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Abstract 

Structural dimension and shape optimization based on the structural dynamic reliability is 
investigated in this paper. Structural gross mass is taken as the objective function and the structural 
dynamic reliability is incorporated into the constraints. The dynamic reliability constraints are 
transferred and simplified, and the normalization of design variables is discussed to avoid some 
variables being drowned by others during optimization due to their different dimensions and orders 
of magnitude. The optimal models of dimension and shape with dynamic reliability constraints are 
then presented. Numerical examples are used to illustrate the results of different optimal designs, 
which demonstrate that the efficiency to solve the structural optimization with dynamic reliability 
constraints can be significantly improved if the design variables and their initial values are selected 
properly. 

Keywords: Dimension and shape optimization, normalization of design variables, dynamic 
reliability constraints, random process excitation. 

Introduction 

Structural reliability optimization conducted from 1960s and has been extensively investigated 
(Chen et al., 1997; Gao et al., 2003; Kang and Luo, 2010; Li et al., 2011; Jiang et al., 2010). 
Probabilistic approaches have been developed to account for the uncertainties in structural 
parameters, such as stochastic finite element method, perturbation method, response surface method 
and Monte-Carlo simulation based methods. First-order and second-order reliability methods have 
been proposed and improved to assess the reliability/safety of structures with uncertain properties. 
The randomness of forces has been also considered in the reliability assessments. Structural 
optimization with the reliability constraints accounting for the uncertainties in structural parameters 
and inputs has been investigated by many researchers and has been widely applied to the design of 
different types of structures (Gao, 2006). However, dynamic reliabilities or random process 
excitations were rarely adopted in the structural optimal design. In reality, the external loads are 
often random process excitations such as winds, earthquake motions, waves and explosions.  
 
In this paper, a framework is presented to optimize the dimension or shape of the truss structures in 
the context of the element or system dynamic reliability constraints. Central to the construction of 
this framework is the reasonable mathematic models of dimension and shape optimization of truss 
structures where the minimization of structural gross mass is taken to be the optimization goal, with 
a particular emphasis on the discussion of the simplification of element and system dynamic 
reliability constraints, as well as on the normalization of design variables in order to facilitate the 
optimization. Finally, the feasibility and rationality of models and method given are demonstrated 
by the implementation of examples and some important conclusions are obtained. 

Construction of general optimization models with implicit dynamic reliability constraints 

Due to the different optimization aims, choices of the optimal design variables are different too. In 
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the topology optimization, topology variables are design variables whether structural elements with 
topology variables exist or not; in the shape optimization, the coordinates of structural nodes are 
design variables; in the dimensions optimization, cross-section areas of structural elements are 
design variables. Generally, optimization with only one kind of design variables is presented, but 
sometimes it is necessary to consider the optimization including several kinds of design variables 
simultaneously. For this purpose, both shape and dimension optimizations are considered at the 
same time in the following deduction. 
 
Because external loads are random process excitations, all constraints like structural displacement 
and stress are then functions of random process in the dynamic optimization and they are given in 
the form of dynamic reliability. For the two-side boundary constraints (Ma et al., 2010), the optimal 
model of structural dimensions and shape for the minimal gross mass is constructed in Eq. (1) 
where design variables are bars’ cross-section areas and nodal coordinates and the dynamic 
reliability constraints are nodal displacement and element’s stress 
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where elemental cross-section areas A


 and nodal coordinates Z


 are design vectors;   is mass 

density of bars; iA  and il  are cross-section area and bar’s length corresponding to the ith type of 

design variables; )(AW


 is the gross mass; jx  and eS  are the displacement response of the jth 

degree of freedom and the stress response of the eth element under random process excitation 
respectively; xju , xjl , Seu  and Sel  are the upper and lower transcending bounds of displacement 

of the jth degree of freedom and stress of eth element respectively; *

jxR  and *

esR  are dynamic 

reliabilities required by design; )Pr(  is the dynamic reliability solved; uiA  and liA  are upper and 

lower bounds of the ith type of cross-section area design variables; uiZ  and liZ  are upper and lower 

bounds of the ith type of nodal coordinate design variables; ne  and me  are dimensions of cross-
section area design vector and nodal coordinate design vector; N  is the number of displacement 
constraints and M  is the number of structural elements. 
 
