacement
fundamental solutions Uj(x, y) as the weight function, the weak-form of the equations
of motion Eq. (2) can be obtained as

jg[ajk,k + pa’u,]-U,;dQ =0. (4)

5ij5k| +5ik5jl +5iI5jkf 3)

Application of the generalized Hooke’s law o = CyUy, = £(X)Ci Uy, @nd Gauss’s
divergence theorem yields the following boundary-domain integral equations
0,(y) = [ Uy (¢, Yt 00dT = [ T,(x, y)d; (0dT + [V (%, y)(x)dQ

5
+a | @Uu(x, y)d, (x)dQ. ©)
@ u(X)

In Eqg. (5), t; =o;n; is the traction vector with n; being the components of the outward

unit normal to the boundary T of the considered domain Q. U, (x) = g(x)u.(X) is the



normalized displacement vector and z(x)=In[x(x)] is the normalized shear
modulus (Gao et al. 2008). The fundamental solutions Ujj(x, y), Tij(X, y), and Vjj(X, y)
are chosen as the elastostatic displacement fundamental solutions for homogeneous,
isotropic and Iinear elastic solids with =1, which can be expressed as (Gao 2002b)

U, = m[@ 4v)5IJ In(r) —r;r;], (6)

2 _CI’SJ|UII‘S = 4 (1_ )r[(l 2V)(5|Ir] +5 r é‘jlr,i)_'_zr,ir,jr,l]’ (7)

T =Zyn = —l[(l— 2v)(nir; —=n;ri) +(Q—2v)5; +2r;r;)rin ], (8)
4z(1-V)r ' ' e

Vij :Zijlﬁ,l —ﬁ[(l ZV)(ﬂ|rJ ﬁ,jr,i)"_((l_zv)é‘ij +2r,ir,j)r,|/7,|]1 (9)

where r=|x-y| is the distance from the field point x to the source point y. Boundary-
domain integral equations for boundary points can be obtained by letting y to the
boundary I' in Eq. (5).

There are two domain integrals emerged in Eq. (5), the first one is due to the
gradation of the material properties and the other arises from the inertial effect. The
radial integration method (RIM) of Gao (2002a) is employed to transform the domain
integrals into boundary integrals over the global boundary. In the RIM, the
normalized displacements in the domain integrals of Eq. (5) are approximated by a
combination of the radial basis functions and the polynomials of the global
coordinates, which has been demonstrated as the most promising one (Simsek, and
Kocatlirk 2009). Then the normalized displacements U, (x) can be expressed as

0,(x) =Y al'¢*(R)+a'x +a’, > al =0, > alxi =0,  (10ab,c)
A A A

where ¢*(R) is the radial basis function, «*, aand a’ are unknown coefficients to
be determined, xx and xf denote the coordinates of the field point x and the

application point A respectively. In this analysis, the following 4th order spline-type
radial basis function is applied

R R R
1-6(—)* +8(—)%-3(—)*0<R<d,,
¢A(R) = (dA) (dA) (dA) * (11)
0OR>d,,

where R=||x-x"|| is the distance from the application point A to the filed point x, and
da is the support size for the application point A. The total number of the application
points A is given by N=Np+N; with N, and N; being the number of the boundary
nodes and internal nodes, respectively. By choosing N; application points A in Egs.
(10) and avoiding two coincident nodes, a can be calculated by a set of linear
algebraic equations as

i=¢-a, a=¢" -0 (12)
Then substitution of Eq. (10a) into the domain integrals of Eq. (5) and application of
RIM, the domain integrals can be transformed into boundary integrals as

jgvijﬁjdg— j——FAdr j——F dr+(@‘y, +a’ )j ——F dr, (13)



lor K

- r
a)zj. Ay ;0,00 = w? L0 Py [af‘j ——PijAddl“+ajI L or Pdr
Q4 rro rron

Ho ron (14)

1or P"ddl“],

@y +af o
where the relation x.—y.+r,.r is used to relate x with r. By rewriting Eg. (9) with
Vi :\7”. / r, the integral functions in Egs. (13) and (14) can be expressed as
F’ =Ir rV,¢"dr =\7ier¢Adr, Fi = J. rv,dr _—r2V F = Ior rv,dr =rv;, (15a,b,c)

IJ’

_I I’UU¢A (7 ﬁ’)fafdr’ Pijld :J‘O r2U ije(yfﬂ)rafdr’ Pide :J‘Or I’Uije(y_ﬂ)r'drdl’. (16a,b,c)
Slnce ri in the above radial integrals is constant, then Eqgs. (15b-c) can be evaluated
analytically and other integrals are calculated by standard Gaussian quadrature
formula. The function ¢”* (R) can be expressed as a function of r, which can be done
by using the following relation

