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Abstract 

Red Blood Cells (RBCs) exhibit different types of motions and different deformed shapes, when 

they move through capillaries. RBCs can travel through capillaries having smaller diameters than 

RBCs’ diameter, due to the capacity of high deformability of the viscoelastic RBC membrane. The 

motion and the steady state shape of the RBCs depend on many factors, such as the geometrical 

parameters of the microvessel through which blood flows, the RBC membrane bending stiffness 

and the flow velocity. In this study, the effect of the RBC’s membrane stiffness on the deformation 

of a single RBC in a stenosed capillary is comprehensively examined. Smoothed Particle 

Hydrodynamics (SPH) in combination with the two-dimensional spring network membrane model 

is used to investigate the motion and the deformation property of the RBC. The simulation results 

demonstrate that the membrane bending stiffness of the RBC has a significant impact on the RBCs’ 

deformability. 

Keywords: Red Blood Cell (RBC), Smoothed Particle Hydrodynamics (SPH), Stenosed Capillary, 

Meshfree Methods, Microcirculation, Numerical Simulations. 

Introduction 

RBCs are the most common type of the blood cell in the human blood and they occupy about 45% 

of total blood volume (Skalak et al. 1989, Tsubota et al. 2006a). Human RBCs consist of a thin 

viscoelastic membrane and they do not contain nuclei inside of the cell. Due to the existence of the 

viscoelastic membrane, RBCs exhibit different types of motions and deformed shapes, when the 

blood flows within the cardiovascular network (Fedosov et al. 2010, Pozrikidis 2003). The motion 

and the deformation mechanism of a RBC highly depend on the maximum velocity of the plasma 

flow, bending stiffness of the RBC and the diameter of the microchannel, through which the RBC 

flows (Shi et al. 2012). Over the last few decades, a number of numerical studies were conducted to 

understand the RBCs’ behaviour in the microchannels.  

It is important to study the RBCs’ motion and deformation accurately, when they are squeezing 

through capillaries. Since, some diseases such as malaria, cancer, and sickle cell anemia can alter 
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the ability of deformability of the RBCs (Jiang et al. 2013), they might not be able to deform 

enough to pass through the narrow capillaries. Further, if the blood vessel is stenosed, there is a 

high risk of micro vascular blockage (Cooke et al. 2001). In the past, most of the studies were 

carried out to investigate the RBCs’ behaviour in the microchannels with uniform cross sectional 

areas and few studies have been done to explore the RBCs’ motion and deformation mechanism in 

stenosed microchannels. Hosseini and Feng (2009) have presented the RBCs’ ability of squeezing 

through a tiny capillary, whose diameter is smaller than the mean diameter of the RBCs. They used 

the SPH method and modelled the microchannel, such that it has a larger uniform diameter at the 

inlet and a smaller uniform diameter at the outlet. Vahidkhah and Fatouraee (2012) proposed a 

immersed boundary–lattice Boltzmann method to investigate the RBCs’ behaviour in a stenosed 

arteriole. However, they presented more qualitative results of the RBCs’ deformation in a stenosed 

arteriole.  

The purpose of this paper is to present an advanced numerical modelling technique using SPH to 

analyse motion and deformation of a single RBC through a stenosed capillary. The RBC membrane 

is modelled by a spring network and the forces acting on the RBC membrane is determined based 

on the minimum energy principle (Gallage et al. 2012a, Pan and Wang 2009, Tsubota et al. 2006b). 

First, we present the motion and deformation of a RBC, when it passes through a stenosed capillary. 

Then, we compare the effect of the RBC’s membrane stiffness on the deformation and the motion 

of the RBC.  