If the dynamic reliability is one-side transcending bound (Ma et al., 2010), constraints in Eq. (1) can 
then be replaced by 

..ts :    0}0,)({*  TttxPR xjjrx j
    ( Nj ,,2,1  ) 

               0}0,)({*  TttsPR seerse
    ( Me ,,2,1  ) 

                                       uiili AAA        ( nei ,,2,1  )  

uiili ZZZ        ( mei ,,2,1  )                                                                 (2) 

where xj  and Se  are transcending bounds of displacement of the jth degree of freedom and stress 

of eth element respectively. 
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Optimization models of truss structures under stationary stochastic process excitation 

Considering the structural determinate parameters, structural dynamic responses are stationary 
stochastic process too when external excitation is a stationary random process. From the first-
passage failure theory, Poisson equations to compute the dynamic reliability of single degree of 
freedom with two-side boundary, symmetric boundary and one-side boundary are respectively  
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In Eq. (3), )(tYi

  and )(tYi
  are roots of mean square values of stationary response )(tYi  

(displacement, stress or strain) and its derivation response )(tYi
 , respectively. Yil  and Yiu  are 

lower and upper safe bounds of )(tYi , and Yi  is the safe bound too. The two-side boundary 

dynamic reliability is most common among Eqs. (3)-(5). 
 
Then the structural displacement and stress dynamic reliability constraints with the two-side 
boundary are 
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where
jx , 

eS , 
jx and 

eS  are roots of mean square values of the jth nodal displacement response 

)(tx j  and the eth-element’s stress response )(tS e  and their corresponding derivation response 

respectively. xju , xjl , Seu , Sel , *

jxR  and *

esR  are the same as those in Eq. (1). 

 
The structural dimension optimization model with dynamic reliability constraints of the two-side 
boundary is 
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Similarly, optimization models with symmetric boundary dynamic reliability constraints and one-
side boundary dynamic reliability constraints can also be obtained. Here only dynamic reliability 
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constraints of symmetric boundary are given in Eq. (9) 
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When bar’s cross-section areas are design variables and the minimization of structural gross mass is 
the objective function, the dimension optimization model based on the system reliability is 
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where )(APj


 and )(APf


 are firs-passage failure probability of the jth displacement response and 

first-passage failure probability of the whole system respectively, and both of them are implicit 
complex random-process function; *

jP  and *
fP  are the failure probabilities of the jth displacement 

and the system respectively; m  is the number of displacement constraints. 
 
In Eq. (10), the solution to system dynamic reliability constraint is very difficult. Especially for 
hyperstatic structures of higher degree or complicated structures, it is impossible to accurately 
compute the system failure probability. For multi-degree of freedom system, due to the correlation 
of responses which leads to the correlation of dynamic damage modes, one can not obtain the 
precise value of system dynamic reliability at all. So two kinds of extreme cases (complete 
correlation 1ij  and complete no correlation 0ij ) among every damage modes are considered. 

From the reliability theory, the structural system dynamic reliability (Chen et al., 1997) is 
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where the dynamic reliability function of the ith element }0,)({)( TttYPtP uiilirri   , 

)(tYi  is the dynamic response of the ith element, ui  and li  are upper and lower bounds given for 

)(tYi . When 1ij , the right equal sign holds, when 0ij , the left equal sign holds, when 

10  ij , inequality holds.  

 
Eq. (11) shows that the dynamic reliability of structural weakest element is the upper bound of 

)(tPr . Suppose that there are )( nmm   structural elements whose dynamic reliabilities are less than 

1 in ],0[ T , to obtain the lower bounds of )(tPr  by a smallest amount of computation, only the 

elements with 1)( tPri  ( nmmi  ,,,2,1  ) are searched, the elements with 1)( tPri  are rejected. 

Then it is necessary to determine a weakest element with the smallest dynamic reliability and 1m  
weaker elements. The searching sequence is as follows 
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Taking the lower bound 
n

i
ft tP )(  of )(tPr  as system dynamic reliability, the constraints of the new 

optimization model with the same design variables and objective function same as those in Eq. (10) 
are 
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Because the lower bound of system dynamic reliability is smaller than practical system dynamic 
reliability, the optimal results under the constraints in Eq. (12) tend to conservative, which is 
acceptable in the practical engineering. 

