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Abstract 
Transient dynamic crack analysis in two-dimensional, layered, anisotropic and linear 
magnetoelectroelastic solids is presented in this paper. A time-domain boundary element method 
(BEM) is developed for this purpose. The layered magnetoelectroelastic solids are modeled by the 
multi-domain formulation and the time-domain dynamic fundamental solutions for homogeneous 
linear magnetoelectroelastic solids are applied in the present BEM. A Galerkin-method is used for 
the spatial discretization of the boundary integral equations and a collocation method is 
implemented for the temporal discretization of the arising convolution integrals. An explicit time-
stepping scheme is obtained to compute the discrete boundary data including the generalized crack-
opening-displacements (CODs). Numerical examples are presented and discussed to show the 
effects of the interface, the material combinations and the dynamic loading on the intensity factors. 

Keywords: time-domain BEM, magnetoelectroelastic composites, interior and interface cracks, 
dynamic intensity factors, impact loading.  

Introduction 
Due to their inherent coupling effects between mechanical, electrical and magnetic fields 
magnetoelectroelastic materials offer many possibilities for advanced smart structures (Nan, 1994). 
Layered or laminated composites are important applications of magnetoelectroelastic materials 
because they can be optimized to satisfy the high-performance requirements according to different 
in-service conditions. Interface cracks, may be induced by the mismatch of the mechanical, electric, 
magnetic and thermal properties of the material constituents during the manufacturing process and 
the in-service loading conditions, are one of the most dominant failure mechanisms in layered or 
laminated composites. Although the dynamic crack analysis in homogenous magnetoelectroelastic 
solids have been presented in several works (e.g., Sladek et al., 2008, Sladek et al., 2011, Wünsche 
et al., 2012) the analysis of interface cracks in layered magnetoelectroelastic solids is rather limited 
due to the problem complexity. 
In this paper, the dynamic analysis of interface crack in two-dimensional, layered and linear 
magnetoelectroelastic solids under impact loading is presented. A time-domain boundary element 
method (TDBEM) is developed. The homogeneous magnetoelectroelastic layers are modeled by the 
multi-domain BEM formulation. The time-domain dynamic fundamental solutions for 
homogeneous and linear magnetoelectroelastic solids are applied in the present BEM. The spatial 
discretization of the boundary integral equations is performed by a Galerkin-method, while a 
collocation method is implemented for the temporal discretization of the arising convolution 
integrals. An explicit time-stepping scheme is applied to compute the discrete boundary data 
including the generalized crack-opening-displacements (CODs). In contrast to a crack inside a 
homogenous material the asymptotic crack-tip field for an interface crack between two dissimilar 
linear magnetoelectroelastic materials shows different kinds of oscillating and non-oscillating 
singularities. This makes an implementation of a special crack-tip element very difficult and 
therefore only standard elements are used at the crack-tips. A displacement-based extrapolation 
technique is applied to minimize the error in the computation of the dynamic intensity factors. To 
investigate the effects of the interface, the material combinations and the dynamic loading on the 
dynamic intensity factors, numerical examples are presented and discussed. 
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2 Problem formulation 

Let us consider a piecewise homogeneous, layered and linear magnetoelectroelastic solid with an 
interface crack. In the absence of body forces, free electric charges, magnetic induction sources and 
applying the quasi-static assumption for the electric and magnetic fields, the cracked solid satisfies 
the generalized equations of motion 
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and the constitutive equations 

 )t,(uC)t,( l,KiJKliJ xx ς=σ . (2) 

The generalized displacements uI, the generalized stresses σiJ and the generalized elasticity matrix 
CiJKl for a homogenous domains Ωζ (ζ=1,2,…,N) are defined by 
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Further, the initial conditions 

 0)0t,(u)0t,(u ii ==== xx  , (4) 

the boundary conditions 

 )t,(t)t,(t II xx = , tΓ∈x , (5) 

 )t,(u)t,(u II xx = , uΓ∈x , (6) 

with tI being the traction vector defined by 

 )(e)t,()t,(t jjII xxx σ= , (7) 

and the continuity conditions on the interface except the crack-faces 

 )t,(u)t,(u II
I

I
I xx = , ifΓ∈x , (8) 
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are applied. In Eqs. (1)-(9), ui, φ, Φ, σij, Di, Bi are the mechanical displacements, the electric 
potential, the magnetic potential, the mechanical stresses, the electric displacements and the 
magnetic inductions; ρ, cijkl, εij, γij, eijk, hijk and βij denote the mass density, the elasticity tensor, the 
dielectric permittivity tensor, the magnetic permittivity tensor, the piezoelectric tensor, the 
piezomagnetic tensor and the magnetoelectric tensor. Γt and Γu are the external boundaries where 
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the generalized tractions tI and the generalized displacements uI are known and Γif is the interface 
between the homogenous domains Ωζ (ζ=1,2,…,N). In the present work, the interface cracks are 
considered as free of mechanical stresses, electric displacements and magnetic inductions with 