Model and Method 

In this study, the RBC membrane is modelled by a two-dimensional spring network as used in the 

previous studies (Gallage et al. 2012b, Shi et al. 2012). The membrane of the RBC is constructed by 

88 membrane particles, which are interconnected by elastic springs. Initially, it is assumed that the 

shape of the RBC membrane is a circle with radius of 2.8 µm. 
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Fig. 1: Spring network model of the RBC 

The elastic energy (El) stored in the springs due to the stretch/ compression is given by Eq. (1) and 

the elastic bending energy (Eb) stored in the springs due to the bending is given by Eq. (2). In order 

to maintain a constant membrane area, a penalty function (Es) is introduced as in Eq. (3). The total 

force (Fi) acting on the i
th

 membrane particle is calculated, using the principal of virtual work as in 

Eq. (4), where ri is the Position vector of the i
th

 Particle. li, θi, and s are length of the i
th

 spring, 

angle between two consecutive springs and area of the RBC respectively. Spring constant for 

stretching/compression (Kl), spring constant for bending (Kb) and penalty coefficient (Ks) are set to 

5×10
-8

 N.m, 5×10
-10

 N.m and 1×10
-5

 N.m respectively as used by Shi et al. (2012). The reference 

length (l0) is taken as 0.2 µm, while the Equivalent area of the RBC (se) is set to π×(2.8×10
-6

)
2
×0.55 

m
2 

as used in the work by Pan and Wang (2009).When the forces acting on the RBC membrane 

particles are minimised, the initial circular shape gives a biconcave shape as shown in Fig. 1. 

RBC internal fluid (cytoplasm) and external fluid (plasma) are modelled by a set of particles and 

Navier-Stokes equations (Eq. (5) and Eq. (6)) in Langrangian form are used to model the whole 

flow field, with the assumption of the system is isothermal. 

 ν 
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where ρ and µ are the density and the dynamic viscosity of the fluid, ν is the velocity vector and p is 

the pressure while f is the vectorial external force. 

In SPH methodology, any field function value (f) of a particle can be approximated from the same 

field function value of surrounding neighbouring particles using a kernel function (W) as shown in 
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Eq. (7). For this study, popular cubic spline smoothing function is used as used by Gallage et al. 

(2012b).  
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The Navier-Stokes equations are modified according to the SPH methodology (Liu and Liu 2003) 

and are used to determine the particle positions and velocities. The capillary wall is modelled by a 

set of boundary particles and pair-wisely repulsive forces are introduced to avoid any penetration of 

fluid particles through the capillary wall (Gallage et al. 2012b). 

The problem domain is discretised into SPH particles, as shown in Fig. 2, such that the particle 

spacing is equal to 0.2 µm. Geometrical parameters of the problem domain is shown in the Table 1. 

Table 1: Geometrical parameters of the stenosed capillary 

Parameter h1 h2 l1 l2 l3 l4 r1 r2 r3 r4 

Value (µm) 9.8 9.8 4.9 19.6 0.6 9.7 3.7 3.7 3.7 3.7 

According to the set geometrical parameters, the total length of the stenosed capillary in x-direction 

is 45 µm and the minimum height (h3) at the stenotic area is about 6 µm.  

 

Fig. 2: Initial geometrical configuration of the problem domain 

Results and discussions 

Deformation Index of the RBC in the stenosed capillary 

A constant pressure (P1=450 Pa) is applied at the inlet, and the outlet pressure is set to zero. Those 

boundary conditions give a constant pressure gradient of 1×10
7 

Pa/m. The pressure of each particle 

is calculated based on the x-directional distance and the pressure gradient, and then it is applied to 

the particles. The pressure gradient used for this study is quiet high. If this pressure gradient was 

applied to a capillary having a uniform diameter of 9.8 µm and no RBCs, then the peak velocity of 
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the plasma flow would be 0.12005 m/s. It corresponds to Reynolds number, Re=1.17649. Due to the 

applied pressure in the inlet, the RBC begins to move with plasma flow. While RBC is moving it 

deforms and the initial biconcave shape of the RBC is changed to the parachute shape. Fig. 3 shows 

that the deformation of the RBC is quite significant, when it is flowing through the stenosed area. 