Example 

In Figure 1, elastic module GpaE 210 , mass density 
3/7800 mkg . A random load P  acts on the node 3 in the 

vertical direction, excitation source is the Gaussian white 
noise process with zero mean value and its power spectrum 
density is sNSP

2100 , the load’s durative time st 1000 . 
The two-side symmetric boundary is Mpa100 , the stress 
dynamic reliability of every bar is 0.99. The objective 
function is the structural gross mass W . When the design 
variables are bars’ cross-section areas with initial 
values 2005.0 m , the dimension optimal results are listed in 
Table 1. 

 
Table 1.  Dimensions optimal results under dynamic reliability constraint 

parameters )(1 2cmA  )(2 2cmA  )(3 2cmA  )(4 2cmA  )(5 2cmA  )(6 2cmA  

initial 50 50 50 50 50 50
optimum 23.7908 20.9263 30.1170 11.4981 2.0000 10.5384 

parameters )(7 2cmA  )(8 2cmA  )(9 2cmA  )(10 2cmA  )(kgW  minR  

initial 50 50 50 50 909.2346 1
optimum 5.9143 4.8669 13.7567 20.4613 258.0997 0.9900

 
From results of Table 1, the structural gross mass reduces to 28.4 percent of the original mass on the 
basis of ensuring the stress reliability. Moreover, among optimal results of )10,,2,1( iAi , 3A  is 

the greatest and 5A  is the smallest, this is because bar 3 is the an important workload bearing 
element while bar 5 is the less important one according to the analysis of theoretical mechanics. 
 
In the following, structural shape and dimension are optimized simultaneously under dynamic 
reliability constraint. Taking )10,,2,1( iAi  and ordinates of node 4, 5 and 6 as design variables 

simultaneously, initial values of Ai  are 2005.0 m , initial values of three ordinates are m2 . The 
optimal results are given in Table 2.  

Figure 1. 10-bar truss 
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Table 2. Shape and dimension optimum results under dynamic reliability constraint 

parameters )(1 2cmA  )(2 2cmA  )(3 2cmA  )(4 2cmA  )(5 2cmA  

initial design 50 50 50 50 50
optimum 14.1104 14.8950 16.6942 3.3414 3.6604

parameters )(6 2cmA  )(7 2cmA  )(8 2cmA  )(9 2cmA  )(10 2cmA  

initial design 50 50 50 50 50 
optimum 7.8812 3.4494 4.9532 13.5123 65.7645

parameters )(4 mY  )(5 mY  )(6 mY  )(kgW  minR  

initial design 2 2 2 909.2346 1
optimum 4.94243 3.38567 0.22864 209.5853 0.9900

 
From Table 2, it can be observed that  

1) the gross mass reduces further under the premise of dynamic reliability satisfying the 
constraint condition. 

2) the optimal results of dimension variables are different from those in Tab.11, and 10A  is the 
greatest while 8A  is the smallest, 3A  and 1A  are still comparatively greater as the connection 
elements of structural root, which is similar to the conclusion of Tab.11. 
 
The structural shape after optimization is showed in Figure 5, and it tends to a triangle as a whole 
which enables structure to be more stable and is a better load-carrying shape. 

Conclusion 

The structural optimal design based on dynamic reliability is 
more complicated than conventional structural static optimal 
design, and optimal design with system dynamic reliability 
constraint is more complicated than that with element 
dynamic reliability constraint. How to quickly finish 
structural dynamic analysis and further improve 
optimization methods are critical to the widespread 
application of dynamic optimal design based on the dynamic 
reliability. 
 
Because it’s very hard to obtain system dynamic reliability 
according to Eq. (10) and sometimes it is impossible at all. 
So one can only consider two extreme cases to 
approximately evaluate it. Moreover, its solution is based on the simplified dynamic reliability 
which is suitable for many engineering structures because their responses are often narrow band 
processes. The dynamic reliability obtained by the simplified method does not greatly differ from its 
true value because the upper bound of the integral interval of power spectral density is not much 
greater than the intermediate value, thus the lower bound of system dynamic reliability will not 
much smaller than its true value. Hence the optimization results are just comparatively conservative 
and still applicable in practical engineering when lower bound of system dynamic reliability is used 
 
Some measures such as reasonably choosing design variables (dimensions or shape parameters) or 
evaluating initial values of the design variables can effectively enhance the efficiency of dynamic 
optimal design based on dynamic reliability. 

Figure 2. shape optimal result 
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