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Abstract 
In this paper, a new computational method based on multiphase model was presented to deal with 
the thermal interactions between compressible fluids and complicated-shaped structures with 
thermal conductivities as well as its mechanical interactions. The numerical procedures of our 
method are divided into three stages, advection, diffusion and acoustic stages, and the phase 
averaged governing equations are discretized with a finite volume method (FVM). The present 
method was applied to the natural convection flows in a rectangular cavity and the calculated results 
were compared with the reference computational results for temperature and velocity distributions. 
As a result, it was shown that the natural convection flows could be reasonably simulated by our 
method. In addition, the natural convections arising in the porous media were calculated with the 
present method. Through the numerical experiments, its applicability to complicated-shaped 
structures was discussed.   

Keywords: Compressible fluid, Complicated-shaped structure, Multiphase model, Natural 
convection. 

Introduction 

In many engineering subjects, it is important to predict accurately heat transfers in the domain, 
which contains compressible fluids and complicated-shaped structures. In the management of spent 
fuel storage system of nuclear power plants with the concrete cask for extended periods, the 
temperature distributions in the canister, which stores spent fuels and helium gas, need to be 
predicted accurately for the development of the helium leak detection system (Takeda et al., 2008). 
The canister has complicated-shaped internal structures and the temperature and pressure 
differences are large when the helium leakage from the canister occurs. Thus, it is essential to 
estimate the thermal interactions compressible helium gas and the influence of internal structures. 
For example, a finite element method (FEM) using unstructured grids has been used with thermal 
coupled problem between fluids and complex geometries (Goung et al., 1990). Such methods using 
unstructured grids can accurately predict the phenomena. However, the generations of grids become 
difficult as the shapes of geometries become complex.  
The multiphase model (Ushijima et al., 2007 and 2009) enables us to predict thermal and 
mechanical interactions between incompressible fluids and complicated-shaped structures easily 
with simple structured grids. In this paper, a new computational method based on multiphase model 
was proposed to deal with the interactions between compressible fluids and complicated-shaped 
structures. The present method was applied to the natural convection flows in a rectangular cavity. 
As a result, it was shown that the natural convection flows could be reasonably simulated by our 
method. In addition, the natural convections arising in the porous media were calculated with the 
present method. Through the numerical experiment, its applicability to complicated-shaped 
structures was discussed.   
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Computational Method 

Governing Equations 

The multiphase field consisting of fluids and solids is considered, where fluids are compressible and 
each phase is immiscible. In this study, solids are taken as fluids which do not move. 
Averaged governing equations for the multiphase field, which contain compressible fluids, consist 
of mass conservation equation in Eulerian description, momentum equations and energy equation 
given by 
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where t is time, xi is the i-th component of two-dimensional orthogonal coordinates and gi is the 
acceleration of external force in xi direction. While velocity component ui and internal energy e are 
the mass-averaged value in the mixture of phases, volume-averaged variables are defined for 
density ρ, pressure p, viscous stress τij, heat flux qj. For example, e and p are defined as 
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Furthermore, e,  τij, qj  and the state equation are given by 
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where  CV,  T,  µ, λ and γ are specific heat at constant volume, temperature, viscosity, thermal 
conductivity and specific heat ratio respectively. These are volume-averaged variables and 
coefficients same as ρ, p, τij and qj. 

Numerical Procedures 

In our method, the numerical procedures are divided into three stages, advection, diffusion and 
acoustic stages, like CCUP (Yabe et al., 2004) and TCUP method (Himeno et al., 2003). The 
governing equations are written by conservation forms and the multiphase model is applied. The 
governing equations of each stage are discretized with a finite volume method (FVM) and variables, 
ρ, u, T and p, are updated in all stages. Thus, the mass conservation law is sufficiently satisfied in 
a calculation area. On the other hand, in CCUP and TCUP method, the governing equations are 
written by non-conservation forms. Therefore, the conservation of mass in the calculation area is 
not necessarily satisfied. 



3 
 

Figure 1 shows the flow chart of numerical procedures. In the advection and diffusion stages, 
advection and diffusion terms are calculated respectively. Pressure and gravity terms are calculated 
in the acoustic stage. After that, phase averaged variables are updated based on volume of solids. 
These calculations are performed iteratively and numerical solutions are calculated in time 
evolution. In what follows, variables after advection and diffusion stages will be expressed as Q’ 
and Q’’ respectively. In addition, variables after acoustic stage are Qn+1. 
 
 

 
Figure 1. Flow chart of numerical procedures 

 

Advection Stage 

Governing equations of advection stage are given by 
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Equations (9), (10) and (11) express advection equations of ρ, ρu, ρe respectively.  
The advection terms are calculated with a fifth-order TVD scheme (Harten, 1984). After that, T’ 
and p’ are updated from ρ’, u’, e’ with Eqs.(5) and (8). 

