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Abstract 

This paper investigates the non-linear elastic in-plane buckling behaviour of a crown-pinned 
shallow circular arch with rotational end restraints under a uniform radial load or under a central 
concentrated load. A finite element method and an analytical method are used for the investigation. 
It is shown that the finite element results agree well with the analytical solutions. It is found that the 
stiffness of the rotational end restraints has significant effects on the buckling behaviour of arches 
and that the buckling loads increase with an increase of the stiffness. It is also found that the crown-
pin plays an important role in the buckling behaviour of arches. The crown-pinned arches can 
buckle in a limit point instability mode, but not in a bifurcation mode. 
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Introduction 

Studies of the buckling behaviour have been focused on pin-ended and fixed arches (Pi et al. 2002, 

Bradford et al. 2002). In addition to pin-ended and fixed arches, in engineering structures, an arch is 

often supported on the elastic foundations or by other structures which provide elastic restraints to 

the arch ends. Pi et al. (2008) investigated the non-linear in-plane buckling of shallow circular 

arches with elastic rotational end restraints under a central concentrated load, while Pi and Bradford 

(2009) reported studies on the non-linear in-plane postbuckling behaviour of shallow circular arches 

with elastic rotational end restraints under a uniform radial load. In these studies, the arch is 

assumed to be continuous without any pins between its ends. It is known that in many cases, arches 

are built by joining two separate curvilinear segments together at the crown, thereby reducing the 

arch size to meet transport requirements and to create a pin at the arch crown. Because of the 

crown-pin, the structural responses and buckling behaviour of the arch are different from those of 

arches without the crown-pin. However, investigations on crown-pinned shallow circular arches 

with elastic rotational end restraints do not appear to be reported in the open literature. 

 

This paper, therefore, uses both an analytical method and a finite element method to investigate the 

non-linear in-plane buckling behaviour of crown-pinned shallow circular arches with rotational end 

restraints subjected to a central point load or to a uniform radial load (Fig. 1). 

 

 

 

Figure 1. Crown-pinned arches subjected to different loading cases 
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Non-linear in-plane equilibrium 

Assumptions adopted in this investigation are: 1. The Euler-Bernoulli hypothesis is applied. 2. The 

dimension of the cross-section is much smaller than the length and radius of the arch to ensure 

sufficient slenderness. Because the arch and load system is symmetric, equilibrium of a half arch 

(0≤ θ ≤Θ and Θ is half of the included angle of the arch) is considered (Fig. 2). Based on the 

assumptions, differential equations of equilibrium for a crown-pinned circular arch with equal 

rotational end restraints can be derived from the principle of virtual work as 
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for arches that are subjected to a central concentrated load Q (Pi et al. 2008), and as 
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for arches that are subjected to a uniform radial load q (Pi and Bradford  2009), where 

    dd /
 ,   denotes the angular coordinates, v~  = v/R and w~  = w/R, v and w are the radial and 

axial displacements with R being the radius of the arch, μ is the dimensionless axial force parameter 

defined by  μ =NR
2
/EI with E being Young’s modulus and I being the second moment of area of the 

cross-section,  and the axial compressive force N is defined by 
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Figure 2. Arch geometry  

 

The static boundary conditions can also be derived as 
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for arches subjected to a central concentrated load Q ,  and 
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for arches subjected to a uniform radial load, where   is the dimensionless restraint flexibility 

defined by α = EI/kS with k being the stiffness of  rotational end restraints and S being the length of 

the arch. 
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In addition, the kinematic boundary conditions are  

  at0~andand0at0~ vw                             (6) 

for both loading cases. 

 

Solving the three equations given by Eqs. (1) and (3) or by Eqs. (2) and (3) simultaneously leads to 

the solution of the radial displacement as 
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for crown-pinned arches subjected to a central concentrated load, and 

 

 

 

2 2 2 2

2

2 3

2

(2cos cos 4 sin cos cos 2 sin
2 cos 2 sin

( ) sin
    2 sin 2 4 sin cos 2 sin ) (sin

cos 2 sin

    2 cos 2 )

v
P

H P

           
   

 
         

   

  

  


      


 



        (8) 

 

for crown-pinned arches subjected to a uniform radial load (β = μΘ), and leads to the non-linear 

equilibrium equation between the internal force parameter   and external force Q  or q  as 

2
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1 2 3 0B P B P B                                    (9) 

for the arches subjected to a central concentrated load and to a uniform radial load respectively, 

where Q  is the dimensionless load defined by 2 / 2Q R Q EI  , and the expressions for 

coefficients for A1, A2, A3, B1, B2 and B3 are given in Appendix.                                                      

 

The non-linear equilibrium equation between internal force parameter μ and external force Q (or q) 

given by Eq. (9) has limit points. To determine the limit point, Eq. (9) can be considered as an 

implicit function of Q (or q) with μ. Hence, the load corresponding to the limit points needs to 

satisfy 
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Finite element model 

 

The non-linear behaviour of crown-pinned arches is also investigated using the commercial finite 
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element package ANSYS (2011). The beam element beam188 of ANSYS is herein used to model 

crown-pinned concrete-filled steel tubular (CFST) arches because the beam188 provides stress 

stiffness terms, which enable the element to analyse buckling problems. As shown in Figure 3, 

CFST section is modelled by using two independent subsections which are fully bonded together. 