 0)t,()t,( ciJciJ =Γ∈σ=Γ∈σ −+ xx , (10) 

where Γc± are the two crack-faces. The generalized crack-opening-displacements (CODs) are 
defined by 

 )t,(u)t,(u)t,(u cIcII −+ Γ∈−Γ∈=∆ xxx  (11) 

A comma after a quantity represents spatial derivatives while a dot over the quantity denotes time 
differentiation. Lower case Latin indices take the values 1 and 2 (elastic), while capital Latin 
indices take the values 1, 2 (elastic), 4 (electric) and 5 (magnetic). 

3 Time-domain boundary integral equations 

The initial-boundary value problem is solved with a spatial Galerkin-method. The time-domain 
BIEs for the generalized displacements and the generalized tractions can be written in a weighted 
residual sense as 
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where ψ is the weighting function, an asterisk “ * ” denotes the Riemann convolution, uIJ
G(x,y,t), 

tIJ
G(x,y,t), vIJ

G(x,y,t) and wIJ
G(x,y,t) are the generalized displacement, traction and higher-order 

traction fundamental solutions. The dynamic time-domain fundamental solutions for homogeneous, 
anisotropic and linear magnetoelectroelastic solids are not available in explicit form (Rojas-Díaz et 
al., 2008, Wünsche et al., 2012). Using the Radon transform technique the fundamental solutions in 
the 2D case can be defined by a line integral over a unit circle as 
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where H(t), n, cm and PIJ
m are the Heaviside step function, the wave propagation vector, the phase 

velocities of the elastic waves and the projector (Wünsche et al., 2012). By integration by parts and 
applying the properties of the time convolution the time-domain generalized displacement 
fundamental solutions can be divided into a singular static and a regular dynamic part as 
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Like the displacement fundamental solutions, the traction and the higher-order traction fundamental 
solutions can also be divided into their singular static and regular dynamic parts. 

4 Dynamic intensity factors for an interface crack 

The intensity factors for an interface crack between two dissimilar linear magnetoelectroelastic 
materials can be computed from the generalized crack-opening displacements (CODs) 
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where K=K1+iK2 is the complex stress intensity factor, K4 is the electric displacement intensity 
factor and K5 is the magnetic induction intensity factor, ε1 and ε2 are the bimaterial constants, an 
overbar denotes the complex conjugate and i stands for the imaginary unit. The complex Hermitian 
matrix H as well as the eigenvectors w, w4 and w5 are defined by the material properties and can be 
computed similar to an interface crack between two piezoelectric materials (Suo et al., 1992). 

5 Numerical solution algorithm 

To solve the time-domain BIEs (12) and (13) numerically a solution procedure is presented in this 
section. The layered piecewise homogeneous and magnetoelectroelastic solids with interface cracks 
are dealt with by the multi-domain technique. A collocation method is used for the temporal 
discretization while the Galerkin-method is applied for the spatial discretization. For the spatial 
discretization, the crack-faces, the external boundary of each homogeneous sub-domain and the 
interfaces of the cracked magnetoelectroelastic solid are discretized by linear elements. All 
boundary integrations can be computed analytically by special techniques. Linear shape functions 
are used for the temporal discretization and all time integrations can also be performed analytically. 
Only the line integrals over the unit circle arising in the dynamic parts of the time-domain 
fundamental solutions need to be computed numerically by the standard Gaussian quadrature. 
The asymptotic crack-tip field for an interface crack between two dissimilar magnetoelectroelastic 
materials shows different oscillating and non-oscillating singularities in the generalized stress field 
(Gao and Tong, 2003, Fan et al., 2009). This makes an implementation of special crack-tip elements 
rather difficult. For this reason, only standard elements are applied at the crack-tips for interface 
cracks. This is in contrast to crack-tips inside a homogeneous sub-domain. In this case special 
crack-tip elements can be implemented to describe the local square-root behavior of the generalized 
CODs near the crack-tips properly. This makes an accurate and a direct calculation of the intensity 
factors from the numerically computed CODs possible. 
After temporal and spatial discretizations and considering the initial conditions the following 
systems of linear algebraic equations can be obtained for each sub-domain Ωζ (ζ=1,2,…,N) 
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By invoking the continuity conditions (8) and (9) on the interface Γif and by considering the 
boundary conditions (5) and (6) as well as the crack-face boundary conditions (10), Eqs. (17) and 
(18) can be summarized and recast into a common system of linear algebraic equations 
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where xK is the vector of the unknown boundary data, yK represents the vector of the prescribed 
boundary data, Ak, Bk, C1 and D1 are the system matrices. Eq. (19) is an explicit time-stepping 
scheme and the unknown boundary data can be computed time-step by time-step. 