R=+vr’+sr+R?, s=2rR, ﬁz‘y—xA‘:\/F_{-F_{, R =y —-x* (17
After the spatial discretization of the global boundary into quadratic boundary
elements with N, nodes, and collocating the resulting boundary integral equations at
the Ni=Np+N; boundary and internal nodes, two sets of discretized boundary integral
equations are obtained, which can be expressed in matrix form as

H,-0, =G, t,+V, -0+ P, for boundary nodes, (18)
G =G, t,—H,-0,+V,-G+«’-P,-0 for internal nodes. (19)
The system matrices in the above equations involve boundary integrals only. The
normalized displacement vector 0, and the corresponding traction vector t, of the

boundary nodes have the size of 2N, x 1, while the normalized displacement vector of
the internal nodes G, has the size of 2N;x 1. The normalized displacement vector U at

all nodes has the size of 2N¢ x 1. In Eqg. (18), the matrices V, and P, have the
dimension of 2Ny x 2Ny, and in Eq. (19) the matrices V; and P; have the size of 2N; x
2N;. By considering the boundary conditions, Egs. (18) and (19) can also be written in
terms of known and unknown vectors and in a more compact form as

(MRt

where | is the identity matrix with the size of 2N; x 2N;. The vector X, contains the

unknown normalized displacements and unknown boundary tractions for boundary
nodes, and the corresponding matrices A, and A;, have the dimensions 2N, x 2Ny, and
2N; x 2Ny, respectively. It should be noted that the sub-columns of the matrices Vy, Py
and V;, P; corresponding to the known boundary displacement nodes should be taken
as zero. In free vibration analysis, only the homogeneous system of the linear
algebraic equations is needed, thus the vectors containing the known normalized
boundary displacements as well as the known boundary tractions should be taken as
zero. By resolving this general eigenvalue equation, the eigenvalues » and the
eigenvectors can be obtained numerically.

Numerical Examples and Discussion

The boundary conditions of the rectangular FG plates are determined by the
combination of the boundary conditions on the four edges moving counter clockwise
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starting from the edge x,=0. As boundary conditions, simply supported (S), fixed (C)
and free (F) boundary conditions are imposed as S: ty;=0, v=0, on x;=0; C: u=v=0, on
X1=0; F: tu= t»=0, on x;=0 and shown in Fig. 2. The natural frequencies are all

normalized by @ = wl,/p, /E, , Where L; is the length of the analyzed plate in the
‘L X A Xa + Xa

Xo-direction.
.
S C F
> > >

(a) (b) (c)

[eXe]

Figure 2. Different supports for FG plates (a) simply supported; (b) fixed; (c) free

To verify the accuracy of the present method, SSSS supported FG plates with aspect
ratios Li/L,=1, 2 and 5 are studied. The first ten normalized natural frequencies are
given in Table 1 and the results are compared with the FEM results by using
COMSOL. The comparison shows an excellent agreement. For the FG plate with
L1/L,=1, 20 boundary elements (N,=40) and 81 internal nodes (N;=81) are used and
the results are compared with that of the FEM with 11081 quadratic elements. For
L1/L,=2, Npy=60 and N;=36 in the BEM and 20000 quadratic elements in the FEM are
used. For Li/L,=5, N,=120 and N;=96 in the BEM and 13873 quadratic elements in
the FEM are used. The comparison demonstrates that the present method has high
accuracy even for high frequencies.

Table 1. Comparison for SSSS supported FG plates with aspect ratios Li/L,=1, 2, 5

Mode Li/L,=1 Li/L,=2 Li/L,=5
No=40 FEM diff. No=60 FEM _ diff. = N,=120 FEM _diff.
Ni=81 (11081%) % N=36 (20000%) % Ni=96 (13873*) %