To model an arch, 161 nodes connected in sequence lead to 320 elements through the entire arch. It 

is noted that in ANSYS, the steel tube and the concrete core are generated into separate but fully-

bonded elements. To form the pin connection at the crown of the arch, the rotational degree at the 

crown about z axis is released at which the bending moment vanishes. The combined element 

combin14 of ANSYS is adopted to model the rotational end restraints at two ends where only 

rotational movement is allowed so that, to some extent, the bending moment can be transmitted but 

there are no translational movements. In the element combin14, the stiffness k  can be assigned 

through the relation between load and displacement.  

 

 
Figure 3. Finite element model of a crown-pinned CFST arch  

 

In non-linear analysis, the switch for the geometric nonlinearity is turned on. The Newton-Raphson 

method is applied in equilibrium iterations to overcome convergence difficulties. To investigate the 

buckling behaviour of a crown-pinned arch subjected to different loading cases, the arc-length 

method is used to ensure numerical stable solutions for the static analysis when external load 

increases in a step-by-step fashion. Based on the computational results, the buckling behaviour of 

the crown-pinned arch can be characterized by the load-displacement curve as shown in Figs. 4 and 

5, which show the buckling behaviour of a crown-pinned CFST arch under different loading cases 

along with different boundary conditions: pinned ends, fixed ends and rotationally restrained ends.  

 

 
 

Figure 4. Limit point buckling of rotationally restrained crown-pinned arches  

under a central concentrated load  

app:ds:equilibrium
app:ds:iteration
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The geometry of the arch used in the analyses is shown in Figs. 4 and 5 where λe is the modified 

slenderness of the CFST arch defined by λe = SΘ/2re and re is the radius of gyration of the CFST 

cross-section defined by )()( ccssccsse EAEAIEIEr   where Es and Ec are Young’s modulus of 

the steel tube and core concrete, As and Ac are the area of the steel tube and concrete core, and Is and 

Ic are the second moment of the area of the steel tube and concrete core, respectively. Also in Figs 4 

and 5, crNQQ /  is the dimensionless central concentrated and Ncr is the second mode buckling 

load of a pinned CFST column about its major axis under uniform axial compression (Pi et al., 

2011). When the modified slenderness λe is 17.8, the span of the arch is L = 15 m  with the rise to 

span ratio f/L = 0.083 and the ratio of the arch length to the radius of gyration S/re = 107.9 which 

reflects the slenderness of the arch. The stiffness of each rotational end restraint is k = 1.12×10
8 

Nm/rad when the dimensionless flexibility of  the restraint α = 0.1. When λe = 58.8, L = 26 m, f/L = 

0.155 and S/re = 107.9, the corresponding stiffness is k = 6.15×10
7
 Nm/rad if the dimensionless 

flexibility α = 0.1.  

 
 

Figure 5. Limit point buckling of rotationally restrained crown-pinned arches  

under a uniform radial load  
 

It can be seen from Figs. 4 and 5 that when the stiffness vanishes, the arch becomes pin-ended, 

while when the stiffness approaches infinite, the arch ends are fully fixed. When the stiffness is 

neither zero nor infinite, the buckling behaviour falls in between these two extreme cases. When λe 

equals 17.8, the limit point buckling load increases slightly with a decrease of the dimensionless 

flexibility α of rotational end restraints (i.e. with an increase of the corresponding stiffness k). When 

λe = 58.8, the increase of the buckling load appears to be more substantial. This shows that effects 

of the stiffness of the rotational end restraints on the buckling behaviour are more significant for 

deep and slender crown-pinned arches than for their shallow and stocky counterparts. The finite 

element results show that the crown-pinned arches can buckle in a limit point instability mode, but 

cannot buckle in a bifurcation mode, which is quite different from arches without the crown-pin that 

may buckle in a limit point instability mode or in a bifurcation mode.  

Comparison of finite element results with analytical solutions 

The finite element results are compared with the analytical solutions in Figs. 6 and 7 for the crown-

pinned arches with λe = 17.8. It can be seen that the discrepancies between finite element result and 

their analytical counterparts are extremely small and thus can be neglected. They agree very well 

with each other. This demonstrates that the finite element model is capable of providing accurate 
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results for predicting the non-linear in-plane buckling loads of crown-pinned shallow circular arches 

with rotational end restraints. 

 

 
 

Figure 6. Comparison between analytical and finite element results of limit point buckling  

of a crown-pinned CFST arch under a central concentrated load 

 

 
 

Figure 7. Comparison between analytical and finite element results of limit point buckling  

of a crown-pinned CFST arch under a uniform radial load 
 

Conclusions 

This paper studied the non-linear buckling behaviour of a crown-pinned shallow circular arch with 

rotational end restraints under a central concentrated load or under a uniform radial load. It was 

found that the boundary conditions at both ends influence the buckling load of the arch significantly. 

It was also found that the crown-pin plays an important role in the buckling behaviour of arches. 

The crown-pinned arches can buckle in a limit point instability mode, but not in a bifurcation mode, 

which is quite different from arches without the crown-pin that may buckle in a limit point 

instability mode or in a bifurcation mode. Comparisons of the finite element results with the 

analytical solutions have shown that the finite element model is capable of providing accurate 

results for the non-linear buckling behaviour of crown-pinned arches with rotational end restraints. 
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Appendix 

 

A1, A2 and A3 for the arch subjected to a central concentrated load are given by 
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with   and  defined by 
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and B1, B2 and B3 for for crown-pinned arches subjected to a uniform radial load are given by 
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with  defined by  
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