6 Numerical examples 

In the following, numerical examples are presented and discussed to show the effects of the 
interface, the mismatch of the material properties, the coupled fields and the dynamic loading on the 
intensity factors (IFs). To measure the intensity of the electric and magnetic loading the following 
loading parameters are introduced  
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where σ0, D0 and B0 are the mechanical, electrical and magnetic loading amplitudes. For 
convenience of the presentation, the real part K1 and the imaginary part K2 of the complex dynamic 
stress intensity factors as well as the electric displacement intensity factor K4 and the magnetic 
induction intensity factor K5 of the interface crack are normalized by 
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where aK 00 πσ=  with a being the half-length of an internal interface crack. In the same sense the 
dynamic intensity factors for a crack inside a homogenous layer, as defined in (Wünsche et al., 
2012), are normalized by 
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As example a rectangular, layered and linear magnetoelectroelastic plate with a central interface 
crack of length 2a as shown in Figure 1 is considered. The poling directions are normal to the 
interface crack. The geometrical data are h=20.0mm, w=10.0mm and 2a=4.8mm. 
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Figure 1.  An interface crack in a rectangular layered magnetoelectroelastic plate 

 
On the left and the right boundary of the cracked plate an impact tensile loading σ(t)=σ0H(t), an 
impact electric loading D(t)=D0H(t) and an impact magnetic loading B(t)=B0H(t) is applied. The 
external boundary and the interface are discretized by an element-length of 1.0mm and each crack-
face is approximated by 20 elements. A normalized time-step of cLΔt/h=0.05 is chosen, where cL is 
the quasi-longitudinal wave velocity. As material a BaTiO3-CoFe2O4 composite, with BaTiO3 being 
the piezoelectric phase and CoFe2O4 the piezomagnetic phase, is used (Nan, 1994). Figure 2 shows 
the numerical results of the present time-domain BEM obtained for different loadings and BaTiO3-
CoFe2O4 with a volume fraction vf=0.5 for both layers. This special case is equal to an interior 
crack inside a homogenous magnetoelectroelastic plate. The normalized dynamic intensity factors 
for an interface crack between to magnetoelectroelastic layers with volume fractions of vf=0.5 for 
domain I and vf=0.2 for domain II are presented in Figure 3. 
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Figure 2.  Normalized dynamic intensity factors for an interior crack subjected to different 
loadings 

 
Figures 2 indicate that, if an electric and magnetic impact is applied, the normalized dynamic mode-
I stress intensity factor starts from a non-zero value at t=0. This is due to the quasi-static assumption 
on the electromagnetic fields, which implies that the cracked magnetoelectroelatic plate is 
immediately subjected to an electromagnetic wave and as a consequence the crack opens at t=0. In 
contrast, the elastic waves induced by the mechanical impact need some time to reach the crack, as 
clearly observed for the case χe=χm=0. The peak values of the normalized dynamic intensity factors 
decrease with increasing electric and magnetic loading amplitudes. The dynamic mode-II intensity 
factors vanish, since no shear stress components are induced for all applied loadings normal to the 
crack-faces in the case of a transversely isotropic material behavior. 
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Figure 3.  Normalized dynamic intensity factors for an interface crack subjected to different 
loadings 

 
The real part of the complex intensity factor, the electrical displacement intensity factor and the 
magnetic induction intensity factor for the interface crack, as shown in Figure 3, have a similar 
global behavior than the dynamic mode-I, mode-IV and mode-V intensity factors for an interior 
crack in a homogenous magnetoelectroelastic plate. In contrast to the homogenous case, the crack 
opening and sliding modes I and II are coupled each other for the interface crack and therefore the 
imaginary part of the complex intensity factor is unequal zero. In can be observed, that the applied 
electric and magnetic loading may lead to a physically meaningless crack-face intersection in 
different time ranges for the case χe=χm=0.5. This requires an advanced iterative solution procedure 
for the crack-face contact analysis which is not considered in this work.  
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Conclusions 

Transient dynamic crack analysis in layered and linear magnetoelectroelastic solids is presented in 
this work. For this purpose, a time-domain BEM is developed which uses a Galerkin-method for the 
spatial discretization and a collocation method for the temporal discretization. Both temporal and 
spatial integrations are carried out analytically. Only the line integrals over the unit circle in the 
dynamic fundamental solutions are computed numerically. An explicit time-stepping scheme is 
obtained for computing the unknown boundary data. Since the generalized displacement field for a 
crack in the interface between two dissimilar magnetoelectroelastic materials shows different 
oscillating and non-oscillating singularities the intensity factors are computed by a displacement 
extrapolation technique. The presented numerical examples indicate a significant influence of the 
interface, the material combination and the dynamic loading condition on the dynamic intensity 
factors.  
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