Diffusion Stage 

Governing equations of diffusion stage are indicated as follows : 
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In this stage, right-hand sides of Eqs.(13) and (14) are calculated and variables are updated with the 
following equations : 
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where µJ is Joule-Thomson coefficient. 

Acoustic Stage 

Governing equations of acoustic stage are given by 
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Equations (18), (19) and (8) applied to Eq.(20), we can obtain the equation of pn+1 as follows : 
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where CS is the sound speed. Equation (21) is discretized and solved with the SOR method (Young, 
1954). The variables, un+1, en+1 and ρn+1, are calculated with the following equations : 
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Application 

Natural Convection in a Rectangular Cavity 

In order to confirm the validity of the present method, it was applied to the 2D natural convection 
flows in a rectangular cavity as shown in Fig.2. The lengths l1 and l2 are 0.04 [m], while the left-
hand side wall is heated at Th and the right-hand side wall is cooled at Tc, the temperature difference 
ΔT = Th - Tc is 1.465 [K] in Fig.2. Adiabatic conditions are imposed on the top and bottom walls. 
On the wall boundaries, non-slip conditions are imposed. 
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Fluids are taken as air, which satisfy the equation of state. The initial spatially averaged temperature 
T0 and pressure P0 are 283.15 [K] and 1.0 [atm]. Regarding physical properties of fluids, viscosity µ, 
thermal conductivity λ, specific heat at constant pressure and volume CP, CV, are µ = 1.82 × 10-5 
[kg/(m•s)], λ = 2.587 × 10-2 [W/(m•K)], CP = 1.007 × 103 [J/(kg•K)] and CV = 7.17 × 102 [J/(kg•K)] 
respectively. The number of fluid cells is 100 × 100. 
Figures 3, 4 and 5 show comparisons of calculated results in the steady states by the present method 
and reference results by TCUP method (Himeno et al., 2003). As shown in these figures, the 
predicted results are almost in good agreement with the results by TCUP method. From these results, 
it was shown that the present method enables us to predict a natural convection appropriately. 
In addition, err*, which made dimensionless the total change of the mass of air in a calculation area, 
is defined as err* = |M – M0|/M0. Here M and M0 are the total mass of air in the calculation area at 
each time step and in the initial state. The maximum value of err* obtained in the calculation was 
5.713 × 10-15.  From this result, it was shown that the mass conservation law is sufficiently satisfied 
in the calculation area. 
In the following cases, the temperature difference was set to ΔT = 100 [K] and density variations 
were compared with the result in ΔT = 1.465 [K]. The density variations are estimated with 
Lagrangian derivative of non-dimensional density Dρ*/Dt . Here ρ* is given by ρ* = ρ / ρ0 and ρ0 is 
the spatial averaged density in the initial state. It is noted that Dρ*/Dt = 0 in incompressible fluids. 
Figure 6 shows the distributions of Dρ*/Dt in the steady state and Table 1 shows maximum and 
minimum values of Dρ*/Dt in each case. In Figure 6 and Table1, the densities change near the 
heated and cooled wall and absolute values of variations increase as ΔT increases. In general, 
compressibility effects become large as ΔT increases. Thus, it can be said that calculated results are 
appropriate and the present method enable us to estimate the compressibility effects of fluids. 
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T
c

l1
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   Figure 2.  Calculation area 

 

        
 

Figure 3. Comparison of temperature distributions 
(Left : present results, Right : TCUP (Himeno et al., 2003)) 

 

 

                
Figure 4. Comparison of u1 distributions               Figure 5. Comparison of u2 distributions 

(Left : present calculations, Right : TCUP (Himeno et al., 2003)) 
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                         (a) ΔT = 1.465 [K]                                            (b) ΔT = 100 [K] 

Figure 6. Distributions of Dρ*/Dt 
 
 

Table 1. Maximum and minimum values of Dρ*/Dt  
 

ΔT [K] Max [1/s] Min [1/s] 
1.465 1.615×10-3 -1.618×10-3 
100 1.576 -1.663 

 

Natural Convection in Porous Media with Thermal Conductivity  

To confirm the applicability of the present method to complicated-shaped structures, natural 
convections in porous media with thermal conductivity were calculated.  
As shown in Figure 7, 32 cylinders are located in a calculation area. The lengths l1 and l2 are 0.17 
and 0.33 [m], while the diameter of the cylinders d is 0.03 [m] and the interval between each 
cylinder s is 0.01 [m] respectively. The left-hand side wall is heated at Th = 310 [K] and the right-
hand side wall is cooled at Tc = 300 [K], the temperature difference ΔT = Th - Tc is 10 [K] in Fig 7. 
Adiabatic conditions are imposed on the top and bottom walls. On the wall boundaries, non-slip 
conditions are imposed. The physical properties of fluids (air) were set same values as the preceding 
section and physical properties of the solids (cylinders) were same as that of fluids. In addition, the 
number of fluid cells is 51 × 99. 
Figure 8 shows temperature distributions ((a) t = 1.0 [s], (b) steady state). First, heats transferred by 
convections in the fluids area. After that, the temperatures of solids changed by heat conductions in 
the solids. Thus, the temperature differences between the fluids and the solids occurred at t = 1.0 [s] 
in Fig 8 (a). In the steady state, the temperatures of solids became equal to that of fluids as shown in 
Fig 8 (b). Figure 9 is the vertical distribution of T at x1