1 19185 19207 011 09987 009988 0.1 0.3995  0.3995 0.01

2 19980 1.9975 0.03  1.9504 19513 0.05 07900 0.7901 0.01

3 28638 28637 001 19736 19752 0.08 11822  1.1826 0.03

4 38901 3.9026 032 22292 22290 0.1 15753  1.5756 0.02

5 39502 3.9503 0.00 27992 27966  0.09 1.9666 1.9689 0.11

6 44183 44118 015 29519 29565 0.16 1.9686  1.9690 0.02

7 44576 44579 001 35570 35544 0.07 2.0085 2.0083 0.01

8 5233 52355 0.04 39242 39342 0.25 21237 21225 0.05

9 56107 55932 031 39298 39391 0.24 22988 22976 0.05

10 558631 58875 041 40654 4.0650 0.01 2.3587  2.3622 0.15

*Number of quadratic elements

Free vibration of 2D exponential FG plates with different gradient parameters x=0.33
and 3, where x=E;/Eo, gradation directions, boundary conditions (SSSS, CCCC,
CFFF, FFSS, SSCC, CCFF) and aspect ratios Li/L,=1, 2 and 5 is then investigated.
The first five normalized natural frequencies are shown in Table 2. For SSSS and
CCCC supported FG plates, the frequencies for k=0.33 and x=3 are the same due to
the double symmetry of the problem with respect to the central lines of the FG plates.
For CFFF supported FG plates, the frequencies for k=0.33 and x=3 are the same only
for the material gradation in the x;-direction. The first five vibration modes of SSSS,
CFFF and SSCC supported FG plates are presented in Fig. 3.
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Figure 3. First five vibration modes of the FG plates with material gradation in x;-
direction, L1/L,=1 and x=0.33 (a) SSSS; (b) CFFF; (c) SSCC
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Figure 4. Effect of the material

gradient parameters for FG plates with Figure 5. Effect of the material
L1/L,=1 (a) effect of SL, for SSSS gradient parameter for CCFF
supported FG plates; (b) effect of yL; supported FG plates with Li/L,=1 ()
for SSSS supported FG plates; (c) effect of SL4; (b) effect of SL,; (C)
effect of pL, for CFFF supported FG effect of yLy; (d) effect of yL,

plates; (d) effect of yL, for CFFF
supported FG plates

Fig. 4 shows the effects of the material gradient parameters f and y on the free
vibration of the FG plates. For each of both parameters six dimensionless material
gradient parameters SLq and yL4=-1.1, -0.6, -0.1, 0.1, 0.6, 1.1 (two values with
opposite signs are regarded as a pair) are considered. SSSS supported FG plates with
an aspect ratio L;/L,=1 and a material gradation in the x;-direction are taken as an
example of doubly symmetrical FG plates with respect to their mid-lines. The
normalized fundamental frequencies change with the dimensionless material gradient
parameters obeying a parabolic tendency as shown in Fig. 4(a). For a fixed material
gradient parameter fL;, each pair of yL, intersects at the value for homogeneous case
and achieves the highest frequency. A decreasing absolute value of yL; decreases the
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fundamental frequencies. However, the material gradient parameter yL; has a totally
opposite effect on the natural frequencies which can be observed from Fig. 4(b). For
CFFF supported FG plates with a material gradation in the x;-direction, the influences
of the material gradient parameters on the free vibration are the same as that of the
doubly symmetrical (with respect to the mid-lines) FG plates. For a material
gradation in the xo-direction as shown in Fig. 4(c), an increasing dimensionless
parameter SL, decreases the fundamental frequencies, while the normalized natural
frequencies decrease with the increase of the dimensionless material gradient
parameter yL,. The influence of the material gradient parameter yL, is similar to that
of L, but with an opposite slope.

Fig. 5 presents the normalized fundamental frequencies versus the dimensionless
material gradient parameters for asymmetrical CCFF supported FG plates with an
aspect ratio Li/L,=1. To investigate the effect of the aspect ratio on the free vibration
of FG plates, the normalized natural frequencies versus the dimensionless material
gradient parameters with aspect ratios Li/L,=1, 2 and 5 are shown in Fig. 6. Generally,
an increasing aspect ratio decreases the normalized natural frequencies, as shown in
Fig. 6(a) for the SSSS supported FG plates with a material gradation in the x;-
direction. However, for CFFF supported FG plates, an opposite tendency is observed.
As an example, the corresponding results for CFFF supported FG plates with a
material gradation in the xp-direction are shown in Fig. 6(b).

BL=11 BLy=1.1

Ll e e e g 12
2 g —=11/12=1 =E=11/12=2 L1/12=5

T 14| -l e L/L2:5 EE \_‘_\‘N
E omr - —— = 2 08 \\\
Mmensior ns10n maler i meter

Figure 6. Effect of the aspect ratios Li/L,=1, 2, 5 on the normalized fundamental
frequencies of (a) SSSS supported FGM plates with material gradation in x;-direction;
(b) CFFF supported FG plates with material gradation in X,-direction

Conclusions

In this paper, a meshfree boundary-domain integral equation method for free
vibration analysis of two-dimensional FG plates is presented. An exponential law is
used to describe the continuous material gradation either in longitudinal or transverse
directions. The effects of the material gradient parameters, gradation directions,
aspect ratios and boundary conditions on the free vibration of the FG plates are
investigated in details by numerical examples. The numerical examples demonstrate
that the present method has fast convergence, high efficiency and accuracy.
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Table 2. First five normalized natural frequencies of SSSS, CCCC, CFFF, FFSS, SSCC and CCFF supported FG plates

BC GD

K

L1/L2:1 L1/L2:2 L1/L2:5

1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

SSSS

CCCC

CFFF

FFSS

SSCC

CCFF

X1

X2

X1

X2

X1

X2

X1

X2

X1

X2

X1

X2

0.33
3
0.33
3
0.33
3
0.33
3
0.33
3
0.33
3
0.33
3
0.33
3
0.33
3
0.33
3
0.33
3
0.33
3