The Deformation Index of the RBC can be defined as in Eq. (8) 

    
                           

                           
 (8) 

 

 

 

 

 

Fig. 3: Deformed RBC; DI= l/d 

Initially, RBC flows through a section where capillary diameter is uniform and during that period of 

time DI of the RBC increases gradually (see Fig. 4). When t=0.4 ms, the DI reaches almost a steady 

value of 0.65. But after t=0.4 ms RBC enters to a narrow passage, where cross sectional area of the 

capillary is suddenly reduced. Then the DI of the RBC increases drastically with time and variation 

of the DI with the RBC’s position shows a similar pattern (see Fig. 5 and Fig. 6). However, it can 

be seen that from Fig. 7 the RBC’s position does not have a linear relationship with time. The DI 

reaches a peak value about 1.39 when the RBC squeezes through the stenosed area. This happens at 

t=0.6 ms and a significant difference in the deformed RBC’s shape can be observed when it passes 

through the narrowest area of the capillary (see Fig 4). Then the RBC’s DI decreases with the time, 

as it leaves the stenosed area of the capillary and the RBC starts to recover its normal parachute 

shape again. When the RBC leaves the stenosed area completely, the DI of the RBC gets the almost 

same value as t=0.4 ms. Therefore, the deformation index of the RBC is highly depends on the 

cross sectional of the capillary, through which RBC moves.  

 

Fig. 4: Deformation of the RBC at t=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.85 ms  
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Fig. 5: The variation of the DI with time Fig 6.: The variation of the DI with RBC’s Position 

When the RBC squeezes through the stenosed area, it flows at a maximum velocity of about 0.06 

m/s. However, the mean velocity of the RBC takes a lower value just after the stenosed area, 

compared with its velocity just before the stenosed area (see Fig. 7). At t=0.84 ms, all the RBC 

membrane particles and cytoplasm particles have almost reached a unique velocity (see Fig. 8). But, 

the mean RBC velocity is still subjected to some minor fluctuation, as seen in Fig. 7. Fig. 8 shows 

that the plasma particles located close to the capillary wall have a lower velocity, while the plasma 

particle located close to the axis of the capillary (y=0) have a higher velocity. 

  

Fig. 7: Variation of RBC’s mean velocity Fig. 8: Velocity profile at t=0.84 ms 

Effect of the RBC’s membrane stiffness 

Deformation Indices of three RBC with different membrane stiffness are compared. For this 

simulation, l2 is set to 9.6 µm. Therefore, the total length of the stenosed capillary in x-direction is 

35 µm and the minimum height (h3) at the stenotic area is not changed. P1 is set to 350 Pa, to 
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maintain a constant pressure gradient of 1×10
7 

Pa/m. Spring constant for bending (Kb) is changed 

from 5×10
-10

 N.m to 5×10
-9

 N.m and 5×10
-11

 N.m. All the other simulation parameters are kept 

same as previous. The RBC having higher Kb value exhibits a lower deformation and the RBC with 

a less Kb value shows a greater deformation. When the RBC with Kb =5×10
-9

 N.m flows the 

stenosed area, the thickness of the plasma layer exist between RBC membrane and the capillary 

wall is very narrow (see Fig. 9). Further increase in bending constant would lead to blockage of the 

RBC, since RBC deforms less for higher bending constant values. Fig. 10 shows that three RBCs 

exhibit similar deformation pattern with respect to their positions. Further, DI of the RBC with 

Kb=5×10
-9

 has been reduced drastically. While, there is no significant change in the deformation 

indices of the RBCs with Kb=5×10
-11

 and Kb=5×10
-10

.  

(a) (b) (c) 

Fig. 9: Deformed RBC shapes for (a) Kb =5×10
-9

, (b) 5×10
-10

 and (c) 5×10
-11

 N.m 

 

 

Fig. 10: The variation of the DI with time for different Kb values 
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Conclusions 

The SPH model in combined with the spring network model is used to investigate the RBCs 

deformation behaviour though a stenosed capillary. We observed that, the geometrical shape of the 

capillary, through which RBCs move, makes a significant effect on the deformation index of the 

RBC. When there is a stenosed part in the capillary, the flow field changes and the RBCs are 

subjected to larger deformation. Further, results revealed that the deformability of the RBCs highly 

depends on the RBCs bending stiffness. The RBC having a higher bending stiffness shows a less 

Deformation Index and the thickness of the plasma layer exist between RBC membrane and the 

capillary wall is very narrow, when the RBC moves through a stenosed capillary. However, to get 

more accurate results, the deformation property of the RBCs should be studied, when they are 

interacted with other RBCs. In our future’s work, we aim to study the effect of multiple RBCs, 

when blood is flowing through a stenosed capillary in the near future. 
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