* = 0.5 in the steady state. Here, xi
* and T* are 

defined as follows : 

xi
* =

xi
li      and     T * = T −Tm

Th −Tm      (25) 

 
where, li is the length of the calculation area, Th is the temperature of the heated wall and Tm is the 
temperature at x1

* = 0.5 and x2
* = 0.5. In the calculated result, the top area is high temperature and 

the bottom area is low temperature. This is the typical temperature distribution of the natural 
convection in the closed cavity. 
Predicted the horizontal velocities u1 at x1

* = 0.5 and the vertical velocities u2 at x2
* = 0.5 are shown 

in Fig 10 and 11 respectively. Here, ui
* is defined as follows : 
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ui
* =

ui
Ui

     (26) 

 
where, Ui is the maximum value of |ui| in the calculation area. As shown in these figures, buoyancy-
driven flows occurred near the heated and cooled walls and cyclic flows were predicted in the fluids 
area. Thus, it can be said that the present method enables us to predict the natural convections in 
porous media with thermal conductivity reasonably. 
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       (a) t = 1.0 [s]                  (b) Steady state 

                                            (t = 10.0 [s]) 
                 Figure 7. Calculation area                             Figure 8. Temperature distributions 
 
 
 

 
Figure 9. Vertical distribution of T (x1

* = 0.5) 
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             Figure 10. Vertical distribution of u1

*             Figure 11. Horizontal distribution of u2
* 

                                    (x1
* = 0.5)                                                                (x2

* = 0.5) 
 

Conclusions 

In this paper, a new computational method based on multiphase model was proposed to deal with 
the thermal and mechanical interactions between compressible fluids and complicated-shaped 
structures with thermal conductivities. The numerical procedures of our method are divided into 
three processes, advection, diffusion and acoustic stages, and the phase averaged governing 
equations are discretized with a finite volume method (FVM). Thus, the mass conservation law is 
sufficiently satisfied in a calculation area in our method.  
The present method was applied to the natural convection flows in a rectangular cavity and the 
calculated results were compared with the reference computational results for temperature and 
velocity distributions. As a result, it was shown that the natural convection flows can be reasonably 
simulated by our method. It was also confirmed that the mass conservation law is satisfied 
sufficiently in the calculation area, and the present method enables us to estimate the 
compressibility effects of fluids by the temperature difference. In addition, the natural convections 
arising in the porous media were calculated with the present method. Through the numerical 
experiment, its applicability to complicated-shaped structures was verified.   

References 

Young, D. M. (1954), Iterative Methods for Solving Partial Differential Equations of Elliptic Type, Transactions of the 
American Mathematical Society, Vol.76, pp.92-111.  

Harten, A. (1984), On a Class of High Resolution Total-Variation-Stable Finite-Difference Schemes, SIAM Journal on 
Numerical Analysis, Vol.21. 

Goung, J. L. and Soon H. C. (1990), Development of the finite element method of body fit nodalization for mixed 
convection analysis in rod bundles, Nuclear Engineering and Design, 122, pp.195-208. 

Yabe, T., Xiao, F. and Utsumi, T. (2001), The Constrained Interpolation profile Method for Multiphase Analysis. 
Journal of Computational Physics, 43, pp. 531-545. 

Himeno, T. and Watanabe, T. (2003), Thermo-Fluid Management under Low-Gravity Conditions (1st Report: TCUP 
Method for the Analysis of Thermo-Fluid Phenomena) (in Japanese), Trans. JSME, Ser. B, Vol.69, No.678, 
pp.266-273. 

Ushijima, S. (2007), Multiphase-model approach to predict arbitrarily-shaped objects moving in free surface flows. 
Proc of APCOM’07-EPMESC XI, MS41-3-1. 

Takeda, H., Wataru, K. Shirai, K. and Saegusa, T. (2008), Development of the detecting method of helium gas leak 
from canister. Nuclear Engineering and Design, Vol.238, pp.1220-1226. 

Ushijima, S. and Kuroda, N. (2009), Multiphase modeling to predict finite deformations of elastic objects in free 
surface flows. Fluid Structure Interaction V, WIT Press, pp.34-45. 

 