1.9185 1.9980 2.8638 3.8901 3.9502 0.9987 1.9504 1.9736 2.2292 2.7992 0.3995 0.7900 1.1822 1.5753 1.9666
1.9210 1.9986 2.8644 3.9020 3.9451 0.9987 1.9504 1.9736 2.2292 2.7992 0.3995 0.7900 1.1822 1.5753 1.9666
1.9213 1.9973 2.8641 3.8997 3.9464 0.9462 1.9185 1.9968 2.2599 2.8659 0.3758 0.7549 1.1387 1.5278 1.9184
1.9213 1.9973 2.8641 3.8997 3.9464 0.9462 1.9185 1.9968 2.2599 2.8659 0.3758 0.7549 1.1387 1.5278 1.9184
4.0353 4.0712 4.5259 5.8049 6.3136 2.6543 3.6359 3.6661 3.9935 4.1453 2.0916 2.4151 2.8717 3.3908 3.4700
4.0367 4.0747 4.5251 5.8077 6.3019 2.6543 3.6359 3.6661 3.9935 4.1453 2.0916 2.4151 2.8717 3.3908 3.4700
4.0381 4.0713 4.5257 5.8067 6.3011 2.6569 3.6805 3.6991 3.9968 4.1827 2.1154 2.4354 2.8881 3.4016 3.5159
4.0381 4.0713 4.5257 5.8067 6.3011 2.6569 3.6805 3.6991 3.9968 4.1827 2.1154 2.4354 2.8881 3.4016 3.5159
0.6755 1.6820 1.8320 2.8805 3.2036 0.8326 1.5934 1.7656 1.8556 2.1765 0.9178 1.0904 1.5290 1.7364 1.7956
0.6753 1.6824 1.8328 2.8844 3.1974 0.8326 1.5934 1.7656 1.8556 2.1765 0.9178 1.0904 1.5290 1.7364 1.7956
0.8782 2.0385 2.1389 3.0845 3.2308 1.0468 1.7526 2.1232 2.1783 2.4654 1.1336 1.2565 1.6857 1.8286 1.9649
0.5208 1.3455 1.5414 2.8038 3.0062 0.6565 1.3411 1.4365 1.5979 1.9382 0.7291 0.9418 1.3367 1.4113 1.4440
1.4112 2.4668 2.7163 2.9319 3.6889 1.0305 1.2060 1.8981 2.1627 2.7168 0.3046 0.6738 0.9972 1.0731 1.2833
1.0375 2.1785 2.7945 2.9075 3.7173 0.7315 1.3365 1.8173 2.1102 2.6000 0.2554 0.6386 0.9571 1.1028 1.2608
1.0373 2.1783 2.7933 2.9074 3.7170 0.7630 1.1495 1.7493 1.9655 2.6416 0.2918 0.6346 0.8182 0.9842 1.1337
1.4118 2.4670 2.7181 2.9320 3.6896 0.9299 1.3978 1.9427 2.3003 2.6278 0.0002 0.2597 0.6381 1.0249 1.2475
2.4099 3.0514 4.1067 4.2999 4.7848 1.8686 2.2288 2.4994 3.1320 3.4424 1.7363 1.7862 1.8858 2.0292 2.1114
2.0816 2.8309 3.9397 4.1037 4.6979 1.7956 2.1908 2.4108 3.1268 3.3633 1.7344 1.7853 1.8755 2.0238 2.0933
2.0816 2.8310 3.9375 4.1062 4.6984 1.5432 2.0756 2.3047 2.9699 3.3633 1.4124 1.4557 1.5877 1.8128 2.0401
2.4102 3.0517 4.1070 4.2998 4.7849 2.0485 2.3943 2.7059 3.2819 3.5138 1.9923 2.0226 2.1330 2.2827 2.3887
1.4373 1.9425 2.2423 3.5871 4.0334 1.0574 1.7672 1.8869 2.3545 2.6623 0.9503 1.3496 1.7264 1.8013 1.8315
1.7702 2.4659 2.6311 3.8513 4.2927 1.2823 1.8594 1.9299 2.4445 2.7816 1.0063 1.3726 1.7251 1.7993 1.8358
1.7701 2.4656 2.6287 3.8545 4.2840 1.3241 2.1588 2.2398 2.6790 2.8262 1.1772 1.5222 1.9647 2.1653 2.2181
1.4394 1.9431 2.2459 3.5852 4.0440 1.0390 1.4625 1.6019 2.1521 2.6256 0.7998 1.2200 1.4207 1.4435 1.4728

BD: boundary condition; GD: gradation direction
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